WO2016158093A1 - Nitride semiconductor light-emitting element - Google Patents

Nitride semiconductor light-emitting element Download PDF

Info

Publication number
WO2016158093A1
WO2016158093A1 PCT/JP2016/055177 JP2016055177W WO2016158093A1 WO 2016158093 A1 WO2016158093 A1 WO 2016158093A1 JP 2016055177 W JP2016055177 W JP 2016055177W WO 2016158093 A1 WO2016158093 A1 WO 2016158093A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
semiconductor layer
light
type semiconductor
Prior art date
Application number
PCT/JP2016/055177
Other languages
French (fr)
Japanese (ja)
Inventor
晃平 三好
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2016158093A1 publication Critical patent/WO2016158093A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor

Definitions

  • the present invention relates to a nitride semiconductor light emitting device.
  • This light-emitting element includes an n-type semiconductor layer, a p-type semiconductor layer, and an active layer formed so as to be sandwiched between the n-type semiconductor layer and the p-type semiconductor layer.
  • an active layer formed so as to be sandwiched between the n-type semiconductor layer and the p-type semiconductor layer.
  • Patent Document 1 discloses a light-emitting element having a so-called “vertical structure”.
  • An element having a vertical structure refers to an element in which the active layer emits light when a voltage is applied to the active layer in a direction perpendicular to the substrate.
  • Patent Document 1 also describes that a highly reflective material is provided on the electrode, and there is a description that Ag is particularly preferable.
  • FIG. 12 schematically shows a cross-sectional view of the light-emitting element disclosed in Patent Document 1.
  • a conventional light emitting device 90 includes a conductive layer 92, a reflective film 93, an insulating layer 94, a reflective electrode 95, a semiconductor layer 99, and an n-side electrode 100 on a support substrate 91.
  • the semiconductor layer 99 is configured by sequentially stacking a p-type semiconductor layer 96, an active layer 97, and an n-type semiconductor layer 98 from the support substrate 91 side.
  • a reflective film 93 made of a metal material is formed under the insulating layer 94, but the reflective film 93 does not have ohmic properties and does not function as an electrode.
  • the reflective electrode 95 is made of a metal material and functions as an electrode (p-side electrode) by realizing ohmic contact between the p-type semiconductor layers 96.
  • the reflective electrode 95 reflects the light emitted in the direction toward the support substrate 91 (downward in the drawing) out of the light generated in the active layer 97, and extracts it to the n-type semiconductor layer 98 side (upward in the drawing). It also serves to increase the light extraction efficiency.
  • Ag is preferable as the reflective electrode 95 as described above.
  • an object of the present invention is to realize a nitride semiconductor light emitting device capable of emitting light at a low operating voltage while suppressing a decrease in light extraction efficiency.
  • the nitride semiconductor light emitting device is A support substrate; An n-type semiconductor layer, a p-type semiconductor layer, and an active layer sandwiched between the n-type semiconductor layer and the p-type semiconductor layer in a direction perpendicular to the surface of the support substrate; Including a semiconductor layer; Of the surface of the semiconductor layer, a first electrode formed on the surface near the support substrate; A second electrode formed on the surface of the semiconductor layer opposite to the side on which the first electrode is formed; A conductive protective layer formed on the surface of the first electrode opposite to the surface on which the semiconductor layer is formed;
  • the semiconductor layer is made of a nitride semiconductor,
  • the protective layer includes a metal material having a melting point higher than Ag,
  • the first electrode is made of an Ag alloy containing Ge and Cu.
  • the work function of Ag is 4.3 eV
  • the work function of Ge is 5.1 eV
  • the work function of Cu is 4.6 eV.
  • Ge and Cu which are materials with a large work function are contained, An ohmic contact between semiconductor layers can be formed easily. .
  • heat resistance improves because Cu is contained in the constituent material of the first electrode.
  • Ag ball-up is suppressed, and the adhesion between the semiconductor layer and the first electrode is improved.
  • the contact resistance between the semiconductor layer and the first electrode is lowered, so that the operating voltage can be reduced as compared with the conventional case.
  • “Ag ball-up” refers to a phenomenon of partial condensation due to Ag migration.
  • oxidation resistance improves more than pure Ag because Cu is contained in the first electrode. Further, since Ge is contained in the first electrode, the sulfidation resistance is improved as compared with pure Ag. As a result, it is possible to suppress the reflectance from decreasing due to oxidation or sulfuration of Ag contained in the first electrode.
  • the first electrode it is possible to reduce the contact resistance with the semiconductor layer while suppressing a decrease in reflectance. Therefore, according to the nitride semiconductor light emitting device including such a first electrode, both high light extraction efficiency and low operating voltage can be achieved.
  • the nitride semiconductor light emitting device may have a bonding layer formed on the surface of the protective layer opposite to the surface on which the first electrode is formed.
  • the protective layer may include at least one of Pt and Ti.
  • This bonding layer is provided for bonding the growth substrate and the support substrate after growing the semiconductor layer on a substrate (growth substrate) different from the support substrate when manufacturing the nitride semiconductor light emitting device.
  • the material constituting the bonding layer (for example, Au—Sn) has a significantly lower reflectance than Ag. For this reason, if the material which comprises a joining layer will diffuse to the 1st electrode side, the reflectance of the light in a 1st electrode will fall, and the fall of light extraction efficiency will be caused.
  • the protective layer including at least one of Pt or Ti between the bonding layer and the first electrode the material forming the bonding layer may diffuse to the first electrode side. Since it is suppressed, it is suppressed that a reflectance falls.
  • the p-type semiconductor layer may be in contact with the first electrode.
  • both the n-type semiconductor layer and the p-type semiconductor layer may be made of a nitride semiconductor containing Al and Ga.
  • the active layer may be formed of a nitride semiconductor capable of generating light having a wavelength of 365 nm to 405 nm.
  • a nitride light-emitting device that emits light in the near-ultraviolet region is composed of a nitride semiconductor (for example, AlGaN or AlInGaN) containing AlN having a higher band gap energy than GaN from the viewpoint of improving light extraction efficiency. It is preferable to do this.
  • a nitride semiconductor for example, AlGaN or AlInGaN
  • the acceptor level becomes deep when p-type. That is, even if a p-type dopant is introduced at the same impurity concentration with respect to GaN and AlGaN, for example, when AlGaN is configured with an Al composition of about 20%, the hole concentration is about one order of magnitude lower in AlGaN than in GaN. Resulting in. For this reason, when the p-type semiconductor layer is made of AlGaN, the operating voltage tends to be higher than when it is made of GaN.
  • the first electrode formed in contact with the p-type semiconductor layer is composed of an Ag alloy containing Ge and Cu
  • the adhesiveness with the p-type semiconductor layer is high. . Therefore, even when the p-type semiconductor layer is composed of a nitride semiconductor containing Al and Ga, a low contact resistance between the first electrode and the p-type semiconductor layer can be realized. As a result, a near-ultraviolet semiconductor light emitting device with a low operating voltage can be realized.
  • the p-type semiconductor layer formed in the region in contact with the first electrode that is, the p-type contact layer
  • the p-type contact layer can be composed of a nitride semiconductor containing Al and Ga, which has a lower absorption rate than GaN, high light Extraction efficiency is realized.
  • the Ag alloy constituting the first electrode may contain Al.
  • the first electrode contains Al
  • Ag migration is suppressed and Ag aggregation is suppressed.
  • the ball up of Ag is suppressed, the adhesion between the semiconductor layer and the first electrode can be further improved, and the operating voltage can be lowered.
  • the reflectance can be improved by including Al in the first electrode.
  • the Ag alloy constituting the first electrode may contain Pd.
  • the work function of Pd is 5.1 eV. According to said structure, ohmic contact between a semiconductor layer can be easily formed because Pd which is a material with a large work function is contained in a 1st electrode.
  • the Ag alloy constituting the first electrode may have a Ge mass% concentration of 0.1 wt% or less and a Cu mass% concentration of 0.5 wt% or less.
  • a nitride semiconductor light emitting device with a low operating voltage can be realized while suppressing a decrease in reflectance to the maximum.
  • the operating voltage can be lowered while suppressing the light extraction efficiency from being lowered.
  • FIG. 3 is a part of a process cross-sectional view schematically showing a method for manufacturing a nitride semiconductor light emitting device.
  • FIG. 3 is a part of a process cross-sectional view schematically showing a method for manufacturing a nitride semiconductor light emitting device.
  • FIG. 3 is a part of a process cross-sectional view schematically showing a method for manufacturing a nitride semiconductor light emitting device.
  • FIG. 3 is a part of a process cross-sectional view schematically showing a method for manufacturing a nitride semiconductor light emitting device.
  • FIG. 3 is a part of a process cross-sectional view schematically showing a method for manufacturing a nitride semiconductor light emitting device.
  • FIG. 3 is a part of a process cross-sectional view schematically showing a method for manufacturing a nitride semiconductor light emitting device.
  • FIG. 3 is a part of a process cross-sectional view schematically showing a method for manufacturing a nitride semiconductor light emitting device.
  • FIG. 3 is a part of a process cross-sectional view schematically showing a method for manufacturing a nitride semiconductor light emitting device.
  • FIG. 3 is a part of a process cross-sectional view schematically showing a method for manufacturing a nitride semiconductor light emitting device.
  • FIG. 3 is a part of a process cross-sectional view schematically showing a method for manufacturing a nitride semiconductor light emitting device.
  • FIG. 3 is a part of a process cross-sectional view schematically showing a method for manufacturing a nitride semiconductor light emitting device.
  • FIG. 3 is a part of a process cross-sectional view schematically showing a method for manufacturing a nitride semiconductor light emitting device. It is sectional drawing which shows typically the structure of the nitride semiconductor light-emitting device for verification. It is sectional drawing which shows typically the structure of the nitride semiconductor light-emitting device for verification. It is a graph which shows the current-voltage characteristic of the light emitting element shown to FIG. 3A. It is a graph which shows the current-voltage characteristic of the light emitting element shown to FIG. 3B. It is sectional drawing which shows typically the structure of the nitride semiconductor light-emitting device for verification. 6 is a graph comparing the current-voltage characteristics of the light emitting device shown in FIG.
  • FIG. 6 is a table comparing operating voltages in the case where the p-type contact layer is formed of GaN and the case of formation of AlGaN in both the light-emitting element shown in FIG. 1 and the light-emitting element shown in FIG. It is sectional drawing which shows typically the structure of another embodiment of the nitride semiconductor light-emitting device.
  • 1 is a diagram schematically illustrating a configuration of a conventional light emitting device.
  • the nitride semiconductor light emitting device of the present invention will be described with reference to the drawings.
  • the dimensional ratio in the drawing does not necessarily match the actual dimensional ratio.
  • AlGaN is synonymous with the description Al m Ga 1-m N (0 ⁇ m ⁇ 1), and the description of the composition ratio of Al and Ga is simply omitted. And it is not the meaning limited to the case where the composition ratio of Al and Ga is 1: 1.
  • InGaN The same applies to the description “InGaN”.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of an embodiment of a nitride semiconductor light emitting device of the present invention.
  • the nitride semiconductor light emitting device 1 shown in FIG. 1 includes a support substrate 3, a semiconductor layer 5, a first electrode 13, a second electrode 15, and a protective layer 17.
  • the nitride semiconductor light emitting device 1 is simply abbreviated as “light emitting device 1” as appropriate.
  • the support substrate 3 is composed of a conductive substrate such as CuW, W, or Mo, or a semiconductor substrate such as Si.
  • the semiconductor layer 5 is formed by sequentially stacking a p-type semiconductor layer 11, an active layer 9, and an n-type semiconductor layer 7 from the side close to the support substrate 3.
  • the p-type semiconductor layer 11 is made of AlGaN doped with a p-type impurity such as Mg, Be, Zn, or C, for example.
  • the active layer 9 is formed of a semiconductor layer in which, for example, a light emitting layer made of InGaN and a barrier layer made of n-type AlGaN are periodically repeated. These layers may be undoped or p-type or n-type doped.
  • the active layer 9 only needs to be configured by laminating layers made of at least two kinds of materials having different energy band gaps.
  • the constituent material of the active layer 9 is appropriately selected according to the wavelength of light to be generated. In the present embodiment, it is assumed that the active layer 9 is made of a nitride semiconductor capable of generating light having a wavelength of 365 nm or more and 405 nm or less.
  • the n-type semiconductor layer 7 is made of AlGaN doped with an n-type impurity such as Si, Ge, S, Se, Sn, or Te.
  • the n-type semiconductor layer 7 may be made of a material having a composition different from that of the p-type semiconductor layer 11.
  • the first electrode 13 is made of a conductive material exhibiting a high reflectance (for example, 75% or more, more preferably 90% or more) with respect to light emitted from the active layer 9. More specifically, it is made of an Ag alloy containing Ge and Cu. In the present embodiment, the first electrode 13 constitutes a p-side electrode.
  • the second electrode 15 is formed on the upper surface of the n-type semiconductor layer 7 and is made of, for example, Cr—Au.
  • the second electrode 15 may be connected to a wire (not shown) made of, for example, Au or Cu.
  • the second electrode 15 functions as a power supply terminal of the light emitting element 1 by connecting the other end of the wire to the power supply pattern of the package substrate.
  • the second electrode 15 constitutes an n-side electrode.
  • the first electrode 13 is made of a material that exhibits a high reflectance with respect to the light generated in the active layer 9.
  • the light-emitting element 1 is assumed to extract light emitted from the active layer 9 upward (on the n-type semiconductor layer 7 side) in FIG.
  • the first electrode 13 functions to increase light extraction efficiency by reflecting light emitted from the active layer 9 toward the support substrate 3 toward the n-type semiconductor layer 7.
  • the conductive layer 20 is formed in the upper layer of the support substrate 3.
  • the conductive layer 20 has a multilayer structure of a protective layer 23, a bonding layer 21, a bonding layer 19, and a protective layer 17.
  • the bonding layer 19 and the bonding layer 21 are made of, for example, Au—Sn, Au—In, Au—Cu—Sn, Cu—Sn, Pd—Sn, Sn, or the like. As will be described later, the bonding layer 19 and the bonding layer 21 make the bonding layer 21 formed on the support substrate 3 and the bonding layer 19 formed on another substrate (a growth substrate 25 described later) face each other. Then, the two are bonded together.
  • the bonding layer 19 and the bonding layer 21 may be integrated as a single layer.
  • the protective layer 17 has a multilayer structure of Ni / Ti / Pt.
  • the Ti / Pt layer is provided for the purpose of suppressing the material constituting the bonding layer (19, 21) from diffusing to the first electrode 13 side and reducing the reflectance of the first electrode 13. Yes.
  • the Ni layer is provided for the purpose of suppressing the material contained in the Ti / Pt layer, particularly Ti, from diffusing to the first electrode 13 side and the reflectance of the first electrode 13 from decreasing.
  • the protective layer 17 should just be comprised with the material which has a function which suppresses that the material which comprises a joining layer (19,21) diffuses at least, and should just contain at least one of Pt and Ti. .
  • the protective layer 23 is made of, for example, the same material as that of the protective layer 17, and is provided for the purpose of suppressing the material constituting the bonding layers (19, 21) from diffusing to the support substrate 3 side.
  • the protective layer 23 may not necessarily be provided.
  • the light emitting element 1 includes a current blocking layer 14 on a partial upper surface of the conductive layer 20.
  • the current blocking layer 14 is made of the same material as the first electrode 13, that is, an Ag alloy.
  • the first electrode 13 and the current blocking layer 14 are both formed in contact with the p-type semiconductor layer 11.
  • the first electrode 13 is in ohmic contact with the p-type semiconductor layer 11.
  • the current blocking layer 14 is in Schottky contact with the p-type semiconductor layer 11, and the contact resistance with the p-type semiconductor layer 11 is higher than that of the first electrode 13.
  • the current blocking layer 14 is formed at a position facing the second electrode 15 in a direction orthogonal to the surface of the support substrate 3 (hereinafter referred to as “vertical direction” as an example). If a layer having a low contact resistance with the p-type semiconductor layer 11 is formed at a position facing the second electrode 15 in the vertical direction, when a voltage is applied to the light emitting element 1, the second in the vertical direction. Most of the current flows in a region facing the electrode 15. As a result, only a specific region of the active layer 9 emits light, and the light emission efficiency decreases.
  • the current blocking layer 14 has a function of increasing the luminous efficiency of the active layer 9 by spreading the current flowing through the active layer 9 in a direction parallel to the surface of the support substrate 3 (hereinafter referred to as “horizontal direction” as an example). have.
  • the current blocking layer 14 is formed of a material having a high reflectance with respect to the light generated in the active layer 9, so that the light blocking layer 14 can be used for the same reason as the first electrode 13. The extraction efficiency can be improved.
  • the light emitting element 1 includes an insulating layer 24 formed on a part of the upper surface of the current blocking layer 14.
  • Insulating layer 24 is composed for example SiO 2, SiN, Zr 2 O 3, AlN, etc. Al 2 O 3.
  • the insulating layer 24 is provided for the purpose of functioning as an etching stopper during element isolation, as will be described later in the section of the manufacturing method.
  • an insulating layer as a protective film may be formed on the side surface of the semiconductor layer 5.
  • the insulating layer as the protective film is preferably made of a light-transmitting material (for example, SiO 2 ).
  • minute irregularities may be formed on the upper surface of the n-type semiconductor layer 7.
  • the fact that light can be emitted at a lower operating voltage than conventional elements while suppressing the light extraction efficiency from being lowered is described after the description of the manufacturing method. It will be described later with reference to an example.
  • a growth substrate 25 is prepared.
  • a sapphire substrate having a C-plane can be used.
  • the growth substrate 25 is cleaned.
  • a growth substrate 25 is arranged in a processing furnace of a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus, and hydrogen having a flow rate of, for example, 10 slm is placed in the processing furnace. While flowing the gas, the temperature in the furnace is raised to, for example, 1150 ° C.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • Step S2 As shown in FIG. 2B, an undoped layer 27, an n-type semiconductor layer 7, an active layer 9, and a p-type semiconductor layer 11 are sequentially formed on the growth substrate 25.
  • This step S2 is performed by the following procedure, for example.
  • a low-temperature buffer layer made of GaN is formed on the upper surface of the growth substrate 25, and a base layer made of GaN is formed thereon. These low-temperature buffer layer and underlayer correspond to the undoped layer 27.
  • a specific method for forming the undoped layer 27 is, for example, as follows.
  • the furnace pressure of the ⁇ CVD apparatus is set to 100 kPa, and the furnace temperature is set to 480 ° C. Then, while flowing nitrogen gas and hydrogen gas with a flow rate of 5 slm respectively as carrier gas into the processing furnace, trimethylgallium (TMG) with a flow rate of 50 ⁇ mol / min and ammonia with a flow rate of 250,000 ⁇ mol / min are used as the raw material gas in the processing furnace. For 68 seconds. Thereby, a low-temperature buffer layer made of GaN having a thickness of 20 nm is formed on the surface of the growth substrate 25.
  • TMG trimethylgallium
  • the furnace temperature of the MOCVD apparatus is raised to 1150 ° C. Then, while flowing nitrogen gas having a flow rate of 20 slm and hydrogen gas having a flow rate of 15 slm as a carrier gas in the processing furnace, TMG having a flow rate of 100 ⁇ mol / min and ammonia having a flow rate of 250,000 ⁇ mol / min are introduced into the processing furnace as source gases. Feed for 30 minutes. As a result, a base layer made of GaN having a thickness of 1.7 ⁇ m is formed on the surface of the low-temperature buffer layer.
  • the n-type semiconductor layer 7 is formed on the undoped layer 27.
  • a specific method for forming the n-type semiconductor layer 7 is, for example, as follows.
  • the furnace pressure of the MOCVD apparatus is set to 30 kPa. Then, while flowing nitrogen gas having a flow rate of 20 slm and hydrogen gas having a flow rate of 15 slm as a carrier gas into the processing furnace, TMG having a flow rate of 94 ⁇ mol / min, trimethylaluminum (TMA) having a flow rate of 6 ⁇ mol / min, Ammonia with a flow rate of 250,000 ⁇ mol / min and tetraethylsilane with a flow rate of 0.013 ⁇ mol / min are supplied into the treatment furnace for 60 minutes. Thereby, for example, an n-type semiconductor layer 7 having a composition of Al 0.06 Ga 0.94 N and a thickness of 2 ⁇ m is formed on the undoped layer 27.
  • n-type GaN having a thickness of about 5 nm on the n-type AlGaN layer.
  • An n-type semiconductor layer 7 may be realized.
  • the n-type impurity contained in the n-type semiconductor layer 7 has been described.
  • the n-type impurity Ge, S, Se, Sn, Te, or the like can be used in addition to Si. .
  • an active layer 9 is formed on the n-type semiconductor layer 7.
  • a specific method for forming the active layer 9 is, for example, as follows.
  • the furnace pressure of the MOCVD apparatus is set to 100 kPa, and the furnace temperature is set to 830 ° C. Then, while flowing nitrogen gas having a flow rate of 15 slm and hydrogen gas having a flow rate of 1 slm as a carrier gas in the processing furnace, TMG having a flow rate of 10 ⁇ mol / min, trimethylindium (TMI) having a flow rate of 12 ⁇ mol / min, and A step of supplying ammonia at a flow rate of 300,000 ⁇ mol / min into the processing furnace for 48 seconds is performed.
  • TMG having a flow rate of 10 ⁇ mol / min
  • TMA having a flow rate of 1.6 ⁇ mol / min
  • tetraethylsilane having a flow rate of 0.002 ⁇ mol / min
  • ammonia having a flow rate of 300,000 ⁇ mol / min
