WO2016158315A1 - 撮像素子、撮像方法、電子機器 - Google Patents

撮像素子、撮像方法、電子機器 Download PDF

Info

Publication number
WO2016158315A1
WO2016158315A1 PCT/JP2016/057740 JP2016057740W WO2016158315A1 WO 2016158315 A1 WO2016158315 A1 WO 2016158315A1 JP 2016057740 W JP2016057740 W JP 2016057740W WO 2016158315 A1 WO2016158315 A1 WO 2016158315A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
reference signal
signal
level
switching
Prior art date
Application number
PCT/JP2016/057740
Other languages
English (en)
French (fr)
Inventor
祐理 加藤
祐輔 大池
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016158315A1 publication Critical patent/WO2016158315A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • the present technology relates to an imaging device, an imaging method, and an electronic device, and more particularly, to an imaging device, an imaging method, and an electronic device that can suppress the occurrence of an A / D conversion error.
  • the method described in Patent Document 1 further includes one A / D conversion unit, a new determination unit, and a pixel output by the determination unit. Judges the magnitude of the signal and selects one of the reference voltage Vref1 and reference voltage Vref2 with two different slopes according to the result of the decision, thereby realizing different conversion accuracy depending on the magnitude of the pixel output signal is doing.
  • This technology has been proposed in view of such circumstances, and aims to suppress the occurrence of A / D conversion errors.
  • a first imaging element includes a pixel array in which unit pixels including a photoelectric conversion element that photoelectrically converts incident light are arranged, a reference signal input unit that generates a reference signal, and a unit of the pixel array
  • a comparison unit that compares an analog signal output from a pixel or the reference signal input unit with a predetermined voltage, and a reference voltage supplied to the comparison unit, and any one of a plurality of reference voltages having different gradation accuracy
  • a switching unit that connects one to the comparison unit, and a measurement that measures a change timing of a comparison result between the analog signal by the comparison unit and a reference voltage supplied to the comparison unit by switching control of the switching unit.
  • a correction unit that performs a correction process so that a gain error or an offset error between comparison results with reference voltages having different gradation accuracy from each other is reduced, and a reference signal of the reference signal input unit And a reference signal adjustment unit for adjusting the bell switching different levels of gradation precision.
  • the reference signal adjustment unit can detect an error between the reference signal level and the switching level and adjust the reference signal level.
  • the reference signal adjustment unit is configured to obtain a level setting value of the reference signal input unit that provides a switching level in an arbitrary gain setting based on a level setting value of the reference signal input unit that provides a switching level in a plurality of gain settings of the amplification unit. It can be calculated.
  • the reference signal adjustment unit calculates a level setting of the reference signal input unit that provides a switching level in an arbitrary gain setting, calculated based on a setting value of the reference signal input unit that provides a switching level in a plurality of gain settings of the amplification unit
  • the level setting value of the reference signal input unit that provides the switching level at an arbitrary gain setting may be calculated using the difference between the value and the level setting value of the reference signal input unit that actually provides the switching level. it can.
  • a reference signal is generated, and the pixel array
  • the analog signal output from the unit pixel or the reference signal input unit is compared with a predetermined voltage, the reference voltage supplied to the comparison unit that performs the comparison is switched, and a plurality of reference voltages with different gradation accuracy are selected. Any one of them is connected to the comparison unit, and the change timing of the comparison result between the analog signal by the comparison unit and the reference voltage supplied to the comparison unit by the switching control is measured, and different levels are measured. Correction processing is performed so that a gain error or an offset error between the comparison results at the reference voltage of the adjustment accuracy is reduced, and the reference signal level is changed to a switching level of different gradation accuracy. Including the step of settling.
  • a first electronic device includes a pixel array in which unit pixels including photoelectric conversion elements that photoelectrically convert incident light are arranged, a reference signal input unit that generates a reference signal, and a unit of the pixel array
  • a comparison unit that compares an analog signal output from a pixel or the reference signal input unit with a predetermined voltage, and a reference voltage supplied to the comparison unit, and any one of a plurality of reference voltages having different gradation accuracy
  • a switching unit that connects one to the comparison unit, and a measurement that measures a change timing of a comparison result between the analog signal by the comparison unit and a reference voltage supplied to the comparison unit by switching control of the switching unit.
  • a correction unit that performs a correction process so that a gain error or an offset error between comparison results with reference voltages having different gradation accuracy from each other is reduced, and a reference signal of the reference signal input unit
  • a second imaging element includes a pixel array in which unit pixels including a photoelectric conversion element that photoelectrically converts incident light are arranged, a reference signal input unit that generates a reference signal, and a plurality of pixels
  • An amplifying unit provided in each column and outputting a first signal obtained by amplifying the signal of the plurality of pixels or the reference signal with a first gain and a second signal amplified with a second gain;
  • the first digital signal and the second digital signal are converted to a first digital signal, and the second digital signal is converted to a second digital signal.
  • An imaging device comprising: a correction unit that performs correction processing so that a gain error or an offset error with respect to a signal is reduced; and a reference signal adjustment unit that adjusts the level of the reference signal to a switching level of a second signal.
  • the reference signal adjustment unit can detect an error between the reference signal level and the switching level and adjust the reference signal level.
  • the reference signal adjustment unit is configured to obtain a level setting value of the reference signal input unit that provides a switching level in an arbitrary gain setting based on a level setting value of the reference signal input unit that provides a switching level in a plurality of gain settings of the amplification unit. It can be calculated.
  • the reference signal adjustment unit calculates a level setting of the reference signal input unit that provides a switching level in an arbitrary gain setting, calculated based on a setting value of the reference signal input unit that provides a switching level in a plurality of gain settings of the amplification unit
  • the level setting value of the reference signal input unit that provides the switching level at an arbitrary gain setting may be calculated using the difference between the value and the level setting value of the reference signal input unit that actually provides the switching level. it can.
  • a reference signal is generated, A first signal obtained by amplifying a signal of the plurality of pixels or the reference signal by a first gain and a second signal amplified by a second gain provided in each column of pixels; A gain error between the first digital signal and the second digital signal after converting the signal into a first digital signal and converting the second signal into a second digital signal to the same gain level; Performing a correction process so as to reduce an offset error, and adjusting a level of the reference signal to a switching level of the second signal.
  • a second electronic device includes a pixel array in which unit pixels including photoelectric conversion elements that photoelectrically convert incident light are arranged, a reference signal input unit that generates a reference signal, and a plurality of pixels
  • An amplifying unit provided in each column and outputting a first signal obtained by amplifying the signal of the plurality of pixels or the reference signal with a first gain and a second signal amplified with a second gain;
  • the first digital signal and the second digital signal are converted to a first digital signal, and the second digital signal is converted to a second digital signal.
  • An image sensor is provided that includes a correction unit that performs a correction process so that a gain error or an offset error with respect to a signal is reduced, and a reference signal adjustment unit that adjusts the level of the reference signal to a switching level of the second signal.
  • a signal from a pixel array in which unit pixels including a photoelectric conversion element that photoelectrically converts incident light is arranged is processed.
  • a reference signal is generated, an analog signal output from a unit pixel of the pixel array or a reference signal input unit is compared with a predetermined voltage, a reference voltage supplied to a comparison unit that performs the comparison is switched, and different gradation accuracy Any one of the plurality of reference voltages is connected to the comparison unit, and the change timing of the comparison result between the analog signal by the comparison unit and the reference voltage supplied to the comparison unit by switching control of the switching unit is measured. Then, correction processing is performed so that a gain error or an offset error between comparison results with reference voltages having different gradation accuracy is reduced, and the reference signal level is adjusted to a switching level having different gradation accuracy.
  • the first electronic device includes the first imaging element.
  • a signal from a pixel array in which unit pixels including photoelectric conversion elements that photoelectrically convert incident light are arranged is processed.
  • a reference signal is generated, provided in each column of a plurality of pixels, and a first signal obtained by amplifying the signal of the plurality of pixels or the reference signal with a first gain and a second signal amplified with the second gain are output.
  • the first signal is converted into the first digital signal
  • the second signal is converted into the second digital signal
  • the first and second digital signals after the same gain level is obtained. Correction processing is performed so that the gain error or the offset error is reduced, and the level of the reference signal is adjusted to the switching level of the second signal.
  • the second image sensor is included.
  • This technology can process information.
  • the occurrence of A / D conversion errors can be suppressed.
  • ⁇ About A / D conversion> In a general image sensor, electric charges accumulated in a light receiving portion (for example, a photodiode) of a unit pixel are read out as a signal voltage (pixel signal), and are subjected to analog / digital conversion (A / D (Analog / Digital) conversion). .
  • a / D conversion for example, there is a method of performing digital conversion by comparing with a signal voltage while changing a reference voltage and acquiring a coincident timing.
  • the column A / D conversion unit 10 shown in FIG. 1 is a processing unit that performs A / D conversion by this method, and performs A / D conversion on the pixel signal read from the unit pixel.
  • the column A / D conversion unit 10 illustrated in FIG. 1 includes a reference voltage generation unit 11, a comparison unit 12, and a timing measurement unit 13.
  • the reference voltage generation unit 11 generates a reference voltage Vref whose value changes within a predetermined voltage range, and supplies the reference voltage Vref to the comparison unit 12.
  • the comparison unit 12 compares the voltage of the input signal Vx, which is an analog pixel signal read from the pixel, with the reference voltage Vref generated by the reference voltage generation unit 11 and supplies the comparison result Vco to the timing measurement unit 13. To do.
  • the timing measurement unit 13 measures (counts) a period from when the comparison is started until the value of the comparison result Vco changes, and determines the length (count value) of the period as the digital value (A / D converted value), and the digital value is output as digital output Do.
  • FIG. 2 is a timing chart showing an example of the state of A / D conversion by the column A / D conversion unit 10 in this way.
  • the reference voltage Vref scans the voltage in a ramp shape.
  • the input signal Vx is input using the pixel output variation component ⁇ V (noise component) as the first analog signal and Vsig + ⁇ V obtained by adding the signal component Vsig to the variation component as the second analog signal.
  • the timing measurement unit 13 uses, for example, a counter that can be switched up and down, and measures the time until the comparison result Vco changes using the counter clock.
  • the second analog signal is subtracted from the first analog signal by down-counting the first analog signal and up-counting the second analog signal, and as a result, only the signal component Vsig is digitized. Can finally be obtained.
  • the conversion time may increase in proportion to the gradation accuracy.
  • the conversion accuracy voltage per gradation
  • the convertible input voltage range dynamic range
  • the number of gradations increases, which may increase conversion time (lower speed) and increase power consumption.
  • the slope of the reference voltage is reduced.
  • the number of gradations is the same, the number of necessary clocks does not change, so the power and speed do not change, but the amplitude of the reference voltage becomes small, so the input voltage range to be A / D converted is narrowed.
  • the number of gradations is increased, a larger number of clocks are required, which is accompanied by a decrease in speed and an increase in power, but the amplitude of the reference voltage is widened and the input voltage range to be A / D converted is narrowed.
  • the conversion accuracy (voltage per gradation) of A / D conversion is determined by the noise level included in the signal voltage and the degree of amplification (gain) applied during image development.
  • the image sensor generates ⁇ N photon shot noise for signal charge N generated in proportion to the incident light intensity in addition to noise Ndark generated in signal readout.
  • the amount of noise increases according to the incident light intensity. The darker the signal, the smaller the absolute value of the noise, and the brighter the signal, the larger the signal, but the absolute value of the noise increases.
  • the influence of quantization noise determined by A / D conversion accuracy differs depending on the signal size (bright or dark), and the light shot noise is dominant in the brighter region, and the required A / D conversion accuracy is lower. It doesn't matter.
  • the conversion accuracy of A / D conversion is preferable to be smaller than the total noise level of these readout noise and photon shot noise in order not to make quantization noise of A / D conversion manifest.
  • high conversion accuracy sacrifices conversion speed and power consumption.
  • a / D conversion with a small gradient of the reference voltage Vref that is, high gradation accuracy is performed on the first analog signal and the second analog signal.
  • the slope of the reference voltage Vref is increased, and A / D conversion with a lower gradation accuracy D2 is performed on the second analog signal and the third analog signal.
  • the A / D conversion for the third analog signal is a process for subtracting the variation component. That is, the first analog signal and the third analog signal are both variation components (noise components).
  • the second analog signal which is a signal component.
  • the variation component (first analog signal and third analog signal) also needs to be converted twice in total.
  • the variation component is generally smaller in amplitude than the signal component, the amplitude of the reference voltage is also small.
  • the conversion period is relatively shorter than the component. Therefore, in particular, the point that the conversion twice in total is required for the signal component (second analog signal) greatly contributes to the reduction of the A / D conversion speed.
  • FIG. 5 is a diagram illustrating a main configuration example of a CMOS (Complementary Metal Metal Oxide Semiconductor) image sensor.
  • a CMOS image sensor 100 shown in FIG. 5 is an example of an image sensor using a CMOS or a signal processing device that processes an image signal obtained in a pixel region.
  • the CMOS image sensor 100 includes a pixel array 111 and an A / D conversion unit 112 as an example of a signal processing device.
  • the CMOS image sensor 100 photoelectrically converts the light incident on the pixel array 111, A / D converts the obtained analog signal by the A / D converter 112, and corresponds to the obtained image corresponding to the incident light. Output digital data.
  • unit pixels 141 including photoelectric conversion elements which are indicated by squares in the drawing, are arranged in an array (matrix). In FIG. 5, only some unit pixels are shown.
  • the number of pixels in the pixel array 111 is arbitrary. Of course, the number of rows and the number of columns are also arbitrary.
  • the A / D conversion unit 112 is provided for each column of the pixel array 111, and is an example of a signal processing device that performs A / D conversion on an analog pixel signal Vx read from each unit pixel of the corresponding column.
  • a column A / D conversion unit 151 is included.
  • the column A / D converter 151-1 corresponding to the first column from the left of the pixel array 111
  • the column A / D converter 151-2 corresponding to the second column from the left
  • 3 from the left Only the column A / D converter 151-3 corresponding to the column is shown.
  • the A / D conversion unit 112 has a column A / D conversion unit 151 corresponding to each column of the unit pixels 141 of the pixel array 111. When there is no need to describe each column A / D conversion unit separately from each other, they are simply referred to as a column A / D conversion unit 151.
  • the number of column A / D converters 151 may not match the number of columns in the pixel array 111.
  • one column A / D conversion unit 151 may perform A / D conversion on a plurality of columns of pixel signals Vx in the pixel array 111.
  • the column A / D conversion unit 151 may perform the A / D conversion process of the pixel signal Vx of each corresponding column in a time division manner.
  • the CMOS image sensor 100 also includes an A / D conversion control unit 110, a control timing generation unit 121, a pixel scanning unit 122, a horizontal scanning unit 123, a reference voltage generation unit 131, and a reference voltage generation unit 132.
  • the control timing generation unit 121 supplies a clock signal to the A / D conversion control unit 110, the A / D conversion unit 112, the pixel scanning unit 122, the horizontal scanning unit 123, the reference voltage generation unit 131, and the reference voltage generation unit 132. Equally, the operation timing of each processing unit is controlled.
  • the pixel scanning unit 122 supplies a control signal for controlling the operation to each unit pixel 141 of the pixel array 111.
  • the horizontal scanning unit 123 sequentially outputs the digital data supplied from each column A / D conversion unit 151 for each row of unit pixels.
  • the A / D conversion control unit 110 controls the operation of each column A / D conversion unit 151.
  • the reference voltage generator 131 supplies the reference voltage Vref1 to each column A / D converter 151.
  • the reference voltage generator 132 supplies a reference voltage Vref2 different from the reference voltage Vref1 to each column A / D converter 151.
  • Each column A / D converter 151 of the A / D converter 112 operates at a timing controlled by the control timing generator 121.
  • the column A / D conversion unit 151 includes a switching unit 161, a comparison unit 162, a selection unit 163, and a timing measurement unit 164.
  • FIG. 5 shows the configuration of the column A / D converter 151-3, but all the column A including the column A / D converter 151-1 and the column A / D converter 151-2 are shown.
  • Each of the / D conversion units 151 has the same configuration as that of the column A / D conversion unit 151-3.
  • the switching unit 161 is provided between the reference voltage generation unit 131 and the comparison unit 162, and has a switch that controls connection / disconnection (on / off) of both by a control signal SWR1 supplied from the selection unit 163. .
  • the switching unit 161 is provided between the reference voltage generation unit 132 and the comparison unit 162, and is a switch whose connection / disconnection (on / off) is controlled by a control signal SWR2 supplied from the selection unit 163.
  • the switching unit 161 supplies the comparison unit 162 with the reference voltage Vref1 supplied from the reference voltage generation unit 131 and the reference voltage Vref2 supplied from the reference voltage generation unit 132, which is selected by the selection unit 163. To do.
  • the comparison unit 162 compares the voltage of the analog pixel signal Vx read from the unit pixel 141 with the reference voltage (Vref1 or Vref2) supplied from the switching unit 161.
  • the comparison unit 162 supplies the comparison result Vco (which is greater) to the selection unit 163 and the timing measurement unit 164.
  • the comparison unit 162 compares the reference voltage for scanning a predetermined voltage width with the voltage of the pixel signal Vx in order to A / D convert the pixel signal Vx.
  • the comparison unit 162 also determines a reference voltage (predetermined determination value) having a predetermined magnitude and the pixel signal Vx in order to determine gradation accuracy when the pixel signal Vx (second analog signal) is A / D converted. (Second analog signal) is compared.
  • the column A / D conversion unit 151 can reduce a margin necessary for the voltage range of the reference voltage, and can realize high-speed A / D conversion or low power consumption.
  • the selection unit 163 selects a reference voltage to be supplied to the comparison unit 162 according to the control of the A / D conversion control unit 110.
  • the selection unit 163 is supplied with the control signal ADP and the control signal SWSQ from the A / D conversion control unit 110.
  • the selection unit 163 selects one of the reference voltage Vref1 and the reference voltage Vref2 based on the comparison result Vco supplied from the comparison unit 162 at a timing based on those values.
  • the selection unit 163 determines the values of the control signal SWR1 and the control signal SWR2 so that the switching unit 161 supplies the selected reference voltage to the comparison unit 162, and supplies them to the switching unit 161.
  • the timing measurement unit 164 includes a counter, and counts the time from the start of comparison in the comparison unit 162 to the timing when the value of the comparison result Vco changes.
  • the timing measurement unit 164 uses the count value (that is, the length of time from when comparison is started in the comparison unit 162 to the timing when the value of the comparison result Vco changes) as the digital data of the pixel signal Vx. To supply.
