WO2016157481A1 - Air-conditioning device - Google Patents

Air-conditioning device Download PDF

Info

Publication number
WO2016157481A1
WO2016157481A1 PCT/JP2015/060391 JP2015060391W WO2016157481A1 WO 2016157481 A1 WO2016157481 A1 WO 2016157481A1 JP 2015060391 W JP2015060391 W JP 2015060391W WO 2016157481 A1 WO2016157481 A1 WO 2016157481A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
air
heat medium
refrigerant
heat exchanger
Prior art date
Application number
PCT/JP2015/060391
Other languages
French (fr)
Japanese (ja)
Inventor
永登 齋藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to GB1711510.6A priority Critical patent/GB2549231B/en
Priority to PCT/JP2015/060391 priority patent/WO2016157481A1/en
Publication of WO2016157481A1 publication Critical patent/WO2016157481A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/13Pump speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet

Definitions

  • the present invention relates to an air conditioner that extracts air from a heat medium circulation circuit during construction applied to, for example, a building multi-air conditioner.
  • a pipe between the heat source side refrigerant circulating in a refrigeration cycle circuit (hereinafter referred to as a primary side circuit) configured by connecting a pipe between the outdoor unit and the relay unit, and between the relay unit and the indoor unit.
  • a primary side circuit configured by connecting a pipe between the outdoor unit and the relay unit, and between the relay unit and the indoor unit.
  • an air conditioner that exchanges heat with an indoor-side refrigerant that circulates in a heat medium circulation circuit (hereinafter referred to as a secondary circuit).
  • an indoor refrigerant that circulates in a secondary circuit configured by connecting a pipe to an indoor unit uses water or a solution obtained by mixing brine with water.
  • air is likely to enter the circuit. Failure can occur due to air entering the water or brine solution of the secondary circuit. Therefore, it is necessary to perform an operation for removing air in the secondary circuit (hereinafter referred to as an air removal operation) before operating the air conditioner (see, for example, Patent Document 2).
  • the present invention is intended to solve the above-described problems, and quantitatively determines the completion of the air removal operation, and aims to avoid air remaining in the heat medium circulation circuit and prolonged construction time. To do.
  • An air conditioner includes a compressor that compresses a heat source side refrigerant, a heat source side heat exchanger that exchanges heat with the heat source side refrigerant, a throttling device that adjusts the pressure of the heat source side refrigerant, and the heat source side refrigerant and heat medium
  • a refrigerant circulation circuit configured by pipe-connecting a heat source side refrigerant side of a heat exchanger related to heat medium that performs heat exchange with the heat medium, a heat medium side of the heat exchanger related to heat medium, a pump for circulating the heat medium, and
  • a heat medium circulation circuit configured by pipe connection of a use side heat exchanger that exchanges heat between the heat medium and the air in the air-conditioning target space, and the heat medium circulation circuit releases internal air Air that has an air removal valve, opens the air removal valve when the heat medium circulation circuit is installed, drives the pump to circulate the heat medium, and removes air from the heat medium circulation circuit The removal operation is executed and the air removal operation is completed.
  • the completion of the air removal operation is determined based on the number of revolutions of the pump, and the determination to complete the air removal operation is quantitatively performed. It is possible to avoid residuals and prolonged construction time.
  • FIG. 1 is a schematic diagram illustrating an installation example of an air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Based on FIG. 1, the structure of the air conditioning apparatus 100 is demonstrated.
  • the air conditioner 100 performs a cooling operation or a heating operation using a primary side circuit 20 that circulates a heat source side refrigerant and a secondary side circuit 30 that circulates a heat medium such as water or antifreeze.
  • a heat medium such as water or antifreeze.
  • the size relationship of each component may be different from the actual one.
  • the subscripts may be omitted.
  • the level of temperature, pressure, etc. is not particularly determined in relation to absolute values, but is relatively determined in terms of the state and operation of the system, apparatus, and the like.
  • an air conditioner 100 includes, for example, one heat source device 1 that is a heat source device, a plurality of indoor units 3, and between the heat source device 1 and the indoor unit 3. And an intervening relay unit 2.
  • the relay unit 2 performs heat exchange between the heat source side refrigerant and the heat medium.
  • the heat source device 1 and the relay unit 2 are connected by a refrigerant pipe 4 that conducts the heat source side refrigerant.
  • the relay unit 2 and the indoor unit 3 are connected by a pipe 5 that conducts the heat medium. By having the refrigerant pipe 4 and the pipe 5, cold heat or hot heat generated by the heat source device 1 is delivered to the indoor unit 3.
