WO2015133633A1 - Sealing sheet for solar cell modules, and solar cell module - Google Patents

Sealing sheet for solar cell modules, and solar cell module Download PDF

Info

Publication number
WO2015133633A1
WO2015133633A1 PCT/JP2015/056737 JP2015056737W WO2015133633A1 WO 2015133633 A1 WO2015133633 A1 WO 2015133633A1 JP 2015056737 W JP2015056737 W JP 2015056737W WO 2015133633 A1 WO2015133633 A1 WO 2015133633A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
solar cell
sealing sheet
sealing
sheet
Prior art date
Application number
PCT/JP2015/056737
Other languages
French (fr)
Japanese (ja)
Inventor
有史 上田
航大 中尾
正孝 上田
久成 尾之内
哲也 京極
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2015133633A1 publication Critical patent/WO2015133633A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module sealing sheet and a solar cell module.
  • Solar cell modules that convert light energy into electric power are widely used as clean power generators.
  • the solar cell module includes solar cells, and the solar cells are electrically connected by wiring. Through this wiring, the electric energy generated in the solar battery cell is taken out and supplied to the outside of the module.
  • Patent documents 1 to 6 are cited as documents disclosing this type of prior art.
  • Patent Documents 1 to 4 relate to solar cell modules of a type in which an n-type electrode is partially disposed on the front surface side of a solar battery cell and a p-type electrode is disposed on the back surface side.
  • the present invention relates to a solar cell module that employs a back contact method in which both electrodes are arranged on the back side.
  • the configurations disclosed in Patent Documents 1 and 2 require that the wiring of the solar cells be individually joined using solder or the like (hereinafter referred to as a connecting operation) It is also called wiring work.) It takes time and effort. In addition, when heating is performed at the time of bonding, such as solder bonding, there is a possibility that the characteristics of the cell may be deteriorated by heating, or the cell may be warped or cracked. Solder joints also have a problem of flux contamination.
  • the solar cell modules disclosed in Patent Documents 3 and 4 also have the same problems as Patent Documents 1 and 2 because the wires serving as the conductive paths are soldered. Moreover, the wire is arrange
  • the present invention was created in view of the above circumstances, and an object thereof is to provide a solar cell module sealing sheet that can efficiently improve power generation efficiency in addition to improving the wiring workability of the solar cell module. To do. Another object of the present invention is to provide a solar cell module using the sealing sheet.
  • a pair of sealing sheets that are sealed by sandwiching at least one solar battery cell in the solar battery module.
  • the pair of sealing sheets includes a first sealing sheet disposed on the surface side of the at least one solar battery cell, a second sealing sheet disposed on the back surface side of the at least one solar battery cell, Is provided.
  • the first sealing sheet includes a first sealing resin layer and a first conductive portion partially disposed on one surface of the first sealing resin layer.
  • the second sealing sheet includes a second sealing resin layer and a second conductive portion partially disposed on one surface of the second sealing resin layer.
  • a part of said 1st electroconductive part is arrange
  • a part of said 2nd electroconductive part is arrange
  • region of the said 2nd sealing sheet surface is larger than the area of the said 1st electroconductive part in the photovoltaic cell opposing area
  • positioned at a back surface side is rather than the 1st electroconductive part in the photovoltaic cell opposing area
  • the first conductive portion has at least one first conductive path.
  • the at least one first conductive path is disposed in a solar cell facing region on the surface of the first sealing sheet and has a shape extending linearly in the region.
  • the second conductive part has at least one second conductive path.
  • the at least one second conductive path is disposed in a solar cell facing region on the surface of the second sealing sheet.
  • region of the said 2nd sealing sheet surface is larger than the area of the said 1st conductive path in the photovoltaic cell opposing area
  • the second conductive path has a shape extending linearly in the solar cell facing region on the surface of the second sealing sheet. Further, the number of the second conductive paths in the solar cell facing region on the surface of the second sealing sheet is larger than the number of the first conductive paths in the solar cell facing region on the surface of the first sealing sheet.
  • the second conductive path has a shape extending linearly in the solar cell facing region on the surface of the second sealing sheet. Further, the width of the second conductive path in the solar cell facing region on the surface of the second sealing sheet is larger than the width of the first conductive path in the solar cell facing region on the surface of the first sealing sheet.
  • the second conductive path is disposed almost in the entire area of the solar cell facing region on the surface of the second sealing sheet.
  • the sealing sheet having such a configuration a solar cell module particularly excellent in power generation efficiency is preferably realized.
  • the second conductive portion has a conductive connection portion that can contact the first conductive portion or the extraction electrode.
  • a first conductive connection portion extending in a strip shape in a direction intersecting the first conductive path is disposed at one end of the first conductive path.
  • the one end of the second conductive path extends in a band shape in a direction intersecting the second conductive path and the two or more second conductive paths.
  • a second conductive connection portion connected to the two conductive paths is disposed.
  • the first conductive portion and the second conductive portion are both made of a metal material.
  • the pair of sealing sheets having the above configuration By using the pair of sealing sheets having the above configuration, the wiring workability at the time of constructing the solar cell module is improved, and the power generation efficiency of the constructed solar cell module is also improved. Therefore, according to this invention, a solar cell module provided with an at least 1 photovoltaic cell and any one pair of sealing sheet disclosed here is provided.
  • FIG. 1 is a top view schematically showing the main part of the first sealing sheet according to the first embodiment.
  • the 1st sealing sheet 111 is utilized as one of a pair of sealing sheet 100 sealed on both sides of a photovoltaic cell in a solar cell module.
  • the 1st sealing sheet 111 and the 2nd sealing sheet 112 mentioned later have an electroconductive part, it is also called a sealing sheet with an electroconductive part from a structure surface, or a current collection sealing sheet from a functional surface. .
  • the 1st sealing sheet 111 is a sealing sheet with an electroconductive part arrange
  • First conductive parts 131A and 131B partially disposed on one surface (specifically, the solar cell side surface).
  • the first conductive part 131A has a first conductive path 133A.
  • the first conductive path 133A exists in a region (solar cell surface facing region) 10a 'that faces the surface of one solar cell when the solar cell is sealed. Further, the first conductive path 133A has a shape extending linearly on the surface of the first sealing resin layer 121.
  • the first conductive portion 131A has a plurality of first conductive paths 133A, and the plurality of first conductive paths 133A are parallel to each other at a predetermined interval on the surface of the first sealing resin layer 121. Has been placed.
  • the first conductive portion 131A on the surface of the first sealing resin layer 121 has a striped first conductive path pattern including a plurality of first conductive paths 133A.
  • Each of the plurality of first conductive paths 133A has a solar cell facing portion 134A that faces and comes into contact with the solar cell surface.
  • the first conductive path 133A also has a non-facing portion of the solar cell that does not face the solar cell on one end side in the longitudinal direction, and this portion is connected to the first conductive connecting portion 141A described later. Yes. That is, one end of each of the plurality of first conductive paths 133A is connected to the first conductive connection portion 141A to be a fixed end.
  • the conductive connection portion is not disposed on the other end side of each of the plurality of first conductive paths 133A, and the other end of the first conductive path 133A is a free end in the first conductive portion 131A.
  • FIG. 1 the arrangement
  • the first conductive portion 131A has a first conductive connection portion 141A.
  • 141 A of 1st electroconductive connection parts exist outside solar cell surface opposing area
  • the first conductive connection portion 141A has a strip shape extending in a direction substantially orthogonal to the longitudinal direction of the first conductive path 133A, and is connected to the first conductive path 133A at one end of the first conductive path 133A (specifically It is fixed).
  • the first conductive portion 131A has a comb shape when viewed from the top.
  • the first conductive portion 131A has a comb shape in which a plurality of first conductive paths 133A extend in a tooth shape from the conductive connection portion 141A serving as a base.
  • the first conductive connecting portion 141A only needs to be arranged so as to be non-contact with the solar battery cell when the solar battery cell is sealed with the first sealing sheet 111.
  • the shape is not particularly limited.
  • the first conductive portion 131B is disposed next to the first conductive portion 131A with a space from the first conductive portion 131A. Specifically, the first conductive portions 131A and 131B are arranged at intervals in a direction parallel to the longitudinal direction of the first conductive path 133A (which may also be the arrangement direction of solar cells). Regarding other matters, the first conductive portion 131B has the same configuration as the first conductive portion 131A. Briefly, the first conductive portion 131B has a first conductive path 133B and a first conductive connection portion 141B, similar to the first conductive portion 131A, and the first conductive path 133B and the first conductive portion 131B.
  • Each of the connecting portions 141B has the same configuration as the first conductive path 133A and the first conductive connecting portion 141A.
  • the 1st electroconductive connection part 141B exists outside solar cell surface opposing area
  • the first conductive portion pattern including the first conductive portions 131A and 131B is formed on the surface of the first sealing sheet 111.
  • a pattern in which a plurality of first conductive portions 131A and 131B having a comb shape are arranged in a plurality of rows at a predetermined interval is a first sealing. It is formed on the surface of the sheet 111.
  • FIG. 2 is a top view schematically showing the main part of the second sealing sheet according to the first embodiment.
  • the 2nd sealing sheet 112 is utilized as the other of a pair of sealing sheet 100 sealed on both sides of a photovoltaic cell in a solar cell module, and with the electroconductive part arrange
  • the second sealing sheet 112 is partially formed on the second sealing resin layer 122 and one surface (specifically, the solar cell side surface) of the second sealing resin layer 122. And disposed second conductive portions 132A and 132B.
  • the second conductive portion 132A has a second conductive path 136A.
  • the second conductive path 136A exists in a region (a solar cell back surface facing region) 10a ′′ that opposes the back surface of one solar cell when the solar cells are sealed. It has a shape extending linearly on the surface of the second sealing resin layer 122.
  • the second conductive portion 132A has a plurality of second conductive paths 136A, and the plurality of second conductive paths 136A are:
  • the surfaces of the second sealing resin layer 122 are arranged in parallel at a predetermined interval, in other words, the second conductive portion 132A on the surface of the second sealing resin layer 122 includes a plurality of second conductive paths 136A.
  • a stripe-shaped second conductive path pattern is provided.
  • the number of second conductive paths 136A is greater than the number of first conductive paths 133A in the first sealing sheet 111. Specifically, in the first conductive portion 131A and the second conductive portion 132A corresponding to one solar battery cell, the number of second conductive paths 136A that can contact the back surface of the solar battery cell contacts the solar battery cell surface. More than the number of first conductive paths 133A to be obtained. Thereby, the power generation efficiency of the solar cell module is improved. In this embodiment, the number of the first conductive paths 133A is three and the number of the second conductive paths 136A is six. However, the present invention is not limited to this.
  • the number of the second conductive paths is preferably one or more (more preferably two or more, more preferably five or more) than the first conductive paths, and the number of the second conductive paths is the number of the first conductive paths. It may be twice or more.
  • Each of the plurality of second conductive paths 136A has a solar cell facing portion 137A that is in opposed contact with the back surface of the solar battery cell.
  • the second conductive path 136A also has a solar cell non-facing portion that does not face the solar cell on one end side in the longitudinal direction, and this portion is connected to a second conductive connecting portion 142A described later. Yes. That is, one end of each of the plurality of second conductive paths 136A is connected to the second conductive connection portion 142A to be a fixed end.
  • the conductive connection portion is not disposed on the other end side of each of the plurality of second conductive paths 136A, and the other end of the second conductive path 136A is a free end in the second conductive portion 132A.
  • the arrangement portion (solar cell back surface facing region) of the solar cell is indicated by reference numerals 10 a ′′ and 10 b ′′.
  • the second conductive portion 132A has a second conductive connection portion 142A.
  • the second conductive connection portion 142A exists outside the solar cell back surface facing regions 10a ", 10b", and the first conductive portion (not shown) or the extraction electrode (see FIG. It is arranged at a position where it can come into contact with (not shown).
  • the second conductive connection portion 142A has a strip shape extending in a direction substantially orthogonal to the longitudinal direction of the second conductive path 136A, and is connected to the second conductive path 136A at one end of the second conductive path 136A (specifically It is fixed).
  • the second conductive portion 132A has a comb shape when viewed from the upper surface.
  • the second conductive portion 132A has a comb shape in which a plurality of second conductive paths 136A extend in a tooth shape from the conductive connection portion 142A serving as a base.
  • the second conductive connecting portion 142A only needs to be arranged so as to be non-contact with the solar battery cell when the solar battery cell is sealed with the second sealing sheet 112.
  • the shape is not particularly limited.
  • the second conductive portion 132B is disposed next to the second conductive portion 132A at a distance from the second conductive portion 132A.
  • the second conductive portions 132A and 132B are arranged at intervals in a direction parallel to the longitudinal direction of the second conductive path 136A (which may also be the arrangement direction of solar cells).
  • the second conductive portion 132B has the same configuration as the second conductive portion 132A.
  • the second conductive portion 132B has a second conductive path 136B and a second conductive connection portion 142B, like the first conductive portion 132A, and the second conductive path 136B and the second conductive portion 132B.
  • Each of the connecting portions 142B has the same configuration as that of the second conductive path 136A and the second conductive connecting portion 142A.
  • the second conductive part pattern including the second conductive parts 132A and 132B is formed on the surface of the second sealing sheet 112.
  • a pattern in which a plurality of second conductive portions 132A and 132B having a comb shape are arranged in a plurality of rows at a predetermined interval is formed as a second sealing. It is formed on the surface of the sheet 112.
  • the first sealing resin layer and the second sealing resin layer (hereinafter also collectively referred to as a sealing resin layer) have insulating properties and translucency, and are typically sealed. It is a sheet-like member formed from resin.
  • “having insulation” means a specific resistance at 25 ° C. of 1 ⁇ 10 6 ⁇ ⁇ cm or more (preferably 1 ⁇ 10 8 ⁇ ⁇ cm or more, typically 1 ⁇ 10 10 ⁇ ⁇ cm. That's it).
  • electric resistance for example, specific resistance means a value at 25 ° C. unless otherwise specified.
  • “having translucency” means that the total light transmittance specified by JIS K 7375 (2008) is 50% or more (preferably 80% or more, typically 95% or more). Say something.
  • the 2nd sealing resin layer does not need to have translucency.
  • an ethylene-vinyl acetate copolymer (EVA) is preferably used from the viewpoint of translucency, workability, weather resistance, and the like.
  • the sealing resin is typically a thermosetting resin.
  • the sealing resin includes ethylene-vinyl ester copolymers represented by EVA, ethylene-unsaturated carboxylic acid copolymers such as ethylene- (meth) acrylic acid copolymers, and ethylene- (meth) acrylic acid esters. It may be an ethylene-unsaturated carboxylic acid ester copolymer such as polymethyl methacrylate and an unsaturated carboxylic acid ester polymer such as polymethyl methacrylate.
  • fluoropolymers such as vinylidene fluoride resin and polyethylene tetrafluoroethylene; manufactured using low density polyethylene (LDPE), linear low density polyethylene (LLDPE, typically Ziegler catalyst, vanadium catalyst, metallocene catalyst, etc.
  • PE polyethylene
  • PP polypropylene
  • PP polypropylene
  • Polyolefins such as ethylene / ⁇ -olefin copolymers and their modified products (modified polyolefins); Polybutadienes; Polyvinyl acetate such as polyvinyl formal, polyvinyl butyral (PVB resin), modified PVB; Terephthalate (PET); polyimide; amorphous polycarbonate; siloxane sol - gel; polyurethane; polystyrene; polyether sulfone; polyarylate, epoxy resins, may be like; silicone resin; ionomers. These resins may be used alone or in combination of two or more.
  • the sealing resin may contain various additives known in this field such as an ultraviolet absorber and a light stabilizer.
  • an adhesion improver to the surface of the sealing resin layer before forming the above-described conductive portion.
  • an adhesion improver By forming the conductive part on the surface of the sealing resin layer to which the adhesion improver is applied, the adhesion between the conductive part and the sealing resin layer is improved, and disconnection, displacement, and deformation of the conductive part are preferably performed. Can be prevented.
  • a silane coupling agent is preferably used as an adhesion improver.
  • the adhesiveness of the conductive part is improved by applying an adhesion improver to the surface of the sealing resin layer and then performing a heat treatment.
  • the usage form of an adhesive improvement agent is not limited to application
  • the surface of the sealing resin layer not only can be provided with the above-mentioned adhesion improver, but various surface treatments such as corona treatment and atmospheric pressure plasma treatment can be used alone or in combination for the purpose of improving adhesion and the like. Can be applied.
  • the surface treatment may be performed on the conductive portion.
  • the thickness of the encapsulating resin layer is preferably about 100 to 2000 ⁇ m (for example, 200 to 1000 ⁇ m, typically 400 to 800 ⁇ m) from the viewpoint of the conductive part forming property, the solar cell sealing property, and the like.
  • the first conductive portion (including the first conductive path and the first conductive connection portion) and the second conductive portion (including the second conductive path and the second conductive connection portion) are typically conductive. Contains sexual materials.
  • the first conductive portion and the second conductive portion are formed, for example, by applying a conductive paste as a conductive material. Thereby, a conductive path can be efficiently formed while reducing the number of parts.
  • conductive paste conductive components made of metal materials such as gold, silver, copper, aluminum, iron, nickel, tin, chromium, bismuth, indium, and alloys thereof, and conductive components made of non-metals such as carbon (hereinafter referred to as “conductive paste”) The same)) and a resin component such as polyester or epoxy resin can be used in a suitable solvent.
  • conductive paste conductive components made of metal materials such as gold, silver, copper, aluminum, iron, nickel, tin, chromium, bismuth, indium, and alloys thereof, and conductive components made of non-metals such as carbon
  • conductive paste conductive paste
  • a resin component such as polyester or epoxy resin
  • the specific resistance of the conductive paste at 25 ° C. is about 5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less (for example, 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less, typically 5.0 ⁇ 10 ⁇ 7 ⁇ ⁇ m or less). Preferably there is.
  • the specific resistance of the conductive component constituting the conductive paste is preferably 5.0 ⁇ 10 ⁇ 7 ⁇ ⁇ m or less.
  • the first conductive part and the second conductive part can be formed by applying a conductive paste to the surface of the sealing resin layer using a known dispenser.
  • the conductive paste is applied to the surface of the peelable sheet, not to the surface of the sealing resin layer, and a conductive portion having a predetermined pattern is formed on the surface of the peelable sheet.
  • the conductive portion may be formed on the surface of the sealing resin layer by transferring it to the surface of the sealing resin layer.
  • a conductive sheet may be used as the conductive connection part (including the first conductive connection part and the second conductive connection part).
  • the conductive sheet may be selected from a conductive resin sheet in which the above-described conductive component is blended in a resin, or a metal sheet (for example, a metal foil) made of a metal such as copper or aluminum, an alloy, or the like.
  • a metal sheet for example, a metal foil
  • the conductive adhesive sheet examples include a conductive adhesive sheet, a hot melt type, a thermosetting type, a drying type, a moisture curing type, a two-component reaction curing type, an ultraviolet (UV) curing type, an anaerobic type, and a UV anaerobic type.
  • a conductive adhesive sheet can be used.
  • the adhesive component of the adhesive sheet urethane, acrylic, epoxy and other adhesive components can be used. Among these, a conductive pressure-sensitive adhesive sheet that does not require a heating operation and is excellent in handleability is particularly preferable.
  • a baseless pressure-sensitive adhesive sheet comprising a pressure-sensitive adhesive layer (for example, an acrylic pressure-sensitive adhesive layer) containing about 3 to 70% by weight of the above-described conductive component (more preferably, a silver filler), a copper foil or an aluminum foil
  • the pressure-sensitive adhesive layer may contain a tackifier, a crosslinking agent, and other additives depending on the purpose.
  • the pressure-sensitive adhesive sheet for example, those described in JP 2012-7093 A can be preferably used.
  • the conductive pressure-sensitive adhesive sheet is a double-sided pressure-sensitive adhesive sheet in which a non-conductive pressure-sensitive adhesive layer is formed on both surfaces of the above-mentioned conductive base material, and the conductive base material is partially the surface of the pressure-sensitive adhesive layer. It may be a conductive pressure-sensitive adhesive sheet exposed to the surface. Examples of such a conductive pressure-sensitive adhesive sheet include those described in JP-A-8-185714.
  • the conductive portion is formed by hot-melt coating a metal material (typically an alloy) having a low melting point (for example, a melting point of 300 ° C. or lower, preferably 250 ° C. or lower).
  • a low-melting-point alloy for example, “SnBi solder” manufactured by Arakawa Chemical Industries, Ltd., melting point 139 ° C. using a commercially available hot-melt dispenser (for example, manufactured by Musashi Engineering)).
  • the low melting point metal material may be applied not to the surface of the sealing resin layer but to the surface of the peelable sheet.
  • a conductive part can be formed on the surface of the sealing resin layer by transferring the conductive part formed so as to have a predetermined pattern on the surface of the peelable sheet to the surface of the sealing resin layer. It should be noted that the same configuration as in this embodiment can also be obtained by employing various printing methods such as screen printing.
  • a metal material such as gold, silver, copper, aluminum, iron, nickel, tin, chromium, bismuth, indium, or an alloy thereof can be preferably used as the material constituting the conductive portion.
  • silver, copper, aluminum, and iron are more preferable, and copper and aluminum are more preferable.
  • Conductive paths composed essentially of metal have the advantage of lower resistance.
  • the conductive path including the first conductive path and the second conductive path
  • the conductive connection part is a metal sheet (typically a metal foil).
  • the metal wire As an example of the metal wire, one provided with a plating coating such as tin (Sn) or silver (Ag) can be given.
  • the plating thickness may be about 10 ⁇ m or less (for example, 3 ⁇ m or less).
  • As said metal sheet typically metal foil
  • what gave at least 1 sort (s) of surface treatment of a roughening process, a rust prevention process, and an adhesive improvement process may be used preferably.
  • Suitable examples of the metal sheet include copper foil (in particular, electrolytic copper foil).
  • the sealing sheet having the conductive part (including the first sealing sheet and the second sealing sheet) is produced, for example, as follows. That is, first, the conductive path and the conductive connection portion are fixed, and a conductive portion (also referred to as a conductive member) is manufactured. And the sealing sheet is produced by arrange
  • welding As a method for fixing the conductive path and the conductive connection portion in the conductive portion, it is preferable to employ welding.
  • welding method conventionally known various types of welding can be employed. For example, arc welding, resistance welding, laser beam welding, electron beam welding, and ultrasonic welding can be preferably employed. Or it is also possible to employ
  • the conductive portion is made of a metal material
  • a configuration in which the conductive portion is made of a metal wire can be given.
  • a metal wire the above-mentioned thing can be used preferably.
  • various joining methods such as the above-described welding can be employed.
  • the conductive part may be formed of a patterned metal sheet.
  • a conductive part can be formed integrally with the conductive path and the conductive connection part by etching the metal sheet.
  • a resist is attached to the surface of a metal sheet (typically a metal foil), and a predetermined resist pattern is formed by applying a photolithography technique.
  • the metal sheet is patterned using a known or conventional etching solution.
  • a sealing sheet can be obtained by forming a conductive part and disposing it on the surface of the sealing resin layer.
  • a similar configuration can be obtained by various vapor deposition methods.
  • the conductive portion may be formed of a mesh-structured metal sheet (mesh sheet).
  • the mesh sheet typically has a mesh structure (mesh shape) in which a plurality of metal wires are arranged vertically and horizontally.
  • the conductive portion includes a plurality of metal lines (vertical lines) arranged along one direction and a plurality of metal lines arranged in a direction intersecting (typically substantially orthogonal) with the vertical lines. (Horizontal line). In each of the vertical and horizontal lines, the plurality of metal lines are spaced apart and are typically substantially parallel.
  • the mesh-shaped wire diameter and mesh size can be set to be within the range of the width and interval of the conductive path described later and the width of the conductive connection portion.
  • the conductive path of the conductive portion may be formed of a mesh material including a conductive material (for example, a metal such as copper).
  • the mesh material may be a composite material of a metal wire and a resin fiber (typically a transparent resin fiber).
  • the metal wires are arranged in stripes, and the resin fibers are arranged in the same direction as the metal wires and in a direction intersecting with the metal wires, thereby forming a mesh structure.
  • the mesh material can be produced by weaving metal wires into resin fibers so that the metal wires are arranged in a predetermined direction. In this case, it is preferable to use a resin fiber for the weft and a metal wire and a resin fiber for the warp.
  • the resin fiber is preferably a material having high transparency and excellent insulating properties. Specific examples include a mesh material in which the metal wire is a copper wire and the resin fiber is a PET fiber having excellent transparency.
  • the mesh material is available, for example, from NBC Meshtec.
  • the conductive connection portion may have a single layer structure or a multilayer structure. Further, when the solar cell is sandwiched between the first sealing sheet and the second sealing sheet, an additional conductive connection portion is disposed between the first conductive connection portion and the second conductive connection portion. May be.
  • an appropriate material can be selected and used from the materials that can be used as the conductive connection portion. Preferred examples thereof include a metal sheet (specifically, a metal foil) and a conductive adhesive sheet.
  • the thickness of the stacked portion of the first conductive connection portion and the second conductive connection portion increases, and the first The contact area between the conductive connection portion and the second conductive connection portion is increased, and the current collection efficiency is improved.
  • the shape of the additional conductive connection part is preferably the same shape as the first conductive connection part and the second conductive connection part.
  • the conductive connection portion is typically a continuous layer (conductive layer) as described above, but may be an intermittent layer.
  • the conductive connection portion may have an intermittent band shape, or may be arranged in a dot shape (also referred to as granular).
  • the dot shape is typically granular, and may be, for example, a spherical shape such as a true spherical shape or a flat spherical shape.
  • the conductive connection part having such a shape can be formed by using, for example, the above-described conductive paste or a low melting point metal material.
  • the number of conductive paths is not particularly limited. In the case where a plurality of linearly extending conductive paths (for example, first conductive paths) are arranged at intervals as one conductive part (for example, first conductive part) corresponding to one solar battery cell, one conductive part (for example, the number of conductive paths (for example, the first conductive path) in the first conductive portion is preferably about 2 to 20 (for example, 4 to 18, typically 6 to 15).
  • the width of the conductive path is preferably 30 ⁇ m or more, more preferably 100 ⁇ m or more, from the viewpoint of collecting current loss, strength, handling properties, and workability. More preferably 500 ⁇ m or more.
  • the width is preferably 1500 ⁇ m or less, more preferably 1200 ⁇ m or less, and still more preferably 1000 ⁇ m or less from the viewpoint of reducing shadow loss.
  • the width refers to a length (width) orthogonal to the longitudinal direction of the conductive path.
