WO2016158220A1 - Conveying device and gas backflow suppressing method - Google Patents

Conveying device and gas backflow suppressing method Download PDF

Info

Publication number
WO2016158220A1
WO2016158220A1 PCT/JP2016/056989 JP2016056989W WO2016158220A1 WO 2016158220 A1 WO2016158220 A1 WO 2016158220A1 JP 2016056989 W JP2016056989 W JP 2016056989W WO 2016158220 A1 WO2016158220 A1 WO 2016158220A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
combustion furnace
backflow
path
fuel
Prior art date
Application number
PCT/JP2016/056989
Other languages
French (fr)
Japanese (ja)
Inventor
学 誉田
一正 小西
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to KR1020177025901A priority Critical patent/KR102268062B1/en
Publication of WO2016158220A1 publication Critical patent/WO2016158220A1/en
Priority to PH12017501714A priority patent/PH12017501714A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/22Fuel feeders specially adapted for fluidised bed combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/28Control devices specially adapted for fluidised bed, combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/442Waste feed arrangements
    • F23G5/444Waste feed arrangements for solid waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K3/00Feeding or distributing of lump or pulverulent fuel to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2203/00Feeding arrangements
    • F23K2203/20Feeding/conveying devices
    • F23K2203/201Feeding/conveying devices using pneumatic means