  • the number of connected heat source devices 1, indoor units 3, and relay units 2 is not limited to the illustrated number.
  • the heat source device 1 is normally disposed in an outdoor space 6 that is a space outside a building 9 such as a building, and supplies cold or hot heat to the indoor unit 3 via the relay unit 2.
  • the indoor unit 3 is disposed in a living space 7 such as a living room or a server room in a building 9 that can carry cooling air or heating air, and the cooling air or heating air is supplied to the living space 7 that is an air-conditioning target area. Supply.
  • the relay unit 2 is disposed separately from the heat source device 1 and the indoor unit 3 in a non-residential space 8 that is a position different from the outdoor space 6 and the residential space 7, and connects the heat source device 1 and the indoor unit 3. Then, the cold or warm heat supplied from the heat source device 1 is transmitted to the indoor unit 3.
  • Examples of the heat source side refrigerant of the primary side circuit 20 include single refrigerants such as R-22, R-134a, and R32, pseudo-azeotropic refrigerant mixtures such as R-410A and R-404A, and non-common refrigerants such as R-407C.
  • the heat medium of the secondary side circuit 30 for example, water, an antifreeze solution, a mixed solution of water and antifreeze solution, a mixed solution of water and an additive having a high anticorrosion effect, or the like can be used.
  • the outdoor space 6 assumes a place existing outside the building 9, for example, a rooftop as shown in FIG.
  • the non-residential space 8 is a space inside the building 9 but different from the residential space 7, for example, a place where there is no person at all times, such as on the corridor, a common zone with a ceiling in the common zone, an elevator, etc.
  • a room, a computer room, a warehouse, etc. are assumed.
  • the living space 7 is assumed to be an interior of the building 9 where there are always people or where there are many or a small number of people temporarily, such as offices, classrooms, conference rooms, canteens, server rooms, etc. ing.
  • the heat source device 1 and the relay unit 2 are connected using two refrigerant pipes 4.
  • the relay unit 2 and each indoor unit 3 are connected by two pipes 5 respectively.
  • the construction of the air conditioner 100 is facilitated by connecting the heat source device 1 to the relay unit 2 through the two refrigerant pipes 4 and connecting the indoor unit 3 to the relay unit 2 through the two pipes 5.
  • FIG. 2 is a schematic circuit diagram showing the configuration of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the heat source device 1 and the relay unit 2 are connected by the refrigerant pipe 4 via the heat exchangers 25 a and 25 b provided in the relay unit 2. Further, the relay unit 2 and the indoor unit 3 are connected by a pipe 5.
  • Heat source device (outdoor unit) 1 In the heat source device 1, a compressor 10, a first refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 19 are connected and connected in series through a refrigerant pipe 4. Yes. Further, the heat source device 1 is provided with refrigerant connection pipes 4a and 4b and check valves 13a, 13b, 13c and 13d. By providing the refrigerant connection pipes 4a and 4b and the check valves 13a, 13b, 13c, and 13d, the flow of the heat source side refrigerant flowing into the relay unit 2 is made to be a constant direction regardless of the operation requested by the indoor unit 3. be able to.
  • the compressor 10 sucks the heat-source-side refrigerant, compresses the heat-source-side refrigerant, transfers the heat-source-side refrigerant to a primary side circuit 20 in a high temperature / high pressure state, and includes, for example, an inverter compressor capable of capacity control. Good.
  • the first refrigerant flow switching device 11 switches the flow of the heat source side refrigerant during the heating operation and the flow of the heat source side refrigerant during the cooling operation.
  • the heat source side heat exchanger 12 functions as an evaporator during heating operation, functions as a condenser (or radiator) during cooling operation, and includes a fluid of air supplied from a blower such as a fan (not shown), a heat source side refrigerant, and the like.
  • the heat source side refrigerant is evaporated and condensed or liquefied.
  • the accumulator 19 is provided on the suction side of the compressor 10 and stores excess refrigerant due to a difference between the heating operation and the cooling operation, or excess refrigerant with respect to a transient change in operation.
  • the check valve 13c is provided in the refrigerant pipe 4 between the relay unit 2 and the first refrigerant flow switching device 11, and the heat source side refrigerant is only in a predetermined direction (direction from the relay unit 2 to the heat source device 1). Allow flow.
  • the check valve 13a is provided in the refrigerant pipe 4 between the heat source side heat exchanger 12 and the relay unit 2, and allows the flow of the heat source side refrigerant only in a predetermined direction (direction from the heat source device 1 to the relay unit 2). Allow.
