WO2016157696A1 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
WO2016157696A1
WO2016157696A1 PCT/JP2016/000904 JP2016000904W WO2016157696A1 WO 2016157696 A1 WO2016157696 A1 WO 2016157696A1 JP 2016000904 W JP2016000904 W JP 2016000904W WO 2016157696 A1 WO2016157696 A1 WO 2016157696A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
insulating sheet
cell module
cell strings
string
Prior art date
Application number
PCT/JP2016/000904
Other languages
French (fr)
Japanese (ja)
Inventor
和生 太田
亮治 内藤
村上 洋平
裕幸 神納
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017509203A priority Critical patent/JP6365911B2/en
Publication of WO2016157696A1 publication Critical patent/WO2016157696A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module.
  • Solar cells are expected as a new energy source because they can directly convert clean and infinitely supplied solar energy into electrical energy.
  • a solar battery cell is a photoelectric conversion element having a thickness of about 200 ⁇ m, and its output per sheet is about several watts and is fragile. Therefore, when a solar cell is used as a power source for a house or a building, a solar cell module configured to increase output by electrically connecting a plurality of solar cells and protect the solar cells from impact. Is used.
  • the solar cell module is configured as follows.
  • a solar cell string in which a plurality of solar cells are electrically connected in series using an inter-cell wiring material having conductivity is prepared.
  • a plurality of solar cell strings are further electrically connected using an inter-string wiring material, and a power extraction wiring material connected to the terminal box is provided from the solar cell string arranged at the end of the solar cell module.
  • the whole is sealed in a resin such as ethylene vinyl acetate copolymer (EVA), and further, glass or a composite resin sheet for protecting from impacts is disposed outside as a protective member.
  • EVA ethylene vinyl acetate copolymer
  • the present invention provides a solar cell module with improved reliability.
  • a solar cell module includes a plurality of solar cell strings, an insulating sheet made of a resin sheet, an interstring wiring material that electrically connects the solar cell strings, and power extraction extending from the solar cell string
  • a solar cell module comprising at least one of the wiring members in this order, wherein the insulating sheet is disposed across the adjacent solar cell strings, and the maximum expansion and contraction direction of the insulating sheet is the plurality of solar cell strings. It is different from the arrangement direction.
  • a solar cell module with improved reliability can be provided.
  • FIG. 1 is a layout diagram of solar cell modules according to the first embodiment.
  • FIG. 2 is a plan view of the surface side of the solar cell module according to the first embodiment.
  • FIG. 3 is a plan view of the back side of the solar cell module according to the first embodiment.
  • FIG. 4 is a diagram illustrating a state of a resin sheet in a previous stage applied to the solar cell module.
  • FIG. 5 is a layout diagram of solar cell modules according to the second embodiment.
  • FIG. 6 is a plan view of the surface side of the solar cell module according to the third embodiment.
  • FIG. 7 is a plan view of the back surface side of the solar cell module according to the third embodiment.
  • FIG. 1 is a layout diagram of a solar cell module 100 according to the first embodiment.
  • a plurality of solar cell strings 10 to be described later are protected from both front and back surfaces by fillers 50a and 50b made of a resin sheet.
  • the solar cell module 100 is provided with the surface side protection board 60 which protects the filler 50a, and the back surface side protective material 70 which protects the filler 50b.
  • the material of the fillers 50a and 50b is preferably selected from the group consisting of thermoplastic resins such as polyolefins, polyethylenes, polyphenylenes and copolymers thereof, or thermosetting resins. Fillers 50a and 50b are cured by thermocompression bonding.
  • a polyolefin resin is used for the filler 50a and an ethylene vinyl acetate copolymer (EVA) is used for the filler 50b, but the combination is not limited thereto.
  • the surface-side protection plate 60 is made of a material that has high light transmittance and is hard enough to protect the surface of the solar cell module 100 from falling objects.
  • a resin material such as an acrylic plate may be used, tempered glass is used in this embodiment.
  • the back surface side protection material 70 may be formed with a glass plate, an acrylic plate, etc. similarly to the surface side protection plate 60, the composite resin sheet with high weather resistance may be used.
  • a composite resin sheet based on polyethylene terephthalate (PET) is used.
  • FIG. 2 is a plan view of the surface side of the solar cell module 100 according to the first embodiment.
  • the solar cell module 100 includes a plurality of solar cell strings 10 in which a plurality of solar cells are connected in series by inter-cell wiring members 20.
  • the plurality of solar cell strings 10 are electrically connected by the inter-string wiring member 30, and the power extraction wiring member 40 extends from the solar cell string located at the end of the solar cell module 100.
  • the inter-string wiring member 30 and the power extraction wiring member 40 are disposed on the back side of the solar cell string 10.
  • FIG. 3 is a plan view of the back side of the solar cell module 100 according to the first embodiment. Note that FIG. 3 does not show parts unnecessary for describing the features of the present embodiment.
  • an electric power extraction wiring member 40 extends from the solar cell string 10 at the end of the solar cell module 100.
  • the inter-string wiring member 30 and the power extraction wiring member 40 are arranged at positions overlapping the solar cell string. For this reason, the inter-string wiring member 30 and the power extraction wiring member 40 and the solar cell string 10 are not connected to each other so that the inter-string wiring member 30 and the power extraction wiring member 40 and the solar cell string 10 do not short-circuit.
  • An insulating sheet 80 made of a resin material is disposed.
  • the insulating sheet 80 is not particularly limited as long as it is a soft material made of an insulator, but is preferably a thin composite resin sheet made of PET, polyethylene or the like. In this embodiment, a composite resin sheet having a PET film as a base material is used. In addition, it is preferable that the width
  • FIG. 4 is a diagram illustrating a state of a resin sheet in a previous stage applied to the solar cell module.
  • the composite resin sheet is wound into a single roll while being pulled strongly in the final stage of the manufacturing process, and then molded using a technique such as cutting or punching.
  • MD Machine Direction
  • TD Transverse Direction
  • the stretching stress in the MD direction is inherent.
  • the expansion rate in the MD direction is larger than the expansion rate in the TD direction. Therefore, in the present specification, this MD direction is defined as a “maximum expansion / contraction direction”.
  • the winding direction of the resin sheet can also be measured by confirming the orientation of the molecules in the resin using a chemical analysis technique.
  • the insulating sheet 80 made of a composite resin sheet is disposed for the purpose of insulating the solar cell string 10 from the inter-string wiring member 30 and the power extraction wiring member 40, in the manufacturing process of the solar cell module 100, the filler 50a and When the 50b is thermocompression bonded, the insulating sheet 80 may be deformed or stretched.