  • the timing measurement unit 164 includes a counter that can perform both up-counting and down-counting. Therefore, the timing measurement unit 164 subtracts the count value for comparison between the first analog signal (variation component) and the reference voltage and the count value for comparison between the second analog signal (signal level + variation component) and the reference voltage. Can be realized by a counting operation. That is, the timing measurement unit 164 can easily perform this subtraction. In addition, since the timing measurement unit 164 can perform this subtraction in the digital domain, an increase in circuit scale and power consumption can be suppressed.
  • the CMOS image sensor 100 also includes a reference signal input unit 171, a reference signal level adjustment unit 172, and a correction unit 173. A description of each of these parts will be given later. By providing these, the occurrence of errors and the like can be suppressed. First, a description will be given of errors that occur when these parts are not present, and then a process for suppressing errors that may occur will be described.
  • FIG. 6 is a timing chart showing an example of A / D conversion when the incident light luminance is low, that is, when the amplitude of the second analog signal is small.
  • a / D conversion processing for the pixel signal Vx read from a certain unit pixel 141 will be described.
  • the reference voltage generator 131 starts voltage scanning of the reference voltage Vref1.
  • the reference voltage generation unit 131 scans the reference voltage Vref1 in a direction from the larger one to the smaller one (comparison direction) at a set gradation accuracy D1 (for example, 60 uV / LSB) (that is, dark) Scan from brighter to brighter). This scanning is continued until time T4.
  • D1 for example, 60 uV / LSB
  • the control signal SWSQ is set to H level
  • the control signal ADP is set to L level
  • the control signal ⁇ fb is set to L level. That is, the selection unit 163 selects the reference voltage Vref1, and the switching unit 161 causes the comparison unit 162 to supply the reference voltage Vref1 generated by the reference voltage generation unit 131.
  • the comparison unit 162 compares the pixel signal Vx (first analog signal) with the reference voltage Vref1 during time T2 to time T4 when the reference voltage Vref1 scans.
  • the timing measurement unit 164 starts counting the counter clock from time T2. This counting is continued until the comparison result Vco between the pixel signal Vx (first analog signal) and the reference voltage Vref1 changes or until time T4 is reached.
  • this comparison result Vco changes at time T3 before time T4.
  • the timing measurement unit 164 ends the count at time T3.
  • the timing measurement unit 164 outputs this count value as a digital output Do1. That is, the digital output Do1 has a digital value of ⁇ V.
  • the reference voltage Vref2 is compared with the first analog signal.
  • the control signal SWSQ is switched to the L level, and the reference voltage Vref2 generated by the reference voltage generation unit 132 is supplied to the comparison unit 162 by the switching unit 161.
  • the reference voltage generator 132 After waiting until the value of the comparison result Vco transitions, at time T5, the reference voltage generator 132 starts voltage scanning of the reference voltage Vref2.
  • the reference voltage generator 132 scans the reference voltage Vref2 in the direction from the larger one to the smaller one (comparison direction) in increments of gradation accuracy D2 (for example, 240 uV / LSB) different from the gradation accuracy D1 ( That is, scan from dark to bright). This scanning is continued until time T7.
  • the comparison unit 162 compares the pixel signal Vx (first analog signal) with the reference voltage Vref2.
  • the timing measurement unit 164 starts counting the counter clock from time T5. This counting is continued until the comparison result Vco between the pixel signal Vx (first analog signal) and the reference voltage Vref2 changes or until time T7 is reached.
  • the timing measurement unit 164 ends the count at time T6.
  • the timing measurement unit 164 outputs this count value as a digital output Do2. That is, the digital output Do2 is a digital value of ⁇ V.
  • the control signal SWSQ is switched to the L level, and the reference voltage Vref2 generated by the reference voltage generation unit 132 is supplied to the comparison unit 162 by the switching unit 161.
  • the column A / D converter 151 sequentially performs A / D conversion on the first analog signal using the reference voltage Vref1 and the reference voltage Vref2.
  • the comparison result Vco changes at the timing when the pixel signal Vx and the reference voltage Vrefx coincide with each other by scanning the reference voltage, and the voltage value can be acquired as a digital value by measuring the timing.
  • a counter unit can be used for timing measurement. By counting the number of counter clocks and stopping at the timing when the comparison result Vco changes, the time, that is, the voltage width scanned by the reference voltage until the comparison result Vco changes is recorded as a digital value.
  • the conversion result by the reference voltage Vref1 and the conversion result by the reference voltage Vref2 are held in the digital outputs Do1 and Do2, respectively. Since the digital value obtained here is the value of the first analog signal, it is a value obtained by resetting the pixels, that is, the value of the variation component ⁇ V. Of course, Do1 and Do2 A / D convert the same first analog signal, but the gradation values are different, so the digital values are different.
  • the column A / D conversion unit 151 sets the reference voltage Vref1 to a predetermined determination value that is equal to or less than the maximum amplitude of the reference voltage Vref1 with respect to the second analog signal and compares the reference voltage Vref1 with the second analog signal from time T7 to time T8. .
  • This comparison is performed using the comparison unit 162 used in the A / D conversion.
  • the obtained comparison result Vco is latched by the selection unit 163 by the pulse of the control signal ⁇ fb at time T8 and is taken in as a signal SWFB.
  • the reference voltage to be compared with the second analog signal is selected based on the comparison result.
  • the second analog signal is compared with the reference voltage Vref1.
  • the signal SWFB that has been at the L level transitions to the H level due to the capture at time T8.
  • the control signal ADP transitions to the H level, and the reference voltage supplied to the comparison unit 162 is selected based on the signal SWFB.
  • the control signal SWR1 becomes H level and the control signal SWR2 becomes L level.
  • the reference voltage Vref1 is selected.
  • the reference voltage generator 131 After waiting until the value of the comparison result Vco transitions, at time T9, the reference voltage generator 131 starts voltage scanning of the reference voltage Vref1.
  • the reference voltage generation unit 131 scans the reference voltage Vref1 in the direction from the larger side to the smaller side (comparison direction) in increments of the gradation accuracy D1 (that is, scans from the darker side to the brighter side). This scanning is continued until time T11.
  • the comparison unit 162 compares the pixel signal Vx (second analog signal) with the reference voltage Vref1.
  • the timing measurement unit 164 starts counting the counter clock from time T9. This count is continued until the comparison result Vco between the pixel signal Vx (second analog signal) and the reference voltage Vref1 changes or until time T11 is reached.
  • timing measurement unit 164 ends the count at time T10.
  • the timing measurement unit 164 outputs this count value as a digital output Do1.
  • the column A / D conversion unit 151 performs A / D conversion on the second analog signal, and the first analog signal obtained previously from the digital value is converted. By subtracting the digital value, a digital value corresponding to the signal component Vsig can be acquired.
  • the reference voltage generator 132 also scans the reference voltage Vref2 in the direction of the gradation accuracy D2 in the direction from the larger to the smaller (comparison direction) (that is, dark). Scan from brighter to brighter).
  • the reference voltage Vref2 is not supplied to the comparison unit 162 by the control of the switching unit 161 (not compared with the second analog signal).
  • the comparison between the first analog signal and the reference voltage is performed in the same manner as in the case of FIG. That is, the reference voltages (Vref1 and Vref2) are sequentially compared with the first analog signal.
  • the comparison between the reference voltage Vref1 set to a predetermined determination value equal to or less than the maximum amplitude with respect to the second analog signal and the second analog signal is performed in the same manner as in FIG. That is, the processing from time T0 to time T8 is performed in the same manner as in FIG.
  • the second analog signal is compared with the reference voltage Vref2.
  • the signal SWFB remains at the L level even after time T8.
  • the control signal ADP transitions to the H level, the control signal SWR1 becomes the L level, and the control signal SWR2 becomes the H level based on the signal SWFB. That is, as described above, the reference voltage Vref2 is selected.
  • the reference voltage generator 132 starts voltage scanning of the reference voltage Vref2.
  • the reference voltage generator 132 scans the reference voltage Vref2 in the direction from the larger side to the smaller side (comparison direction) in increments of the gradation accuracy D2 (that is, scans from the darker side to the brighter side). This scanning is continued until time T11.
  • the comparison unit 162 compares the pixel signal Vx (second analog signal) with the reference voltage Vref2.
  • the timing measurement unit 164 starts counting the counter clock from time T9. This counting is continued until the comparison result Vco between the pixel signal Vx (second analog signal) and the reference voltage Vref2 changes or until time T11 is reached.
  • this comparison result Vco has changed at time T12 before time T11.
  • the timing measurement unit 164 ends the count at time T12.
  • the timing measurement unit 164 outputs this count value as a digital output Do2.
  • the column A / D converter 151 subtracts the digital value of the first analog signal obtained previously from the digital value of the second analog signal, thereby obtaining a digital value corresponding to the signal component Vsig. Can be acquired.
  • the reference voltage supply unit 131 also scans the reference voltage Vref1 in the direction from the larger to the smaller (comparison direction) in increments of the gradation accuracy D1 (that is, dark). Scan from brighter to brighter).
  • the reference voltage Vref1 is not supplied to the comparison unit 162 under the control of the switching unit 161 (not compared with the first analog signal).
  • the timing measurement unit 164 uses a counter that can be switched up / down and uses different count directions for the A / D conversion of the first analog signal and the second analog signal, the subtraction of the variation component ⁇ V is reduced to A / D. Can be done simultaneously with D conversion.
  • the SWFB value that is the determination result is used, so that any timing measurement unit can It can be easily determined whether two analog signals should be subtracted.
  • digital signals having different gradation accuracy are output to each pixel with a gradation accuracy switching level determined by a predetermined determination value as a boundary.
  • the horizontal axis represents the amount of light reflected from the subject (input)
  • the vertical axis represents the pixel signal level (output) at that time.
  • the solid line graph is a high gradation signal graph
  • the dotted line graph is a low gradation signal graph.
  • the high gradation signal When the input value is smaller than the switching level, the high gradation signal is used, and when the input value is larger than the switching level, the low gradation signal is used.
  • the ratio of the gain of the high gradation signal and the gain of the low gradation signal is 4: 1.
  • the gain of the low gradation signal becomes the same by quadrupling.
  • the graph shown on the left side of FIG. 9 is a graph showing the high gradation signal and the low gradation signal of the graph shown in FIG. 8 separately, and the upper graph is the low gradation signal.
  • the lower graph represents a high gradation signal.
  • the graph on the right side of FIG. 9 is a graph representing a combined signal when the high gradation signal and the low gradation signal are combined before and after the switching level.
  • a dotted line in the graph represents a low gradation signal
  • a solid line represents a high gradation signal.
  • the high gradation signal indicated by the solid line is a signal below the switching level of the lower left high gradation signal in FIG. 9.
  • the low gradation signal indicated by the dotted line is obtained by multiplying the gain of the signal above the switching level of the low gradation signal at the upper left in FIG. The same signal. If gain correction and offset correction are performed on the low gradation signal and then the high gradation signal and the low gradation signal are combined at the switching level, a straight line as shown in the graph on the right side of FIG. 9 is obtained.
  • the combined signal when gain correction or offset correction is not performed, the combined signal may not be a straight line.
  • the graph shown in FIG. 10A is a straight line with different slopes before and after the switching level. For example, there is a possibility that the inclination of the corrected low gradation signal and the inclination of the high gradation signal are different from each other due to an inappropriate correction coefficient when performing gain correction of the low gradation signal.
  • the graph shown in FIG. 10B shows different values before and after the switching level.
  • the value of the high gradation signal at the switching level is a value a and the value of the low gradation signal at the switching level is a value b
  • the value is decreased from the value a to the value b at the switching level.
  • the start point of the low gradation signal is different from the start point of the high gradation signal
  • the offset correction is not performed, the value is shifted before and after the switching level as shown in FIG. It will occur.
  • the correction coefficient may be given as a fixed value according to the gradation accuracy.
  • an error occurs in the gain correction result with the fixed correction coefficient, and the level is corrected.
  • the image quality is deteriorated so as to be visually recognized as a level difference of the image before and after the switching level of the adjustment accuracy.
  • a reference signal input unit 171 (FIG. 5) is provided, and the reference signal level is input to the A / D conversion unit 112 (FIG. 5) so that a gain correction coefficient and an offset correction constant are acquired, and gain error and Correction processing for reducing the offset error is performed.
  • a reference signal is supplied from a reference signal input unit 171 to an amplification unit (A / D conversion unit 112) that amplifies a signal voltage with a different gain of the CMOS image sensor 100 shown in FIG. It is conceivable to obtain a correction coefficient from the conversion result.
  • a / D conversion unit 112 that amplifies a signal voltage with a different gain of the CMOS image sensor 100 shown in FIG. It is conceivable to obtain a correction coefficient from the conversion result.
  • This correction coefficient is stored in the memory, and a correction process is performed on the pixel signal generated by the photoelectric conversion so that the gain error is reduced.
  • the reference signal level is generated using a digital / analog conversion unit (DA conversion unit). When the analog gain for the pixel signal is changed, the reference signal level needs to be adjusted to a level that does not saturate in each amplification unit, but the potential can be easily controlled by the DA conversion unit.
  • the reference signal level is preferably set to a switching level of a plurality of signals having different gradation accuracy.
  • the correction value at the switching level that should be originally acquired cannot be acquired due to the linearity error between a plurality of signals having different gradation accuracy. There may be an error in the corrected value.
  • the image quality is deteriorated so as to be visually recognized as a step in the image before and after the gradation accuracy switching level.
  • FIG. 11 is a graph showing a high gradation signal and a low gradation signal, in which the horizontal axis represents input and the vertical axis represents output, similar to the graph shown in FIG.
  • the output value of the high gradation signal at the preset switching level is defined as an output value a.
  • the output of the high gradation signal is the output value b
  • the reference signal level at that time is level c.
  • the difference between the switching level b that is the current reference signal level and the switching level a of the switching level that has been set is calculated.
  • the calculated difference be the difference value e.
  • the reference signal level is changed from the reference signal level c to the reference signal level d.
  • a reference signal level signal for example, a reference signal level c signal
  • the reference signal input unit 171 FIG. 5
  • the reference signal level adjustment unit 172 acquires the output from the column A / D conversion unit 151.
  • the reference signal level adjustment unit 172 acquires a switching level corresponding to the reference signal level set at that time. For example, in the situation as shown in FIG. 11, when the signal of the reference signal level c is input, the switching level b is acquired.
  • the signal of the reference signal level may be input to all the column A / D converters 151, or may be input only to a predetermined one or a plurality of column A / D converters 151.
  • a signal of a reference signal level is input to all the column A / D converters 151 or a plurality of column A / D converters 151 to obtain an output value, an average value of the output values is calculated and the average The value may be used to adjust the reference signal level.
  • a signal of a reference signal level is input to all the column A / D converters 151, and only an output value from the column A / D converter 151 that designates a predetermined area is used to calculate an average value. You may make it.
  • the reference signal level adjustment unit 172 switches the switching level at the switching level set in advance (switching level a in FIG. 11) and the acquired switching level (FIG. 11 calculates the difference from the switching level b).
  • the reference signal level adjustment unit 172 adjusts the reference signal level so that the set switching level a is reached, according to the calculated difference value (in this case, the difference value e).
  • the reference signal level is adjusted by predicting the set value of the reference signal level that gives the switching level set from the difference between the switching level of the current reference signal level and the set switching level from the analog gain setting value, etc. It may be performed.
  • the adjustment may be made so that the set switching level is obtained.
  • the error between the high gradation signal and the low gradation signal can be corrected, and the occurrence of deterioration in image quality can be suppressed. It becomes possible.
  • ⁇ Correction by calibration> a reference signal level setting value that gives a switching level in a plurality of analog gain settings is acquired (calibration), and a reference signal setting value that gives a switching level is calculated from the calibration result when the analog gain is changed. explain.
  • the correction by the calibration described here is described as a second correction method as appropriate.
  • the horizontal axis represents the analog gain
  • the vertical axis represents the set value of the reference signal level that gives the switching level.
  • the analog gain AL represents the lowest analog gain used in the system
  • the analog gain AH represents the highest analog gain used in the system.
  • the set value SL is a set value of the reference signal level when the analog gain is AL
  • the set value SH is a set value of the reference signal level when the analog gain is AH.
  • the straight line C1 is a straight line connecting (analog gain AL, set value SL) and (analog gain AH, set value SH), and is a straight line representing the characteristics of the A / D converter 112 at a predetermined time point.
  • the set value SL corresponding to the analog gain AL and the set value SH corresponding to the analog gain AH are acquired, and a straight line C1 is generated.
  • an appropriate reference signal level set value is given as an initial value in each analog gain setting, and the reference signal level is switched by using the first correction method described with reference to FIG. Acquired by pulling in.
  • This is stored as a calibration value in a storage unit (not shown).
  • the timing for performing calibration is when the system is started or when the operating conditions are changed.
  • a straight line C1 is generated from the calibration result.
  • the straight line C1 representing the characteristic as shown in FIG. 12 generated and stored in this way is used to calculate the set value SY of the reference signal level that gives the switching level at the analog gain AX. For example, when the analog gain is changed to the analog gain AX, the set value SY corresponding to the analog gain AX is calculated using the stored straight line C1.
  • the reference signal level can be adjusted to the switching level with high accuracy.
  • the reference signal level can be drawn into the switching level.
  • the second correction method when there is a possibility that an error occurs between the reference signal level and the switching level due to the nonlinearity of the reference signal input unit 171 or the nonlinearity of the conversion gain of the A / D conversion unit 112, the second correction method is used.
  • the reference signal level and the switching level can be set, and thereafter, the first correction method can be used for adjustment to suppress the error. Even in a configuration in which the error does not occur, a configuration in which both the first correction method and the second correction method are applied may be employed.
  • the following error may occur.
  • the straight line C1 shown in FIG. 13 is obtained by calibration in the second correction method.
  • the characteristics may change like a straight line C2.
  • the reference signal level corresponding to the analog gain Ax is set by the above-described second correction method using the obtained straight line C1 even though the characteristic has changed as the straight line C2, the reference input signal level An error occurs in the switching level.
  • the characteristic variation from the straight line C1 to the straight line C2 is assumed to be a power supply voltage fluctuation or a temperature fluctuation.
  • the first correction method is used at an appropriate frequency with respect to the speed of these characteristic fluctuations, for example, every frame.
  • the reference input level can follow the switching level.
  • the set value of the reference signal level is set to the set value S3 based on the calibration characteristic C1.
  • the reference signal level setting value that actually gives the switching level is the setting value S4 on the calibration characteristic C2. Therefore, in this case, an error is caused by the difference between the set value S3 and the set value S4, and the reference signal level is in a state where an error has occurred from the switching level.
  • the reference signal level coincides with the switching level in the path finally changed from the set value S3 to the set value S4, but the error of the correction coefficient temporarily increases, Image quality may be degraded.