  • an active layer 9 in which a light-emitting layer made of InGaN having a thickness of 2 nm and a barrier layer made of n-type AlGaN having a thickness of 7 nm are stacked for 15 periods is formed into an n-type semiconductor layer. 7 is formed on the upper layer.
  • the p-type semiconductor layer 11 is formed on the active layer 9.
  • a specific method for forming the p-type semiconductor layer 11 is, for example, as follows.
  • the furnace pressure of the MOCVD apparatus is maintained at 100 kPa, and the furnace temperature is raised to 1025 ° C. while nitrogen gas having a flow rate of 15 slm and hydrogen gas having a flow rate of 25 slm are supplied as carrier gases in the processing furnace.
  • nitrogen gas having a flow rate of 15 slm and hydrogen gas having a flow rate of 25 slm are supplied as carrier gases in the processing furnace.
  • TMG with a flow rate of 35 ⁇ mol / min
  • TMA with a flow rate of 20 ⁇ mol / min
  • ammonia with a flow rate of 250,000 ⁇ mol / min
  • biscyclopentadiene with a flow rate of 0.1 ⁇ mol / min for doping p-type impurities.
  • Enilmagnesium (Cp 2 Mg) is fed into the processing furnace for 60 seconds.
  • a hole supply layer having a composition of Al 0.3 Ga 0.7 N having a thickness of 20 nm is formed on the surface of the active layer 9. Thereafter, by changing the flow rate of TMA to 4 ⁇ mol / min and supplying the source gas for 360 seconds, a hole supply layer having a composition of Al 0.13 Ga 0.87 N having a thickness of 120 nm is formed. A p-type semiconductor layer 11 is formed by these hole supply layers.
  • a contact layer having a high p-type impurity concentration may be formed on the hole supply layer described above.
  • the source gas is TMG having a flow rate of 17 ⁇ mol / min, TMA having a flow rate of 2 ⁇ mol / min, ammonia having a flow rate of 250,000 ⁇ mol / min, and a flow rate for doping p-type impurities of 0.2 ⁇ mol / min.
  • Min biscyclopentadienyl magnesium (Cp 2 Mg) is supplied into the processing furnace for 180 seconds.
  • a p-AlGaN contact layer having a composition of Al 0.1 Ga 0.9 N having a thickness of 20 nm is formed on the surface of the active layer 9.
  • Step S3 An activation process is performed on the wafer obtained in step S2.
  • an activation process is performed at 650 ° C. for 15 minutes in a nitrogen atmosphere using an RTA (Rapid Thermal Anneal) apparatus.
  • RTA Rapid Thermal Anneal
  • Step S4 An insulating layer 24 is formed at a predetermined location on the upper surface of the p-type semiconductor layer 11 (see FIG. 2C).
  • the insulating layer 24 is formed by depositing, for example, Al 2 O 3 with a thickness of about 100 nm on the upper surface of the p-type semiconductor layer 11 in a region serving as a boundary between adjacent elements by a sputtering method.
  • the material to be deposited may be an insulating material, and may be SiN or SiO 2 in addition to Al 2 O 3 .
  • the film thickness of the insulating layer 24 may be set as appropriate.
  • the first electrode 13 is formed in a predetermined region on the upper surface of the p-type semiconductor layer 11 (see FIG. 2C).
  • a specific method for forming the first electrode 13 is, for example, as follows.
  • a material film made of an Ag alloy containing Ge and Cu is formed in a predetermined region on the upper surface of the p-type semiconductor layer 11.
  • an Ag alloy having a thickness of about 200 nm is formed in a predetermined region on the upper surface of the p-type semiconductor layer 11 by a sputtering apparatus.
  • an Ag alloy containing 0.05% wt Ge and 0.3% wt Cu is formed as a film.
  • contact annealing is performed under a predetermined temperature condition in dry air or an inert gas atmosphere using an RTA apparatus or the like to form an ohmic contact between the Ag alloy and the p-type semiconductor layer 11.
  • contact annealing is performed under a predetermined temperature condition in dry air or an inert gas atmosphere using an RTA apparatus or the like to form an ohmic contact between the Ag alloy and the p-type semiconductor layer 11.
  • the 1st electrode 13 comprised with Ag alloy is formed.
  • Step S6 The current blocking layer 14 is formed on the region where the p-type semiconductor layer 11 is exposed and on the upper surface of the insulating layer 24 (see FIG. 2D).
  • an Ag alloy film having a thickness of 200 nm is formed by a sputtering apparatus as in step S5.
  • a sputtering apparatus as in step S5.
  • the film forming material may be different.
  • step S5 annealing is performed at a lower temperature than step S5, or annealing is not performed.
  • annealing is performed at a lower temperature than step S5, or annealing is not performed.
  • Schottky contact is formed between the Ag alloy and the p-type semiconductor layer 11 formed in this step.
  • the current interruption layer 14 is formed.
  • Step S7 A protective layer 17 is formed on the entire surface so as to cover the upper surfaces of the first electrode 13 and the current blocking layer 14. Thereafter, the bonding layer 19 is formed on the upper surface of the protective layer 17 (see FIG. 2E).
  • An example of a specific method is as follows.
  • the protective layer 17 is formed by depositing 100 nm of Ti and 200 nm of Pt for three periods using an electron beam evaporation apparatus (EB apparatus). After that, Ti having a thickness of 10 nm is deposited on the upper surface (Pt surface) of the protective layer 17, and then a bonding layer 19 is formed by depositing Au—Sn solder composed of Au 80% Sn20% to a thickness of 3 ⁇ m. To do.
  • EB apparatus electron beam evaporation apparatus
  • Step S8 A protective layer 23 and a bonding layer 21 are formed on the upper surface of the support substrate 3 prepared separately from the growth substrate 25 by the same method as in step S7 (see FIG. 2F).
  • a conductive substrate such as CuW, W, and Mo, or a semiconductor substrate such as Si can be used.
  • the protective layer 23 may not be formed.
  • Step S9 As shown in FIG. 2G, the bonding layer 19 formed on the upper layer of the growth substrate 25 and the bonding layer 21 formed on the upper layer of the support substrate 3 are bonded to bond the growth substrate 25 and the support substrate 3 together.
  • the bonding process is performed at a temperature of 280 ° C. and a pressure of 0.2 MPa.
  • the bonding layer 19 and the bonding layer 21 are melted and bonded to form a structure in which the support substrate 3 and the growth substrate 25 are bonded to the front and back surfaces. That is, the bonding layer 19 and the bonding layer 21 may be integrated after this step. And since the protective layer 23 and the protective layer 17 are formed in the stage before execution of this step S9, the spreading
  • Step S10 the growth substrate 25 is peeled off (see FIG. 2H). More specifically, the laser is irradiated from the growth substrate 25 side with the growth substrate 25 facing upward and the support substrate 3 facing downward.
  • the laser to be irradiated is light having a wavelength that transmits the constituent material of the growth substrate 25 (sapphire in this embodiment) and is absorbed by the constituent material of the undoped layer 27 (GaN in this embodiment). As a result, the laser light is absorbed by the undoped layer 27, so that the interface between the growth substrate 25 and the undoped layer 27 is heated to decompose GaN, and the growth substrate 25 is peeled off.
  • GaN (undoped layer 27) remaining on the wafer is removed by wet etching using hydrochloric acid or the like, or dry etching using an ICP apparatus, and the n-type semiconductor layer 7 is exposed.
  • the undoped layer 27 is removed, and the semiconductor layer 5 in which the p-type semiconductor layer 11, the active layer 9, and the n-type semiconductor layer 7 are stacked in this order from the support substrate 3 side remains ( (See FIG. 2I).
  • Step S11 Next, as shown in FIG. 2J, adjacent elements are separated from each other. Specifically, the semiconductor layer 5 is etched using the ICP apparatus until the upper surface of the insulating layer 24 is exposed in the boundary region with the adjacent element. At this time, as described above, the insulating layer 24 functions as an etching stopper.
  • the side surface of the semiconductor layer 5 is illustrated so as to be inclined with respect to the vertical direction, but this is an example and is not intended to be limited to such a shape.
  • Step S12 a predetermined region on the upper surface of the n-type semiconductor layer 7, more specifically, a part of the upper surface of the n-type semiconductor layer 7 that does not face the first electrode 13 in the vertical direction, that is, current blocking.
  • the second electrode 15 is formed in a part of the region facing the layer 14 in the vertical direction.
  • annealing is performed at 250 ° C. for about 1 minute in a nitrogen atmosphere.
  • Step S13 Next, the elements are separated from each other by, for example, a laser dicing apparatus, and the back surface of the support substrate 3 is joined to the package by, for example, Ag paste. Thereafter, wire bonding is performed on a partial region of the second electrode 15.
  • the light emitting element 1 shown in FIG. 1 is manufactured through the above steps.
  • FIGS. 3A and 3B are cross-sectional views schematically showing a configuration of a light-emitting element created for verification, and each element has a so-called flip-chip structure. Note that in FIGS. 3A and 3B, the same reference numerals are given to components made of the same material as the light-emitting element 1 shown in FIG. 1.
  • the light-emitting element 40a for verification shown in FIG. 3A is an element manufactured by the following procedure.
  • the same steps as steps S1 to S3 described above are performed. Thereafter, the p-type semiconductor layer 11 and the active layer 9 in a partial region are etched to expose the n-type semiconductor layer 7. Thereafter, the first electrode 13 made of an Ag alloy containing Ge and Cu is formed on the upper surface of the p-type semiconductor layer 11 as in Step S5, and the second electrode is formed on the upper surface of the n-type semiconductor layer 7 as in Step S12. 15 is formed. And after forming the pad electrode 43 used as a current supply part with respect to each of the 1st electrode 13 and the 2nd electrode 15, the element substrate 41 in which the wiring pattern was formed, and the pad electrode 43 are connected by the bonding electrode 45 To do. Thereby, the light emitting element 40a shown in FIG. 3A is formed.
  • the verification light-emitting element 40b shown in FIG. 3B has the same configuration as the light-emitting element 40a except that a first electrode 50 made of pure Ag is formed instead of the first electrode 13 made of Ag alloy. is there.
  • FIG. 4A is a graph showing current-voltage characteristics of the light emitting element 40a shown in FIG. 3A.
  • 4B is a graph showing current-voltage characteristics of the light emitting element 40b shown in FIG. 3B.
  • the flip chip type light emitting device includes a case where the first electrode 13 made of an Ag alloy containing Ge and Cu is provided, and a case where the first electrode 50 made of pure Ag is provided. It is confirmed that there is almost no difference in operating voltage.
  • FIG. 5 is a cross-sectional view schematically showing a configuration of a light-emitting element manufactured for verification.
  • the light emitting element 40c shown in FIG. 5 is different from the light emitting element 1 of FIG. 1 in that both the first electrode 50 and the current blocking layer 51 are made of pure Ag.
  • FIG. 6 is a graph comparing the current-voltage characteristics of the light emitting element 40c of FIG. 5 and the light emitting element 1 of FIG. Unlike the results shown in FIGS. 4A and 4B, according to FIG. 6, the light-emitting element 1 in which the first electrode 13 is formed of an Ag alloy is lighter than the light-emitting element 40c in which the first electrode 50 is formed of pure Ag. It can be seen that the operating voltage is reduced as compared with FIG.
  • the first electrode 50 of the light emitting element 40c has a property of being easily aggregated by heating. Therefore, the first electrode 50 is heated by the annealing step (step S5) for securing ohmic contact with the p-type semiconductor layer 11, and Ag constituting the first electrode 50 is aggregated. Ball up phenomenon occurs in some areas. On the other hand, when the 1st electrode 13 is comprised with Ag alloy like the light emitting element 1, expression of this ball-up phenomenon is suppressed.
  • FIG. 7A and 7B are photographs showing the surface state after heating with the first electrode (13, 50) formed.
  • 7A corresponds to a photograph of the light emitting element 40c
  • FIG. 7B corresponds to a photograph of the light emitting element 1.
  • many black spots 60 appear on the surface, suggesting that the ball-up phenomenon of Ag has occurred.
  • the spot of FIG. 7A hardly appears in the photograph of FIG. 7B.
  • each semiconductor layer (27, 7, 9, 11) have different lattice constants. Therefore, when the epitaxial growth process of each semiconductor layer is completed (see FIG. 2B), each semiconductor layer (27, 7, 9, 11) is actually grown in a state of being distorted with respect to the growth substrate 25. is doing. That is, the p-type semiconductor layer 11 positioned at the upper layer at this time is actually formed with the upper surface curved.
  • the first electrode (13, 50) and the protective layer 17 are formed on the upper surface of the p-type semiconductor layer 11 having the curved upper surface in this way, and then the bonding step ( Step S9) is performed. For this reason, in the bonding step, it is necessary to apply a predetermined pressure under a temperature condition in which the bonding layers (19, 21) can be melted.
  • the first electrode (13, 50) is placed in a heating / pressurizing environment in a state of being sandwiched between the protective layer 17 made of a refractory metal and the p-type semiconductor layer 11.
  • the adhesion between the first electrode 50 and the p-type semiconductor layer 11 where the ball-up phenomenon has occurred in some places is reduced, and the contact resistance is reduced. It is thought that it decreased.
  • the first electrode 13 is made of an Ag alloy and the occurrence of the ball-up phenomenon is suppressed, the light emitting element 40c is still placed even in the above environment. It is considered that the adhesiveness with the p-type semiconductor layer 11 is higher than that of FIG. This consideration shows that there is no difference in operating voltage in a flip chip type structure that does not require a bonding process (FIGS.
  • a vertical structure includes a first electrode 13 made of an Ag alloy.
  • the result that the operating voltage is lower than that of the light emitting device 40c including the first electrode 50 made of Ag (FIG. 6) is met.
  • the present inventor has made Cu into the first electrode 13. I guess that it was mixed. As a result of improving the heat resistance by including Cu in Ag, it is considered that the phenomenon of Ag aggregation during heating is suppressed.
  • FIG. 8 is a table showing the relationship between the Cu concentration D1 mixed in the first electrode 13, the reflection characteristics of the first electrode 13, and the surface state of the first electrode 13 after annealing.
  • the reflection characteristics are those in which an alloy of Ag and Cu is irradiated with light having a wavelength of 365 nm and the amount of light received as reflected light is 80% or more with respect to incident light.
  • the evaluation was “B”.
  • a photograph of the annealed Ag—Cu alloy was taken with a photograph, and the “B” evaluation was made with a high percentage of ball-up occurring, and it was confirmed that almost no ball-up was confirmed.
  • the thing with the low ratio was made into "A” evaluation.
  • the ratio of the area occupied by the ball-up state area is 10% or more with respect to the area of the photographed Ag—Cu alloy, and it is determined that the ratio of the developed ball-up is high. did.
  • the ratio of Cu contained in the Ag alloy is less than 0.1 wt% in weight%, it cannot be said that the occurrence of the ball-up phenomenon can be largely suppressed, and the effect of lowering the operating voltage of the light emitting element. Is not considered very large. Therefore, in order to significantly reduce the operating voltage of the light emitting element, it is preferable that the ratio of Cu contained in the Ag alloy constituting the first electrode 13 is 0.1 wt% or more by weight%.
  • the ratio of Cu contained in the Ag alloy is preferably 0.5 wt% or less by weight%.
  • Cu is a material with a large work function compared to Ag. For this reason, it is considered that mixing Cu with Ag makes it easy to ensure good contact with the p-type semiconductor layer 11. That is, by mixing Cu with Ag, not only the heat resistance of Ag is improved, but also the work function of the first electrode 13 itself is increased, thereby contributing to the reduction of the contact resistance with the p-type semiconductor layer 11. It is thought that there is. Furthermore, by mixing Cu with Ag, the oxidation resistance is enhanced and the Ag is suppressed from being oxidized, so that it is considered that there is also an effect of suppressing a decrease in reflectance.
  • the first electrode 13 provided in the light emitting element 1 is mixed with Ge in Ag for the purpose of improving the sulfidation resistance. Since this Ge is a substance having a work function larger than that of Ag, similarly to Cu, by mixing Ge, the contact resistance with the p-type semiconductor layer 11 can be reduced while suppressing a decrease in reflectance. It is presumed that
  • FIG. 9 is a table showing the relationship between the Ge concentration D2 mixed in the first electrode 13, the operating voltage of the light-emitting element 1, and the light output.
  • Voltage in FIG. 9 represents an operating voltage required to flow a current of 1 A to the light emitting element 1.
  • output in FIG. 9 refers to the light output taken out when 1 A is supplied to the light emitting element 1 and taken out when 1 A is supplied to the light emitting element 40 c having the first electrode 50 made of pure Ag. This is expressed as a relative value when the output light output is 1.
  • FIG. 9 shows that the operating voltage can be reduced as the concentration of Ge mixed in the first electrode 13 is increased within the range where the weight% concentration of Ge is 0.1% wt or less. This suggests that since Ge is a material having a large work function, the first electrode 13 can easily secure a good contact with the p-type semiconductor layer 11 by mixing Ge. is there. That is, from the viewpoint of improving contactability, it can be said that it is preferable to mix Ge in the first electrode 13 even in a small amount.
  • the weight percentage of Ge exceeds 0.1% wt or less, the light output also decreases. This is considered to be caused by the fact that the reflectivity was lowered due to the large amount of Ge contained in the first electrode 13.
  • the concentration of Ge mixed in the first electrode 13 is 0.1 wt% or less by weight%. It can be said that it is preferable.
  • the concentration of Ge mixed in the first electrode 13 is 0.1 wt% or less by weight%, the same result as FIG. 8 is obtained when the concentration of Cu mixed in the first electrode 13 is changed. Was confirmed. Further, when the concentration of Cu mixed in the first electrode 13 is 0.5 wt% or less by weight%, the same result as FIG. 9 is obtained when the concentration of Ge mixed in the first electrode 13 is changed. Was confirmed. Therefore, the light-emitting element 1 is configured to include the first electrode 13 made of an Ag alloy containing Cu and Ge, the Cu concentration contained in the Ag alloy is 0.5 wt% or less by weight, and the Ge concentration is weight. By setting the percentage to 0.1 wt% or less, the operating voltage can be lowered while maintaining high light extraction efficiency.
  • the light extraction efficiency is improved by setting the Cu concentration contained in the Ag alloy to 0.1 wt% or more and 0.5 wt% or less in terms of wt% and the Ge concentration being 0.01 wt% or more and 0.1 wt% or less in terms of wt%.
  • the effect of improving and the effect of reducing the operating voltage can be enhanced.
  • FIG. 10 shows a case where a region in contact with the first electrode (13, 50), that is, a p-type contact layer is formed of GaN as the p-type semiconductor layer 11 in both the light-emitting element 1 and the light-emitting element 40c.
  • AlGaN where the Al 0.1 Ga 0.9 N
  • FIG. 10 shows an operating voltage necessary for supplying a current of 1 A to the light emitting element (1, 40c).
  • the light-emitting element 1 used for this verification was an element manufactured through steps S1 to S13 described above.
  • an element produced by the same procedure as that of the light emitting element 1 was adopted except that pure Ag was formed in place of the Ag alloy in Steps S5 and S6.
  • GaN Since AlGaN has a higher band gap energy than GaN, it is expected that the hole concentration will be lower and the operating voltage will be higher. For this reason, in the case of manufacturing a light emitting element having a wavelength band of 365 nm or more and 405 nm or less (for example, near-ultraviolet light), GaN is conventionally used as the p-type contact layer.
  • the p-type contact layer is made of AlGaN, but the operating voltage is almost the same as that of the case of being made of GaN. Is confirmed to be realized.
  • the operating voltage is higher when the p-type contact layer is made of AlGaN than when it is made of GaN. .
  • the contact resistance is higher than that with GaN.
  • the first electrode 13 is made of an Ag alloy containing Cu and Ge
  • the first electrode 50 is made of pure Ag
  • the contact resistance with the layer 11 can be reduced and a low operating voltage can be realized.
  • the first electrode 13 made of an Ag alloy can also achieve a reflectance equivalent to or higher than that of the Ag electrode.
  • the light emitting element 1 including the first electrode 13 having a Ge concentration of 0.1 wt% or less has the same light output as the light emitting element 40 c including the first electrode 50 made of pure Ag. As shown, this is due to the supply of 1A in a short time.
  • the reflectance of the first electrode 50 decreases in the light emitting element 40c due to the sulfurization of Ag over time, while the first electrode 13 included in the light emitting element 1 Since the sulfidity is enhanced, the rate of decrease in reflectance is slower than that of the light emitting element 40c. As a result, it is assumed that the light output of the light emitting element 40c is lower than the light output of the light emitting element 1 with the passage of time.
  • the light-emitting element 1 including the current blocking layer 14 made of a highly reflective material can further increase the light extraction efficiency than the light-emitting element 1a.
  • the current blocking layer 14 may be made of pure Ag. Since this region does not have a problem of contact with the p-type semiconductor layer 11, the operating voltage can be lowered similarly to the light-emitting element 1 even if it is composed of pure Ag. However, in the case of pure Ag, oxidation or sulfidation is likely to occur, and this may reduce the reflectance. Therefore, the current blocking layer 14 is also made of an Ag alloy, so that higher light extraction efficiency is realized.
  • the light-emitting element 1 can achieve an operating voltage lower than that of the light-emitting element 40c. For this reason, the p-type contact layer of the p-type semiconductor layer 11 can achieve a lower operating voltage than the conventional one even in the light-emitting element 1 made of GaN.
  • the first electrode 13 is made of an alloy in which Ge and Cu are mixed in Ag.
  • a small amount of Pd which is a material having a large work function, may be mixed in order to further reduce the operating voltage.
  • a small amount of Al which is a material exhibiting a high reflectance with respect to light in the near ultraviolet region may be mixed in order to improve the reflectance.
  • the effect which suppresses the ball up of Ag is also expressed by mixing Al with the 1st electrode 13, the effect which further reduces operating voltage is acquired.
  • a Ni thin film having a thickness of about several nm may be formed on the upper surface of the Ag alloy.
  • the n-type semiconductor layer 7 has been described as being composed of AlGaN.
  • the present invention is not limited to AlGaN, and is composed of a nitride semiconductor containing Al and Ga, such as AlInGaN. It does not matter. The same applies to the p-type semiconductor layer 11.
  • the n-type semiconductor layer 7 or the p-type semiconductor layer 11 includes a thin GaN layer. It is not intended to be excluded from the scope of rights.
  • the active layer 9 is formed of a nitride semiconductor capable of generating light having a wavelength of 365 nm to 405 nm is described.
  • the active layer 9 is formed of a material capable of generating light of other wavelengths. It does not matter if it is