  • the inventor of the present application has found that when the insulating sheet 80 is arranged so as to satisfy a specific condition, the insulating sheet 80 contracts and the interval between the solar cell strings 10 is narrowed. By narrowing the space between the solar cell strings 10, the contact between the solar cells constituting the solar cell string 10, that is, the risk of a short circuit increases. That is, the present embodiment is a configuration for reducing the risk of short-circuiting of the solar cell string 10 due to the shrinkage of the insulating sheet 80.
  • the insulating sheet 80 is disposed as shown in FIG. That is, the insulating sheet 80 is arranged so that the arrangement direction (x direction) of the solar cell strings 10 and the maximum expansion / contraction direction of the insulating sheet 80 do not coincide.
  • the insulating sheet 80 is arranged so that the maximum expansion / contraction direction of the insulating sheet 80 is the y direction. That is, the arrangement direction of the solar cell strings 10 and the maximum expansion / contraction direction of the insulating sheet 80 are orthogonal to each other.
  • the expansion / contraction amount of the insulating sheet 80 in the x direction can be reduced.
  • the space between the solar cell strings 10 disposed so as to be in contact with the insulating sheet 80 is suppressed, so that the solar cell string 10 is configured.
  • the possibility of a short circuit between solar cells can be reduced.
  • the term “perpendicular” between the arrangement direction of the solar cell strings 10 and the maximum expansion / contraction direction of the insulating sheet 80 indicates a range of about 90 ° ⁇ 10 °. If the arrangement direction of the solar cell strings 10 and the maximum expansion / contraction direction of the insulating sheet 80 are not matched, the amount of expansion / contraction in the y direction can be reduced as compared with the case where they match. effective. In order to have a certain effect, the crossing angle range between the arrangement direction of the solar cell strings 10 and the maximum expansion / contraction direction of the insulating sheet 80 should be 90 ° ⁇ 45 °. preferable.
  • variety of the insulating sheet 80 is narrower than one solar cell, even when the insulating sheet 80 contracts, it is electrically connected by the solar cell in contact with the insulating sheet 80 and the wiring material. The distance between the connected solar cells is not reduced. Therefore, the possibility of contact between the solar cells in the maximum expansion / contraction direction of the insulating sheet 80 is extremely small.
  • FIG. 5 is a layout diagram of the solar cell module 200 according to the second embodiment.
  • the schematic configuration of the solar cell module 200, the arrangement of the solar cell string 10, the positional relationship between the solar cell string 10 and the inter-string wiring member 30, and the positional relationship between the solar cell string 10 and the power extraction wiring member 40 are as follows. Since this is the same as the first embodiment, the description thereof is omitted.
  • the fillers 50a and 50b for sealing the solar cell string 10 and the back surface side protective material 70 are all resin sheets molded through a manufacturing process similar to the insulating sheet 80, and are in the MD direction.
  • the stretching stress is inherent.
  • the respective resin sheets are arranged so that the extending direction of the solar cell string 10 and the maximum expansion / contraction direction (MD direction) of each resin sheet are orthogonal to each other. That is, referring to the coordinates in FIG. 5, the solar cell string 10 extends in the y direction, and the plurality of solar cell strings 10 are arranged in the x direction.
  • the maximum expansion / contraction direction of the fillers 50a and 50b and the back surface side protection member 70 is the x direction
  • the maximum expansion / contraction direction of the insulating sheet 80 is the y direction.
  • the solar cell string 10 has a configuration in which a plurality of solar cells are connected in series using the inter-cell wiring member 20.
  • the extending direction of the solar cell string 10 is the same as the length direction of the inter-cell wiring member 20.
  • the inter-cell wiring member 20 Since most of the length of the inter-cell wiring member 20 is electrically and physically connected to the solar cells and is fixed, when the interval between the solar cells changes, the inter-cell wiring member 20 The portion not connected to the solar battery cell is bent. If the bending of the inter-cell wiring member 20 is repeated over a long period of time, the risk that the inter-cell wiring member 20 is deteriorated due to metal fatigue increases.
  • the maximum expansion / contraction direction of the fillers 50a and 50b and the back surface side protection member 70 is defined as the extending direction of the solar cell string 10, that is, the cell.
  • the direction perpendicular to the length direction of the intermediate wiring member 20 (x direction) is used.
  • the maximum expansion / contraction direction of the insulating sheet 80 is the y direction as described above.
  • the maximum expansion / contraction directions of the fillers 50a and 50b and the back surface side protective material 70 are all perpendicular to the length direction of the inter-cell wiring member 20, This arrangement method may be selected for at least one of the materials 50 a and 50 b and the back surface side protective material 70. This also has the effect that the stretching stress in the length direction of the inter-cell wiring member 20 is relaxed. That is, the maximum expansion / contraction direction and the length direction of the inter-cell wiring member 20 may be different only for one type or two types of the fillers 50 a and 50 b and the back surface side protective material 70.
  • FIG. 6 is a plan view of the surface side of the solar cell module 300 according to the third embodiment.
  • the schematic configuration of the solar cell module 300 is the same as that of the first embodiment, and the arrangement direction of the fillers 50a and 50b and the back surface side protective material 70 is the same as that of the second embodiment, and thus the description thereof is omitted.
  • the positional relationship between the solar cell string 10 and the inter-string wiring member 31 and the positional relationship between the solar cell string 10 and the power extraction wiring member 41 are as shown in FIGS. That is, as can be seen from FIG. 6 and FIG. 7, in this embodiment, the inter-string wiring member 31 is arranged at a position that does not overlap the solar battery string 10, and the power extraction wiring member 41 is on the back surface side of the solar battery cell. Has been placed.
  • the solar battery cell is a thin and fragile component as described above. Therefore, when the solar battery string 10 is sandwiched between the fillers 50a and 50b and heated under pressure to cure the fillers 50a and 50b, there should be as little irregularities or steps as possible on the front and back sides of the solar cells. Good. For this reason, the connecting portion between the inter-string wiring member 31 and the inter-cell wiring member 20, which tend to have many connecting portions, is arranged so as not to overlap the solar battery cell. Thereby, the production yield of the solar cell module 300 can be kept high while increasing the amount of power generation per area of the solar cell module 300.
  • the method for connecting the inter-cell wiring member 20 to the solar battery cell is not particularly limited. Specifically, it may be connected by soldering using a copper inter-cell wiring material having a structure in which a copper core wire is solder-coated. In addition, a solder-coated copper inter-cell wiring material or a copper inter-cell wiring material without solder coating may be prepared and connected to the solar battery cell using a resin adhesive.
  • the outer shape of the solar cell module according to the first to third embodiments is a rectangle having a long side and a short side when the solar cell string 10 is viewed in plan (when viewed from the XY plane). And the arrangement direction of the plurality of solar cell strings 10 may be orthogonal to each other.