  • the third correction method may be configured so that the following correction is appropriately performed.
  • the difference between the set value S1 and the set value S2 is calculated. By performing this calculation, an error due to characteristic variation from the calibration value is detected.
  • the reference error level set value corresponding to the set value S4 is acquired by converting the detected error into an analog gain and adding (feedback) to the set value S3.
  • the reference signal level in the process of shifting from the set value S3 to the set value S4 The correction coefficient can be obtained with high accuracy without causing an error in the switching level.
  • the reference signal level and the switching level can be accurately matched. According to the present technology, there are the following effects.
  • the first correction method correction by feedback
  • an error between the reference signal level and the switching level due to circuit non-linearity, manufacturing variations, fluctuations in operating conditions, etc. can be corrected, and the reference signal level can be accurately adjusted to the switching level.
  • the error of the correction coefficient can be reduced.
  • the error between the reference signal level and the switching level due to manufacturing variations of the reference signal input unit 171 or the A / D conversion unit 112 can be corrected by the second correction method (correction by calibration).
  • the first correction method a plurality of feedbacks are applied in the adjustment of the reference signal level from the detection of the error, so that it takes a certain time to converge, which may affect the operation speed.
  • the CMOS image sensor 100 shown in FIG. 5 includes a correction unit 173 and a reference signal level adjustment unit 172 that correct gain errors or offset errors of a plurality of signals having different gradation accuracy.
  • the reference signal level is input to the A / D conversion unit 112, and the output read from the horizontal scanning unit 123 is used as the reference signal level adjustment. Input to the unit 172.
  • the reference signal level adjustment unit 172 feeds back the reference signal level setting value calculated by the first to third correction methods to the reference signal input unit 171.
  • the correction unit 173 performs correction processing so that a gain error or an offset error between comparison results with reference voltages having different gradation accuracy is reduced.
  • the reference signal level adjustment unit 172 adjusts the reference signal level of the reference signal input unit 171 to a switching level with different gradation accuracy by the correction method described above.
  • the correction unit 173 performs a correction process so that a gain error or an offset error between the digital signal and the digital signal after the same gain level is reduced.
  • the comparator 162 in the column A / D converter 151 includes a first signal obtained by amplifying a signal of a plurality of pixels in the pixel array 111 or a reference signal from the reference signal input unit 171 with a first gain. A second signal amplified by the second gain is output.
  • an amplifying unit that outputs each signal may be provided, and as described above, the reference signal is switched and the comparison result is output. Thus, different signals may be output.
  • the column A / D converter 151 functions as an analog / digital converter that converts the first signal into a first digital signal and converts the second signal into a second digital signal. Then, as described above, the correction unit performs correction processing so that the gain error or the offset error between the first digital signal and the second digital signal after the same gain level is reduced. In addition, the reference signal level adjustment unit 172 adjusts the level of the reference signal to the switching level of the second signal by the correction method described above.
  • the processing of the column A / D conversion unit 151 and the like can be appropriately changed by the correction performed by the correction unit 173.
  • the quasi-signal level and the switching level can be accurately matched.
  • CMOS image sensor 100 the operation of the CMOS image sensor 100 will be further described.
  • the CMOS image sensor 100 first performs calibration after turning on the power. An appropriate initial value 1 is given to the reference signal level setting value, and a reference signal level setting value SH that gives a switching level at the analog gain AH is calculated. At this time, the reference signal level is drawn into the switching level by the first correction method, and the reference signal level setting value when it converges is acquired as the calibration value of the analog gain AH.
  • the set value SL of the reference signal level that gives the switching level is acquired as the calibration value in the analog gain AL.
  • a frame dedicated to calibration is provided, but it may be incorporated in a normal imaging frame.
  • the switching level is set based on the calibration result by the second correction method or the third correction method at the start of the frame.
  • the given reference signal level setting value is supplied to the reference signal input unit 171.
  • the analog gain AX1 is set in the first frame of normal imaging, and the corresponding reference signal level setting value SY1 is sent to the reference signal input unit 171.
  • the characteristic variation of the reference signal input unit 171 occurs due to power source variation or the like.
  • the reference signal level set value is adjusted by the first correction method and adjusted to the switching level.
  • the analog gain AX2 has been changed in the fourth frame of the normal imaging frame.
  • the characteristic variation of the reference signal input unit 171 there is a deviation between the characteristic at the time of calibration and the current characteristic, but the reference signal level calculated by using the second correction method and the third correction method together.
  • the set value SY2 By sending the set value SY2 to the reference signal input unit 171, it is possible to match the reference signal level and the switching level without being affected by characteristic fluctuations.
  • FIG. 15 is a block diagram illustrating a main configuration example of an imaging apparatus using the signal processing apparatus described above.
  • An imaging apparatus 800 shown in FIG. 15 is an apparatus that images a subject and outputs an image of the subject as an electrical signal.
  • the imaging apparatus 500 includes an optical unit 511, a CMOS sensor 512, an A / D converter 513, an operation unit 514, a control unit 515, an image processing unit 516, a display unit 517, a codec processing unit 518, and A recording unit 519 is included.
  • the optical unit 511 includes a lens that adjusts the focal point to the subject and collects light from the focused position, an aperture that adjusts exposure, a shutter that controls the timing of imaging, and the like.
  • the optical unit 511 transmits light from the subject (incident light) and supplies the light to the CMOS sensor 512.
  • the CMOS sensor 512 photoelectrically converts incident light and supplies a signal (pixel signal) for each pixel to the A / D converter 513.
  • the A / D converter 513 converts the pixel signal supplied from the CMOS sensor 512 at a predetermined timing into digital data (image data) and sequentially supplies the digital data (image data) to the image processing unit 516 at the predetermined timing.
  • Each signal (pixel signal) is supplied to the A / D converter 513.
  • the A / D converter 513 converts the pixel signal supplied from the CMOS sensor 512 at a predetermined timing into digital data (image data), and sequentially supplies the digital data to the image processing unit 516 at the predetermined timing.
  • the operation unit 514 includes, for example, a key, a button, a touch panel, or the like, receives an operation input by the user, and supplies a signal corresponding to the operation input to the control unit 515.
  • control unit 515 is an optical unit 511, a CMOS sensor 512, an A / D converter 513, an image processing unit 516, a display unit 517, codec processing.
  • the drive of the unit 518 and the recording unit 519 is controlled to cause each unit to perform processing related to imaging.
  • the image processing unit 516 performs, for example, color mixture correction, black level correction, white balance adjustment, demosaic processing, matrix processing, gamma correction, and YC conversion on the image data supplied from the A / D converter 513. Various image processing is performed.
  • the image processing unit 516 supplies the image data subjected to the image processing to the display unit 517 and the codec processing unit 518.
  • the display unit 517 is configured as a liquid crystal display or the like, for example, and displays an image of the subject based on the image data supplied from the image processing unit 516.
  • the codec processing unit 518 performs a predetermined encoding process on the image data supplied from the image processing unit 516, and supplies the obtained encoded data to the recording unit 519.
  • the recording unit 519 records the encoded data from the codec processing unit 518.
  • the encoded data recorded in the recording unit 519 is read and decoded by the image processing unit 516 as necessary.
  • the image data obtained by the decoding process is supplied to the display unit 517, and a corresponding image is displayed.
  • the present technology described above is applied as a processing unit including the CMOS sensor 512 and the A / D converter 513 of the imaging apparatus 500 as described above. That is, the above-described CMOS image sensor 100 is used as a processing unit including the CMOS sensor 512 and the A / D converter 513. Thereby, the processing unit including the CMOS sensor 512 and the A / D converter 513 can suppress the occurrence of an A / D conversion error. Therefore, the imaging apparatus 500 can obtain a higher quality image by imaging the subject.
  • the imaging apparatus to which the present technology is applied is not limited to the configuration described above, and may have another configuration.
  • a CCD image sensor to which the present technology is applied may be used instead of the CMOS sensor 512.
  • an electronic device such as an information processing apparatus having an imaging function such as a mobile phone, a smart phone, a tablet device, and a personal computer may be used. Further, it may be a camera module used by being mounted on another information processing apparatus (or mounted as an embedded device).
  • the A / D conversion control unit 110 may execute processing for supplying various control signals by software.
  • software can be applied to any processing other than the A / D conversion control unit 110, such as processing for supplying a reference voltage by the reference voltage generation unit 131, the reference voltage generation unit 132, or the like.
  • the computer When executing a series of processing by software, a program constituting the software is installed in the computer.
  • the computer includes, for example, a general-purpose personal computer that can execute various functions by installing a computer incorporated in dedicated hardware and various programs.
  • FIG. 16 is a block diagram showing an example of the hardware configuration of a computer that executes the above-described series of processing by a program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • An input / output interface 610 is also connected to the bus 604.
  • An input unit 611, an output unit 612, a storage unit 613, a communication unit 614, and a drive 615 are connected to the input / output interface 610.
  • the input unit 611 includes, for example, a keyboard, a mouse, a microphone, a touch panel, an input terminal, and the like.
  • the output unit 612 includes, for example, a display, a speaker, and an output terminal.
  • the storage unit 613 includes, for example, a hard disk, a RAM disk, and a nonvolatile memory.
  • the communication unit 614 is composed of a network interface, for example.
  • the drive 615 drives a removable medium 621 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the CPU 601 loads the program stored in the storage unit 613 into the RAM 603 via the input / output interface 610 and the bus 604 and executes the program, for example. Is performed.
  • the RAM 603 also appropriately stores data necessary for the CPU 601 to execute various processes.
  • the program executed by the computer (CPU 601) can be recorded and applied to, for example, a removable medium 621 as a package medium or the like.
  • the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the storage unit 613 via the input / output interface 610 by attaching the removable medium 621 to the drive 615.
  • the program can be received by the communication unit 614 via a wired or wireless transmission medium and installed in the storage unit 613.
  • the program can be installed in the ROM 602 or the storage unit 613 in advance.
  • the program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
  • the step of describing the program recorded on the recording medium is not limited to the processing performed in chronological order according to the described order, but may be performed in parallel or It also includes processes that are executed individually.
  • the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Accordingly, a plurality of devices housed in separate housings and connected via a network and a single device housing a plurality of modules in one housing are all systems. .
  • the configuration described as one device (or processing unit) may be divided and configured as a plurality of devices (or processing units).
  • the configurations described above as a plurality of devices (or processing units) may be combined into a single device (or processing unit).
  • a configuration other than that described above may be added to the configuration of each device (or each processing unit).
  • a part of the configuration of a certain device (or processing unit) may be included in the configuration of another device (or other processing unit). .
  • FIG. 17 is a diagram illustrating a usage example in which the above-described imaging device and an electronic device including the imaging device are used.
  • the imaging device described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-rays as follows.
  • Devices for taking images for viewing such as digital cameras and mobile devices with camera functions
  • Devices used for traffic such as in-vehicle sensors that capture the back, surroundings, and interiors of vehicles, surveillance cameras that monitor traveling vehicles and roads, and ranging sensors that measure distances between vehicles, etc.
  • Equipment used for home appliances such as TVs, refrigerators, air conditioners, etc. to take pictures and operate the equipment according to the gestures ⁇ Endoscopes, equipment that performs blood vessel photography by receiving infrared light, etc.
  • Equipment used for medical and health care ⁇ Security equipment such as security surveillance cameras and personal authentication cameras ⁇ Skin measuring instrument for photographing skin and scalp photography Such as a microscope to do beauty Equipment used for sports-Equipment used for sports such as action cameras and wearable cameras for sports applications-Used for agriculture such as cameras for monitoring the condition of fields and crops apparatus
  • a pixel array in which unit pixels including photoelectric conversion elements for photoelectrically converting incident light are arranged;
  • a reference signal input unit for generating a reference signal;
  • a comparison unit that compares an analog signal output from a unit pixel of the pixel array or the reference signal input unit with a predetermined voltage;
  • a switching unit that switches a reference voltage to be supplied to the comparison unit and connects any one of a plurality of reference voltages having different gradation accuracy to the comparison unit;
  • a measurement unit that measures a change timing of a comparison result between the analog signal by the comparison unit and a reference voltage supplied to the comparison unit by switching control of the switching unit;
  • a correction unit that performs correction processing so as to reduce a gain error or an offset error between comparison results at different gradation accuracy reference voltages;
  • An image sensor comprising: a reference signal adjustment unit that adjusts a reference signal level of the reference signal input unit to a switching level having different gradation accuracy.
  • the imaging device wherein the reference signal adjustment unit detects an error between the reference signal level and the switching level and adjusts the reference signal level.
  • the reference signal adjustment unit is configured to obtain a level setting value of the reference signal input unit that provides a switching level in an arbitrary gain setting based on a level setting value of the reference signal input unit that provides a switching level in a plurality of gain settings of the amplification unit.
  • the reference signal adjustment unit calculates a level setting of the reference signal input unit that provides a switching level in an arbitrary gain setting, calculated based on a setting value of the reference signal input unit that provides a switching level in a plurality of gain settings of the amplification unit Using the difference between the value and the level setting value of the reference signal input unit that actually gives the switching level, the level setting value of the reference signal input unit that gives the switching level at an arbitrary gain setting is calculated in (3) The imaging device described.
  • an imaging method of an imaging device including a pixel array in which unit pixels including a photoelectric conversion device that photoelectrically converts incident light are arranged Generate a reference signal, An analog signal output from a unit pixel of the pixel array or the reference signal input unit is compared with a predetermined voltage, The reference voltage supplied to the comparison unit for performing the comparison is switched, and any one of a plurality of reference voltages having different gradation accuracy is connected to the comparison unit.
  • the comparison unit measures the change timing of the comparison result between the analog signal and the reference voltage supplied to the comparison unit by the switching control, Perform correction processing so that the gain error or offset error between the comparison results with reference voltages of different gradation accuracy is reduced,
  • An imaging method including a step of adjusting the reference signal level to a switching level having different gradation accuracy.
  • a pixel array in which unit pixels including photoelectric conversion elements for photoelectrically converting incident light are arranged;
  • a reference signal input unit for generating a reference signal;
  • a comparison unit that compares an analog signal output from a unit pixel of the pixel array or the reference signal input unit with a predetermined voltage;
  • a switching unit that switches a reference voltage to be supplied to the comparison unit and connects any one of a plurality of reference voltages having different gradation accuracy to the comparison unit;
  • a measurement unit that measures a change timing of a comparison result between the analog signal by the comparison unit and a reference voltage supplied to the comparison unit by switching control of the switching unit;
  • a correction unit that performs correction processing so as to reduce a gain error or an offset error between comparison results at different gradation accuracy reference voltages;
  • An electronic device comprising: an imaging device comprising: a reference signal adjustment unit that adjusts a reference signal level of the reference signal input unit to a switching level with different gradation accuracy.
  • a pixel array in which unit pixels including photoelectric conversion elements for photoelectrically converting incident light are arranged;
  • a reference signal input unit for generating a reference signal;
  • An amplifying unit that is provided in each column of the plurality of pixels and outputs a first signal obtained by amplifying a signal of the plurality of pixels or the reference signal with a first gain and a second signal amplified with a second gain.
  • An analog-to-digital converter that converts the first signal into a first digital signal and converts the second signal into a second digital signal
  • a correction unit that performs correction processing so that a gain error or an offset error between the first digital signal and the second digital signal after the same gain level is reduced
  • An image sensor comprising: a reference signal adjustment unit that adjusts a level of the reference signal to a switching level of the second signal.
  • the reference signal adjustment unit is configured to obtain a level setting value of the reference signal input unit that provides a switching level in an arbitrary gain setting based on a level setting value of the reference signal input unit that provides a switching level in a plurality of gain settings of the amplification unit.
  • the reference signal adjustment unit calculates a level setting of the reference signal input unit that provides a switching level in an arbitrary gain setting, calculated based on a setting value of the reference signal input unit that provides a switching level in a plurality of gain settings of the amplification unit Using the difference between the value and the level setting value of the reference signal input unit that actually gives the switching level, the level setting value of the reference signal input unit that gives the switching level at an arbitrary gain setting is calculated in (9) The imaging device described.
  • an imaging method of an imaging device including a pixel array in which unit pixels including a photoelectric conversion device that photoelectrically converts incident light are arranged, Generate a reference signal, A first signal obtained by amplifying a signal of the plurality of pixels or the reference signal by a first gain and a second signal amplified by a second gain provided in each column of the plurality of pixels; Converting the first signal into a first digital signal, converting the second signal into a second digital signal, A correction process is performed so that a gain error or an offset error between the first digital signal and the second digital signal after the same gain level is reduced,
  • An imaging method including a step of adjusting a level of the reference signal to a switching level of a second signal.
  • a pixel array in which unit pixels including photoelectric conversion elements for photoelectrically converting incident light are arranged;
  • a reference signal input unit for generating a reference signal;
  • An amplifying unit that is provided in each column of the plurality of pixels and outputs a first signal obtained by amplifying a signal of the plurality of pixels or the reference signal with a first gain and a second signal amplified with a second gain.
  • An analog-to-digital converter that converts the first signal into a first digital signal and converts the second signal into a second digital signal;
  • a correction unit that performs correction processing so that a gain error or an offset error between the first digital signal and the second digital signal after the same gain level is reduced;
  • An electronic apparatus comprising: an imaging device comprising: a reference signal adjustment unit that adjusts a level of the reference signal to a switching level of the second signal.
  • CMOS image sensor 111 pixel array, 112 A / D conversion unit, 110 A / D conversion control unit, 121 control timing generation unit, 122 pixel scanning unit, 123 horizontal scanning unit, 131, 132 reference voltage generation unit, 141 unit Pixel, 151 column A / D converter, 161 switching unit, 162 comparison unit, 163 selection unit, 164 timing measurement unit, 171 reference signal input unit, 172 reference signal level adjustment unit, 173 correction unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