  • the distance between the conductive paths is preferably 0 from the viewpoint of reducing shadow loss. 0.1 cm or more, more preferably 0.8 cm or more, and further preferably 1.5 cm or more. The distance is preferably less than 4.0 cm, more preferably less than 3.0 cm, and even more preferably 2.5 cm or less from the viewpoint of reducing current collection loss.
  • interval is a pitch and points out the distance between the centerlines in the width direction of a conductive path.
  • the width of the conductive connection portion is preferably 0.1 mm or more, more preferably 0.3 mm or more, and further preferably 0.5 mm or more, from the viewpoint of smooth electrical connection of the solar cell module.
  • the width is preferably 2 mm or less, more preferably 1.5 mm or less, and further preferably 1.0 mm or less.
  • variety points out the length (width) orthogonal to the longitudinal direction of an electroconductive connection part.
  • a conductive connection part for example, conductive sheet
  • the thickness is preferably about 0.5 to 2 times (eg, 0.8 to 1.2 times, typically 0.9 to 1.1 times) the thickness of the solar battery cell.
  • Each of the first sealing sheet and the second sealing sheet is a form in which at least one surface (typically both surfaces) is protected by a separator sheet (not shown) before being incorporated into the solar cell module. Can be provided at.
  • FIG. 3 is an exploded cross-sectional view schematically showing the structure of the main part of the solar cell module according to the first embodiment.
  • a solar cell module constructed using a pair of sealing sheets will be described with reference to FIG.
  • the solar cell module 1 includes a plurality of solar cells including the solar cells 10a and 10b. Moreover, the solar cell module 1 is provided with the 1st sealing sheet 111 which covers the surface of the photovoltaic cell 10a, 10b, and the 2nd sealing sheet 112 which covers the back surface of the photovoltaic cell 10a, 10b. Further, the solar cell module 1 includes a surface covering member 31 disposed outside the first sealing sheet 111 and a back surface covering member 32 disposed outside the second sealing sheet 112. The surface covering member 31 and the back surface covering member 32 constitute a front (front) surface and a back (back) surface of the solar cell module 1, respectively.
  • the solar battery cell group 10 including a plurality of solar battery cells including the solar battery cells 10a and 10b is arranged in a straight line at a predetermined interval.
  • An n-type electrode (surface electrode) is partially formed on the surfaces of the solar cells 10a and 10b, and a p-type electrode (back electrode) is formed on the back surface.
  • n-type electrode surface electrode
  • p-type electrode back electrode
  • wafer-like crystalline Si cells having a thickness of about 180 to 200 ⁇ m are used as the solar cells 10a and 10b.
  • the type of solar cell used is not particularly limited, and for example, a single crystal type or a polycrystalline type crystal Si cell is suitable, but an amorphous Si cell, a compound type, an organic type solar cell, etc. May be.
  • the shape is not particularly limited, and may be a belt shape or the like.
  • the thickness of the solar battery cell is preferably about 300 ⁇ m or less, more preferably about 200 ⁇ m or less, and further preferably about 160 ⁇ m or less from the viewpoint of lightness and the like.
  • the solar cell modules 1 are arranged in a row so as to be parallel to the arrangement direction of the solar cell groups 10 in addition to the solar cell groups 10 arranged in a row as described above.
  • the solar battery cell group is provided.
  • the first sealing sheet 111 one having the above-described configuration is used.
  • the first conductive portions 131 ⁇ / b> A and 131 ⁇ / b> B of the first sealing sheet 111 are arranged separately at a predetermined interval in the arrangement direction of the solar battery cell group 10.
  • the first conductive portions 131A and 131B are arranged so as to face and come into contact with the surfaces (more specifically, surface electrodes) of the two adjacent solar cells 10a and 10b. Note that the first conductive portion 131A is not in contact with solar cells other than the solar cell 10a, and the first conductive portion 131B is not in contact with solar cells other than the solar cell 10b.
  • a bus bar (typically, a solder-coated copper wire) provided on the surface of a conventional solar battery cell becomes unnecessary.
  • the first conductive portion 131A extends along the arrangement direction of the solar cells 10a and 10b, so that it protrudes into a region located between the solar cells 10a and 10b. In other words, the first conductive portion 131A is disposed so as to have a portion that protrudes into a region located between the solar cells 10a and 10b. As described above, by providing the portion that protrudes from the first conductive portion 131A, the first conductive portion 131A can easily be electrically connected to the second conductive portion 132B.
  • the first conductive portion 131A has a plurality of first conductive paths 133A as described above and shown in FIG. These first conductive paths 133A extend linearly in a direction parallel to the arrangement direction of the solar battery cell group 10, and are arranged at a predetermined interval in a direction orthogonal to the arrangement direction. More specifically, the first conductive paths 133A each have a linearly extending shape, and are arranged so as to be spaced apart from and parallel to each other. 133 A of 1st electroconductive paths are arrange
  • the first conductive portion 131B is basically configured similarly to the first conductive portion 131A, and the first conductive path 133B is also configured basically similar to the first conductive path 133A. To do.
  • the second conductive portions 132 ⁇ / b> A and 132 ⁇ / b> B of the second sealing sheet 112 are arranged separately at a predetermined interval in the arrangement direction of the solar battery cell group 10.
  • the second conductive portions 132A and 132B are arranged so as to face and contact the back surfaces (more specifically, the back surface electrodes) of the two adjacent solar cells 10a and 10b. Note that the second conductive portion 132A is not in contact with solar cells other than the solar cell 10a, and the second conductive portion 132B is not in contact with solar cells other than the solar cell 10b.
  • the second conductive portion 132B extends along the arrangement direction of the solar cells 10a and 10b, so that it protrudes into a region located between the solar cells 10a and 10b.
  • the second conductive portion 132B is disposed so as to have a portion that protrudes into a region located between the solar cells 10a and 10b.
  • the second conductive portion 132B can be easily electrically connected to the first conductive portion 131A.
  • the second conductive portion 132B has a plurality of second conductive paths 136B as described above and shown in FIG. These second conductive paths 136B extend linearly in a direction parallel to the arrangement direction of the solar battery cell group 10, and are arranged at a predetermined interval in a direction orthogonal to the arrangement direction. More specifically, the second conductive paths 136B each have a linearly extending shape, and are arranged so as to be spaced apart from and parallel to each other.
  • the second conductive path 136B is disposed in a region 10b '' facing the solar battery cell 10b on the surface of the second sealing resin layer 122, and extends linearly between the solar battery cells 10a and 10b. It is comprised so that it may have the part which protruded in the area
  • the second conductive portion 132A is basically configured in the same manner as the second conductive portion 132B, and the second conductive path 136A is also basically configured in the same manner as the second conductive path 136B. To do.
  • the first conductive portion 131A has a first conductive connection portion 141A.
  • the first conductive connection portion 141 ⁇ / b> A is disposed between the plurality of solar battery cells 10 a and 10 b on the surface of the first sealing sheet 111.
  • 141 A of 1st electroconductive connection parts are arrange
  • the first conductive connecting portion 141A only needs to be in non-contact with the solar cells 10a and 10b, and the arrangement state and shape are not particularly limited as long as the first conductive connecting portion 141A is not in contact therewith.
  • the second conductive portion 132B has a second conductive connection portion 142B.
  • the 2nd electroconductive connection part 142B is arrange
  • the second conductive connection part 142B is arranged between the solar battery cells 10a and 10b so as to extend in a band shape in a direction orthogonal to the arrangement direction of the solar battery cell group 10.
  • the first conductive connection portion 141A located at the protruding portion of the first conductive portion 131A is electrically connected to the second conductive connection portion 142B positioned at the protruding portion of the second conductive portion 132B.
  • the 2nd electroconductive connection part 142B should just be non-contact with the photovoltaic cell 10a, 10b, and an arrangement
  • the first conductive connection portion 141A is disposed at a distance from the solar battery cells 10a and 10b, but the first conductive connection portion is reliably prevented from short-circuiting with the solar battery cells 10a and 10b. It is preferable to provide insulating portions at both ends in the width direction.
  • the insulating part can be provided by applying a known insulating resin material. Or it can also provide by coat
  • the first conductive connecting portion and the insulating portion may be formed by separately coating using a dispenser having a three-neck nozzle.
  • the conductive layer forming material a material similar to the material capable of forming the conductive portion described above may be used.
  • the insulating layer forming material a conventionally known resin paste or the like whose main component is a resin such as polyimide or polyester may be used.
  • first conductive portion 131B and the second conductive portion 132A have the same configuration as the first conductive portion 131A and the second conductive portion 132B, description thereof will be omitted.
  • Wiring work is also performed for the configuration of the solar cells other than the solar cells 10a and 10b, the first conductive portions other than the first conductive portions 131A and 131B, and the second conductive portions other than the second conductive portions 132A and 132B. From the viewpoint of performing efficiently, it is preferable to basically configure the solar cells 10a and 10b, the first conductive portions 131A and 131B, and the second conductive portions 132A and 132B. More preferably, the configuration is repeated.
  • Surface covering member various materials having translucency can be used.
  • Surface covering member is glass plate, fluororesin sheet such as tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride resin, chlorotrifluoroethylene resin, acrylic resin, polyethylene terephthalate It may be a resin sheet composed of a material such as polyester such as (PET) or polyethylene naphthalate (PEN).
  • PET polyester
  • PEN polyethylene naphthalate
  • a flat plate member or a sheet member having a total light transmittance of 70% or more (for example, 90% or more, typically 95% or more) can be preferably used. The total light transmittance may be measured based on JIS K7375 (2008).
  • the thickness of the surface covering member is preferably about 0.5 to 10 mm (for example, 1 to 8 mm, typically 2 to 5 mm) from the viewpoint of protection and light weight.
  • the back surface covering member a flat plate member or sheet member made of various materials exemplified as the material of the surface covering member is preferably used. Especially, it is more preferable to use polyester, such as PET and PEN, as a back surface covering member forming material. Or as a back surface covering member, you may use the metal sheet (for example, aluminum plate) which has corrosion resistance, resin sheets, such as an epoxy resin, and composite sheets, such as a silica vapor deposition resin.
  • the thickness of the back surface covering member is preferably about 0.1 to 10 mm (for example, 0.2 to 5 mm) from the viewpoints of handleability and lightness. In addition, the back surface covering member may not have translucency.
  • the first conductive portion 131 ⁇ / b> A and the second conductive portion 132 ⁇ / b> B are provided on the front surface of the solar cell 10 a and the back surface of the solar cell 10 b. It forms a conductive path between them.
  • electrical connection of the solar battery cell group 10 is realized.
  • the electric energy generated by the solar cell group 10 is external to the solar cell module 1 via terminal bars (not shown) arranged at both ends of the solar cell module 1 in the arrangement direction of the solar cell group 10.
  • terminal bars not shown
  • the construction of the solar cell module 1 will be further described, particularly regarding the electrical connection of the solar cells.
  • a pair of sealing sheets 100 including the first sealing sheet 111 and the second sealing sheet 112 are sandwiched between the solar battery cells 10 a and 10 b so that the conductive part forming surfaces face each other.
  • the pair of sealing sheets 100 are pressed against the solar cells 10a and 10b, the first conductive connecting portions 141A and 141B and the second conductive properties provided in the first sealing sheet 111 and the second sealing sheet 112, respectively.
  • Electrical connection of the solar cell module 1 is realized through the connection parts 142A and 142B.
  • the solar battery cell 10a is in contact with the first conductive part 131A and the second conductive part 132A
  • the solar battery cell 10b is in contact with the first conductive part 131B and the second conductive part 132B.
  • the first conductive connecting portion 141A of the portion 131A abuts on the second conductive connecting portion 142B of the second conductive portion 132B, and the first conductive portion (not shown) or the first conductive portion disposed outside the solar cell module 1
  • the two conductive parts (not shown) have their first conductive connection part and second conductive connection part in contact with an extraction electrode (terminal bar) (not shown) arranged in the vicinity of the end of the solar cell module 1. Thereby, electrical connection of the solar cell module 1 is realized.
  • the number of the second conductive paths 132B and 132B arranged on the back surfaces of the solar cells 10a and 10b is larger than that of the first conductive paths 131B and 131B, so that the shadow loss is increased.
  • the power generation efficiency is improved without any problems.
  • the construction of the solar cell module 1 in general can be implemented based on the common general technical knowledge in the technical field, and does not characterize the present invention.
  • the above configuration is superior in wiring workability of the solar battery cell as compared with the conventional wiring method (typically, a method performed using solder or the like). Moreover, since it is excellent also in an intensity
  • BSF Back Surface Field
  • a silver electrode having excellent solder jointability is usually disposed at a joint location with metal wiring. That is, as the back electrode of the solar battery cell, an aluminum electrode and a silver electrode are usually used in combination. According to the technology disclosed herein, electrical connection on the back surface of the solar battery cell is realized simply by contacting the back electrode (aluminum electrode) on the back surface with the second conductive path of the second sealing sheet. Solder joining on the back surface of the solar battery cell is not necessary. Therefore, by adopting the technology disclosed herein, a solar cell module having a structure in which the back electrode of the solar cell does not substantially contain a silver electrode can be realized. This configuration has significant advantages in cost reduction and productivity improvement.
  • FIG. 4 is a top view schematically showing the main part of the second sealing sheet according to the second embodiment.
  • the second sealing sheet according to the second embodiment has basically the same configuration as the second sealing sheet according to the first embodiment except for the second conductive path. Therefore, in this embodiment, the second conductive path will be mainly described, and description of other points will be omitted.
  • the number of second conductive paths 136A in the second conductive portion 132A of the second sealing sheet 112 is equal to the number of first conductive paths 133A in the first conductive portion 131A of the first sealing sheet 111.
  • the width of the second conductive path 136A is larger than the width of the first conductive path 133A.
  • the second conductive path 136B is also configured in the same manner as the second conductive path 136A, and has the same number as the first conductive path 133B, but its width is larger than that of the first conductive path 133B.
  • the widths of the second conductive paths 136A and 136B are preferably 1.2 times or more (more preferably 1.5 times or more, more preferably 2 times or more) the width of the first conductive paths 133A and 133B. Also with this configuration, the wiring workability and power generation efficiency of the solar cell module are improved as in the first embodiment.
  • FIG. 5 is a top view schematically showing the main part of the second sealing sheet according to the third embodiment.
  • the second sealing sheet according to the third embodiment has basically the same configuration as the second sealing sheet according to the first embodiment except for the second conductive portion. Therefore, about this embodiment, the 2nd electric conduction part is mainly explained and explanation about other points is omitted.
  • the second conductive path 136A in the second conductive portion 132A of the second sealing sheet 112 is substantially in the region 10a ′′ facing the solar battery cell 10a on the surface of the second sealing resin layer 122. It is arranged in the entire region (for example, 80% or more, typically 90 to 100% of the area of the solar cell back surface facing region 10a ′′). Further, the second conductive portion 132A further includes a non-facing portion of the solar cell that protrudes from the solar cell back surface facing region 10a ′′. The solar cell non-facing portion is the first in the solar cell back surface facing region 10a ′′.
  • the second conductive portion 132B is configured similarly to the second conductive portion 132A.
  • a metal sheet (specifically, a metal foil) is used as the second conductive portions 132A and 132B. What was illustrated above can be used as said metal sheet.
  • the second conductive portions 132A and 132B in this embodiment have a rectangular shape when viewed from the upper surface. Also with this configuration, the wiring workability and power generation efficiency of the solar cell module are improved as in the first embodiment.
  • the solar cell module disclosed here is not limited to the structure of the said embodiment.
  • the number of solar cells arranged in the solar cell module may be two or more, and there is no particular limitation as long as it is limited.
  • a plurality of solar cells can be electrically connected in a lump. Therefore, the greater the number of solar cells, the greater the effect of improving the wiring workability.
  • the number of cells in the solar cell group is preferably 3 or more, more preferably 5 or more (for example, 7 -20, typically 8-12).
  • the solar cell group may have two or more rows (for example, 3 to 10 rows, typically 5 to 8 rows).
  • the several photovoltaic cell was comprised as a photovoltaic cell group arranged in a line
  • positioning) of a several photovoltaic cell is not limited to this, A linear form, a curve It may be a pattern, a regular pattern, or an irregular pattern.
  • interval of a photovoltaic cell does not need to be constant.
  • the number of conductive parts in one sealing sheet basically corresponds to the number of solar cells sealed by the sealing sheet.
  • the number of conductive portions provided in one sealing sheet is one.
  • the number of conductive portions provided in one sealing sheet corresponds to the number of solar cells, 5 or more (for example, 30 or more, typically 50 or more), and may actually be about 50 to 60.
  • a plurality of solar cells for example, 2 to 20 solar cells arranged in a row at intervals
  • a plurality about 2 to 10 of this configuration are combined. It is also possible to construct a solar cell module.
  • the first conductive portion has a plurality of conductive paths extending in a straight line.
  • the technique disclosed herein is not limited to this, and the conductive portion has one conductive path. It may have.
  • the shape of the conductive part and the conductive path is not particularly limited, and may be, for example, a curved shape or a ring shape.
  • the conductive portion may have a pattern such as a lattice shape or a shape in which a plurality of rings are connected. Accordingly, the shape and the like of the conductive path that can constitute the conductive portion are not particularly limited.
  • the plurality of conductive paths may be separated from each other or may be in contact with each other.
  • a 2nd electroconductive part it may have a planar shape which covers the whole back surface of a photovoltaic cell like the said 3rd Embodiment.
  • the electrical connection method between the first conductive part and the second conductive part is not limited to the method of each of the above embodiments.
  • the first conductive part and the second conductive part can be electrically connected by appropriately modifying a conventionally known wiring method.
  • the shape and arrangement of the conductive connection portion are not particularly limited as long as the electrical connection is realized.
  • the conductive connection part is typically only required to be disposed in a non-contact state with the solar battery cell, and from this point of view, for example, the arrangement direction of the solar battery cell (which may be the longitudinal direction of the conductive path). It preferably has a band shape extending in a direction intersecting with the line. Further, from the viewpoint of easy electrical connection, the conductive connection part is preferably in direct contact with the conductive path.
  • the matters disclosed by this specification include the following. (1) a plurality of solar cells arranged at intervals; An insulating and translucent first sealing sheet covering the surfaces of the plurality of solar cells; An insulating second sealing sheet that covers the back surfaces of the plurality of solar cells,
  • the 1st sealing sheet is provided with the 1st encapsulating resin layer and the 1st electric conduction part arranged on the photovoltaic cell side surface of the 1st encapsulating resin layer,
  • the second sealing sheet includes a second sealing resin layer, and a second conductive part disposed on the solar cell side surface of the second sealing resin layer,
  • the first conductive part is in contact with the surface of one of the two adjacent solar cells among the plurality of solar cells,
  • the second conductive portion is in contact with the back surface of the other solar cell of the two adjacent solar cells, and the first conductive portion and the second conductive portion are configured to be electrically connected.
  • a solar cell module (2)
  • the first conductive portion has a portion that protrudes from a region located between two adjacent solar cells so as to face the surface of one of the two adjacent solar cells.
  • the second conductive portion is disposed so as to face the back surface of the other solar cell of the two adjacent solar cells and to have a portion that protrudes from a region located between the two adjacent solar cells.
  • a step of sandwiching a plurality of solar cells between the first sealing sheet and the second sealing sheet (in this step, a plurality of solar cells are arranged at intervals and two of the plurality of solar cells are adjacent to each other)
  • the first conductive part is brought into contact with the surface of one of the solar cells
  • the second conductive part is brought into contact with the back surface of the other of the two adjacent solar cells, and the first conductive part And the second conductive portion are electrically connected.
  • a method for manufacturing a solar cell module comprising: (5) The step of disposing the first conductive part is such that the first conductive part is opposed to the surface of one solar battery cell of two adjacent solar battery cells and between the two adjacent solar battery cells.
  • Including a step of arranging to have a protruding portion in the region located at The process of forming a 2nd electroconductive part is located so that the 2nd electroconductive part may be opposed to the back surface of the other photovoltaic cell of the two adjacent photovoltaic cells, and between two adjacent photovoltaic cells.
  • the manufacturing method according to the above (4) which includes a step of arranging so as to have a protruding portion in the region.
  • (6) The manufacturing method according to (5), wherein the protruding portion of the first conductive portion and the protruding portion of the second conductive portion are brought into contact with each other.
  • ⁇ Reference experiment 1> Prepare 2 sheets of EVA sheet (trade name “EVASC Fast Cure Type”, manufactured by Sanvik), cut to 36cm ⁇ 18cm, and wire silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd.) on the surface of each EVA sheet. It was applied using a bar and dried at 60 ° C. for 2 minutes.
  • Conductive paste (trade name “Pertron K-3105”, manufactured by Pernox Co., Ltd., conductive component: Ag, resin component: polyester resin, specific resistance: 6.5 ⁇ 10 ⁇ 5 on the silane coupling agent application surface of each EVA sheet. ⁇ ⁇ cm) is applied using a dispenser (manufactured by Musashi Engineering Co., Ltd.), so that two EVA sheets having conductive path patterns (thickness of each path: 200 ⁇ m) as shown in FIG. Produced.
  • a back sheet (trade name “KOBATEC PV KB-Z1-3”, manufactured by Kobayashi Co., Ltd.) with a thickness of 200 ⁇ m cut to 36 cm ⁇ 18 cm is prepared as a back surface covering member, and the conductive path forming EVA prepared above is prepared thereon.
  • One of the sheets was installed such that the conductive path forming surface was the upper surface.
  • two crystalline Si solar cells manufactured by Q CELLS
  • a long conductive adhesive sheet manufactured by NITTO DENKO
  • a terminal bar (trade name “A-SPS”, manufactured by Hitachi Cable, Ltd.) having a width of 6 cm was arranged on both outer sides of the two cells in the arrangement direction of the solar cells.
  • the conductive path forming EVA sheet prepared above was placed so that the conductive path forming surface was the lower surface.
  • the two terminal bars are respectively arranged so as to come into contact with the conductive portion protruding outward from each cell.
  • test solar cell module having a cross-sectional structure as shown in FIG. 3 (however, the number of conductive paths and the thickness of the upper and lower sealing sheets are the same) was constructed.
  • This test module was installed in a solar simulator (trade name “YSS-50”, manufactured by Yamashita Denso Co., Ltd.), and the maximum electric energy was measured.
  • the conversion efficiency (power generation efficiency) obtained based on the irradiance was 6.3%. From this result, it can be seen that by applying the technique disclosed herein, the wiring workability is improved while realizing a power generation efficiency of a predetermined level or more.
  • the Ag-coated wire As the Ag-coated wire, a copper (Cu) wire coated with Ag was used. The above-described fixing operation of the Ag-coated wire was repeated along the longitudinal direction of the copper foil to obtain a comb-shaped conductive member in which four or eight Ag-coated wires were arranged. Further, a comb-shaped conductive member in which four, eight, or fifteen Sn-coated wires were arranged was obtained in the same manner as above except that the Ag-coated wire was changed to a tin (Sn) -coated wire (width: 500 ⁇ m).
  • the conductive member has basically the same structure as the conductive portion shown in FIGS. 1 and 2, but the number of wires in the conductive portion does not match. Further, a metal foil (Sn—Cu foil) was prepared as a conductive member. This conductive member has the same structure as the conductive portion shown in FIG.
  • EVA sheet (trade name “EVASKY”, manufactured by Bridgestone) was cut into 18 cm ⁇ 18 cm to prepare a sheet-shaped sealing resin (sealing resin layer).
  • the conductive member obtained above was disposed on the surface-treated surface to obtain a sealing sheet with a conductive part.
  • a corona treatment device for example, manufactured by Kasuga Denki Co., Ltd.
  • atmospheric pressure plasma treatment using an atmospheric pressure plasma processing device for example, manufactured by Sekisui Chemical Co., Ltd.
  • a silane coupling agent trade name “KBM”.
  • -503 manufactured by Shin-Etsu Chemical Co., Ltd.
  • a back sheet having a thickness of 200 ⁇ m (trade name “KOBATEC PV KB-Z1-3”, manufactured by Kobayashi Co., Ltd.) was prepared, cut to 18 cm ⁇ 18 cm, and a back coating member was prepared. This back surface covering member was placed, and the sealing sheet with a conductive part (second sealing sheet) produced above was placed thereon so that the conductive part forming surface was the upper surface.
  • a Si-based solar battery cell single crystal cell, manufactured by Q CELLS Co., Ltd.
  • three bus bar electrodes 1.5 mm ⁇ 0.2 mm solder-coated copper wire
  • the said bus-bar electrode is being fixed to the said photovoltaic cell with the solder.
  • a copper terminal bar (trade name “A-SPS”, manufactured by Hitachi Cable Ltd.) having a width of 6 cm was installed on both sides of the solar battery cell as an extraction electrode.
  • the sheet-shaped sealing resin prepared above was installed.
  • a 3.2 mm thick glass plate (manufactured by Asahi Glass Co., Ltd., white plate heat-treated glass) is disposed thereon as a surface covering member, and then a commercially available laminator (manufactured by NPC Co.) is used at 150 ° C. and 100 KPa for 5 minutes. Was laminated and cured for 15 minutes. Furthermore, the solar cell module for a test was constructed by performing a drying treatment at 150 ° C. for 15 minutes using a commercially-available air constant temperature thermostat (manufactured by Yamato Kagaku).
  • test solar cell module a module was prepared in which the number of second conductive paths (wires) in the second encapsulating sheet was changed to 4 and 8, respectively, and Sn covered wires were further changed to 15. Moreover, the solar cell module for a test which uses the 2nd sealing sheet which used the 2nd conductive path as metal foil was prepared.
  • Example> As the solar battery cell, a Si solar battery cell (manufactured by Q Cells Inc., single crystal cell) in which the bus bar electrode was not fixed was used. Moreover, the 2nd sealing sheet which has the electroconductive part by which 15 Ag covering wires were arranged as a 2nd sealing sheet was used. Moreover, the sheet-shaped sealing resin arrange
  • an increase in shadow loss is achieved by using a sealing sheet with a conductive part as the sealing resin and increasing the area of the conductive part of the second sealing sheet disposed on the back side of the solar battery cell. It can be seen that the current collection efficiency can be improved efficiently while preventing the above. Moreover, by using the sealing sheet with a conductive part, the bus bar electrode soldering step can be omitted, and the wiring workability can be greatly improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The purpose of the present invention is to improve the power generation efficiency of a solar cell module, while improving the wiring workability thereof. A pair of sealing sheets according to the present invention comprise a first sealing sheet that is arranged on the front side of a solar cell and a second sealing sheet that is arranged on the back side of the solar cell. The first sealing sheet is provided with a first sealing resin layer and a first conductive part that is partially arranged on one surface of the first sealing resin layer. The second sealing sheet is provided with a second sealing resin layer and a second conductive part that is partially arranged on one surface of the second sealing resin layer. A part of the first conductive part is arranged within a solar cell facing region of a first sealing sheet surface. A part of the second conductive part is arranged within a solar cell facing region of a second sealing sheet surface. The area of the second conductive part within the solar cell facing region of the second sealing sheet surface is larger than the area of the first conductive part within the solar cell facing region of the first sealing sheet surface.