  • the check valve 13d is provided in the refrigerant connection pipe 4a and causes the heat source side refrigerant discharged from the compressor 10 to flow through the relay unit 2 during the heating operation.
  • the check valve 13 b is provided in the refrigerant connection pipe 4 b and distributes the heat source side refrigerant returned from the relay unit 2 during the heating operation to the suction side of the compressor 10.
  • the refrigerant connection pipe 4 a includes a refrigerant pipe 4 between the first refrigerant flow switching device 11 and the check valve 13 c, and a refrigerant pipe 4 between the check valve 13 a and the relay unit 2. And connect.
  • the refrigerant connection pipe 4b includes a refrigerant pipe 4 between the check valve 13c and the relay unit 2, a refrigerant pipe 4 between the heat source side heat exchanger 12 and the check valve 13a, Connect.
  • FIG. 2 the case where the refrigerant connection pipes 4a and 4b and the check valves 13a, 13b, 13c and 13d are provided is shown as an example. However, the present invention is not limited to this, and it is not always necessary to provide them. Absent.
  • Each indoor unit 3 is equipped with a use side heat exchanger 35.
  • the use side heat exchanger 35 is connected to the heat medium flow switching flow rate adjusting device 40 of the relay unit 2 by the pipe 5.
  • the use side heat exchanger 35 exchanges heat between air supplied from a blower such as a fan (not shown) and a heat medium, and generates heating air or cooling air to be supplied to the living space 7. To do.
  • FIG. 2 shows an example in which four indoor units 3 are connected to the relay unit 2, and are illustrated as an indoor unit 3a, an indoor unit 3b, an indoor unit 3c, and an indoor unit 3d from the upper side of the drawing.
  • the use side heat exchanger 35 is also used from the upper side of the page with the use side heat exchanger 35a, the use side heat exchanger 35b, the use side heat exchanger 35c, and the use side heat. It is illustrated as an exchanger 35d.
  • the number of connected indoor units 3 is not limited to the four shown in FIG.
  • the relay unit 2 includes two heat exchangers for heat medium 25, two expansion devices 26, two switch devices (switch devices 27, switch devices 29), and two second refrigerant flow switching devices 28.
  • a pump 31 that is two heat medium transfer devices, four heat medium flow switching flow rate adjustment devices 40, and two air removal valves 41 and 42 are mounted.
  • the two heat exchangers for heat medium 25 serve as condensers (heat radiators) for cooling when supplying heat to the indoor unit 3 that is performing the heating operation.
  • heat exchangers for heat medium 25a, 25b serve as condensers (heat radiators) for cooling when supplying heat to the indoor unit 3 that is performing the heating operation.
  • it When supplying cold heat to the indoor unit 3 in operation, it functions as an evaporator, performs heat exchange between the heat source side refrigerant and the heat medium, and is generated by the heat source device 1 and stored in the heat source side refrigerant. Transfers cold or warm heat to the heat medium.
  • the heat exchanger related to heat medium 25a is provided between the expansion device 26a and the second refrigerant flow switching device 28a in the primary circuit 20, and serves to cool the heat medium in the cooling / heating mixed operation mode.
  • the heat exchanger related to heat medium 25b is provided between the expansion device 26b and the second refrigerant flow switching device 28b in the primary circuit 20, and serves to heat
  • the two expansion devices 26 have functions as pressure reducing valves and expansion valves, and expand the heat source side refrigerant by reducing the pressure.
  • the expansion device 26a is provided on the upstream side of the heat exchanger related to heat medium 25a in the flow of the heat source side refrigerant during the cooling operation.
  • the expansion device 26b is provided on the upstream side of the heat exchanger related to heat medium 25b in the flow of the heat source side refrigerant during the cooling operation.
  • the two throttling devices 26 may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the two opening / closing devices are configured by electromagnetic valves or the like that can be opened / closed by energization, and open / close the refrigerant pipe 4. That is, the opening and closing of the two opening / closing devices 27 and 29 is controlled according to the operation mode, and the flow path of the heat source side refrigerant is switched.
  • the opening / closing device 27 is provided in the refrigerant pipe 4 on the inlet side of the heat source side refrigerant.
  • the opening / closing device 29 is provided in a pipe connecting the refrigerant pipe 4 on the inlet side of the heat source side refrigerant and the refrigerant pipe 4 on the outlet side.
  • the opening / closing devices 27 and 29 may be any devices that can switch the refrigerant flow path. For example, an electronic expansion valve or the like that can variably control the opening degree may be used.