Definitions

  • the present invention relates to a transfer device and a gas backflow suppression method.
  • a transport device having a transport path for supplying fuel to a combustion furnace is known.
  • the circulating fluidized bed boiler described in Patent Document 1 describes that fuel is supplied from a fuel input device to a furnace through a fuel input port provided in the furnace.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a transport device and a gas backflow suppression method that can further suppress the backflow of gas.
  • a transport apparatus is a transport apparatus including a transport path for supplying fuel to a combustion furnace, and a pressure state adjusting unit that adjusts a pressure state in the transport path by supplying gas; A gas backflow suppression unit that supplies gas to the conveyance path on the downstream side of the conveyance path from the pressure state adjustment unit.
  • the gas backflow suppression method supplies a gas, adjusts the pressure state in the conveyance path for supplying fuel to the combustion furnace, and from a portion to which the gas is supplied. Also, gas is supplied to the conveyance path on the downstream side of the conveyance path.
  • the gas is supplied by the pressure state adjustment unit, thereby adjusting the pressure state in the transfer path and suppressing the backflow of gas from the combustion furnace side. Is done.
  • the gas backflow suppression unit supplies gas to the conveyance path downstream from the pressure state adjustment unit.
  • the gas supplied to the conveyance path collides with the gas flowing backward from the combustion furnace side, thereby blocking backflow of the gas from the combustion furnace side.
  • gas is supplied by the gas backflow suppression unit on the downstream side of the conveyance path from the part to which the gas is supplied by the pressure state adjustment unit (that is, the part without the pressure state adjustment part between the pressure and the combustion furnace).
  • the gas backflow suppression unit is used in combination with the pressure state adjustment unit, the effect of the gas backflow suppression unit is suitably achieved.
  • the gas can be supplied by two systems of the pressure state adjusting unit and the gas backflow suppressing unit, the backflow of gas can be further suppressed.
  • the gas backflow suppression unit may supply gas to the transport path toward the downstream side of the transport path.
  • the gas supplied to the conveyance path has a flow toward the downstream side of the conveyance path, so that the reverse flow of the gas from the combustion furnace side is more reliably blocked. For this reason, the backflow of gas can be further suppressed.
  • the transport path includes a dust collector that ventilates the transport path, and the gas backflow suppression unit supplies gas to the transport path on the downstream side of the transport path from the dust collector. Also good.
  • the dust collector ventilates the conveyance path and removes dust in the conveyance path. As a result, even if flammable gas or flammable dust or the like enters the transport path, these are removed by the dust collector, and safety in the transport path is ensured.
  • the gas backflow suppression unit supplies gas to the conveyance path downstream from the dust collector. For this reason, the backflow of the gas from the combustion furnace side can be further suppressed.
  • the gas supplied to the transport path by the gas backflow suppression unit may be air.
  • the gas supplied to the conveyance path by the gas backflow suppression unit is used as air for burning the fuel. This facilitates adjustment of the total amount of air supplied to the combustion furnace. For this reason, a suitable combustion state can be maintained in the combustion furnace.
  • the backflow of gas can be further suppressed.
  • Drawing 1 is a schematic structure figure showing a circulating fluidized bed boiler provided with a conveyance device concerning an embodiment.
  • FIG. 2 is a schematic diagram illustrating a jetting unit according to the transport apparatus of FIG.
  • FIG. 3 is a schematic view showing an ejection portion according to a modification.
  • FIG. 4 is a schematic view showing an ejection portion according to another modification.
  • FIG. 5 is a schematic configuration diagram showing a circulating fluidized bed boiler having a dust collector.
  • a circulating fluidized bed boiler 100 shown in FIG. 1 is a device that burns fuel F and generates steam by heat generated by the combustion.
  • various non-fossil fuels biomass, waste tires, waste plastic, sludge, etc.
  • the volatile components are separated at, for example, about 200 ° C. Even the fuel can be suitably used as the fuel F.
  • the steam generated in the circulating fluidized bed boiler 100 is used for driving a power generation turbine (not shown), for example.
  • a circulating fluidized bed boiler 100 includes a combustion furnace 1 and a transfer device 2.
  • the combustion furnace 1 is a furnace for burning the fuel F by causing the mixture of the fuel F and the fluid medium M to flow at a high temperature.
  • a fluid medium M such as silica sand is accommodated.
  • the combustion furnace 1 is formed with a fuel inlet 3 for introducing fuel F and a combustion air inlet 4 for injecting combustion air A1. Ordinary air can be used as the combustion air A1.
  • the combustion air A ⁇ b> 1 is blown into the combustion furnace 1 to flow the mixture of the fuel F and the fluid medium M and is used for combustion of the fuel F.
  • the combustion air A1 is blown into the combustion furnace 1, the pressure in the combustion furnace 1 becomes higher than the atmospheric pressure.
  • the conveying device 2 is a device that conveys the fuel F and throws it into the combustion furnace 1 while suppressing the backflow of gas from the combustion furnace 1 side.
  • the conveying device 2 is configured to include a conveying path 5 for supplying the fuel F to the combustion furnace 1, and gas backflow suppression that suppresses the backflow of gas from the combustion furnace 1 side to the upstream side (that is, the side opposite to the combustion furnace 1).
  • Part 6 and a pressure state adjusting part 25 for adjusting the state of the pressure in the conveying path 5.
  • the transport path 5 is connected to the fuel delivery section 7 that sends out the fuel F to the transport path 5 on the upstream side, and is connected to the fuel inlet 3 of the combustion furnace 1 on the downstream side.
  • the conveyance path 5 includes a first pipeline 8 connected to the fuel delivery unit 7, a second pipeline 9 provided on the downstream side of the first pipeline 8, and a downstream of the second pipeline 9. And a fuel input path 10 connected to the combustion furnace 1.
  • the first pipe 8 conveys the fuel F sent from the fuel delivery unit 7 to the downstream side.
  • the second conduit 9 conveys the fuel F from the first conduit 8 to the fuel input passage 10.
  • the first conduit 8 and the second conduit 9 are tubular passages.
  • the 1st pipe line 8 and the 2nd pipe line 9 are good also as a structure which conveys the fuel F with the conveyor etc. which were provided in the inside, for example.
  • the pressure state adjusting unit 25 adjusts the state of the pressure in the transport path 5 by supplying gas, thereby suppressing the back flow of gas from the combustion furnace 1 side.
  • a method for adjusting the state of the pressure in the transfer path 5 the pressure in the combustion furnace 1, the fuel input path 10, and the second line 9 is cut off with respect to the pressure in the first pipe 8.
  • a method for example, a method using the following rotary valve 11
  • a method for increasing the pressure in the transport path 5 for example, a method using the following pressurizing means 26
  • the pressure state adjustment unit 25 includes the rotary valve 11 and the pressurizing unit 26. Note that the pressure state adjustment unit 25 may include only one of the rotary valve 11 and the pressurizing unit 26.
  • the pressure state adjustment unit 25 may not be provided in the transport device 2.
  • the pressure state adjusting unit 25 is not limited to the rotary valve 11 and the pressurizing unit 26 as long as it has the above-described function. That is, the pressure state adjusting unit 25 is configured to cut off the pressure in the combustion furnace 1, the fuel injection path 10, and the second pipe 9 with respect to the pressure in the first pipe 8, or in the transport path 5. Any configuration can be used as long as the pressure is increased.
  • the rotary valve 11 is provided between the first pipe line 8 and the second pipe line 9.
  • the rotary valve 11 suppresses the backflow of gas from the combustion furnace 1 side to the upstream side due to pressure loss between the upstream side and the downstream side.
  • the rotary valve 11 generates pressure loss by both the effect of sealing by a mechanical structure and the effect of sealing by supplied gas, and suppresses the backflow of gas.
  • the rotary valve 11 discharges a conveyed product by rotating a rotor 16 in which several blades 16 a are radially attached in a cylindrical casing 15. At this time, in the rotary valve 11, there are always a plurality of blades 16 a in the non-opening portion of the casing 15 (closed portion on the side surface excluding the inlet / outlet). At this time, the rotary valve 11 is maintained by assisting the pressure in the casing 15 by the pressure of the seal gas (gas) A2 from the seal gas line 17a connected to the rotary valve 11.
  • the seal gas line 17a includes a flow rate adjusting unit 20 that adjusts the flow rate of the circulating seal gas A2, and a pressure gauge 21 that measures the pressure of the seal gas A2.
  • a butterfly valve or the like can be used as the flow rate adjusting unit 20.
  • the rotor 16 is disposed in the casing 15 and is rotationally driven by a rotational drive mechanism (not shown). As a result, the fuel F that has been transported through the first conduit 8 and reaches the rotary valve 11 is transported to the second conduit 9 by the blade 16 a of the rotor 16.
  • the pressurizing means 26 supplies a pressurized gas (gas) A3 such as air into the first pipeline 8.
  • a pressurized gas (gas) A3 such as air into the first pipeline 8.
  • the pressure in the combustion furnace 1 is higher than the atmospheric pressure as described above, the pressure on the combustion furnace 1 side of the conveyance path 5 is higher than the atmospheric pressure.
  • the fuel input passage 10 is a tubular passage.
  • the downstream end of the fuel input path 10 is connected to the fuel input port 3 of the combustion furnace 1.
  • a screw conveyor 13 is installed inside the fuel input path 10.
  • the screw conveyor 13 extends from the vicinity of the boundary between the second pipe line 9 and the fuel input path 10 to the vicinity of the fuel input port 3 of the combustion furnace 1. With such a configuration, the fuel F from the second pipeline 9 is conveyed downstream by the rotation of the screw conveyor 13 and is fed into the combustion furnace 1 through the fuel inlet 3.
  • the fuel input path 10 is provided with a thermometer 14 for monitoring the combustion state in the combustion furnace 1 by measuring the temperature inside.
  • the fuel input path 10 is connected to the combustion furnace 1. For this reason, the fuel input path 10 is heated by the heat generated by the combustion of the fuel F in the combustion furnace 1. And the fuel F in the middle of being conveyed in the screw conveyor 13 of the fuel injection path 10 by this is also heated. At this time, in particular, when a fuel F having a volatile component separated at a low temperature is used, the volatile component separated from the fuel F in the screw conveyor 13 is released as a combustible gas (gas) G1. In addition to the combustible gas G1 released in this way, combustible gas (gas) G2 is released by the combustion of the fuel F in the combustion furnace 1. These gases are referred to as “gas from the combustion furnace 1 side”.
  • the gas from the combustion furnace 1 side may flow backward in the conveyance path 5 from the combustion furnace 1 side to the upstream side.
  • the gas from the combustion furnace 1 side may be either one of the combustible gas G1 or the combustible gas G2, or may be both.
  • the gas backflow suppression unit 6 includes a line 17 through which gas flows, a gas delivery unit 18 that sends gas to the line 17, and an ejection unit 22 that ejects gas to the transport path 5.
  • the line 17 is branched into the sealing gas line 17a and the purge gas line 17b.
  • seal gas A2 the gas that is diverted to the seal gas line 17a side
  • purge gas (gas) A4 the gas that is diverted to the purge gas line 17b side
  • gas purge gas
  • the line 17 is provided with a flow rate indicator 19 for detecting the flow rate of gas.
  • the ejection part 22 is a supply port for supplying the purge gas A4 from the purge gas line 17b into the second pipeline 9.
  • the purge gas line 17b is connected to the second pipeline 9 on the downstream side.
  • the purge gas A4 that has flowed through the purge gas line 17b is supplied into the second pipe 9.
  • the purge gas line 17b includes a flow rate adjusting unit 23 that adjusts the flow rate of the flowing purge gas A4, and a pressure gauge 24 that measures the pressure of the purge gas A4.
  • a flow rate adjusting unit 23 for example, a butterfly valve or the like can be used.
  • the ejection part 22 defines the direction in which the purge gas A4 is supplied to the second conduit 9. As shown in FIG. 2, here, the ejection portion 22 does not protrude from the inner wall surface of the second pipeline 9 and opens to the wall surface of the second pipeline 9.
  • a purge gas line 17 b is connected to the second pipeline 9 along the direction toward the downstream side of the second pipeline 9.
  • the angle ⁇ between the direction toward the downstream side of the second conduit 9 and the direction in which the purge gas line 17b is directed toward the second conduit 9 is greater than 0 degree and less than 90 degrees. .
  • the angle ⁇ is not limited to this range.
  • the fuel F in the screw conveyor 13 in the fuel input path 10 is heated by the heat generated by the combustion of the fuel F in the combustion furnace 1.
  • the volatile components separated from the fuel F in the screw conveyor 13 are released as the combustible gas G1.
  • the combustible gas G2 is released by the combustion of the fuel F in the combustion furnace 1.
  • the combustion air A ⁇ b> 1 is blown into the combustion furnace 1.
  • the pressure by the side of the combustion furnace 1 of the conveyance path 5 is higher than atmospheric pressure.
  • the pressure in the first pipe line 8 at a position away from the combustion furnace 1 is lower than the pressure on the combustion furnace 1 side of the transport path 5. In this case, there is a possibility that gas from the combustion furnace 1 side flows back through the conveyance path 5 due to a pressure difference between the combustion furnace 1 side and the upstream side in the conveyance path 5.
  • the pressurizing means 26 in the pressure state adjusting unit 25 supplies the pressurized gas A3 to increase the pressure in the first pipeline 8. Thereby, the backflow of the gas from the combustion furnace 1 side is suppressed.
  • the rotary valve 11 in the pressure state adjusting unit 25 supplies the sealing gas A2. Thereby, pressure loss is generated by both the effect of sealing by the mechanical structure of the rotary valve 11 and the effect of sealing by the sealing gas A2. As a result, the pressure in the second pipe 9 is cut off with respect to the pressure in the first pipe 8, and the backflow of gas from the combustion furnace 1 side is suppressed.
  • the purge gas A4 supplied to the transfer path 5 collides with the gas flowing backward from the combustion furnace 1 side. Thereby, the backflow of the gas from the combustion furnace 1 side is blocked, and the backflow of the gas from the combustion furnace 1 side is suppressed.
  • the purge gas A ⁇ b> 4 that has flowed through the purge gas line 17 b is supplied into the second pipe line 9 through the ejection portion 22. As a result, a gas flowing toward the downstream side of the conveyance path 5 is generated in the gas supplied to the conveyance path 5. As a result, the backflow of gas from the combustion furnace 1 side is blocked and the backflow of gas is suppressed.
  • the ejection part 22 does not protrude from the inner wall surface of the second pipeline 9 and opens on the wall surface of the second pipeline 9.
  • a purge gas line 17 b is connected to the second pipeline 9 along the direction toward the downstream side of the second pipeline 9.
  • the gas supplied to the conveyance path 5 has a flow toward the downstream side of the conveyance path 5, so that the backflow of gas from the combustion furnace 1 side is more reliably blocked.
  • the purge gas A4 supplied to the second pipe 9 flows downstream through the transfer path 5 and reaches the combustion furnace 1. Since the purge gas A4 is air, it is used in the combustion furnace 1 to burn the fuel F together with the combustion air A1. Thus, since the supply amount of the purge gas A4 is adjusted by the flow rate adjusting unit 23 provided in the purge gas line 17b, the total amount of air supplied to the combustion furnace 1 can be easily adjusted. Similarly, the same effect can be obtained by using air for the sealing gas A2 and the pressurized gas A3.
  • the pressure gas in the transport path 5 is supplied by the seal gas A2 or the pressurized gas A3 supplied by the pressure state adjusting unit 25. These conditions are adjusted, and the backflow of gas from the combustion furnace 1 side is suppressed.
  • the purge gas A4 is supplied by the gas backflow suppression unit 6 to the downstream side of the transport path 5 from the portion where the pressure gas adjustment unit 25 supplies the seal gas A2. As a result, the purge gas A4 supplied to the transfer path 5 collides with the gas flowing backward from the combustion furnace 1 side, thereby blocking backflow of gas from the combustion furnace 1 side.
  • the purge gas A4 is supplied downstream of the part to which the seal gas A2 is supplied by the pressure state adjusting unit 25 (that is, the part not passing through the pressure state adjusting part 25 with the combustion furnace 1). Therefore, even if the gas backflow suppression unit 6 is used in combination with the pressure state adjustment unit 25, the operational effect of the gas backflow suppression unit 6 is suitably achieved. As described above, since the gas can be supplied in two systems of the pressure state adjusting unit 25 and the gas backflow suppressing unit 6, the backflow of gas can be further suppressed.
  • the gas backflow suppression unit 6 supplies the purge gas A4 to the transfer path 5 toward the downstream side of the transfer path 5.
  • the purge gas A4 supplied to the transport path 5 has a flow toward the downstream side of the transport path 5, so that the backflow of gas from the combustion furnace 1 side is more reliably blocked. For this reason, the backflow of gas can be further suppressed.
  • the purge gas A4 is air.
  • the purge gas A4 from the gas backflow suppression unit 6 is used as the air for burning the fuel F. This facilitates adjustment of the total amount of air supplied to the combustion furnace 1. For this reason, a suitable combustion state can be maintained in the combustion furnace 1.
  • the present invention is not limited to the above-described embodiment.
  • the ejection portion 22 protrudes from the inner wall surface of the second conduit 9 to the inside of the second conduit 9 and is downstream at an angle ⁇ with respect to the extending direction of the second conduit 9. It may be bent toward the side, and its tip may be opened downstream. By doing so, the purge gas A4 can be guided toward the downstream side of the second pipe 9, so that the flow toward the downstream side of the transport path 5 can be generated more reliably.
  • the angle ⁇ at which the ejection part 22 bends is preferably larger than ⁇ 90 degrees and smaller than 90 degrees.
  • the angle ⁇ is not limited to this range.
  • the ejection portion 22 protrudes from the inner wall surface of the second pipeline 9 to the inner side of the second pipeline 9 and faces the upstream side of the second pipeline 9.
  • the shape may be longer from the inner wall surface of the second conduit 9 than the wall portion 22b facing the downstream side. Even with such a configuration, the purge gas A4 can be caused to flow toward the downstream side of the second pipe 9.
  • the transport path 5 has a dust collector 12 for ventilating the transport path 5 in the middle of the first pipeline 8, and the gas backflow suppression unit 6 is downstream of the transport path 5 from the dust collector 12.
  • the purge gas A4 may be supplied to the transport path 5.
  • the pressure state adjustment unit 25 does not have the pressurizing means 26.
  • the dust collector 12 ventilates the first pipeline 8 and removes dust in the first pipeline 8. As a result, even if a flammable gas or flammable dust or the like enters the first pipeline 8, they are removed by the dust collector 12, and safety in the first pipeline 8 is ensured. Is done.
  • the pressure in the conveyance path 5 is lowered, and in particular, the pressure in the first pipe line 8 may be lowered to about atmospheric pressure. In this case, the backflow of gas from the combustion furnace 1 side tends to occur easily. However, since the gas backflow suppression unit 6 supplies gas to the transport path 5 on the downstream side of the dust collector 12, the gas backflow from the combustion furnace 1 side can be further suppressed.
  • sealing gas line 17a and the purge gas line 17b may not be configured by the same line 17 being branched in the middle, but may be configured as separate lines. In this case, separate gas delivery sections 18 are provided.
  • the purge gas line 17b is not particularly limited as long as the purge gas line 17b is connected to the downstream side of the rotary valve 11 in the transport path 5.
  • the purge gas line 17 b may be connected to the fuel input passage 10 instead of being connected to the second conduit 9.
  • the purge gas line 17 b may be connected to both the second pipe line 9 and the fuel input path 10.
  • sealing gas A2, the pressurized gas A3, and the purge gas A4 are not limited to air, and for example, exhaust gas may be used.
  • SYMBOLS 1 Combustion furnace, 2 ... Conveyor device, 5 ... Conveyance path, 6 ... Gas backflow suppression part, 12 ... Dust collector, 25 ... Pressure state adjustment part, A2 ... Seal gas, A4 ... Purge gas, F ... Fuel.