Description

太陽電池モジュール用封止シートおよび太陽電池モジュールSolar cell module sealing sheet and solar cell module
 本発明は、太陽電池モジュール用封止シートおよび太陽電池モジュールに関する。本出願は、2014年3月7日に出願された日本国特許出願2014-045739号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。 The present invention relates to a solar cell module sealing sheet and a solar cell module. This application claims priority based on Japanese Patent Application No. 2014-045739 filed on Mar. 7, 2014, the entire contents of which are incorporated herein by reference.
 光エネルギーを電力に変換する太陽電池モジュールは、クリーンな発電装置として幅広く利用されている。太陽電池モジュールは太陽電池セルを備えており、当該太陽電池セルは配線によって電気的に接続されている。この配線を通して、太陽電池セルにて発電された電気エネルギーは取り出され、上記モジュールの外部に供給される。この種の従来技術を開示する文献として特許文献1~6が挙げられる。特許文献1~4は、太陽電池セルの表面側にn型電極を部分的に配置し、裏面側にp型電極を配置するタイプの太陽電池モジュールに関するものであり、特許文献5,6は、裏面側に両電極が配置されたバックコンタクト方式を採用する太陽電池モジュールに関するものである。 Solar cell modules that convert light energy into electric power are widely used as clean power generators. The solar cell module includes solar cells, and the solar cells are electrically connected by wiring. Through this wiring, the electric energy generated in the solar battery cell is taken out and supplied to the outside of the module. Patent documents 1 to 6 are cited as documents disclosing this type of prior art. Patent Documents 1 to 4 relate to solar cell modules of a type in which an n-type electrode is partially disposed on the front surface side of a solar battery cell and a p-type electrode is disposed on the back surface side. The present invention relates to a solar cell module that employs a back contact method in which both electrodes are arranged on the back side.
日本国特許出願公開2005-72115号公報Japanese Patent Application Publication No. 2005-72115 日本国特許出願公開2013-232496号公報Japanese Patent Application Publication No. 2013-232496 日本国公表特許公報2005-536894号Japanese published patent publication 2005-536894 日本国特許出願公開2010-45402号公報Japanese Patent Application Publication No. 2010-45402 日本国特許出願公開2010-41009号公報Japanese Patent Application Publication No. 2010-41009 日本国特許出願公開2011-238849号公報Japanese Patent Application Publication No. 2011-238849
 表裏面に電極を有するタイプの太陽電池モジュールにおいて、例えば特許文献1,2に開示されている構成は、太陽電池セルの配線をはんだ等を用いて個別に接合しなければならず接続作業(以下、配線作業ともいう。)に手間と時間を要する。また、はんだ接合等のように接合の際に加熱を行う場合には、加熱によりセルの特性が低下したり、セルに反りや割れが生じる虞がある。はんだ接合ではフラックス汚染の問題もある。特許文献3,4に開示されている太陽電池モジュールも、導電経路となるワイヤーをはんだ接合しており、特許文献1,2と同様の問題を抱えている。またワイヤーは、封止部材とは異なる樹脂膜上の接着剤層に埋め込むという方法によって配置されている。この方法は部品点数や工程数が多く、生産効率の点で不利益が大きい。 In the solar cell module of the type having electrodes on the front and back surfaces, for example, the configurations disclosed in Patent Documents 1 and 2 require that the wiring of the solar cells be individually joined using solder or the like (hereinafter referred to as a connecting operation) It is also called wiring work.) It takes time and effort. In addition, when heating is performed at the time of bonding, such as solder bonding, there is a possibility that the characteristics of the cell may be deteriorated by heating, or the cell may be warped or cracked. Solder joints also have a problem of flux contamination. The solar cell modules disclosed in Patent Documents 3 and 4 also have the same problems as Patent Documents 1 and 2 because the wires serving as the conductive paths are soldered. Moreover, the wire is arrange | positioned by the method of embedding in the adhesive bond layer on the resin film different from a sealing member. This method has a large number of parts and processes, and is disadvantageous in terms of production efficiency.
 本発明は、上記の事情に鑑みて創出されたものであり、太陽電池モジュールの配線作業性向上に加えて発電効率を効率よく向上させ得る太陽電池モジュール用封止シートを提供することを目的とする。また、本発明は、該封止シートを用いた太陽電池モジュールを提供することを他の目的とする。 The present invention was created in view of the above circumstances, and an object thereof is to provide a solar cell module sealing sheet that can efficiently improve power generation efficiency in addition to improving the wiring workability of the solar cell module. To do. Another object of the present invention is to provide a solar cell module using the sealing sheet.
 本発明によると、太陽電池モジュールにおいて少なくとも1つの太陽電池セルを挟んで封止する一対の封止シートが提供される。この一対の封止シートは、前記少なくとも1つの太陽電池セルの表面側に配置される第1封止シートと、前記少なくとも1つの太陽電池セルの裏面側に配置される第2封止シートと、を備える。前記第1封止シートは、第1封止樹脂層と、該第1封止樹脂層の一方の表面に部分的に配置された第1導電部と、を備える。前記第2封止シートは、第2封止樹脂層と、該第2封止樹脂層の一方の表面に部分的に配置された第2導電部と、を備える。また、前記第1導電部の一部は、前記第1封止シート表面の太陽電池セル対向領域内に配置されている。前記第2導電部の一部は、前記第2封止シート表面の太陽電池セル対向領域内に配置されている。そして、前記第2封止シート表面の太陽電池セル対向領域における前記第2導電部の面積は、前記第1封止シート表面の太陽電池セル対向領域における前記第1導電部の面積よりも大きい。
 上記のように構成された一対の封止シートで太陽電池セルを挟むことによって、太陽電池セルの電気的接続は実現され得る。したがって、上記一対の封止シートを用いることによって、太陽電池モジュールの配線作業性を向上させることができる。また、裏面側に配置される第2封止シートの太陽電池セル対向領域における第2導電部を、表面側に配置される第1封止シートの太陽電池セル対向領域における第1導電部よりも大面積とすることによって、シャドーロスの増大を防止しつつ集電効率を向上させ得る。ここに開示される技術を適用することで、表面側と裏面側の導電部の構成(典型的には面積)を容易に異ならせることが可能となり、かかる構成を採用することによって、表裏面に電極を有するタイプの太陽電池モジュールにおける発電効率の向上が効率よく実現される。
According to the present invention, there is provided a pair of sealing sheets that are sealed by sandwiching at least one solar battery cell in the solar battery module. The pair of sealing sheets includes a first sealing sheet disposed on the surface side of the at least one solar battery cell, a second sealing sheet disposed on the back surface side of the at least one solar battery cell, Is provided. The first sealing sheet includes a first sealing resin layer and a first conductive portion partially disposed on one surface of the first sealing resin layer. The second sealing sheet includes a second sealing resin layer and a second conductive portion partially disposed on one surface of the second sealing resin layer. Moreover, a part of said 1st electroconductive part is arrange | positioned in the photovoltaic cell opposing area | region of the said 1st sealing sheet surface. A part of said 2nd electroconductive part is arrange | positioned in the photovoltaic cell opposing area | region of the said 2nd sealing sheet surface. And the area of the said 2nd electroconductive part in the photovoltaic cell opposing area | region of the said 2nd sealing sheet surface is larger than the area of the said 1st electroconductive part in the photovoltaic cell opposing area | region of the said 1st sealing sheet surface.
By sandwiching the solar battery cell with the pair of sealing sheets configured as described above, electrical connection of the solar battery cell can be realized. Therefore, the wiring workability of the solar cell module can be improved by using the pair of sealing sheets. Moreover, the 2nd electroconductive part in the photovoltaic cell opposing area | region of the 2nd sealing sheet arrange | positioned at a back surface side is rather than the 1st electroconductive part in the photovoltaic cell opposing area | region of the 1st sealing sheet arrange | positioned at the surface side. By increasing the area, current collection efficiency can be improved while preventing an increase in shadow loss. By applying the technology disclosed herein, it becomes possible to easily change the configuration (typically the area) of the conductive portions on the front side and the back side, and by adopting such a configuration, The improvement of the power generation efficiency in the solar cell module of the type having electrodes is efficiently realized.
 ここに開示される技術の好ましい一態様では、前記第1導電部は、少なくとも1つの第1導電パスを有する。前記少なくとも1つの第1導電パスは、前記第1封止シート表面の太陽電池セル対向領域内に配置されており、かつ該領域内にて線状に延びる形状を有する。また、前記第2導電部は、少なくとも1つの第2導電パスを有する。前記少なくとも1つの第2導電パスは、前記第2封止シート表面の太陽電池セル対向領域内に配置されている。そして、前記第2封止シート表面の太陽電池セル対向領域における前記第2導電パスの面積は、前記第1封止シート表面の太陽電池セル対向領域における前記第1導電パスの面積よりも大きい。このような構成の封止シートを用いることで、発電効率に優れる太陽電池モジュールが好ましく実現される。 In a preferred aspect of the technology disclosed herein, the first conductive portion has at least one first conductive path. The at least one first conductive path is disposed in a solar cell facing region on the surface of the first sealing sheet and has a shape extending linearly in the region. The second conductive part has at least one second conductive path. The at least one second conductive path is disposed in a solar cell facing region on the surface of the second sealing sheet. And the area of the said 2nd conductive path in the photovoltaic cell opposing area | region of the said 2nd sealing sheet surface is larger than the area of the said 1st conductive path in the photovoltaic cell opposing area | region of the said 1st sealing sheet surface. By using the sealing sheet having such a configuration, a solar cell module excellent in power generation efficiency is preferably realized.
 好ましい一態様では、前記第2導電パスは、前記第2封止シート表面の太陽電池セル対向領域内にて線状に延びる形状を有する。また、前記第2封止シート表面の太陽電池セル対向領域における前記第2導電パスの数は、前記第1封止シート表面の太陽電池セル対向領域における前記第1導電パスの数よりも多い。このような構成の封止シートを用いることで、発電効率に優れる太陽電池モジュールが好ましく実現される。 In a preferred embodiment, the second conductive path has a shape extending linearly in the solar cell facing region on the surface of the second sealing sheet. Further, the number of the second conductive paths in the solar cell facing region on the surface of the second sealing sheet is larger than the number of the first conductive paths in the solar cell facing region on the surface of the first sealing sheet. By using the sealing sheet having such a configuration, a solar cell module excellent in power generation efficiency is preferably realized.
 他の好ましい一態様では、前記第2導電パスは、前記第2封止シート表面の太陽電池セル対向領域にて線状に延びる形状を有する。また、前記第2封止シート表面の太陽電池セル対向領域における前記第2導電パスの幅は、前記第1封止シート表面の太陽電池セル対向領域における前記第1導電パスの幅よりも大きい。このような構成の封止シートを用いることで、発電効率に優れる太陽電池モジュールが好ましく実現される。 In another preferred embodiment, the second conductive path has a shape extending linearly in the solar cell facing region on the surface of the second sealing sheet. Further, the width of the second conductive path in the solar cell facing region on the surface of the second sealing sheet is larger than the width of the first conductive path in the solar cell facing region on the surface of the first sealing sheet. By using the sealing sheet having such a configuration, a solar cell module excellent in power generation efficiency is preferably realized.
 さらに他の好ましい一態様では、前記第2導電パスは、前記第2封止シート表面の太陽電池セル対向領域のほぼ全域に配置されている。このような構成の封止シートを用いることで、発電効率に特に優れる太陽電池モジュールが好ましく実現される。かかる態様においては、前記第2導電部は、前記第1導電部または取出し電極と接触可能な導電性接続部を有することが好ましい。このような構成の封止シートを用いることで、太陽電池モジュールの配線作業性を好ましく向上することができる。 In still another preferred embodiment, the second conductive path is disposed almost in the entire area of the solar cell facing region on the surface of the second sealing sheet. By using the sealing sheet having such a configuration, a solar cell module particularly excellent in power generation efficiency is preferably realized. In this aspect, it is preferable that the second conductive portion has a conductive connection portion that can contact the first conductive portion or the extraction electrode. By using the sealing sheet having such a configuration, the wiring workability of the solar cell module can be preferably improved.
 ここに開示される技術の好ましい一態様では、前記第1導電パスの一端には、該第1導電パスと交差する方向に帯状に延びる第1導電性接続部が配置されている。このような構成の封止シートを用いることで、太陽電池モジュールの配線作業性を好ましく向上することができる。 In a preferred aspect of the technology disclosed herein, a first conductive connection portion extending in a strip shape in a direction intersecting the first conductive path is disposed at one end of the first conductive path. By using the sealing sheet having such a configuration, the wiring workability of the solar cell module can be preferably improved.
 他の好ましい一態様では、前記第2導電パスの数が2以上である場合、該第2導電パスの一端には、該第2導電パスと交差する方向に帯状に延びて該2以上の第2導電パスと接続する第2導電性接続部が配置されている。このような構成の封止シートを用いることで、太陽電池モジュールの配線作業性を好ましく向上することができる。また、第2導電パスと第2導電性接続部とを接続することによって、一対の封止シートの生産性も向上する。 In another preferred embodiment, when the number of the second conductive paths is two or more, the one end of the second conductive path extends in a band shape in a direction intersecting the second conductive path and the two or more second conductive paths. A second conductive connection portion connected to the two conductive paths is disposed. By using the sealing sheet having such a configuration, the wiring workability of the solar cell module can be preferably improved. Moreover, productivity of a pair of sealing sheet improves by connecting a 2nd conductive path and a 2nd conductive connection part.
 ここに開示される技術の好ましい一態様では、前記第1導電部および前記第2導電部は、ともに金属材料からなる。このように構成することで、集電効率に優れた太陽電池モジュールを効率よく製造することができる。 In a preferred aspect of the technology disclosed herein, the first conductive portion and the second conductive portion are both made of a metal material. By comprising in this way, the solar cell module excellent in current collection efficiency can be manufactured efficiently.
 上記構成の一対の封止シートを用いることによって、太陽電池モジュール構築時における配線作業性が向上するとともに、構築された太陽電池モジュールの発電効率も向上する。したがって、本発明によると、少なくとも1つの太陽電池セルと、ここに開示されるいずれかの一対の封止シートと、を備える太陽電池モジュールが提供される。 By using the pair of sealing sheets having the above configuration, the wiring workability at the time of constructing the solar cell module is improved, and the power generation efficiency of the constructed solar cell module is also improved. Therefore, according to this invention, a solar cell module provided with an at least 1 photovoltaic cell and any one pair of sealing sheet disclosed here is provided.
第1実施形態に係る第1封止シートの主要部を模式的に示す上面図である。It is a top view which shows typically the principal part of the 1st sealing sheet which concerns on 1st Embodiment. 第1実施形態に係る第2封止シートの主要部を模式的に示す上面図である。It is a top view which shows typically the principal part of the 2nd sealing sheet which concerns on 1st Embodiment. 第1実施形態に係る太陽電池モジュールの主要部の構造を模式的に示す分解断面図である。It is an exploded sectional view showing typically the structure of the principal part of the solar cell module concerning a 1st embodiment. 第2実施形態に係る第2封止シートの主要部を模式的に示す上面図である。It is a top view which shows typically the principal part of the 2nd sealing sheet which concerns on 2nd Embodiment. 第3実施形態に係る第2封止シートの主要部を模式的に示す上面図である。It is a top view which shows typically the principal part of the 2nd sealing sheet which concerns on 3rd Embodiment.
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付して説明し、重複する説明は省略または簡略化することがある。また、図面に記載の実施形態は、本発明を明瞭に説明するために模式化されており、実際に提供される製品のサイズや縮尺を必ずしも正確に表したものではない。 Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field. Further, in the following drawings, members / parts having the same action are described with the same reference numerals, and overlapping descriptions may be omitted or simplified. In addition, the embodiments described in the drawings are schematically illustrated in order to clearly explain the present invention, and do not necessarily accurately represent the size and scale of a product actually provided.
 図1は第1実施形態に係る第1封止シートの主要部を模式的に示す上面図である。 FIG. 1 is a top view schematically showing the main part of the first sealing sheet according to the first embodiment.
 第1封止シート111は、太陽電池モジュールにおいて太陽電池セルを挟んで封止する一対の封止シート100の一方として利用される。なお、第1封止シート111および後述の第2封止シート112は、いずれも導電部を有することから、構造面から導電部付き封止シート、または機能面から集電性封止シートともいう。 The 1st sealing sheet 111 is utilized as one of a pair of sealing sheet 100 sealed on both sides of a photovoltaic cell in a solar cell module. In addition, since the 1st sealing sheet 111 and the 2nd sealing sheet 112 mentioned later have an electroconductive part, it is also called a sealing sheet with an electroconductive part from a structure surface, or a current collection sealing sheet from a functional surface. .
 第1封止シート111は、太陽電池セルの表面側に配置される導電部付き封止シートであり、図1に示すように、第1封止樹脂層121と、第1封止樹脂層121の一方の表面(具体的には太陽電池セル側表面)に部分的に配置された第1導電部131A,131Bと、を備える。 The 1st sealing sheet 111 is a sealing sheet with an electroconductive part arrange | positioned at the surface side of a photovoltaic cell, and as shown in FIG. 1, the 1st sealing resin layer 121 and the 1st sealing resin layer 121 are included. First conductive parts 131A and 131B partially disposed on one surface (specifically, the solar cell side surface).
 第1導電部131Aは第1導電パス133Aを有する。第1導電パス133Aは、太陽電池セルを封止するときに一の太陽電池セルの表面に対向する領域(太陽電池セル表面対向領域)10a’に存在する。また、第1導電パス133Aは、第1封止樹脂層121表面において直線状に延びる形状を有する。この実施形態では、第1導電部131Aは複数の第1導電パス133Aを有しており、複数の第1導電パス133Aは、第1封止樹脂層121表面において所定の間隔をおいて平行に配置されている。換言すると、第1封止樹脂層121表面における第1導電部131Aは、複数の第1導電パス133Aからなるストライプ状の第1導電パスパターンを有する。 The first conductive part 131A has a first conductive path 133A. The first conductive path 133A exists in a region (solar cell surface facing region) 10a 'that faces the surface of one solar cell when the solar cell is sealed. Further, the first conductive path 133A has a shape extending linearly on the surface of the first sealing resin layer 121. In this embodiment, the first conductive portion 131A has a plurality of first conductive paths 133A, and the plurality of first conductive paths 133A are parallel to each other at a predetermined interval on the surface of the first sealing resin layer 121. Has been placed. In other words, the first conductive portion 131A on the surface of the first sealing resin layer 121 has a striped first conductive path pattern including a plurality of first conductive paths 133A.
 複数の第1導電パス133Aはそれぞれ、太陽電池セル表面と対向接触する太陽電池セル対向部分134Aを有する。第1導電パス133Aはまた、その長手方向の一端側に太陽電池セルとは対向しない太陽電池セル非対向部分を有しており、この部分は後述の第1導電性接続部141Aと接続している。つまり、複数の第1導電パス133Aの各々の一端は、第1導電性接続部141Aと接続して固定端となっている。その一方で、複数の第1導電パス133Aの各々の他端側には導電性接続部は配置されておらず、第1導電部131Aにおいて第1導電パス133Aの他端は自由端となっている。なお図1において、太陽電池セルの配置予定部(太陽電池セル表面対向領域)を符号10a’,10b’で示す。 Each of the plurality of first conductive paths 133A has a solar cell facing portion 134A that faces and comes into contact with the solar cell surface. The first conductive path 133A also has a non-facing portion of the solar cell that does not face the solar cell on one end side in the longitudinal direction, and this portion is connected to the first conductive connecting portion 141A described later. Yes. That is, one end of each of the plurality of first conductive paths 133A is connected to the first conductive connection portion 141A to be a fixed end. On the other hand, the conductive connection portion is not disposed on the other end side of each of the plurality of first conductive paths 133A, and the other end of the first conductive path 133A is a free end in the first conductive portion 131A. Yes. In addition, in FIG. 1, the arrangement | positioning part (solar cell surface opposing area | region) of a photovoltaic cell is shown with code | symbol 10a ', 10b'.
 第1導電部131Aは第1導電性接続部141Aを有する。第1導電性接続部141Aは、太陽電池セル表面対向領域10a’,10b’外に存在しており、後述する第2封止シート112の第2導電部132Bと接触可能な位置に配置されている。第1導電性接続部141Aは、第1導電パス133Aの長手方向とほぼ直交する方向に延びる帯形状を有しており、第1導電パス133Aの一端にて第1導電パス133Aに接続(具体的には固定)されている。このような第1導電部131Aは、上面から見たときに櫛形状を有する。より具体的には、第1導電部131Aは、基部となる導電性接続部141Aから複数の第1導電パス133Aが歯状に延びた櫛形状を有するということができる。なお、第1導電性接続部141Aは、第1封止シート111で太陽電池セルを封止するときに太陽電池セルと非接触となるように配置可能であればよく、その限りにおいて配置状態や形状は特に制限されない。 The first conductive portion 131A has a first conductive connection portion 141A. 141 A of 1st electroconductive connection parts exist outside solar cell surface opposing area | region 10a ', 10b', and are arrange | positioned in the position which can contact the 2nd electroconductive part 132B of the 2nd sealing sheet 112 mentioned later. Yes. The first conductive connection portion 141A has a strip shape extending in a direction substantially orthogonal to the longitudinal direction of the first conductive path 133A, and is connected to the first conductive path 133A at one end of the first conductive path 133A (specifically It is fixed). The first conductive portion 131A has a comb shape when viewed from the top. More specifically, it can be said that the first conductive portion 131A has a comb shape in which a plurality of first conductive paths 133A extend in a tooth shape from the conductive connection portion 141A serving as a base. The first conductive connecting portion 141A only needs to be arranged so as to be non-contact with the solar battery cell when the solar battery cell is sealed with the first sealing sheet 111. The shape is not particularly limited.
 第1導電部131Bは、第1導電部131Aと間隔をおいて第1導電部131Aの隣に配置されている。具体的には、第1導電部131A,131Bは、第1導電パス133Aの長手方向に平行する方向(太陽電池セルの配列方向でもあり得る。)において間隔をおいて配置されている。その他の事項については、第1導電部131Bは第1導電部131Aと同様の構成を有する。簡潔にいうと、第1導電部131Bは、第1導電部131Aと同様に、第1導電パス133Bおよび第1導電性接続部141Bを有しており、第1導電パス133Bおよび第1導電性接続部141Bはそれぞれ、第1導電パス133Aおよび第1導電性接続部141Aと同様の構成を有する。なお、第1導電性接続部141Bは、太陽電池セル表面対向領域10a’,10b’外に存在しており、後述する第2封止シート112の第2導電部あるいは取出し電極(図示せず)と接触可能な位置に配置される。 The first conductive portion 131B is disposed next to the first conductive portion 131A with a space from the first conductive portion 131A. Specifically, the first conductive portions 131A and 131B are arranged at intervals in a direction parallel to the longitudinal direction of the first conductive path 133A (which may also be the arrangement direction of solar cells). Regarding other matters, the first conductive portion 131B has the same configuration as the first conductive portion 131A. Briefly, the first conductive portion 131B has a first conductive path 133B and a first conductive connection portion 141B, similar to the first conductive portion 131A, and the first conductive path 133B and the first conductive portion 131B. Each of the connecting portions 141B has the same configuration as the first conductive path 133A and the first conductive connecting portion 141A. In addition, the 1st electroconductive connection part 141B exists outside solar cell surface opposing area | region 10a ', 10b', and the 2nd electroconductive part or extraction electrode (not shown) of the 2nd sealing sheet 112 mentioned later is mentioned. It is arranged at a position where it can come into contact with.
 上記のように第1導電部131A,131Bを配置することによって、第1封止シート111の表面には、第1導電部131A,131Bを含む第1導電部パターンが形成されている。この実施形態では、その一部が図1に示されるように、櫛形状を有する複数の第1導電部131A,131Bが所定の間隔をおいて複数列に配列されたパターンが、第1封止シート111の表面に形成されている。 By arranging the first conductive portions 131A and 131B as described above, the first conductive portion pattern including the first conductive portions 131A and 131B is formed on the surface of the first sealing sheet 111. In this embodiment, as shown in FIG. 1, a pattern in which a plurality of first conductive portions 131A and 131B having a comb shape are arranged in a plurality of rows at a predetermined interval is a first sealing. It is formed on the surface of the sheet 111.
 図2は第1実施形態に係る第2封止シートの主要部を模式的に示す上面図である。 FIG. 2 is a top view schematically showing the main part of the second sealing sheet according to the first embodiment.