Abstract

Provided is a nitride semiconductor light-emitting element capable of emitting light at a low operation voltage while minimizing any decrease in light extraction efficiency. A semiconductor light-emitting element has a support substrate; a semiconductor layer; a first electrode formed on the surface that, among the surfaces of the semiconductor layer, is on the side closer to the support substrate; a second electrode formed on the surface that, among the surfaces of the semiconductor layer, is on the side opposite to the side where the first electrode is formed; and an electroconductive protective layer formed on the surface that, among the surfaces of the first electrode, is on the side opposite to the side where the semiconductor layer is formed. The semiconductor layer comprises a nitride semiconductor, the protective layer includes a metal material having a higher melting point than that of Ag, and the first electrode comprises an Ag alloy containing Ge and Cu.

Description

窒化物半導体発光素子Nitride semiconductor light emitting device
 本発明は、窒化物半導体発光素子に関する。 The present invention relates to a nitride semiconductor light emitting device.
 近年、窒化物半導体を用いた発光素子の開発が進められている。この発光素子は、n型半導体層と、p型半導体層と、これらn型半導体層及びp型半導体層に挟まれるように形成された活性層とを含んで構成される。n型半導体層とp型半導体層の間に電位差が設けられることで両者間に電流が流れ、活性層内で電子と正孔が再結合して発光する。活性層内で生成されたこの光を有効に利用すべく、種々の研究開発が進められている。 In recent years, light-emitting elements using nitride semiconductors have been developed. This light-emitting element includes an n-type semiconductor layer, a p-type semiconductor layer, and an active layer formed so as to be sandwiched between the n-type semiconductor layer and the p-type semiconductor layer. By providing a potential difference between the n-type semiconductor layer and the p-type semiconductor layer, a current flows between them, and electrons and holes are recombined in the active layer to emit light. Various researches and developments are in progress to effectively use the light generated in the active layer.
 例えば、下記特許文献1には、いわゆる「縦型構造」を有する発光素子が開示されている。縦型構造の素子とは、活性層に対して基板に直交する方向に電圧が印加されることで、活性層が発光する素子を指す。 For example, the following Patent Document 1 discloses a light-emitting element having a so-called “vertical structure”. An element having a vertical structure refers to an element in which the active layer emits light when a voltage is applied to the active layer in a direction perpendicular to the substrate.
 特に縦型構造の素子においては、光の取り出し効率を高めるために、反射材料が設けられることが多い。特許文献1においても、電極に反射性の高い材料を設けることが記載されており、特にAgが好ましい旨の記述がある。 Especially in the case of an element having a vertical structure, a reflective material is often provided in order to increase the light extraction efficiency. Patent Document 1 also describes that a highly reflective material is provided on the electrode, and there is a description that Ag is particularly preferable.
 図12は、特許文献1に開示された発光素子の断面図を模式的に示したものである。従来の発光素子90は、支持基板91上に導電層92、反射膜93、絶縁層94、反射電極95、半導体層99、及びn側電極100を備えて構成される。半導体層99は、p型半導体層96、活性層97、及びn型半導体層98が支持基板91側から順に積層されて構成される。 FIG. 12 schematically shows a cross-sectional view of the light-emitting element disclosed in Patent Document 1. A conventional light emitting device 90 includes a conductive layer 92, a reflective film 93, an insulating layer 94, a reflective electrode 95, a semiconductor layer 99, and an n-side electrode 100 on a support substrate 91. The semiconductor layer 99 is configured by sequentially stacking a p-type semiconductor layer 96, an active layer 97, and an n-type semiconductor layer 98 from the support substrate 91 side.
 絶縁層94の下層には金属材料からなる反射膜93が形成されているが、この反射膜93はオーミック性を有さず電極としての機能を奏さない。一方、反射電極95は金属材料からなり、p型半導体層96の間でオーミック接触が実現されることで電極(p側電極)として機能している。 A reflective film 93 made of a metal material is formed under the insulating layer 94, but the reflective film 93 does not have ohmic properties and does not function as an electrode. On the other hand, the reflective electrode 95 is made of a metal material and functions as an electrode (p-side electrode) by realizing ohmic contact between the p-type semiconductor layers 96.
 反射電極95は、活性層97で生成された光のうち、支持基板91に向かう方向(図面下向き)に放射された光を反射させてn型半導体層98側(図面上向き)に取り出すことで、光の取り出し効率を高める目的を兼ねている。特許文献1では、この反射電極95として、上述したようにAgが好ましいとされている。 The reflective electrode 95 reflects the light emitted in the direction toward the support substrate 91 (downward in the drawing) out of the light generated in the active layer 97, and extracts it to the n-type semiconductor layer 98 side (upward in the drawing). It also serves to increase the light extraction efficiency. In Patent Document 1, Ag is preferable as the reflective electrode 95 as described above.
特許第4207781号公報Japanese Patent No. 4207781
 近年、更に低い動作電圧で高い輝度を実現する発光素子が求められている。本発明者の鋭意研究により、図12において反射電極95をAgで構成した場合には、低い動作電圧で発光させることが難しいことを見出した。 In recent years, there has been a demand for a light-emitting element that achieves high luminance at a lower operating voltage. As a result of diligent research by the present inventor, it has been found that when the reflective electrode 95 is made of Ag in FIG. 12, it is difficult to emit light at a low operating voltage.
 本発明は、上記の課題に鑑み、光取り出し効率の低下を抑制しながらも、低い動作電圧で発光することのできる窒化物半導体発光素子を実現することを目的とする。 In view of the above problems, an object of the present invention is to realize a nitride semiconductor light emitting device capable of emitting light at a low operating voltage while suppressing a decrease in light extraction efficiency.
 本発明に係る窒化物半導体発光素子は、
 支持基板と、
 前記支持基板の上層に形成され、n型半導体層、p型半導体層、及び、前記支持基板の面に直交する方向に前記n型半導体層と前記p型半導体層とで挟まれた活性層を含む半導体層と、
 前記半導体層の面のうち、前記支持基板に近い側の面上に形成された第一電極と、
 前記半導体層の面のうち、前記第一電極が形成されている側とは反対側の面上に形成された第二電極と、
 前記第一電極の面のうち、前記半導体層が形成されている側とは反対側の面上に形成された導電性の保護層とを有し、
 前記半導体層は、窒化物半導体で構成され、
 前記保護層は、融点がAgより高い金属材料を含んで構成され、
 前記第一電極は、Ge及びCuを含むAg合金で構成される。
The nitride semiconductor light emitting device according to the present invention is
A support substrate;
An n-type semiconductor layer, a p-type semiconductor layer, and an active layer sandwiched between the n-type semiconductor layer and the p-type semiconductor layer in a direction perpendicular to the surface of the support substrate; Including a semiconductor layer;
Of the surface of the semiconductor layer, a first electrode formed on the surface near the support substrate;
A second electrode formed on the surface of the semiconductor layer opposite to the side on which the first electrode is formed;
A conductive protective layer formed on the surface of the first electrode opposite to the surface on which the semiconductor layer is formed;
The semiconductor layer is made of a nitride semiconductor,
The protective layer includes a metal material having a melting point higher than Ag,
The first electrode is made of an Ag alloy containing Ge and Cu.
 Agの仕事関数は4.3eVであり、Geの仕事関数は5.1eVであり、Cuの仕事関数は4.6eVである。上記の構成によれば、第一電極の構成材料として、Agに加えて、仕事関数の大きい材料であるGe及びCuが含まれることで、半導体層との間でのオーミックコンタクトが容易に形成できる。また、第一電極の構成材料にCuが含まれることで、耐熱性が向上する。この結果、Agのボールアップが抑制されるため、半導体層と第一電極との密着性が向上する。これらにより、半導体層と第一電極との接触抵抗が低下するため、従来よりも動作電圧の低減を図ることができる。「Agのボールアップ」とは、Agのマイグレーションによって部分的に凝縮する現象を指す。 The work function of Ag is 4.3 eV, the work function of Ge is 5.1 eV, and the work function of Cu is 4.6 eV. According to said structure, in addition to Ag as a constituent material of a 1st electrode, Ge and Cu which are materials with a large work function are contained, An ohmic contact between semiconductor layers can be formed easily. . Moreover, heat resistance improves because Cu is contained in the constituent material of the first electrode. As a result, Ag ball-up is suppressed, and the adhesion between the semiconductor layer and the first electrode is improved. As a result, the contact resistance between the semiconductor layer and the first electrode is lowered, so that the operating voltage can be reduced as compared with the conventional case. “Ag ball-up” refers to a phenomenon of partial condensation due to Ag migration.
 更に、第一電極にCuが含まれることで、純粋なAgよりも耐酸化性が向上する。また、第一電極にGeが含まれることで、純粋なAgよりも耐硫化性が向上する。この結果、第一電極に含まれるAgが酸化又は硫化することによって反射率が低下することが抑制される。 Furthermore, oxidation resistance improves more than pure Ag because Cu is contained in the first electrode. Further, since Ge is contained in the first electrode, the sulfidation resistance is improved as compared with pure Ag. As a result, it is possible to suppress the reflectance from decreasing due to oxidation or sulfuration of Ag contained in the first electrode.
 つまり、上記の第一電極によれば、反射率の低下を抑制しながらも、半導体層との間の接触抵抗を低くすることができる。よって、このような第一電極を備えた窒化物半導体発光素子によれば、高い光取り出し効率と低い動作電圧を両立することができる。 That is, according to the first electrode, it is possible to reduce the contact resistance with the semiconductor layer while suppressing a decrease in reflectance. Therefore, according to the nitride semiconductor light emitting device including such a first electrode, both high light extraction efficiency and low operating voltage can be achieved.
 前記窒化物半導体発光素子は、前記保護層の面のうち、前記第一電極が形成されている側とは反対側の面上に形成された接合層を有するものとしても構わない。このとき、前記保護層は、Pt、Tiの少なくとも一方を含んで構成されるものとしても構わない。 The nitride semiconductor light emitting device may have a bonding layer formed on the surface of the protective layer opposite to the surface on which the first electrode is formed. At this time, the protective layer may include at least one of Pt and Ti.
 この接合層は、窒化物半導体発光素子を製造するに際し、前記支持基板とは別の基板(成長基板)上に半導体層を成長させた後、この成長基板と支持基板を貼り合わせるために設けられる。接合層を構成する材料(例えばAu-Snなど)は、Agに比べて反射率が大幅に低い。このため、仮に接合層を構成する材料が第一電極側に拡散してしまうと、第一電極における光の反射率が低下して、光取り出し効率の低下を招く。上記のように、接合層と第一電極の間に、Pt又はTiの少なくとも一方を含んで構成される保護層を備えることで、接合層を構成する材料が第一電極側に拡散することが抑制されるため、反射率が低下することが抑制される。 This bonding layer is provided for bonding the growth substrate and the support substrate after growing the semiconductor layer on a substrate (growth substrate) different from the support substrate when manufacturing the nitride semiconductor light emitting device. . The material constituting the bonding layer (for example, Au—Sn) has a significantly lower reflectance than Ag. For this reason, if the material which comprises a joining layer will diffuse to the 1st electrode side, the reflectance of the light in a 1st electrode will fall, and the fall of light extraction efficiency will be caused. As described above, by providing the protective layer including at least one of Pt or Ti between the bonding layer and the first electrode, the material forming the bonding layer may diffuse to the first electrode side. Since it is suppressed, it is suppressed that a reflectance falls.
 前記p型半導体層が前記第一電極に接触する構成とすることができる。 The p-type semiconductor layer may be in contact with the first electrode.
 このとき、前記n型半導体層、及び前記p型半導体層は、いずれもAl及びGaを含む窒化物半導体で構成されるものとしても構わない。また、前記活性層は、波長365nm以上405nm以下の光を生成可能な窒化物半導体で構成されるものとしても構わない。 At this time, both the n-type semiconductor layer and the p-type semiconductor layer may be made of a nitride semiconductor containing Al and Ga. The active layer may be formed of a nitride semiconductor capable of generating light having a wavelength of 365 nm to 405 nm.
 波長が365nm以上405nm以下の近紫外領域の光については、GaNによって5%以上90%以下程度吸収されてしまう。従って、近紫外領域の光を射出する窒化物発光素子としては、光取り出し効率を高める観点から、GaNよりもバンドギャップエネルギーの高いAlNをGaNに含めた窒化物半導体(例えばAlGaNやAlInGaN)で構成するのが好ましい。 Near-ultraviolet light having a wavelength of 365 nm or more and 405 nm or less is absorbed by GaN by about 5% or more and 90% or less. Therefore, a nitride light-emitting device that emits light in the near-ultraviolet region is composed of a nitride semiconductor (for example, AlGaN or AlInGaN) containing AlN having a higher band gap energy than GaN from the viewpoint of improving light extraction efficiency. It is preferable to do this.
 しかしながら、AlNとGaNの混晶材料(ここではAlGaNと記載する)はバンドギャップエネルギーがGaNより高いため、p型化した場合のアクセプタ準位が深くなってしまう。すなわち、GaNとAlGaNに対して同一の不純物濃度でp型ドーパントを導入したとしても、例えばAl組成20%程度でAlGaNを構成した場合、正孔濃度はAlGaNの方がGaNよりも1桁程度低下してしまう。このため、p型半導体層をAlGaNで構成した場合、GaNで構成した場合よりも動作電圧が上昇する傾向にある。 However, since the mixed crystal material of AlN and GaN (herein referred to as AlGaN) has a higher band gap energy than GaN, the acceptor level becomes deep when p-type. That is, even if a p-type dopant is introduced at the same impurity concentration with respect to GaN and AlGaN, for example, when AlGaN is configured with an Al composition of about 20%, the hole concentration is about one order of magnitude lower in AlGaN than in GaN. Resulting in. For this reason, when the p-type semiconductor layer is made of AlGaN, the operating voltage tends to be higher than when it is made of GaN.
 しかし、上記の構成によれば、p型半導体層に接触して形成されている第一電極が、Ge及びCuを含むAg合金で構成されているため、p型半導体層との密着性が高い。よって、p型半導体層がAl及びGaを含む窒化物半導体で構成される場合であっても、第一電極とp型半導体層の間での低い接触抵抗が実現できる。この結果、動作電圧の低い近紫外領域の半導体発光素子が実現できる。また、第一電極と接触する領域に形成されるp型半導体層、すなわちp型コンタクト層についても、GaNよりも低い吸収率を示す、Al及びGaを含む窒化物半導体で構成できるため、高い光取り出し効率が実現される。 However, according to the above configuration, since the first electrode formed in contact with the p-type semiconductor layer is composed of an Ag alloy containing Ge and Cu, the adhesiveness with the p-type semiconductor layer is high. . Therefore, even when the p-type semiconductor layer is composed of a nitride semiconductor containing Al and Ga, a low contact resistance between the first electrode and the p-type semiconductor layer can be realized. As a result, a near-ultraviolet semiconductor light emitting device with a low operating voltage can be realized. In addition, since the p-type semiconductor layer formed in the region in contact with the first electrode, that is, the p-type contact layer, can be composed of a nitride semiconductor containing Al and Ga, which has a lower absorption rate than GaN, high light Extraction efficiency is realized.
 前記第一電極を構成するAg合金がAlを含むものとしても構わない。 The Ag alloy constituting the first electrode may contain Al.
 第一電極にAlが含まれることで、Agのマイグレーションが抑制され、Agの凝集が抑えられる。この結果、Agのボールアップが抑制されるため、半導体層と第一電極との密着性が更に向上し、動作電圧を低下することができる。 When the first electrode contains Al, Ag migration is suppressed and Ag aggregation is suppressed. As a result, since the ball up of Ag is suppressed, the adhesion between the semiconductor layer and the first electrode can be further improved, and the operating voltage can be lowered.
 また、活性層で生成される光が近紫外領域の波長帯である場合、第一電極にAlが含まれることで、反射率を向上させることができる。 Moreover, when the light generated in the active layer is in the near-ultraviolet wavelength band, the reflectance can be improved by including Al in the first electrode.
 前記第一電極を構成するAg合金がPdを含むものとしても構わない。 The Ag alloy constituting the first electrode may contain Pd.
 Pdの仕事関数は5.1eVである。上記の構成によれば、第一電極に仕事関数の大きい材料であるPdが含まれることで、半導体層との間でのオーミックコンタクトが容易に形成できる。 * The work function of Pd is 5.1 eV. According to said structure, ohmic contact between a semiconductor layer can be easily formed because Pd which is a material with a large work function is contained in a 1st electrode.
 前記第一電極を構成するAg合金は、Geの質量%濃度が0.1wt%以下であり、Cuの質量%濃度が0.5wt%以下であるものとしても構わない。 The Ag alloy constituting the first electrode may have a Ge mass% concentration of 0.1 wt% or less and a Cu mass% concentration of 0.5 wt% or less.
 上記構成によれば、反射率の低下を最大限抑制しながらも、動作電圧の低い窒化物半導体発光素子が実現できる。 According to the above configuration, a nitride semiconductor light emitting device with a low operating voltage can be realized while suppressing a decrease in reflectance to the maximum.
 本発明の窒化物半導体発光素子によれば、光取り出し効率が低下するのを抑制しながらも、動作電圧を低下させることができる。 According to the nitride semiconductor light emitting device of the present invention, the operating voltage can be lowered while suppressing the light extraction efficiency from being lowered.