Abstract

A solar cell module (100) is provided with, in this order: a plurality of solar cell strings (10); an insulating sheet (80) formed from a resin sheet; and at least one of inter-string wiring material (30) electrically connecting the solar cell strings (10) to each other and electricity extraction wiring material (40) extending from the solar cell strings (10). The insulating sheet (80) is disposed so as to straddle adjacent solar cell strings (10), and the direction of the maximum expansion and contraction of the insulating sheet (80) is different from the direction in which the plurality of solar cell strings (10) is arranged.

Description

太陽電池モジュールSolar cell module
 本発明は、太陽電池モジュールに関する。 The present invention relates to a solar cell module.
 太陽電池は、クリーンで無尽蔵に供給される太陽光エネルギーを直接電気エネルギーに変換することができるため、新しいエネルギー源として期待されている。 Solar cells are expected as a new energy source because they can directly convert clean and infinitely supplied solar energy into electrical energy.
 一般に、太陽電池セルは、厚さ200μm程度の光電変換素子であって、1枚当たりの出力は数ワット程度であり、かつ脆い。そのため、家屋やビル等の電源として太陽電池を用いる場合には、複数の太陽電池セルを電気的に接続することによって出力を増大させ、太陽電池セルを衝撃から保護するように構成した太陽電池モジュールが用いられる。太陽電池モジュールは以下のように構成される。 Generally, a solar battery cell is a photoelectric conversion element having a thickness of about 200 μm, and its output per sheet is about several watts and is fragile. Therefore, when a solar cell is used as a power source for a house or a building, a solar cell module configured to increase output by electrically connecting a plurality of solar cells and protect the solar cells from impact. Is used. The solar cell module is configured as follows.
 まず、導電性を有するセル間配線材を用いて複数の太陽電池セルを電気的に直列に接続した太陽電池ストリングを準備する。続いて、ストリング間配線材を用いて複数の太陽電池ストリングを更に電気的に接続し、太陽電池モジュールの端に配置された太陽電池ストリングからは、端子ボックスへと繋がる電力取り出し配線材を設ける。全体をエチレン酢酸ビニル共重合体(EVA)等の樹脂中に封止し、更にその外部に、衝撃から保護するためのガラスや複合樹脂シートを保護部材として配置する。 First, a solar cell string in which a plurality of solar cells are electrically connected in series using an inter-cell wiring material having conductivity is prepared. Subsequently, a plurality of solar cell strings are further electrically connected using an inter-string wiring material, and a power extraction wiring material connected to the terminal box is provided from the solar cell string arranged at the end of the solar cell module. The whole is sealed in a resin such as ethylene vinyl acetate copolymer (EVA), and further, glass or a composite resin sheet for protecting from impacts is disposed outside as a protective member.
 ところで、太陽電池モジュールには、単位面積当たりの発電量を増加させたいという要求がある。そこで、ストリング間配線材や電力取り出し配線材を太陽電池ストリングの背面側に配置して、太陽電池モジュールの面積を減少させる取り組みがされている。このとき、配線材同士の間や、配線材と太陽電池ストリングとの間には、回路の短絡を防止するための絶縁シートが配置される。 Incidentally, there is a demand for a solar cell module to increase the amount of power generation per unit area. In view of this, an effort has been made to reduce the area of the solar cell module by arranging an interstring wiring material and a power extraction wiring material on the back side of the solar cell string. At this time, an insulating sheet for preventing a short circuit is disposed between the wiring members or between the wiring member and the solar cell string.
特開2007-294866号公報JP 2007-294866 A
 本発明は、信頼性が向上した太陽電池モジュールを提供する。 The present invention provides a solar cell module with improved reliability.
 本発明の一態様に係る太陽電池モジュールは、複数の太陽電池ストリングと、樹脂シートからなる絶縁シートと、前記太陽電池ストリング同士を電気的に接続するストリング間配線材及び太陽電池ストリングから延びる電力取り出し配線材の少なくとも一方と、をこの順に備える太陽電池モジュールであって、前記絶縁シートは、隣接する前記太陽電池ストリングに跨って配置され、前記絶縁シートの最大伸縮方向は、前記複数の太陽電池ストリングの配列方向と異なっている。 A solar cell module according to an aspect of the present invention includes a plurality of solar cell strings, an insulating sheet made of a resin sheet, an interstring wiring material that electrically connects the solar cell strings, and power extraction extending from the solar cell string A solar cell module comprising at least one of the wiring members in this order, wherein the insulating sheet is disposed across the adjacent solar cell strings, and the maximum expansion and contraction direction of the insulating sheet is the plurality of solar cell strings. It is different from the arrangement direction.
 本発明によれば、信頼性が向上した太陽電池モジュールを提供することができる。 According to the present invention, a solar cell module with improved reliability can be provided.
図1は、第1の実施形態に係る太陽電池モジュールの配置図である。FIG. 1 is a layout diagram of solar cell modules according to the first embodiment. 図2は、第1の実施形態に係る太陽電池モジュールの表面側の平面図である。FIG. 2 is a plan view of the surface side of the solar cell module according to the first embodiment. 図3は、第1の実施形態に係る太陽電池モジュールの裏面側の平面図である。FIG. 3 is a plan view of the back side of the solar cell module according to the first embodiment. 図4は、太陽電池モジュールに適用される前段階の樹脂シートの状態を示す図である。FIG. 4 is a diagram illustrating a state of a resin sheet in a previous stage applied to the solar cell module. 図5は、第2の実施形態に係る太陽電池モジュールの配置図である。FIG. 5 is a layout diagram of solar cell modules according to the second embodiment. 図6は、第3の実施形態に係る太陽電池モジュールの表面側の平面図である。FIG. 6 is a plan view of the surface side of the solar cell module according to the third embodiment. 図7は、第3の実施形態に係る太陽電池モジュールの裏面側の平面図である。FIG. 7 is a plan view of the back surface side of the solar cell module according to the third embodiment.
 本発明に係る実施形態について図面を用いて説明する。以下の図面の記載において、同一又は類似の部分には、同一または類似の符号を付している。ただし、図面は模式的なものであって、各寸法の比率等は現実のものとは異なることに留意すべきである。従って、具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Embodiments according to the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic and ratios of dimensions and the like are different from actual ones. Accordingly, specific dimensions and the like should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
 [第1の実施形態]
 (太陽電池モジュールの構成)
 図1は、第1の実施形態に係る太陽電池モジュール100の配置図である。後述する複数の太陽電池ストリング10は、樹脂シートからなる充填材50a及び50bによって表裏両面から保護されている。また、太陽電池モジュール100は、充填材50aを保護する表面側保護板60と、充填材50bを保護する裏面側保護材70と、を備えている。
[First Embodiment]
(Configuration of solar cell module)
FIG. 1 is a layout diagram of a solar cell module 100 according to the first embodiment. A plurality of solar cell strings 10 to be described later are protected from both front and back surfaces by fillers 50a and 50b made of a resin sheet. Moreover, the solar cell module 100 is provided with the surface side protection board 60 which protects the filler 50a, and the back surface side protective material 70 which protects the filler 50b.
 充填材50a及び50bの材料は、ポリオレフィン類、ポリエチレン類、ポリフェニレン類及びそれらの共重合体を始めとした熱可塑性樹脂、又は熱硬化性樹脂からなる群より選択されるのが好ましい。充填材50a及び50bは、加熱圧着により硬化される。本実施形態では一例として、充填材50aにポリオレフィン系樹脂、充填材50bにエチレン酢酸ビニル共重合体(EVA)が用いられているが、組み合わせはこれに限定されない。 The material of the fillers 50a and 50b is preferably selected from the group consisting of thermoplastic resins such as polyolefins, polyethylenes, polyphenylenes and copolymers thereof, or thermosetting resins. Fillers 50a and 50b are cured by thermocompression bonding. In the present embodiment, as an example, a polyolefin resin is used for the filler 50a and an ethylene vinyl acetate copolymer (EVA) is used for the filler 50b, but the combination is not limited thereto.