 第2封止シート112は、太陽電池モジュールにおいて太陽電池セルを挟んで封止する一対の封止シート100の他方として利用されるものであり、太陽電池セルの裏面側に配置される導電部付き封止シートである。 The 2nd sealing sheet 112 is utilized as the other of a pair of sealing sheet 100 sealed on both sides of a photovoltaic cell in a solar cell module, and with the electroconductive part arrange | positioned at the back surface side of a photovoltaic cell. It is a sealing sheet.
 図2に示すように、第2封止シート112は、第2封止樹脂層122と、第2封止樹脂層122の一方の表面(具体的には太陽電池セル側表面)に部分的に配置された第2導電部132A,132Bと、を備える。 As shown in FIG. 2, the second sealing sheet 112 is partially formed on the second sealing resin layer 122 and one surface (specifically, the solar cell side surface) of the second sealing resin layer 122. And disposed second conductive portions 132A and 132B.
 第2導電部132Aは第2導電パス136Aを有する。第2導電パス136Aは、太陽電池セルを封止するときに一の太陽電池セルの裏面に対向する領域(太陽電池セル裏面対向領域)10a”に存在する。また、第2導電パス136Aは、第2封止樹脂層122表面において直線状に延びる形状を有する。この実施形態では、第2導電部132Aは複数の第2導電パス136Aを有しており、複数の第2導電パス136Aは、第2封止樹脂層122表面において所定の間隔をおいて平行に配置されている。換言すると、第2封止樹脂層122表面における第2導電部132Aは、複数の第2導電パス136Aからなるストライプ状の第2導電パスパターンを有する。 The second conductive portion 132A has a second conductive path 136A. The second conductive path 136A exists in a region (a solar cell back surface facing region) 10a ″ that opposes the back surface of one solar cell when the solar cells are sealed. It has a shape extending linearly on the surface of the second sealing resin layer 122. In this embodiment, the second conductive portion 132A has a plurality of second conductive paths 136A, and the plurality of second conductive paths 136A are: The surfaces of the second sealing resin layer 122 are arranged in parallel at a predetermined interval, in other words, the second conductive portion 132A on the surface of the second sealing resin layer 122 includes a plurality of second conductive paths 136A. A stripe-shaped second conductive path pattern is provided.
 また、第2導電パス136Aの本数は、第1封止シート111における第1導電パス133Aの本数よりも多い。具体的には、一の太陽電池セルに対応する第1導電部131A、第2導電部132Aにおいて、太陽電池セル裏面に当接し得る第2導電パス136Aの本数は、太陽電池セル表面に当接し得る第1導電パス133Aの本数よりも多い。これによって、太陽電池モジュールの発電効率が向上する。この実施形態では、第1導電パス133Aの数は3本であり、第2導電パス136Aの数は6本であるが、これに限定されない。例えば、第2導電パスの数は第1導電パスよりも1本以上(より好ましくは2本以上、さらに好ましくは5本以上)多いことが好ましく、第2導電パスの数は第1導電パスの2倍以上であってもよい。 Further, the number of second conductive paths 136A is greater than the number of first conductive paths 133A in the first sealing sheet 111. Specifically, in the first conductive portion 131A and the second conductive portion 132A corresponding to one solar battery cell, the number of second conductive paths 136A that can contact the back surface of the solar battery cell contacts the solar battery cell surface. More than the number of first conductive paths 133A to be obtained. Thereby, the power generation efficiency of the solar cell module is improved. In this embodiment, the number of the first conductive paths 133A is three and the number of the second conductive paths 136A is six. However, the present invention is not limited to this. For example, the number of the second conductive paths is preferably one or more (more preferably two or more, more preferably five or more) than the first conductive paths, and the number of the second conductive paths is the number of the first conductive paths. It may be twice or more.
 複数の第2導電パス136Aはそれぞれ、太陽電池セル裏面と対向接触する太陽電池セル対向部分137Aを有する。第2導電パス136Aはまた、その長手方向の一端側に太陽電池セルとは対向しない太陽電池セル非対向部分を有しており、この部分は後述の第2導電性接続部142Aと接続している。つまり、複数の第2導電パス136Aの各々の一端は、第2導電性接続部142Aと接続して固定端となっている。その一方で、複数の第2導電パス136Aの各々の他端側には導電性接続部は配置されておらず、第2導電部132Aにおいて第2導電パス136Aの他端は自由端となっている。なお図2において、太陽電池セルの配置予定部(太陽電池セル裏面対向領域)を符号10a”,10b”で示す。 Each of the plurality of second conductive paths 136A has a solar cell facing portion 137A that is in opposed contact with the back surface of the solar battery cell. The second conductive path 136A also has a solar cell non-facing portion that does not face the solar cell on one end side in the longitudinal direction, and this portion is connected to a second conductive connecting portion 142A described later. Yes. That is, one end of each of the plurality of second conductive paths 136A is connected to the second conductive connection portion 142A to be a fixed end. On the other hand, the conductive connection portion is not disposed on the other end side of each of the plurality of second conductive paths 136A, and the other end of the second conductive path 136A is a free end in the second conductive portion 132A. Yes. In FIG. 2, the arrangement portion (solar cell back surface facing region) of the solar cell is indicated by reference numerals 10 a ″ and 10 b ″.
 第2導電部132Aは第2導電性接続部142Aを有する。第2導電性接続部142Aは、太陽電池セル裏面対向領域10a”,10b”外に存在しており、前述の第1封止シート111の第1導電部(図示せず)あるいは取出し電極(図示せず)と接触可能な位置に配置されている。第2導電性接続部142Aは、第2導電パス136Aの長手方向とほぼ直交する方向に延びる帯形状を有しており、第2導電パス136Aの一端にて第2導電パス136Aに接続(具体的には固定)されている。このような第2導電部132Aは、上面から見たときに櫛形状を有する。より具体的には、第2導電部132Aは、基部となる導電性接続部142Aから複数の第2導電パス136Aが歯状に延びた櫛形状を有するということができる。なお、第2導電性接続部142Aは、第2封止シート112で太陽電池セルを封止するときに太陽電池セルと非接触となるように配置可能であればよく、その限りにおいて配置状態や形状は特に制限されない。 The second conductive portion 132A has a second conductive connection portion 142A. The second conductive connection portion 142A exists outside the solar cell back surface facing regions 10a ", 10b", and the first conductive portion (not shown) or the extraction electrode (see FIG. It is arranged at a position where it can come into contact with (not shown). The second conductive connection portion 142A has a strip shape extending in a direction substantially orthogonal to the longitudinal direction of the second conductive path 136A, and is connected to the second conductive path 136A at one end of the second conductive path 136A (specifically It is fixed). The second conductive portion 132A has a comb shape when viewed from the upper surface. More specifically, it can be said that the second conductive portion 132A has a comb shape in which a plurality of second conductive paths 136A extend in a tooth shape from the conductive connection portion 142A serving as a base. The second conductive connecting portion 142A only needs to be arranged so as to be non-contact with the solar battery cell when the solar battery cell is sealed with the second sealing sheet 112. The shape is not particularly limited.
 第2導電部132Bは、第2導電部132Aと間隔をおいて第2導電部132Aの隣に配置されている。具体的には、第2導電部132A,132Bは、第2導電パス136Aの長手方向に平行する方向(太陽電池セルの配列方向でもあり得る。)において間隔をおいて配置されている。その他の事項については、第2導電部132Bは第2導電部132Aと同様の構成を有する。簡潔にいうと、第2導電部132Bは、第1導電部132Aと同様に、第2導電パス136Bおよび第2導電性接続部142Bを有しており、第2導電パス136Bおよび第2導電性接続部142Bはそれぞれ、第2導電パス136Aおよび第2導電性接続部142Aと同様の構成を有する。 The second conductive portion 132B is disposed next to the second conductive portion 132A at a distance from the second conductive portion 132A. Specifically, the second conductive portions 132A and 132B are arranged at intervals in a direction parallel to the longitudinal direction of the second conductive path 136A (which may also be the arrangement direction of solar cells). Regarding other matters, the second conductive portion 132B has the same configuration as the second conductive portion 132A. In short, the second conductive portion 132B has a second conductive path 136B and a second conductive connection portion 142B, like the first conductive portion 132A, and the second conductive path 136B and the second conductive portion 132B. Each of the connecting portions 142B has the same configuration as that of the second conductive path 136A and the second conductive connecting portion 142A.
 上記のように第2導電部132A,132Bを配置することによって、第2封止シート112の表面には、第2導電部132A,132Bを含む第2導電部パターンが形成されている。この実施形態では、その一部が図2に示されるように、櫛形状を有する複数の第2導電部132A,132Bが所定の間隔をおいて複数列に配列されたパターンが、第2封止シート112の表面に形成されている。 By arranging the second conductive parts 132A and 132B as described above, the second conductive part pattern including the second conductive parts 132A and 132B is formed on the surface of the second sealing sheet 112. In this embodiment, as shown in part of FIG. 2, a pattern in which a plurality of second conductive portions 132A and 132B having a comb shape are arranged in a plurality of rows at a predetermined interval is formed as a second sealing. It is formed on the surface of the sheet 112.
 次に、一対の封止シートを構成する各要素について説明する。 Next, each element constituting the pair of sealing sheets will be described.
 第1封止樹脂層および第2封止樹脂層(以下、まとめて封止樹脂層ともいう。)は、絶縁性を有し、かつ透光性を有しており、典型的には封止樹脂から形成されたシート状部材である。この明細書において「絶縁性を有する」とは、25℃における比抵抗が1×10Ω・cm以上(好ましくは1×108Ω・cm以上、典型的には1×1010Ω・cm以上)であることをいう。この明細書において電気抵抗(例えば比抵抗)は、特記しないかぎり25℃における値をいうものとする。また、この明細書において「透光性を有する」とは、JIS K 7375(2008)で規定される全光線透過率が50%以上(好ましくは80%以上、典型的には95%以上)であることをいう。なお、第2封止樹脂層は透光性を有していなくてもよい。 The first sealing resin layer and the second sealing resin layer (hereinafter also collectively referred to as a sealing resin layer) have insulating properties and translucency, and are typically sealed. It is a sheet-like member formed from resin. In this specification, “having insulation” means a specific resistance at 25 ° C. of 1 × 10 6 Ω · cm or more (preferably 1 × 10 8 Ω · cm or more, typically 1 × 10 10 Ω · cm. That's it). In this specification, electric resistance (for example, specific resistance) means a value at 25 ° C. unless otherwise specified. Further, in this specification, “having translucency” means that the total light transmittance specified by JIS K 7375 (2008) is 50% or more (preferably 80% or more, typically 95% or more). Say something. In addition, the 2nd sealing resin layer does not need to have translucency.
 封止樹脂としては、透光性、加工性、耐候性等の観点から、エチレン-酢酸ビニル共重合体(EVA)が好ましく使用される。上記封止樹脂は、典型的には熱硬化性樹脂である。封止樹脂は、EVAに代表されるエチレン-ビニルエステル共重合体の他、エチレン-(メタ)アクリル酸共重合体等のエチレン-不飽和カルボン酸共重合体、エチレン-(メタ)アクリル酸エステル等のエチレン-不飽和カルボン酸エステル共重合体、ポリメタクリル酸メチル等の不飽和カルボン酸エステル系重合体等であってもよい。あるいは、フッ化ビニリデン樹脂、ポリエチレンテトラフルオロエチレン等のフッ素樹脂;低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE。典型的にはチーグラー触媒、バナジウム触媒、メタロセン触媒等を用いて製造され得るLLDPE)等のポリエチレン(PE)、ポリプロピレン(PP。例えば、チーグラー触媒、フィリップス触媒、メタロセン触媒等を用いて製造され得るPP)、チーグラー触媒、バナジウム触媒、メタロセン触媒等を用いて製造することができるエチレン・α-オレフィン共重合体、それらの変性物(変性ポリオレフィン)等のポリオレフィン類;ポリブタジエン類;ポリビニルホルマール、ポリビニルブチラール(PVB樹脂)、変性PVB等のポリビニルアセテート;ポリエチレンテレフタレート(PET);ポリイミド;非晶質ポリカーボネート;シロキサンゾル-ゲル;ポリウレタン;ポリスチレン;ポリエーテルサルフォン;ポリアリレート;エポキシ樹脂;シリコーン樹脂;アイオノマー;等であってもよい。これらの樹脂は単独で使用してもよく、また2種以上を混合して使用してもよい。上記封止樹脂は、紫外線吸収剤や光安定剤等の、この分野に公知の各種添加剤を含み得る。 As the sealing resin, an ethylene-vinyl acetate copolymer (EVA) is preferably used from the viewpoint of translucency, workability, weather resistance, and the like. The sealing resin is typically a thermosetting resin. The sealing resin includes ethylene-vinyl ester copolymers represented by EVA, ethylene-unsaturated carboxylic acid copolymers such as ethylene- (meth) acrylic acid copolymers, and ethylene- (meth) acrylic acid esters. It may be an ethylene-unsaturated carboxylic acid ester copolymer such as polymethyl methacrylate and an unsaturated carboxylic acid ester polymer such as polymethyl methacrylate. Alternatively, fluoropolymers such as vinylidene fluoride resin and polyethylene tetrafluoroethylene; manufactured using low density polyethylene (LDPE), linear low density polyethylene (LLDPE, typically Ziegler catalyst, vanadium catalyst, metallocene catalyst, etc. Can be produced using polyethylene (PE) such as LLDPE), polypropylene (PP. For example, PP that can be produced using Ziegler catalyst, Phillips catalyst, metallocene catalyst, etc.), Ziegler catalyst, vanadium catalyst, metallocene catalyst, etc. Polyolefins such as ethylene / α-olefin copolymers and their modified products (modified polyolefins); Polybutadienes; Polyvinyl acetate such as polyvinyl formal, polyvinyl butyral (PVB resin), modified PVB; Terephthalate (PET); polyimide; amorphous polycarbonate; siloxane sol - gel; polyurethane; polystyrene; polyether sulfone; polyarylate, epoxy resins, may be like; silicone resin; ionomers. These resins may be used alone or in combination of two or more. The sealing resin may contain various additives known in this field such as an ultraviolet absorber and a light stabilizer.
 また、封止樹脂層の表面には、上述の導電部を形成する前に密着性向上剤を付与することが好ましい。密着性向上剤が付与された封止樹脂層表面に導電部を形成することにより、上記導電部と上記封止樹脂層との密着性が向上し、導電部の断線やずれ、変形が好適に防止され得る。本実施形態のように、上記封止樹脂層としてEVAシートが用いられる場合には、密着性向上剤としてシランカップリング剤が好ましく使用される。典型的には、密着性向上剤を上記封止樹脂層表面に付与した後に加熱処理することで、上記導電部の密着性は向上する。なお、密着性向上剤の使用形態は塗布に限定されず、上記封止樹脂層に含ませて使用することも可能である。 Moreover, it is preferable to apply an adhesion improver to the surface of the sealing resin layer before forming the above-described conductive portion. By forming the conductive part on the surface of the sealing resin layer to which the adhesion improver is applied, the adhesion between the conductive part and the sealing resin layer is improved, and disconnection, displacement, and deformation of the conductive part are preferably performed. Can be prevented. When an EVA sheet is used as the sealing resin layer as in this embodiment, a silane coupling agent is preferably used as an adhesion improver. Typically, the adhesiveness of the conductive part is improved by applying an adhesion improver to the surface of the sealing resin layer and then performing a heat treatment. In addition, the usage form of an adhesive improvement agent is not limited to application | coating, It is also possible to use it by including in the said sealing resin layer.
 また、封止樹脂層の表面には、上記密着性向上剤を付与することができるだけでなく、密着性向上その他を目的として、コロナ処理、大気圧プラズマ処理等の各種表面処理を単独でまたは組み合わせて施すことができる。上記表面処理は導電部に対して行ってもよい。 The surface of the sealing resin layer not only can be provided with the above-mentioned adhesion improver, but various surface treatments such as corona treatment and atmospheric pressure plasma treatment can be used alone or in combination for the purpose of improving adhesion and the like. Can be applied. The surface treatment may be performed on the conductive portion.
 封止樹脂層の厚さは、導電部形成性や太陽電池セルの封止性等の観点から、100~2000μm(例えば200~1000μm、典型的には400~800μm)程度とすることが好ましい。 The thickness of the encapsulating resin layer is preferably about 100 to 2000 μm (for example, 200 to 1000 μm, typically 400 to 800 μm) from the viewpoint of the conductive part forming property, the solar cell sealing property, and the like.
 第1導電部(第1導電パスおよび第1導電性接続部を包含する。)および第2導電部(第2導電パスおよび第2導電性接続部を包含する。)は、典型的には導電性材料を含む。第1導電部および第2導電部は、例えば、導電性材料としての導電性ペーストを付与することによって形成される。これにより、部品点数を削減しつつ導電経路を効率よく形成することができる。導電性ペーストとしては、金、銀、銅、アルミニウム、鉄、ニッケル、錫、クロム、ビスマス、インジウム、それらの合金等の金属材料からなる導電成分や、カーボン等の非金属からなる導電成分(以下同じ。)と、ポリエステルやエポキシ樹脂等の樹脂成分とを適当な溶媒を用いて混合してなるペースト状組成物が用いられ得る。なかでも、経時安定性の観点から、導電成分として銀または銅を使用することが好ましい。導電性ペーストの具体例としては、銀ペースト(商品名「ペルトロンK-3105」、ペルノックス社製、導電成分:Ag、樹脂成分:ポリエステル樹脂、比抵抗:6.5×10-5Ω・cm)が挙げられる。導電性ペーストの25℃における比抵抗は、凡そ5×10-4Ω・cm以下(例えば1×10-4Ω・cm以下、典型的には5.0×10-7Ω・m以下)であることが好ましい。また、導電性ペーストを構成する導電成分の比抵抗は5.0×10-7Ω・m以下であることが好ましい。 The first conductive portion (including the first conductive path and the first conductive connection portion) and the second conductive portion (including the second conductive path and the second conductive connection portion) are typically conductive. Contains sexual materials. The first conductive portion and the second conductive portion are formed, for example, by applying a conductive paste as a conductive material. Thereby, a conductive path can be efficiently formed while reducing the number of parts. As the conductive paste, conductive components made of metal materials such as gold, silver, copper, aluminum, iron, nickel, tin, chromium, bismuth, indium, and alloys thereof, and conductive components made of non-metals such as carbon (hereinafter referred to as “conductive paste”) The same)) and a resin component such as polyester or epoxy resin can be used in a suitable solvent. Especially, it is preferable to use silver or copper as a conductive component from a viewpoint of temporal stability. Specific examples of the conductive paste include silver paste (trade name “Pertron K-3105”, manufactured by Pernox, conductive component: Ag, resin component: polyester resin, specific resistance: 6.5 × 10 −5 Ω · cm) Is mentioned. The specific resistance of the conductive paste at 25 ° C. is about 5 × 10 −4 Ω · cm or less (for example, 1 × 10 −4 Ω · cm or less, typically 5.0 × 10 −7 Ω · m or less). Preferably there is. The specific resistance of the conductive component constituting the conductive paste is preferably 5.0 × 10 −7 Ω · m or less.
 第1導電部および第2導電部(以下、まとめて導電部ともいう。)は、公知のディスペンサを用いて導電性ペーストを封止樹脂層の表面に塗布することによって形成することができる。あるいは、導電性ペーストを、封止樹脂層の表面に対してではなく、剥離性シートの表面に塗付し、該剥離性シート表面に所定のパターンを有する導電部を形成し、当該導電部を封止樹脂層の表面に転写することによって、封止樹脂層表面に導電部を形成してもよい。 The first conductive part and the second conductive part (hereinafter, collectively referred to as a conductive part) can be formed by applying a conductive paste to the surface of the sealing resin layer using a known dispenser. Alternatively, the conductive paste is applied to the surface of the peelable sheet, not to the surface of the sealing resin layer, and a conductive portion having a predetermined pattern is formed on the surface of the peelable sheet. The conductive portion may be formed on the surface of the sealing resin layer by transferring it to the surface of the sealing resin layer.
 また、導電性接続部(第1導電性接続部および第2導電性接続部を包含する。)として導電性シートを用いてもよい。導電性シートは、上述の導電成分が樹脂中に配合された導電性樹脂シートや、銅、アルミニウム等の金属、合金等からなる金属シート(例えば金属箔)から選択され得る。なかでも、位置合わせや作業性に優れることから、導電性シートとして、少なくとも一方の表面(典型的にはは両面)に接着性を有する導電性接着シートを用いることが好ましい。 Also, a conductive sheet may be used as the conductive connection part (including the first conductive connection part and the second conductive connection part). The conductive sheet may be selected from a conductive resin sheet in which the above-described conductive component is blended in a resin, or a metal sheet (for example, a metal foil) made of a metal such as copper or aluminum, an alloy, or the like. Especially, since it is excellent in alignment and workability | operativity, it is preferable to use the conductive adhesive sheet which has adhesiveness at least one surface (typically both surfaces) as a conductive sheet.
 導電性接着シートとしては、導電性粘着シートや、ホットメルト型、熱硬化型、乾燥型、湿気硬化型、2液反応硬化型、紫外線(UV)硬化型、嫌気型、UV嫌気型等の各種導電性接着シートを用いることができる。上記接着シートの接着剤成分としては、ウレタン系、アクリル系、エポキシ系等の接着剤成分が用いられ得る。なかでも、加熱作業が不要であり、取扱い性に優れる導電性粘着シートが特に好ましい。典型的には、上述の導電成分(より好ましくは銀フィラー)を3~70重量%程度含む粘着剤層(例えばアクリル系粘着剤層)からなる基材レスの粘着シートや、銅箔やアルミニウム箔等の金属箔基材の少なくとも一方の表面(典型的には両面)に前述の粘着剤層が形成されてなる粘着シートが好ましく使用される。上記粘着剤層には、目的に応じて粘着付与剤や架橋剤その他の添加剤が含まれ得る。上記粘着シートとしては、例えば特開2012-7093号公報に記載されているものが好ましく使用され得る。あるいはまた、導電性粘着シートは、上述の導電性基材の両面に非導電性粘着剤層が形成されてなる両面粘着シートであって、該導電性基材が部分的に粘着剤層の表面に露出してなる導電性粘着シートであってもよい。そのような導電性粘着シートとしては、例えば特開平8-185714号公報に記載されているものが挙げられる。 Examples of the conductive adhesive sheet include a conductive adhesive sheet, a hot melt type, a thermosetting type, a drying type, a moisture curing type, a two-component reaction curing type, an ultraviolet (UV) curing type, an anaerobic type, and a UV anaerobic type. A conductive adhesive sheet can be used. As the adhesive component of the adhesive sheet, urethane, acrylic, epoxy and other adhesive components can be used. Among these, a conductive pressure-sensitive adhesive sheet that does not require a heating operation and is excellent in handleability is particularly preferable. Typically, a baseless pressure-sensitive adhesive sheet comprising a pressure-sensitive adhesive layer (for example, an acrylic pressure-sensitive adhesive layer) containing about 3 to 70% by weight of the above-described conductive component (more preferably, a silver filler), a copper foil or an aluminum foil A pressure-sensitive adhesive sheet in which the above-mentioned pressure-sensitive adhesive layer is formed on at least one surface (typically both surfaces) of a metal foil substrate such as is preferably used. The pressure-sensitive adhesive layer may contain a tackifier, a crosslinking agent, and other additives depending on the purpose. As the pressure-sensitive adhesive sheet, for example, those described in JP 2012-7093 A can be preferably used. Alternatively, the conductive pressure-sensitive adhesive sheet is a double-sided pressure-sensitive adhesive sheet in which a non-conductive pressure-sensitive adhesive layer is formed on both surfaces of the above-mentioned conductive base material, and the conductive base material is partially the surface of the pressure-sensitive adhesive layer. It may be a conductive pressure-sensitive adhesive sheet exposed to the surface. Examples of such a conductive pressure-sensitive adhesive sheet include those described in JP-A-8-185714.
 他の好ましい一態様では、導電部は、低融点(例えば融点300℃以下、好ましくは250℃以下)の金属材料(典型的には合金)をホットメルト塗工することにより形成される。具体的には、封止樹脂層の一方の表面に、市販のホットメルトディスペンサー(例えば武蔵エンジニアリング社製)を用いて低融点合金(例えば、荒川化学工業社製の「SnBiはんだ」、融点139℃)を塗工することにより、導電部を形成することができる。低融点金属材料の塗布は、封止樹脂層の表面に対してではなく、剥離性シートの表面に対して行ってもよい。その場合、剥離性シート表面に所定のパターンを有するように形成した導電部を、封止樹脂層の表面に転写することによって、封止樹脂層表面に導電部を形成することができる。なお、スクリーン印刷等の各種印刷法を採用することによっても、この実施形態と同様の構成を得ることができる。 In another preferred embodiment, the conductive portion is formed by hot-melt coating a metal material (typically an alloy) having a low melting point (for example, a melting point of 300 ° C. or lower, preferably 250 ° C. or lower). Specifically, on one surface of the sealing resin layer, a low-melting-point alloy (for example, “SnBi solder” manufactured by Arakawa Chemical Industries, Ltd., melting point 139 ° C. using a commercially available hot-melt dispenser (for example, manufactured by Musashi Engineering)). ) Can be applied to form a conductive portion. The low melting point metal material may be applied not to the surface of the sealing resin layer but to the surface of the peelable sheet. In that case, a conductive part can be formed on the surface of the sealing resin layer by transferring the conductive part formed so as to have a predetermined pattern on the surface of the peelable sheet to the surface of the sealing resin layer. It should be noted that the same configuration as in this embodiment can also be obtained by employing various printing methods such as screen printing.