  • the two second refrigerant flow switching devices 28 are constituted by, for example, a four-way valve or the like, and the heat exchanger related to heat medium 25 is a condenser or an evaporator depending on the operation mode.
  • the flow of the heat source side refrigerant is switched so as to act as
  • the second refrigerant flow switching device 28a is provided on the downstream side of the heat exchanger related to heat medium 25a in the flow of the heat source side refrigerant during the cooling operation.
  • the second refrigerant flow switching device 28b is provided on the downstream side of the heat exchanger related to heat medium 25b in the flow of the heat source side refrigerant in the cooling operation mode.
  • the two pumps 31 (pumps 31 a and 31 b) circulate the heat medium that conducts the pipe 5 to the secondary circuit 30.
  • the pump 31 a is provided in the pipe 5 between the heat exchanger related to heat medium 25 a and the heat medium flow switching flow control device 40.
  • the pump 31 b is provided in the pipe 5 between the heat exchanger related to heat medium 25 b and the heat medium flow switching flow control device 40.
  • the two pumps 31 may be configured by, for example, capacity-controllable pumps, and the flow rate thereof may be adjusted according to the load in the indoor unit 3.
  • the two air removal valves 41 and 42 are used to evacuate the secondary circuit 30 during construction.
  • the number of connected air removal valves is not limited to two as shown in FIG.
  • the four heat medium flow path switching flow rate adjusting devices 40 are composed of one drive device and a valve body, and the heat medium flow path is used as a heat exchanger between heat mediums. It switches between 25a and the heat exchanger between heat media 25b, and adjusts the flow rate of the heat medium to each branch.
  • the number of heat medium flow switching flow rate adjusting devices 40 according to the number of indoor units 3 installed (here, four) is provided, and each of them can be connected to each other. . Further, in the heat medium flow switching flow rate adjusting device 40, one of them is connected to the heat exchanger related to heat medium 25a and the other is connected to the heat exchanger related to heat medium 25b.
  • the heating medium channel switching flow rate adjustment device 40a In correspondence with the indoor unit 3, from the upper side of the page, the heating medium channel switching flow rate adjustment device 40a, the heating medium channel switching flow rate adjustment device 40b, the heating medium channel switching flow rate adjustment device 40c, and the heating medium channel switching flow rate adjustment are adjusted. Illustrated as device 40d.
  • the switching of the heat medium flow path includes not only complete switching from one to the other but also partial switching from one to the other.
  • the heat medium flow switching flow rate adjusting device 40 can also adjust the flow rate, and controls the flow rate of the heat medium flowing through the pipe 5 by adjusting the opening area.
  • One of the heat medium flow switching flow rate adjusting devices 40 is connected to the use side heat exchanger 35 and the other is connected to the heat exchanger related to heat medium 25. That is, the heat medium flow switching flow rate adjusting device 40 adjusts the amount of the heat medium flowing into the indoor unit 3 according to the temperature of the heat medium flowing into the indoor unit 3 and the temperature of the heat medium flowing out, according to the indoor load. An optimal amount of heat medium can be provided to the indoor unit 3.
  • the heat medium flow path switching flow rate adjustment device 40 When the indoor unit 3 does not require a load such as stop or thermo OFF, or when it is desired to shut off the heat medium flow path due to maintenance or the like, the heat medium flow path switching flow rate adjustment device 40 is fully closed. As a result, the supply of the heat medium to the indoor unit 3 can be stopped.
  • the relay unit 2 is provided with a temperature sensor 55 (temperature sensors 55a and 55b) for detecting the temperature of the heat medium on the outlet side of the heat exchanger related to heat medium 25.
  • Information (temperature information) detected by the temperature sensor 55 is sent to a control device 50 that performs overall control of the operation of the air-conditioning apparatus 100, and the driving frequency of the compressor 10, the rotational speed of the blower (not shown), the first refrigerant flow It is used for control such as switching of the path switching device 11, driving frequency of the pump 31, switching of the second refrigerant flow switching device 28, switching of the flow path of the heat medium, adjustment of the heat medium flow rate of the indoor unit 3.
  • a control device 50 that performs overall control of the operation of the air-conditioning apparatus 100, and the driving frequency of the compressor 10, the rotational speed of the blower (not shown), the first refrigerant flow It is used for control such as switching of the path switching device 11, driving frequency of the pump 31, switching of the second refrigerant flow switching device 28, switching of the flow path
  • control device 50 is mounted in the relay unit 2
  • the present invention is not limited to this, and the control device 50 is mounted to be communicable with the heat source device 1 or the indoor unit 3 or each unit. You may do it.