Abstract

In a conveying device 2 and gas backflow suppressing method according to an aspect of the present invention, a sealing gas A2 or a pressurizing gas A3 is supplied by a pressurized state adjusting part 25, whereby the pressurized state inside a conveying path 5 is adjusted and backflow of a gas from a combustion furnace 1 side is suppressed. Additionally, a purge gas A4 is supplied to the conveying path 5 further downstream in the conveying path 5 than the pressurized state adjusting part 25 by means of a gas backflow suppressing part 6. Consequently, the gas supplied to the conveying path 5 collides with the gas flowing back from the combustion furnace 1, and can therefore block the backflow of the gas from the combustion furnace 1. The backflow of gas can be suppressed to a greater extent as a result of the above.

Description

搬送装置及びガス逆流抑制方法Conveying apparatus and gas backflow suppressing method
 本発明は、搬送装置及びガス逆流抑制方法に関する。 The present invention relates to a transfer device and a gas backflow suppression method.
 従来、燃焼炉へ燃料を供給するための搬送路を備えた搬送装置が知られている。例えば特許文献1に記載された循環流動層ボイラには、燃料投入装置から火炉へ、この火炉に設けられた燃料投入口を通じて燃料を供給することが記載されている。 Conventionally, a transport device having a transport path for supplying fuel to a combustion furnace is known. For example, the circulating fluidized bed boiler described in Patent Document 1 describes that fuel is supplied from a fuel input device to a furnace through a fuel input port provided in the furnace.
特開2012-255612号公報JP 2012-255612 A
 ところで、上述した搬送装置では、燃焼炉側から上流側へのガスの逆流を抑制する必要がある。そこで、搬送路にロータリーバルブを設けると共に、搬送路をシールするための気体を供給することにより、逆流するガスの量を低減することも考えられる。 By the way, in the transfer device described above, it is necessary to suppress the backflow of gas from the combustion furnace side to the upstream side. Therefore, it is conceivable to reduce the amount of gas flowing backward by providing a rotary valve in the transport path and supplying a gas for sealing the transport path.
 しかしながら、このような構成のみを備えた搬送装置では、逆流するガスの量を十分に低減できず、燃え易い燃料(例えば、低温で揮発分が分離し易い燃料)を循環流動層ボイラの燃料として使用することが難しい。このため、搬送装置において、燃焼炉側からのガスの逆流を一層抑制することが望まれていた。 However, in a transport apparatus having only such a configuration, the amount of gas flowing backward cannot be sufficiently reduced, and a fuel that is easy to burn (for example, a fuel whose volatile matter is easily separated at a low temperature) is used as the fuel for the circulating fluidized bed boiler. Difficult to use. For this reason, it has been desired to further suppress the backflow of gas from the combustion furnace side in the transfer device.
 本発明は、このような課題を解決するためになされたものであり、ガスの逆流を一層抑制できる搬送装置及びガス逆流抑制方法を提供することを目的とする。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a transport device and a gas backflow suppression method that can further suppress the backflow of gas.
 本発明の一形態に係る搬送装置は、燃焼炉へ燃料を供給するための搬送路を備えた搬送装置において、気体を供給して搬送路内の圧力の状態を調整する圧力状態調整部と、圧力状態調整部より搬送路の下流側において当該搬送路へ気体を供給するガス逆流抑制部と、を備えている。 A transport apparatus according to an aspect of the present invention is a transport apparatus including a transport path for supplying fuel to a combustion furnace, and a pressure state adjusting unit that adjusts a pressure state in the transport path by supplying gas; A gas backflow suppression unit that supplies gas to the conveyance path on the downstream side of the conveyance path from the pressure state adjustment unit.
 また、本発明の一形態に係るガス逆流抑制方法は、気体を供給し、当該燃焼炉へ燃料を供給するための搬送路内の圧力の状態を調整すると共に、当該気体が供給される部位よりも搬送路の下流側において、当該搬送路へ気体を供給する。 Moreover, the gas backflow suppression method according to one aspect of the present invention supplies a gas, adjusts the pressure state in the conveyance path for supplying fuel to the combustion furnace, and from a portion to which the gas is supplied. Also, gas is supplied to the conveyance path on the downstream side of the conveyance path.
 本発明の一形態に係る搬送装置及びガス逆流抑制方法では、圧力状態調整部によって気体が供給されることにより、搬送路内の圧力の状態が調整されて燃焼炉側からのガスの逆流が抑制される。また、これに加えて、ガス逆流抑制部によって、圧力状態調整部より搬送路の下流側において当該搬送路へ気体が供給される。これにより、搬送路へ供給された気体が燃焼炉側から逆流するガスと衝突することにより、燃焼炉側からのガスの逆流が堰き止められる。なお、圧力状態調整部により気体が供給される部位よりも搬送路の下流側(すなわち、燃焼炉との間に圧力状態調整部を介さない部位)においてガス逆流抑制部により気体が供給されるため、ガス逆流抑制部が圧力状態調整部と併用されても、ガス逆流抑制部の作用効果が好適に奏される。以上により、圧力状態調整部とガス逆流抑制部との2系統で気体を供給することができるため、ガスの逆流を一層抑制できる。 In the transfer apparatus and the gas backflow suppression method according to an aspect of the present invention, the gas is supplied by the pressure state adjustment unit, thereby adjusting the pressure state in the transfer path and suppressing the backflow of gas from the combustion furnace side. Is done. In addition to this, the gas backflow suppression unit supplies gas to the conveyance path downstream from the pressure state adjustment unit. As a result, the gas supplied to the conveyance path collides with the gas flowing backward from the combustion furnace side, thereby blocking backflow of the gas from the combustion furnace side. In addition, since gas is supplied by the gas backflow suppression unit on the downstream side of the conveyance path from the part to which the gas is supplied by the pressure state adjustment unit (that is, the part without the pressure state adjustment part between the pressure and the combustion furnace). Even if the gas backflow suppression unit is used in combination with the pressure state adjustment unit, the effect of the gas backflow suppression unit is suitably achieved. As described above, since the gas can be supplied by two systems of the pressure state adjusting unit and the gas backflow suppressing unit, the backflow of gas can be further suppressed.
 本発明の一形態に係る搬送装置において、ガス逆流抑制部は、搬送路の下流側へ向かって、当該搬送路へ気体を供給してもよい。このような構成により、搬送路へ供給された気体には搬送路の下流側へ向かう流れが生じるため、より確実に燃焼炉側からのガスの逆流が堰き止められる。このため、ガスの逆流を一層抑制できる。 In the transport apparatus according to an aspect of the present invention, the gas backflow suppression unit may supply gas to the transport path toward the downstream side of the transport path. With such a configuration, the gas supplied to the conveyance path has a flow toward the downstream side of the conveyance path, so that the reverse flow of the gas from the combustion furnace side is more reliably blocked. For this reason, the backflow of gas can be further suppressed.
 本発明の一形態に係る搬送装置において、搬送路は、当該搬送路を換気する集塵機を有し、ガス逆流抑制部は、集塵機より搬送路の下流側において、当該搬送路へ気体を供給してもよい。上記のような構成では、集塵機が搬送路を換気すると共に、搬送路内の粉塵を除去する。これにより、万一、搬送路内へ可燃性ガス又は可燃性の粉塵等が入り込んだ場合であっても、集塵機によってこれらが除去され、搬送路内における安全性が確保される。また、ガス逆流抑制部は、集塵機より下流側の搬送路へ気体を供給する。このため、燃焼炉側からのガスの逆流を一層抑制することができる。 In the transport device according to an aspect of the present invention, the transport path includes a dust collector that ventilates the transport path, and the gas backflow suppression unit supplies gas to the transport path on the downstream side of the transport path from the dust collector. Also good. In the above configuration, the dust collector ventilates the conveyance path and removes dust in the conveyance path. As a result, even if flammable gas or flammable dust or the like enters the transport path, these are removed by the dust collector, and safety in the transport path is ensured. The gas backflow suppression unit supplies gas to the conveyance path downstream from the dust collector. For this reason, the backflow of the gas from the combustion furnace side can be further suppressed.
 本発明の一形態に係る搬送装置において、ガス逆流抑制部によって搬送路へ供給される気体は、空気であってもよい。この場合、ガス逆流抑制部によって搬送路へ供給された気体が、燃料を燃焼させるための空気として用いられる。これにより、燃焼炉に供給される空気の総量の調整が容易となる。このため、燃焼炉において好適な燃焼の状態を維持することができる。 In the transport apparatus according to an aspect of the present invention, the gas supplied to the transport path by the gas backflow suppression unit may be air. In this case, the gas supplied to the conveyance path by the gas backflow suppression unit is used as air for burning the fuel. This facilitates adjustment of the total amount of air supplied to the combustion furnace. For this reason, a suitable combustion state can be maintained in the combustion furnace.
 本発明によれば、ガスの逆流を一層抑制できる。 According to the present invention, the backflow of gas can be further suppressed.
図1は、実施形態に係る搬送装置を備えた循環流動層ボイラを示す概略構成図である。Drawing 1 is a schematic structure figure showing a circulating fluidized bed boiler provided with a conveyance device concerning an embodiment. 図2は、図1の搬送装置に係る噴出部を示す概略図である。FIG. 2 is a schematic diagram illustrating a jetting unit according to the transport apparatus of FIG. 図3は、変形例に係る噴出部を示す概略図である。FIG. 3 is a schematic view showing an ejection portion according to a modification. 図4は、別の変形例に係る噴出部を示す概略図である。FIG. 4 is a schematic view showing an ejection portion according to another modification. 図5は、集塵機を有する循環流動層ボイラを示す概略構成図である。FIG. 5 is a schematic configuration diagram showing a circulating fluidized bed boiler having a dust collector.
 以下、添付図面を参照しながら本発明に係る搬送装置及びガス逆流抑制方法の一実施形態を詳細に説明する。 Hereinafter, an embodiment of a transfer device and a gas backflow suppression method according to the present invention will be described in detail with reference to the accompanying drawings.
 図1に示す循環流動層ボイラ100は、燃料Fを燃焼させ、その燃焼によって生じた熱により蒸気を発生させる装置である。循環流動層ボイラ100では、燃料Fとして、例えば各種の非化石燃料(バイオマス、廃タイヤ、廃プラスチック、スラッジ等)を使用することが可能であり、特に、例えば200℃程度で揮発分が分離するものであっても燃料Fとして好適に使用できる。循環流動層ボイラ100で発生した蒸気は、例えば発電タービン(不図示)の駆動に用いられる。このような循環流動層ボイラ100は、燃焼炉1と、搬送装置2と、を備えている。 A circulating fluidized bed boiler 100 shown in FIG. 1 is a device that burns fuel F and generates steam by heat generated by the combustion. In the circulating fluidized bed boiler 100, for example, various non-fossil fuels (biomass, waste tires, waste plastic, sludge, etc.) can be used as the fuel F. In particular, the volatile components are separated at, for example, about 200 ° C. Even the fuel can be suitably used as the fuel F. The steam generated in the circulating fluidized bed boiler 100 is used for driving a power generation turbine (not shown), for example. Such a circulating fluidized bed boiler 100 includes a combustion furnace 1 and a transfer device 2.