 表面側保護板60は、光透過性が高く、かつ太陽電池モジュール100の表面を落下物等から保護できる程度に硬い材料で形成させることが望ましい。アクリル板等の樹脂材料でもよいが、本実施形態では強化ガラスが用いられている。また、裏面側保護材70は、表面側保護板60と同様に、ガラス板やアクリル板等で形成されてもよいが、耐侯性の高い複合樹脂シートが用いられてもよい。本実施形態では、ポリエチレンテレフタラート(PET)を基材とした複合樹脂シートが用いられている。 It is desirable that the surface-side protection plate 60 is made of a material that has high light transmittance and is hard enough to protect the surface of the solar cell module 100 from falling objects. Although a resin material such as an acrylic plate may be used, tempered glass is used in this embodiment. Moreover, although the back surface side protection material 70 may be formed with a glass plate, an acrylic plate, etc. similarly to the surface side protection plate 60, the composite resin sheet with high weather resistance may be used. In this embodiment, a composite resin sheet based on polyethylene terephthalate (PET) is used.
 以上に示した太陽電池モジュール100の概略構成は、第1~第3の実施形態すべてに共通するものであるため、以降の実施形態においては説明を省略する。 Since the schematic configuration of the solar cell module 100 described above is common to all the first to third embodiments, description thereof will be omitted in the following embodiments.
 図2は、第1の実施形態に係る太陽電池モジュール100の表面側の平面図である。図2に示すように、太陽電池モジュール100は、複数の太陽電池セルをセル間配線材20により直列に接続した太陽電池ストリング10を複数備えている。複数の太陽電池ストリング10は、ストリング間配線材30により電気的に接続されており、太陽電池モジュール100の端に位置する太陽電池ストリングからは、電力取り出し配線材40が延びている。太陽電池モジュール100では、ストリング間配線材30及び電力取り出し配線材40は、太陽電池ストリング10の背面側に配置されている。 FIG. 2 is a plan view of the surface side of the solar cell module 100 according to the first embodiment. As shown in FIG. 2, the solar cell module 100 includes a plurality of solar cell strings 10 in which a plurality of solar cells are connected in series by inter-cell wiring members 20. The plurality of solar cell strings 10 are electrically connected by the inter-string wiring member 30, and the power extraction wiring member 40 extends from the solar cell string located at the end of the solar cell module 100. In the solar cell module 100, the inter-string wiring member 30 and the power extraction wiring member 40 are disposed on the back side of the solar cell string 10.
 図3は、第1の実施形態に係る太陽電池モジュール100の裏面側の平面図である。なお、図3には、本実施形態の特徴を説明するのに不要な部品は図示していない。 FIG. 3 is a plan view of the back side of the solar cell module 100 according to the first embodiment. Note that FIG. 3 does not show parts unnecessary for describing the features of the present embodiment.
 太陽電池モジュール100を裏面側から見ると、図3に示すように、複数の太陽電池ストリング10が、ストリング間配線材30を用いて電気的に接続されている。更に、複数の太陽電池ストリング10から電力を取り出して端子ボックス(図示せず)と接続するために、太陽電池モジュール100の端にある太陽電池ストリング10からは、電力取り出し配線材40が延びている。 When the solar cell module 100 is viewed from the back side, a plurality of solar cell strings 10 are electrically connected using inter-string wiring members 30 as shown in FIG. Furthermore, in order to extract electric power from the plurality of solar cell strings 10 and connect it to a terminal box (not shown), an electric power extraction wiring member 40 extends from the solar cell string 10 at the end of the solar cell module 100. .
 ここで、ストリング間配線材30及び電力取り出し配線材40は、太陽電池ストリングと重なる位置に配置されている。このため、ストリング間配線材30及び電力取り出し配線材40と太陽電池ストリング10とが接触して短絡しないように、ストリング間配線材30及び電力取り出し配線材40と太陽電池ストリング10との間には、樹脂材料からなる絶縁シート80が配置されている。 Here, the inter-string wiring member 30 and the power extraction wiring member 40 are arranged at positions overlapping the solar cell string. For this reason, the inter-string wiring member 30 and the power extraction wiring member 40 and the solar cell string 10 are not connected to each other so that the inter-string wiring member 30 and the power extraction wiring member 40 and the solar cell string 10 do not short-circuit. An insulating sheet 80 made of a resin material is disposed.
 絶縁シート80は、絶縁体からなる軟質なものであれば材料は特に限定されないが、PETやポリエチレン等からなる、薄い複合樹脂シートであるのが好ましい。本実施形態では、PETフィルムを基材とした複合樹脂シートが用いられている。なお、絶縁シート80の幅は、太陽電池セル1枚分よりも狭いことが好ましい。 The insulating sheet 80 is not particularly limited as long as it is a soft material made of an insulator, but is preferably a thin composite resin sheet made of PET, polyethylene or the like. In this embodiment, a composite resin sheet having a PET film as a base material is used. In addition, it is preferable that the width | variety of the insulating sheet 80 is narrower than one solar cell.
 (絶縁シート80の配置形態)
 図4は、太陽電池モジュールに適用される前段階の樹脂シートの状態を示す図である。複合樹脂シートは、製造工程の最終段階において強く引っ張られながら一本のロール状に巻き取られ、その後切断又は打ち抜き等の手法を用いて成型される。このとき、巻き取りの方向はMD(Machine Direction)と呼ばれ、MDと垂直の方向はTD(Transverse Direction)と呼ばれる。
(Arrangement form of insulating sheet 80)
FIG. 4 is a diagram illustrating a state of a resin sheet in a previous stage applied to the solar cell module. The composite resin sheet is wound into a single roll while being pulled strongly in the final stage of the manufacturing process, and then molded using a technique such as cutting or punching. At this time, the direction of winding is called MD (Machine Direction), and the direction perpendicular to MD is called TD (Transverse Direction).
 こういった方法で製造された樹脂シートには、MD方向の伸縮応力が内在している。このような樹脂シートが熱によって伸縮する場合には、MD方向の伸縮率のほうがTD方向の伸縮率よりも大きくなる。このことから、本明細書中では、このMD方向を「最大伸縮方向」と定義する。なお、樹脂シートの巻き取り方向は、化学分析の手法を用いて樹脂中の分子の配向を確認することによっても測定することができる。 In the resin sheet produced by such a method, the stretching stress in the MD direction is inherent. When such a resin sheet expands and contracts due to heat, the expansion rate in the MD direction is larger than the expansion rate in the TD direction. Therefore, in the present specification, this MD direction is defined as a “maximum expansion / contraction direction”. The winding direction of the resin sheet can also be measured by confirming the orientation of the molecules in the resin using a chemical analysis technique.
 太陽電池ストリング10と、ストリング間配線材30及び電力取り出し配線材40との絶縁を目的として複合樹脂シートからなる絶縁シート80が配置される場合、太陽電池モジュール100の製造工程において、充填材50a及び50bを加熱圧着する際に、絶縁シート80に変形や伸縮が生じることがある。 When the insulating sheet 80 made of a composite resin sheet is disposed for the purpose of insulating the solar cell string 10 from the inter-string wiring member 30 and the power extraction wiring member 40, in the manufacturing process of the solar cell module 100, the filler 50a and When the 50b is thermocompression bonded, the insulating sheet 80 may be deformed or stretched.
 本願発明者は、特定の条件を満たすように絶縁シート80を配置すると、絶縁シート80が収縮し、太陽電池ストリング10同士の間隔が狭まることを見出した。太陽電池ストリング10同士の間隔が狭くなることによって、太陽電池ストリング10を構成する太陽電池セル同士の接触、つまり短絡のリスクが高くなる。すなわち本実施形態は、絶縁シート80の収縮に起因する、太陽電池ストリング10の短絡リスクを低くするための構成である。 The inventor of the present application has found that when the insulating sheet 80 is arranged so as to satisfy a specific condition, the insulating sheet 80 contracts and the interval between the solar cell strings 10 is narrowed. By narrowing the space between the solar cell strings 10, the contact between the solar cells constituting the solar cell string 10, that is, the risk of a short circuit increases. That is, the present embodiment is a configuration for reducing the risk of short-circuiting of the solar cell string 10 due to the shrinkage of the insulating sheet 80.