窒化物半導体発光素子の一実施形態の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of one Embodiment of the nitride semiconductor light-emitting device. 窒化物半導体発光素子の製造方法を模式的に示す工程断面図の一部である。FIG. 3 is a part of a process cross-sectional view schematically showing a method for manufacturing a nitride semiconductor light emitting device. 窒化物半導体発光素子の製造方法を模式的に示す工程断面図の一部である。FIG. 3 is a part of a process cross-sectional view schematically showing a method for manufacturing a nitride semiconductor light emitting device. 窒化物半導体発光素子の製造方法を模式的に示す工程断面図の一部である。FIG. 3 is a part of a process cross-sectional view schematically showing a method for manufacturing a nitride semiconductor light emitting device. 窒化物半導体発光素子の製造方法を模式的に示す工程断面図の一部である。FIG. 3 is a part of a process cross-sectional view schematically showing a method for manufacturing a nitride semiconductor light emitting device. 窒化物半導体発光素子の製造方法を模式的に示す工程断面図の一部である。FIG. 3 is a part of a process cross-sectional view schematically showing a method for manufacturing a nitride semiconductor light emitting device. 窒化物半導体発光素子の製造方法を模式的に示す工程断面図の一部である。FIG. 3 is a part of a process cross-sectional view schematically showing a method for manufacturing a nitride semiconductor light emitting device. 窒化物半導体発光素子の製造方法を模式的に示す工程断面図の一部である。FIG. 3 is a part of a process cross-sectional view schematically showing a method for manufacturing a nitride semiconductor light emitting device. 窒化物半導体発光素子の製造方法を模式的に示す工程断面図の一部である。FIG. 3 is a part of a process cross-sectional view schematically showing a method for manufacturing a nitride semiconductor light emitting device. 窒化物半導体発光素子の製造方法を模式的に示す工程断面図の一部である。FIG. 3 is a part of a process cross-sectional view schematically showing a method for manufacturing a nitride semiconductor light emitting device. 窒化物半導体発光素子の製造方法を模式的に示す工程断面図の一部である。FIG. 3 is a part of a process cross-sectional view schematically showing a method for manufacturing a nitride semiconductor light emitting device. 検証用の窒化物半導体発光素子の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the nitride semiconductor light-emitting device for verification. 検証用の窒化物半導体発光素子の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the nitride semiconductor light-emitting device for verification. 図3Aに示す発光素子の電流電圧特性を示すグラフである。It is a graph which shows the current-voltage characteristic of the light emitting element shown to FIG. 3A. 図3Bに示す発光素子の電流電圧特性を示すグラフである。It is a graph which shows the current-voltage characteristic of the light emitting element shown to FIG. 3B. 検証用の窒化物半導体発光素子の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the nitride semiconductor light-emitting device for verification. 図1に示す発光素子及び図5に示す発光素子の電流電圧特性を比較したグラフである。6 is a graph comparing the current-voltage characteristics of the light emitting device shown in FIG. 1 and the light emitting device shown in FIG. 5. 図5に示す発光素子を製造する途中の段階での写真である。6 is a photograph in the middle of manufacturing the light emitting device shown in FIG. 図1に示す発光素子を製造する途中の段階での写真である。2 is a photograph in the middle of manufacturing the light emitting device shown in FIG. 第一電極に混在させるCuの濃度と、第一電極の反射特性及びアニール後の第一電極の表面状態との関係を示す表である。It is a table | surface which shows the relationship between the density | concentration of Cu mixed in a 1st electrode, the reflective characteristic of a 1st electrode, and the surface state of the 1st electrode after annealing. 第一電極に混在させるGeの濃度と、発光素子の動作電圧及び光出力の関係を示す表である。It is a table | surface which shows the density | concentration of Ge mixed with a 1st electrode, the operating voltage of a light emitting element, and the relationship of an optical output. 図1に示す発光素子及び図5に示す発光素子の双方において、p型コンタクト層をGaNで形成した場合と、AlGaNで形成した場合とで、動作電圧を比較した表である。6 is a table comparing operating voltages in the case where the p-type contact layer is formed of GaN and the case of formation of AlGaN in both the light-emitting element shown in FIG. 1 and the light-emitting element shown in FIG. 窒化物半導体発光素子の別実施形態の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of another embodiment of the nitride semiconductor light-emitting device. 従来の発光素子の構成を模式的に示す図面である。1 is a diagram schematically illustrating a configuration of a conventional light emitting device.
 本発明の窒化物半導体発光素子につき、図面を参照して説明する。なお、各図において、図面の寸法比と実際の寸法比は必ずしも一致しない。また、以下において、「AlGaN」という記述は、AlGa1-mN(0<m<1)という記述と同義であり、AlとGaの組成比の記述を単に省略して記載したものであって、AlとGaの組成比が1:1である場合に限定する趣旨ではない。「InGaN」という記述についても同様である。 The nitride semiconductor light emitting device of the present invention will be described with reference to the drawings. In each figure, the dimensional ratio in the drawing does not necessarily match the actual dimensional ratio. In the following, the description “AlGaN” is synonymous with the description Al m Ga 1-m N (0 <m <1), and the description of the composition ratio of Al and Ga is simply omitted. And it is not the meaning limited to the case where the composition ratio of Al and Ga is 1: 1. The same applies to the description “InGaN”.
 [構成]
 図1は、本発明の窒化物半導体発光素子の一実施形態の構成を模式的に示す断面図である。図1に示す窒化物半導体発光素子1は、支持基板3、半導体層5、第一電極13、第二電極15、及び保護層17を含んで構成される。以下では、窒化物半導体発光素子1を単に「発光素子1」と適宜略記する。
[Constitution]
FIG. 1 is a cross-sectional view schematically showing a configuration of an embodiment of a nitride semiconductor light emitting device of the present invention. The nitride semiconductor light emitting device 1 shown in FIG. 1 includes a support substrate 3, a semiconductor layer 5, a first electrode 13, a second electrode 15, and a protective layer 17. Hereinafter, the nitride semiconductor light emitting device 1 is simply abbreviated as “light emitting device 1” as appropriate.
 (支持基板3)
 支持基板3は、例えばCuW、W、Moなどの導電性基板、又はSiなどの半導体基板で構成される。
(Support substrate 3)
The support substrate 3 is composed of a conductive substrate such as CuW, W, or Mo, or a semiconductor substrate such as Si.
 (半導体層5)
 本実施形態では、半導体層5は、支持基板3に近い側からp型半導体層11、活性層9及びn型半導体層7が順に積層されて形成されている。
(Semiconductor layer 5)
In this embodiment, the semiconductor layer 5 is formed by sequentially stacking a p-type semiconductor layer 11, an active layer 9, and an n-type semiconductor layer 7 from the side close to the support substrate 3.
 本実施形態では、p型半導体層11は、例えばMg、Be、Zn、又はCなどのp型不純物がドープされたAlGaNで構成される。 In this embodiment, the p-type semiconductor layer 11 is made of AlGaN doped with a p-type impurity such as Mg, Be, Zn, or C, for example.
 活性層9は、例えばInGaNで構成される発光層及びn型AlGaNで構成される障壁層が周期的に繰り返されてなる半導体層で形成される。これらの層はアンドープでもp型又はn型にドープされていても構わない。活性層9は、少なくともエネルギーバンドギャップの異なる2種類の材料からなる層が積層されて構成されていればよい。活性層9の構成材料は、生成したい光の波長に応じて適宜選択される。本実施形態では、活性層9は、波長365nm以上405nm以下の光を生成可能な窒化物半導体で構成されているものとする。 The active layer 9 is formed of a semiconductor layer in which, for example, a light emitting layer made of InGaN and a barrier layer made of n-type AlGaN are periodically repeated. These layers may be undoped or p-type or n-type doped. The active layer 9 only needs to be configured by laminating layers made of at least two kinds of materials having different energy band gaps. The constituent material of the active layer 9 is appropriately selected according to the wavelength of light to be generated. In the present embodiment, it is assumed that the active layer 9 is made of a nitride semiconductor capable of generating light having a wavelength of 365 nm or more and 405 nm or less.
 本実施形態では、n型半導体層7は、例えばSi、Ge、S、Se、Sn、又はTeなどのn型不純物がドープされたAlGaNで構成される。n型半導体層7は、p型半導体層11と異なる組成の材料で構成されているものとしても構わない。 In the present embodiment, the n-type semiconductor layer 7 is made of AlGaN doped with an n-type impurity such as Si, Ge, S, Se, Sn, or Te. The n-type semiconductor layer 7 may be made of a material having a composition different from that of the p-type semiconductor layer 11.
 (第一電極13、第二電極15)
 第一電極13は、活性層9から射出される光に対して高い反射率(例えば75%以上であり、より好ましくは90%以上)を示す導電性の材料で構成される。より具体的には、Ge及びCuを含むAg合金で構成されている。本実施形態では、第一電極13がp側電極を構成する。
(First electrode 13, second electrode 15)
The first electrode 13 is made of a conductive material exhibiting a high reflectance (for example, 75% or more, more preferably 90% or more) with respect to light emitted from the active layer 9. More specifically, it is made of an Ag alloy containing Ge and Cu. In the present embodiment, the first electrode 13 constitutes a p-side electrode.
 第二電極15は、n型半導体層7の上面に形成されており、例えばCr-Auで構成される。第二電極15には、例えばAu、Cuなどで構成されるワイヤ(不図示)が連絡されているものとしても構わない。このとき、ワイヤの他端がパッケージ基板の給電パターンなどに接続されることで、第二電極15は発光素子1の給電端子として機能する。本実施形態では、第二電極15がn側電極を構成する。 The second electrode 15 is formed on the upper surface of the n-type semiconductor layer 7 and is made of, for example, Cr—Au. The second electrode 15 may be connected to a wire (not shown) made of, for example, Au or Cu. At this time, the second electrode 15 functions as a power supply terminal of the light emitting element 1 by connecting the other end of the wire to the power supply pattern of the package substrate. In the present embodiment, the second electrode 15 constitutes an n-side electrode.
 第一電極13と第二電極15の間に電圧を印加することで、活性層9内を電流が流れ、活性層9が発光する。 When a voltage is applied between the first electrode 13 and the second electrode 15, a current flows in the active layer 9, and the active layer 9 emits light.
 第一電極13は、上述したように、活性層9で生成される光に対して高い反射率を示す材料で構成される。発光素子1は、活性層9から射出された光を図1の上方向(n型半導体層7側)に取り出すことが想定されている。第一電極13は、活性層9から支持基板3側に向けて射出された光をn型半導体層7側に向けて反射させることで、光取り出し効率を高める機能を果たしている。 As described above, the first electrode 13 is made of a material that exhibits a high reflectance with respect to the light generated in the active layer 9. The light-emitting element 1 is assumed to extract light emitted from the active layer 9 upward (on the n-type semiconductor layer 7 side) in FIG. The first electrode 13 functions to increase light extraction efficiency by reflecting light emitted from the active layer 9 toward the support substrate 3 toward the n-type semiconductor layer 7.
 (導電層20)
 導電層20は、支持基板3の上層に形成されている。本実施形態では、導電層20は、保護層23、接合層21、接合層19及び保護層17の多層構造で構成されている。
(Conductive layer 20)
The conductive layer 20 is formed in the upper layer of the support substrate 3. In the present embodiment, the conductive layer 20 has a multilayer structure of a protective layer 23, a bonding layer 21, a bonding layer 19, and a protective layer 17.
 接合層19及び接合層21は、例えばAu-Sn、Au-In、Au-Cu-Sn、Cu-Sn、Pd-Sn、Snなどで構成される。後述するように、これらの接合層19と接合層21は、支持基板3上に形成された接合層21と、別の基板(後述する成長基板25)上に形成された接合層19を対向させた後に、両者を貼り合わせることで形成されたものである。これらの接合層19及び接合層21は、単一の層として一体化されているものとしても構わない。 The bonding layer 19 and the bonding layer 21 are made of, for example, Au—Sn, Au—In, Au—Cu—Sn, Cu—Sn, Pd—Sn, Sn, or the like. As will be described later, the bonding layer 19 and the bonding layer 21 make the bonding layer 21 formed on the support substrate 3 and the bonding layer 19 formed on another substrate (a growth substrate 25 described later) face each other. Then, the two are bonded together. The bonding layer 19 and the bonding layer 21 may be integrated as a single layer.
 保護層17は、本実施形態では、Ni/Ti/Ptの多層構造で構成される。このうち、Ti/Pt層は、接合層(19,21)を構成する材料が第一電極13側に拡散して、第一電極13の反射率が低下することを抑制する目的で設けられている。また、Ni層は、Ti/Pt層に含まれる材料、特にTiが第一電極13側に拡散し、第一電極13の反射率が低下することを抑制する目的で設けられている。ただし、保護層17は、少なくとも接合層(19,21)を構成する材料が拡散するのを抑制する機能を有する材料で構成されていればよく、Pt、Tiの少なくとも一方を含んでいればよい。 In this embodiment, the protective layer 17 has a multilayer structure of Ni / Ti / Pt. Among these, the Ti / Pt layer is provided for the purpose of suppressing the material constituting the bonding layer (19, 21) from diffusing to the first electrode 13 side and reducing the reflectance of the first electrode 13. Yes. The Ni layer is provided for the purpose of suppressing the material contained in the Ti / Pt layer, particularly Ti, from diffusing to the first electrode 13 side and the reflectance of the first electrode 13 from decreasing. However, the protective layer 17 should just be comprised with the material which has a function which suppresses that the material which comprises a joining layer (19,21) diffuses at least, and should just contain at least one of Pt and Ti. .
 保護層23は、例えば保護層17と同一の材料で構成され、接合層(19,21)を構成する材料が支持基板3側に拡散するのを抑制する目的で設けられている。ただし、保護層23は必ずしも備えられていなくても構わない。 The protective layer 23 is made of, for example, the same material as that of the protective layer 17, and is provided for the purpose of suppressing the material constituting the bonding layers (19, 21) from diffusing to the support substrate 3 side. However, the protective layer 23 may not necessarily be provided.
 (電流遮断層14)
 発光素子1は、導電層20の一部上面に電流遮断層14を備えている。本実施形態では、電流遮断層14は、第一電極13と同一の材料、すなわちAg合金で構成されている。
(Current blocking layer 14)
The light emitting element 1 includes a current blocking layer 14 on a partial upper surface of the conductive layer 20. In the present embodiment, the current blocking layer 14 is made of the same material as the first electrode 13, that is, an Ag alloy.
 図1に示すように、第一電極13及び電流遮断層14は、いずれもp型半導体層11と接触して形成されている。第一電極13は、p型半導体層11との間でオーミック接触が形成されている。一方、電流遮断層14は、p型半導体層11との間でショットキー接触が形成されており、p型半導体層11との接触抵抗が、第一電極13よりも高い。 As shown in FIG. 1, the first electrode 13 and the current blocking layer 14 are both formed in contact with the p-type semiconductor layer 11. The first electrode 13 is in ohmic contact with the p-type semiconductor layer 11. On the other hand, the current blocking layer 14 is in Schottky contact with the p-type semiconductor layer 11, and the contact resistance with the p-type semiconductor layer 11 is higher than that of the first electrode 13.
 電流遮断層14は、支持基板3の面に直交する方向(以下、一例として「鉛直方向」と記載する。)に関して、第二電極15に対向する位置に形成されている。仮に、鉛直方向に第二電極15と対向する位置において、p型半導体層11との接触抵抗が低い層が形成されている場合、発光素子1に対して電圧を印加すると、鉛直方向に第二電極15と対向する領域内に大部分の電流が流れてしまう。この結果、活性層9の特定の領域のみが発光してしまい、発光効率が低下する。電流遮断層14は、活性層9を流れる電流を支持基板3の面に平行な方向(以下、一例として「水平方向」と記載する。)に拡げることで、活性層9の発光効率を高める機能を有している。 The current blocking layer 14 is formed at a position facing the second electrode 15 in a direction orthogonal to the surface of the support substrate 3 (hereinafter referred to as “vertical direction” as an example). If a layer having a low contact resistance with the p-type semiconductor layer 11 is formed at a position facing the second electrode 15 in the vertical direction, when a voltage is applied to the light emitting element 1, the second in the vertical direction. Most of the current flows in a region facing the electrode 15. As a result, only a specific region of the active layer 9 emits light, and the light emission efficiency decreases. The current blocking layer 14 has a function of increasing the luminous efficiency of the active layer 9 by spreading the current flowing through the active layer 9 in a direction parallel to the surface of the support substrate 3 (hereinafter referred to as “horizontal direction” as an example). have.
 また、本実施形態のように、電流遮断層14が、活性層9で生成された光に対して高い反射率を示す材料で形成されることで、第一電極13と同様の理由により、光取り出し効率を向上させることができる。 Further, as in the present embodiment, the current blocking layer 14 is formed of a material having a high reflectance with respect to the light generated in the active layer 9, so that the light blocking layer 14 can be used for the same reason as the first electrode 13. The extraction efficiency can be improved.
 (絶縁層24)
 本実施形態において、発光素子1は、電流遮断層14の一部上面に形成された絶縁層24を備えている。絶縁層24は、例えばSiO2、SiN、Zr23、AlN、Al23などで構成される。この絶縁層24は、製造方法の項で後述するように、素子分離時におけるエッチングストッパとして機能させる目的で設けられている。
(Insulating layer 24)
In the present embodiment, the light emitting element 1 includes an insulating layer 24 formed on a part of the upper surface of the current blocking layer 14. Insulating layer 24 is composed for example SiO 2, SiN, Zr 2 O 3, AlN, etc. Al 2 O 3. The insulating layer 24 is provided for the purpose of functioning as an etching stopper during element isolation, as will be described later in the section of the manufacturing method.
 なお、図1では図示していないが、半導体層5の側面に保護膜としての絶縁層を形成しても構わない。なお、この保護膜としての絶縁層は、透光性を有する材料(例えばSiO2など)で構成するのが好ましい。また、光取り出し効率を更に高める目的で、n型半導体層7の上面に微小の凹凸(メサ構造)を形成しても構わない。 Although not shown in FIG. 1, an insulating layer as a protective film may be formed on the side surface of the semiconductor layer 5. Note that the insulating layer as the protective film is preferably made of a light-transmitting material (for example, SiO 2 ). Further, for the purpose of further increasing the light extraction efficiency, minute irregularities (mesa structure) may be formed on the upper surface of the n-type semiconductor layer 7.
 図1に示す発光素子1によれば、光取り出し効率が低下することを抑制しながらも、従来の素子よりも低い動作電圧で発光させることができる点については、製造方法の説明をした後に実施例を参照して後述される。 According to the light-emitting element 1 shown in FIG. 1, the fact that light can be emitted at a lower operating voltage than conventional elements while suppressing the light extraction efficiency from being lowered is described after the description of the manufacturing method. It will be described later with reference to an example.
 [製造方法]
 次に、発光素子1の製造方法の一例につき、図2A~図2Jに模式的に示す工程断面図を参照して説明する。なお、以下で説明する製造条件や膜厚等の寸法はあくまで一例である。
[Production method]
Next, an example of a method for manufacturing the light-emitting element 1 will be described with reference to process cross-sectional views schematically shown in FIGS. 2A to 2J. In addition, dimensions such as manufacturing conditions and film thickness described below are merely examples.
 (ステップS1)
 図2Aに示すように、成長基板25を準備する。成長基板25としては、一例としてC面を有するサファイア基板を用いることができる。
(Step S1)