 燃焼炉1は、燃料Fと流動媒体Mとの混合物を高温で流動させることで燃料Fを燃焼させるための炉である。燃焼炉1には、例えば珪砂等の流動媒体Mが収容されている。燃焼炉1には、燃料Fを投入するための燃料投入口3と、燃焼空気A1を吹き込むための燃焼空気吹込口4と、が形成されている。燃焼空気A1としては、通常の空気を用いることができる。 The combustion furnace 1 is a furnace for burning the fuel F by causing the mixture of the fuel F and the fluid medium M to flow at a high temperature. In the combustion furnace 1, a fluid medium M such as silica sand is accommodated. The combustion furnace 1 is formed with a fuel inlet 3 for introducing fuel F and a combustion air inlet 4 for injecting combustion air A1. Ordinary air can be used as the combustion air A1.
 燃焼空気A1は、燃焼炉1内へ吹き込まれることで燃料Fと流動媒体Mとの混合物を流動させると共に、当該燃料Fの燃焼に用いられる。このように、燃焼空気A1が燃焼炉1内へ吹き込まれるため、燃焼炉1内の圧力は大気圧より高くなる。 The combustion air A <b> 1 is blown into the combustion furnace 1 to flow the mixture of the fuel F and the fluid medium M and is used for combustion of the fuel F. Thus, since the combustion air A1 is blown into the combustion furnace 1, the pressure in the combustion furnace 1 becomes higher than the atmospheric pressure.
 搬送装置2は、燃焼炉1側からのガスの逆流を抑制しつつ、燃料Fを搬送して燃焼炉1へ投入する装置である。搬送装置2は、燃焼炉1へ燃料Fを供給するための搬送路5と、燃焼炉1側から上流側(すなわち、燃焼炉1とは反対側)へのガスの逆流を抑制するガス逆流抑制部6と、搬送路5内の圧力の状態を調整するための圧力状態調整部25と、を有している。 The conveying device 2 is a device that conveys the fuel F and throws it into the combustion furnace 1 while suppressing the backflow of gas from the combustion furnace 1 side. The conveying device 2 is configured to include a conveying path 5 for supplying the fuel F to the combustion furnace 1, and gas backflow suppression that suppresses the backflow of gas from the combustion furnace 1 side to the upstream side (that is, the side opposite to the combustion furnace 1). Part 6 and a pressure state adjusting part 25 for adjusting the state of the pressure in the conveying path 5.
 搬送路5は、上流側において、燃料Fを当該搬送路5へ送り出す燃料送出部7に接続され、下流側において、燃焼炉1の燃料投入口3に接続されている。具体的に、搬送路5は、燃料送出部7に接続された第1管路8と、第1管路8の下流側に設けられた第2管路9と、第2管路9の下流側に設けられると共に燃焼炉1に接続された燃料投入路10と、を有している。 The transport path 5 is connected to the fuel delivery section 7 that sends out the fuel F to the transport path 5 on the upstream side, and is connected to the fuel inlet 3 of the combustion furnace 1 on the downstream side. Specifically, the conveyance path 5 includes a first pipeline 8 connected to the fuel delivery unit 7, a second pipeline 9 provided on the downstream side of the first pipeline 8, and a downstream of the second pipeline 9. And a fuel input path 10 connected to the combustion furnace 1.
 第1管路8は、燃料送出部7から送り出された燃料Fを下流側へ搬送する。第2管路9は、第1管路8からの燃料Fを燃料投入路10へ搬送する。第1管路8及び第2管路9は管状の通路である。第1管路8及び第2管路9は、例えば、その内部に設けられたコンベア等によって燃料Fを搬送する構成としてもよい。 The first pipe 8 conveys the fuel F sent from the fuel delivery unit 7 to the downstream side. The second conduit 9 conveys the fuel F from the first conduit 8 to the fuel input passage 10. The first conduit 8 and the second conduit 9 are tubular passages. The 1st pipe line 8 and the 2nd pipe line 9 are good also as a structure which conveys the fuel F with the conveyor etc. which were provided in the inside, for example.
 圧力状態調整部25は、気体を供給して搬送路5内の圧力の状態を調整し、これにより、燃焼炉1側からのガスの逆流を抑制する。ここで、搬送路5内の圧力の状態を調整する手法として、第1管路8内の圧力に対して燃焼炉1内、燃料投入路10内、第2管路9内の圧力を縁切りする手法(例えば、下記のロータリーバルブ11を用いた手法)と、搬送路5内の圧力を高める手法(例えば、下記の加圧手段26を用いた手法)と、が挙げられる。圧力状態調整部25は、ロータリーバルブ11と加圧手段26とを有している。なお、圧力状態調整部25は、ロータリーバルブ11又は加圧手段26のいずれか一方のみを有していてもよい。あるいは、圧力状態調整部25は、搬送装置2に設けられていなくてもよい。また、圧力状態調整部25は、上記の機能を有する構成であれば、ロータリーバルブ11及び加圧手段26に限定されない。すなわち、圧力状態調整部25は、第1管路8内の圧力に対して燃焼炉1内、燃料投入路10内、第2管路9内の圧力を縁切りする構成、又は、搬送路5内の圧力を高める構成であれば、あらゆる構成とすることができる。 The pressure state adjusting unit 25 adjusts the state of the pressure in the transport path 5 by supplying gas, thereby suppressing the back flow of gas from the combustion furnace 1 side. Here, as a method for adjusting the state of the pressure in the transfer path 5, the pressure in the combustion furnace 1, the fuel input path 10, and the second line 9 is cut off with respect to the pressure in the first pipe 8. A method (for example, a method using the following rotary valve 11) and a method for increasing the pressure in the transport path 5 (for example, a method using the following pressurizing means 26) can be mentioned. The pressure state adjustment unit 25 includes the rotary valve 11 and the pressurizing unit 26. Note that the pressure state adjustment unit 25 may include only one of the rotary valve 11 and the pressurizing unit 26. Alternatively, the pressure state adjustment unit 25 may not be provided in the transport device 2. In addition, the pressure state adjusting unit 25 is not limited to the rotary valve 11 and the pressurizing unit 26 as long as it has the above-described function. That is, the pressure state adjusting unit 25 is configured to cut off the pressure in the combustion furnace 1, the fuel injection path 10, and the second pipe 9 with respect to the pressure in the first pipe 8, or in the transport path 5. Any configuration can be used as long as the pressure is increased.
 ロータリーバルブ11は、第1管路8と第2管路9との間に設けられている。ロータリーバルブ11は、その上流側と下流側との間での圧力損失によって、燃焼炉1側から上流側へのガスの逆流を抑制する。ロータリーバルブ11は、機械的な構造によるシールの効果と、供給される気体によるシールの効果と、の両方によって圧力損失を発生させ、ガスの逆流を抑制する。 The rotary valve 11 is provided between the first pipe line 8 and the second pipe line 9. The rotary valve 11 suppresses the backflow of gas from the combustion furnace 1 side to the upstream side due to pressure loss between the upstream side and the downstream side. The rotary valve 11 generates pressure loss by both the effect of sealing by a mechanical structure and the effect of sealing by supplied gas, and suppresses the backflow of gas.
 ロータリーバルブ11の機械的な構造によるシールの一例について説明する。ロータリーバルブ11はケーシング15とローター16とを含んで構成されている。ロータリーバルブ11では、ローター16のブレード16aの先端とケーシング15の内面との間の隙間が、搬送路5の互いに対向する内側面間の距離と比較して非常に狭く形成されている。これにより、仮にガスが搬送路5を逆流しようとした場合、ロータリーバルブ11を通過する際の圧力損失によって逆流が抑制される。このような構成により、ロータリーバルブ11は、機械的な構造によるシールの効果によってガスの逆流を抑制する。 An example of the seal by the mechanical structure of the rotary valve 11 will be described. The rotary valve 11 includes a casing 15 and a rotor 16. In the rotary valve 11, the gap between the tip of the blade 16 a of the rotor 16 and the inner surface of the casing 15 is formed to be very narrow compared to the distance between the inner surfaces facing each other of the transport path 5. As a result, if the gas tries to flow backward in the transport path 5, the reverse flow is suppressed by the pressure loss when passing through the rotary valve 11. With such a configuration, the rotary valve 11 suppresses the backflow of gas by the effect of sealing by a mechanical structure.
 ロータリーバルブ11に供給される気体によるシールの一例について説明する。ロータリーバルブ11は、数枚のブレード16aを放射状に取付けたローター16を円筒状のケーシング15内で回転させることにより搬送物の排出を行う。このとき、ロータリーバルブ11では、ケーシング15の非開口部(入出口を除いた側面の閉鎖部)に常時複数枚のブレード16aが存在する。また、このとき、ロータリーバルブ11では、ロータリーバルブ11に接続しているシール気体ライン17aからのシール気体(気体)A2の圧力により、ケーシング15内の圧力が補助されることにより維持される。このようにしてロータリーバルブ11の上流と下流とがシールされることにより、燃焼炉1側から上流側へのガスの逆流が更に抑制される。このような構成により、ロータリーバルブ11は、供給されるシール気体A2によるシールの効果によってガスの逆流を抑制する。なお、シール気体A2については後述する。また、シール気体ライン17aは、流通するシール気体A2の流量を調整する流量調整部20と、シール気体A2の圧力を計測する圧力計21と、を含んでいる。流量調整部20としては、例えばバタフライ弁等を用いることができる。 An example of sealing with gas supplied to the rotary valve 11 will be described. The rotary valve 11 discharges a conveyed product by rotating a rotor 16 in which several blades 16 a are radially attached in a cylindrical casing 15. At this time, in the rotary valve 11, there are always a plurality of blades 16 a in the non-opening portion of the casing 15 (closed portion on the side surface excluding the inlet / outlet). At this time, the rotary valve 11 is maintained by assisting the pressure in the casing 15 by the pressure of the seal gas (gas) A2 from the seal gas line 17a connected to the rotary valve 11. By sealing the upstream and downstream of the rotary valve 11 in this way, the backflow of gas from the combustion furnace 1 side to the upstream side is further suppressed. With such a configuration, the rotary valve 11 suppresses the backflow of gas by the effect of sealing by the supplied sealing gas A2. The seal gas A2 will be described later. The seal gas line 17a includes a flow rate adjusting unit 20 that adjusts the flow rate of the circulating seal gas A2, and a pressure gauge 21 that measures the pressure of the seal gas A2. For example, a butterfly valve or the like can be used as the flow rate adjusting unit 20.
 ローター16は、ケーシング15内に配置されており、回転駆動機構(不図示)によって回転駆動される。これにより、第1管路8を搬送されてロータリーバルブ11に至った燃料Fは、ローター16のブレード16aによって第2管路9へ搬送される。 The rotor 16 is disposed in the casing 15 and is rotationally driven by a rotational drive mechanism (not shown). As a result, the fuel F that has been transported through the first conduit 8 and reaches the rotary valve 11 is transported to the second conduit 9 by the blade 16 a of the rotor 16.
 加圧手段26は、第1管路8内に空気等の加圧気体(気体)A3を供給する。これにより、第1管路8内が加圧され、燃焼炉1側と第1管路8との圧力差が小さくなる。その結果、燃焼炉1側から上流側へのガスの逆流が抑制される。 The pressurizing means 26 supplies a pressurized gas (gas) A3 such as air into the first pipeline 8. Thereby, the inside of the 1st pipe line 8 is pressurized, and the pressure difference of the combustion furnace 1 side and the 1st pipe line 8 becomes small. As a result, the backflow of gas from the combustion furnace 1 side to the upstream side is suppressed.