 本技術は、A/D変換の誤差の発生を抑制することができる撮像素子、撮像方法、電子機器に関する。 入射光を光電変換する光電変換素子を含む単位画素が並べられた画素アレイと、基準信号を生成する基準信号入力部と、画素アレイの単位画素又は基準信号入力部から出力されるアナログ信号を所定の電圧と比較する比較部と、比較部に供給する参照電圧を切り替え、互いに異なる階調精度の複数の参照電圧のうちのいずれか1つを比較部に接続する切替部と、比較部による、アナログ信号と、切替部の切り替え制御により比較部に供給された参照電圧との比較結果の変化タイミングを計測する計測部と、互いに異なる階調精度の参照電圧での比較結果間のゲイン誤差又はオフセット誤差が低減されるように補正処理を行う補正部と、基準信号入力部の基準信号レベルを異なる階調精度の切替レベルに調整する基準信号調整部とを備える。本技術は、撮像素子や撮像装置に適用できる。

Description

撮像素子、撮像方法、電子機器
 本技術は、撮像素子、撮像方法、電子機器に関し、特に、A/D変換の誤差の発生を抑制することができるようにした撮像素子、撮像方法、電子機器に関する。
 従来、一般的なイメージセンサでは、受光部(フォトダイオード)に蓄積した電荷が、信号電圧として読み出され、A/D(Analog / Digital)変換されていた(例えば、特許文献1参照)。
 特許文献1に記載のA/D変換方法においては、高階調精度化と変換時間増大の抑制を両立させるために、2つのA/D変換部を同一の画素出力信号に対して接続し、2つの参照電圧生成部から、異なる傾きの参照電圧Vref1、Vref2を各々のA/D変換部へ入力することで、2種類の階調精度でA/D変換を実行している。
 この場合、回路面積や消費電力は2倍となるため、特許文献1に記載の方法においては、さらに、A/D変換部は1つとし、判定部を新たに設け、その判定部によって画素出力信号の大小を判定し、その判定結果に従って、2種類の傾きの異なる参照電圧Vref1および参照電圧Vref2のいずれかを選択することにより、画素出力信号の大きさに応じた異なる変換精度の適用を実現している。
特開2011-41091号公報
 しかしながら、特許文献1に記載の方法を始めとする従来のA/D変換の場合、A/D変換における誤差の発生を十分に抑制することが困難であり、例えば、高階調精度化と変換時間増大の抑制の両立の実現や、画質劣化の抑制が困難になる恐れがあった。
 本技術は、このような状況に鑑みて提案されたものであり、A/D変換の誤差の発生を抑制することを目的とする。
 本技術の一側面の第1の撮像素子は、入射光を光電変換する光電変換素子を含む単位画素が並べられた画素アレイと、基準信号を生成する基準信号入力部と、前記画素アレイの単位画素又は前記基準信号入力部から出力されるアナログ信号を所定の電圧と比較する比較部と、前記比較部に供給する参照電圧を切り替え、互いに異なる階調精度の複数の参照電圧のうちのいずれか1つを前記比較部に接続する切替部と、前記比較部による、前記アナログ信号と、前記切替部の切り替え制御により前記比較部に供給された参照電圧との比較結果の変化タイミングを計測する計測部と、互いに異なる階調精度の参照電圧での比較結果間のゲイン誤差又はオフセット誤差が低減されるように補正処理を行う補正部と、前記基準信号入力部の基準信号レベルを異なる階調精度の切替レベルに調整する基準信号調整部とを備える。
 前記基準信号調整部は、前記基準信号レベルと切替レベルの誤差を検出し、基準信号レベルを調整するようにすることができる。
 前記基準信号調整部は、増幅部の複数のゲイン設定において切替レベルを与える前記基準信号入力部のレベル設定値に基づき、任意のゲイン設定において切替レベルを与える前記基準信号入力部のレベル設定値を算出するようにすることができる。
 前記基準信号調整部は、前記増幅部の複数のゲイン設定において切替レベルを与える前記基準信号入力部の設定値に基づき算出した、任意のゲイン設定における切替レベルを与える前記基準信号入力部のレベル設定値と、実際に切替レベルを与える前記基準信号入力部のレベル設定値の差分を用いて、任意のゲイン設定における切替レベルを与える前記基準信号入力部のレベル設定値を算出するようにすることができる。
 本技術の一側面の第1の撮像方法は、入射光を光電変換する光電変換素子を含む単位画素が並べられた画素アレイを備える撮像素子の撮像方法において、基準信号を生成し、前記画素アレイの単位画素又は前記基準信号入力部から出力されるアナログ信号を所定の電圧と比較し、前記比較を行う比較部に供給する参照電圧を切り替え、互いに異なる階調精度の複数の参照電圧のうちのいずれか1つを前記比較部に接続し、前記比較部による、前記アナログ信号と、前記切り替えの制御により前記比較部に供給された参照電圧との比較結果の変化タイミングを計測し、互いに異なる階調精度の参照電圧での比較結果間のゲイン誤差又はオフセット誤差が低減されるように補正処理を行い、前記基準信号レベルを異なる階調精度の切替レベルに調整するステップを含む。
 本技術の一側面の第1の電子機器は、入射光を光電変換する光電変換素子を含む単位画素が並べられた画素アレイと、基準信号を生成する基準信号入力部と、前記画素アレイの単位画素又は前記基準信号入力部から出力されるアナログ信号を所定の電圧と比較する比較部と、前記比較部に供給する参照電圧を切り替え、互いに異なる階調精度の複数の参照電圧のうちのいずれか1つを前記比較部に接続する切替部と、前記比較部による、前記アナログ信号と、前記切替部の切り替え制御により前記比較部に供給された参照電圧との比較結果の変化タイミングを計測する計測部と、互いに異なる階調精度の参照電圧での比較結果間のゲイン誤差又はオフセット誤差が低減されるように補正処理を行う補正部と、前記基準信号入力部の基準信号レベルを異なる階調精度の切替レベルに調整する基準信号調整部とを備える撮像素子を備える。
 本技術の一側面の第2の撮像素子は、入射光を光電変換する光電変換素子を含む単位画素が並べられた画素アレイと、基準信号を生成する基準信号入力部と、前記複数の画素の各列に設けられ、前記複数の画素の信号又は前記基準信号を第1のゲインで増幅した第1の信号及び第2のゲインで増幅した第2の信号を出力する増幅部と、前記第1の信号を第1のデジタル信号に変換し、前記第2の信号を第2のデジタル信号に変換するアナログデジタル変換部と、同じゲインレベルにした後の前記第1のデジタル信号と第2のデジタル信号とのゲイン誤差又はオフセット誤差が低減されるように補正処理を行う補正部と、前記基準信号のレベルを第2の信号の切替レベルに調整する基準信号調整部とを備える撮像素子。
 前記基準信号調整部は、前記基準信号レベルと切替レベルの誤差を検出し、基準信号レベルを調整するようにすることができる。
 前記基準信号調整部は、増幅部の複数のゲイン設定において切替レベルを与える前記基準信号入力部のレベル設定値に基づき、任意のゲイン設定において切替レベルを与える前記基準信号入力部のレベル設定値を算出するようにすることができる。
 前記基準信号調整部は、前記増幅部の複数のゲイン設定において切替レベルを与える前記基準信号入力部の設定値に基づき算出した、任意のゲイン設定における切替レベルを与える前記基準信号入力部のレベル設定値と、実際に切替レベルを与える前記基準信号入力部のレベル設定値の差分を用いて、任意のゲイン設定における切替レベルを与える前記基準信号入力部のレベル設定値を算出するようにすることができる。
 本技術の一側面の第2の撮像方法は、入射光を光電変換する光電変換素子を含む単位画素が並べられた画素アレイを備える撮像素子の撮像方法において、基準信号を生成し、前記複数の画素の各列に設けられ、前記複数の画素の信号又は前記基準信号を第1のゲインで増幅した第1の信号及び第2のゲインで増幅した第2の信号を出力し、前記第1の信号を第1のデジタル信号に変換し、前記第2の信号を第2のデジタル信号に変換し、同じゲインレベルにした後の前記第1のデジタル信号と第2のデジタル信号とのゲイン誤差又はオフセット誤差が低減されるように補正処理を行い、前記基準信号のレベルを第2の信号の切替レベルに調整するステップを含む。
 本技術の一側面の第2の電子機器は、入射光を光電変換する光電変換素子を含む単位画素が並べられた画素アレイと、基準信号を生成する基準信号入力部と、前記複数の画素の各列に設けられ、前記複数の画素の信号又は前記基準信号を第1のゲインで増幅した第1の信号及び第2のゲインで増幅した第2の信号を出力する増幅部と、前記第1の信号を第1のデジタル信号に変換し、前記第2の信号を第2のデジタル信号に変換するアナログデジタル変換部と、同じゲインレベルにした後の前記第1のデジタル信号と第2のデジタル信号とのゲイン誤差又はオフセット誤差が低減されるように補正処理を行う補正部と、前記基準信号のレベルを第2の信号の切替レベルに調整する基準信号調整部とを備える撮像素子を備える。
 本技術の一側面の第1の撮像素子、撮像方法においては、入射光を光電変換する光電変換素子を含む単位画素が並べられた画素アレイからの信号が処理される。基準信号が生成され、画素アレイの単位画素又は基準信号入力部から出力されるアナログ信号が所定の電圧と比較され、その比較を行う比較部に供給する参照電圧が切り替えられ、互いに異なる階調精度の複数の参照電圧のうちのいずれか1つが比較部に接続され、比較部による、アナログ信号と、切替部の切り替え制御により比較部に供給された参照電圧との比較結果の変化タイミングが計測され、互いに異なる階調精度の参照電圧での比較結果間のゲイン誤差又はオフセット誤差が低減されるように補正処理が行われ、基準信号レベルを異なる階調精度の切替レベルに調整される。
 本技術の一側面の第1の電子機器においては、前記第1の撮像素子が含まれる構成とされている。
 本技術の一側面の第2の撮像装置、撮像方法においては、入射光を光電変換する光電変換素子を含む単位画素が並べられた画素アレイからの信号が処理される。基準信号が生成され、複数の画素の各列に設けられ、複数の画素の信号又は基準信号を第1のゲインで増幅した第1の信号及び第2のゲインで増幅した第2の信号が出力され、第1の信号が第1のデジタル信号に変換され、第2の信号が第2のデジタル信号に変換され、同じゲインレベルにした後の第1のデジタル信号と第2のデジタル信号とのゲイン誤差又はオフセット誤差が低減されるように補正処理が行われ、基準信号のレベルが第2の信号の切替レベルに調整される。
 本技術の一側面の第2の電子機器においては、前記第2の撮像素子が含まれる構成とされている。
 本技術によれば、情報を処理することが出来る。特に、A/D変換の誤差の発生を抑制することができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
カラムA/D変換部の主な構成例を示す図である。 A/D変換の様子の例を示すタイミングチャートである。 A/D変換の階調精度の例を示す図である。 A/D変換の様子の他の例を示すタイミングチャートである。 CMOSイメージセンサの主な構成例を示す図である。 A/D変換の様子の例を示すタイミングチャートである。 A/D変換の様子の例を示すタイミングチャートである。 高階調信号と低階調信号について説明するための図である。 合成信号について説明するための図である。 誤差について説明するための図である。 第1の補正方法について説明するための図である。 第2の補正方法について説明するための図である。 第3の補正方法について説明するための図である。 CMOSイメージセンサの動作について説明するための図である。 電子機器の一例について説明するための図である。 記録媒体について説明するための図である。 使用例について説明するための図である。
 以下に、本技術を実施するための形態(以下、実施の形態という)について説明する。なお、説明は、以下の順序で行う。
 1.A/D変換について
 2.CMOSイメージセンサ
 3.フィードバックによる補正
 4.キャリブレーションによる補正
 5.再設定による補正
 6.電子機器の一例
 7.記録媒体について
 8.撮像装置の使用例
 <A/D変換について>
 一般的なイメージセンサでは、単位画素の受光部(例えばフォトダイオード)に蓄積した電荷が信号電圧(画素信号)として読み出され、アナログ・デジタル変換(A/D(Analog/ Digital)変換)される。
 このA/D変換の方法として、例えば、参照電圧を変化させながら信号電圧との比較を行い、一致したタイミングを取得することでデジタル変換する方法がある。
 図1に示されるカラムA/D変換部10は、この方法によりA/D変換を行う処理部であり、単位画素から読み出された画素信号をA/D変換する。図1に示されるカラムA/D変換部10は、参照電圧発生部11、比較部12、およびタイミング計測部13を有する。参照電圧発生部11は、所定の電圧範囲内において値を変化させる参照電圧Vrefを発生させ、比較部12に供給する。
 比較部12は、画素から読み出されたアナログの画素信号である入力信号Vxの電圧を、参照電圧発生部11が発生する参照電圧Vrefと比較し、その比較結果Vcoをタイミング計測部13に供給する。タイミング計測部13は、その比較が開始されてから比較結果Vcoの値が変化するまでの期間を計測(カウント)し、その期間の長さ(カウント値)を、入力信号Vxのデジタル値(A/D変換後の値)とし、そのデジタル値をデジタル出力Doとして出力する。
 図2は、このようはカラムA/D変換部10によるA/D変換の様子の例を示すタイミングチャートである。
 図2に示されるように、参照電圧Vrefは電圧をランプ状に走査する。画素出力のばらつき成分ΔV(ノイズ成分)を第1アナログ信号、そのばらつき成分に信号成分Vsigを加えたVsig+ΔVを第2アナログ信号として、入力信号Vxが入力される。
 タイミング計測部13は、例えばアップ・ダウン切替可能なカウンタを用い、比較結果Vcoが変化するまでの時間をカウンタクロックによって計測する。ここでは、第1アナログ信号をダウン・カウントし、第2アナログ信号をアップカウントすることで、第1アナログ信号から第2アナログ信号が引き算され、結果として信号成分Vsigのみがデジタル化された出力Doを最終的に得ることができる。
 しかしながら、この方法の場合、階調精度に比例して変換時間が増大する恐れがあった。一般的にA/D変換は、変換精度(1階調あたりの電圧)を高めると、変換可能な入力電圧範囲(ダイナミックレンジ)が小さくなる。或いは、同じ入力電圧範囲(ダイナミックレンジ)とした場合、階調数が増大するため変換時間の増加(低速化)や消費電力の増加が伴う恐れがある。
 例えば、変換精度を高めるには、クロック周波数で決まる参照電圧と信号電圧が一致するタイミングの検出精度が同じである場合、参照電圧の傾きを小さくすることになる。同じ階調数である場合、必要なクロック数は変わらないため、電力や速度は変化しないが、参照電圧の振幅が小さくなるため、A/D変換される入力電圧範囲は狭まる。このとき、階調数を増やす場合、より多くのクロック数が必要となり速度低下と電力増加が伴うが、参照電圧の振幅は広がり、A/D変換される入力電圧範囲は狭まる。
 もちろん、クロック周波数を上げれば、参照電圧の傾きを小さくしなくても変換精度を高められ、A/D変換速度も変わらないが、消費電力が増加するのは自明である。
 すなわち、変換精度を高めると、入力電圧範囲が狭まる、或いは速度・電力が劣ることになる。同じ入力電圧範囲に対して4倍の変換精度を得るには、4倍のクロック数が必要となる。
 また、A/D変換の変換精度(1階調あたりの電圧)は、信号電圧に含まれるノイズレベルや、画像の現像時に施す増幅(ゲイン)の程度によって決められる。例えば、図3に示されるように、イメージセンサでは信号の読み出しで発生するノイズNdarkの他に、入射光強度に比例して発生する信号電荷Nに対して、√Nのフォトン・ショットノイズが発生し、入射光強度に応じてノイズ量が増加していく。暗いほど信号が小さいながらノイズの絶対値も小さく、明るいほど信号が大きくなるもののノイズの絶対値が大きくなる。このため、A/D変換精度で決まる量子化ノイズの影響は、信号の大きさ(明るいか暗いか)によって異なり、明るい領域ほど光ショットノイズが支配的となり要求されるA/D変換精度は低くて構わない。
 一般的に、A/D変換の量子化ノイズを顕在化させないために、A/D変換の変換精度は、これら読み出しノイズやフォトン・ショットノイズの総ノイズレベルよりも小さく設定することが好ましい。しかしながら、高い変換精度は、変換速度や消費電力を犠牲にすることになる。
 そこで例えば、図3に示すように、ノイズレベルの小さい低入射光の領域に対しては、より高い変換精度(より小さい1階調当たりの電圧)D1を用い、量子化ノイズよりもフォトン・ショットノイズが支配的な高入射光の領域に対しては、低い階調精度D2を用いることで、量子化ノイズによる実質的な画質劣化なく、A/D変換の変換速度や消費電力を向上させる方法がある。
 この方法の場合、同一の信号電圧に異なる傾きの参照電圧で2回以上のA/D変換を時分割で行い、変換精度の異なるデジタル値をそれぞれ取得し、信号電圧の範囲によって切り替える。したがって、階調精度の変更は、同一カウンタクロック周波数において、参照電圧Vrefの傾きを変えることで実現することができる。もちろん、参照電圧Vrefの傾きを変えずにカウンタクロック周波数を変えることも可能ではあるが、周波を数下げることはA/D変換を低速化することになるため、参照電圧Vrefの傾きを変える方が好ましい。
 図4のタイミングチャートに示されるように、この方法の場合、参照電圧Vrefの傾きが小さい、すなわち高い階調精度のA/D変換が、第1アナログ信号および第2アナログ信号に対して実行され、次いで、参照電圧Vrefの傾きを大きくして、より低い階調精度D2のA/D変換が、第2アナログ信号および第3アナログ信号に対して実行される。第3アナログ信号に対するA/D変換は、ばらつき成分を引き算するための処理である。すなわち、第1アナログ信号および第3アナログ信号は、ともにばらつき成分(ノイズ成分)である。
 階調精度を2倍上げることは、傾きを半減させることに相当し、同じ入力信号範囲をA/D変換する場合、2倍の変換時間が必要になる。図4の例の場合、階調精度D1の入力信号範囲を狭めることで、信号成分Vsigが小さい領域のみ高い階調精度D1を適用し、信号成分Vsigが大きい領域では、比較的低い階調精度D2を適用している。したがって、2回のA/D変換により、階調精度D2のみの場合と比べて約2倍の変換時間を要しているが、階調精度D1をD2の4倍の精度に設定した場合、階調精度D1のみの場合と比べれば約1/2倍の変換時間となる。