As shown in FIG. 2A, a growth substrate 25 is prepared. As an example of the growth substrate 25, a sapphire substrate having a C-plane can be used.
 準備工程として、成長基板25のクリーニングを行う。このクリーニングは、より具体的な一例としては、MOCVD(Metal Organic Chemical Vapor Deposition:有機金属化学気相蒸着)装置の処理炉内に成長基板25を配置し、処理炉内に流量が例えば10slmの水素ガスを流しながら、炉内温度を例えば1150℃に昇温することにより行われる。 As a preparation step, the growth substrate 25 is cleaned. As a more specific example of this cleaning, a growth substrate 25 is arranged in a processing furnace of a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus, and hydrogen having a flow rate of, for example, 10 slm is placed in the processing furnace. While flowing the gas, the temperature in the furnace is raised to, for example, 1150 ° C.
 (ステップS2)
 図2Bに示すように、成長基板25の上層に、アンドープ層27、n型半導体層7、活性層9、及びp型半導体層11を順に形成する。このステップS2は、例えば以下の手順で行われる。
(Step S2)
As shown in FIG. 2B, an undoped layer 27, an n-type semiconductor layer 7, an active layer 9, and a p-type semiconductor layer 11 are sequentially formed on the growth substrate 25. This step S2 is performed by the following procedure, for example.
 まず、成長基板25の上面に、GaNよりなる低温バッファ層を形成し、その上層にGaNよりなる下地層を形成する。これらの低温バッファ層及び下地層がアンドープ層27に対応する。具体的なアンドープ層27の形成方法は、例えば以下の通りである First, a low-temperature buffer layer made of GaN is formed on the upper surface of the growth substrate 25, and a base layer made of GaN is formed thereon. These low-temperature buffer layer and underlayer correspond to the undoped layer 27. A specific method for forming the undoped layer 27 is, for example, as follows.
 まず、МОCVD装置の炉内圧力を100kPa、炉内温度を480℃とする。そして、処理炉内にキャリアガスとして流量がそれぞれ5slmの窒素ガス及び水素ガスを流しながら、原料ガスとして、流量が50μmol/minのトリメチルガリウム(TMG)及び流量が250000μmol/minのアンモニアを処理炉内に68秒間供給する。これにより、成長基板25の表面に、厚みが20nmのGaNよりなる低温バッファ層を形成する。 First, the furnace pressure of the МОCVD apparatus is set to 100 kPa, and the furnace temperature is set to 480 ° C. Then, while flowing nitrogen gas and hydrogen gas with a flow rate of 5 slm respectively as carrier gas into the processing furnace, trimethylgallium (TMG) with a flow rate of 50 μmol / min and ammonia with a flow rate of 250,000 μmol / min are used as the raw material gas in the processing furnace. For 68 seconds. Thereby, a low-temperature buffer layer made of GaN having a thickness of 20 nm is formed on the surface of the growth substrate 25.
 次に、MOCVD装置の炉内温度を1150℃に昇温する。そして、処理炉内にキャリアガスとして流量が20slmの窒素ガス及び流量が15slmの水素ガスを流しながら、原料ガスとして、流量が100μmol/minのTMG及び流量が250000μmol/minのアンモニアを処理炉内に30分間供給する。これにより、低温バッファ層の表面に、厚みが1.7μmのGaNよりなる下地層を形成する。 Next, the furnace temperature of the MOCVD apparatus is raised to 1150 ° C. Then, while flowing nitrogen gas having a flow rate of 20 slm and hydrogen gas having a flow rate of 15 slm as a carrier gas in the processing furnace, TMG having a flow rate of 100 μmol / min and ammonia having a flow rate of 250,000 μmol / min are introduced into the processing furnace as source gases. Feed for 30 minutes. As a result, a base layer made of GaN having a thickness of 1.7 μm is formed on the surface of the low-temperature buffer layer.
 次に、アンドープ層27の上層にn型半導体層7を形成する。n型半導体層7の具体的な形成方法は、例えば以下の通りである。 Next, the n-type semiconductor layer 7 is formed on the undoped layer 27. A specific method for forming the n-type semiconductor layer 7 is, for example, as follows.
 まず、引き続き炉内温度を1150℃とした状態で、MOCVD装置の炉内圧力を30kPaとする。そして、処理炉内にキャリアガスとして流量が20slmの窒素ガス及び流量が15slmの水素ガスを流しながら、原料ガスとして、流量が94μmol/minのTMG、流量が6μmol/minのトリメチルアルミニウム(TMA)、流量が250000μmol/minのアンモニア及び流量が0.013μmol/minのテトラエチルシランを処理炉内に60分間供給する。これにより、例えばAl0.06Ga0.94Nの組成を有し、厚みが2μmのn型半導体層7がアンドープ層27の上層に形成される。 First, with the furnace temperature kept at 1150 ° C., the furnace pressure of the MOCVD apparatus is set to 30 kPa. Then, while flowing nitrogen gas having a flow rate of 20 slm and hydrogen gas having a flow rate of 15 slm as a carrier gas into the processing furnace, TMG having a flow rate of 94 μmol / min, trimethylaluminum (TMA) having a flow rate of 6 μmol / min, Ammonia with a flow rate of 250,000 μmol / min and tetraethylsilane with a flow rate of 0.013 μmol / min are supplied into the treatment furnace for 60 minutes. Thereby, for example, an n-type semiconductor layer 7 having a composition of Al 0.06 Ga 0.94 N and a thickness of 2 μm is formed on the undoped layer 27.
 なお、この後、TMAの供給を停止すると共に、それ以外の原料ガスを6秒間供給することにより、n型AlGaN層の上層に、厚みが5nm程度のn型GaNよりなる保護層を有してなるn型半導体層7を実現してもよい。 After this, the supply of TMA is stopped, and other source gases are supplied for 6 seconds, thereby having a protective layer made of n-type GaN having a thickness of about 5 nm on the n-type AlGaN layer. An n-type semiconductor layer 7 may be realized.
 上記の説明では、n型半導体層7に含まれるn型不純物をSiとする場合について説明したが、n型不純物としては、Si以外にGe、S、Se、Sn又はTe等を用いることができる。 In the above description, the case where Si is used as the n-type impurity contained in the n-type semiconductor layer 7 has been described. However, as the n-type impurity, Ge, S, Se, Sn, Te, or the like can be used in addition to Si. .
 次に、n型半導体層7の上層に活性層9を形成する。活性層9の具体的な形成方法は、例えば以下の通りである。 Next, an active layer 9 is formed on the n-type semiconductor layer 7. A specific method for forming the active layer 9 is, for example, as follows.
 まずMOCVD装置の炉内圧力を100kPa、炉内温度を830℃とする。そして、処理炉内にキャリアガスとして流量が15slmの窒素ガス及び流量が1slmの水素ガスを流しながら、原料ガスとして、流量が10μmol/minのTMG、流量が12μmol/minのトリメチルインジウム(TMI)及び流量が300000μmol/minのアンモニアを処理炉内に48秒間供給するステップを行う。その後、流量が10μmol/minのTMG、流量が1.6μmol/minのTMA、0.002μmol/minのテトラエチルシラン及び流量が300000μmol/minのアンモニアを処理炉内に120秒間供給するステップを行う。以下、これらの2つのステップを繰り返すことにより、厚みが2nmのInGaNよりなる発光層、及び厚みが7nmのn型AlGaNよりなる障壁層が15周期積層されてなる活性層9が、n型半導体層7の上層に形成される。 First, the furnace pressure of the MOCVD apparatus is set to 100 kPa, and the furnace temperature is set to 830 ° C. Then, while flowing nitrogen gas having a flow rate of 15 slm and hydrogen gas having a flow rate of 1 slm as a carrier gas in the processing furnace, TMG having a flow rate of 10 μmol / min, trimethylindium (TMI) having a flow rate of 12 μmol / min, and A step of supplying ammonia at a flow rate of 300,000 μmol / min into the processing furnace for 48 seconds is performed. Thereafter, TMG having a flow rate of 10 μmol / min, TMA having a flow rate of 1.6 μmol / min, tetraethylsilane having a flow rate of 0.002 μmol / min, and ammonia having a flow rate of 300,000 μmol / min are supplied into the processing furnace for 120 seconds. Hereinafter, by repeating these two steps, an active layer 9 in which a light-emitting layer made of InGaN having a thickness of 2 nm and a barrier layer made of n-type AlGaN having a thickness of 7 nm are stacked for 15 periods is formed into an n-type semiconductor layer. 7 is formed on the upper layer.
 次に、活性層9の上層にp型半導体層11を形成する。p型半導体層11の具体的な形成方法は、例えば以下の通りである。 Next, the p-type semiconductor layer 11 is formed on the active layer 9. A specific method for forming the p-type semiconductor layer 11 is, for example, as follows.
 具体的には、MOCVD装置の炉内圧力を100kPaに維持し、処理炉内にキャリアガスとして流量が15slmの窒素ガス及び流量が25slmの水素ガスを流しながら、炉内温度を1025℃に昇温する。その後、原料ガスとして、流量が35μmol/minのTMG、流量が20μmol/minのTMA、流量が250000μmol/minのアンモニア及びp型不純物をドープするための流量が0.1μmol/minのビスシクロペンタジエニルマグネシウム(Cp2Mg)を処理炉内に60秒間供給する。これにより、活性層9の表面に、厚みが20nmのAl0.3Ga0.7Nの組成を有する正孔供給層を形成する。その後、TMAの流量を4μmol/minに変更して原料ガスを360秒間供給することにより、厚みが120nmのAl0.13Ga0.87Nの組成を有する正孔供給層を形成する。これらの正孔供給層によりp型半導体層11が形成される。 Specifically, the furnace pressure of the MOCVD apparatus is maintained at 100 kPa, and the furnace temperature is raised to 1025 ° C. while nitrogen gas having a flow rate of 15 slm and hydrogen gas having a flow rate of 25 slm are supplied as carrier gases in the processing furnace. To do. Thereafter, as source gases, TMG with a flow rate of 35 μmol / min, TMA with a flow rate of 20 μmol / min, ammonia with a flow rate of 250,000 μmol / min, and biscyclopentadiene with a flow rate of 0.1 μmol / min for doping p-type impurities. Enilmagnesium (Cp 2 Mg) is fed into the processing furnace for 60 seconds. Thus, a hole supply layer having a composition of Al 0.3 Ga 0.7 N having a thickness of 20 nm is formed on the surface of the active layer 9. Thereafter, by changing the flow rate of TMA to 4 μmol / min and supplying the source gas for 360 seconds, a hole supply layer having a composition of Al 0.13 Ga 0.87 N having a thickness of 120 nm is formed. A p-type semiconductor layer 11 is formed by these hole supply layers.
 なお、上述した正孔供給層の上層に、p型不純物濃度が高濃度のコンタクト層を形成するものとしても構わない。この場合、具体的には、原料ガスとして、流量が17μmol/minのTMG、流量が2μmol/minのTMA、流量が250000μmol/minのアンモニア及びp型不純物をドープするための流量が0.2μmol/minのビスシクロペンタジエニルマグネシウム(Cp2Mg)を処理炉内に180秒間供給する。これにより、活性層9の表面に、厚みが20nmのAl0.1Ga0.9Nの組成を有するp-AlGaNコンタクト層を形成する。 Note that a contact layer having a high p-type impurity concentration may be formed on the hole supply layer described above. In this case, specifically, the source gas is TMG having a flow rate of 17 μmol / min, TMA having a flow rate of 2 μmol / min, ammonia having a flow rate of 250,000 μmol / min, and a flow rate for doping p-type impurities of 0.2 μmol / min. Min biscyclopentadienyl magnesium (Cp 2 Mg) is supplied into the processing furnace for 180 seconds. As a result, a p-AlGaN contact layer having a composition of Al 0.1 Ga 0.9 N having a thickness of 20 nm is formed on the surface of the active layer 9.
 (ステップS3)
 ステップS2で得られたウェハに対して活性化処理を行う。具体的な一例としては、RTA(Rapid Thermal Anneal:急速加熱)装置を用いて、窒素雰囲気下中650℃で15分間の活性化処理を行う。
(Step S3)
An activation process is performed on the wafer obtained in step S2. As a specific example, an activation process is performed at 650 ° C. for 15 minutes in a nitrogen atmosphere using an RTA (Rapid Thermal Anneal) apparatus.
 (ステップS4)
 p型半導体層11の上面の所定箇所に絶縁層24を形成する(図2C参照)。
(Step S4)
An insulating layer 24 is formed at a predetermined location on the upper surface of the p-type semiconductor layer 11 (see FIG. 2C).
 より具体的には、隣接する素子との境界となる領域内におけるp型半導体層11の上面に、例えばAl23をスパッタリング法によって膜厚100nm程度成膜することで絶縁層24を形成する。なお、成膜する材料は絶縁性材料であればよく、Al23の他、SiNやSiO2でも構わない。なお、絶縁層24の膜厚は適宜設定されるものとしてよい。 More specifically, the insulating layer 24 is formed by depositing, for example, Al 2 O 3 with a thickness of about 100 nm on the upper surface of the p-type semiconductor layer 11 in a region serving as a boundary between adjacent elements by a sputtering method. . It should be noted that the material to be deposited may be an insulating material, and may be SiN or SiO 2 in addition to Al 2 O 3 . The film thickness of the insulating layer 24 may be set as appropriate.
 (ステップS5)
 p型半導体層11の上面の所定領域に第一電極13を形成する(図2C参照)。第一電極13の具体的な形成方法は、例えば以下の通りである。
(Step S5)
The first electrode 13 is formed in a predetermined region on the upper surface of the p-type semiconductor layer 11 (see FIG. 2C). A specific method for forming the first electrode 13 is, for example, as follows.
 p型半導体層11の上面の所定領域に、Ge及びCuを含むAg合金で構成された材料膜を成膜する。一例としては、スパッタ装置にて、p型半導体層11の上面の所定領域に、膜厚200nm程度のAg合金を成膜する。本実施形態では、一例として、質量%が0.05%wtのGe、0.3%wtのCuを含むAg合金を成膜する。 A material film made of an Ag alloy containing Ge and Cu is formed in a predetermined region on the upper surface of the p-type semiconductor layer 11. As an example, an Ag alloy having a thickness of about 200 nm is formed in a predetermined region on the upper surface of the p-type semiconductor layer 11 by a sputtering apparatus. In this embodiment, as an example, an Ag alloy containing 0.05% wt Ge and 0.3% wt Cu is formed as a film.
 その後、RTA装置等を用いてドライエア又は不活性ガス雰囲気中で所定の温度条件下でコンタクトアニール処理を行い、Ag合金とp型半導体層11とのオーミック接触を形成させる。これにより、Ag合金で構成された第一電極13が形成される。 Thereafter, contact annealing is performed under a predetermined temperature condition in dry air or an inert gas atmosphere using an RTA apparatus or the like to form an ohmic contact between the Ag alloy and the p-type semiconductor layer 11. Thereby, the 1st electrode 13 comprised with Ag alloy is formed.
 なお、本ステップS5を、ステップS4の前に行っても構わない。 In addition, you may perform this step S5 before step S4.
 (ステップS6)
 p型半導体層11が露出している領域、及び絶縁層24の上面に電流遮断層14を形成する(図2D参照)。
(Step S6)
The current blocking layer 14 is formed on the region where the p-type semiconductor layer 11 is exposed and on the upper surface of the insulating layer 24 (see FIG. 2D).
 より具体的な一例としては、ステップS5と同様に、スパッタ装置にて膜厚200nmのAg合金を成膜する。本実施形態では、ステップS5と同じ材料膜を成膜する場合について説明するが、成膜材料を異ならせても構わない。 As a more specific example, an Ag alloy film having a thickness of 200 nm is formed by a sputtering apparatus as in step S5. In this embodiment, the case where the same material film as that in step S5 is formed will be described, but the film forming material may be different.
 そして、ステップS5よりも低温でアニール処理をするか、又はアニール処理を行わない。これにより、本ステップで成膜されたAg合金、p型半導体層11との間でショットキー接触が形成される。これにより電流遮断層14が形成される。 And, annealing is performed at a lower temperature than step S5, or annealing is not performed. Thereby, Schottky contact is formed between the Ag alloy and the p-type semiconductor layer 11 formed in this step. Thereby, the current interruption layer 14 is formed.
 (ステップS7)
 第一電極13及び電流遮断層14の上面を覆うように、全面に保護層17を形成する。その後、保護層17の上面に接合層19を形成する(図2E参照)。具体的な方法の一例は以下のとおりである。
(Step S7)
A protective layer 17 is formed on the entire surface so as to cover the upper surfaces of the first electrode 13 and the current blocking layer 14. Thereafter, the bonding layer 19 is formed on the upper surface of the protective layer 17 (see FIG. 2E). An example of a specific method is as follows.
 まず、電子線蒸着装置(EB装置)を用いて、膜厚100nmのTiと膜厚200nmのPtを3周期成膜することで保護層17を形成する。更にその後、保護層17の上面(Pt表面)に、膜厚10nmのTiを蒸着させた後、Au80%Sn20%で構成されるAu-Snハンダを膜厚3μm蒸着させることで接合層19を形成する。 First, the protective layer 17 is formed by depositing 100 nm of Ti and 200 nm of Pt for three periods using an electron beam evaporation apparatus (EB apparatus). After that, Ti having a thickness of 10 nm is deposited on the upper surface (Pt surface) of the protective layer 17, and then a bonding layer 19 is formed by depositing Au—Sn solder composed of Au 80% Sn20% to a thickness of 3 μm. To do.
 (ステップS8)
 成長基板25とは別に準備された支持基板3の上面に、ステップS7と同様の方法で、保護層23及び接合層21を形成する(図2F参照)。支持基板3としては、上述したようにCuW、W、Mo等の導電性基板、又はSi等の半導体基板を利用することができる。なお、保護層23については形成しないものとしても構わない。
(Step S8)
A protective layer 23 and a bonding layer 21 are formed on the upper surface of the support substrate 3 prepared separately from the growth substrate 25 by the same method as in step S7 (see FIG. 2F). As the support substrate 3, as described above, a conductive substrate such as CuW, W, and Mo, or a semiconductor substrate such as Si can be used. The protective layer 23 may not be formed.
 (ステップS9)
 図2Gに示すように、成長基板25の上層に形成された接合層19と、支持基板3の上層に形成された接合層21を貼り合わせることで、成長基板25と支持基板3の貼り合わせを行う。具体的な一例としては、280℃の温度、0.2MPaの圧力下で、貼り合わせ処理が行われる。
(Step S9)
As shown in FIG. 2G, the bonding layer 19 formed on the upper layer of the growth substrate 25 and the bonding layer 21 formed on the upper layer of the support substrate 3 are bonded to bond the growth substrate 25 and the support substrate 3 together. Do. As a specific example, the bonding process is performed at a temperature of 280 ° C. and a pressure of 0.2 MPa.
 この工程により、接合層19及び接合層21が溶融して接合されることで、支持基板3と成長基板25が表裏面に貼り合わされた構造が形成される。つまり、接合層19と接合層21は、本ステップ以後においては一体化されているものとして構わない。そして、本ステップS9の実行前の段階で保護層23及び保護層17が形成されていることで、接合層(19,21)の構成材料の拡散が抑制されている。 In this step, the bonding layer 19 and the bonding layer 21 are melted and bonded to form a structure in which the support substrate 3 and the growth substrate 25 are bonded to the front and back surfaces. That is, the bonding layer 19 and the bonding layer 21 may be integrated after this step. And since the protective layer 23 and the protective layer 17 are formed in the stage before execution of this step S9, the spreading | diffusion of the structural material of a joining layer (19, 21) is suppressed.
 (ステップS10)
 次に、成長基板25を剥離する(図2H参照)。より具体的には、成長基板25を上に向け、支持基板3を下に向けた状態で、成長基板25側からレーザを照射する。ここで、照射するレーザを、成長基板25の構成材料(本実施形態ではサファイア)を透過し、アンドープ層27の構成材料(本実施形態ではGaN)によって吸収されるような波長の光とする。これにより、アンドープ層27でレーザ光が吸収されるため、成長基板25とアンドープ層27の界面が高温化してGaNが分解され、成長基板25が剥離される。
(Step S10)
Next, the growth substrate 25 is peeled off (see FIG. 2H). More specifically, the laser is irradiated from the growth substrate 25 side with the growth substrate 25 facing upward and the support substrate 3 facing downward. Here, the laser to be irradiated is light having a wavelength that transmits the constituent material of the growth substrate 25 (sapphire in this embodiment) and is absorbed by the constituent material of the undoped layer 27 (GaN in this embodiment). As a result, the laser light is absorbed by the undoped layer 27, so that the interface between the growth substrate 25 and the undoped layer 27 is heated to decompose GaN, and the growth substrate 25 is peeled off.