 また、他の好ましい一態様では、導電部を構成する材料として、金、銀、銅、アルミニウム、鉄、ニッケル、錫、クロム、ビスマス、インジウム、それらの合金等の金属材料が好ましく用いられ得る。なかでも、銀、銅、アルミニウム、鉄がより好ましく、銅、アルミニウムがさらに好ましい。実質的に金属から構成された導電経路は、より低抵抗であるという利点を有する。一典型例として、導電パス(第1導電パスおよび第2導電パスを包含する。)が金属ワイヤーであり、導電性接続部が金属シート(典型的には金属箔)である導電部が挙げられる。上記金属ワイヤーの例としては、錫(Sn)や銀(Ag)等のめっきコーティングが施されたものが挙げられる。そのめっき厚は10μm以下(例えば3μm以下)程度であり得る。上記金属シート(典型的には金属箔)としては、粗化処理や防錆処理、密着性向上処理の少なくとも1種の表面処理が施されたものが好ましく用いられ得る。金属シートの好適例としては銅箔(なかでも電解銅箔)が挙げられる。 In another preferable embodiment, a metal material such as gold, silver, copper, aluminum, iron, nickel, tin, chromium, bismuth, indium, or an alloy thereof can be preferably used as the material constituting the conductive portion. Among these, silver, copper, aluminum, and iron are more preferable, and copper and aluminum are more preferable. Conductive paths composed essentially of metal have the advantage of lower resistance. As a typical example, there is a conductive part in which the conductive path (including the first conductive path and the second conductive path) is a metal wire and the conductive connection part is a metal sheet (typically a metal foil). . As an example of the metal wire, one provided with a plating coating such as tin (Sn) or silver (Ag) can be given. The plating thickness may be about 10 μm or less (for example, 3 μm or less). As said metal sheet (typically metal foil), what gave at least 1 sort (s) of surface treatment of a roughening process, a rust prevention process, and an adhesive improvement process may be used preferably. Suitable examples of the metal sheet include copper foil (in particular, electrolytic copper foil).
 上記導電部を有する封止シート(第1封止シートおよび第2封止シートを包含する。)は、例えば次のようにして作製される。すなわち、まず、導電パスと導電性接続部とを固定して、導電部(導電部材ともいう。)を作製する。そして、作製した導電部を封止樹脂層の表面に配置することによって封止シートは作製される。なお、封止樹脂層と導電部とは、例えば粘着剤や接着剤等の公知ないし慣用の接着手段を用いて接着されていてもよい。 The sealing sheet having the conductive part (including the first sealing sheet and the second sealing sheet) is produced, for example, as follows. That is, first, the conductive path and the conductive connection portion are fixed, and a conductive portion (also referred to as a conductive member) is manufactured. And the sealing sheet is produced by arrange | positioning the produced electroconductive part on the surface of the sealing resin layer. Note that the sealing resin layer and the conductive portion may be bonded using a known or common bonding means such as a pressure-sensitive adhesive or an adhesive.
 導電部における導電パスと導電性接続部との固定方法としては、溶接を採用することが好ましい。溶接方法としては、従来公知の各種の溶接を採用することができ、例えば、アーク溶接、抵抗溶接、レーザービーム溶接、電子ビーム溶接、超音波溶接が好ましく採用され得る。あるいは、めっき接合や、導電性粘着剤による固定方法を採用することも可能である。 As a method for fixing the conductive path and the conductive connection portion in the conductive portion, it is preferable to employ welding. As the welding method, conventionally known various types of welding can be employed. For example, arc welding, resistance welding, laser beam welding, electron beam welding, and ultrasonic welding can be preferably employed. Or it is also possible to employ | adopt the fixing method by plating joining and a conductive adhesive.
 導電部が金属材料によって構成されている他の好適例としては、導電部が金属ワイヤーからなる構成が挙げられる。金属ワイヤーとしては、上述のものを好ましく用いることができる。金属ワイヤー同士の接合には、前述の溶接等、各種の接合方法が採用され得る。 As another suitable example in which the conductive portion is made of a metal material, a configuration in which the conductive portion is made of a metal wire can be given. As a metal wire, the above-mentioned thing can be used preferably. For joining metal wires, various joining methods such as the above-described welding can be employed.
 あるいは、導電部は、パターン化された金属シートによって形成されていてもよい。そのような導電部は、金属シートをエッチングすることによって、導電パスと導電性接続部とを一体として形成することができる。具体的には、金属シート(典型的には金属箔)の表面にレジストを貼り、フォトリソグラフィ技術を適用して所定のレジストパターンを形成する。次いで、公知ないし慣用のエッチング液を用いて金属シートをパターン化する。このようにして導電部を形成し、封止樹脂層表面に配置することによって、封止シートを得ることができる。なお、各種蒸着法によっても同様の構成を得ることができる。 Alternatively, the conductive part may be formed of a patterned metal sheet. Such a conductive part can be formed integrally with the conductive path and the conductive connection part by etching the metal sheet. Specifically, a resist is attached to the surface of a metal sheet (typically a metal foil), and a predetermined resist pattern is formed by applying a photolithography technique. Next, the metal sheet is patterned using a known or conventional etching solution. Thus, a sealing sheet can be obtained by forming a conductive part and disposing it on the surface of the sealing resin layer. A similar configuration can be obtained by various vapor deposition methods.
 あるいはまた、導電部は、メッシュ構造の金属シート(メッシュシート)によって形成されていてもよい。上記メッシュシートは、典型的には、縦横に複数の金属線が配置されてなる網目構造(メッシュ形状)を有する。より具体的には、導電部は、一方向に沿って配列した複数の金属線(縦線)と、該縦線と交差(典型的には、ほぼ直交)する方向に配列した複数の金属線(横線)と、から構成された網目構造を有する。縦線および横線のそれぞれにおいて、複数の金属線は間隔をおいて配置されており、典型的には、ほぼ平行している。なお、上記メッシュ形状の線径や目開きは、後述の導電パスの幅、間隔および導電性接続部の幅の範囲内となるように設定され得る。 Alternatively, the conductive portion may be formed of a mesh-structured metal sheet (mesh sheet). The mesh sheet typically has a mesh structure (mesh shape) in which a plurality of metal wires are arranged vertically and horizontally. More specifically, the conductive portion includes a plurality of metal lines (vertical lines) arranged along one direction and a plurality of metal lines arranged in a direction intersecting (typically substantially orthogonal) with the vertical lines. (Horizontal line). In each of the vertical and horizontal lines, the plurality of metal lines are spaced apart and are typically substantially parallel. The mesh-shaped wire diameter and mesh size can be set to be within the range of the width and interval of the conductive path described later and the width of the conductive connection portion.
 あるいはまた、導電部の導電パスは導電材料(例えば銅等の金属)を含むメッシュ材料によって形成されていてもよい。上記メッシュ材料は、金属線と樹脂繊維(典型的には透明樹脂繊維)との複合材料であり得る。上記金属線はストライプ状に配置されており、樹脂繊維は金属線と同方向に、かつ金属線と交差する方向に配置されており、これによってメッシュ構造が形成されている。上記メッシュ材料は、金属線が所定方向に配列するように該金属線を樹脂繊維に編み込むことによって作製され得る。この場合、横糸に樹脂繊維を用い、縦糸に金属線および樹脂繊維を用いるとよい。上記メッシュ材料をシート状封止樹脂の表面に配置することによって、封止シートを得ることができる。上記樹脂繊維は、透明性が高く絶縁性に優れる材料であることが好ましい。具体例としては、上記金属線が銅線であり、樹脂繊維が透明性に優れるPET繊維であるメッシュ材料が挙げられる。上記メッシュ材料は、例えばNBCメッシュテック社から入手可能である。 Alternatively, the conductive path of the conductive portion may be formed of a mesh material including a conductive material (for example, a metal such as copper). The mesh material may be a composite material of a metal wire and a resin fiber (typically a transparent resin fiber). The metal wires are arranged in stripes, and the resin fibers are arranged in the same direction as the metal wires and in a direction intersecting with the metal wires, thereby forming a mesh structure. The mesh material can be produced by weaving metal wires into resin fibers so that the metal wires are arranged in a predetermined direction. In this case, it is preferable to use a resin fiber for the weft and a metal wire and a resin fiber for the warp. By disposing the mesh material on the surface of the sheet-shaped sealing resin, a sealing sheet can be obtained. The resin fiber is preferably a material having high transparency and excellent insulating properties. Specific examples include a mesh material in which the metal wire is a copper wire and the resin fiber is a PET fiber having excellent transparency. The mesh material is available, for example, from NBC Meshtec.
 導電性接続部は、単層構造であってもよく多層構造であってもよい。また、第1封止シートと第2封止シートとで太陽電池セルを挟むときに、第1導電性接続部と第2導電性接続部とのあいだに追加の導電性接続部が配置されていてもよい。追加の導電性接続部としては、上記導電性接続部として用いられ得る材料のなかから適切なものを選択して用いることができる。その好適例としては、金属シート(具体的には金属箔)や導電性接着シートが挙げられる。これによって、第1封止シートと第2封止シートとで太陽電池セルを挟んだときに、第1導電性接続部と第2導電性接続部との積層部分の厚みが増大し、第1導電性接続部と第2導電性接続部間における接触面積が増加し、集電効率が向上する。追加の導電性接続部の形状は、第1導電性接続部、第2導電性接続部と同様の形状とすることが好ましい。 The conductive connection portion may have a single layer structure or a multilayer structure. Further, when the solar cell is sandwiched between the first sealing sheet and the second sealing sheet, an additional conductive connection portion is disposed between the first conductive connection portion and the second conductive connection portion. May be. As the additional conductive connection portion, an appropriate material can be selected and used from the materials that can be used as the conductive connection portion. Preferred examples thereof include a metal sheet (specifically, a metal foil) and a conductive adhesive sheet. Thus, when the solar cell is sandwiched between the first sealing sheet and the second sealing sheet, the thickness of the stacked portion of the first conductive connection portion and the second conductive connection portion increases, and the first The contact area between the conductive connection portion and the second conductive connection portion is increased, and the current collection efficiency is improved. The shape of the additional conductive connection part is preferably the same shape as the first conductive connection part and the second conductive connection part.
 導電性接続部は、典型的には、上記のように帯状に連続した層(導電層)であるが、断続した層であってもよい。例えば、導電性接続部は、断続した帯形状を有していてもよく、ドット状(粒状ともいう。)に配置してなるものであってもよい。なお、ドット状とは典型的には粒状であり、例えば、真球状、扁平球状等の球状であり得る。そのような形状の導電性接続部は、例えば、上記の導電性ペーストや低融点金属材料を用いることによって形成することができる。 The conductive connection portion is typically a continuous layer (conductive layer) as described above, but may be an intermittent layer. For example, the conductive connection portion may have an intermittent band shape, or may be arranged in a dot shape (also referred to as granular). The dot shape is typically granular, and may be, for example, a spherical shape such as a true spherical shape or a flat spherical shape. The conductive connection part having such a shape can be formed by using, for example, the above-described conductive paste or a low melting point metal material.
 導電パスの本数は特に限定されない。一の太陽電池セルに対応する一の導電部(例えば第1導電部)として、線状に延びる複数の導電パス(例えば第1導電パス)を間隔をおいて配置する場合、一の導電部(例えば第1導電部)における導電パス(例えば第1導電パス)の本数は2~20本(例えば4~18本、典型的には6~15本)程度とすることが好ましい。 The number of conductive paths is not particularly limited. In the case where a plurality of linearly extending conductive paths (for example, first conductive paths) are arranged at intervals as one conductive part (for example, first conductive part) corresponding to one solar battery cell, one conductive part ( For example, the number of conductive paths (for example, the first conductive path) in the first conductive portion is preferably about 2 to 20 (for example, 4 to 18, typically 6 to 15).
 また、導電パスの幅(複数の導電パスを有する場合は各々の幅)は、集電ロス低減、強度、ハンドリング性および作業性の観点から、好ましくは30μm以上であり、より好ましくは100μm以上であり、さらに好ましくは500μm以上である。また上記幅は、シャドーロス低減等の観点から、好ましくは1500μm以下であり、より好ましくは1200μm以下であり、さらに好ましくは1000μm以下である。なお、上記幅は、導電パスの長手方向に直交する長さ(幅)を指す。 In addition, the width of the conductive path (each width in the case of having a plurality of conductive paths) is preferably 30 μm or more, more preferably 100 μm or more, from the viewpoint of collecting current loss, strength, handling properties, and workability. More preferably 500 μm or more. The width is preferably 1500 μm or less, more preferably 1200 μm or less, and still more preferably 1000 μm or less from the viewpoint of reducing shadow loss. The width refers to a length (width) orthogonal to the longitudinal direction of the conductive path.
 また、線状に延びる複数の導電パス(例えば第1導電パス)を間隔をおいて配置する場合、導電パス(例えば第1導電パス)の間隔は、シャドーロス低減等の観点から、好ましくは0.1cm以上であり、より好ましくは0.8cm以上であり、さらに好ましくは1.5cm以上である。また上記間隔は、集電ロス低減の観点からは、好ましくは4.0cm未満であり、より好ましくは3.0cm未満であり、さらに好ましくは2.5cm以下である。なお、上記間隔はピッチであり、導電パスの幅方向における中心線間の距離を指す。 When a plurality of linearly extending conductive paths (for example, first conductive paths) are arranged at intervals, the distance between the conductive paths (for example, first conductive paths) is preferably 0 from the viewpoint of reducing shadow loss. 0.1 cm or more, more preferably 0.8 cm or more, and further preferably 1.5 cm or more. The distance is preferably less than 4.0 cm, more preferably less than 3.0 cm, and even more preferably 2.5 cm or less from the viewpoint of reducing current collection loss. In addition, the said space | interval is a pitch and points out the distance between the centerlines in the width direction of a conductive path.
 導電性接続部の幅は、太陽電池モジュールの円滑な電気的接続の観点から、好ましくは0.1mm以上であり、より好ましくは0.3mm以上であり、さらに好ましくは0.5mm以上である。また上記幅は、好ましくは2mm以下であり、より好ましくは1.5mm以下であり、さらに好ましくは1.0mm以下である。なお、上記幅は、導電性接続部の長手方向に直交する長さ(幅)を指す。 The width of the conductive connection portion is preferably 0.1 mm or more, more preferably 0.3 mm or more, and further preferably 0.5 mm or more, from the viewpoint of smooth electrical connection of the solar cell module. The width is preferably 2 mm or less, more preferably 1.5 mm or less, and further preferably 1.0 mm or less. In addition, the said width | variety points out the length (width) orthogonal to the longitudinal direction of an electroconductive connection part.
 導電性接続部(例えば導電性シート)の厚さは、一対の封止シートに挟まれる太陽電池セルの厚さに応じて適宜選定すればよい。上記厚さは、太陽電池セルの厚さの0.5~2倍(例えば0.8~1.2倍、典型的には0.9~1.1倍)程度とすることが好ましい。 What is necessary is just to select the thickness of a conductive connection part (for example, conductive sheet) suitably according to the thickness of the photovoltaic cell pinched | interposed into a pair of sealing sheet. The thickness is preferably about 0.5 to 2 times (eg, 0.8 to 1.2 times, typically 0.9 to 1.1 times) the thickness of the solar battery cell.
 なお、第1封止シートおよび第2封止シートはそれぞれ、太陽電池モジュールに組み込まれる前は、その少なくとも一方の表面(典型的には両面)がセパレータシート(図示せず)に保護された形態で提供され得る。 Each of the first sealing sheet and the second sealing sheet is a form in which at least one surface (typically both surfaces) is protected by a separator sheet (not shown) before being incorporated into the solar cell module. Can be provided at.
 図3は、第1実施形態に係る太陽電池モジュールの主要部の構造を模式的に示す分解断面図である。図3を参照して、以下、一対の封止シートを用いて構築される太陽電池モジュールについて説明する。 FIG. 3 is an exploded cross-sectional view schematically showing the structure of the main part of the solar cell module according to the first embodiment. Hereinafter, a solar cell module constructed using a pair of sealing sheets will be described with reference to FIG.
 図3に示すように、太陽電池モジュール1は、太陽電池セル10a,10bを含む複数の太陽電池セルを備える。また、太陽電池モジュール1は、太陽電池セル10a,10bの表面を覆う第1封止シート111と、太陽電池セル10a,10bの裏面を覆う第2封止シート112と、を備える。さらに、太陽電池モジュール1は、第1封止シート111の外方に配置された表面被覆部材31と、第2封止シート112の外方に配置された裏面被覆部材32と、を備える。表面被覆部材31および裏面被覆部材32は、それぞれ太陽電池モジュール1の表(おもて)面および裏(うら)面を構成している。 As shown in FIG. 3, the solar cell module 1 includes a plurality of solar cells including the solar cells 10a and 10b. Moreover, the solar cell module 1 is provided with the 1st sealing sheet 111 which covers the surface of the photovoltaic cell 10a, 10b, and the 2nd sealing sheet 112 which covers the back surface of the photovoltaic cell 10a, 10b. Further, the solar cell module 1 includes a surface covering member 31 disposed outside the first sealing sheet 111 and a back surface covering member 32 disposed outside the second sealing sheet 112. The surface covering member 31 and the back surface covering member 32 constitute a front (front) surface and a back (back) surface of the solar cell module 1, respectively.
 太陽電池セル10a,10bを含む複数の太陽電池セルからなる太陽電池セル群10は、所定の間隔をおいて直線状に一列に配列されている。太陽電池セル10a,10bの表面にはn型電極(表面電極)が部分的に形成されており、裏面にはp型電極(裏面電極)が形成されている。この実施形態では、太陽電池セル10a,10bとして、厚さ180~200μm程度のウエハ状の結晶系Siセル(pn接合型の太陽電池セル)が用いられている。 The solar battery cell group 10 including a plurality of solar battery cells including the solar battery cells 10a and 10b is arranged in a straight line at a predetermined interval. An n-type electrode (surface electrode) is partially formed on the surfaces of the solar cells 10a and 10b, and a p-type electrode (back electrode) is formed on the back surface. In this embodiment, as the solar cells 10a and 10b, wafer-like crystalline Si cells (pn junction type solar cells) having a thickness of about 180 to 200 μm are used.
 使用される太陽電池セルの種類は特に限定されず、例えば単結晶型や多結晶型の結晶系Siセルが好適であるが、アモルファス系Siセル、化合物系、有機系等の太陽電池セルであってもよい。形状も特に限定されず、帯状等であってもよい。太陽電池セルの厚さは、軽量性等の観点から、好ましくは300μm以下程度であり、より好ましくは200μm以下、さらに好ましくは160μm以下程度であり得る。なお、特に図示しないが、太陽電池モジュール1は、上記のように一列に配列された太陽電池セル群10に加えて、太陽電池セル群10の配列方向に平行するように一列に配列された他の太陽電池セル群を備える。 The type of solar cell used is not particularly limited, and for example, a single crystal type or a polycrystalline type crystal Si cell is suitable, but an amorphous Si cell, a compound type, an organic type solar cell, etc. May be. The shape is not particularly limited, and may be a belt shape or the like. The thickness of the solar battery cell is preferably about 300 μm or less, more preferably about 200 μm or less, and further preferably about 160 μm or less from the viewpoint of lightness and the like. Although not particularly illustrated, the solar cell modules 1 are arranged in a row so as to be parallel to the arrangement direction of the solar cell groups 10 in addition to the solar cell groups 10 arranged in a row as described above. The solar battery cell group is provided.
 第1封止シート111としては、上述の構成を有するものが用いられている。第1封止シート111の第1導電部131A,131Bは、太陽電池セル群10の配列方向において所定の間隔をおいて分離して配置されている。第1導電部131A,131Bは、隣りあう2つの太陽電池セル10a,10bの表面(より具体的には表面電極)にそれぞれ対向接触するように配置されている。なお、第1導電部131Aは、太陽電池セル10a以外の太陽電池セルとは接触しておらず、第1導電部131Bは、太陽電池セル10b以外の太陽電池セルとは接触していない。第1封止シート111に第1導電部131A,131Bを設けることにより、従来の太陽電池セル表面に設けられていたバスバー(典型的には、はんだ被覆銅線)は不要となる。 As the first sealing sheet 111, one having the above-described configuration is used. The first conductive portions 131 </ b> A and 131 </ b> B of the first sealing sheet 111 are arranged separately at a predetermined interval in the arrangement direction of the solar battery cell group 10. The first conductive portions 131A and 131B are arranged so as to face and come into contact with the surfaces (more specifically, surface electrodes) of the two adjacent solar cells 10a and 10b. Note that the first conductive portion 131A is not in contact with solar cells other than the solar cell 10a, and the first conductive portion 131B is not in contact with solar cells other than the solar cell 10b. By providing the first conductive portions 131 </ b> A and 131 </ b> B on the first sealing sheet 111, a bus bar (typically, a solder-coated copper wire) provided on the surface of a conventional solar battery cell becomes unnecessary.
 第1導電部131Aは、太陽電池セル10a,10bの配列方向に沿って延びることにより、太陽電池セル10a,10bのあいだに位置する領域にはみ出している。換言すると、第1導電部131Aは、太陽電池セル10a,10bのあいだに位置する領域にはみ出した部分を有するように配置されている。このように、第1導電部131Aにはみ出した部分を設けることにより、第1導電部131Aは、第2導電部132Bと電気的に接続しやすい構成となる。 The first conductive portion 131A extends along the arrangement direction of the solar cells 10a and 10b, so that it protrudes into a region located between the solar cells 10a and 10b. In other words, the first conductive portion 131A is disposed so as to have a portion that protrudes into a region located between the solar cells 10a and 10b. As described above, by providing the portion that protrudes from the first conductive portion 131A, the first conductive portion 131A can easily be electrically connected to the second conductive portion 132B.
 第1導電部131Aは、上述かつ図1に示すように複数の第1導電パス133Aを有する。これら第1導電パス133Aは、太陽電池セル群10の配列方向に平行する方向に線状に延びており、該配列方向に直交する方向に所定の間隔をおいて配置されている。より具体的には、第1導電パス133Aは、それぞれ直線状に延びる形状を有しており、互いに間隔をおいて、かつ平行するように配置されている。第1導電パス133Aは、第1封止樹脂層121の表面において太陽電池セル10aとの対向領域10a’に配置されており、かつ、線状に延びて、太陽電池セル10a,10bのあいだに位置する領域にはみ出した部分を有するようにそれぞれ構成されている。 The first conductive portion 131A has a plurality of first conductive paths 133A as described above and shown in FIG. These first conductive paths 133A extend linearly in a direction parallel to the arrangement direction of the solar battery cell group 10, and are arranged at a predetermined interval in a direction orthogonal to the arrangement direction. More specifically, the first conductive paths 133A each have a linearly extending shape, and are arranged so as to be spaced apart from and parallel to each other. 133 A of 1st electroconductive paths are arrange | positioned in the opposing area | region 10a 'with the photovoltaic cell 10a in the surface of the 1st sealing resin layer 121, and are extended linearly between photovoltaic cell 10a, 10b. Each is configured to have a protruding portion in the positioned region.
 第1導電部131Bは第1導電部131Aと基本的に同様に構成されており、第1導電パス133Bも第1導電パス133Aと基本的に同様に構成されているので、重複する説明は省略する。 The first conductive portion 131B is basically configured similarly to the first conductive portion 131A, and the first conductive path 133B is also configured basically similar to the first conductive path 133A. To do.
 第2封止シート112としては、上述の構成を有するものが用いられている。第2封止シート112の第2導電部132A,132Bは、太陽電池セル群10の配列方向において所定の間隔をおいて分離して配置されている。第2導電部132A,132Bは、隣りあう2つの太陽電池セル10a,10bの裏面(より具体的には裏面電極)にそれぞれ対向接触するように配置されている。なお、第2導電部132Aは、太陽電池セル10a以外の太陽電池セルとは接触しておらず、第2導電部132Bは、太陽電池セル10b以外の太陽電池セルとは接触していない。 As the second sealing sheet 112, one having the above-described configuration is used. The second conductive portions 132 </ b> A and 132 </ b> B of the second sealing sheet 112 are arranged separately at a predetermined interval in the arrangement direction of the solar battery cell group 10. The second conductive portions 132A and 132B are arranged so as to face and contact the back surfaces (more specifically, the back surface electrodes) of the two adjacent solar cells 10a and 10b. Note that the second conductive portion 132A is not in contact with solar cells other than the solar cell 10a, and the second conductive portion 132B is not in contact with solar cells other than the solar cell 10b.
 第2導電部132Bは、太陽電池セル10a,10bの配列方向に沿って延びることにより、太陽電池セル10a,10bのあいだに位置する領域にはみ出している。換言すると、第2導電部132Bは、太陽電池セル10a,10bのあいだに位置する領域にはみ出した部分を有するように配置されている。このように、第2導電部132Bにはみ出した部分を設けることにより、第2導電部132Bは、第1導電部131Aと電気的に接続しやすい構成となる。 The second conductive portion 132B extends along the arrangement direction of the solar cells 10a and 10b, so that it protrudes into a region located between the solar cells 10a and 10b. In other words, the second conductive portion 132B is disposed so as to have a portion that protrudes into a region located between the solar cells 10a and 10b. As described above, by providing the portion that protrudes from the second conductive portion 132B, the second conductive portion 132B can be easily electrically connected to the first conductive portion 131A.
 第2導電部132Bは、上述かつ図2に示すように複数の第2導電パス136Bを有する。これら第2導電パス136Bは、太陽電池セル群10の配列方向に平行する方向に線状に延びており、該配列方向に直交する方向に所定の間隔をおいて配置されている。より具体的には、第2導電パス136Bは、それぞれ直線状に延びる形状を有しており、互いに間隔をおいて、かつ平行するように配置されている。第2導電パス136Bは、第2封止樹脂層122の表面において太陽電池セル10bとの対向領域10b'’に配置されており、かつ、線状に延びて、太陽電池セル10a,10bのあいだに位置する領域にはみ出した部分を有するように構成されている。 The second conductive portion 132B has a plurality of second conductive paths 136B as described above and shown in FIG. These second conductive paths 136B extend linearly in a direction parallel to the arrangement direction of the solar battery cell group 10, and are arranged at a predetermined interval in a direction orthogonal to the arrangement direction. More specifically, the second conductive paths 136B each have a linearly extending shape, and are arranged so as to be spaced apart from and parallel to each other. The second conductive path 136B is disposed in a region 10b '' facing the solar battery cell 10b on the surface of the second sealing resin layer 122, and extends linearly between the solar battery cells 10a and 10b. It is comprised so that it may have the part which protruded in the area | region located in.