 しかしながらこの方法の場合、信号成分である第2アナログ信号に対して計2回の変換が必要になる。ばらつき成分(第1アナログ信号および第3アナログ信号)に対しても計2回の変換を必要とするが、ばらつき成分は一般的に信号成分よりも振幅が小さいため参照電圧の振幅も小さく、信号成分よりも変換期間が相対的に短い。そのため、特に信号成分(第2アナログ信号)に対して計2回の変換が必要になる点が、A/D変換速度の低減に対してより大きく寄与してしまう。
 <CMOSイメージセンサ>
 そこで、信号電圧の大小を判断し、その判断結果に従い異なる増幅率を選んで信号電圧を増幅することで、信号成分に対して1回のA/D変換期間で、A/D変換の変換精度を信号電圧の範囲によって切り替える方法を提案する。
 このような切り替えを行うイメージセンサについて説明を加える。図5は、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサの主な構成例を示す図である。図5に示されるCMOSイメージセンサ100は、CMOSを用いた撮像素子、若しくは、画素領域で得られた画像信号を処理する信号処理装置の一例である。
 図5に示されるように、CMOSイメージセンサ100は、画素アレイ111と、信号処理装置の一例としてのA/D変換部112とを有する。CMOSイメージセンサ100は、画素アレイ111において入射された光を光電変換し、得られたアナログ信号をA/D変換部112によりA/D変換し、得られた、入射光に対応する画像に対応するデジタルデータを出力する。
 画素アレイ111は、図中四角で示される、光電変換素子を含む単位画素141が、アレイ状(行列状)に配置される。なお、図5においては、一部の単位画素のみ示してある。画素アレイ111の画素数は任意である。もちろん、行数および列数も任意である。
 A/D変換部112は、画素アレイ111の各列に対して設けられ、その対応する列の各単位画素から読み出されるアナログの画素信号VxをA/D変換する、信号処理装置の一例としてのカラムA/D変換部151を有する。
 図5においては、画素アレイ111の左から1列目に対応するカラムA/D変換部151-1、左から2列目に対応するカラムA/D変換部151-2、および、左から3列目に対応するカラムA/D変換部151-3のみが示されている。実際には、A/D変換部112は、画素アレイ111の単位画素141の全ての列について、それぞれに対応するカラムA/D変換部151を有する。各カラムA/D変換部を互いに区別して説明する必要が無い場合、単にカラムA/D変換部151と称する。
 なお、カラムA/D変換部151の数は、画素アレイ111の列数と一致しなくても良い。例えば、1のカラムA/D変換部151が、画素アレイ111の複数列の画素信号VxをA/D変換するようにしてもよい。例えば、カラムA/D変換部151が、対応する各列の画素信号VxのA/D変換処理を、時分割で行うようにしてもよい。
 CMOSイメージセンサ100は、また、A/D変換制御部110、制御タイミング発生部121、画素走査部122、水平走査部123、参照電圧発生部131、および参照電圧発生部132を有する。
 制御タイミング発生部121は、A/D変換制御部110、A/D変換部112、画素走査部122、水平走査部123、参照電圧発生部131、および参照電圧発生部132にクロック信号を供給する等して、各処理部の動作のタイミングを制御する。
 画素走査部122は、画素アレイ111の各単位画素141に対して、その動作を制御する制御信号を供給する。水平走査部123は、各カラムA/D変換部151から供給されるデジタルデータを単位画素の行毎に順次出力する。
 A/D変換制御部110は、各カラムA/D変換部151の動作を制御する。参照電圧発生部131は、参照電圧Vref1を各カラムA/D変換部151に供給する。参照電圧発生部132は、参照電圧Vref1と異なる参照電圧Vref2を各カラムA/D変換部151に供給する。
 A/D変換部112の各カラムA/D変換部151は、制御タイミング発生部121により制御されたタイミングで動作する。
 カラムA/D変換部151は、切替部161、比較部162、選択部163、およびタイミング計測部164を有する。なお、図5においては、カラムA/D変換部151-3の構成を示しているが、カラムA/D変換部151-1やカラムA/D変換部151-2を含む、全てのカラムA/D変換部151は、それぞれ、このカラムA/D変換部151-3と同様の構成を有する。
 切替部161は、参照電圧発生部131と比較部162との間に設けられ、選択部163から供給される制御信号SWR1により、両者の接続・切断(オン・オフ)が制御されるスイッチを有する。また、切替部161は、参照電圧発生部132と比較部162との間に設けられ、選択部163から供給される制御信号SWR2により、両者の接続・切断(オン・オフ)が制御されるスイッチを有する。すなわち、切替部161は、参照電圧発生部131から供給される参照電圧Vref1と、参照電圧発生部132から供給される参照電圧Vref2のうち、選択部163により選択された方を比較部162に供給する。
 比較部162は、単位画素141から読み出されたアナログの画素信号Vxの電圧と、切替部161から供給される参照電圧(Vref1若しくはVref2)とを比較する。比較部162は、その比較結果Vco(どちらが大きいか)を、選択部163およびタイミング計測部164に供給する。
 比較部162は、画素信号VxをA/D変換するために、所定の電圧幅を走査する参照電圧と、画素信号Vxの電圧とを比較する。また、比較部162は、画素信号Vx(第2アナログ信号)をA/D変換する際の階調精度を決定するために、所定の大きさの参照電圧(所定判定値)と、画素信号Vx(第2アナログ信号)とを比較する。
 このように、画素信号VxをA/D変換する際の比較と、階調精度を決定する際の比較とが、共通の比較部162により行われる。したがって、カラムA/D変換部151は、参照電圧の電圧範囲に必要なマージンを低減させることができ、A/D変換の高速化若しくは低消費電力化を実現することができる。
 選択部163は、A/D変換制御部110の制御に従って、比較部162に供給する参照電圧の選択を行う。選択部163には、A/D変換制御部110から制御信号ADPおよび制御信号SWSQが供給される。選択部163は、それらの値に基づくタイミングで、参照電圧Vref1および参照電圧Vref2のいずれか一方を、比較部162から供給される比較結果Vcoに基づいて選択する。選択部163は、切替部161がその選択した参照電圧を比較部162に供給するように、制御信号SWR1および制御信号SWR2の値を決定し、それらを切替部161に供給する。
 タイミング計測部164は、カウンタを有し、そのカウンタによって、比較部162において比較が開始されてから比較結果Vcoの値が変わるタイミングまでの時間をカウントする。タイミング計測部164は、そのカウント値(すなわち、比較部162において比較が開始されてから比較結果Vcoの値が変わるタイミングまでの時間の長さ)を、画素信号Vxのデジタルデータとして水平走査部123に供給する。
 なお、タイミング計測部164は、アップカウントとダウンカウントの両方を行うことができるカウンタを有する。したがって、タイミング計測部164は、第1アナログ信号(ばらつき成分)と参照電圧との比較のカウント値と、第2アナログ信号(信号レベル+ばらつき成分)と参照電圧との比較のカウント値との減算を、カウント動作により実現することができる。すなわち、タイミング計測部164は、この減算を容易に行うことができる。また、タイミング計測部164は、この減算をデジタル領域において行うことができるので、回路規模や消費電力の増大を抑制することができる。
 CMOSイメージセンサ100は、また、基準信号入力部171、基準信号レベル調整部172、および補正部173を有する。これらの各部についての説明は後述する。これらを設けることで、誤差の発生などを抑制することができる。まず、これらの各部が無い場合に発生する誤差などについて説明を加え、その後、発生する可能性のある誤差などを抑制するための処理について説明する。
 図5に示したCMOSイメージセンサ100の動作、および、制御の流れについて説明する。図6は、入射光輝度が低い場合、すなわち第2アナログ信号の振幅が小さい場合の、A/D変換の様子の例を示すタイミングチャートである。なお、ここでは、ある単位画素141から読み出された画素信号Vxに対するA/D変換処理についての各動作タイミングについて説明する。
 時刻T0において、ある単位画素141からの画素信号Vx読み出しが開始されると、時刻T1において、第1アナログ信号(ばらつき成分ΔV)の読み出しが開始される。
 時刻T2において、参照電圧発生部131は、参照電圧Vref1の電圧走査を開始する。参照電圧発生部131は、参照電圧Vref1について、設定された階調精度D1(例えば60uV/LSB)の刻みで電圧を、大きい方から小さい方に向かう方向(比較方向)に走査する(すなわち、暗い方から明るい方に走査する)。この走査は、時刻T4まで継続されるとする。
 時刻T0乃至時刻T4の間、制御信号SWSQはHレベル、制御信号ADPはLレベル、制御信号Φfbは、Lレベルに設定される。すなわち、選択部163は、参照電圧Vref1を選択し、切替部161は、参照電圧発生部131が生成した参照電圧Vref1を比較部162に供給させる。
 この参照電圧Vref1が走査する時刻T2乃至時刻T4の間、比較部162は、画素信号Vx(第1アナログ信号)と参照電圧Vref1との比較を行う。タイミング計測部164は、時刻T2からカウンタクロックのカウントを開始する。このカウントは、画素信号Vx(第1アナログ信号)と参照電圧Vref1との比較結果Vcoが変化するまでか、若しくは、時刻T4になるまで継続される。
 時刻T4より前の時刻T3において、この比較結果Vcoが変化したとする。この場合、タイミング計測部164は、時刻T3においてカウントを終了する。タイミング計測部164は、このカウント値をデジタル出力Do1として出力する。すなわち、デジタル出力Do1は、ΔVのデジタル値となる。
 参照電圧Vref1と第1アナログ信号との比較が終了すると、次に、参照電圧Vref2と第1アナログ信号との比較が行われる。時刻T4において、制御信号SWSQがLレベルに切り替えられ、切替部161により、参照電圧発生部132により発生された参照電圧Vref2が比較部162に供給されるようになる。
 比較結果Vcoの値が遷移するまで待機した後、時刻T5において、参照電圧発生部132は、参照電圧Vref2の電圧走査を開始する。参照電圧発生部132は、参照電圧Vref2について、階調精度D1と異なる階調精度D2(例えば240uV/LSB)の刻みで電圧を、大きい方から小さい方に向かう方向(比較方向)に走査する(すなわち、暗い方から明るい方に走査する)。この走査は、時刻T7まで継続されるとする。
 その間、比較部162は、画素信号Vx(第1アナログ信号)と参照電圧Vref2との比較を行う。タイミング計測部164は、時刻T5からカウンタクロックのカウントを開始する。このカウントは、画素信号Vx(第1アナログ信号)と参照電圧Vref2との比較結果Vcoが変化するまでか、若しくは、時刻T7になるまで継続される。
 時刻T7より前の時刻T6において、この比較結果Vcoが変化したとする。この場合、タイミング計測部164は、時刻T6においてカウントを終了する。タイミング計測部164は、このカウント値をデジタル出力Do2として出力する。すなわち、デジタル出力Do2は、ΔVのデジタル値となる。
 参照電圧Vref1および参照電圧Vref2と第1アナログ信号との比較が終了すると、次に、参照電圧と第2アナログ信号との比較が行われる。時刻T4において、制御信号SWSQがLレベルに切り替えられ、切替部161により、参照電圧発生部132により発生された参照電圧Vref2が比較部162に供給されるようになる。
 以上のように、カラムA/D変換部151は、第1アナログ信号に対して、参照電圧Vref1及び参照電圧Vref2によるA/D変換を順次実行する。参照電圧の電圧走査により、画素信号Vxと参照電圧Vrefxが一致したタイミングで比較結果Vcoは変化し、そのタイミングを計測することで電圧値をデジタル値として取得することが可能となる。タイミングの計測には、例えばカウンタ部を用いることができる。カウンタクロック数をカウントし、比較結果Vcoが変化したタイミングで停止することで、その時間、すなわち比較結果Vcoが変化するまでに参照電圧が走査した電圧幅をデジタル値として記録する。
 参照電圧Vref1による変換結果と、参照電圧Vref2による変換結果をそれぞれデジタル出力Do1、Do2に保持する。ここで得られたデジタル値は、第1アナログ信号の値であるため、画素をリセットした値、すなわち、ばらつき成分ΔVの値となる。もちろん、Do1,Do2は同じ第1アナログ信号をA/D変換しているが、階調精度が異なるため、デジタル値の大きさは異なる。
 次いで、カラムA/D変換部151は、時刻T7乃至時刻T8において、参照電圧Vref1を、第2アナログ信号に対する参照電圧Vref1の最大振幅以下の所定判定値に設定し、第2アナログ信号と比較する。
 この比較は、A/D変換で用いた比較部162を用いて行われる。得られた比較結果Vcoは、時刻T8において、制御信号Φfbのパルスによって、選択部163にラッチされ、信号SWFBとして取り込まれる。
 この比較結果に基づいて、第2アナログ信号と比較する参照電圧が選択される。図6の例の場合、第2アナログ信号の振幅が小さいため、第2アナログ信号は、参照電圧Vref1と比較される。図6の例の場合、時刻T8における取り込みにより、Lレベルであった信号SWFBがHレベルに遷移する。
 比較結果Vcoが取り込まれると、制御信号ADPがHレベルに遷移され、信号SWFBに基づいて、比較部162に供給する参照電圧の選択が行われるようになる。図6の例の場合、信号SWFBがHレベルになるので、制御信号SWR1がHレベルになり、制御信号SWR2がLレベルになる。上述したように、参照電圧Vref1が選択される。
 比較結果Vcoの値が遷移するまで待機した後、時刻T9において、参照電圧発生部131は、参照電圧Vref1の電圧走査を開始する。参照電圧発生部131は、参照電圧Vref1について、階調精度D1の刻みで電圧を、大きい方から小さい方に向かう方向(比較方向)に走査する(すなわち、暗い方から明るい方に走査する)。この走査は、時刻T11まで継続されるとする。
 その間、比較部162は、画素信号Vx(第2アナログ信号)と参照電圧Vref1との比較を行う。タイミング計測部164は、時刻T9からカウンタクロックのカウントを開始する。このカウントは、画素信号Vx(第2アナログ信号)と参照電圧Vref1との比較結果Vcoが変化するまでか、若しくは、時刻T11になるまで継続される。
 時刻T11より前の時刻T10において、この比較結果Vcoが変化したとする。この場合、タイミング計測部164は、時刻T10においてカウントを終了する。タイミング計測部164は、このカウント値をデジタル出力Do1として出力する。
 第2アナログ信号はばらつき成分ΔVと信号成分Vsigを含むため、カラムA/D変換部151は、第2アナログ信号をA/D変換し、そのデジタル値から、先に求めた第1アナログ信号のデジタル値を減算することで、信号成分Vsigに相当するデジタル値を取得することができる。
 なお、この間(時刻T9乃至時刻T11)、参照電圧発生部132も、参照電圧Vref2を、階調精度D2の刻みで、大きい方から小さい方に向かう方向(比較方向)に走査する(すなわち、暗い方から明るい方に走査する)。ただし、図6の場合、第2アナログ信号の振幅が小さいので、参照電圧Vref2は、切替部161の制御により、比較部162へは供給されない(第2アナログ信号と比較されない)。
 次に図7のタイミングチャートを参照して、入射光輝度が高い場合、すなわち第2アナログ信号の振幅が大きい場合の、A/D変換の様子の例を説明する。
 図7の場合も、第1アナログ信号と参照電圧との比較は、図6の場合と同様に行われる。すなわち、第1アナログ信号に対して、各参照電圧(Vref1およびVref2)が順次比較される。
 また、第2アナログ信号に対する最大振幅以下の所定判定値に設定された参照電圧Vref1と、第2アナログ信号との比較も、図6の場合と同様に行われる。すなわち、時刻T0乃至時刻T8の処理は、図6の場合と同様に行われる。
 ただし、図7の例の場合、第2アナログ信号の振幅が大きいため、第2アナログ信号は、参照電圧Vref2と比較される。図7の例の場合、信号SWFBは、時刻T8後もLレベルのままである。
 比較結果Vcoが取り込まれると、制御信号ADPがHレベルに遷移され、信号SWFBに基づいて、制御信号SWR1がLレベルになり、制御信号SWR2がHレベルになる。すなわち、上述したように参照電圧Vref2が選択される。
 時刻T9において、参照電圧発生部132は、参照電圧Vref2の電圧走査を開始する。参照電圧発生部132は、参照電圧Vref2について、階調精度D2の刻みで電圧を、大きい方から小さい方に向かう方向(比較方向)に走査する(すなわち、暗い方から明るい方に走査する)。この走査は、時刻T11まで継続されるとする。
 その間、比較部162は、画素信号Vx(第2アナログ信号)と参照電圧Vref2との比較を行う。タイミング計測部164は、時刻T9からカウンタクロックのカウントを開始する。このカウントは、画素信号Vx(第2アナログ信号)と参照電圧Vref2との比較結果Vcoが変化するまでか、若しくは、時刻T11になるまで継続される。
 時刻T11より前の時刻T12において、この比較結果Vcoが変化したとする。この場合、タイミング計測部164は、時刻T12においてカウントを終了する。タイミング計測部164は、このカウント値をデジタル出力Do2として出力する。
 このような処理により、カラムA/D変換部151は、第2アナログ信号のデジタル値から、先に求めた第1アナログ信号のデジタル値を減算することで、信号成分Vsigに相当するデジタル値を取得することができる。
 なお、この間(時刻T9乃至時刻T11)、参照電圧供給部131も、参照電圧Vref1を、階調精度D1の刻みで、大きい方から小さい方に向かう方向(比較方向)に走査する(すなわち、暗い方から明るい方に走査する)。ただし、図7の場合、第2アナログ信号の振幅が大きいので、参照電圧Vref1は、切替部161の制御により、比較部162へは供給されない(第1アナログ信号と比較されない)。
 また、タイミング計測部164に、アップ/ダウン切り替え可能なカウンタを用いて、第1アナログ信号と第2アナログ信号のA/D変換それぞれで異なるカウント方向を用いれば、ばらつき成分ΔVの減算をA/D変換と同時に行うことができる。また、複数の階調精度による第1アナログ信号のA/D変換結果を、それぞれ個別のタイミング計測部に保持した場合、判定結果であるSWFBの値を用いることで、いずれのタイミング計測部で第2アナログ信号を減算すればよいかは容易に判断することができる。