 その後、ウェハ上に残存しているGaN(アンドープ層27)を、塩酸等を用いたウェットエッチング、又はICP装置を用いたドライエッチングによって除去し、n型半導体層7を露出させる。なお、本ステップS10においてアンドープ層27が除去されて、p型半導体層11、活性層9、及びn型半導体層7が、支持基板3側からこの順に積層されてなる半導体層5が残存する(図2I参照)。 Thereafter, GaN (undoped layer 27) remaining on the wafer is removed by wet etching using hydrochloric acid or the like, or dry etching using an ICP apparatus, and the n-type semiconductor layer 7 is exposed. In this step S10, the undoped layer 27 is removed, and the semiconductor layer 5 in which the p-type semiconductor layer 11, the active layer 9, and the n-type semiconductor layer 7 are stacked in this order from the support substrate 3 side remains ( (See FIG. 2I).
 (ステップS11)
 次に、図2Jに示すように、隣接する素子同士を分離する。具体的には、隣接素子との境界領域に対し、ICP装置を用いて絶縁層24の上面が露出するまで半導体層5をエッチングする。このとき、上述したように絶縁層24はエッチングストッパーとして機能する。
(Step S11)
Next, as shown in FIG. 2J, adjacent elements are separated from each other. Specifically, the semiconductor layer 5 is etched using the ICP apparatus until the upper surface of the insulating layer 24 is exposed in the boundary region with the adjacent element. At this time, as described above, the insulating layer 24 functions as an etching stopper.
 なお、図2Jでは、半導体層5の側面が鉛直方向に対して傾斜を有するように図示しているが、これは一例であって、このような形状に限定する趣旨ではない。 In FIG. 2J, the side surface of the semiconductor layer 5 is illustrated so as to be inclined with respect to the vertical direction, but this is an example and is not intended to be limited to such a shape.
 (ステップS12)
 次に、n型半導体層7の上面の所定の領域、より詳細には、n型半導体層7の上面のうち、第一電極13に対して鉛直方向に対向しない領域の一部、すなわち電流遮断層14に対して鉛直方向に対向する領域の一部に、第二電極15を形成する。第二電極15を形成する具体的な方法の一例としては、膜厚100nmのCrと膜厚3μmのAuを蒸着した後、窒素雰囲気中で250℃、1分間程度のアニール処理を行う。
(Step S12)
Next, a predetermined region on the upper surface of the n-type semiconductor layer 7, more specifically, a part of the upper surface of the n-type semiconductor layer 7 that does not face the first electrode 13 in the vertical direction, that is, current blocking. The second electrode 15 is formed in a part of the region facing the layer 14 in the vertical direction. As an example of a specific method for forming the second electrode 15, after depositing Cr having a thickness of 100 nm and Au having a thickness of 3 μm, annealing is performed at 250 ° C. for about 1 minute in a nitrogen atmosphere.
 (ステップS13)
 次に、各素子同士を例えばレーザダイシング装置によって分離し、支持基板3の裏面を例えばAgペーストにてパッケージと接合する。その後は、第二電極15の一部領域に対してワイヤボンディングを行う。以上の工程を経て、図1に示す発光素子1が製造される。
(Step S13)
Next, the elements are separated from each other by, for example, a laser dicing apparatus, and the back surface of the support substrate 3 is joined to the package by, for example, Ag paste. Thereafter, wire bonding is performed on a partial region of the second electrode 15. The light emitting element 1 shown in FIG. 1 is manufactured through the above steps.
 [検証]
 以下において、本実施形態の発光素子1によれば、従来の素子よりも動作電圧を低下できる点につき説明する。
[Verification]
Hereinafter, according to the light emitting device 1 of the present embodiment, the point that the operating voltage can be lowered as compared with the conventional device will be described.
 図3A及び図3Bは、検証用に作成された発光素子の構成を模式的に示す断面図であり、いずれの素子も、いわゆるフリップチップ型の構造を有している。なお、図3A及び図3Bにおいて、図1に示す発光素子1と同一の材料で構成されているものについては同一の符号を付している。 3A and 3B are cross-sectional views schematically showing a configuration of a light-emitting element created for verification, and each element has a so-called flip-chip structure. Note that in FIGS. 3A and 3B, the same reference numerals are given to components made of the same material as the light-emitting element 1 shown in FIG. 1.
 図3Aに示す検証用の発光素子40aは、以下の手順で作製された素子である。 The light-emitting element 40a for verification shown in FIG. 3A is an element manufactured by the following procedure.
 まず、上述したステップS1~S3と同様の工程を行う。その後、一部領域内のp型半導体層11及び活性層9をエッチングして、n型半導体層7を露出させる。その後、ステップS5と同様に、p型半導体層11の上面にGe及びCuを含むAg合金からなる第一電極13を形成し、ステップS12と同様に、n型半導体層7の上面に第二電極15を形成する。そして、第一電極13及び第二電極15のそれぞれに対して、電流供給部となるパッド電極43を形成した後、配線パターンが形成された素子基板41とパッド電極43とをボンディング電極45によって連結する。これにより、図3Aに示す発光素子40aが形成される。 First, the same steps as steps S1 to S3 described above are performed. Thereafter, the p-type semiconductor layer 11 and the active layer 9 in a partial region are etched to expose the n-type semiconductor layer 7. Thereafter, the first electrode 13 made of an Ag alloy containing Ge and Cu is formed on the upper surface of the p-type semiconductor layer 11 as in Step S5, and the second electrode is formed on the upper surface of the n-type semiconductor layer 7 as in Step S12. 15 is formed. And after forming the pad electrode 43 used as a current supply part with respect to each of the 1st electrode 13 and the 2nd electrode 15, the element substrate 41 in which the wiring pattern was formed, and the pad electrode 43 are connected by the bonding electrode 45 To do. Thereby, the light emitting element 40a shown in FIG. 3A is formed.
 なお、図3Bに示す検証用の発光素子40bは、Ag合金からなる第一電極13に代えて、純粋なAgからなる第一電極50を形成した点以外は、発光素子40aと同一の構成である。 The verification light-emitting element 40b shown in FIG. 3B has the same configuration as the light-emitting element 40a except that a first electrode 50 made of pure Ag is formed instead of the first electrode 13 made of Ag alloy. is there.
 図4Aは、図3Aに示した発光素子40aの電流電圧特性を示すグラフである。また、図4Bは、図3Bに示した発光素子40bの電流電圧特性を示すグラフである。図4A及び図4Bによれば、フリップチップ型の発光素子では、Ge及びCuを含むAg合金からなる第一電極13を備える場合と、純粋なAgからなる第一電極50を備える場合とで、動作電圧にほとんど差が生じないことが確認される。 FIG. 4A is a graph showing current-voltage characteristics of the light emitting element 40a shown in FIG. 3A. 4B is a graph showing current-voltage characteristics of the light emitting element 40b shown in FIG. 3B. According to FIGS. 4A and 4B, the flip chip type light emitting device includes a case where the first electrode 13 made of an Ag alloy containing Ge and Cu is provided, and a case where the first electrode 50 made of pure Ag is provided. It is confirmed that there is almost no difference in operating voltage.
 図5は、検証用に作製された発光素子の構成を模式的に示す断面図である。図5に示す発光素子40cは、第一電極50及び電流遮断層51をいずれも純粋なAgで構成した点が図1の発光素子1と異なっている。 FIG. 5 is a cross-sectional view schematically showing a configuration of a light-emitting element manufactured for verification. The light emitting element 40c shown in FIG. 5 is different from the light emitting element 1 of FIG. 1 in that both the first electrode 50 and the current blocking layer 51 are made of pure Ag.
 図6は、図5の発光素子40cと図1の発光素子1の電流電圧特性を対比したグラフである。図4A及び図4Bに示した結果とは異なり、図6によれば、第一電極13をAg合金で形成した発光素子1の方が、第一電極50を純粋なAgで形成した発光素子40cと比較して動作電圧が低減されていることが分かる。 FIG. 6 is a graph comparing the current-voltage characteristics of the light emitting element 40c of FIG. 5 and the light emitting element 1 of FIG. Unlike the results shown in FIGS. 4A and 4B, according to FIG. 6, the light-emitting element 1 in which the first electrode 13 is formed of an Ag alloy is lighter than the light-emitting element 40c in which the first electrode 50 is formed of pure Ag. It can be seen that the operating voltage is reduced as compared with FIG.
 以上の結果から、p型半導体層11に対して電流を供給するための電極をAg合金で形成する場合と純粋なAgで形成する場合を比べると、フリップチップ型の素子では動作電圧に差は生じない一方で、縦型の素子ではAg合金で形成することで動作電圧を低下させる効果が得られることが分かる。この理由について、現時点では定かではないが、本発明者は以下のように推察している。 From the above results, comparing the case where the electrode for supplying current to the p-type semiconductor layer 11 is made of Ag alloy and the case where it is made of pure Ag, there is no difference in operating voltage in the flip chip type device. On the other hand, it can be seen that an effect of lowering the operating voltage can be obtained by forming the vertical element with an Ag alloy in the vertical type element. The reason for this is not clear at the present time, but the present inventor speculates as follows.
 発光素子40cの第一電極50を構成するAgは、加熱により凝集しやすいという性質を有している。よって、p型半導体層11との間でのオーミックコンタクトを確保するためのアニール工程(ステップS5)によって、第一電極50が加熱されることで、第一電極50を構成するAgが凝集し、一部の領域においてボールアップ現象が生じる。これに対し、発光素子1のように、第一電極13をAg合金で構成した場合には、かかるボールアップ現象の発現が抑制される。 Ag constituting the first electrode 50 of the light emitting element 40c has a property of being easily aggregated by heating. Therefore, the first electrode 50 is heated by the annealing step (step S5) for securing ohmic contact with the p-type semiconductor layer 11, and Ag constituting the first electrode 50 is aggregated. Ball up phenomenon occurs in some areas. On the other hand, when the 1st electrode 13 is comprised with Ag alloy like the light emitting element 1, expression of this ball-up phenomenon is suppressed.
 図7A及び図7Bは、第一電極(13,50)を形成した状態で加熱した後の表面状態を示す写真である。図7Aが発光素子40cの写真に対応し、図7Bが発光素子1の写真に対応する。図7Aの写真には、表面に多くの黒い斑点60が現れており、これはAgのボールアップ現象が生じていることを示唆している。一方、図7Bの写真には図7Aのような斑点がほとんど現れていない。 7A and 7B are photographs showing the surface state after heating with the first electrode (13, 50) formed. 7A corresponds to a photograph of the light emitting element 40c, and FIG. 7B corresponds to a photograph of the light emitting element 1. In the photograph of FIG. 7A, many black spots 60 appear on the surface, suggesting that the ball-up phenomenon of Ag has occurred. On the other hand, the spot of FIG. 7A hardly appears in the photograph of FIG. 7B.
 ところで、成長基板25として用いられるサファイアと、各半導体層(27,7,9,11)とでは、格子定数が異なっている。このため、各半導体層のエピタキシャル成長工程が完了した時点(図2B参照)では、実際には、各半導体層(27,7,9,11)は成長基板25に対して歪みを有した状態で成長している。つまり、この時点で再上層に位置するp型半導体層11は、実際には上面が湾曲した状態で形成される。 By the way, sapphire used as the growth substrate 25 and each semiconductor layer (27, 7, 9, 11) have different lattice constants. Therefore, when the epitaxial growth process of each semiconductor layer is completed (see FIG. 2B), each semiconductor layer (27, 7, 9, 11) is actually grown in a state of being distorted with respect to the growth substrate 25. is doing. That is, the p-type semiconductor layer 11 positioned at the upper layer at this time is actually formed with the upper surface curved.
 発光素子1及び発光素子40cを形成する場合、このように湾曲した上面を有するp型半導体層11の上面に、第一電極(13,50)及び保護層17を形成した後、貼り合わせ工程(ステップS9)が行われる。このため、当該貼り合わせ工程に際しては、接合層(19,21)が溶融可能な温度条件下で、且つ、所定の圧力をかける必要がある。特に、第一電極(13,50)は、高融点金属で構成された保護層17とp型半導体層11で挟まれた状態で加熱・加圧環境下に置かれることとなる。 In the case of forming the light emitting element 1 and the light emitting element 40c, the first electrode (13, 50) and the protective layer 17 are formed on the upper surface of the p-type semiconductor layer 11 having the curved upper surface in this way, and then the bonding step ( Step S9) is performed. For this reason, in the bonding step, it is necessary to apply a predetermined pressure under a temperature condition in which the bonding layers (19, 21) can be melted. In particular, the first electrode (13, 50) is placed in a heating / pressurizing environment in a state of being sandwiched between the protective layer 17 made of a refractory metal and the p-type semiconductor layer 11.
 このような環境下に置かれたことで、発光素子40cでは、一部の箇所でボールアップ現象が生じていた第一電極50とp型半導体層11との密着性が低下し、コンタクト抵抗が低下したものと考えられる。これに対し、発光素子1の場合には、第一電極13をAg合金で構成しており、ボールアップ現象の発現が抑制されているため、上記の環境下に置かれても依然として発光素子40cに比べてp型半導体層11との密着性が高く、低いコンタクト抵抗が実現できたものと考えられる。この考察は、貼り合わせ工程を必要としないフリップチップ型の構造においては動作電圧に差が現れない一方(図4A及び図4B)、、縦型構造においてはAg合金からなる第一電極13を備えた発光素子1において、Agからなる第一電極50を備えた発光素子40cよりも動作電圧が低下した結果(図6)に沿う。 By being placed in such an environment, in the light emitting element 40c, the adhesion between the first electrode 50 and the p-type semiconductor layer 11 where the ball-up phenomenon has occurred in some places is reduced, and the contact resistance is reduced. It is thought that it decreased. On the other hand, in the case of the light emitting element 1, since the first electrode 13 is made of an Ag alloy and the occurrence of the ball-up phenomenon is suppressed, the light emitting element 40c is still placed even in the above environment. It is considered that the adhesiveness with the p-type semiconductor layer 11 is higher than that of FIG. This consideration shows that there is no difference in operating voltage in a flip chip type structure that does not require a bonding process (FIGS. 4A and 4B), while a vertical structure includes a first electrode 13 made of an Ag alloy. In the light emitting device 1, the result that the operating voltage is lower than that of the light emitting device 40c including the first electrode 50 made of Ag (FIG. 6) is met.
 発光素子1のように、Ag合金からなる第一電極13を備えることで、p型半導体層11との密着性が高まった理由の一つとして、本発明者は、第一電極13にCuを混在させたことにあると推察している。AgにCuを含ませることで耐熱性が向上した結果、加熱時にAgが凝集する現象が発生するのが抑制されたものと考えられる。 As one of the reasons that the adhesion with the p-type semiconductor layer 11 is increased by providing the first electrode 13 made of an Ag alloy like the light emitting element 1, the present inventor has made Cu into the first electrode 13. I guess that it was mixed. As a result of improving the heat resistance by including Cu in Ag, it is considered that the phenomenon of Ag aggregation during heating is suppressed.
 ところで、CuはAgに比べると、活性層9から射出された光に対する反射率が低い。このため、Cuを過剰に混在させた場合には、光取り出し効率を低下させる可能性がある。図8は、第一電極13に混在させるCuの濃度D1と、第一電極13の反射特性、及びアニール後の第一電極13の表面状態の関係を示す表である。 Incidentally, Cu has a lower reflectance with respect to light emitted from the active layer 9 than Ag. For this reason, when Cu is mixed excessively, there is a possibility that the light extraction efficiency is lowered. FIG. 8 is a table showing the relationship between the Cu concentration D1 mixed in the first electrode 13, the reflection characteristics of the first electrode 13, and the surface state of the first electrode 13 after annealing.
 具体的には、反射特性は、AgとCuの合金に対して、波長365nmの光を照射し、反射光として受光した光の光量が、入射光に対して80%以上であるものを「A」評価とし、80%を下回るものを「B」評価とした。また、表面状態については、アニール後のAg-Cu合金を写真で撮影し、発現しているボールアップの割合が高いものを「B」評価とし、ボールアップがほとんど確認されないか、確認されてもその割合が低いものを「A」評価とした。ここで、撮影されたAg-Cu合金の面積に対して、ボールアップ状態の領域が専有している面積の割合が10%以上であるものをもって、発現しているボールアップの割合が高いと判断した。 Specifically, the reflection characteristics are those in which an alloy of Ag and Cu is irradiated with light having a wavelength of 365 nm and the amount of light received as reflected light is 80% or more with respect to incident light. The evaluation was “B”. Also, regarding the surface condition, a photograph of the annealed Ag—Cu alloy was taken with a photograph, and the “B” evaluation was made with a high percentage of ball-up occurring, and it was confirmed that almost no ball-up was confirmed. The thing with the low ratio was made into "A" evaluation. Here, the ratio of the area occupied by the ball-up state area is 10% or more with respect to the area of the photographed Ag—Cu alloy, and it is determined that the ratio of the developed ball-up is high. did.
 AgにCuを全く混在させない場合と比べると、Cuを微量でも混在させた方が耐熱性が上がり、ボールアップ現象の発現が抑制されるため、コンタクト抵抗の低下に寄与するものと考えられる。ただし、Ag合金に含まれるCuの比率を、重量%で0.1wt%未満とした場合には、ボールアップ現象の発現を大きく抑制できるとまではいえず、発光素子の動作電圧を低下させる効果はあまり大きくはないと考えられる。よって、発光素子の動作電圧を大幅に低下させるためには、第一電極13を構成するAg合金に含まれるCuの比率を、重量%で0.1wt%以上とするのが好ましい。 Compared with the case where Cu is not mixed at all in Ag, it is considered that the addition of even a small amount of Cu increases the heat resistance and suppresses the occurrence of the ball-up phenomenon, thereby contributing to a decrease in contact resistance. However, when the ratio of Cu contained in the Ag alloy is less than 0.1 wt% in weight%, it cannot be said that the occurrence of the ball-up phenomenon can be largely suppressed, and the effect of lowering the operating voltage of the light emitting element. Is not considered very large. Therefore, in order to significantly reduce the operating voltage of the light emitting element, it is preferable that the ratio of Cu contained in the Ag alloy constituting the first electrode 13 is 0.1 wt% or more by weight%.
 他方、Ag合金に含まれるCuの比率を、重量%で0.5wt%より多く混在させてしまうと、活性層9で生成される光に対する反射率が低下してしまうため、光取り出し効率を低下させてしまう。よって、光取り出し効率の低下を抑制する観点からは、第一電極13を構成するAg合金に含まれるCuの比率を、重量%で0.5wt%以下とするのが好ましい。 On the other hand, if the ratio of Cu contained in the Ag alloy is mixed more than 0.5 wt% by weight%, the reflectance with respect to the light generated in the active layer 9 is lowered, so that the light extraction efficiency is lowered. I will let you. Therefore, from the viewpoint of suppressing a decrease in light extraction efficiency, the ratio of Cu contained in the Ag alloy constituting the first electrode 13 is preferably 0.5 wt% or less by weight%.