 第2導電部132Aは第2導電部132Bと基本的に同様に構成されており、第2導電パス136Aも第2導電パス136Bと基本的に同様に構成されているので、重複する説明は省略する。 The second conductive portion 132A is basically configured in the same manner as the second conductive portion 132B, and the second conductive path 136A is also basically configured in the same manner as the second conductive path 136B. To do.
 第1導電部131Aは、第1導電性接続部141Aを有する。第1導電性接続部141Aは、第1封止シート111の表面において、複数の太陽電池セル10a,10bのあいだに配置されている。第1導電性接続部141Aは、太陽電池セル10a,10bのあいだにて、太陽電池セル群10の配列方向と直交する方向に帯状に延びるように配置されている。なお、第1導電性接続部141Aは太陽電池セル10a,10bと非接触であればよく、その限りにおいて配置状態や形状は特に制限されない。 The first conductive portion 131A has a first conductive connection portion 141A. The first conductive connection portion 141 </ b> A is disposed between the plurality of solar battery cells 10 a and 10 b on the surface of the first sealing sheet 111. 141 A of 1st electroconductive connection parts are arrange | positioned so that it may extend in strip | belt shape in the direction orthogonal to the sequence direction of the photovoltaic cell group 10 between photovoltaic cell 10a, 10b. The first conductive connecting portion 141A only needs to be in non-contact with the solar cells 10a and 10b, and the arrangement state and shape are not particularly limited as long as the first conductive connecting portion 141A is not in contact therewith.
 また、第2導電部132Bは、第2導電性接続部142Bを有する。第2導電性接続部142Bは、第2封止シート112の表面において、複数の太陽電池セル10a,10bのあいだに配置されている。第2導電性接続部142Bは、太陽電池セル10a,10bのあいだにて、太陽電池セル群10の配列方向と直交する方向に帯状に延びるように配置されている。これによって、第1導電部131Aのはみ出した部分に位置する第1導電性接続部141Aと第2導電部132Bのはみ出した部分に位置する第2導電性接続部142Bとは電気的に接続することができる。なお、第2導電性接続部142Bは太陽電池セル10a,10bと非接触であればよく、その限りにおいて配置状態や形状は特に制限されない。 Also, the second conductive portion 132B has a second conductive connection portion 142B. The 2nd electroconductive connection part 142B is arrange | positioned between the several photovoltaic cell 10a, 10b in the surface of the 2nd sealing sheet 112. FIG. The second conductive connection part 142B is arranged between the solar battery cells 10a and 10b so as to extend in a band shape in a direction orthogonal to the arrangement direction of the solar battery cell group 10. As a result, the first conductive connection portion 141A located at the protruding portion of the first conductive portion 131A is electrically connected to the second conductive connection portion 142B positioned at the protruding portion of the second conductive portion 132B. Can do. In addition, the 2nd electroconductive connection part 142B should just be non-contact with the photovoltaic cell 10a, 10b, and an arrangement | positioning state and a shape are not restrict | limited in particular as long as it is.
 また、第1導電性接続部141Aは、太陽電池セル10a,10bと間隔をおいて配置されているが、太陽電池セル10a,10bとの短絡を確実に防止するため、第1導電性接続部の幅方向の両端に絶縁部を設けることが好ましい。絶縁部は、公知の絶縁性樹脂材料を塗布することにより設けることができる。あるいは、ポリイミドテープ等の公知の絶縁樹脂シートを被覆することによって設けることもできる。絶縁部として、スリーエム社製の商品名「セロファンテープ」を使用することも可能である。 In addition, the first conductive connection portion 141A is disposed at a distance from the solar battery cells 10a and 10b, but the first conductive connection portion is reliably prevented from short-circuiting with the solar battery cells 10a and 10b. It is preferable to provide insulating portions at both ends in the width direction. The insulating part can be provided by applying a known insulating resin material. Or it can also provide by coat | covering well-known insulating resin sheets, such as a polyimide tape. The product name “cellophane tape” manufactured by 3M may be used as the insulating portion.
 第1導電性接続部を、上記のような導電性ペーストや低融点金属材料で形成する場合においては、その幅方向の両端に絶縁部を設ける利点は特に大きい。かかる構成においては、第1導電性接続部および絶縁部は、三口ノズルを有するディスペンサを用いて塗り分けることにより形成すればよい。導電層形成材料としては、上述の導電部を形成し得る材料と同様の材料を用いればよい。絶縁層形成材料としては、ポリイミドやポリエステル等の樹脂を主成分とする従来公知の樹脂ペースト等を用いればよい。 In the case where the first conductive connection portion is formed of the above-described conductive paste or low melting point metal material, the advantage of providing insulating portions at both ends in the width direction is particularly great. In such a configuration, the first conductive connecting portion and the insulating portion may be formed by separately coating using a dispenser having a three-neck nozzle. As the conductive layer forming material, a material similar to the material capable of forming the conductive portion described above may be used. As the insulating layer forming material, a conventionally known resin paste or the like whose main component is a resin such as polyimide or polyester may be used.
 第1導電部131B、第2導電部132Aについても、第1導電部131A、第2導電部132Bと同様の構成を有するので、説明は省略する。 Since the first conductive portion 131B and the second conductive portion 132A have the same configuration as the first conductive portion 131A and the second conductive portion 132B, description thereof will be omitted.
 なお、太陽電池セル10a,10b以外の太陽電池セルや、第1導電部131A,131B以外の第1導電部、第2導電部132A,132B以外の第2導電部の構成についても、配線作業を効率よく行う観点から、太陽電池セル10a,10bや、第1導電部131A,131B、第2導電部132A,132Bからなる構成単位と基本的に同様に構成することが好ましく、同様の構成単位が繰り返されるように構成することがより好ましい。 Wiring work is also performed for the configuration of the solar cells other than the solar cells 10a and 10b, the first conductive portions other than the first conductive portions 131A and 131B, and the second conductive portions other than the second conductive portions 132A and 132B. From the viewpoint of performing efficiently, it is preferable to basically configure the solar cells 10a and 10b, the first conductive portions 131A and 131B, and the second conductive portions 132A and 132B. More preferably, the configuration is repeated.
 表面被覆部材としては、透光性を有する各種材料が使用され得る。表面被覆部材は、ガラス板や、テトラフルオロエチレン-エチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン樹脂、クロロトリフルオロエチレン樹脂等のフッ素樹脂シート、アクリル樹脂、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)等のポリエステル等の材料から構成された樹脂シートであり得る。例えば、全光線透過率が70%以上(例えば90%以上、典型的には95%以上)の平板状部材またはシート状部材が好ましく用いられ得る。上記全光線透過率は、JIS K7375(2008)に基づいて測定すればよい。表面被覆部材の厚さは、保護性や軽量性等の観点から、0.5~10mm(例えば1~8mm、典型的には2~5mm)程度とすることが好ましい。 As the surface covering member, various materials having translucency can be used. Surface covering member is glass plate, fluororesin sheet such as tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride resin, chlorotrifluoroethylene resin, acrylic resin, polyethylene terephthalate It may be a resin sheet composed of a material such as polyester such as (PET) or polyethylene naphthalate (PEN). For example, a flat plate member or a sheet member having a total light transmittance of 70% or more (for example, 90% or more, typically 95% or more) can be preferably used. The total light transmittance may be measured based on JIS K7375 (2008). The thickness of the surface covering member is preferably about 0.5 to 10 mm (for example, 1 to 8 mm, typically 2 to 5 mm) from the viewpoint of protection and light weight.
 裏面被覆部材としては、表面被覆部材の材料として例示した各種材料からなる平板状部材またはシート状部材が好ましく使用される。なかでも、裏面被覆部材形成材料として、PETやPEN等のポリエステルを使用することがより好ましい。あるいは、裏面被覆部材として、耐食性を有する金属板(例えばアルミニウム板)や、エポキシ樹脂等の樹脂シート、シリカ蒸着樹脂等の複合シートを用いてもよい。裏面被覆部材の厚さは、取扱い性や軽量性等の観点から、0.1~10mm(例えば0.2~5mm)程度とすることが好ましい。なお、裏面被覆部材は透光性を有していなくてもよい。 As the back surface covering member, a flat plate member or sheet member made of various materials exemplified as the material of the surface covering member is preferably used. Especially, it is more preferable to use polyester, such as PET and PEN, as a back surface covering member forming material. Or as a back surface covering member, you may use the metal sheet (for example, aluminum plate) which has corrosion resistance, resin sheets, such as an epoxy resin, and composite sheets, such as a silica vapor deposition resin. The thickness of the back surface covering member is preferably about 0.1 to 10 mm (for example, 0.2 to 5 mm) from the viewpoints of handleability and lightness. In addition, the back surface covering member may not have translucency.
 上述のように構成することにより、例えば図3に示すように、太陽電池モジュール1において、第1導電部131Aおよび第2導電部132Bは、太陽電池セル10aの表面および太陽電池セル10bの裏面のあいだの導電経路を構成する。その結果、太陽電池セル群10の電気的接続が実現される。太陽電池セル群10にて発電された電気エネルギーは、太陽電池モジュール1において太陽電池セル群10の配列方向の両端に配置された端子バー(図示せず)を介して、太陽電池モジュール1の外部に供給される。ここに開示される技術は、封止シートとして、上記一対の封止シート100を使用する他は基本的に従来公知の既存の構成を利用して実施することができるので、設備全体を置き換える必要がなく実用上の利点が大きい。 By configuring as described above, for example, as shown in FIG. 3, in the solar cell module 1, the first conductive portion 131 </ b> A and the second conductive portion 132 </ b> B are provided on the front surface of the solar cell 10 a and the back surface of the solar cell 10 b. It forms a conductive path between them. As a result, electrical connection of the solar battery cell group 10 is realized. The electric energy generated by the solar cell group 10 is external to the solar cell module 1 via terminal bars (not shown) arranged at both ends of the solar cell module 1 in the arrangement direction of the solar cell group 10. To be supplied. Since the technique disclosed here can be implemented basically using a conventionally known configuration except that the pair of sealing sheets 100 is used as the sealing sheet, it is necessary to replace the entire equipment. There is no practical advantage.
 太陽電池モジュール1の構築について、特に太陽電池セルの電気的接続に関してさらに説明する。図3に示すように、第1封止シート111および第2封止シート112を備える一対の封止シート100を、各々の導電部形成面が向かいあうようにして、太陽電池セル10a,10bを挟む。そして、一対の封止シート100を太陽電池セル10a,10bに押し当てると、第1封止シート111および第2封止シート112がそれぞれ備える第1導電性接続部141A,141B、第2導電性接続部142A,142Bを介して太陽電池モジュール1の電気的接続が実現される。具体的には、太陽電池セル10aと第1導電部131A、第2導電部132Aとが当接し、太陽電池セル10bと第1導電部131B、第2導電部132Bとが当接し、第1導電部131Aの第1導電性接続部141Aが第2導電部132Bの第2導電性接続部142Bに当接し、また太陽電池モジュール1において外側に配置された第1導電部(図示せず)や第2導電部(図示せず)は、その第1導電性接続部、第2導電性接続部が、太陽電池モジュール1の端部近傍に配置される図示しない取出し電極(端子バー)に当接する。これによって、太陽電池モジュール1の電気的接続が実現される。上記構成の太陽電池モジュール1によると、太陽電池セル10a,10bの裏面側に配置される第2導電パス132B,132Bの本数が第1導電パス131B,131Bよりも多いので、シャドーロスを増大することなく発電効率が向上する。なお、太陽電池モジュール1の構築一般については、当該技術分野における技術常識に基づき実施可能であり、本発明を特徴づけるものではないので説明は省略する。 The construction of the solar cell module 1 will be further described, particularly regarding the electrical connection of the solar cells. As shown in FIG. 3, a pair of sealing sheets 100 including the first sealing sheet 111 and the second sealing sheet 112 are sandwiched between the solar battery cells 10 a and 10 b so that the conductive part forming surfaces face each other. . Then, when the pair of sealing sheets 100 are pressed against the solar cells 10a and 10b, the first conductive connecting portions 141A and 141B and the second conductive properties provided in the first sealing sheet 111 and the second sealing sheet 112, respectively. Electrical connection of the solar cell module 1 is realized through the connection parts 142A and 142B. Specifically, the solar battery cell 10a is in contact with the first conductive part 131A and the second conductive part 132A, and the solar battery cell 10b is in contact with the first conductive part 131B and the second conductive part 132B. The first conductive connecting portion 141A of the portion 131A abuts on the second conductive connecting portion 142B of the second conductive portion 132B, and the first conductive portion (not shown) or the first conductive portion disposed outside the solar cell module 1 The two conductive parts (not shown) have their first conductive connection part and second conductive connection part in contact with an extraction electrode (terminal bar) (not shown) arranged in the vicinity of the end of the solar cell module 1. Thereby, electrical connection of the solar cell module 1 is realized. According to the solar cell module 1 having the above configuration, the number of the second conductive paths 132B and 132B arranged on the back surfaces of the solar cells 10a and 10b is larger than that of the first conductive paths 131B and 131B, so that the shadow loss is increased. The power generation efficiency is improved without any problems. The construction of the solar cell module 1 in general can be implemented based on the common general technical knowledge in the technical field, and does not characterize the present invention.
 また、上記の構成は、従来の配線手法(典型的には、はんだ等を用いて行う手法)と比べて、太陽電池セルの配線作業性に優れる。また、強度面にも優れることから、例えば封止シートの応力等に起因する断線等の不具合も防止される。さらに、上記電気的接続ははんだ接合を必要としないため、はんだ接合による不具合(典型的には、セルの反りや割れ、特性低下、フラックス汚染)を回避することが可能である。はんだ接合を必要としないことは、太陽電池セルの構造にも利点をもたらす。具体的には、太陽電池セルの裏面には、BSF(Back Surface Field)効果等の観点から、全面にアルミニウム電極(裏面電極)を設けることが好ましい。しかし、アルミニウムははんだ接合性に劣るため、金属配線との接合箇所には、通常、はんだ接合性に優れる銀電極が配置されている。つまり、太陽電池セルの裏面電極としては、通常はアルミニウム電極と銀電極とが併用されている。ここに開示される技術によると、太陽電池セルの裏面における電気的接続は、当該裏面における裏面電極(アルミニウム電極)と第2封止シートの第2導電パスとが当接するだけで実現されるので、太陽電池セル裏面でのはんだ接合は不要となる。したがって、ここに開示される技術を採用することによって、太陽電池セルの裏面電極が銀電極を実質的に含まない構造の太陽電池モジュールが実現され得る。この構成によるコスト低減および生産性向上の利点は大きい。 Further, the above configuration is superior in wiring workability of the solar battery cell as compared with the conventional wiring method (typically, a method performed using solder or the like). Moreover, since it is excellent also in an intensity | strength surface, troubles, such as a disconnection resulting from the stress of a sealing sheet etc., are prevented, for example. Furthermore, since the electrical connection does not require soldering, it is possible to avoid problems (typically, cell warpage or cracking, characteristic deterioration, flux contamination) due to soldering. The fact that solder bonding is not required also brings advantages to the solar cell structure. Specifically, it is preferable to provide an aluminum electrode (back surface electrode) on the entire surface from the viewpoint of a BSF (Back Surface Field) effect on the back surface of the solar battery cell. However, since aluminum is inferior in solder jointability, a silver electrode having excellent solder jointability is usually disposed at a joint location with metal wiring. That is, as the back electrode of the solar battery cell, an aluminum electrode and a silver electrode are usually used in combination. According to the technology disclosed herein, electrical connection on the back surface of the solar battery cell is realized simply by contacting the back electrode (aluminum electrode) on the back surface with the second conductive path of the second sealing sheet. Solder joining on the back surface of the solar battery cell is not necessary. Therefore, by adopting the technology disclosed herein, a solar cell module having a structure in which the back electrode of the solar cell does not substantially contain a silver electrode can be realized. This configuration has significant advantages in cost reduction and productivity improvement.
 図4は、第2実施形態に係る第2封止シートの主要部を模式的に示す上面図である。 FIG. 4 is a top view schematically showing the main part of the second sealing sheet according to the second embodiment.
 第2実施形態に係る第2封止シートは、第2導電パスを除いては第1実施形態に係る第2封止シートと基本的に同じ構成を有する。したがって、この実施形態については、第2導電パスを主に説明し、その他の点についての説明は省略する。 The second sealing sheet according to the second embodiment has basically the same configuration as the second sealing sheet according to the first embodiment except for the second conductive path. Therefore, in this embodiment, the second conductive path will be mainly described, and description of other points will be omitted.
 図4に示すように、第2封止シート112の第2導電部132Aにおける第2導電パス136Aの本数は、第1封止シート111の第1導電部131Aにおける第1導電パス133Aの本数と同じであるが、第2導電パス136Aの幅は、第1導電パス133Aの幅よりも大きい。第2導電パス136Bも、第2導電パス136Aと同様に構成されており、第1導電パス133Bと同じ本数であるが、その幅は第1導電パス133Bよりも大きい。第2導電パス136A,136Bの幅は、第1導電パス133A,133Bの幅の1.2倍以上(より好ましくは1.5倍以上、さらに好ましくは2倍以上)とすることが好ましい。このように構成することによっても、上記第1実施形態と同様、太陽電池モジュールの配線作業性および発電効率が向上する。 As shown in FIG. 4, the number of second conductive paths 136A in the second conductive portion 132A of the second sealing sheet 112 is equal to the number of first conductive paths 133A in the first conductive portion 131A of the first sealing sheet 111. Although the same, the width of the second conductive path 136A is larger than the width of the first conductive path 133A. The second conductive path 136B is also configured in the same manner as the second conductive path 136A, and has the same number as the first conductive path 133B, but its width is larger than that of the first conductive path 133B. The widths of the second conductive paths 136A and 136B are preferably 1.2 times or more (more preferably 1.5 times or more, more preferably 2 times or more) the width of the first conductive paths 133A and 133B. Also with this configuration, the wiring workability and power generation efficiency of the solar cell module are improved as in the first embodiment.
 図5は、第3実施形態に係る第2封止シートの主要部を模式的に示す上面図である。 FIG. 5 is a top view schematically showing the main part of the second sealing sheet according to the third embodiment.
 第3実施形態に係る第2封止シートは、第2導電部を除いては第1実施形態に係る第2封止シートと基本的に同じ構成を有する。したがって、この実施形態については、第2導電部を主に説明し、その他の点についての説明は省略する。 The second sealing sheet according to the third embodiment has basically the same configuration as the second sealing sheet according to the first embodiment except for the second conductive portion. Therefore, about this embodiment, the 2nd electric conduction part is mainly explained and explanation about other points is omitted.
 図5に示すように、第2封止シート112の第2導電部132Aにおける第2導電パス136Aは、第2封止樹脂層122の表面において、太陽電池セル10aに対向する領域10a”のほぼ全域(例えば、太陽電池セル裏面対向領域10a”の面積の80%以上、典型的には90~100%)に配置されている。また、第2導電部132Aは、太陽電池セル裏面対向領域10a”からはみ出た太陽電池セル非対向部分をさらに有する。この太陽電池セル非対向部分は、太陽電池セル裏面対向領域10a”内の第2導電パス136Aから連続して、太陽電池セル10a,10bの配列方向の一方に延びており、第2導電性接続部142Aとして機能する。第2導電部132Bも、第2導電部132Aと同様に構成されている。この実施形態では、第2導電部132A,132Bとして金属シート(具体的には金属箔)が用いられている。上記金属シートとしては上記で例示したものを使用することができる。また、この実施形態における第2導電部132A,132Bは、上面から見たとき、矩形状を有する。このように構成することによっても、上記第1実施形態と同様、太陽電池モジュールの配線作業性および発電効率が向上する。 As shown in FIG. 5, the second conductive path 136A in the second conductive portion 132A of the second sealing sheet 112 is substantially in the region 10a ″ facing the solar battery cell 10a on the surface of the second sealing resin layer 122. It is arranged in the entire region (for example, 80% or more, typically 90 to 100% of the area of the solar cell back surface facing region 10a ″). Further, the second conductive portion 132A further includes a non-facing portion of the solar cell that protrudes from the solar cell back surface facing region 10a ″. The solar cell non-facing portion is the first in the solar cell back surface facing region 10a ″. Continuously extending from the two conductive paths 136A to one side in the arrangement direction of the solar cells 10a and 10b, and functions as the second conductive connecting portion 142A. The second conductive portion 132B is configured similarly to the second conductive portion 132A. In this embodiment, a metal sheet (specifically, a metal foil) is used as the second conductive portions 132A and 132B. What was illustrated above can be used as said metal sheet. Further, the second conductive portions 132A and 132B in this embodiment have a rectangular shape when viewed from the upper surface. Also with this configuration, the wiring workability and power generation efficiency of the solar cell module are improved as in the first embodiment.
 なお、ここに開示される太陽電池モジュールは、上記実施形態の構成に限定されない。例えば、太陽電池モジュールに配置される太陽電池セルの個数は2以上であればよく、その限りにおいて特に制限はない。ここに開示される技術によると、複数の太陽電池セルを一括して電気的に接続し得ることから、太陽電池セルの個数は多いほど配線作業性の改善効果は大きい。例えば、複数の太陽電池セルを、一列に配列された太陽電池セル群として構成する場合には、当該太陽電池セル群におけるセル数は、好ましくは3以上であり、より好ましくは5以上(例えば7~20、典型的には8~12)である。また、太陽電池セル群は、2列以上(例えば3~10列、典型的には5~8列)であり得る。 In addition, the solar cell module disclosed here is not limited to the structure of the said embodiment. For example, the number of solar cells arranged in the solar cell module may be two or more, and there is no particular limitation as long as it is limited. According to the technology disclosed herein, a plurality of solar cells can be electrically connected in a lump. Therefore, the greater the number of solar cells, the greater the effect of improving the wiring workability. For example, when a plurality of solar cells are configured as a solar cell group arranged in a line, the number of cells in the solar cell group is preferably 3 or more, more preferably 5 or more (for example, 7 -20, typically 8-12). Further, the solar cell group may have two or more rows (for example, 3 to 10 rows, typically 5 to 8 rows).
 また、上記実施形態では、複数の太陽電池セルは一列に配列された太陽電池セル群として構成されていたが、複数の太陽電池セルの配列(配置)はこれに限定されず、直線状、曲線状、規則的なパターン、あるいは不規則的なパターンであってもよい。また、太陽電池セルの間隔は一定でなくてもよい。 Moreover, in the said embodiment, although the several photovoltaic cell was comprised as a photovoltaic cell group arranged in a line, the arrangement | sequence (arrangement | positioning) of a several photovoltaic cell is not limited to this, A linear form, a curve It may be a pattern, a regular pattern, or an irregular pattern. Moreover, the space | interval of a photovoltaic cell does not need to be constant.
 また、上記実施形態では、導電部の数は、説明の便宜上、第1封止シート、第2封止シートに対して2つずつしか示さなかったが、ここに開示される技術はこれに限定されるものではない。一の封止シートにおける導電部の数は、基本的には当該封止シートが封止する太陽電池セルの個数に対応したものとなる。例えば、一対の封止シートが一の太陽電池セルを封止し、この構成(すなわち一対の封止シートで太陽電池セルを挟んだ構成)を複数接続して太陽電池モジュールを構築する場合には、一の封止シートに設けられる導電部は1つである。一方、一対の封止シートで、複数の太陽電池セルを封止し、一括配線を行う場合には、一の封止シートに設けられる導電部の数は、太陽電池セルの個数に対応し、5以上(例えば30以上、典型的には50以上)となり、実際には50~60程度となり得る。あるいはまた、一対の封止シートで複数の太陽電池セル(例えば、間隔をおいて一列に配置される2~20個の太陽電池セル)を挟み、この構成を複数(2~10程度)組み合わせて太陽電池モジュールを構築することも可能である。 Moreover, in the said embodiment, although the number of the electroconductive parts showed only two each with respect to the 1st sealing sheet and the 2nd sealing sheet for convenience of explanation, the technique indicated here is limited to this. Is not to be done. The number of conductive parts in one sealing sheet basically corresponds to the number of solar cells sealed by the sealing sheet. For example, when a solar cell module is constructed by sealing a single solar cell with a pair of sealing sheets and connecting a plurality of this configuration (that is, a configuration in which the solar cells are sandwiched between a pair of sealing sheets). The number of conductive portions provided in one sealing sheet is one. On the other hand, when a plurality of solar cells are sealed with a pair of sealing sheets and batch wiring is performed, the number of conductive portions provided in one sealing sheet corresponds to the number of solar cells, 5 or more (for example, 30 or more, typically 50 or more), and may actually be about 50 to 60. Alternatively, a plurality of solar cells (for example, 2 to 20 solar cells arranged in a row at intervals) are sandwiched between a pair of sealing sheets, and a plurality (about 2 to 10) of this configuration are combined. It is also possible to construct a solar cell module.