 このように、画素の出力レベルに応じた階調精度でA/D変換を適用することにより、ノイズレベルの小さい低出力領域に高い階調精度を適用しながら、高速・低消費電力なA/D変換動作を実現することが可能となる。特に、出力レベルの判定に関わる追加部の面積増加を抑え、判定誤差による参照電圧の電圧範囲拡大に起因するA/D変換期間の増大を抑え、さらに、異なる階調精度の参照信号を複数適用することによる各A/D変換の間に要するセトリング期間を短縮し高速化が可能となる。
 このような方法によると、図8に示すように、所定の判定値によって決定される階調精度の切替レベルを境界として各画素に階調精度の異なるデジタル信号が出力される。図8に示したグラフは、横軸は被写体からの反射光量(入力)を表し、縦軸にその時の画素信号レベル(出力)を表す。また図中実線のグラフは、高階調信号のグラフであり、点線のグラフは、低階調信号のグラフである。
 入力値が切替レベルよりも小さいときには、高階調信号が用いられ、入力値が切替レベルよりも大きいときには、低階調信号が用いられる。図8に示したグラフにおいて、高階調信号のゲインと低階調信号のゲインとの比は、4:1であるとする。例えば、低階調信号のゲインを、高階調信号のゲインと同一に戻したい場合、低階調信号のゲインを4倍することで同一となる。
 切替レベルの前後において単調なA/D変換結果(以下、合成信号とする)を得るためには、図9に示すように、階調精度に応じたゲイン補正処理が必要となる。また、オフセットが階調精度によって異なる場合には、オフセット補正処理も必要となる。
 図9を参照するに、図9の左側に示したグラフは、図8に示したグラフの高階調信号と低階調信号をそれぞれ別々に図示したグラフであり、上側のグラフが低階調信号を表し、下側のグラフが高階調信号を表す。図9の右側のグラフは、高階調信号と低階調信号を切替レベルの前後で合成したときの合成信号を表すグラフである。
 ここでは、高階調信号を基準とし、高階調信号に低階調信号を合わせこんで合成する場合を例に挙げて説明する。図9においては、グラフ中の点線は、低階調信号を表し、実線は、高階調信号を表す。図9の右側のグラフのうち、実線で示した高階調信号は、図9中の左下の高階調信号のうちの切替レベル以下の信号である。
 図9の右側のグラフのうち、点線で示した低階調信号は、図9中の左上の低階調信号のうちの切替レベル以上の信号のゲインを4倍にし、高階調信号のゲインと同一にした信号である。低階調信号に対して、ゲイン補正やオフセット補正を行った後、切替レベルで、高階調信号と低階調信号を合成すれば、図9右側のグラフに示したような直線となる。
 しかしながら、図10に示すように、ゲイン補正やオフセット補正を行わなかった場合、合成信号は、直線にはならない可能性がある。図10のAに示したグラフは、切替レベルの前後で、傾きが異なる直線となっている。例えば、低階調信号のゲイン補正を行うときの補正係数が適切でなかったなどの原因により、補正後の低階調信号の傾きと高階調信号の傾きが異なる傾きとなる可能性がある。
 図10のBに示したグラフは、切替レベルの前後で、異なる値となっている。切替レベルのところの高階調信号の値を値aとし、切替レベルのところの低階調信号の値を値bとした場合、切替レベルのところで、値aから値bに値が小さくなってしまっている。例えば、低階調信号の開始点と高階調信号の開始点が異なっている場合などに、オフセット補正を行わないと、図10のBに示したように、切替レベルの前後で値にずれが生じてしまう。
 補正係数は、階調精度に応じて固定値で与えられても良いが、参照電圧発生部131,132のアナログ的なばらつきなどにより、固定的な補正係数ではゲイン補正結果に誤差が生じ、階調精度の切替レベルの前後において画像の段差として視認されてしまうような画質の劣化が生じる可能性がある。
 そこで、基準信号入力部171(図5)を設け、基準信号レベルを、A/D変換部112(図5)に入力し、ゲイン補正係数やオフセット補正定数が取得されるようにし、ゲイン誤差やオフセット誤差を低減する補正処理が行われるようにする。
 図5に示したCMOSイメージセンサ100の異なるゲインで信号電圧の増幅を行う増幅部(A/D変換部112)に対して、基準信号入力部171より基準信号が供給され、各々のアナログ・デジタル変換結果から補正係数が取得されるようにすることが考えられる。
 この補正係数は、メモリに保持されるようにし、光電変換により生成された画素信号に対して、ゲイン誤差が低減されるような補正処理が施される。基準信号レベルは、デジタルアナログ変換部(DA変換部)を用いて生成される。画素信号に対するアナログゲインを変化させた際には、基準信号レベルが各増幅部で飽和しないレベルに調整する必要があるが、DA変換部で、その電位を容易に制御することができる。
 このように構成することで、階調精度の異なる複数のデジタル信号間のゲイン誤差・オフセット誤差を補正し、直線性の良い信号電圧を得ることが可能である。
 基準信号レベルは、階調精度の異なる複数の信号の切替レベルに設定されていることが望ましい。上記したように、基準信号レベルが、切替レベルに対して誤差がある場合、階調精度の異なる複数の信号間の直線性誤差によって、本来取得すべき切替レベルにおける補正値が取得できず、取得された補正値に誤差が生じている可能性がある。このような誤差が発生すると、階調精度の切替レベルの前後において画像の段差として視認されるような画質の劣化が生じてしまう可能性がある。
 このようなことから、基準信号レベルを常に切替レベルに設定することが考えられるが、基準信号レベルを常に切替レベルに設定することは、以下の理由から困難である。
  基準信号入力部の非線形性又はA/D変換部の変換ゲインの非線形性
  基準信号入力部又はA/D変換部の製造ばらつき
  電源電圧・温度変動などによる基準信号入力部又はA/D変換部の特性変動
 このようなことから、階調精度の異なる複数の信号から直線性の良い合成信号を取得することは困難である。そこで、以下に説明するような補正が行われる構成とする。
 <フィードバックによる補正>
 上記したような誤差の発生を抑制するための処理について説明する。まず、切替レベルと基準信号レベルの誤差を検出し、基準信号入力部171の基準信号レベルの設定値にフィードバックする制御について説明する。ここで説明するフィードバックによる補正は、適宜、第1の補正方法と記述する。
 図11は、図8に示したグラフと同じく、横軸が入力、縦軸が出力を表す、高階調信号と低階調信号を示したグラフである。予め設定されている切替レベルのときの高階調信号の出力値を出力値aとする。
 所定の時点で、高階調信号の出力が出力値bであり、その時の基準信号レベルはレベルcであったとする。現基準信号レベルである切替レベルbと、設定されている切替レベルの切替レベルaとの差分が算出される。算出された差分を差分値eとする。この差分値eに応じて、基準信号レベルが基準信号レベルcから基準信号レベルdに変更される。
 このような補正は、以下のように行われる。まず、基準信号入力部171(図5)から、A/D変換部112のカラムA/D変換部151に基準信号レベルの信号、例えば、基準信号レベルcの信号が供給される。その結果、カラムA/D変換部151からの出力を、基準信号レベル調整部172は取得する。
 すなわち、基準信号レベル調整部172は、その時点で設定されている基準信号レベルに対応する切替レベルを取得する。例えば、図11に示したような状況の場合、基準信号レベルcの信号が入力されると、切替レベルbが取得される。
 基準信号レベルの信号は、全カラムA/D変換部151に入力されるようにしても良いし、所定の1または複数のカラムA/D変換部151にのみ入力されるようにしても良い。また、全カラムA/D変換部151または複数のカラムA/D変換部151に基準信号レベルの信号を入力し、出力値を得るようにした場合、出力値の平均値が算出され、その平均値が用いられて、基準信号レベルの調整が行われるようにしても良い。
 また、全カラムA/D変換部151に基準信号レベルの信号が入力されるようにし、所定の領域を指定するカラムA/D変換部151からの出力値のみが用いられて平均値が算出されるようにしても良い。
 全カラムA/D変換部151ではなく、所定数のカラムA/D変換部151からの出力値を用いて処理するようにすることで、一斉動作するカラムA/D変換部151の数を減らすことができ、ノイズを低減させることが可能となる。
 現基準信号レベルに対応する切替レベルが取得されると、基準信号レベル調整部172は、予め設定されている切替レベル時の切替レベル(図11では切替レベルa)と取得された切替レベル(図11では切替レベルb)との差分を算出する。基準信号レベル調整部172は、算出した差分値(この場合、差分値e)に応じて、設定されている切替レベルaになるような基準信号レベルに調整する。
 基準信号レベルの調整は、現基準信号レベルの切替レベルと設定されている切替レベルの差分から設定されている切替レベルを与える基準信号レベルの設定値を、アナログゲイン設定値などから予測することで行われるようにしても良い。
 または誤差の方向のみを検知して、基準信号レベルの設定値を±1コード調整し、誤差検知と調整を繰り返すことで、設定されている切替レベルになるように調整されるようしても良い。
 このように、誤差を検出し、基準信号のレベルを調整することで、高階調信号と低階調信号の誤差を補正することができ、画質の劣化が発生するようなことを抑制することが可能となる。
 <キャリブレーションによる補正>
 図12を参照し、複数のアナログゲイン設定において切替レベルを与える基準信号レベル設定値を取得し(キャリブレーション)、アナログゲイン変更時にはキャリブレーション結果から切替レベルを与える基準信号設定値を算出することについて説明する。ここで説明するキャリブレーションによる補正は、適宜、第2の補正方法と記述する。
 図12に示したグラフは、横軸がアナログゲインを表し、縦軸が、切替レベルを与える基準信号レベルの設定値を表す。図12中、アナログゲインALは、システムで使用される最低アナログゲインを表し、アナログゲインAHは、システムで使用される最高アナログゲインを表す。設定値SLは、アナログゲインALのときの基準信号レベルの設定値であり、設定値SHは、アナログゲインAHのときの基準信号レベルの設定値である。
 直線C1は、(アナログゲインAL,設定値SL)と(アナログゲインAH,設定値SH)とを結ぶ直線であり、所定の時点におけるA/D変換部112の特性を表す直線である。
 アナログゲインALに対応する設定値SLと、アナログゲインAHに対応する設定値SHが取得され、直線C1が生成される。設定値SLと設定値SHは、各アナログゲイン設定において適当な基準信号レベル設定値を初期値として与え、図11を参照して説明した第1の補正方法を用いて、基準信号レベルを切替レベルに引き込むことで取得される。これをキャリブレーション値として、記憶部(不図示)に保持する。キャリブレーションを実施するタイミングは、システムの起動時や動作条件の変更時などである。キャリブレーション結果から直線C1が生成される。
 このようにして生成され、記憶された図12に示したような特性を表す直線C1が用いられ、アナログゲインAXのときの切替レベルを与える基準信号レベルの設定値SYが算出される。例えば、アナログゲインがアナログゲインAXに変更されたとき、記憶されている直線C1を用いて、アナログゲインAXに対応する設定値SYが算出される。
 このように、アナログゲインに対応する基準信号レベルの設定値を求めるようにすることで、高い精度で基準信号レベルを切替レベルに合わせることができる。
 この際、基準信号入力部171の非線形性又はA/D変換部112の変換ゲインの非線形性に起因して、基準信号レベルと切替レベルに誤差が生じる場合があるが、図11を参照して説明した第1の補正方法と組み合わせることで、基準信号レベルを切替レベルに引き込むことができる。
 例えば、基準信号入力部171の非線形性又はA/D変換部112の変換ゲインの非線形性に起因して、基準信号レベルと切替レベルに誤差が生じる可能性がある場合、第2の補正方法で、基準信号レベルや切替レベルが設定され、その後、第1の補正方法で、調整が行われるようにし、前記誤差を抑制するように構成することが可能である。前記誤差が生じない構成であっても、第1の補正方法と第2の補正方法の両方を適用した構成とすることも可能である。
 <再設定による補正>
 次にアナログゲイン変更時に、キャリブレーション値からの特性変動による誤差を検出し、フィードバックすることで、キャリブレーション後の基準信号入力部171やA/D変換部112の特性変動を補正する方法について説明する。ここで説明する再設定による補正は、適宜、第3の補正方法と記述する。
 上記した第2の補正方法では、以下のような誤差が発生する可能性がある。第2の補正方法で、キャリブレーションにより、図13に示した直線C1が得られたとする。キャリブレーション後に基準信号入力部171の電源電圧変動や温度変動が生じた場合、特性が直線C2のように変化する場合がある。
 特性が直線C2のように変化したにも関わらず、得られている直線C1を用いて、上記した第2の補正方法により、アナログゲインAxに対応する基準信号レベルを設定すると、基準入力信号レベルと切替レベルに誤差が生じる。
 図13を参照するに、例えば、アナログゲインAX1で動作中に直線C1から直線C2に特性変動が生じたとする。このとき、第1の補正方法が適用されることで、設定値は設定値S1から設定値S2へと変更され、基準信号レベルは切替レベルに追従することができる。
 直線C1から直線C2への特性変動は、電源電圧の変動や温度の変動が想定されるが、これらの特性変動の速度に対して第1の補正方法を、適切な頻度、例えば、フレーム毎などに行えば、基準入力レベルは、切替レベルに追従可能である。しかしながら、アナログゲインが、アナログゲインAX1からアナログゲインAX2に変更されたとき、基準信号レベルの設定値は、キャリブレーション特性C1に基づき、設定値S3に設定される。
 しかしながら、実際に切替レベルを与える基準信号レベル設定値は、キャリブレーション特性C2上の設定値S4である。よって、この場合、設定値S3と設定値S4との差分だけ誤差となり、基準信号レベルは、切替レベルから誤差が生じてしまっている状態となる。
 第1の補正方法を用いれば、最終的には設定値S3から設定値S4に変更される経路で、基準信号レベルは、切替レベルに一致するが、一時的に補正係数の誤差が大きくなり、画質が劣化する可能性がある。
 そこで、第3の補正方法として、以下のような補正が適宜行われるように構成することも可能である。
 設定値が、設定値S1から設定値S2に変化したとき、設定値S1と設定値S2との差分が算出される。この算出が行われることで、キャリブレーション値からの特性変動による誤差が検出される。誤差が検出されると、その検出された誤差に、アナログゲイン換算して設定値S3に加算(フィードバック)することで、設定値S4に相当する基準信号レベル設定値が取得される。
 このような処理が行われることで、キャリブレーション後に基準信号入力部171やA/D変換部112に特性変動が生じたとしても、設定値S3から設定値S4に移行する過程における基準信号レベルと切替レベルに誤差が発生すること無く、精度良く補正係数を取得することができる。
 このように、本技術によると、基準信号レベルと切替レベルを精度良く合わせることが可能となる。本技術によれば、以下のような効果がある。
 第1の補正方法(フィードバックによる補正)により、回路の非線形性・製造ばらつき・動作条件の変動などによる基準信号レベルと切替レベルの誤差を補正し、基準信号レベルを切替レベルに精度良く合わせることができるようになり、補正係数の誤差を低減することができる。
 第2の補正方法(キャリブレーションによる補正)により、基準信号入力部171又はA/D変換部112の製造ばらつきによる、基準信号レベルと切替レベルの誤差を補正することができる。
 第1の補正方法では、誤差の検出から基準信号レベルの調整において、複数回のフィードバックをかけることにより、収束するまでに一定の時間がかかり、動作速度に影響を与える可能性がある。第2の補正方法により、製造ばらつきを予めキャンセルすることで、収束性を向上し、動作速度に対する影響を低減することができる。
 さらに、第3の補正方式(再設定による補正)を用いることで、第2の補正方法においてキャリブレーション時からの回路特性変動による誤差を低減させることが可能となる。
 図5に示したCMOSイメージセンサ100は、異なる階調精度の複数の信号のゲイン誤差又はオフセット誤差を補正する補正部173と基準信号レベル調整部172を有する。上記したように、基準信号入力部171から供給される基準信号を用いて、基準信号レベルをA/D変換部112に入力し、水平走査部123から読み出された出力を、基準信号レベル調整部172に入力する。基準信号レベル調整部172は、上記した第1乃至第3の補正方法によって算出した基準信号レベル設定値を基準信号入力部171にフィードバックする。
 補正部173の補正として、以下のような補正を実行することができる。補正部173は、互いに異なる階調精度の参照電圧での比較結果間のゲイン誤差又はオフセット誤差が低減されるように補正処理を行う。このような補正を行う場合、基準信号レベル調整部172は、上記した補正方法により、基準信号入力部171の基準信号レベルを、異なる階調精度の切替レベルに調整する。
 補正部173の他の補正として、補正部173は、同じゲインレベルにした後のデジタル信号とデジタル信号とのゲイン誤差又はオフセット誤差が低減されるように補正処理を行う。この場合、カラムA/D変換部151内の比較器162は、画素アレイ111内の複数の画素の信号又は基準信号入力部171からの基準信号を第1のゲインで増幅した第1の信号と第2のゲインで増幅した第2の信号を出力する。
 第1の信号と第2の信号を出力するために、それぞれの信号を出力する増幅部(比較器)を設けても良いし、上記したように、参照信号を切り換え、比較結果を出力することで、異なる信号を出力するようにしても良い。
 カラムA/D変換部151は、第1の信号を第1のデジタル信号に変換し、第2の信号を第2のデジタル信号に変換するアナログ・デジタル変換部として機能する。そして、補正部は、上記したように、同じゲインレベルにした後の第1のデジタル信号と第2のデジタル信号とのゲイン誤差又はオフセット誤差が低減されるように補正処理を行う。また、基準信号レベル調整部172は、上記した補正方法により、基準信号のレベルを第2の信号の切替レベルに調整する。