 CuはAgに比べると仕事関数の大きい材料である。このため、AgにCuを混在させることで、p型半導体層11との間で良好なコンタクトを確保しやすくなると考えられる。つまり、AgにCuを混在させることで、Agの耐熱性を向上させるのみならず、第一電極13自体の仕事関数を大きくする結果、p型半導体層11との接触抵抗の低下に寄与しているものと考えられる。更に、AgにCuを混在させることで、耐酸化性が高められ、Agが酸化することが抑制されるため、反射率の低下を抑制する作用もあると考えられる。 Cu is a material with a large work function compared to Ag. For this reason, it is considered that mixing Cu with Ag makes it easy to ensure good contact with the p-type semiconductor layer 11. That is, by mixing Cu with Ag, not only the heat resistance of Ag is improved, but also the work function of the first electrode 13 itself is increased, thereby contributing to the reduction of the contact resistance with the p-type semiconductor layer 11. It is thought that there is. Furthermore, by mixing Cu with Ag, the oxidation resistance is enhanced and the Ag is suppressed from being oxidized, so that it is considered that there is also an effect of suppressing a decrease in reflectance.
 ところで、Agは酸化のみならず、硫化しやすい性質を有することが知られている。そして、Agは、酸化や硫化が生じると、別の物質に変化し反射率が低下してしまう。そこで、発光素子1が備える第一電極13は、耐硫化性を高める目的で、AgにGeを混在させている。このGeは、Cuと同様に、Agよりも仕事関数の大きな物質であるため、Geを混在させることで、反射率の低下を抑制しながら、p型半導体層11との接触抵抗を低下させることができるものと推察される。 Incidentally, Ag is known not only to oxidize but also to easily sulfidize. Then, when oxidation or sulfidation occurs, Ag changes to another substance and the reflectance decreases. Therefore, the first electrode 13 provided in the light emitting element 1 is mixed with Ge in Ag for the purpose of improving the sulfidation resistance. Since this Ge is a substance having a work function larger than that of Ag, similarly to Cu, by mixing Ge, the contact resistance with the p-type semiconductor layer 11 can be reduced while suppressing a decrease in reflectance. It is presumed that
 図9は、第一電極13に混在させるGeの濃度D2と、発光素子1の動作電圧及び光出力の関係を示す表である。図9における「電圧」とは、発光素子1に対して1Aの電流を流すために必要な動作電圧を表したものである。また、図9における「出力」とは、発光素子1に対して1Aを供給したときに取り出される光出力を、純粋Agからなる第一電極50を備える発光素子40cに1Aを供給したときに取り出される光出力を1としたときの相対値で表したものである。 FIG. 9 is a table showing the relationship between the Ge concentration D2 mixed in the first electrode 13, the operating voltage of the light-emitting element 1, and the light output. “Voltage” in FIG. 9 represents an operating voltage required to flow a current of 1 A to the light emitting element 1. Further, “output” in FIG. 9 refers to the light output taken out when 1 A is supplied to the light emitting element 1 and taken out when 1 A is supplied to the light emitting element 40 c having the first electrode 50 made of pure Ag. This is expressed as a relative value when the output light output is 1.
 図9によれば、重量%濃度でGeが0.1%wt以下の範囲内においては、第一電極13に混在させるGeの濃度を高めるほど、動作電圧を低減できていることが分かる。このことは、Geが仕事関数の大きな材料であるため、Geを混在させることで、第一電極13がp型半導体層11との間で良好なコンタクトを確保しやすくなることを示唆するものである。すなわち、コンタクト性を向上させる観点からは、微量でも第一電極13にGeを混在させるのが好ましいといえる。 FIG. 9 shows that the operating voltage can be reduced as the concentration of Ge mixed in the first electrode 13 is increased within the range where the weight% concentration of Ge is 0.1% wt or less. This suggests that since Ge is a material having a large work function, the first electrode 13 can easily secure a good contact with the p-type semiconductor layer 11 by mixing Ge. is there. That is, from the viewpoint of improving contactability, it can be said that it is preferable to mix Ge in the first electrode 13 even in a small amount.
 一方で、図9によれば、重量%濃度でGeが0.1%wt以下を超えると、0.01%wt以上0.1%wt以下の場合よりも、発光素子1の動作電圧が上昇している。これは、Geが比抵抗の大きい材料であるため、第一電極13そのものの比抵抗が上昇してしまったことに起因するものと推察される。 On the other hand, according to FIG. 9, when Ge at a concentration by weight exceeds 0.1% wt or less, the operating voltage of the light-emitting element 1 increases as compared with the case of 0.01% wt to 0.1% wt. is doing. This is presumably due to the fact that the specific resistance of the first electrode 13 itself has increased because Ge is a material having a large specific resistance.
 また、重量%濃度でGeが0.1%wt以下を超えると、光出力も低下している。これは、Geが第一電極13に多く含まれたことで、反射率が低下したことに起因するものと考えられる。 Also, when the weight percentage of Ge exceeds 0.1% wt or less, the light output also decreases. This is considered to be caused by the fact that the reflectivity was lowered due to the large amount of Ge contained in the first electrode 13.
 以上を踏まえると、発光素子1の光取り出し効率の低下を抑制しながら、動作電圧を低下させる観点からは、第一電極13に混在させるGeの濃度を、重量%で0.1wt%以下とするのが好ましいといえる。 Based on the above, from the viewpoint of reducing the operating voltage while suppressing a decrease in light extraction efficiency of the light-emitting element 1, the concentration of Ge mixed in the first electrode 13 is 0.1 wt% or less by weight%. It can be said that it is preferable.
 なお、第一電極13に混在させるGeの濃度を重量%で0.1wt%以下とした場合において、第一電極13に混在させるCuの濃度を変化させた場合には、図8と同様の結果が確認された。また、第一電極13に混在させるCuの濃度を重量%で0.5wt%以下とした場合において、第一電極13に混在させるGeの濃度を変化させた場合には、図9と同様の結果が確認された。このことから、発光素子1を、Cu及びGeを含むAg合金からなる第一電極13を備える構成とし、このAg合金に含まれるCu濃度を重量%で0.5wt%以下とし、Ge濃度を重量%で0.1wt%以下とすることで、高い光取り出し効率を維持したまま、動作電圧を低下させることができる。更に、Ag合金に含まれるCu濃度を重量%で0.1wt%以上0.5wt%以下とし、Ge濃度を重量%で0.01wt%以上0.1wt%以下とすることで、光取り出し効率を向上させる効果と、動作電圧を低下させる効果を高めることができる。 When the concentration of Ge mixed in the first electrode 13 is 0.1 wt% or less by weight%, the same result as FIG. 8 is obtained when the concentration of Cu mixed in the first electrode 13 is changed. Was confirmed. Further, when the concentration of Cu mixed in the first electrode 13 is 0.5 wt% or less by weight%, the same result as FIG. 9 is obtained when the concentration of Ge mixed in the first electrode 13 is changed. Was confirmed. Therefore, the light-emitting element 1 is configured to include the first electrode 13 made of an Ag alloy containing Cu and Ge, the Cu concentration contained in the Ag alloy is 0.5 wt% or less by weight, and the Ge concentration is weight. By setting the percentage to 0.1 wt% or less, the operating voltage can be lowered while maintaining high light extraction efficiency. Furthermore, the light extraction efficiency is improved by setting the Cu concentration contained in the Ag alloy to 0.1 wt% or more and 0.5 wt% or less in terms of wt% and the Ge concentration being 0.01 wt% or more and 0.1 wt% or less in terms of wt%. The effect of improving and the effect of reducing the operating voltage can be enhanced.
 図10は、発光素子1と発光素子40cの双方において、p型半導体層11として、第一電極(13,50)と接触している領域、すなわちp型コンタクト層をGaNで形成した場合と、AlGaN(ここではAl0.1Ga0.9N)で形成した場合とで、動作電圧を比較した表である。図10には、発光素子(1,40c)に対して1Aの電流を供給するために必要な動作電圧が記載されている。 FIG. 10 shows a case where a region in contact with the first electrode (13, 50), that is, a p-type contact layer is formed of GaN as the p-type semiconductor layer 11 in both the light-emitting element 1 and the light-emitting element 40c. AlGaN (where the Al 0.1 Ga 0.9 N) and a case formed by a table comparing the operating voltage. FIG. 10 shows an operating voltage necessary for supplying a current of 1 A to the light emitting element (1, 40c).
 なお、この検証に用いられた発光素子1は、上述したステップS1~S13を経て製造された素子が採用された。また、発光素子40cについても、ステップS5及びS6において、Ag合金に代えて純粋なAgを成膜した点を除いては、発光素子1と同様の手順により作成された素子が採用された。 The light-emitting element 1 used for this verification was an element manufactured through steps S1 to S13 described above. In addition, as for the light emitting element 40c, an element produced by the same procedure as that of the light emitting element 1 was adopted except that pure Ag was formed in place of the Ag alloy in Steps S5 and S6.
 AlGaNはGaNに比べてバンドギャップエネルギーが高いため、正孔濃度が低くなり、動作電圧が高くなることが予想される。このため、365nm以上405nm以下の波長帯の光(例えば近紫外光)の発光素子を製造する場合においても、p型コンタクト層としてはGaNが用いられることが従来行われている。 Since AlGaN has a higher band gap energy than GaN, it is expected that the hole concentration will be lower and the operating voltage will be higher. For this reason, in the case of manufacturing a light emitting element having a wavelength band of 365 nm or more and 405 nm or less (for example, near-ultraviolet light), GaN is conventionally used as the p-type contact layer.
 しかし、図10によれば、Ag合金からなる第一電極13を備えた発光素子1によれば、p型コンタクト層をAlGaNで構成しても、GaNで構成した場合とほぼ同程度の動作電圧が実現できていることが確認される。これに対し、純粋なAgからなる第一電極50を備えた発光素子40cの場合、p型コンタクト層をAlGaNで構成した場合には、GaNで構成した場合と比べて動作電圧が高くなっている。これは、前述したように、AlGaNでは高い正孔濃度を実現することが難しいため、コンタクト抵抗がGaNの場合よりも高くなっていることが原因であると考えられる。 However, according to FIG. 10, according to the light emitting device 1 including the first electrode 13 made of an Ag alloy, the p-type contact layer is made of AlGaN, but the operating voltage is almost the same as that of the case of being made of GaN. Is confirmed to be realized. On the other hand, in the case of the light emitting element 40c including the first electrode 50 made of pure Ag, the operating voltage is higher when the p-type contact layer is made of AlGaN than when it is made of GaN. . As described above, since it is difficult to achieve a high hole concentration with AlGaN, it is considered that the contact resistance is higher than that with GaN.
 以上の検証の結果から、第一電極13をCu及びGeを含むAg合金で構成した発光素子1によれば、第一電極50を純粋なAgで構成した発光素子40cに比べて、p型半導体層11との間のコンタクト抵抗の低減を図ることができ、低い動作電圧が実現できていることが分かる。また、混在させるCu及びGeを所定の範囲内の濃度にすることで、Ag合金で構成される第一電極13についてもAg電極と同程度又はそれ以上の反射率を実現できる。 As a result of the above verification, according to the light-emitting element 1 in which the first electrode 13 is made of an Ag alloy containing Cu and Ge, compared to the light-emitting element 40 c in which the first electrode 50 is made of pure Ag, a p-type semiconductor. It can be seen that the contact resistance with the layer 11 can be reduced and a low operating voltage can be realized. In addition, by setting the mixed Cu and Ge to a concentration within a predetermined range, the first electrode 13 made of an Ag alloy can also achieve a reflectance equivalent to or higher than that of the Ag electrode.
 なお、Geは耐硫化性を有する性質がある。このため、第一電極13にGeを混在させることで、使用と共にAgが硫化することで反射率が低下するのを抑制する効果も得られる。図9によれば、Ge濃度を0.1wt%以下とした第一電極13を備える発光素子1が、純粋Agからなる第一電極50を備える発光素子40cと同程度の光出力である旨が示されているが、これは短い時間で1Aを供給したことによるものである。つまり、連続的に発光させた場合には、時間経過と共にAgが硫化することで発光素子40cにおいては第一電極50の反射率が低下する一方、発光素子1が備える第一電極13は、耐硫化性が高められているため、発光素子40cよりも反射率の低下の速度が遅い。この結果、時間の経過と共に、発光素子40cの光出力が、発光素子1の光出力よりも低下することが想定される。 In addition, Ge has a property which has a sulfidation resistance. For this reason, by mixing Ge in the 1st electrode 13, the effect which suppresses that a reflectance falls by Ag sulfidation with use is also acquired. According to FIG. 9, the light emitting element 1 including the first electrode 13 having a Ge concentration of 0.1 wt% or less has the same light output as the light emitting element 40 c including the first electrode 50 made of pure Ag. As shown, this is due to the supply of 1A in a short time. That is, when light is emitted continuously, the reflectance of the first electrode 50 decreases in the light emitting element 40c due to the sulfurization of Ag over time, while the first electrode 13 included in the light emitting element 1 Since the sulfidity is enhanced, the rate of decrease in reflectance is slower than that of the light emitting element 40c. As a result, it is assumed that the light output of the light emitting element 40c is lower than the light output of the light emitting element 1 with the passage of time.
 [別実施形態]
 以下、別実施形態につき説明する。
[Another embodiment]
Hereinafter, another embodiment will be described.
 〈1〉 図11に示す発光素子1aのように、電流遮断層14を備えずに当該箇所に絶縁層24を備える構成を採用しても構わない。ただし、反射率の高い材料からなる電流遮断層14を備える発光素子1の方が、発光素子1aよりも更に光取り出し効率を高めることができる。 <1> As in the light emitting element 1a shown in FIG. 11, a configuration in which the insulating layer 24 is provided in the place without including the current blocking layer 14 may be adopted. However, the light-emitting element 1 including the current blocking layer 14 made of a highly reflective material can further increase the light extraction efficiency than the light-emitting element 1a.
 なお、図1に示す発光素子1において、電流遮断層14については、純粋なAgで構成しても構わない。この領域は、p型半導体層11とのコンタクト性の問題は生じないため、純粋なAgで構成しても、発光素子1と同様に動作電圧を低下させることができる。ただし、純粋なAgの場合、酸化又は硫化が生じやすく、これによって反射率が低下する可能性があるため、電流遮断層14についてもAg合金で構成した方が、更に高い光取り出し効率が実現される。 In the light emitting device 1 shown in FIG. 1, the current blocking layer 14 may be made of pure Ag. Since this region does not have a problem of contact with the p-type semiconductor layer 11, the operating voltage can be lowered similarly to the light-emitting element 1 even if it is composed of pure Ag. However, in the case of pure Ag, oxidation or sulfidation is likely to occur, and this may reduce the reflectance. Therefore, the current blocking layer 14 is also made of an Ag alloy, so that higher light extraction efficiency is realized. The
 〈2〉 図10で参照したように、p型コンタクト層をGaNで構成した場合においても、発光素子1は、発光素子40cよりも低い動作電圧が実現できている。このため、p型半導体層11のうち、p型コンタクト層についてはGaNで構成した発光素子1においても、従来よりも低い動作電圧を実現することができる。 <2> As shown in FIG. 10, even when the p-type contact layer is made of GaN, the light-emitting element 1 can achieve an operating voltage lower than that of the light-emitting element 40c. For this reason, the p-type contact layer of the p-type semiconductor layer 11 can achieve a lower operating voltage than the conventional one even in the light-emitting element 1 made of GaN.
 〈3〉 上述した実施形態では、第一電極13として、AgにGe及びCuを混在させた合金からなるものとした。これに加えて、更に動作電圧を低下させるべく、第一電極13の構成材料として、仕事関数の大きい材料であるPdを微量に混在させるものとしても構わない。また、第一電極13の構成材料として、反射率を向上させるべく、近紫外領域の光に対して高い反射率を示す材料であるAlを微量に混在させるものとしても構わない。なお、第一電極13にAlを混在させることで、Agのボールアップを抑制する効果も発現するため、動作電圧を更に低下させる効果が得られる。 <3> In the embodiment described above, the first electrode 13 is made of an alloy in which Ge and Cu are mixed in Ag. In addition to this, as a constituent material of the first electrode 13, a small amount of Pd, which is a material having a large work function, may be mixed in order to further reduce the operating voltage. In addition, as a constituent material of the first electrode 13, a small amount of Al which is a material exhibiting a high reflectance with respect to light in the near ultraviolet region may be mixed in order to improve the reflectance. In addition, since the effect which suppresses the ball up of Ag is also expressed by mixing Al with the 1st electrode 13, the effect which further reduces operating voltage is acquired.
 また、第一電極13を形成する工程(ステップS5)において、Ag合金の上面に膜厚が数nm程度のNi薄膜を形成しても構わない。このような構成とすることで、Agのボールアップを抑制する効果を更に高めることができる。 In the step of forming the first electrode 13 (step S5), a Ni thin film having a thickness of about several nm may be formed on the upper surface of the Ag alloy. By setting it as such a structure, the effect which suppresses the ball up of Ag can further be heightened.
 〈4〉 上述した実施形態では、n型半導体層7がAlGaNで構成されているものとして説明したが、AlGaNに限らず、例えばAlInGaNなど、Al及びGaを含む窒化物半導体で構成されているものとしても構わない。p型半導体層11においても同様である。 <4> In the embodiment described above, the n-type semiconductor layer 7 has been described as being composed of AlGaN. However, the present invention is not limited to AlGaN, and is composed of a nitride semiconductor containing Al and Ga, such as AlInGaN. It does not matter. The same applies to the p-type semiconductor layer 11.
 なお、本発明は、活性層9から射出される光の波長が365nm以上405nm以下である場合において、n型半導体層7又はp型半導体層11の一部に薄膜のGaN層が含まれる構成を権利範囲から排除する趣旨ではない。 In the present invention, when the wavelength of light emitted from the active layer 9 is 365 nm or more and 405 nm or less, the n-type semiconductor layer 7 or the p-type semiconductor layer 11 includes a thin GaN layer. It is not intended to be excluded from the scope of rights.
 〈5〉 上述した実施形態では、活性層9が波長365nm以上405nm以下の光を生成可能な窒化物半導体で構成されている場合について説明したが、他の波長の光を生成可能な材料で構成されているものとしても構わない。 <5> In the above-described embodiment, the case where the active layer 9 is formed of a nitride semiconductor capable of generating light having a wavelength of 365 nm to 405 nm is described. However, the active layer 9 is formed of a material capable of generating light of other wavelengths. It does not matter if it is
    1,1a   :  窒化物半導体発光素子
    3   :  支持基板
    5   :  半導体層
    7   :  n型半導体層
    9   :  活性層
   11   :  p型半導体層
   13   :  第一電極
   14   :  電流遮断層
   15   :  第二電極
   17   :  保護層
   19   :  接合層
   21   :  接合層
   23   :  保護層
   24   :  絶縁層
   25   :  成長基板
   27   :  アンドープ層
   40a,40b,40c   :  検証用の半導体発光素子
   41   :  素子基板
   43   :  パッド電極
   45   :  ボンディング電極
   50   :  Agからなる第一電極
   60   :  斑点(ボールアップ)
   90   :  従来の発光素子
   91   :  支持基板
   92   :  導電層
   93   :  反射膜
   94   :  絶縁層
   95   :  反射電極
   96   :  p型半導体層
   97   :  活性層
   98   :  n型半導体層
   99   :  半導体層
  100   :  n側電極
 