 なお、上述したように燃焼炉1内の圧力は大気圧より高いため、搬送路5の燃焼炉1側の圧力は大気圧より高くなっている。 In addition, since the pressure in the combustion furnace 1 is higher than the atmospheric pressure as described above, the pressure on the combustion furnace 1 side of the conveyance path 5 is higher than the atmospheric pressure.
 燃料投入路10は管状の通路である。燃料投入路10の下流側の端は、燃焼炉1の燃料投入口3に接続されている。燃料投入路10の内部には、スクリューコンベア13が設置されている。スクリューコンベア13は、第2管路9と燃料投入路10との境界付近から、燃焼炉1の燃料投入口3付近まで延在している。このような構成により、第2管路9からの燃料Fは、スクリューコンベア13の回転によって下流側へ搬送され、燃料投入口3を通じて燃焼炉1へ投入される。なお、燃料投入路10には、その内部を測温することで燃焼炉1における燃焼状態を監視するための温度計14が設けられている。 The fuel input passage 10 is a tubular passage. The downstream end of the fuel input path 10 is connected to the fuel input port 3 of the combustion furnace 1. A screw conveyor 13 is installed inside the fuel input path 10. The screw conveyor 13 extends from the vicinity of the boundary between the second pipe line 9 and the fuel input path 10 to the vicinity of the fuel input port 3 of the combustion furnace 1. With such a configuration, the fuel F from the second pipeline 9 is conveyed downstream by the rotation of the screw conveyor 13 and is fed into the combustion furnace 1 through the fuel inlet 3. The fuel input path 10 is provided with a thermometer 14 for monitoring the combustion state in the combustion furnace 1 by measuring the temperature inside.
 上述したように、燃料投入路10は燃焼炉1に接続されている。このため、燃料投入路10は、燃焼炉1における燃料Fの燃焼により生じた熱によって加熱される。そして、これにより、燃料投入路10のスクリューコンベア13内において搬送されている途中の燃料Fも加熱されることとなる。このとき、特に、燃料Fとして低温で揮発分が分離するものが使用されている場合、スクリューコンベア13内の燃料Fから分離した揮発分が可燃性ガス(ガス)G1として放出される。また、このようにして放出される可燃性ガスG1に加えて、燃焼炉1における燃料Fの燃焼によって可燃性ガス(ガス)G2が放出される。これらのガスを「燃焼炉1側からのガス」と称する。燃焼炉1側からのガスは、搬送路5内を燃焼炉1側から上流側へ向かって逆流する場合がある。燃焼炉1側からのガスは、可燃性ガスG1又は可燃性ガスG2のいずれか一方である場合もあり、両方である場合もある。 As described above, the fuel input path 10 is connected to the combustion furnace 1. For this reason, the fuel input path 10 is heated by the heat generated by the combustion of the fuel F in the combustion furnace 1. And the fuel F in the middle of being conveyed in the screw conveyor 13 of the fuel injection path 10 by this is also heated. At this time, in particular, when a fuel F having a volatile component separated at a low temperature is used, the volatile component separated from the fuel F in the screw conveyor 13 is released as a combustible gas (gas) G1. In addition to the combustible gas G1 released in this way, combustible gas (gas) G2 is released by the combustion of the fuel F in the combustion furnace 1. These gases are referred to as “gas from the combustion furnace 1 side”. The gas from the combustion furnace 1 side may flow backward in the conveyance path 5 from the combustion furnace 1 side to the upstream side. The gas from the combustion furnace 1 side may be either one of the combustible gas G1 or the combustible gas G2, or may be both.
 ガス逆流抑制部6は、気体が流通するライン17と、ライン17へ気体を送り出す気体送出部18と、搬送路5へ気体を噴出する噴出部22と、を有する。ライン17は、途中で前述のシール気体ライン17aと、パージ気体ライン17bと、に分岐している。なお、気体送出部18から送り出される気体のうち、シール気体ライン17a側に分流された気体をシール気体A2とも称するのに対し、パージ気体ライン17b側に分流された気体をパージ気体(気体)A4とも称することとする。なお、ここでは気体として通常の空気を用いている。また、ライン17には、気体の流量を検知する流量指示警報器19が設けられている。噴出部22は、パージ気体ライン17bから第2管路9内へパージ気体A4を供給する供給口である。 The gas backflow suppression unit 6 includes a line 17 through which gas flows, a gas delivery unit 18 that sends gas to the line 17, and an ejection unit 22 that ejects gas to the transport path 5. The line 17 is branched into the sealing gas line 17a and the purge gas line 17b. Of the gases delivered from the gas delivery unit 18, the gas that is diverted to the seal gas line 17a side is also referred to as seal gas A2, whereas the gas that is diverted to the purge gas line 17b side is purge gas (gas) A4. It will also be called. Here, normal air is used as the gas. Further, the line 17 is provided with a flow rate indicator 19 for detecting the flow rate of gas. The ejection part 22 is a supply port for supplying the purge gas A4 from the purge gas line 17b into the second pipeline 9.
 パージ気体ライン17bは、下流側で第2管路9に接続されている。これにより、パージ気体ライン17bを流通したパージ気体A4は、第2管路9内に供給される。パージ気体ライン17bは、流通するパージ気体A4の流量を調整する流量調整部23と、パージ気体A4の圧力を計測する圧力計24と、を含んでいる。流量調整部23としては、例えばバタフライ弁等を用いることができる。 The purge gas line 17b is connected to the second pipeline 9 on the downstream side. Thus, the purge gas A4 that has flowed through the purge gas line 17b is supplied into the second pipe 9. The purge gas line 17b includes a flow rate adjusting unit 23 that adjusts the flow rate of the flowing purge gas A4, and a pressure gauge 24 that measures the pressure of the purge gas A4. As the flow rate adjusting unit 23, for example, a butterfly valve or the like can be used.
 噴出部22は、第2管路9へパージ気体A4を供給する方向を規定する。図2に示すように、ここでは、噴出部22は第2管路9の内壁面から突出せず、第2管路9の壁面に開口している。そして、第2管路9の下流側に向かう方向に沿って、パージ気体ライン17bが第2管路9に接続されている。具体的には、第2管路9の下流側に向かう方向と、パージ気体ライン17bが第2管路9に向かう方向と、の間の角度αが0度より大きく90度より小さいことが好ましい。ただし、角度αは、この範囲に限定されない。 The ejection part 22 defines the direction in which the purge gas A4 is supplied to the second conduit 9. As shown in FIG. 2, here, the ejection portion 22 does not protrude from the inner wall surface of the second pipeline 9 and opens to the wall surface of the second pipeline 9. A purge gas line 17 b is connected to the second pipeline 9 along the direction toward the downstream side of the second pipeline 9. Specifically, it is preferable that the angle α between the direction toward the downstream side of the second conduit 9 and the direction in which the purge gas line 17b is directed toward the second conduit 9 is greater than 0 degree and less than 90 degrees. . However, the angle α is not limited to this range.
 次に、上述した搬送装置2の動作について説明する。 Next, the operation of the transfer device 2 described above will be described.
 まず、燃焼炉1における燃料Fの燃焼により生じた熱によって、燃料投入路10のスクリューコンベア13内の燃料Fが加熱される。このとき、燃料Fとして低温で揮発分が分離するものが使用されている場合、スクリューコンベア13内の燃料Fから分離した揮発分が可燃性ガスG1として放出される。また、このようにして放出される可燃性ガスG1に加えて、燃焼炉1における燃料Fの燃焼によって可燃性ガスG2が放出される。ここで、燃焼炉1において燃料Fと流動媒体Mとの混合物を流動させるために、当該燃焼炉1内へ燃焼空気A1が吹き込まれている。これにより、搬送路5の燃焼炉1側の圧力は大気圧より高くなっている。一方、燃焼炉1から離れた位置にある第1管路8の圧力は、搬送路5の燃焼炉1側の圧力より低くなっている。この場合、搬送路5における燃焼炉1側と上流側との圧力差によって、燃焼炉1側からのガスが搬送路5を逆流する虞があった。 First, the fuel F in the screw conveyor 13 in the fuel input path 10 is heated by the heat generated by the combustion of the fuel F in the combustion furnace 1. At this time, when a fuel F that separates volatile components at a low temperature is used, the volatile components separated from the fuel F in the screw conveyor 13 are released as the combustible gas G1. In addition to the combustible gas G1 released in this manner, the combustible gas G2 is released by the combustion of the fuel F in the combustion furnace 1. Here, in order to cause the mixture of the fuel F and the fluid medium M to flow in the combustion furnace 1, the combustion air A <b> 1 is blown into the combustion furnace 1. Thereby, the pressure by the side of the combustion furnace 1 of the conveyance path 5 is higher than atmospheric pressure. On the other hand, the pressure in the first pipe line 8 at a position away from the combustion furnace 1 is lower than the pressure on the combustion furnace 1 side of the transport path 5. In this case, there is a possibility that gas from the combustion furnace 1 side flows back through the conveyance path 5 due to a pressure difference between the combustion furnace 1 side and the upstream side in the conveyance path 5.
 これに対し、圧力状態調整部25のうちの加圧手段26は、加圧気体A3を供給して第1管路8内の圧力を高める。これにより、燃焼炉1側からのガスの逆流が抑制される。また、圧力状態調整部25のうちのロータリーバルブ11は、シール気体A2を供給する。これにより、ロータリーバルブ11の機械的な構造によるシールの効果と、シール気体A2によるシールの効果と、の両方によって圧力損失が発生する。その結果、第1管路8内の圧力に対して第2管路9内の圧力が縁切りされ、燃焼炉1側からのガスの逆流が抑制される。 On the other hand, the pressurizing means 26 in the pressure state adjusting unit 25 supplies the pressurized gas A3 to increase the pressure in the first pipeline 8. Thereby, the backflow of the gas from the combustion furnace 1 side is suppressed. Further, the rotary valve 11 in the pressure state adjusting unit 25 supplies the sealing gas A2. Thereby, pressure loss is generated by both the effect of sealing by the mechanical structure of the rotary valve 11 and the effect of sealing by the sealing gas A2. As a result, the pressure in the second pipe 9 is cut off with respect to the pressure in the first pipe 8, and the backflow of gas from the combustion furnace 1 side is suppressed.
 また、搬送装置2では、搬送路5へ供給されるパージ気体A4が燃焼炉1側から逆流するガスに衝突する。これにより、燃焼炉1側からのガスの逆流が堰き止められ、燃焼炉1側からのガスの逆流が抑制される。具体的に、搬送装置2では、パージ気体ライン17bを流通したパージ気体A4が、噴出部22を介して第2管路9内に供給される。これにより、搬送路5へ供給された気体には搬送路5の下流側へ向かう流れが生じる。その結果、燃焼炉1側からのガスの逆流が堰き止められ、ガスの逆流が抑制される。 Further, in the transfer device 2, the purge gas A4 supplied to the transfer path 5 collides with the gas flowing backward from the combustion furnace 1 side. Thereby, the backflow of the gas from the combustion furnace 1 side is blocked, and the backflow of the gas from the combustion furnace 1 side is suppressed. Specifically, in the transfer device 2, the purge gas A <b> 4 that has flowed through the purge gas line 17 b is supplied into the second pipe line 9 through the ejection portion 22. As a result, a gas flowing toward the downstream side of the conveyance path 5 is generated in the gas supplied to the conveyance path 5. As a result, the backflow of gas from the combustion furnace 1 side is blocked and the backflow of gas is suppressed.