 太陽電池ストリング10の短絡リスクを低くするという上記観点から、第1の実施形態においては、図3に示すように絶縁シート80を配置した。すなわち、太陽電池ストリング10の配列方向(x方向)と絶縁シート80の最大伸縮方向とを一致させないように、絶縁シート80が配置されている。具体的には、図3において、x方向を複数の太陽電池ストリング10の配列方向とした場合、絶縁シート80の最大伸縮方向がy方向となるように絶縁シート80が配置されている。つまり、太陽電池ストリング10の配列方向と、絶縁シート80の最大伸縮方向とが直交している。 From the above viewpoint of reducing the short circuit risk of the solar cell string 10, in the first embodiment, the insulating sheet 80 is disposed as shown in FIG. That is, the insulating sheet 80 is arranged so that the arrangement direction (x direction) of the solar cell strings 10 and the maximum expansion / contraction direction of the insulating sheet 80 do not coincide. Specifically, in FIG. 3, when the x direction is the arrangement direction of the plurality of solar cell strings 10, the insulating sheet 80 is arranged so that the maximum expansion / contraction direction of the insulating sheet 80 is the y direction. That is, the arrangement direction of the solar cell strings 10 and the maximum expansion / contraction direction of the insulating sheet 80 are orthogonal to each other.
 絶縁シート80の最大伸縮方向が太陽電池ストリング10の配列方向に対して直交することにより、絶縁シート80のx方向の伸縮量を減少させることができる。絶縁シート80のx方向の伸縮量が減少することにより、絶縁シート80と接するように配置されている太陽電池ストリング10同士の間隔が狭くなることが抑制されるので、太陽電池ストリング10を構成する太陽電池セル同士の短絡の可能性を低くすることができる。 When the maximum expansion / contraction direction of the insulating sheet 80 is orthogonal to the arrangement direction of the solar cell strings 10, the expansion / contraction amount of the insulating sheet 80 in the x direction can be reduced. By reducing the amount of expansion and contraction of the insulating sheet 80 in the x direction, the space between the solar cell strings 10 disposed so as to be in contact with the insulating sheet 80 is suppressed, so that the solar cell string 10 is configured. The possibility of a short circuit between solar cells can be reduced.
 なお、本実施形態における、太陽電池ストリング10の配列方向と絶縁シート80の最大伸縮方向とが“直交”とは、90度±10度程度の範囲であることを示す。なお、太陽電池ストリング10の配列方向と絶縁シート80の最大伸縮方向とが一致しないように配置されていれば、一致している場合と比較してy方向の伸縮量を小さくすることができるため効果がある。一定の効果を持たせるためには、太陽電池ストリング10の配列方向と絶縁シート80の最大伸縮方向との交差角度の範囲が、90度±45度の範囲となるように配置されていることが好ましい。 In the present embodiment, the term “perpendicular” between the arrangement direction of the solar cell strings 10 and the maximum expansion / contraction direction of the insulating sheet 80 indicates a range of about 90 ° ± 10 °. If the arrangement direction of the solar cell strings 10 and the maximum expansion / contraction direction of the insulating sheet 80 are not matched, the amount of expansion / contraction in the y direction can be reduced as compared with the case where they match. effective. In order to have a certain effect, the crossing angle range between the arrangement direction of the solar cell strings 10 and the maximum expansion / contraction direction of the insulating sheet 80 should be 90 ° ± 45 °. preferable.
 なお、絶縁シート80の幅が太陽電池セル1枚分よりも狭くなっている場合、絶縁シート80が収縮した場合でも、絶縁シート80に接触している太陽電池セルと、配線材によって電気的に接続されて隣接している太陽電池セルとの間隔が小さくなることはない。したがって、絶縁シート80の最大伸縮方向における太陽電池セル同士の接触の虞はきわめて小さい。 In addition, when the width | variety of the insulating sheet 80 is narrower than one solar cell, even when the insulating sheet 80 contracts, it is electrically connected by the solar cell in contact with the insulating sheet 80 and the wiring material. The distance between the connected solar cells is not reduced. Therefore, the possibility of contact between the solar cells in the maximum expansion / contraction direction of the insulating sheet 80 is extremely small.
 [第2の実施形態]
 図5は、第2の実施形態に係る太陽電池モジュール200の配置図である。なお、太陽電池モジュール200の概略構成、太陽電池ストリング10の配置、太陽電池ストリング10とストリング間配線材30との位置関係、及び太陽電池ストリング10と電力取り出し配線材40との位置関係は、第1の実施形態と同じであるので説明を省略する。
[Second Embodiment]
FIG. 5 is a layout diagram of the solar cell module 200 according to the second embodiment. The schematic configuration of the solar cell module 200, the arrangement of the solar cell string 10, the positional relationship between the solar cell string 10 and the inter-string wiring member 30, and the positional relationship between the solar cell string 10 and the power extraction wiring member 40 are as follows. Since this is the same as the first embodiment, the description thereof is omitted.
 第2の実施形態では、太陽電池モジュール200を構成する樹脂シートについて、絶縁シート80の配置向きに加え、絶縁シート80以外の樹脂シート、すなわち充填材50a及び50b、ならびに裏面側保護材70の配置向きが定められている。 In 2nd Embodiment, about the resin sheet which comprises the solar cell module 200, in addition to the arrangement | positioning direction of the insulating sheet 80, resin sheets other than the insulating sheet 80, ie, arrangement | positioning of the fillers 50a and 50b, and the back surface side protective material 70 The direction is fixed.
 本実施形態において、太陽電池ストリング10を封止する充填材50a及び50b、ならびに裏面側保護材70は、いずれも、絶縁シート80と類似の製造工程を経て成型された樹脂シートであり、MD方向の伸縮応力が内在している。このとき、図5に示すように、太陽電池ストリング10の延在方向と、それぞれの樹脂シートの最大伸縮方向(MD方向)とが直交するように、それぞれの樹脂シートが配置される。すなわち、図5の座標を参照すると、太陽電池ストリング10はy方向に延在しており、複数の太陽電池ストリング10はx方向に配列されている。このとき、充填材50a及び50b、ならびに裏面側保護材70の最大伸縮方向はx方向であり、絶縁シート80の最大伸縮方向がy方向である。 In this embodiment, the fillers 50a and 50b for sealing the solar cell string 10 and the back surface side protective material 70 are all resin sheets molded through a manufacturing process similar to the insulating sheet 80, and are in the MD direction. The stretching stress is inherent. At this time, as shown in FIG. 5, the respective resin sheets are arranged so that the extending direction of the solar cell string 10 and the maximum expansion / contraction direction (MD direction) of each resin sheet are orthogonal to each other. That is, referring to the coordinates in FIG. 5, the solar cell string 10 extends in the y direction, and the plurality of solar cell strings 10 are arranged in the x direction. At this time, the maximum expansion / contraction direction of the fillers 50a and 50b and the back surface side protection member 70 is the x direction, and the maximum expansion / contraction direction of the insulating sheet 80 is the y direction.
 太陽電池ストリング10は既述の通り、セル間配線材20を用いて複数の太陽電池セルを直列に連結させた構成を備えている。太陽電池ストリング10の延在方向は、セル間配線材20の長さ方向と同じである。太陽電池モジュールを屋外で使用することによって、太陽電池モジュール200には熱サイクルがかかる。この熱サイクルによって、一旦加熱硬化された充填材50a及び50bも僅かに伸縮し、太陽電池ストリング10を構成する太陽電池セル同士の間隔が広がったり狭まったりする。 As described above, the solar cell string 10 has a configuration in which a plurality of solar cells are connected in series using the inter-cell wiring member 20. The extending direction of the solar cell string 10 is the same as the length direction of the inter-cell wiring member 20. By using the solar cell module outdoors, the solar cell module 200 undergoes a thermal cycle. Due to this thermal cycle, the fillers 50a and 50b once heat-cured also expand and contract slightly, and the interval between the solar cells constituting the solar cell string 10 increases or decreases.
 セル間配線材20はその長さの大部分が太陽電池セルと電気的・物理的に接続されて固定されているため、太陽電池セル同士の間隔が変化するとき、セル間配線材20のうち太陽電池セルと接続されていない部分が屈曲する。長期間にわたってセル間配線材20の屈曲が繰り返されると、セル間配線材20が金属疲労によって劣化するリスクが高まる。 Since most of the length of the inter-cell wiring member 20 is electrically and physically connected to the solar cells and is fixed, when the interval between the solar cells changes, the inter-cell wiring member 20 The portion not connected to the solar battery cell is bent. If the bending of the inter-cell wiring member 20 is repeated over a long period of time, the risk that the inter-cell wiring member 20 is deteriorated due to metal fatigue increases.