 このように、補正部173で行われる補正により、カラムA/D変換部151などの処理は適宜変更可能である。
 補正部173の補正の処理に係わらず、本技術によれば、準信号レベルと切替レベルを精度良く合わせることが可能となる。
 図14を参照して、さらに、CMOSイメージセンサ100の動作について説明を加える。
 CMOSイメージセンサ100は、まず電源投入後にキャリブレーションを実施する。基準信号レベル設定値には適当な初期値1を与え、アナログゲインAHにおいて切替レベルを与える基準信号レベル設定値SHが算出される。この際、第1の補正方法によって、基準信号レベルが切替レベルに引き込まれ、収束した際の基準信号レベル設定値が、アナログゲインAHのキャリブレーション値として取得される。
 同様に、アナログゲインALにおいて、切替レベルを与える基準信号レベルの設定値SLが、キャリブレーション値として取得される。この例ではキャリブレーション専用のフレームを設けているが、通常撮像フレームに組み込まれていても良い。
 キャリブレーション後の次の通常撮像フレームでは、当該フレームにおいてアナログゲインの変更があった場合、フレームの開始時に第2の補正方法や第3の補正方法によって、前記キャリブレーション結果に基づき、切替レベルを与える基準信号レベル設定値が基準信号入力部171に供給される。
 この場合、通常撮像の1フレーム目では、アナログゲインAX1に設定されており、それに対応する基準信号レベル設定値SY1が基準信号入力部171に送られる。通常撮像フレームの3フレーム目では、電源変動などによる基準信号入力部171の特性変動が発生する。このような特性変動が発生した場合、第1の補正方法によって、基準信号レベル設定値が調整され、切替レベルに合わせ込まれる。
 通常撮像フレームの4フレーム目では、アナログゲインAX2に変更されている。ここで、基準信号入力部171の特性変動により、キャリブレーション時の特性と現在の特性にずれが生じているが、第2の補正方法と第3の補正方法を併用して算出した基準信号レベル設定値SY2が基準信号入力部171に送られることで、特性変動の影響を受けずに、基準信号レベルと切替レベルを合わせ込むことができる。
 このような処理が繰り返し行われることで、基準信号レベルと切替レベルが精度良く合わせられた状態を維持することが可能となる。
 <電子機器の一例>
 図15は、上述した信号処理装置を用いた撮像装置の主な構成例を示すブロック図である。図15に示される撮像装置800は、被写体を撮像し、その被写体の画像を電気信号として出力する装置である。
 図15に示されるように撮像装置500は、光学部511、CMOSセンサ512、A/D変換器513、操作部514、制御部515、画像処理部516、表示部517、コーデック処理部518、および記録部519を有する。
 光学部511は、被写体までの焦点を調整し、焦点が合った位置からの光を集光するレンズ、露出を調整する絞り、および、撮像のタイミングを制御するシャッタ等よりなる。光学部511は、被写体からの光(入射光)を透過し、CMOSセンサ512に供給する。
 CMOSセンサ512は、入射光を光電変換して画素毎の信号(画素信号)をA/D変換器513に供給する。A/D変換器513は、CMOSセンサ512から、所定のタイミングで供給された画素信号を、デジタルデータ(画像データ)に変換し、所定のタイミングで順次、画像処理部516に供給する。毎の信号(画素信号)をA/D変換器513に供給する。
 A/D変換器513は、CMOSセンサ512から、所定のタイミングで供給された画素信号を、デジタルデータ(画像データ)に変換し、所定のタイミングで順次、画像処理部516に供給する。
 操作部514は、例えば、キー、ボタン、またはタッチパネル等により構成され、ユーザによる操作入力を受け、その操作入力に対応する信号を制御部515に供給する。
 制御部515は、操作部514により入力されたユーザの操作入力に対応する信号に基づいて、光学部511、CMOSセンサ512、A/D変換器513、画像処理部516、表示部517、コーデック処理部518、および記録部519の駆動を制御し、各部に撮像に関する処理を行わせる。
 画像処理部516は、A/D変換器513から供給された画像データに対して、例えば、混色補正や、黒レベル補正、ホワイトバランス調整、デモザイク処理、マトリックス処理、ガンマ補正、およびYC変換等の各種画像処理を施す。画像処理部516は、画像処理を施した画像データを表示部517およびコーデック処理部518に供給する。
 表示部517は、例えば、液晶ディスプレイ等として構成され、画像処理部516から供給された画像データに基づいて、被写体の画像を表示する。
 コーデック処理部518は、画像処理部516から供給された画像データに対して、所定の方式の符号化処理を施し、得られた符号化データを記録部519に供給する。記録部519は、コーデック処理部518からの符号化データを記録する。記録部519に記録された符号化データは、必要に応じて画像処理部516に読み出されて復号される。復号処理により得られた画像データは、表示部517に供給され、対応する画像が表示される。
 以上のような撮像装置500のCMOSセンサ512およびA/D変換器513を含む処理部として、上述した本技術を適用する。すなわち、CMOSセンサ512およびA/D変換器513を含む処理部として、上述したCMOSイメージセンサ100が用いられる。これにより、CMOSセンサ512およびA/D変換器513を含む処理部は、A/D変換の誤差の発生を抑制することができる。したがって撮像装置500は、被写体を撮像することにより、より高画質な画像を得ることができる。
 なお、本技術を適用した撮像装置は、上述した構成に限らず、他の構成であってもよい。例えば、CMOSセンサ512の代わりに、本技術を適用したCCDイメージセンサを用いるようにしてもよい。また、例えば、デジタルスチルカメラやビデオカメラだけでなく、携帯電話機、スマートホン、タブレット型デバイス、パーソナルコンピュータ等の、撮像機能を有する情報処理装置などの電子機器であってもよい。また、他の情報処理装置に装着して使用される(若しくは組み込みデバイスとして搭載される)カメラモジュールであってもよい。
 <記録媒体について>
 上述した一連の処理(例えば、各実施の形態において上述したA/D変換の制御処理(例えば、各種制御信号を供給する処理等))は、ハードウエアにより実行させることもできるし、ソフトウエアにより実行させることもできる。
 例えば、図5のCMOSイメージセンサ100において、A/D変換制御部110が、各種制御信号を供給する処理を、ソフトウエアにより実行するようにすることもできる。また、例えば、参照電圧発生部131や参照電圧発生部132等による参照電圧を供給する処理等、A/D変換制御部110以外の任意の処理に対してソフトウエアを適用することもできる。
 一連の処理をソフトウエアにより実行する場合には、そのソフトウエアを構成するプログラムが、コンピュータにインストールされる。ここでコンピュータには、専用のハードウエアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータ等が含まれる。
 図16は、上述した一連の処理をプログラムにより実行するコンピュータのハードウエアの構成例を示すブロック図である。図16に示されるコンピュータ600において、CPU(Central Processing Unit)601、ROM(Read Only Memory)602、RAM(Random Access Memory)603は、バス604を介して相互に接続されている。
 バス604にはまた、入出力インタフェース610も接続されている。入出力インタフェース610には、入力部611、出力部612、記憶部613、通信部614、およびドライブ615が接続されている。
 入力部611は、例えば、キーボード、マウス、マイクロホン、タッチパネル、入力端子などよりなる。出力部612は、例えば、ディスプレイ、スピーカ、出力端子などよりなる。記憶部613は、例えば、ハードディスク、RAMディスク、不揮発性のメモリなどよりなる。通信部614は、例えば、ネットワークインタフェースよりなる。ドライブ615は、磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリなどのリムーバブルメディア621を駆動する。
 以上のように構成されるコンピュータでは、CPU601が、例えば、記憶部613に記憶されているプログラムを、入出力インタフェース610およびバス604を介して、RAM603にロードして実行することにより、上述した一連の処理が行われる。RAM603にはまた、CPU601が各種の処理を実行する上において必要なデータなども適宜記憶される。
 コンピュータ(CPU601)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア621に記録して適用することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
 コンピュータでは、プログラムは、リムーバブルメディア621をドライブ615に装着することにより、入出力インタフェース610を介して、記憶部613にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部614で受信し、記憶部613にインストールすることができる。その他、プログラムは、ROM602や記憶部613に、あらかじめインストールしておくことができる。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
 また、本明細書において、記録媒体に記録されるプログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。
 また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、全ての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 また、以上において、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。
 <撮像装置の使用例>
 図17は、上述の撮像素子や撮像素子を含む電子機器を使用する使用例を示す図である。
 上述した撮像素子は、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングする様々なケースに使用することができる。
 ・ディジタルカメラや、カメラ機能付きの携帯機器等の、鑑賞の用に供される画像を撮影する装置
 ・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置
 ・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される装置
 ・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置
 ・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置
 ・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置
 ・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置
 ・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 なお、本技術は以下のような構成も取ることができる。
(1)
 入射光を光電変換する光電変換素子を含む単位画素が並べられた画素アレイと、
 基準信号を生成する基準信号入力部と、
 前記画素アレイの単位画素又は前記基準信号入力部から出力されるアナログ信号を所定の電圧と比較する比較部と、
 前記比較部に供給する参照電圧を切り替え、互いに異なる階調精度の複数の参照電圧のうちのいずれか1つを前記比較部に接続する切替部と、
 前記比較部による、前記アナログ信号と、前記切替部の切り替え制御により前記比較部に供給された参照電圧との比較結果の変化タイミングを計測する計測部と、
 互いに異なる階調精度の参照電圧での比較結果間のゲイン誤差又はオフセット誤差が低減されるように補正処理を行う補正部と、
 前記基準信号入力部の基準信号レベルを異なる階調精度の切替レベルに調整する基準信号調整部と
 を備える撮像素子。
(2)
 前記基準信号調整部は、前記基準信号レベルと切替レベルの誤差を検出し、基準信号レベルを調整する
 前記(1)に記載の撮像素子。
(3)
 前記基準信号調整部は、増幅部の複数のゲイン設定において切替レベルを与える前記基準信号入力部のレベル設定値に基づき、任意のゲイン設定において切替レベルを与える前記基準信号入力部のレベル設定値を算出する
 前記(1)または(2)に記載の撮像素子。
(4)
 前記基準信号調整部は、前記増幅部の複数のゲイン設定において切替レベルを与える前記基準信号入力部の設定値に基づき算出した、任意のゲイン設定における切替レベルを与える前記基準信号入力部のレベル設定値と、実際に切替レベルを与える前記基準信号入力部のレベル設定値の差分を用いて、任意のゲイン設定における切替レベルを与える前記基準信号入力部のレベル設定値を算出する
 前記(3)に記載の撮像素子。
(5)
 入射光を光電変換する光電変換素子を含む単位画素が並べられた画素アレイを備える撮像素子の撮像方法において、
 基準信号を生成し、
 前記画素アレイの単位画素又は前記基準信号入力部から出力されるアナログ信号を所定の電圧と比較し、
 前記比較を行う比較部に供給する参照電圧を切り替え、互いに異なる階調精度の複数の参照電圧のうちのいずれか1つを前記比較部に接続し、
 前記比較部による、前記アナログ信号と、前記切り替えの制御により前記比較部に供給された参照電圧との比較結果の変化タイミングを計測し、
 互いに異なる階調精度の参照電圧での比較結果間のゲイン誤差又はオフセット誤差が低減されるように補正処理を行い、
 前記基準信号レベルを異なる階調精度の切替レベルに調整する
 ステップを含む撮像方法。
(6)
 入射光を光電変換する光電変換素子を含む単位画素が並べられた画素アレイと、
 基準信号を生成する基準信号入力部と、
 前記画素アレイの単位画素又は前記基準信号入力部から出力されるアナログ信号を所定の電圧と比較する比較部と、
 前記比較部に供給する参照電圧を切り替え、互いに異なる階調精度の複数の参照電圧のうちのいずれか1つを前記比較部に接続する切替部と、
 前記比較部による、前記アナログ信号と、前記切替部の切り替え制御により前記比較部に供給された参照電圧との比較結果の変化タイミングを計測する計測部と、
 互いに異なる階調精度の参照電圧での比較結果間のゲイン誤差又はオフセット誤差が低減されるように補正処理を行う補正部と、
 前記基準信号入力部の基準信号レベルを異なる階調精度の切替レベルに調整する基準信号調整部と
 を備える撮像素子を備える
 電子機器。
(7)
 入射光を光電変換する光電変換素子を含む単位画素が並べられた画素アレイと、
 基準信号を生成する基準信号入力部と、
 前記複数の画素の各列に設けられ、前記複数の画素の信号又は前記基準信号を第1のゲインで増幅した第1の信号及び第2のゲインで増幅した第2の信号を出力する増幅部と、
 前記第1の信号を第1のデジタル信号に変換し、前記第2の信号を第2のデジタル信号に変換するアナログデジタル変換部と、
 同じゲインレベルにした後の前記第1のデジタル信号と第2のデジタル信号とのゲイン誤差又はオフセット誤差が低減されるように補正処理を行う補正部と、
 前記基準信号のレベルを第2の信号の切替レベルに調整する基準信号調整部と
 を備える撮像素子。
(8)
 前記基準信号調整部は、前記基準信号レベルと切替レベルの誤差を検出し、基準信号レベルを調整する
 前記(7)に記載の撮像素子。
(9)
 前記基準信号調整部は、増幅部の複数のゲイン設定において切替レベルを与える前記基準信号入力部のレベル設定値に基づき、任意のゲイン設定において切替レベルを与える前記基準信号入力部のレベル設定値を算出する
 前記(7)または(8)に記載の撮像素子。
(10)
 前記基準信号調整部は、前記増幅部の複数のゲイン設定において切替レベルを与える前記基準信号入力部の設定値に基づき算出した、任意のゲイン設定における切替レベルを与える前記基準信号入力部のレベル設定値と、実際に切替レベルを与える前記基準信号入力部のレベル設定値の差分を用いて、任意のゲイン設定における切替レベルを与える前記基準信号入力部のレベル設定値を算出する
 前記(9)に記載の撮像素子。
(11)
 入射光を光電変換する光電変換素子を含む単位画素が並べられた画素アレイを備える撮像素子の撮像方法において、
 基準信号を生成し、
 前記複数の画素の各列に設けられ、前記複数の画素の信号又は前記基準信号を第1のゲインで増幅した第1の信号及び第2のゲインで増幅した第2の信号を出力し、
 前記第1の信号を第1のデジタル信号に変換し、前記第2の信号を第2のデジタル信号に変換し、
 同じゲインレベルにした後の前記第1のデジタル信号と第2のデジタル信号とのゲイン誤差又はオフセット誤差が低減されるように補正処理を行い、
 前記基準信号のレベルを第2の信号の切替レベルに調整する
 ステップを含む撮像方法。
(12)
 入射光を光電変換する光電変換素子を含む単位画素が並べられた画素アレイと、
 基準信号を生成する基準信号入力部と、
 前記複数の画素の各列に設けられ、前記複数の画素の信号又は前記基準信号を第1のゲインで増幅した第1の信号及び第2のゲインで増幅した第2の信号を出力する増幅部と、
 前記第1の信号を第1のデジタル信号に変換し、前記第2の信号を第2のデジタル信号に変換するアナログデジタル変換部と、
 同じゲインレベルにした後の前記第1のデジタル信号と第2のデジタル信号とのゲイン誤差又はオフセット誤差が低減されるように補正処理を行う補正部と、
 前記基準信号のレベルを第2の信号の切替レベルに調整する基準信号調整部と
 を備える撮像素子を備える
 電子機器。
 100 CMOSイメージセンサ, 111 画素アレイ, 112 A/D変換部, 110 A/D変換制御部, 121 制御タイミング発生部, 122 画素走査部, 123 水平走査部, 131,132 参照電圧発生部, 141 単位画素, 151 カラムA/D変換部, 161 切替部, 162 比較部, 163 選択部, 164 タイミング計測部, 171 基準信号入力部, 172 基準信号レベル調整部, 173 補正部