DESCRIPTION OF SYMBOLS 1,1a: Nitride semiconductor light-emitting device 3: Support substrate 5: Semiconductor layer 7: N-type semiconductor layer 9: Active layer 11: P-type semiconductor layer 13: First electrode 14: Current blocking layer 15: Second electrode 17: Protective layer 19: bonding layer 21: bonding layer 23: protective layer 24: insulating layer 25: growth substrate 27: undoped layer 40a, 40b, 40c: semiconductor light emitting device for verification 41: device substrate 43: pad electrode 45: bonding electrode 50: First electrode made of Ag 60: Spot (ball up)
90: Conventional light emitting device 91: Support substrate 92: Conductive layer 93: Reflective film 94: Insulating layer 95: Reflective electrode 96: P-type semiconductor layer 97: Active layer 98: N-type semiconductor layer 99: Semiconductor layer 100: N side electrode

Claims (7)

  1.  支持基板と、
     前記支持基板の上層に形成され、n型半導体層、p型半導体層、及び、前記支持基板の面に直交する方向に前記n型半導体層と前記p型半導体層とで挟まれた活性層を含む半導体層と、
     前記半導体層の面のうち、前記支持基板に近い側の面上に形成された第一電極と、
     前記半導体層の面のうち、前記第一電極が形成されている側とは反対側の面上に形成された第二電極と、
     前記第一電極の面のうち、前記半導体層が形成されている側とは反対側の面上に形成された導電性の保護層とを有し、
     前記半導体層は、窒化物半導体で構成され、
     前記保護層は、融点がAgより高い金属材料を含んで構成され、
     前記第一電極は、Ge及びCuを含むAg合金で構成されることを特徴とする窒化物半導体発光素子。
    A support substrate;
    An n-type semiconductor layer, a p-type semiconductor layer, and an active layer sandwiched between the n-type semiconductor layer and the p-type semiconductor layer in a direction perpendicular to the surface of the support substrate; Including a semiconductor layer;
    Of the surface of the semiconductor layer, a first electrode formed on the surface near the support substrate;
    A second electrode formed on the surface of the semiconductor layer opposite to the side on which the first electrode is formed;
    A conductive protective layer formed on the surface of the first electrode opposite to the surface on which the semiconductor layer is formed;
    The semiconductor layer is made of a nitride semiconductor,
    The protective layer includes a metal material having a melting point higher than Ag,
    The first electrode is composed of an Ag alloy containing Ge and Cu.
  2.  前記保護層の面のうち、前記第一電極が形成されている側とは反対側の面上に形成された接合層を有し、
     前記保護層は、Pt、Tiの少なくとも一方を含んで構成されることを特徴とする請求項1に記載の窒化物半導体発光素子。
    Of the surface of the protective layer, having a bonding layer formed on the surface opposite to the side on which the first electrode is formed,
    The nitride semiconductor light emitting element according to claim 1, wherein the protective layer includes at least one of Pt and Ti.
  3.  前記p型半導体層が前記第一電極に接触する構成であることを特徴とする請求項1又は2に記載の窒化物半導体発光素子。 The nitride semiconductor light emitting element according to claim 1 or 2, wherein the p-type semiconductor layer is in contact with the first electrode.
  4.  前記n型半導体層、及び前記p型半導体層は、いずれもAl及びGaを含む窒化物半導体で構成され、
     前記活性層は、波長365nm以上405nm以下の光を生成可能な窒化物半導体で構成されることを特徴とする請求項3に記載の窒化物半導体発光素子。
    The n-type semiconductor layer and the p-type semiconductor layer are both composed of a nitride semiconductor containing Al and Ga.
    4. The nitride semiconductor light emitting device according to claim 3, wherein the active layer is made of a nitride semiconductor capable of generating light having a wavelength of 365 nm or more and 405 nm or less.
  5.  前記第一電極を構成するAg合金がAlを含むことを特徴とする請求項1~4のいずれか1項に記載の窒化物半導体発光素子。 The nitride semiconductor light emitting element according to any one of claims 1 to 4, wherein the Ag alloy constituting the first electrode contains Al.
  6.  前記第一電極を構成するAg合金がPdを含むことを特徴とする請求項1~5のいずれか1項に記載の窒化物半導体発光素子。 6. The nitride semiconductor light emitting device according to claim 1, wherein the Ag alloy constituting the first electrode contains Pd.
  7.  前記第一電極を構成するAg合金は、Geの質量%濃度が0.1wt%以下であり、Cuの質量%濃度が0.5wt%以下であることを特徴とする請求項1~6のいずれか1項に記載の窒化物半導体発光素子。
     
     
    7. The Ag alloy constituting the first electrode has a Ge mass% concentration of 0.1 wt% or less and a Cu mass% concentration of 0.5 wt% or less. 2. The nitride semiconductor light emitting device according to claim 1.

PCT/JP2016/055177 2015-03-31 2016-02-23 Nitride semiconductor light-emitting element WO2016158093A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015074281A JP2016195176A (en) 2015-03-31 2015-03-31 Nitride semiconductor light emitting element
JP2015-074281 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016158093A1 true WO2016158093A1 (en) 2016-10-06

Family

ID=57006969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055177 WO2016158093A1 (en) 2015-03-31 2016-02-23 Nitride semiconductor light-emitting element

Country Status (3)

Country Link
JP (1) JP2016195176A (en)
TW (1) TW201705534A (en)
WO (1) WO2016158093A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114588B2 (en) * 2017-02-08 2021-09-07 Ushio Denki Kabushiki Kaisha Semiconductor light emitting element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI753106B (en) * 2017-02-16 2022-01-21 韓商Lg伊諾特股份有限公司 Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031016A1 (en) * 2003-09-26 2005-04-07 Furuya Metal Co., Ltd. Silver alloy, sputtering target material thereof, and thin film thereof
JP2010056423A (en) * 2008-08-29 2010-03-11 Meijo Univ Electrode for semiconductor light-emitting element, and semiconductor light emitting element
JP2015032798A (en) * 2013-08-06 2015-02-16 ウシオ電機株式会社 Method of manufacturing nitride semiconductor light-emitting element
JP2015050381A (en) * 2013-09-03 2015-03-16 ウシオ電機株式会社 Semiconductor light-emitting element, and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031016A1 (en) * 2003-09-26 2005-04-07 Furuya Metal Co., Ltd. Silver alloy, sputtering target material thereof, and thin film thereof
JP2010056423A (en) * 2008-08-29 2010-03-11 Meijo Univ Electrode for semiconductor light-emitting element, and semiconductor light emitting element
JP2015032798A (en) * 2013-08-06 2015-02-16 ウシオ電機株式会社 Method of manufacturing nitride semiconductor light-emitting element
JP2015050381A (en) * 2013-09-03 2015-03-16 ウシオ電機株式会社 Semiconductor light-emitting element, and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114588B2 (en) * 2017-02-08 2021-09-07 Ushio Denki Kabushiki Kaisha Semiconductor light emitting element

Also Published As

Publication number Publication date
TW201705534A (en) 2017-02-01
JP2016195176A (en) 2016-11-17

Similar Documents

Publication Publication Date Title
JP4592388B2 (en) III-V compound semiconductor light emitting device and method for manufacturing the same
JP5358429B2 (en) Method for forming ohmic electrode and semiconductor light emitting device
US9437778B2 (en) Semiconductor light-emitting element and method for producing the same
WO2015141517A1 (en) Semiconductor light-emitting element and method for manufacturing same
US11114588B2 (en) Semiconductor light emitting element
WO2016158093A1 (en) Nitride semiconductor light-emitting element
JP2015191976A (en) Semiconductor light emitting element and manufacturing method of the same
JP5974980B2 (en) Nitride semiconductor light emitting device
JP2017069282A (en) Semiconductor light-emitting element and method for manufacturing the same
KR101707358B1 (en) Nitride light emitting element and method for manufacturing same
WO2016072326A1 (en) Semiconductor light-emitting element
JP2016018974A (en) Semiconductor light emitting element
JP2016195187A (en) Semiconductor light emitting element
WO2014192428A1 (en) Nitride semiconductor light emitting element and method for manufacturing same
JP6025058B2 (en) Nitride semiconductor light emitting device
JP6690139B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2017005156A (en) Semiconductor light-emitting element and method of manufacturing the same
JP6004203B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2016195168A (en) Semiconductor light emitting element and manufacturing method of the same
JP6468459B2 (en) Semiconductor light emitting device
JP2017139298A (en) Semiconductor light-emitting device and method for manufacturing the same
WO2015029727A1 (en) Semiconductor light emitting element
JP2015050381A (en) Semiconductor light-emitting element, and method of manufacturing the same
JP5725069B2 (en) Nitride semiconductor light emitting device
JP2016192527A (en) Semiconductor light-emitting element and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771977

Country of ref document: EP

Kind code of ref document: A1