 また、上記実施形態では、第1導電部は、直線状に延びる複数の導電パスを有するものであったが、ここに開示される技術はこれに限定されず、上記導電部は1つの導電パスを有するものであってもよい。第2導電部についても同様である。上記導電部や導電パスの形状も特に限定されず、例えば曲線状や環状であってもよい。上記導電部は、例えば格子状や、複数のリングが連なった形状等のパターンを有するものであってもよい。したがって、上記導電部を構成し得る導電パスについても、形状等は特に限定されない。上記パターン等に応じて、複数の導電パスは互いに分離していてもよく、接触していてもよい。第2導電部については、上記第3実施形態のように太陽電池セルの裏面全体を覆う平面形状を有するものであってもよい。 In the above embodiment, the first conductive portion has a plurality of conductive paths extending in a straight line. However, the technique disclosed herein is not limited to this, and the conductive portion has one conductive path. It may have. The same applies to the second conductive portion. The shape of the conductive part and the conductive path is not particularly limited, and may be, for example, a curved shape or a ring shape. The conductive portion may have a pattern such as a lattice shape or a shape in which a plurality of rings are connected. Accordingly, the shape and the like of the conductive path that can constitute the conductive portion are not particularly limited. Depending on the pattern and the like, the plurality of conductive paths may be separated from each other or may be in contact with each other. About a 2nd electroconductive part, it may have a planar shape which covers the whole back surface of a photovoltaic cell like the said 3rd Embodiment.
 さらに、第1導電部と第2導電部との電気的接続方法についても、上記各実施形態の方法に限定されない。従来公知の配線手法を適宜改変するなどして、第1導電部と第2導電部とを電気的に接続するように構成することができる。例えば、導電性接続部を用いて上記電気的接続を行う場合、上記電気的接続が実現されるかぎりにおいて、導電性接続部の形状や配置は特に限定されない。導電性接続部は、典型的には、太陽電池セルと非接触の状態で配置されていればよく、その観点から、例えば、太陽電池セルの配列方向(導電パスの長手方向でもあり得る。)と交差する方向に延びる帯形状を有することが好ましい。また、電気的接続の容易性の観点から、導電性接続部は、導電パスと直接接触していることが好ましい。 Furthermore, the electrical connection method between the first conductive part and the second conductive part is not limited to the method of each of the above embodiments. The first conductive part and the second conductive part can be electrically connected by appropriately modifying a conventionally known wiring method. For example, when the electrical connection is performed using a conductive connection portion, the shape and arrangement of the conductive connection portion are not particularly limited as long as the electrical connection is realized. The conductive connection part is typically only required to be disposed in a non-contact state with the solar battery cell, and from this point of view, for example, the arrangement direction of the solar battery cell (which may be the longitudinal direction of the conductive path). It preferably has a band shape extending in a direction intersecting with the line. Further, from the viewpoint of easy electrical connection, the conductive connection part is preferably in direct contact with the conductive path.
 この明細書により開示される事項には以下のものが含まれる。
(1) 間隔をおいて配列される複数の太陽電池セルと、
 複数の太陽電池セルの表面を覆う絶縁性かつ透光性の第1封止シートと、
 複数の太陽電池セルの裏面を覆う絶縁性の第2封止シートと、を備えており、
 第1封止シートは、第1封止樹脂層と、第1封止樹脂層の太陽電池セル側表面に配置された第1導電部と、を備えており、
 第2封止シートは、第2封止樹脂層と、第2封止樹脂層の太陽電池セル側表面に配置された第2導電部と、を備えており、
 第1導電部は、複数の太陽電池セルのうち隣りあう2つの太陽電池セルの一方の太陽電池セルの表面に接触しており、
 第2導電部は、隣りあう2つの太陽電池セルの他方の太陽電池セルの裏面に接触しており、かつ
 第1導電部と第2導電部とは電気的に接続されるように構成されている、太陽電池モジュール。
(2) 第1導電部は、隣りあう2つの太陽電池セルの一方の太陽電池セルの表面と対向するように、かつ隣りあう2つの太陽電池セルのあいだに位置する領域にはみ出した部分を有するように配置されており、
 第2導電部は、隣りあう2つの太陽電池セルの他方の太陽電池セルの裏面と対向するように、かつ隣りあう2つの太陽電池セルのあいだに位置する領域にはみ出した部分を有するように配置されている、上記(1)に記載の太陽電池モジュール。
(3) 第1導電部のはみ出した部分と第2導電部のはみ出した部分とは当接する、上記(2)に記載の太陽電池モジュール。
The matters disclosed by this specification include the following.
(1) a plurality of solar cells arranged at intervals;
An insulating and translucent first sealing sheet covering the surfaces of the plurality of solar cells;
An insulating second sealing sheet that covers the back surfaces of the plurality of solar cells,
The 1st sealing sheet is provided with the 1st encapsulating resin layer and the 1st electric conduction part arranged on the photovoltaic cell side surface of the 1st encapsulating resin layer,
The second sealing sheet includes a second sealing resin layer, and a second conductive part disposed on the solar cell side surface of the second sealing resin layer,
The first conductive part is in contact with the surface of one of the two adjacent solar cells among the plurality of solar cells,
The second conductive portion is in contact with the back surface of the other solar cell of the two adjacent solar cells, and the first conductive portion and the second conductive portion are configured to be electrically connected. A solar cell module.
(2) The first conductive portion has a portion that protrudes from a region located between two adjacent solar cells so as to face the surface of one of the two adjacent solar cells. Are arranged so that
The second conductive portion is disposed so as to face the back surface of the other solar cell of the two adjacent solar cells and to have a portion that protrudes from a region located between the two adjacent solar cells. The solar cell module according to (1) above.
(3) The solar cell module according to (2), wherein the protruding portion of the first conductive portion and the protruding portion of the second conductive portion are in contact with each other.
(4) 複数の太陽電池セルを用意する工程と;
 第1封止樹脂層の一方の表面に第1導電部を配置して第1封止シートを得る工程と;
 第2封止樹脂層の一方の表面に第2導電部を配置して第2封止シートを得る工程と;
 第1封止シートと第2封止シートとで複数の太陽電池セルを挟む工程と(この工程において、複数の太陽電池セルを間隔をおいて配列し、複数の太陽電池セルのうち隣りあう2つの太陽電池セルの一方の太陽電池セルの表面に第1導電部を接触させ、隣りあう2つの太陽電池セルの他方の太陽電池セルの裏面に第2導電部を接触させ、かつ第1導電部と第2導電部とを電気的に接続するように構成する。);
を包含する、太陽電池モジュールの製造方法。
(5) 第1導電部を配置する工程は、第1導電部を、隣りあう2つの太陽電池セルの一方の太陽電池セルの表面と対向するように、かつ隣りあう2つの太陽電池セルのあいだに位置する領域にはみ出した部分を有するように配置する工程を含み、
 第2導電部を形成する工程は、第2導電部を、隣りあう2つの太陽電池セルの他方の太陽電池セルの裏面と対向するように、かつ隣りあう2つの太陽電池セルのあいだに位置する領域にはみ出した部分を有するように配置する工程を含む、上記(4)に記載の製造方法。
(6) 第1導電部のはみ出した部分と第2導電部のはみ出した部分とを当接させる、上記(5)に記載の製造方法。
(4) preparing a plurality of solar cells;
Arranging the first conductive part on one surface of the first sealing resin layer to obtain a first sealing sheet;
Arranging the second conductive portion on one surface of the second sealing resin layer to obtain a second sealing sheet;
A step of sandwiching a plurality of solar cells between the first sealing sheet and the second sealing sheet (in this step, a plurality of solar cells are arranged at intervals and two of the plurality of solar cells are adjacent to each other) The first conductive part is brought into contact with the surface of one of the solar cells, the second conductive part is brought into contact with the back surface of the other of the two adjacent solar cells, and the first conductive part And the second conductive portion are electrically connected.);
A method for manufacturing a solar cell module, comprising:
(5) The step of disposing the first conductive part is such that the first conductive part is opposed to the surface of one solar battery cell of two adjacent solar battery cells and between the two adjacent solar battery cells. Including a step of arranging to have a protruding portion in the region located at
The process of forming a 2nd electroconductive part is located so that the 2nd electroconductive part may be opposed to the back surface of the other photovoltaic cell of the two adjacent photovoltaic cells, and between two adjacent photovoltaic cells. The manufacturing method according to the above (4), which includes a step of arranging so as to have a protruding portion in the region.
(6) The manufacturing method according to (5), wherein the protruding portion of the first conductive portion and the protruding portion of the second conductive portion are brought into contact with each other.
 以下、本発明に関する実施例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。なお、以下の説明中の「部」および「%」は、特に断りがない限り重量基準である。 Hereinafter, examples relating to the present invention will be described, but the present invention is not intended to be limited to those shown in the specific examples. In the following description, “parts” and “%” are based on weight unless otherwise specified.
 <参考実験1>
 36cm×18cmにカットした厚さ450μmのEVAシート(商品名「EVASC ファストキュアタイプ」、サンビック社製)を2枚用意し、各EVAシートの表面にシランカップリング剤(信越化学社製)をワイヤーバーを用いて塗布し、60℃で2分間乾燥させた。上記各EVAシートのシランカップリング剤塗布面に導電性ペースト(商品名「ペルトロンK-3105」、ペルノックス社製、導電成分:Ag、樹脂成分:ポリエステル樹脂、比抵抗:6.5×10-5Ω・cm)をディスペンサ(武蔵エンジニアリング社製)を用いて塗布することにより、図1に示すような導電パスパターン(各パスの太さ:200μm)が表面に形成された2枚のEVAシートを作製した。
<Reference experiment 1>
Prepare 2 sheets of EVA sheet (trade name “EVASC Fast Cure Type”, manufactured by Sanvik), cut to 36cm × 18cm, and wire silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd.) on the surface of each EVA sheet. It was applied using a bar and dried at 60 ° C. for 2 minutes. Conductive paste (trade name “Pertron K-3105”, manufactured by Pernox Co., Ltd., conductive component: Ag, resin component: polyester resin, specific resistance: 6.5 × 10 −5 on the silane coupling agent application surface of each EVA sheet. Ω · cm) is applied using a dispenser (manufactured by Musashi Engineering Co., Ltd.), so that two EVA sheets having conductive path patterns (thickness of each path: 200 μm) as shown in FIG. Produced.
 裏面被覆部材として、36cm×18cmにカットした厚さ200μmのバックシート(商品名「コバテックPV KB-Z1-3」、コバヤシ社製)を用意し、その上に、上記で作製した導電パス形成EVAシートの1枚を、導電パス形成面が上面となるように設置した。当該EVAシート上に、結晶系Si太陽電池セル(Qセルズ社製)2枚を間隔をおいて配置し、2枚のセルのあいだに、長尺状の導電性粘着シート(日東電工社製)をその長手方向が2枚のセルの配列方向と直交する方向となるように設置した。太陽電池セルの配列方向において2枚のセルの両外方には、幅6cmの端子バー(商品名「A-SPS」、日立電線社製)をそれぞれ配置した。その上に、上記で作製した導電パス形成EVAシートを導電パス形成面が下面となるように設置した。2本の端子バーは、各セルより外方にはみ出した導電部と接触するようにそれぞれ配置されている。さらにその上に表面被覆部材として厚さ3.2mmのガラス板(旭硝子社製、白板熱処理ガラス)を配置した後、市販のラミネータ(NPC社製)を用いて140℃、70KPa、15分間の条件でラミネートを行い、図3に示すような断面構造を有する試験用太陽電池モジュール(ただし、上下の封止シートにおける導電パスの本数および太さは同じである。)を構築した。 A back sheet (trade name “KOBATEC PV KB-Z1-3”, manufactured by Kobayashi Co., Ltd.) with a thickness of 200 μm cut to 36 cm × 18 cm is prepared as a back surface covering member, and the conductive path forming EVA prepared above is prepared thereon. One of the sheets was installed such that the conductive path forming surface was the upper surface. On the EVA sheet, two crystalline Si solar cells (manufactured by Q CELLS) are arranged at an interval, and a long conductive adhesive sheet (manufactured by NITTO DENKO) is placed between the two cells. Was installed such that the longitudinal direction thereof was perpendicular to the arrangement direction of the two cells. A terminal bar (trade name “A-SPS”, manufactured by Hitachi Cable, Ltd.) having a width of 6 cm was arranged on both outer sides of the two cells in the arrangement direction of the solar cells. On top of that, the conductive path forming EVA sheet prepared above was placed so that the conductive path forming surface was the lower surface. The two terminal bars are respectively arranged so as to come into contact with the conductive portion protruding outward from each cell. Further, a 3.2 mm thick glass plate (manufactured by Asahi Glass Co., Ltd., white plate heat-treated glass) is disposed thereon as a surface coating member, and then a commercially available laminator (manufactured by NPC Co.) is used at 140 ° C., 70 KPa, 15 minutes The test solar cell module having a cross-sectional structure as shown in FIG. 3 (however, the number of conductive paths and the thickness of the upper and lower sealing sheets are the same) was constructed.
 この試験用モジュールをソーラーシミュレータ(商品名「YSS-50」、山下電装社製)に設置して最大電力量を測定した。放射照度に基づき変換効率(発電効率)を求めたところ6.3%であった。この結果から、ここに開示される技術を適用することで、所定以上の発電効率を実現しつつ、配線作業性が向上することがわかる。 This test module was installed in a solar simulator (trade name “YSS-50”, manufactured by Yamashita Denso Co., Ltd.), and the maximum electric energy was measured. The conversion efficiency (power generation efficiency) obtained based on the irradiance was 6.3%. From this result, it can be seen that by applying the technique disclosed herein, the wiring workability is improved while realizing a power generation efficiency of a predetermined level or more.
 <参考実験2>
 (導電部材)
 厚さ75μmの銅箔を16cm×0.5cmサイズにカットした。銅箔としては、電解銅箔(リジット基板用電解銅箔、純度99.8%以上(表面処理前))を用いた。なお、この電解銅箔には、亜鉛、クロム、ヒ素を用いて、粗化処理、防錆処理、密着性向上処理が施されている。次いで、銀(Ag)被覆ワイヤー(幅800μm)を用意し、その一端を上記銅箔上に配置し溶接固定した。Ag被覆ワイヤーは、その長手方向が上記銅箔の長手方向に直交するように固定した。Ag被覆ワイヤーとしては、銅(Cu)ワイヤーにAgを被覆したものを用いた。上記のAg被覆ワイヤーの固定作業を、銅箔の長手方向に沿って繰り返し、Ag被覆ワイヤーが4本または8本配列された櫛形の導電部材を得た。
 また、Ag被覆ワイヤーを錫(Sn)被覆ワイヤー(幅500μm)に変更した他は上記と同様にして、Sn被覆ワイヤーが4本、8本または15本配列された櫛形の導電部材を得た。なお、上記導電部材は、図1,2に示す導電部と基本的に同様の構造を有するが、導電部におけるワイヤー本数は一致しない。
 また、導電部材として金属箔(Sn-Cu箔)を用意した。この導電部材は、図5に示す導電部と同様の構造を有する。
<Reference experiment 2>
(Conductive member)
A 75 μm thick copper foil was cut into a size of 16 cm × 0.5 cm. As the copper foil, an electrolytic copper foil (electrolytic copper foil for rigid substrate, purity of 99.8% or more (before surface treatment)) was used. The electrolytic copper foil is subjected to roughening treatment, rust prevention treatment, and adhesion improving treatment using zinc, chromium, and arsenic. Next, a silver (Ag) -coated wire (width 800 μm) was prepared, and one end thereof was placed on the copper foil and fixed by welding. The Ag-coated wire was fixed so that the longitudinal direction thereof was orthogonal to the longitudinal direction of the copper foil. As the Ag-coated wire, a copper (Cu) wire coated with Ag was used. The above-described fixing operation of the Ag-coated wire was repeated along the longitudinal direction of the copper foil to obtain a comb-shaped conductive member in which four or eight Ag-coated wires were arranged.
Further, a comb-shaped conductive member in which four, eight, or fifteen Sn-coated wires were arranged was obtained in the same manner as above except that the Ag-coated wire was changed to a tin (Sn) -coated wire (width: 500 μm). The conductive member has basically the same structure as the conductive portion shown in FIGS. 1 and 2, but the number of wires in the conductive portion does not match.
Further, a metal foil (Sn—Cu foil) was prepared as a conductive member. This conductive member has the same structure as the conductive portion shown in FIG.
 (封止樹脂)
 厚さ450μmのEVAシート(商品名「EVASKY」、ブリヂストン社製)を18cm×18cmにカットし、シート状封止樹脂(封止樹脂層)を用意した。
(Sealing resin)
A 450 μm thick EVA sheet (trade name “EVASKY”, manufactured by Bridgestone) was cut into 18 cm × 18 cm to prepare a sheet-shaped sealing resin (sealing resin layer).
 (導電部付き封止シート)
 上記シート状封止樹脂の一方の表面に表面処理を施した後、当該表面処理面に、上記で得た導電部材を配置し、導電部付き封止シートを得た。表面処理は、コロナ処理装置(例えば春日電機社製)を用いたコロナ処理、大気圧プラズマ処理装置(例えば積水化学工業社製)を用いた大気圧プラズマ処理およびシランカップリング剤(商品名「KBM-503」、信越化学社製)の塗布のうち適切な処理を単独でまたは組み合わせて行われる。
(Seal sheet with conductive part)
After surface-treating one surface of the sheet-shaped sealing resin, the conductive member obtained above was disposed on the surface-treated surface to obtain a sealing sheet with a conductive part. For the surface treatment, corona treatment using a corona treatment device (for example, manufactured by Kasuga Denki Co., Ltd.), atmospheric pressure plasma treatment using an atmospheric pressure plasma processing device (for example, manufactured by Sekisui Chemical Co., Ltd.), and a silane coupling agent (trade name “KBM”). -503 ”(manufactured by Shin-Etsu Chemical Co., Ltd.) is applied alone or in combination.
 (太陽電池モジュール)
 厚さ200μmのバックシート(商品名「コバテックPV KB-Z1-3」、コバヤシ社製)を用意し、18cm×18cmにカットし、裏面被覆部材を用意した。この裏面被覆部材を載置し、その上に、上記で作製した導電部付き封止シート(第2封止シート)を、導電部形成面が上面となるように設置した。第2封止シート上に、表面にバスバー電極(1.5mm×0.2mmのはんだ被覆銅線)を3本固定したSi系太陽電池セル(Qセルズ社製、単結晶セル)を、その裏面が第2封止シートの第2導電部(具体的には櫛形の歯の部分)と当接するように配置した。なお、上記バスバー電極は、上記太陽電池セルにはんだで固定されている。そして、太陽電池セルの両横に、幅6cmの銅製端子バー(商品名「A-SPS」、日立電線社製)を、取出し電極としてそれぞれ設置した。その上に、上記で用意したシート状封止樹脂を設置した。さらにその上に表面被覆部材として厚さ3.2mmのガラス板(旭硝子社製、白板熱処理ガラス)を配置した後、市販のラミネータ(NPC社製)を用いて150℃、100KPa、5分間の条件でラミネートを行い、15分間のキュアを実施した。さらに、市販の送風定温恒温器(ヤマト科学社製)を用いて150℃、15分間の乾燥処理を行い、試験用太陽電池モジュールを構築した。
 上記試験用太陽電池モジュールとしては、第2封止シートにおける第2導電パス(ワイヤー)の本数をそれぞれ4本、8本、Sn被覆ワイヤーについてはさらに15本に変更したモジュールを用意した。また、第2導電パスを金属箔とした第2封止シートを用いてなる試験用太陽電池モジュールを用意した。
(Solar cell module)
A back sheet having a thickness of 200 μm (trade name “KOBATEC PV KB-Z1-3”, manufactured by Kobayashi Co., Ltd.) was prepared, cut to 18 cm × 18 cm, and a back coating member was prepared. This back surface covering member was placed, and the sealing sheet with a conductive part (second sealing sheet) produced above was placed thereon so that the conductive part forming surface was the upper surface. On the second sealing sheet, a Si-based solar battery cell (single crystal cell, manufactured by Q CELLS Co., Ltd.) having three bus bar electrodes (1.5 mm × 0.2 mm solder-coated copper wire) fixed on the front surface thereof Is disposed so as to abut on the second conductive portion (specifically, a comb-shaped tooth portion) of the second sealing sheet. In addition, the said bus-bar electrode is being fixed to the said photovoltaic cell with the solder. Then, a copper terminal bar (trade name “A-SPS”, manufactured by Hitachi Cable Ltd.) having a width of 6 cm was installed on both sides of the solar battery cell as an extraction electrode. On top of that, the sheet-shaped sealing resin prepared above was installed. Further, a 3.2 mm thick glass plate (manufactured by Asahi Glass Co., Ltd., white plate heat-treated glass) is disposed thereon as a surface covering member, and then a commercially available laminator (manufactured by NPC Co.) is used at 150 ° C. and 100 KPa for 5 minutes. Was laminated and cured for 15 minutes. Furthermore, the solar cell module for a test was constructed by performing a drying treatment at 150 ° C. for 15 minutes using a commercially-available air constant temperature thermostat (manufactured by Yamato Kagaku).
As the test solar cell module, a module was prepared in which the number of second conductive paths (wires) in the second encapsulating sheet was changed to 4 and 8, respectively, and Sn covered wires were further changed to 15. Moreover, the solar cell module for a test which uses the 2nd sealing sheet which used the 2nd conductive path as metal foil was prepared.
 また対比のため、表裏面ともバスバー電極3本で配線を行った太陽電池セルを用意し、当該バスバー電極付き太陽電池セルを用い、かつ上下ともシート状封止樹脂(商品名「EVASKY」、ブリヂストン社製、18cm×18cm)を用いた他は上記と同様にして試験用太陽電池モジュールを構築した。なお、上記バスバー電極も、上記太陽電池セルにはんだで固定されている。 In addition, for comparison, solar cells that are wired with three bus bar electrodes on both the front and back surfaces are prepared, the solar cells with the bus bar electrodes are used, and both upper and lower sheet-shaped sealing resins (trade name “EVASKY”, Bridgestone) A test solar cell module was constructed in the same manner as described above except that 18 cm × 18 cm) was used. The bus bar electrode is also fixed to the solar battery cell with solder.
 (評価)
 得られた試験用太陽電池モジュールにつき、直列抵抗Rs(Ω/cm)を測定した。結果を表1に示す。
(Evaluation)
For the obtained test solar cell module, the series resistance Rs (Ω / cm 2 ) was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、太陽電池セル裏面側の導電パスの本数が増えると、直列抵抗は低減傾向となることがわかる。また、太陽電池セル裏面のほぼ全体に金属箔を配置した場合には直列抵抗は大きく低減した。本実験では、太陽電池セル表面側のバスバー電極の本数は一定(3本)であったので、シャドーロスが増大することなく直列抵抗を低減し得ることが示された。 As shown in Table 1, it can be seen that as the number of conductive paths on the back surface side of the solar battery cell increases, the series resistance tends to decrease. Moreover, when metal foil was arrange | positioned in the substantially whole back surface of a photovoltaic cell, series resistance reduced greatly. In this experiment, since the number of bus bar electrodes on the surface side of the solar battery cell was constant (three), it was shown that the series resistance can be reduced without increasing the shadow loss.
 <実施例>
 太陽電池セルとして、バスバー電極を固定していないSi系太陽電池セル(Qセルズ社製、単結晶セル)を用いた。また、第2封止シートとして、Ag被覆ワイヤーが15本配列された導電部を有する第2封止シートを用いた。また、太陽電池セルの上面に配置されるシート状封止樹脂を、Ag被覆ワイヤーが8本配列された導電部を有する第1封止シートに変更した。その他は上記参考実験2と同様にして図3に模式的に示すような断面構造を有する試験用太陽電池モジュールを構築した。得られた試験用太陽電池モジュールについて、上記と同様にして直列抵抗Rs(Ω/cm)を測定したところ、1.97Ω/cmであった。
<Example>
As the solar battery cell, a Si solar battery cell (manufactured by Q Cells Inc., single crystal cell) in which the bus bar electrode was not fixed was used. Moreover, the 2nd sealing sheet which has the electroconductive part by which 15 Ag covering wires were arranged as a 2nd sealing sheet was used. Moreover, the sheet-shaped sealing resin arrange | positioned on the upper surface of a photovoltaic cell was changed into the 1st sealing sheet which has the electroconductive part by which eight Ag coating | coated wires were arranged. Other than that, the test solar cell module having the cross-sectional structure schematically shown in FIG. The obtained test for a solar cell module was measured series resistance Rs (Ω / cm 2) in the same manner as described above, it was 1.97Ω / cm 2.
 上記実施例の結果から、封止樹脂として導電部付き封止シートを用い、かつ太陽電池セル裏面側に配置される第2封止シートの導電部の面積を増大することによって、シャドーロスの増大を防止しつつ、集電効率を効率よく向上させ得ることがわかる。また、上記導電部付き封止シートを用いることによって、バスバー電極のはんだ付け工程を省略することができ、配線作業性も飛躍的に改善することができる。 From the results of the above examples, an increase in shadow loss is achieved by using a sealing sheet with a conductive part as the sealing resin and increasing the area of the conductive part of the second sealing sheet disposed on the back side of the solar battery cell. It can be seen that the current collection efficiency can be improved efficiently while preventing the above. Moreover, by using the sealing sheet with a conductive part, the bus bar electrode soldering step can be omitted, and the wiring workability can be greatly improved.
 以上、本発明の具体例(各実施形態および実施例)を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても、本発明の技術的範囲に含まれる。 Although specific examples (each embodiment and example) of the present invention have been described in detail above, these are merely examples, and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. Further, embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the technical scope of the present invention.
  1  太陽電池モジュール
 10  太陽電池セル群
 10a,10b  太陽電池セル
 10a’,10b’  太陽電池セル表面対向領域
 10a”,10b”  太陽電池セル裏面対向領域
 31  表面被覆部材
 32  裏面被覆部材
100  一対の封止シート
111  第1封止シート
112  第2封止シート
121  第1封止樹脂層
122  第2封止樹脂層
131A,131B  第1導電部
132A,132B  第2導電部
133A,133B  第1導電パス
134A  太陽電池セル対向部分
136A,136B  第2導電パス
137A  太陽電池セル対向部分
141A,141B  第1導電性接続部
142A,142B  第2導電性接続部