 ここで、噴出部22は、第2管路9の内壁面から突出せず、第2管路9の壁面に開口している。そして、第2管路9の下流側に向かう方向に沿って、パージ気体ライン17bが第2管路9に接続されている。これにより、搬送路5へ供給された気体には搬送路5の下流側へ向かう流れが生じるため、より確実に燃焼炉1側からのガスの逆流が堰き止められる。 Here, the ejection part 22 does not protrude from the inner wall surface of the second pipeline 9 and opens on the wall surface of the second pipeline 9. A purge gas line 17 b is connected to the second pipeline 9 along the direction toward the downstream side of the second pipeline 9. As a result, the gas supplied to the conveyance path 5 has a flow toward the downstream side of the conveyance path 5, so that the backflow of gas from the combustion furnace 1 side is more reliably blocked.
 第2管路9へ供給されたパージ気体A4は、搬送路5を下流側へ流れて燃焼炉1へ至る。パージ気体A4は空気であるため、燃焼炉1において燃焼空気A1と共に燃料Fを燃焼させるために用いられる。このように、パージ気体ライン17bに設けられた流量調整部23によってパージ気体A4の供給量が調整されるため、燃焼炉1に供給される空気の総量を容易に調整することが可能となる。なお、同様に、シール気体A2、加圧気体A3についても、空気を用いることによって同様の効果が奏される。 The purge gas A4 supplied to the second pipe 9 flows downstream through the transfer path 5 and reaches the combustion furnace 1. Since the purge gas A4 is air, it is used in the combustion furnace 1 to burn the fuel F together with the combustion air A1. Thus, since the supply amount of the purge gas A4 is adjusted by the flow rate adjusting unit 23 provided in the purge gas line 17b, the total amount of air supplied to the combustion furnace 1 can be easily adjusted. Similarly, the same effect can be obtained by using air for the sealing gas A2 and the pressurized gas A3.
 以上説明したように、本発明の一形態に係る搬送装置2及びガス逆流抑制方法では、圧力状態調整部25によってシール気体A2又は加圧気体A3が供給されることにより、搬送路5内の圧力の状態が調整されて燃焼炉1側からのガスの逆流が抑制される。また、これに加えて、ガス逆流抑制部6によって、圧力状態調整部25によりシール気体A2が供給される部位よりも搬送路5の下流側にパージ気体A4が供給される。これにより、搬送路5へ供給されたパージ気体A4が燃焼炉1側から逆流するガスと衝突することにより、燃焼炉1側からのガスの逆流が堰き止められる。なお、圧力状態調整部25によりシール気体A2が供給される部位よりも搬送路5の下流側(すなわち、燃焼炉1との間に圧力状態調整部25を介さない部位)においてパージ気体A4が供給されるため、ガス逆流抑制部6が圧力状態調整部25と併用されても、ガス逆流抑制部6の作用効果が好適に奏される。以上により、圧力状態調整部25とガス逆流抑制部6との2系統で気体を供給することができるため、ガスの逆流を一層抑制できる。 As described above, in the transport device 2 and the gas backflow suppression method according to one embodiment of the present invention, the pressure gas in the transport path 5 is supplied by the seal gas A2 or the pressurized gas A3 supplied by the pressure state adjusting unit 25. These conditions are adjusted, and the backflow of gas from the combustion furnace 1 side is suppressed. In addition to this, the purge gas A4 is supplied by the gas backflow suppression unit 6 to the downstream side of the transport path 5 from the portion where the pressure gas adjustment unit 25 supplies the seal gas A2. As a result, the purge gas A4 supplied to the transfer path 5 collides with the gas flowing backward from the combustion furnace 1 side, thereby blocking backflow of gas from the combustion furnace 1 side. The purge gas A4 is supplied downstream of the part to which the seal gas A2 is supplied by the pressure state adjusting unit 25 (that is, the part not passing through the pressure state adjusting part 25 with the combustion furnace 1). Therefore, even if the gas backflow suppression unit 6 is used in combination with the pressure state adjustment unit 25, the operational effect of the gas backflow suppression unit 6 is suitably achieved. As described above, since the gas can be supplied in two systems of the pressure state adjusting unit 25 and the gas backflow suppressing unit 6, the backflow of gas can be further suppressed.
 本発明の一形態に係る搬送装置2において、ガス逆流抑制部6は、搬送路5の下流側へ向かって、当該搬送路5へパージ気体A4を供給する。このような構成により、搬送路5へ供給されたパージ気体A4には搬送路5の下流側へ向かう流れが生じるため、より確実に燃焼炉1側からのガスの逆流が堰き止められる。このため、ガスの逆流を一層抑制できる。 In the transfer apparatus 2 according to an embodiment of the present invention, the gas backflow suppression unit 6 supplies the purge gas A4 to the transfer path 5 toward the downstream side of the transfer path 5. With such a configuration, the purge gas A4 supplied to the transport path 5 has a flow toward the downstream side of the transport path 5, so that the backflow of gas from the combustion furnace 1 side is more reliably blocked. For this reason, the backflow of gas can be further suppressed.
 本発明の一形態に係る搬送装置2において、パージ気体A4は、空気である。この場合、燃料Fを燃焼させるための空気として、ガス逆流抑制部6からのパージ気体A4が用いられる。これにより、燃焼炉1に供給される空気の総量の調整が容易となる。このため、燃焼炉1において好適な燃焼の状態を維持することができる。 In the transfer device 2 according to one embodiment of the present invention, the purge gas A4 is air. In this case, the purge gas A4 from the gas backflow suppression unit 6 is used as the air for burning the fuel F. This facilitates adjustment of the total amount of air supplied to the combustion furnace 1. For this reason, a suitable combustion state can be maintained in the combustion furnace 1.
 なお、本発明は、上述の実施形態に限定されるものではない。例えば、図3に示すように、噴出部22は、第2管路9の内壁面から第2管路9の内部側に突出すると共に、第2管路9の延在方向に対する角度βで下流側に向かって屈曲し、その先端が下流側に開口していてもよい。こうすることで、パージ気体A4を第2管路9の下流側へ向かって案内することができるため、より確実に搬送路5の下流側へ向かう流れを生じさせることができる。なお、この場合、噴出部22が屈曲する角度βとしては、-90度より大きく90度より小さいことが好ましい。ただし、角度βは、この範囲に限定されない。 Note that the present invention is not limited to the above-described embodiment. For example, as shown in FIG. 3, the ejection portion 22 protrudes from the inner wall surface of the second conduit 9 to the inside of the second conduit 9 and is downstream at an angle β with respect to the extending direction of the second conduit 9. It may be bent toward the side, and its tip may be opened downstream. By doing so, the purge gas A4 can be guided toward the downstream side of the second pipe 9, so that the flow toward the downstream side of the transport path 5 can be generated more reliably. In this case, the angle β at which the ejection part 22 bends is preferably larger than −90 degrees and smaller than 90 degrees. However, the angle β is not limited to this range.
 また、図4に示すように、噴出部22は、第2管路9の内壁面から第2管路9の内部側に突出すると共に、第2管路9の上流側に面する壁部22aの方が、下流側に面する壁部22bより、第2管路9の内壁面から長い形状であってもよい。このような構成であっても、パージ気体A4に第2管路9の下流側へ向かう流れを生じさせることができる。 As shown in FIG. 4, the ejection portion 22 protrudes from the inner wall surface of the second pipeline 9 to the inner side of the second pipeline 9 and faces the upstream side of the second pipeline 9. The shape may be longer from the inner wall surface of the second conduit 9 than the wall portion 22b facing the downstream side. Even with such a configuration, the purge gas A4 can be caused to flow toward the downstream side of the second pipe 9.
 また、図5に示すように、搬送路5は、当該搬送路5を換気する集塵機12を第1管路8の途中に有し、ガス逆流抑制部6は、集塵機12より搬送路5の下流側において、当該搬送路5へパージ気体A4を供給してもよい。この場合、圧力状態調整部25は、加圧手段26を有していない。上記のような構成では、集塵機12は、第1管路8を換気すると共に、第1管路8内の粉塵を除去する。これにより、万一、第1管路8内へ可燃性ガス又は可燃性の粉塵等が入り込んだ場合であっても、集塵機12によってこれらが除去され、第1管路8内における安全性が確保される。ここで、集塵機12によって搬送路5内が換気されると搬送路5内の圧力が低下し、特に第1管路8内の圧力が大気圧程度まで低下する場合がある。この場合、燃焼炉1側からのガスの逆流が発生し易くなる傾向がある。しかし、ガス逆流抑制部6は、集塵機12より下流側の搬送路5へ気体を供給するため、燃焼炉1側からのガスの逆流を一層抑制することができる。 Further, as shown in FIG. 5, the transport path 5 has a dust collector 12 for ventilating the transport path 5 in the middle of the first pipeline 8, and the gas backflow suppression unit 6 is downstream of the transport path 5 from the dust collector 12. On the side, the purge gas A4 may be supplied to the transport path 5. In this case, the pressure state adjustment unit 25 does not have the pressurizing means 26. In the configuration as described above, the dust collector 12 ventilates the first pipeline 8 and removes dust in the first pipeline 8. As a result, even if a flammable gas or flammable dust or the like enters the first pipeline 8, they are removed by the dust collector 12, and safety in the first pipeline 8 is ensured. Is done. Here, when the inside of the conveyance path 5 is ventilated by the dust collector 12, the pressure in the conveyance path 5 is lowered, and in particular, the pressure in the first pipe line 8 may be lowered to about atmospheric pressure. In this case, the backflow of gas from the combustion furnace 1 side tends to occur easily. However, since the gas backflow suppression unit 6 supplies gas to the transport path 5 on the downstream side of the dust collector 12, the gas backflow from the combustion furnace 1 side can be further suppressed.
 また、シール気体ライン17aとパージ気体ライン17bとは、同一のライン17が途中で分岐して構成されていなくてもよく、互いに別々のラインとして構成されていてもよい。この場合、各々別の気体送出部18を備えることとなる。 Further, the sealing gas line 17a and the purge gas line 17b may not be configured by the same line 17 being branched in the middle, but may be configured as separate lines. In this case, separate gas delivery sections 18 are provided.
 また、パージ気体ライン17bは、搬送路5のロータリーバルブ11より下流側に接続されていれば、その接続箇所は特に限定されない。例えば、パージ気体ライン17bは、第2管路9に接続される代わりに、燃料投入路10へ接続されていてもよい。或いは、パージ気体ライン17bは、第2管路9及び燃料投入路10の両方に接続されていてもよい。 The purge gas line 17b is not particularly limited as long as the purge gas line 17b is connected to the downstream side of the rotary valve 11 in the transport path 5. For example, the purge gas line 17 b may be connected to the fuel input passage 10 instead of being connected to the second conduit 9. Alternatively, the purge gas line 17 b may be connected to both the second pipe line 9 and the fuel input path 10.
 また、シール気体A2、加圧気体A3、及びパージ気体A4としては、空気に限定されず、例えば排ガス等を用いてもよい。 Further, the sealing gas A2, the pressurized gas A3, and the purge gas A4 are not limited to air, and for example, exhaust gas may be used.
 1…燃焼炉、2…搬送装置、5…搬送路、6…ガス逆流抑制部、12…集塵機、25…圧力状態調整部、A2…シール気体、A4…パージ気体、F…燃料。 DESCRIPTION OF SYMBOLS 1 ... Combustion furnace, 2 ... Conveyor device, 5 ... Conveyance path, 6 ... Gas backflow suppression part, 12 ... Dust collector, 25 ... Pressure state adjustment part, A2 ... Seal gas, A4 ... Purge gas, F ... Fuel.

Claims (5)

  1.  燃焼炉へ燃料を供給するための搬送路を備えた搬送装置において、
     気体を供給して前記搬送路内の圧力の状態を調整する圧力状態調整部と、
     前記圧力状態調整部より前記搬送路の下流側において当該搬送路へ気体を供給するガス逆流抑制部と、を備えた搬送装置。
    In a transfer device having a transfer path for supplying fuel to a combustion furnace,
    A pressure state adjustment unit that adjusts the state of pressure in the transport path by supplying gas; and
    A gas backflow suppression unit configured to supply gas to the conveyance path on the downstream side of the conveyance path from the pressure state adjustment unit;
  2.  前記ガス逆流抑制部は、前記搬送路の下流側へ向かって、当該搬送路へ気体を供給する請求項1に記載の搬送装置。 The transfer device according to claim 1, wherein the gas backflow suppression unit supplies gas to the transfer path toward the downstream side of the transfer path.
  3.  前記搬送路は、当該搬送路を換気する集塵機を有し、
     前記ガス逆流抑制部は、前記集塵機より前記搬送路の下流側において、当該搬送路へ気体を供給する請求項1又は2に記載の搬送装置。
    The transport path has a dust collector for ventilating the transport path,
    The said gas backflow suppression part is a conveying apparatus of Claim 1 or 2 which supplies gas to the said conveyance path in the downstream of the said conveyance path from the said dust collector.
  4.  前記ガス逆流抑制部によって前記搬送路へ供給される気体は、空気である請求項1~3のいずれか一項に記載の搬送装置。 The transfer device according to any one of claims 1 to 3, wherein the gas supplied to the transfer path by the gas backflow suppressing unit is air.
  5.  気体を供給し、燃焼炉へ燃料を供給するための搬送路内の圧力の状態を調整すると共に、当該気体が供給される部位よりも前記搬送路の下流側において、当該搬送路へ気体を供給するガス逆流抑制方法。 Supplying gas and adjusting the state of pressure in the transport path for supplying fuel to the combustion furnace, and supplying gas to the transport path downstream of the part to which the gas is supplied Gas backflow suppression method.
PCT/JP2016/056989 2015-03-27 2016-03-07 Conveying device and gas backflow suppressing method WO2016158220A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177025901A KR102268062B1 (en) 2015-03-27 2016-03-07 Conveying device and gas backflow suppression method
PH12017501714A PH12017501714A1 (en) 2015-03-27 2017-09-19 Conveying device and gas backflow suppressing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015066807A JP2016186395A (en) 2015-03-27 2015-03-27 Conveying apparatus and gas back flow suppression method
JP2015-066807 2015-03-27