 本実施形態では、セル間配線材20の金属疲労による劣化を抑制するために、充填材50a及び50b、ならびに裏面側保護材70の最大伸縮方向を、太陽電池ストリング10の延在方向、すなわちセル間配線材20の長さ方向に対して垂直の向き(x方向)としている。一方、絶縁シート80の最大伸縮方向は、前述の通りy方向である。このような構成により、太陽電池ストリング10の延在方向、すなわちセル間配線材20の長さ方向の伸縮応力が緩和され、太陽電池モジュール200の信頼性はいっそう高いものとなる。 In the present embodiment, in order to suppress deterioration due to metal fatigue of the inter-cell wiring member 20, the maximum expansion / contraction direction of the fillers 50a and 50b and the back surface side protection member 70 is defined as the extending direction of the solar cell string 10, that is, the cell. The direction perpendicular to the length direction of the intermediate wiring member 20 (x direction) is used. On the other hand, the maximum expansion / contraction direction of the insulating sheet 80 is the y direction as described above. With such a configuration, the stretching stress in the extending direction of the solar cell string 10, that is, the length direction of the inter-cell wiring member 20, is alleviated, and the reliability of the solar cell module 200 is further increased.
 なお、第2の実施形態においては、充填材50a及び50b、ならびに裏面側保護材70の最大伸縮方向を、全てセル間配線材20の長さ方向に対して垂直の向きにしているが、充填材50a及び50b、ならびに裏面側保護材70のうち少なくとも1枚についてこの配置方法を選択してもよい。これによっても、セル間配線材20の長さ方向の伸縮応力が緩和されるという効果がある。すなわち、充填材50a及び50b、ならびに裏面側保護材70のうち1種類、または2種類についてのみ、最大伸縮方向とセル間配線材20の長さ方向とを異ならせてもよい。 In the second embodiment, the maximum expansion / contraction directions of the fillers 50a and 50b and the back surface side protective material 70 are all perpendicular to the length direction of the inter-cell wiring member 20, This arrangement method may be selected for at least one of the materials 50 a and 50 b and the back surface side protective material 70. This also has the effect that the stretching stress in the length direction of the inter-cell wiring member 20 is relaxed. That is, the maximum expansion / contraction direction and the length direction of the inter-cell wiring member 20 may be different only for one type or two types of the fillers 50 a and 50 b and the back surface side protective material 70.
 [第3の実施形態]
 図6は、第3の実施形態に係る太陽電池モジュール300の表面側の平面図である。太陽電池モジュール300の概略構成は第1の実施形態と同じであり、充填材50a及び50b、ならびに裏面側保護材70の配置方向は第2の実施形態と同じであるので説明を省略する。
[Third Embodiment]
FIG. 6 is a plan view of the surface side of the solar cell module 300 according to the third embodiment. The schematic configuration of the solar cell module 300 is the same as that of the first embodiment, and the arrangement direction of the fillers 50a and 50b and the back surface side protective material 70 is the same as that of the second embodiment, and thus the description thereof is omitted.
 図7は、第3の実施形態に係る太陽電池モジュール300の裏面側の平面図である。なお、図7では、本実施形態の特徴を説明するのに不要な部品は図示していない。 FIG. 7 is a plan view of the back side of the solar cell module 300 according to the third embodiment. In FIG. 7, parts unnecessary for explaining the features of the present embodiment are not shown.
 本実施形態において、太陽電池ストリング10とストリング間配線材31との位置関係、及び、太陽電池ストリング10と電力取り出し配線材41との位置関係は、図6及び図7に示す通りである。すなわち、図6及び図7から判るように、本実施形態では、ストリング間配線材31は太陽電池ストリング10と重ならない位置に配置されており、電力取り出し配線材41は太陽電池セルの裏面側に配置されている。 In this embodiment, the positional relationship between the solar cell string 10 and the inter-string wiring member 31 and the positional relationship between the solar cell string 10 and the power extraction wiring member 41 are as shown in FIGS. That is, as can be seen from FIG. 6 and FIG. 7, in this embodiment, the inter-string wiring member 31 is arranged at a position that does not overlap the solar battery string 10, and the power extraction wiring member 41 is on the back surface side of the solar battery cell. Has been placed.
 太陽電池セルは、上述の通り、薄くて脆い部品である。そのため、太陽電池ストリング10を充填材50a及び50bで挟んで加圧加熱し、充填材50a及び50bを硬化させるにあたっては、太陽電池セルの表面側及び裏面側には、なるべく凹凸や段差がないほうがよい。そのため、接続部分が多くなりがちなストリング間配線材31とセル間配線材20との接続部分は、太陽電池セルと重ならないように配置されている。これによって、太陽電池モジュール300の面積あたりの発電量を高めつつ、太陽電池モジュール300の製造歩留まりを高く維持することができる。 The solar battery cell is a thin and fragile component as described above. Therefore, when the solar battery string 10 is sandwiched between the fillers 50a and 50b and heated under pressure to cure the fillers 50a and 50b, there should be as little irregularities or steps as possible on the front and back sides of the solar cells. Good. For this reason, the connecting portion between the inter-string wiring member 31 and the inter-cell wiring member 20, which tend to have many connecting portions, is arranged so as not to overlap the solar battery cell. Thereby, the production yield of the solar cell module 300 can be kept high while increasing the amount of power generation per area of the solar cell module 300.
 なお、太陽電池ストリング10と重複しない位置にストリング間配線材31が配置され、電力取り出し配線材41が太陽電池ストリング10の裏面側に配置された上で、第1の実施形態と同様に、絶縁シート81の配置方向だけを限定してもよい。さらに、裏面側保護材70には、複合樹脂シートに代えて強化ガラスやアクリル板等が用いられてもよい。 In addition, after the inter-string wiring member 31 is disposed at a position not overlapping with the solar cell string 10 and the power extraction wiring member 41 is disposed on the back surface side of the solar cell string 10, insulation is performed as in the first embodiment. Only the arrangement direction of the sheet 81 may be limited. Furthermore, tempered glass, an acrylic plate, or the like may be used for the back surface side protective material 70 instead of the composite resin sheet.
 なお、第1~第3の実施形態において、太陽電池セルにセル間配線材20を接続する方法は特に限定されない。具体的には、銅の芯線をはんだコートした構成の銅製セル間配線材を用いて、はんだづけして接続してもよい。この他、はんだコートした銅製セル間配線材、又ははんだコートのない銅製のセル間配線材等を準備し、樹脂接着剤を用いて太陽電池セルに接続してもよい。 In the first to third embodiments, the method for connecting the inter-cell wiring member 20 to the solar battery cell is not particularly limited. Specifically, it may be connected by soldering using a copper inter-cell wiring material having a structure in which a copper core wire is solder-coated. In addition, a solder-coated copper inter-cell wiring material or a copper inter-cell wiring material without solder coating may be prepared and connected to the solar battery cell using a resin adhesive.
 なお、第1~第3の実施形態に係る太陽電池モジュールの外形は、太陽電池ストリング10を平面視した(XY平面を見た)場合、長辺及び短辺を有する矩形であり、当該長辺の方向と複数の太陽電池ストリング10の配列方向とは、直交していてもよい。 The outer shape of the solar cell module according to the first to third embodiments is a rectangle having a long side and a short side when the solar cell string 10 is viewed in plan (when viewed from the XY plane). And the arrangement direction of the plurality of solar cell strings 10 may be orthogonal to each other.
 10  太陽電池ストリング
 20  セル間配線材
 30、31  ストリング間配線材
 40、41  電力取り出し配線材
 50a、50b  充填材
 60  表面側保護板
 70  裏面側保護材
 80、81  絶縁シート
 100、200、300  太陽電池モジュール
DESCRIPTION OF SYMBOLS 10 Solar cell string 20 Inter-cell wiring material 30, 31 Inter-string wiring material 40, 41 Power extraction wiring material 50a, 50b Filler 60 Front surface side protective plate 70 Back surface side protective material 80, 81 Insulating sheet 100, 200, 300 Solar cell module