 
DESCRIPTION OF SYMBOLS 1 Solar cell module 10 Solar cell group 10a, 10b Solar cell 10a ', 10b' Solar cell surface opposing region 10a ", 10b" Solar cell back surface opposing region 31 Surface coating member 32 Back surface coating member 100 A pair of sealing Sheet 111 First sealing sheet 112 Second sealing sheet 121 First sealing resin layer 122 Second sealing resin layers 131A and 131B First conductive parts 132A and 132B Second conductive parts 133A and 133B First conductive path 134A Sun Battery cell facing portion 136A, 136B Second conductive path 137A Solar cell facing portion 141A, 141B First conductive connection portion 142A, 142B Second conductive connection portion

Claims (10)

  1.  太陽電池モジュールにおいて少なくとも1つの太陽電池セルを挟んで封止する一対の封止シートであって、
     前記少なくとも1つの太陽電池セルの表面側に配置される第1封止シートと、
     前記少なくとも1つの太陽電池セルの裏面側に配置される第2封止シートと、
    を備えており、
     前記第1封止シートは、第1封止樹脂層と、該第1封止樹脂層の一方の表面に部分的に配置された第1導電部と、を備えており、
     前記第2封止シートは、第2封止樹脂層と、該第2封止樹脂層の一方の表面に部分的に配置された第2導電部と、を備えており、
     前記第1導電部の一部は、前記第1封止シート表面の太陽電池セル対向領域内に配置されており、
     前記第2導電部の一部は、前記第2封止シート表面の太陽電池セル対向領域内に配置されており、
     前記第2封止シート表面の太陽電池セル対向領域における前記第2導電部の面積は、前記第1封止シート表面の太陽電池セル対向領域における前記第1導電部の面積よりも大きい、一対の封止シート。
    A pair of encapsulating sheets for encapsulating at least one solar cell in a solar cell module,
    A first sealing sheet disposed on the surface side of the at least one solar battery cell;
    A second sealing sheet disposed on the back side of the at least one solar cell;
    With
    The first sealing sheet includes a first sealing resin layer, and a first conductive part partially disposed on one surface of the first sealing resin layer,
    The second sealing sheet includes a second sealing resin layer and a second conductive portion partially disposed on one surface of the second sealing resin layer,
    A part of the first conductive portion is disposed in a solar cell facing region on the surface of the first sealing sheet,
    A part of the second conductive part is disposed in the solar cell facing region on the surface of the second sealing sheet,
    The area of the second conductive part in the solar cell facing region on the surface of the second sealing sheet is larger than the area of the first conductive part in the solar cell facing region on the surface of the first sealing sheet. Sealing sheet.
  2.  前記第1導電部は、少なくとも1つの第1導電パスを有しており、
     前記少なくとも1つの第1導電パスは、前記第1封止シート表面の太陽電池セル対向領域内に配置されており、かつ該領域内にて線状に延びる形状を有しており、
     前記第2導電部は、少なくとも1つの第2導電パスを有しており、
     前記少なくとも1つの第2導電パスは、前記第2封止シート表面の太陽電池セル対向領域内に配置されており、
     前記第2封止シート表面の太陽電池セル対向領域における前記第2導電パスの面積は、前記第1封止シート表面の太陽電池セル対向領域における前記第1導電パスの面積よりも大きい、請求項1に記載の一対の封止シート。
    The first conductive portion has at least one first conductive path;
    The at least one first conductive path is disposed in a solar cell facing region on the surface of the first sealing sheet, and has a shape extending linearly in the region,
    The second conductive portion has at least one second conductive path;
    The at least one second conductive path is arranged in a solar cell facing region on the surface of the second sealing sheet,
    The area of the second conductive path in the solar cell facing region on the surface of the second sealing sheet is larger than the area of the first conductive path in the solar cell facing region on the surface of the first sealing sheet. A pair of sealing sheets according to 1.
  3.  前記第2導電パスは、前記第2封止シート表面の太陽電池セル対向領域内にて線状に延びる形状を有しており、
     前記第2封止シート表面の太陽電池セル対向領域における前記第2導電パスの数は、前記第1封止シート表面の太陽電池セル対向領域における前記第1導電パスの数よりも多い、請求項2に記載の一対の封止シート。
    The second conductive path has a shape extending linearly in the solar cell facing region on the surface of the second sealing sheet,
    The number of the second conductive paths in the solar cell facing region on the surface of the second sealing sheet is larger than the number of the first conductive paths in the solar cell facing region on the surface of the first sealing sheet. A pair of sealing sheets according to 2.
  4.  前記第2導電パスは、前記第2封止シート表面の太陽電池セル対向領域にて線状に延びる形状を有しており、
     前記第2封止シート表面の太陽電池セル対向領域における前記第2導電パスの幅は、前記第1封止シート表面の太陽電池セル対向領域における前記第1導電パスの幅よりも大きい、請求項2または3に記載の一対の封止シート。
    The second conductive path has a shape extending linearly in the solar cell facing region on the surface of the second sealing sheet,
    The width of the second conductive path in the solar cell facing region on the surface of the second sealing sheet is larger than the width of the first conductive path in the solar cell facing region on the surface of the first sealing sheet. A pair of sealing sheets according to 2 or 3.
  5.  前記第2導電パスは、前記第2封止シート表面の太陽電池セル対向領域のほぼ全域に配置されている、請求項2に記載の一対の封止シート。 The pair of encapsulating sheets according to claim 2, wherein the second conductive path is disposed in substantially the entire area of the solar cell facing region on the surface of the second encapsulating sheet.
  6.  前記第1導電パスの一端には、該第1導電パスと交差する方向に帯状に延びる第1導電性接続部が配置されている、請求項2~5のいずれか一項に記載の一対の封止シート。 The pair of first conductive connections according to any one of claims 2 to 5, wherein a first conductive connection portion extending in a strip shape in a direction intersecting the first conductive path is disposed at one end of the first conductive path. Sealing sheet.
  7.  前記第2導電パスの数が2以上である場合、該第2導電パスの一端には、該第2導電パスと交差する方向に帯状に延びて該2以上の第2導電パスと接続する第2導電性接続部が配置されている、請求項3または4に記載の一対の封止シート。 When the number of the second conductive paths is two or more, a second conductive path extends in a strip shape in a direction intersecting the second conductive path and is connected to the two or more second conductive paths at one end of the second conductive path. A pair of sealing sheet of Claim 3 or 4 with which 2 electroconductive connection part is arrange | positioned.
  8.  前記第2導電部は、前記第1導電部または取出し電極と接触可能な導電性接続部を有する、請求項5に記載の一対の封止シート。 The pair of sealing sheets according to claim 5, wherein the second conductive portion has a conductive connection portion that can contact the first conductive portion or the extraction electrode.
  9.  前記第1導電部および前記第2導電部は、ともに金属材料からなる、請求項1~8のいずれか一項に記載の一対の封止シート。 The pair of sealing sheets according to any one of claims 1 to 8, wherein both the first conductive portion and the second conductive portion are made of a metal material.
  10.  少なくとも1つの太陽電池セルと、請求項1~9のいずれか一項に記載の一対の封止シートと、を備える、太陽電池モジュール。 A solar battery module comprising at least one solar battery cell and the pair of sealing sheets according to any one of claims 1 to 9.
PCT/JP2015/056737 2014-03-07 2015-03-06 Sealing sheet for solar cell modules, and solar cell module WO2015133633A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-045739 2014-03-07
JP2014045739 2014-03-07

Publications (1)

Publication Number Publication Date
WO2015133633A1 true WO2015133633A1 (en) 2015-09-11

Family

ID=54055430

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/056737 WO2015133633A1 (en) 2014-03-07 2015-03-06 Sealing sheet for solar cell modules, and solar cell module
PCT/JP2015/056736 WO2015133632A1 (en) 2014-03-07 2015-03-06 Solar cell module, sealing material for solar cell modules, method for manufacturing solar cell module, and method for producing sealing material for solar cell modules

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056736 WO2015133632A1 (en) 2014-03-07 2015-03-06 Solar cell module, sealing material for solar cell modules, method for manufacturing solar cell module, and method for producing sealing material for solar cell modules

Country Status (1)

Country Link
WO (2) WO2015133633A1 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI705578B (en) * 2018-02-09 2020-09-21 絜靜精微有限公司 Stringing-bonding solar cell packaging structure / manufacturing method and structure of stringing plate thereof
US11374139B2 (en) 2018-07-13 2022-06-28 Bmic, Llc Patterned photovoltaic cell arrangements in solar module laminations
WO2021150763A1 (en) 2020-01-22 2021-07-29 GAF Energy LLC Integrated photovoltaic roofing shingles, methods, systems, and kits thereof
CA3168056A1 (en) 2020-02-18 2021-08-26 Richard Perkins Photovoltaic module with textured superstrate providing shingle-mimicking appearance
US11961928B2 (en) 2020-02-27 2024-04-16 GAF Energy LLC Photovoltaic module with light-scattering encapsulant providing shingle-mimicking appearance
EP4111507A4 (en) 2020-02-27 2024-03-27 Gaf Energy LLC Photovoltaic module with light-scattering encapsulant providing shingle-mimicking appearance
MX2022012640A (en) 2020-04-09 2023-01-11 GAF Energy LLC Three-dimensional laminate photovoltaic module.
WO2021221750A1 (en) 2020-04-30 2021-11-04 GAF Energy LLC Photovoltaic module frontsheet and backsheet
US11177639B1 (en) 2020-05-13 2021-11-16 GAF Energy LLC Electrical cable passthrough for photovoltaic systems
CN115769383A (en) 2020-06-04 2023-03-07 Gaf能源有限责任公司 Photovoltaic roof panel and method of installation
US11843067B2 (en) 2020-07-22 2023-12-12 GAF Energy LLC Photovoltaic modules
EP4208902A1 (en) 2020-09-03 2023-07-12 Gaf Energy LLC Building integrated photovoltaic system
US11545928B2 (en) 2020-10-13 2023-01-03 GAF Energy LLC Solar roofing system
WO2022081853A1 (en) 2020-10-14 2022-04-21 GAF Energy LLC Mounting apparatus for photovoltaic modules
CA3196900A1 (en) 2020-10-29 2022-05-05 Michael David KUIPER System of roofing and photovoltaic shingles and methods of installing same
CA3197587A1 (en) 2020-11-12 2022-05-19 Gabriela Bunea Roofing shingles with handles
CA3197598A1 (en) 2020-11-13 2022-05-19 Gabriela Bunea Photovoltaic module systems and methods
US11996797B2 (en) 2020-12-02 2024-05-28 GAF Energy LLC Step flaps for photovoltaic and roofing shingles
WO2022159478A1 (en) 2021-01-19 2022-07-28 GAF Energy LLC Watershedding features for roofing shingles
MX2023009726A (en) 2021-02-19 2023-11-09 GAF Energy LLC Photovoltaic module for a roof with continuous fiber tape.
CN113097327A (en) * 2021-03-26 2021-07-09 福斯特(嘉兴)新材料有限公司 Grid line glue film and solar cell module
CN113097326A (en) * 2021-03-26 2021-07-09 福斯特(嘉兴)新材料有限公司 Two-sided interconnection film and photovoltaic module
CN113097325A (en) * 2021-03-26 2021-07-09 福斯特(嘉兴)新材料有限公司 Solar cell module
US11527665B2 (en) 2021-05-06 2022-12-13 GAF Energy LLC Photovoltaic module with transparent perimeter edges
MX2023014362A (en) 2021-06-02 2023-12-15 GAF Energy LLC Photovoltaic module with light-scattering encapsulant providing shingle-mimicking appearance.
US12009781B2 (en) 2021-07-06 2024-06-11 GAF Energy LLC Jumper module for photovoltaic systems
WO2023287584A1 (en) 2021-07-16 2023-01-19 GAF Energy LLC Roof material storage bracket
US11728759B2 (en) 2021-09-01 2023-08-15 GAF Energy LLC Photovoltaic modules for commercial roofing
WO2023141566A1 (en) 2022-01-20 2023-07-27 GAF Energy LLC Roofing shingles for mimicking the appearance of photovoltaic modules
US12013153B2 (en) 2022-02-08 2024-06-18 GAF Energy LLC Building integrated photovoltaic system
US11984521B2 (en) 2022-03-10 2024-05-14 GAF Energy LLC Combined encapsulant and backsheet for photovoltaic modules
US12015374B2 (en) 2022-09-26 2024-06-18 GAF Energy LLC Photovoltaic modules integrated with building siding and fencing
US11811361B1 (en) 2022-12-14 2023-11-07 GAF Energy LLC Rapid shutdown device for photovoltaic modules
US12009782B1 (en) 2023-04-04 2024-06-11 GAF Energy LLC Photovoltaic systems with wireways

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179169A (en) * 1990-11-09 1992-06-25 Sharp Corp Solar cell provided with bypass diode
JP2009130116A (en) * 2007-11-22 2009-06-11 Sharp Corp Inter-element wiring member, photoelectric conversion element, photoelectric conversion element connector using these, and photoelectric conversion module
WO2013004928A2 (en) * 2011-07-07 2013-01-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Photovoltaic module comprising conductors in the form of strips
JP2014003064A (en) * 2012-06-15 2014-01-09 Nisshinbo Holdings Inc Method of manufacturing solar battery module, device for manufacturing solar battery module, and coating material for manufacturing solar battery module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179169A (en) * 1990-11-09 1992-06-25 Sharp Corp Solar cell provided with bypass diode
JP2009130116A (en) * 2007-11-22 2009-06-11 Sharp Corp Inter-element wiring member, photoelectric conversion element, photoelectric conversion element connector using these, and photoelectric conversion module
WO2013004928A2 (en) * 2011-07-07 2013-01-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Photovoltaic module comprising conductors in the form of strips
JP2014003064A (en) * 2012-06-15 2014-01-09 Nisshinbo Holdings Inc Method of manufacturing solar battery module, device for manufacturing solar battery module, and coating material for manufacturing solar battery module

Also Published As

Publication number Publication date
WO2015133632A1 (en) 2015-09-11

Similar Documents

Publication Publication Date Title
WO2015133633A1 (en) Sealing sheet for solar cell modules, and solar cell module
JP6139581B2 (en) Solar cell module
JP6519812B2 (en) Solar cell module
JP6532046B2 (en) Solar cell module
US20090078301A1 (en) Solar cell module
US8664512B2 (en) Photovoltaic module
US20190123229A1 (en) Solar cell module
EP2983212B1 (en) Solar cell module
US9306081B2 (en) Solar cell module
WO2013150976A1 (en) Crystal system solar battery module and method for manufacturing same
JP6037175B2 (en) Solar cell module
JP2016225446A (en) Sealing sheet for solar cell module and solar cell module
JP6389147B2 (en) Solar cell module
WO2017002287A1 (en) Solar battery module
JP2011210747A (en) Solar cell module and method of manufacturing the same
JP6315225B2 (en) Solar cell module
KR102298434B1 (en) Solar cell module and manufacturing method thereof
WO2020100528A1 (en) Solar cell module and production method therefor
JP5942136B2 (en) Solar cell module and manufacturing method thereof
JP5047340B2 (en) Manufacturing method of solar cell module
WO2019163778A1 (en) Wiring material, solar cell using same, and solar cell module
JP2014143391A (en) Solar cell, solar cell module and manufacturing method of solar cell
JP2016225476A (en) Solar cell module
TWI505481B (en) A fabrication method for flexible solar cell module
JP2016027640A (en) Solar battery module and sealing film therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15758573

Country of ref document: EP

Kind code of ref document: A1