Claims (12)

  1.  入射光を光電変換する光電変換素子を含む単位画素が並べられた画素アレイと、
     基準信号を生成する基準信号入力部と、
     前記画素アレイの単位画素又は前記基準信号入力部から出力されるアナログ信号を所定の電圧と比較する比較部と、
     前記比較部に供給する参照電圧を切り替え、互いに異なる階調精度の複数の参照電圧のうちのいずれか1つを前記比較部に接続する切替部と、
     前記比較部による、前記アナログ信号と、前記切替部の切り替え制御により前記比較部に供給された参照電圧との比較結果の変化タイミングを計測する計測部と、
     互いに異なる階調精度の参照電圧での比較結果間のゲイン誤差又はオフセット誤差が低減されるように補正処理を行う補正部と、
     前記基準信号入力部の基準信号レベルを異なる階調精度の切替レベルに調整する基準信号調整部と
     を備える撮像素子。
  2.  前記基準信号調整部は、前記基準信号レベルと切替レベルの誤差を検出し、基準信号レベルを調整する
     請求項1に記載の撮像素子。
  3.  前記基準信号調整部は、増幅部の複数のゲイン設定において切替レベルを与える前記基準信号入力部のレベル設定値に基づき、任意のゲイン設定において切替レベルを与える前記基準信号入力部のレベル設定値を算出する
     請求項1に記載の撮像素子。
  4.  前記基準信号調整部は、前記増幅部の複数のゲイン設定において切替レベルを与える前記基準信号入力部の設定値に基づき算出した、任意のゲイン設定における切替レベルを与える前記基準信号入力部のレベル設定値と、実際に切替レベルを与える前記基準信号入力部のレベル設定値の差分を用いて、任意のゲイン設定における切替レベルを与える前記基準信号入力部のレベル設定値を算出する
     請求項3に記載の撮像素子。
  5.  入射光を光電変換する光電変換素子を含む単位画素が並べられた画素アレイを備える撮像素子の撮像方法において、
     基準信号を生成し、
     前記画素アレイの単位画素又は前記基準信号入力部から出力されるアナログ信号を所定の電圧と比較し、
     前記比較を行う比較部に供給する参照電圧を切り替え、互いに異なる階調精度の複数の参照電圧のうちのいずれか1つを前記比較部に接続し、
     前記比較部による、前記アナログ信号と、前記切り替えの制御により前記比較部に供給された参照電圧との比較結果の変化タイミングを計測し、
     互いに異なる階調精度の参照電圧での比較結果間のゲイン誤差又はオフセット誤差が低減されるように補正処理を行い、
     前記基準信号レベルを異なる階調精度の切替レベルに調整する
     ステップを含む撮像方法。
  6.  入射光を光電変換する光電変換素子を含む単位画素が並べられた画素アレイと、
     基準信号を生成する基準信号入力部と、
     前記画素アレイの単位画素又は前記基準信号入力部から出力されるアナログ信号を所定の電圧と比較する比較部と、
     前記比較部に供給する参照電圧を切り替え、互いに異なる階調精度の複数の参照電圧のうちのいずれか1つを前記比較部に接続する切替部と、
     前記比較部による、前記アナログ信号と、前記切替部の切り替え制御により前記比較部に供給された参照電圧との比較結果の変化タイミングを計測する計測部と、
     互いに異なる階調精度の参照電圧での比較結果間のゲイン誤差又はオフセット誤差が低減されるように補正処理を行う補正部と、
     前記基準信号入力部の基準信号レベルを異なる階調精度の切替レベルに調整する基準信号調整部と
     を備える撮像素子を備える
     電子機器。
  7.  入射光を光電変換する光電変換素子を含む単位画素が並べられた画素アレイと、
     基準信号を生成する基準信号入力部と、
     前記複数の画素の各列に設けられ、前記複数の画素の信号又は前記基準信号を第1のゲインで増幅した第1の信号及び第2のゲインで増幅した第2の信号を出力する増幅部と、
     前記第1の信号を第1のデジタル信号に変換し、前記第2の信号を第2のデジタル信号に変換するアナログデジタル変換部と、
     同じゲインレベルにした後の前記第1のデジタル信号と第2のデジタル信号とのゲイン誤差又はオフセット誤差が低減されるように補正処理を行う補正部と、
     前記基準信号のレベルを第2の信号の切替レベルに調整する基準信号調整部と
     を備える撮像素子。
  8.  前記基準信号調整部は、前記基準信号レベルと切替レベルの誤差を検出し、基準信号レベルを調整する
     請求項7に記載の撮像素子。
  9.  前記基準信号調整部は、増幅部の複数のゲイン設定において切替レベルを与える前記基準信号入力部のレベル設定値に基づき、任意のゲイン設定において切替レベルを与える前記基準信号入力部のレベル設定値を算出する
     請求項7に記載の撮像素子。
  10.  前記基準信号調整部は、前記増幅部の複数のゲイン設定において切替レベルを与える前記基準信号入力部の設定値に基づき算出した、任意のゲイン設定における切替レベルを与える前記基準信号入力部のレベル設定値と、実際に切替レベルを与える前記基準信号入力部のレベル設定値の差分を用いて、任意のゲイン設定における切替レベルを与える前記基準信号入力部のレベル設定値を算出する
     請求項9に記載の撮像素子。
  11.  入射光を光電変換する光電変換素子を含む単位画素が並べられた画素アレイを備える撮像素子の撮像方法において、
     基準信号を生成し、
     前記複数の画素の各列に設けられ、前記複数の画素の信号又は前記基準信号を第1のゲインで増幅した第1の信号及び第2のゲインで増幅した第2の信号を出力し、
     前記第1の信号を第1のデジタル信号に変換し、前記第2の信号を第2のデジタル信号に変換し、
     同じゲインレベルにした後の前記第1のデジタル信号と第2のデジタル信号とのゲイン誤差又はオフセット誤差が低減されるように補正処理を行い、
     前記基準信号のレベルを第2の信号の切替レベルに調整する
     ステップを含む撮像方法。
  12.  入射光を光電変換する光電変換素子を含む単位画素が並べられた画素アレイと、
     基準信号を生成する基準信号入力部と、
     前記複数の画素の各列に設けられ、前記複数の画素の信号又は前記基準信号を第1のゲインで増幅した第1の信号及び第2のゲインで増幅した第2の信号を出力する増幅部と、
     前記第1の信号を第1のデジタル信号に変換し、前記第2の信号を第2のデジタル信号に変換するアナログデジタル変換部と、
     同じゲインレベルにした後の前記第1のデジタル信号と第2のデジタル信号とのゲイン誤差又はオフセット誤差が低減されるように補正処理を行う補正部と、
     前記基準信号のレベルを第2の信号の切替レベルに調整する基準信号調整部と
     を備える撮像素子を備える
     電子機器。
PCT/JP2016/057740 2015-03-27 2016-03-11 撮像素子、撮像方法、電子機器 WO2016158315A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015065741 2015-03-27
JP2015-065741 2015-03-27

Publications (1)

Publication Number Publication Date
WO2016158315A1 true WO2016158315A1 (ja) 2016-10-06

Family

ID=57005018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057740 WO2016158315A1 (ja) 2015-03-27 2016-03-11 撮像素子、撮像方法、電子機器

Country Status (1)

Country Link
WO (1) WO2016158315A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020188398A (ja) * 2019-05-16 2020-11-19 キヤノン株式会社 撮像装置および撮像装置の制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229853A (ja) * 2012-03-30 2013-11-07 Canon Inc 光電変換装置および撮像システム
JP2013236362A (ja) * 2012-04-12 2013-11-21 Canon Inc 撮像装置及び撮像システム
JP2013251677A (ja) * 2012-05-31 2013-12-12 Sony Corp 信号処理装置および方法、撮像素子、並びに、撮像装置
JP2014220663A (ja) * 2013-05-08 2014-11-20 キヤノン株式会社 撮像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229853A (ja) * 2012-03-30 2013-11-07 Canon Inc 光電変換装置および撮像システム
JP2013236362A (ja) * 2012-04-12 2013-11-21 Canon Inc 撮像装置及び撮像システム
JP2013251677A (ja) * 2012-05-31 2013-12-12 Sony Corp 信号処理装置および方法、撮像素子、並びに、撮像装置
JP2014220663A (ja) * 2013-05-08 2014-11-20 キヤノン株式会社 撮像装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020188398A (ja) * 2019-05-16 2020-11-19 キヤノン株式会社 撮像装置および撮像装置の制御方法
JP7277252B2 (ja) 2019-05-16 2023-05-18 キヤノン株式会社 撮像装置および撮像装置の制御方法

Similar Documents

Publication Publication Date Title
US10116320B2 (en) Photoelectric conversion apparatus and image capturing system
US10200664B2 (en) Image processing apparatus, image device, image processing method, and program for reducing noise or false colors in an image
US9264634B2 (en) Signal processing device and method, imaging element, and imaging device
US9596422B2 (en) Signal processing device and method, imaging device, and imaging apparatus
US8711261B2 (en) Method of controlling semiconductor device, signal processing method, semiconductor device, and electronic apparatus
USRE44062E1 (en) Image sensor for detecting flicker noise and method thereof
JP4442695B2 (ja) 固体撮像装置及びカメラ装置
TWI555402B (zh) 用於行類比數位轉換器(adc)之晶片測試模式之影像處理系統
CN102713970B (zh) 产生图像传感器的列偏移校正
JP2013207433A (ja) 固体撮像装置、撮像信号出力方法および電子機器
CN102714703B (zh) 产生图像传感器的列偏移校正
CN107154801B (zh) 信号处理设备和方法、摄像设备以及控制设备和方法
CN107154803B (zh) 信号处理设备、信号处理方法和摄像设备
JP2012075071A (ja) 信号処理装置、画像処理装置、並びに撮影装置
JP2008187565A (ja) 固体撮像装置及び撮像装置
US20150181146A1 (en) Ad converter, ad conversion device, photoelectric conversion apparatus, imaging system, and ad conversion method
WO2016158315A1 (ja) 撮像素子、撮像方法、電子機器
JP2018050234A (ja) 撮像装置及び撮像装置の処理方法
JP2011234148A (ja) 画像信号処理装置
JP2017152838A (ja) 撮像装置及び撮像装置の制御方法
JP2021005838A (ja) 撮像装置、及び撮像装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP