JP5962611B2 - Blast furnace pulverized coal blowing method and blowing abnormality detection device - Google Patents

Blast furnace pulverized coal blowing method and blowing abnormality detection device Download PDF

Info

Publication number
JP5962611B2
JP5962611B2 JP2013162329A JP2013162329A JP5962611B2 JP 5962611 B2 JP5962611 B2 JP 5962611B2 JP 2013162329 A JP2013162329 A JP 2013162329A JP 2013162329 A JP2013162329 A JP 2013162329A JP 5962611 B2 JP5962611 B2 JP 5962611B2
Authority
JP
Japan
Prior art keywords
pulverized coal
combustion
pressure
blowing
supporting gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013162329A
Other languages
Japanese (ja)
Other versions
JP2015030894A (en
Inventor
泰光 古川
泰光 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013162329A priority Critical patent/JP5962611B2/en
Publication of JP2015030894A publication Critical patent/JP2015030894A/en
Application granted granted Critical
Publication of JP5962611B2 publication Critical patent/JP5962611B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Description

本発明は、羽口から微粉炭を吹き込む高炉操業に関する技術であって、特に、ランスによって微粉炭と共に酸素ガスその他の支燃性ガスを吹き込む際の吹き込み異常を検出する技術に関する。   The present invention relates to a technique related to blast furnace operation in which pulverized coal is blown from a tuyere, and particularly to a technique for detecting a blowing abnormality when oxygen gas or other combustion-supporting gas is blown together with pulverized coal by a lance.

近年、炭酸ガス排出量の増加による地球温暖化が問題となっており、製鉄業においても排出COの抑制は重要な課題となっている。高炉操業では、コークス及び羽口から吹き込む微粉炭を還元材として使用しており、コークスよりも、できるだけ微粉炭を使用することが、排出COの抑制につながると共に操業コストが安価となる。
そして、上記羽口からの微粉炭吹き込み技術としては、例えば特許文献1〜3に記載に記載の技術がある。これらの技術は、2重管ランスを使用し、2重管ランスの内側管から微粉炭を吹き込むと共に、内側管と外側管との間の通路から酸素ガスを吹き込む技術である。このような2重管ランスを使用することで、単管ランスで微粉炭を吹き込む場合に比べ、燃焼効率を高くすることが可能となる。
In recent years, global warming due to an increase in carbon dioxide emission has been a problem, and the suppression of emitted CO 2 has become an important issue even in the steel industry. In blast furnace operation, pulverized coal blown from coke and tuyere is used as a reducing material, and using pulverized coal as much as possible than coke leads to suppression of exhausted CO 2 and operation cost.
And as a pulverized coal blowing technique from the said tuyere, there exists a technique as described in patent documents 1-3, for example. These techniques are techniques in which a double pipe lance is used, pulverized coal is blown from the inner pipe of the double pipe lance, and oxygen gas is blown from a passage between the inner pipe and the outer pipe. By using such a double pipe lance, it becomes possible to increase the combustion efficiency as compared with the case where pulverized coal is blown with a single pipe lance.

特許第4074467号公報Japanese Patent No. 4074467 韓国特許公開公報2002−00047359Korean Patent Publication No. 2002-047359 特開平6−100912号公報Japanese Patent Application Laid-Open No. 6-10092

2重管ランスの内側管と外側管との間に形成される支燃性ガス通過路は、内側管と外側管の隙間が数ミリと狭くかつ搬送路が長いために、圧損が高くなる傾向にある。そして、支燃性ガス通過路の詰まり等の異常によって、ランスから吹き出される酸素ガスの圧力が羽口先の炉内圧力よりも低くなった場合には、酸素ガスを炉内に送れない可能性があるという問題があったり、逆に炉内の熱風がランス側に逆流する可能性もある。このため、支燃性ガス通過路を通じて送る酸素ガス圧力等によって、正常に酸素ガスが吹き込まれているか否かを監視する必要がある。   The combustion-supporting gas passage formed between the inner tube and the outer tube of the double tube lance tends to have a high pressure loss because the gap between the inner tube and the outer tube is as narrow as several millimeters and the conveying path is long. It is in. If the pressure of oxygen gas blown out from the lance is lower than the pressure inside the furnace at the tip of the tuyere due to an abnormality such as clogging of the combustion-supporting gas passage, oxygen gas may not be sent into the furnace There is also a possibility that the hot air in the furnace flows backward to the lance side. For this reason, it is necessary to monitor whether oxygen gas is normally blown by the pressure of oxygen gas sent through the combustion-supporting gas passage.

しかし、炉内の羽口付近の圧力を精度良く求めることは困難である。このため、炉内圧力の検出値を使用することなく、酸素ガス吹き込みの異常を判定できることが望まれる。
本発明は、上記のような点に着目してなされたもので、炉内圧力を使用することなく支燃性ガスの吹き込み異常を精度良く判定することを目的としている。
However, it is difficult to accurately determine the pressure near the tuyere in the furnace. For this reason, it is desirable to be able to determine the abnormality of oxygen gas injection without using the detected value of the furnace pressure.
The present invention has been made by paying attention to the above points, and has an object to accurately determine an abnormality in injecting combustion-supporting gas without using the pressure in the furnace.

上記課題を解決するために、本発明の一態様である高炉の微粉炭吹き込み方法は、高炉の羽口に接続した送風管と、中央部に微粉炭が通過する微粉炭通過路が形成されると共にその微粉炭通過路の外周側に支燃性ガスが通過する支燃性ガス通過路が形成され、先端部が上記送風管内に配置された微粉炭吹き込みランスと、を使用し、上記微粉炭吹き込みランスによって、支燃性ガスと共に微粉炭を上記羽口から高炉内に吹き込む高炉の微粉炭吹き込み方法において、上記支燃性ガス通過路への支燃性ガスの流速をVo、上記微粉炭通過路への微粉炭の流速をVpとした場合に、上記流速Voが上記流速Vpより大きく、且つ上記流速Vpが予め設定した逆火速度以下の場合に、吹き込み異常と判定することを特徴とする。   In order to solve the above problems, the blast furnace pulverized coal blowing method according to one aspect of the present invention includes a blower pipe connected to the tuyere of the blast furnace and a pulverized coal passage through which the pulverized coal passes in the center. And a pulverized coal blowing lance in which a flammable gas passing passage through which the flammable gas passes is formed on the outer peripheral side of the pulverized coal passage and a tip portion is disposed in the blast pipe. In the blast furnace pulverized coal blowing method in which pulverized coal is blown into the blast furnace from the tuyere together with the combustion supporting gas by a blowing lance, the flow rate of the combustion supporting gas to the combustion supporting gas passage is Vo, the pulverized coal passing When the flow rate of the pulverized coal to the road is set to Vp, it is determined that the blowing is abnormal when the flow rate Vo is larger than the flow rate Vp and the flow rate Vp is equal to or lower than a preset flashback speed. .

上記送風管への送風圧力をPb、上記支燃性ガス通過路への支燃性ガスの圧力をPo、上記微粉炭通過路への微粉炭圧力をPpとした場合に、上記流速Vpを微粉炭圧力Ppと送風圧力Pbとの圧力差から算出し、上記流速Voを支燃性ガスの圧力Poと送風圧力Pbとの圧力差から算出しても良い。
また本発明の一態様である吹き込み異常検出装置は、高炉の羽口に接続した送風管と、中央部に微粉炭が通過する微粉炭通過路が形成されると共にその微粉炭通過路の外周側に支燃性ガスが通過する支燃性ガス通過路が形成され、先端部が上記送風管内に配置された微粉炭吹き込みランスと、を使用し、上記微粉炭吹き込みランスによって、支燃性ガスと共に微粉炭を上記羽口から高炉内に吹き込む高炉操業における、上記支燃性ガスの吹き込みの異常を検出する装置であって、上記送風管への送風圧力Pbを検出する送風圧力検出部と、上記支燃性ガス通過路への支燃性ガスの圧力Poを検出する支燃性ガス圧力検出部と、上記微粉炭通過路への微粉炭圧力Ppを検出する微粉炭圧力検出部と、上記検出した支燃性ガスの圧力Po及び送風圧力Pbに基づき上記支燃性ガス通過路への支燃性ガスの流速Voを算出する支燃性ガス流速取得部と、上記検出した微粉炭圧力Pp及び送風圧力Pbに基づき上記微粉炭通過路への微粉炭の流速Vpを算出する微粉炭流速取得部と、上記流速Voが上記流速Vpより大きく、且つ上記流速Vpが予め設定した逆火速度以下の場合に、吹き込み異常と判定する異常判定部と、を備えることを特徴とする。
When the blowing pressure to the blowing pipe is Pb, the pressure of the combustion-supporting gas to the combustion-supporting gas passage is Po, and the pressure of the pulverized coal to the pulverization-coal passage is Pp, the flow velocity Vp is the fine powder. It may be calculated from the pressure difference between the charcoal pressure Pp and the blowing pressure Pb, and the flow velocity Vo may be calculated from the pressure difference between the combustion supporting gas pressure Po and the blowing pressure Pb.
The blow abnormality detection device according to one aspect of the present invention includes a blower pipe connected to a tuyere of a blast furnace, and a pulverized coal passageway through which pulverized coal passes at the center, and an outer peripheral side of the pulverized coal passageway. A flammable gas passageway through which the flammable gas passes is formed, and a pulverized coal blowing lance whose tip is disposed in the blast pipe is used together with the flammable gas by the pulverized coal blowing lance. In the blast furnace operation in which pulverized coal is blown into the blast furnace from the tuyere, the apparatus detects an abnormality in blowing of the combustion-supporting gas, the blowing pressure detection unit for detecting the blowing pressure Pb to the blowing pipe, and the above A combustion-supporting gas pressure detection unit that detects the pressure Po of the combustion-supporting gas to the combustion-supporting gas passage, a pulverized coal pressure detection unit that detects the pulverized coal pressure Pp to the pulverization coal passage, and the detection Pressure Po and blown air A combustion-supporting gas flow rate acquisition unit for calculating a flow-supporting gas flow rate Vo to the combustion-supporting gas passage based on the force Pb, and the pulverized coal passage based on the detected pulverized coal pressure Pp and the blowing pressure Pb. A pulverized coal flow rate acquisition unit for calculating the flow rate Vp of pulverized coal to the mist, and an abnormality determination that determines that the blowing is abnormal when the flow rate Vo is greater than the flow rate Vp and the flow rate Vp is equal to or lower than a preset flashback rate. And a section.

本発明によれば、炉内圧力を使用することなく、簡易に、羽口からの支燃性ガスの吹き込み異常を精度良く判定することが可能となる。   According to the present invention, it is possible to easily and accurately determine an abnormality in injecting combustion-supporting gas from the tuyere without using the pressure in the furnace.

本発明に基づく実施形態に係る高炉操業を説明する概念図である。It is a conceptual diagram explaining the blast furnace operation which concerns on embodiment based on this invention. 送風管及びランスへの配管構成の例を説明する概念図である。It is a conceptual diagram explaining the example of the piping structure to a ventilation pipe and a lance. 異常検出装置の構成を説明するブロック図である。It is a block diagram explaining the structure of an abnormality detection apparatus. 圧力VbとVoとの関係の一例を示す図である。It is a figure which shows an example of the relationship between the pressure Vb and Vo.

次に、本発明の実施形態について図面を参照して説明する。
なお、本実施形態では、支燃性ガスとして酸素ガスを例に挙げて説明する。支燃性ガスは、純酸素ガスに限定されず、酸素ガス富化空気など他の公知の支燃性ガスであっても適用可能である。
図1は、高炉操業における高炉1への微粉炭吹き込みを説明するための全体概要図である。
図1に示すように、高炉1の下部には複数の羽口3が形成されていて、各羽口3には、それぞれ熱風を炉内に向けて圧送するための送風管2の先端部が接続されている。また、送風管2内を通じて羽口3から炉内に微粉炭及び支燃性ガスを吹き込むための2重管ランス4を有する。本実施形態では、1本の送風管2に対し2本の2重管ランス4が配設される場合を例示しているが、1本の送風管2に対し1本若しくは3本以上の2重管ランス4が配設されていても良い。但し、1本の送風管2に対するランス4の本数が多くなるほど、ランス1本当たりの吹き込み量を少なく設定可能となる。
Next, embodiments of the present invention will be described with reference to the drawings.
In the present embodiment, oxygen gas will be described as an example of the combustion-supporting gas. The combustion-supporting gas is not limited to pure oxygen gas, and any other known combustion-supporting gas such as oxygen gas-enriched air is applicable.
FIG. 1 is an overall schematic diagram for explaining pulverized coal injection into a blast furnace 1 in blast furnace operation.
As shown in FIG. 1, a plurality of tuyere 3 are formed in the lower part of the blast furnace 1, and each tuyere 3 has a tip part of a blower pipe 2 for pumping hot air into the furnace. It is connected. In addition, a double-pipe lance 4 for blowing pulverized coal and combustion-supporting gas from the tuyere 3 into the furnace through the blower pipe 2 is provided. In this embodiment, the case where two double pipe lances 4 are provided for one air pipe 2 is illustrated, but one or three or more 2 are provided for one air pipe 2. A heavy pipe lance 4 may be provided. However, as the number of the lances 4 with respect to one blast pipe 2 increases, the amount of blow per lance can be set to be small.

上記送風管2には、不図示の熱風炉からの熱風が供給される。その送風管2には、図2に示すように、送風管2を流れる熱風の流量を調整する流量調整弁(不図示)、送風管2への圧力を検出する圧力計11、送風管2を流れる熱風の流量を検出する流量計10が介装されている。そして、圧力計11の検出結果が後述の異常検出装置20に出力される。
上記2重管ランス4は、微粉炭吹き込みランスを構成する。この2重管ランス4は、図2に示すように、同心状に配置された内側管と外側管とを備え、内側管内の空間が微粉炭通過路4Aを形成すると共に、内側管と外側管との間の空間に、支燃性ガス通過路4Bが形成される。
Hot air from a hot air furnace (not shown) is supplied to the blower tube 2. As shown in FIG. 2, a flow rate adjusting valve (not shown) for adjusting the flow rate of hot air flowing through the blower tube 2, a pressure gauge 11 for detecting the pressure to the blower tube 2, and the blower tube 2 are provided on the blower tube 2. A flow meter 10 for detecting the flow rate of the flowing hot air is interposed. And the detection result of the pressure gauge 11 is output to the abnormality detection apparatus 20 mentioned later.
The double pipe lance 4 constitutes a pulverized coal blowing lance. As shown in FIG. 2, the double pipe lance 4 includes an inner pipe and an outer pipe arranged concentrically, and a space in the inner pipe forms a pulverized coal passage 4A, and the inner pipe and the outer pipe. A combustion-supporting gas passage 4B is formed in the space between the two.

そして各2重管ランス4の先端部は、図2に示すように、送風管2の先端部分(羽口3側に近い側)を貫通して当該送風管2内に配置されている。その2重管ランス4の先端部の軸線は、先端に行くほど羽口3に近付くように斜めに配置されることで、羽口3側に向けてランス先端部から微粉炭及び酸素ガスが吹き出し可能となっている。なお、本実施形態の2重管ランス4は、図2に示すように、その先端部が羽口3内に位置するように設定されている。   And the front-end | tip part of each double pipe | tube lance 4 penetrates the front-end | tip part (side near the tuyere 3 side) of the ventilation pipe 2, and is arrange | positioned in the said ventilation pipe 2 as shown in FIG. The axis of the tip of the double pipe lance 4 is arranged so as to approach the tuyere 3 toward the tip, so that pulverized coal and oxygen gas blow out from the tip of the lance toward the tuyere 3 side. It is possible. In addition, the double pipe lance 4 of this embodiment is set so that the front-end | tip part may be located in the tuyere 3 as shown in FIG.

上記2重管ランス4の微粉炭通過路4Aには、不図示の微粉炭タンクからの微粉炭が圧送され、圧送された微粉炭が内側管内に形成された微粉炭通過路4Aの先端から噴射可能となっている。
上記微粉炭通過路4A内の圧力を検出する圧力計21を備える。圧力計21の検出結果が後述の異常検出装置20に出力される。
Pulverized coal from a pulverized coal tank (not shown) is pumped into the pulverized coal passage 4A of the double pipe lance 4 and the pumped pulverized coal is injected from the tip of the pulverized coal passage 4A formed in the inner pipe. It is possible.
A pressure gauge 21 for detecting the pressure in the pulverized coal passage 4A is provided. The detection result of the pressure gauge 21 is output to an abnormality detection device 20 described later.

また2重管ランス4の支燃性ガス通過路4Bの入口は、図2に示すように、高圧酸素ガスタンク12に接続され、該高圧酸素ガスタンク12から支燃性ガス通過路4Bに酸素ガスが圧送される。高圧酸素ガスタンク12と支燃性ガス通過路4Bとを接続する管路13には、高圧酸素ガスタンク12側(上流側)から流量調整弁14、遮断弁15、流量計16、圧力計17、逆止弁18が介装されている。圧力計17の検出結果が異常検出装置20に出力される。   As shown in FIG. 2, the inlet of the combustion-supporting gas passage 4B of the double pipe lance 4 is connected to a high-pressure oxygen gas tank 12, and oxygen gas is supplied from the high-pressure oxygen gas tank 12 to the combustion-supporting gas passage 4B. Pumped. From the high pressure oxygen gas tank 12 side (upstream side) to the high pressure oxygen gas tank 12 and the combustion-supporting gas passage 4B, the flow rate adjusting valve 14, the shutoff valve 15, the flow meter 16, the pressure gauge 17, and the reverse A stop valve 18 is interposed. The detection result of the pressure gauge 17 is output to the abnormality detection device 20.

ここで、羽口3の熱風送風方向先方のコークス堆積層には、レースウエイ5と呼ばれる燃焼空間が存在し、主として、この燃焼空間で還元材の燃焼、ガス化が行われる。ランス4から羽口3を通過し、レースウエイ5内に吹込まれた微粉炭は、コークスと共に、その揮発分と固定炭素が燃焼する。そして、揮発分が放出されて残った、一般にチャーと呼ばれる炭素と灰分の集合体は、レースウエイから未燃チャーとして排出される。羽口3の熱風送風方向先方における熱風速度は、例えば約200m/secであり、ランス4の先端からレースウエイ5内における酸素ガスの存在領域は、例えば約0.3〜0.5mとされている。また、2重管ランス4から微粉炭を吹き込むと共にその外周から酸素ガスを吹き込んだ場合、ランス近傍で微粉炭と酸素ガスとの混合が促進され、より早期から微粉炭の燃焼が開始するものと考えられ、これによりランスに近い位置で燃焼温度が更に上昇する。   Here, a combustion space called a raceway 5 exists in the coke deposit layer in the hot air blowing direction ahead of the tuyere 3, and the reducing material is mainly combusted and gasified in this combustion space. The pulverized coal passing through the tuyere 3 from the lance 4 and blown into the raceway 5 is combusted with coke and its volatile matter and fixed carbon. The aggregate of carbon and ash, generally called char, that remains after the volatile matter has been released, is discharged from the raceway as unburned char. The hot air velocity in the hot air blowing direction ahead of the tuyere 3 is, for example, about 200 m / sec, and the region where the oxygen gas exists in the raceway 5 from the tip of the lance 4 is, for example, about 0.3 to 0.5 m. Yes. In addition, when pulverized coal is blown from the double pipe lance 4 and oxygen gas is blown from the outer periphery thereof, mixing of the pulverized coal and oxygen gas is promoted near the lance, and combustion of the pulverized coal starts earlier. It is conceivable that this further increases the combustion temperature near the lance.

次に、異常検出装置20の処理について説明する。
異常検出装置20は、支燃性ガス通過路4Bへの支燃性ガスの流速Voと微粉炭通過路4Aへの微粉炭の流速Vpとの関係から支燃性ガスである酸素ガスの吹き込み異常を検出する。本実施形態の異常検出装置20では、圧力計11、17,21での各検出結果に基づき、支燃性ガス通過路4Bへの支燃性ガスの流速Vo及び微粉炭通過路4Aへの微粉炭の流速Vpを求めることで、支燃性ガスである酸素ガスの吹き込み異常を検出する場合を例示している。
Next, processing of the abnormality detection device 20 will be described.
The abnormality detection device 20 has an abnormality in blowing oxygen gas, which is a combustion-supporting gas, from the relationship between the flow velocity Vo of the combustion-supporting gas to the combustion-supporting gas passage 4B and the flow velocity Vp of the pulverized coal to the pulverized coal passage 4A. Is detected. In the abnormality detection device 20 of the present embodiment, the flow rate Vo of the combustion-supporting gas to the combustion-supporting gas passage 4B and the fine powder to the pulverized coal passage 4A based on the detection results of the pressure gauges 11, 17, and 21. The case where the abnormal flow of oxygen gas which is a combustion-supporting gas is detected by determining the flow velocity Vp of charcoal is illustrated.

ここで、圧力計11が検出した送風管2への送風圧力をPb、圧力計17が検出した支燃性ガス通過路4Bへの支燃性ガスの圧力をPo、微粉炭通過路4Aへの微粉炭圧力をPp、上記支燃性ガス通過路4Bへの支燃性ガスの流速をVo、上記微粉炭通過路4Aへの微粉炭の流速をVpとする。上記流速Vo、Vpは、流量を微分処理することで求めても良いが、本実施形態では、上記圧力から算出する場合で説明する。   Here, Pb is the blowing pressure to the blowing pipe 2 detected by the pressure gauge 11, Po is the pressure of the combustion-supporting gas to the combustion-supporting gas passage 4B detected by the pressure gauge 17, and the pressure to the pulverized coal passage 4A is The pulverized coal pressure is Pp, the flow rate of the flammable gas to the flammable gas passage 4B is Vo, and the flow rate of the pulverized coal to the pulverized coal passage 4A is Vp. The flow velocities Vo and Vp may be obtained by differentiating the flow rate, but in the present embodiment, description will be made on the case of calculating from the pressure.

異常検出装置20は、検出情報入力部20A、支燃性ガス流速取得部20B、微粉炭流速取得部20C、及び異常判定部20Dを備える。
検出情報入力部20Aは、上述のように、各圧力計11、17,21からの検出結果を入力する。具体的には、上記送風管2への送風圧力Pb、上記支燃性ガス通過路4Bへの支燃性ガスの圧力Po、及び上記微粉炭通過路4Aへの微粉炭圧力Ppの検出値を入力する。
The abnormality detection device 20 includes a detection information input unit 20A, a combustion-supporting gas flow rate acquisition unit 20B, a pulverized coal flow rate acquisition unit 20C, and an abnormality determination unit 20D.
The detection information input unit 20A inputs detection results from the pressure gauges 11, 17, and 21 as described above. Specifically, the detected values of the blowing pressure Pb to the blowing pipe 2, the pressure Po of the combustion-supporting gas to the combustion-supporting gas passage 4B, and the pulverized coal pressure Pp to the pulverized coal passage 4A are set. input.

支燃性ガス流速取得部20Bは、上記検出した支燃性ガスの圧力Po及び送風圧力Pbに基づき上記支燃性ガス通過路4Bへの支燃性ガスの流速Voを算出する。具体的には、下記式に基づき微粉炭圧力Ppと送風圧力Pbとの圧力差から求める。
Vo =ko×(Po −Pb)
ここでkoは、予め実験などによって求めたゲインである。
微粉炭流速取得部20Cは、上記検出した微粉炭圧力Pp及び送風圧力Pbに基づき上記微粉炭通過路4Aへの微粉炭の流速Vpを算出する。具体的には、下記式に基づき支燃性ガスの圧力Poと送風圧力Pbとの圧力差に基づき求める。
Vp =kp×(Pp −Pb)
ここでkpは、予め実験などによって求めたゲインである。
The combustion-supporting gas flow rate acquisition unit 20B calculates the combustion-supporting gas flow rate Vo to the combustion-supporting gas passage 4B based on the detected pressure Po and the blowing pressure Pb of the combustion-supporting gas. Specifically, it calculates | requires from the pressure difference of pulverized coal pressure Pp and ventilation pressure Pb based on a following formula.
Vo 2 = ko × (Po−Pb)
Here, ko is a gain obtained in advance by experiments or the like.
The pulverized coal flow velocity acquisition unit 20C calculates the pulverized coal flow velocity Vp to the pulverized coal passage 4A based on the detected pulverized coal pressure Pp and the blowing pressure Pb. Specifically, it calculates | requires based on the pressure difference of the pressure Po of combustion-supporting gas, and the ventilation pressure Pb based on the following formula.
Vp 2 = kp × (Pp -Pb )
Here, kp is a gain obtained in advance by experiments or the like.

異常判定部20Dは、上記算出した流速Voが上記流速Vpより大きく、且つ上記流速Vpが予め設定した逆火速度以下の場合に、支燃性ガスの吹き込み異常と判定する。
逆火とは、燃料が酸化剤(酸素等)で燃焼する時の燃焼速度と燃料流速のバランスで決定され、燃料流速が燃焼速度より小の場合に火炎が燃料供給側に戻っていく現象であり、本発明においては、微粉炭がランス内を気体で輸送する場合において、微粉炭流速が微粉炭と支燃性ガスとの燃焼速度以下となる微粉炭流速を逆火速度と定義する。
The abnormality determination unit 20D determines that the combustion-supporting gas is abnormally injected when the calculated flow velocity Vo is larger than the flow velocity Vp and the flow velocity Vp is equal to or lower than a preset flashback speed.
Backfire is a phenomenon in which the flame returns to the fuel supply side when the fuel is burned with an oxidizer (oxygen, etc.) and is determined by the balance between the fuel flow rate and the fuel flow rate. In the present invention, when the pulverized coal is transported in the lance as a gas, the pulverized coal flow rate at which the pulverized coal flow rate is equal to or lower than the combustion rate of the pulverized coal and the combustion-supporting gas is defined as the flashback rate.

上記予め設定した逆火速度は、微粉炭流速との燃焼速度より決定され条件により異なるが、本実施形態では、14〜15m/secに設定した。
ここで、支燃性ガスの吹き込み異常と判定される原因としては、例えば支燃性ガス通過路4Bが狭くなって、支燃性ガス通過路4Bに圧力異常が発生した場合である。
異常判定部20Dが、支燃性ガスの吹き込みの異常と判定したら、オペレータに対し異常通知処理を行うと共に、例えば、支燃性ガス通過路4Bに設けた遮断弁を閉じたり、支燃性ガスに代えて不活性ガスを一時的に供給する等の処理を行う。
ここで、上記異常判定は、各ランスの支燃性ガス通路毎に支燃性ガスの吹き込み異常を判断する。
The preset backfire speed is determined from the combustion speed with the pulverized coal flow speed and varies depending on the conditions, but in this embodiment, it is set to 14 to 15 m / sec.
Here, the reason for determining that the combustion-supporting gas is abnormally injected is, for example, a case where the combustion-supporting gas passage 4B becomes narrow and a pressure abnormality occurs in the combustion-supporting gas passage 4B.
If the abnormality determination unit 20D determines that the combustion-supporting gas has been injected abnormally, the abnormality notification process is performed to the operator, and for example, the shutoff valve provided in the combustion-supporting gas passage 4B is closed or the combustion-supporting gas is provided. Instead of this, a process such as temporarily supplying an inert gas is performed.
Here, in the abnormality determination, a combustion-supporting gas injection abnormality is determined for each combustion-supporting gas passage of each lance.

(動作その他)
図4は、実際の高炉操業における、送風管2の送風圧力、支燃性ガス通過路4Bへの圧力、支燃性ガス通過路4Bに供給される流量から算出した酸素ガスの吹き込み流速についての時系列データである。
この図4のデータは、高炉操業に問題が無く、支燃性ガスの吹き込みに異常が無いと推定されるときのデータであるが、支燃性ガスを吹き込む熱風側の送風圧力の方が、支燃性ガス通過路4Bへの圧力よりも高い場合がある。このため、送風管2の送風圧力Pbと支燃性ガス通過路4Bへの圧力Poとを単純に比較するだけでは、支燃性ガスの吹き込みに異常があるかどうか容易に判定することが出来ない。
(Operation other)
FIG. 4 shows the blowing speed of oxygen gas calculated from the blowing pressure of the blowing pipe 2, the pressure to the combustion-supporting gas passage 4B, and the flow rate supplied to the combustion-supporting gas passage 4B in actual blast furnace operation. Time series data.
The data in FIG. 4 is data when it is estimated that there is no problem in the operation of the blast furnace and there is no abnormality in the injection of the combustion-supporting gas, but the blowing pressure on the hot air side that blows in the combustion-supporting gas is It may be higher than the pressure to the combustion-supporting gas passage 4B. For this reason, it is possible to easily determine whether or not there is an abnormality in the blowing of the combustion-supporting gas by simply comparing the blowing pressure Pb of the blowing pipe 2 and the pressure Po to the combustion-supporting gas passage 4B. Absent.

また、炉内の羽口3近傍の圧力も容易に取得することが出来ないと言う事情がある。
これに対し、本実施形態では、上述のように、支燃性ガスの流速Voと微粉炭の流速Vpとの差、及び微粉炭の流速Vp自体の値によって、簡易且つ精度良く、支燃性ガス通過路4Bの圧力異常等に起因する、支燃性ガスの吹き込み異常を判定することが出来る。
具体的には、微粉炭通過路4Aへの微粉炭の流速Vpが予め設定した逆火速度以下となると共に、上記流速Voが上記流速Vpより大きい場合に、支燃性ガスの吹き込み異常と判定している。すなわち、流速Vpが予め設定した逆火速度以下となることで圧損の上昇が推定される状態にも関わらず、上記流速Voが上記流速Vpより大きい場合には、微粉炭通過路4Aへの微粉炭の流速Vpも小さくなっており、支燃性ガスの吹き込み異常と判定可能である。
There is also a situation that the pressure near the tuyere 3 in the furnace cannot be easily obtained.
On the other hand, in the present embodiment, as described above, the combustion-supporting property is simply and accurately determined by the difference between the flow velocity Vo of the combustion-supporting gas and the flow velocity Vp of the pulverized coal and the value of the flow velocity Vp of the pulverized coal. It is possible to determine whether the combustion-supporting gas is abnormally injected due to an abnormality in the pressure of the gas passage 4B.
Specifically, when the flow velocity Vp of the pulverized coal to the pulverized coal passage 4A is equal to or lower than the preset flashback speed and the flow velocity Vo is larger than the flow velocity Vp, it is determined that the combustion support gas is abnormally injected. doing. That is, when the flow velocity Vo is larger than the flow velocity Vp, even though the increase in pressure loss is estimated by the flow velocity Vp being equal to or lower than the preset flashback velocity, the fine powder to the pulverized coal passage 4A The flow velocity Vp of charcoal is also small, and it can be determined that the combustion-supporting gas is blown abnormally.

また本実施形態では、支燃性ガスの流速Voと微粉炭の流速Vpとを、送風管2への送風圧力をPb、圧力計17が検出した支燃性ガス通過路4Bへの支燃性ガスの圧力をPo、微粉炭通過路4Aへの微粉炭圧力をPpの各圧力から算出している。
ここで、羽口3までのランス途中で詰まりが発生するとランス内の微粉炭の流速Vpが精度良く求めることが出来ないおそれがあるが、上記各圧力によって支燃性ガスの流速Voと微粉炭の流速Vpとを求めることで、精度良く支燃性ガス通過路4Bの圧力異常等に起因する、支燃性ガスの吹き込み異常を判定することが出来る。
In the present embodiment, the flow rate Vo of the combustion-supporting gas and the flow rate Vp of the pulverized coal are set to Pb and the pressure of the pressure-supporting gas passage 4 </ b> B detected by the pressure gauge 17. The pressure of gas is Po, and the pulverized coal pressure to the pulverized coal passage 4A is calculated from each pressure of Pp.
Here, if clogging occurs in the middle of the lance up to the tuyere 3, the flow velocity Vp of the pulverized coal in the lance may not be obtained with high accuracy. By determining the flow velocity Vp of the combustion-supporting gas, it is possible to accurately determine the combustion-supporting gas injection abnormality caused by the abnormality in the pressure of the combustion-supporting gas passage 4B.

ここで、本実施形態では、「中央部に微粉炭が通過する微粉炭通過路4Aが形成されると共にその微粉炭通過路4Aの外周側に支燃性ガスが通過する支燃性ガス通過路4Bが形成され、先端部が上記送風管2内に配置された微粉炭吹き込みランス」として、2重管ランス4を例示したが、微粉炭吹き込みランスは、2重管構造でなくても構わない。3重管構造であっても良いし、微粉炭通過路4Aとなる管路の外側に非同心状に配置された別の管路で支燃性ガス通過路4Bが形成されるなどのランス構造であっても構わない。また本発明は、2重管ランス4の構造自体についても特に限定は無い。   Here, in this embodiment, “a pulverized coal passage 4A through which pulverized coal passes is formed at the center and a flammable gas passage through which the flammable gas passes through the outer periphery of the pulverized coal passage 4A. Although the double-pipe lance 4 is exemplified as the pulverized-coal-injection lance in which 4B is formed and the tip portion is disposed in the blower tube 2, the pulverized-coal-injection lance may not be a double-pipe structure. . A lance structure in which a triple pipe structure may be used, or a combustion-supporting gas passage 4B is formed by another pipe arranged non-concentrically outside the pipe that becomes the pulverized coal passage 4A. It does not matter. In the present invention, the structure of the double tube lance 4 is not particularly limited.

1 高炉
2 送風管
3 羽口
3 各羽口
4 2重管ランス
4A 微粉炭通過路
4B 支燃性ガス通過路
11 圧力計
17 圧力計
18 逆止弁
20 異常検出装置
20A 検出情報入力部
20B 支燃性ガス流速取得部
20C 微粉炭流速取得部
20D 異常判定部
21 圧力計
DESCRIPTION OF SYMBOLS 1 Blast furnace 2 Air blower 3 Tuyere 3 Each tuyere 4 Double pipe lance 4A Pulverized coal passage 4B Combustion gas passage 11 Pressure gauge 17 Pressure gauge 18 Check valve 20 Abnormality detection apparatus 20A Detection information input part 20B Flammable gas flow rate acquisition unit 20C Pulverized coal flow rate acquisition unit 20D Abnormality determination unit 21 Pressure gauge

Claims (3)

高炉の羽口に接続した送風管と、
中央部に微粉炭が通過する微粉炭通過路が形成されると共にその微粉炭通過路の外周側に支燃性ガスが通過する支燃性ガス通過路が形成され、先端部が上記送風管内に配置された微粉炭吹き込みランスと、を使用し、
上記微粉炭吹き込みランスによって、支燃性ガスと共に微粉炭を上記羽口から高炉内に吹き込む高炉の微粉炭吹き込み方法において、
上記支燃性ガス通過路への支燃性ガスの流速をVo、上記微粉炭通過路への微粉炭の流速をVpとした場合に、
上記流速Voが上記流速Vpより大きく、且つ上記流速Vpが予め設定した逆火速度以下の場合に、吹き込み異常と判定することを特徴とする高炉の微粉炭吹き込み方法。
A blow pipe connected to the tuyere of the blast furnace;
A pulverized coal passageway through which pulverized coal passes is formed at the center, and a flammable gas passageway through which the flammable gas passes is formed on the outer peripheral side of the pulverized coal passageway, and the tip portion is in the blast pipe. Using the arranged pulverized coal blowing lance,
In the blast furnace pulverized coal blowing method, the pulverized coal blowing lance is blown into the blast furnace from the tuyere with the supporting gas by the pulverized coal blowing lance.
When the flow velocity of the combustion-supporting gas to the combustion-supporting gas passage is Vo and the flow velocity of the pulverized coal to the pulverization coal passage is Vp,
A blast furnace pulverized coal blowing method, characterized in that when the flow velocity Vo is larger than the flow velocity Vp and the flow velocity Vp is equal to or lower than a preset flashback speed, it is determined that the blowing is abnormal.
上記送風管への送風圧力をPb、上記支燃性ガス通過路への支燃性ガスの圧力をPo、上記微粉炭通過路への微粉炭圧力をPpとした場合に、
上記流速Vpを微粉炭圧力Ppと送風圧力Pbとの圧力差から算出し、上記流速Voを支燃性ガスの圧力Poと送風圧力Pbとの圧力差から算出することを特徴とする請求項1に記載した高炉の微粉炭吹き込み方法。
When the blowing pressure to the blowing pipe is Pb, the pressure of the combustion supporting gas to the combustion supporting gas passage is Po, and the pulverized coal pressure to the pulverizing coal passage is Pp,
2. The flow velocity Vp is calculated from a pressure difference between the pulverized coal pressure Pp and the blowing pressure Pb, and the flow velocity Vo is calculated from a pressure difference between the combustion supporting gas pressure Po and the blowing pressure Pb. Blast furnace pulverized coal injection method described in 1.
高炉の羽口に接続した送風管と、
中央部に微粉炭が通過する微粉炭通過路が形成されると共にその微粉炭通過路の外周側に支燃性ガスが通過する支燃性ガス通過路が形成され、先端部が上記送風管内に配置された微粉炭吹き込みランスと、を使用し、上記微粉炭吹き込みランスによって、支燃性ガスと共に微粉炭を上記羽口から高炉内に吹き込む高炉操業における、上記支燃性ガスの吹き込みの異常を検出する装置であって、
上記送風管への送風圧力Pbを検出する送風圧力検出部と、
上記支燃性ガス通過路への支燃性ガスの圧力Poを検出する支燃性ガス圧力検出部と、
上記微粉炭通過路への微粉炭圧力Ppを検出する微粉炭圧力検出部と、
上記検出した支燃性ガスの圧力Po及び送風圧力Pbに基づき上記支燃性ガス通過路への支燃性ガスの流速Voを算出する支燃性ガス流速取得部と、
上記検出した微粉炭圧力Pp及び送風圧力Pbに基づき上記微粉炭通過路への微粉炭の流速Vpを算出する微粉炭流速取得部と、
上記流速Voが上記流速Vpより大きく、且つ上記流速Vpが予め設定した逆火速度以下の場合に、吹き込み異常と判定する異常判定部と、
を備えることを特徴とする吹き込み異常検出装置。
A blow pipe connected to the tuyere of the blast furnace;
A pulverized coal passageway through which pulverized coal passes is formed at the center, and a flammable gas passageway through which the flammable gas passes is formed on the outer peripheral side of the pulverized coal passageway, and the tip portion is in the blast pipe. The pulverized coal injection lance is used, and the pulverized coal injection lance is used to prevent abnormal combustion of the combustion-supporting gas in the blast furnace operation in which pulverized coal is injected into the blast furnace from the tuyere together with the combustion-supporting gas. A device for detecting,
A blowing pressure detector for detecting a blowing pressure Pb to the blowing pipe;
A combustion-supporting gas pressure detection unit that detects a pressure Po of the combustion-supporting gas to the combustion-supporting gas passage;
A pulverized coal pressure detector for detecting the pulverized coal pressure Pp to the pulverized coal passage,
A combustion-supporting gas flow rate acquisition unit that calculates the flow-rate Vo of the combustion-supporting gas to the combustion-supporting gas passage based on the detected pressure Po of the combustion-supporting gas and the blowing pressure Pb;
A pulverized coal flow rate acquisition unit for calculating a flow rate Vp of the pulverized coal to the pulverized coal passage based on the detected pulverized coal pressure Pp and the blowing pressure Pb;
An abnormality determination unit that determines that the blowing is abnormal when the flow velocity Vo is greater than the flow velocity Vp and the flow velocity Vp is equal to or lower than a preset flashback speed;
A blowing abnormality detecting device comprising:
JP2013162329A 2013-08-05 2013-08-05 Blast furnace pulverized coal blowing method and blowing abnormality detection device Active JP5962611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013162329A JP5962611B2 (en) 2013-08-05 2013-08-05 Blast furnace pulverized coal blowing method and blowing abnormality detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013162329A JP5962611B2 (en) 2013-08-05 2013-08-05 Blast furnace pulverized coal blowing method and blowing abnormality detection device

Publications (2)

Publication Number Publication Date
JP2015030894A JP2015030894A (en) 2015-02-16
JP5962611B2 true JP5962611B2 (en) 2016-08-03

Family

ID=52516480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013162329A Active JP5962611B2 (en) 2013-08-05 2013-08-05 Blast furnace pulverized coal blowing method and blowing abnormality detection device

Country Status (1)

Country Link
JP (1) JP5962611B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215105A (en) * 1988-07-01 1990-01-18 Nkk Corp Method for blowing fine powdered coal in blast furnace
JP2000226609A (en) * 1999-02-08 2000-08-15 Nkk Corp Method for monitoring abnormality of lance
JP5923968B2 (en) * 2010-12-27 2016-05-25 Jfeスチール株式会社 Blast furnace operation method
JP5724654B2 (en) * 2011-06-13 2015-05-27 Jfeスチール株式会社 Apparatus and method for injecting reducing material into blast furnace

Also Published As

Publication number Publication date
JP2015030894A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
CN101371077B (en) Pulverized coal-fired boiler and pulverized coal combustion method
US9573775B2 (en) Powder supply apparatus and powder supply method
AU2009248720B2 (en) Method for feeding pulverised coal into a blast furnace
CN102840986A (en) Systems and methods for detecting combustor casing flame holding in a gas turbine engine
JP6262238B2 (en) Method and apparatus for improving combustion of secondary fuel in rotary kiln, and method for installing rotary kiln having burner assembly
JP5971165B2 (en) Blast furnace operation method
JP2017145981A (en) Stoker type incinerator
JP5962611B2 (en) Blast furnace pulverized coal blowing method and blowing abnormality detection device
Niu et al. Combustion characteristics of a four-wall tangential firing pulverized coal furnace
US8100580B2 (en) Measurement of steam quality in steam turbine
JP5949125B2 (en) Blast furnace pulverized coal injection method and combustion-supporting gas injection abnormality detection device
WO2016158220A1 (en) Conveying device and gas backflow suppressing method
JP2007031040A (en) Flow rate control device for distribution of coal particulates
JP4448499B2 (en) Control method of pulverized coal injection into blast furnace
CN101303123B (en) Compact pulverized coal burner
CN102317688A (en) Method and device for conveying combustion residues
JP2000226609A (en) Method for monitoring abnormality of lance
EP2933557B1 (en) Swirling type fluidized bed furnace
JP6020531B2 (en) Clogging detection method of piping in blast furnace pulverized coal injection equipment.
JP6699629B2 (en) Operation method of oxygen blast furnace
KR101806858B1 (en) Apparatus and method of reproducing exhaust gas
JP2003254090A (en) Apparatus and method for mixing blast furnace gas with added gas
JPH0373775B2 (en)
KR101444364B1 (en) Apparatus for measuring flow rate of transported particulate coal and method for flow rate using the same
JP2020037163A (en) Shot processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R150 Certificate of patent or registration of utility model

Ref document number: 5962611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250