Publications (1)

Publication Number Publication Date
WO2016158220A1 true WO2016158220A1 (en) 2016-10-06

Family

ID=57005579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056989 WO2016158220A1 (en) 2015-03-27 2016-03-07 Conveying device and gas backflow suppressing method

Country Status (4)

Country Link
JP (1) JP2016186395A (en)
KR (1) KR102268062B1 (en)
PH (1) PH12017501714A1 (en)
WO (1) WO2016158220A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108662578B (en) * 2018-05-22 2020-09-18 安徽省碧绿春生物科技有限公司 Feeding system of circulating fluidized bed boiler
KR102226627B1 (en) * 2019-03-29 2021-03-11 한국동서발전(주) Inserting structure for dual fuel apparatus of biomass solid fuel
KR102210702B1 (en) * 2019-03-29 2021-02-02 한국동서발전(주) Inserting structure for dual fuel apparatus of biomass solid fuel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272835A (en) * 1993-03-19 1994-09-27 Osaka Gas Co Ltd Powdery waste feeding device
JP2004144387A (en) * 2002-10-24 2004-05-20 Ishikawajima Harima Heavy Ind Co Ltd Fluidized bed boiler
JP2013506028A (en) * 2009-09-29 2013-02-21 ゼネラル・エレクトリック・カンパニイ Solid fuel transportation system for gasifier

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5490751B2 (en) 2011-06-09 2014-05-14 住友重機械工業株式会社 Additive for circulating fluidized bed boiler and method for operating circulating fluidized bed boiler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272835A (en) * 1993-03-19 1994-09-27 Osaka Gas Co Ltd Powdery waste feeding device
JP2004144387A (en) * 2002-10-24 2004-05-20 Ishikawajima Harima Heavy Ind Co Ltd Fluidized bed boiler
JP2013506028A (en) * 2009-09-29 2013-02-21 ゼネラル・エレクトリック・カンパニイ Solid fuel transportation system for gasifier

Also Published As

Publication number Publication date
KR102268062B1 (en) 2021-06-22
PH12017501714A1 (en) 2018-03-19
JP2016186395A (en) 2016-10-27
KR20170131411A (en) 2017-11-29

Similar Documents

Publication Publication Date Title
WO2016158220A1 (en) Conveying device and gas backflow suppressing method
JP6118357B2 (en) Furnace equipment with internal flue gas recirculation
US7712317B2 (en) Flow control systems
JP2016121686A (en) System and method for purging fuel from turbomachine
EP3406884B1 (en) Bleed flow safety system
CN105814295A (en) Fuel supply line system used for gas turbine
JP6405077B2 (en) Turbine and method for separating particulates from fluid
US9982552B2 (en) Pressurized incineration facility and pressurized incineration method
WO2010106034A3 (en) Method for operating a burner and burner, in particular for a gas turbine
EP2802816B1 (en) Fuel head assembly with replaceable wear components
JP2014219001A (en) Fuel conditioning system
JP6023900B2 (en) Fuel gas supply device for gas engine
WO2015146427A1 (en) Boiler
KR20170094215A (en) Effluent gas inlet assembly for a radiant burner
JP2022009609A (en) boiler
CN210153850U (en) Cleaning system for preventing air preheater from being blocked
US871541A (en) Air-draft system for steam-boilers.
TWI691679B (en) Solid fuel burner and combustion device
JP5962611B2 (en) Blast furnace pulverized coal blowing method and blowing abnormality detection device
RU2524499C2 (en) Aerodynamic structure for temperature and pressure control in medium flow transfer line
JP6734821B2 (en) Combustion nozzle, combustion cylinder, and combustion abatement device
JP6691517B2 (en) Combustion cylinder and combustion abatement device
JP5968028B2 (en) Boiler combustion equipment
US315145A (en) Smoke-consuming furnace
JPH0373775B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772104

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177025901

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12017501714

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772104

Country of ref document: EP

Kind code of ref document: A1