Claims (3)

  1.  複数の太陽電池ストリングと、
     樹脂シートからなる絶縁シートと、
     前記複数の太陽電池ストリングのそれぞれを電気的に接続するストリング間配線材及び前記複数の太陽電池ストリングから延びる電力取り出し配線材の少なくとも一方と、をこの順に備える太陽電池モジュールであって、
     前記絶縁シートは、隣接する太陽電池ストリングに跨って配置され、
     前記絶縁シートの最大伸縮方向は、前記複数の太陽電池ストリングの配列方向と異なっている
     太陽電池モジュール。
    A plurality of solar cell strings;
    An insulating sheet made of a resin sheet;
    A solar cell module comprising, in this order, at least one of an interstring wiring material that electrically connects each of the plurality of solar cell strings and a power extraction wiring material that extends from the plurality of solar cell strings,
    The insulating sheet is disposed across adjacent solar cell strings,
    A maximum expansion / contraction direction of the insulating sheet is different from an arrangement direction of the plurality of solar cell strings.
  2.  前記絶縁シートの最大伸縮方向は、前記複数の太陽電池ストリングの配列方向と直交している
     請求項1に記載の太陽電池モジュール。
    The solar cell module according to claim 1, wherein a maximum expansion / contraction direction of the insulating sheet is orthogonal to an arrangement direction of the plurality of solar cell strings.
  3.  前記複数の太陽電池ストリングを平面視した場合、前記太陽電池モジュールの平面形状は、長辺と短辺とを有する矩形であり、
     前記長辺の方向と前記複数の太陽電池ストリングの配列方向とは、直交している
     請求項2に記載の太陽電池モジュール。
    When the plurality of solar cell strings are viewed in plan, the planar shape of the solar cell module is a rectangle having a long side and a short side,
    The solar cell module according to claim 2, wherein a direction of the long side and an arrangement direction of the plurality of solar cell strings are orthogonal to each other.
PCT/JP2016/000904 2015-03-31 2016-02-19 Solar cell module WO2016157696A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017509203A JP6365911B2 (en) 2015-03-31 2016-02-19 Solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-070519 2015-03-31
JP2015070519 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016157696A1 true WO2016157696A1 (en) 2016-10-06

Family

ID=57004899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000904 WO2016157696A1 (en) 2015-03-31 2016-02-19 Solar cell module

Country Status (2)

Country Link
JP (2) JP6365911B2 (en)
WO (1) WO2016157696A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107611073A (en) * 2017-09-15 2018-01-19 苏州宏瑞达新能源装备有限公司 The localization method of solar cell string typesetting
JP2018107185A (en) * 2016-12-22 2018-07-05 パナソニックIpマネジメント株式会社 Solar cell module
JP2018142747A (en) * 2015-03-31 2018-09-13 パナソニックIpマネジメント株式会社 Solar battery module
JP2019523979A (en) * 2017-05-19 2019-08-29 米亜索能光伏科技有限公司MiaSole Photovoltaic Technology Co.,Ltd. Film double glass photovoltaic component and method of making the same
WO2019163152A1 (en) * 2018-02-26 2019-08-29 三菱電機株式会社 Solar cell module and method for manufacturing solar cell module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071339A (en) * 2009-01-07 2009-04-02 Sharp Corp Solar battery cell and solar battery module
WO2009069415A1 (en) * 2007-11-30 2009-06-04 Sharp Kabushiki Kaisha Solar battery module and solar battery module manufacturing method
WO2011083790A1 (en) * 2010-01-06 2011-07-14 大日本印刷株式会社 Collector sheet for solar cell
WO2013121549A1 (en) * 2012-02-16 2013-08-22 三洋電機株式会社 Solar cell module and method for manufacturing same
JP2013191647A (en) * 2012-03-13 2013-09-26 Dainippon Printing Co Ltd Current collection sheet for solar battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050247340A1 (en) * 2004-04-19 2005-11-10 Zeira Eitan C All printed solar cell array
WO2013046773A1 (en) * 2011-09-29 2013-04-04 三洋電機株式会社 Solar cell module
JP2015029069A (en) * 2013-06-27 2015-02-12 京セラ株式会社 Solar cell module
WO2016157696A1 (en) * 2015-03-31 2016-10-06 パナソニックIpマネジメント株式会社 Solar cell module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069415A1 (en) * 2007-11-30 2009-06-04 Sharp Kabushiki Kaisha Solar battery module and solar battery module manufacturing method
JP2009071339A (en) * 2009-01-07 2009-04-02 Sharp Corp Solar battery cell and solar battery module
WO2011083790A1 (en) * 2010-01-06 2011-07-14 大日本印刷株式会社 Collector sheet for solar cell
WO2013121549A1 (en) * 2012-02-16 2013-08-22 三洋電機株式会社 Solar cell module and method for manufacturing same
JP2013191647A (en) * 2012-03-13 2013-09-26 Dainippon Printing Co Ltd Current collection sheet for solar battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018142747A (en) * 2015-03-31 2018-09-13 パナソニックIpマネジメント株式会社 Solar battery module
JP2018107185A (en) * 2016-12-22 2018-07-05 パナソニックIpマネジメント株式会社 Solar cell module
JP2019523979A (en) * 2017-05-19 2019-08-29 米亜索能光伏科技有限公司MiaSole Photovoltaic Technology Co.,Ltd. Film double glass photovoltaic component and method of making the same
CN107611073A (en) * 2017-09-15 2018-01-19 苏州宏瑞达新能源装备有限公司 The localization method of solar cell string typesetting
CN107611073B (en) * 2017-09-15 2023-11-21 苏州宏瑞达新能源装备有限公司 Positioning method for typesetting of solar cell strings
WO2019163152A1 (en) * 2018-02-26 2019-08-29 三菱電機株式会社 Solar cell module and method for manufacturing solar cell module

Also Published As

Publication number Publication date
JP2018142747A (en) 2018-09-13
JPWO2016157696A1 (en) 2018-01-25
JP6532046B2 (en) 2019-06-19
JP6365911B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6532046B2 (en) Solar cell module
WO2015133633A1 (en) Sealing sheet for solar cell modules, and solar cell module
JP6536838B2 (en) Method of manufacturing solar cell module and solar cell module using the same
US20220149226A1 (en) Flexible photovoltaic assembly and manufacturing method therefor
TWI656653B (en) Solar power generation module and solar power generation device
JP5598003B2 (en) Solar cell module
TW201349529A (en) Back contact solar cell module
US20090078301A1 (en) Solar cell module
US20200105954A1 (en) Solar cell module including a plurality of solar cells connected and method of manufacturing a solar cell module
US20160260858A1 (en) Solar cell module
JP5025590B2 (en) Manufacturing method of solar cell module
JPWO2018051658A1 (en) Solar cell module
JP5430326B2 (en) Solar cell module
JP6315225B2 (en) Solar cell module
WO2012081382A1 (en) Solar cell module and interconnector material
US20150263196A1 (en) Photovoltaic module and process for manufacture thereof
JP2012079838A (en) Solar cell module and method for manufacturing the same
US20180097135A1 (en) Solar cell module and solar cell in which wiring member is connected to surface
US20170207357A1 (en) Solar cell module and method for manufacturing solar cell module
CN204289477U (en) Solar battery sheet, solar module
JP2014192481A (en) Metal foil lamination body for solar cell, solar cell module, and manufacturing method of metal foil lamination body for solar cell
JP2018531505A6 (en) Formation of front metal contacts in solar cells with enhanced stress tolerance
JP2018531505A (en) Formation of front metal contacts in solar cells with enhanced stress tolerance
JP5456128B2 (en) Solar cell module
JP2016225446A (en) Sealing sheet for solar cell module and solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771591

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509203

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771591

Country of ref document: EP

Kind code of ref document: A1