  • the control device 50 is constituted by a microcomputer or the like, and based on detection information from various detection means and instructions from a remote controller, the driving frequency of the compressor 10, the rotational speed of the blower (including ON / OFF), the first refrigerant flow path. Switching of the switching device 11, driving of the pump 31, opening of the expansion device 26, opening and closing of the switching devices 27 and 29, switching of the second refrigerant flow switching device 28, switching and driving of the heat medium flow switching flow rate adjusting device 40 Etc., each actuator (pump 31, throttle device 26) is controlled.
  • the control device 50 constantly acquires the rotation speed N of the pumps 31a and 31b in the air removal operation mode described later, and starts a timer when the rotation speed Nb when air is sucked is detected. Then, the generation interval between the rotation speeds Nb up to the next rotation speed Nb is detected.
  • the pipe 5 that conducts the heat medium is composed of one that is connected to the heat exchanger related to heat medium 25a and one that is connected to the heat exchanger related to heat medium 25b.
  • the pipe 5 is branched (here, four branches each) according to the number of indoor units 3 connected to the relay unit 2.
  • the pipe 5 is connected by a heat medium flow switching flow rate adjusting device 40. By controlling the heat medium flow switching flow rate adjusting device 40, the heat medium from the heat exchanger related to heat medium 25a flows into the use side heat exchanger 35, or the heat medium from the heat exchanger related to heat medium 25b is used as the heat medium. Whether to flow into the use side heat exchanger 35 is determined.
  • the compressor 10 In the air conditioner 100, the compressor 10, the first refrigerant flow switching device 11, the heat source side heat exchanger 12, the switching device 27, the switching device 29, the second refrigerant flow switching device 28, and heat exchange between heat media.
  • the refrigerant flow path of the container 25, the expansion device 26, and the accumulator 19 are connected by the refrigerant pipe 4 to constitute the primary side circuit 20.
  • the secondary medium circuit 30 is configured by connecting the heat medium flow path of the heat exchanger 25 between the heat medium 25, the pump 31, the heat medium flow path switching flow rate adjusting device 40, and the use side heat exchanger 35 with the pipe 5. ing.
  • a plurality of use side heat exchangers 35 are connected in parallel to each of the heat exchangers 25 between heat mediums, and the secondary side circuit 30 has a plurality of systems.
  • the heat source device 1 and the relay unit 2 are connected via the heat exchangers 25a and 25b provided in the relay unit 2, and the relay unit 2 and the indoor unit 3 are connected. Are connected via heat exchangers 25a and 25b. That is, in the air conditioner 100, the heat source side refrigerant circulating in the primary circuit 20 and the heat medium circulating in the secondary circuit 30 exchange heat in the intermediate heat exchangers 25a and 25b. By using such a configuration, the air conditioner 100 can realize an optimal cooling operation or heating operation according to the indoor load.
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow in the mixed operation mode of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the heating main The operation mode will be described.
  • tube represented by the thick line has shown the piping through which the heat source side refrigerant
  • the flow direction is shown by the solid line arrow.
  • the first refrigerant flow switching device 11 relays the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. Switch to flow into unit 2.
  • the pumps 31a and 31b are driven, the heat medium flow switching flow rate adjusting devices 40a to 40d are opened, the heat exchanger 25a between the heat medium and the use side heat exchanger 35 generating the cooling load, The heat medium is circulated between the heat exchanger 25b between the heat medium and the use side heat exchanger 35 where the heat load is generated.
  • the second refrigerant flow switching device 28a is switched to the cooling side, the second refrigerant flow switching device 28b is switched to the heating side, the expansion device 26a is fully opened, the opening / closing device 27 is closed, and the opening / closing device 29 is closed. ing.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, conducts the refrigerant connection pipe 4 a, passes through the check valve 13 d, and flows out of the heat source device 1.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the heat source device 1 flows into the relay unit 2 through the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the relay unit 2 flows through the second refrigerant flow switching device 28b into the heat exchanger related to heat medium 25b that acts as a condenser.
  • the gas refrigerant that has flowed into the heat exchanger related to heat medium 25b is condensed and liquefied while dissipating heat to the heat medium circulating in the secondary circuit 30, and becomes liquid refrigerant.
  • the liquid refrigerant flowing out of the heat exchanger related to heat medium 25b is expanded by the expansion device 26b and becomes a low-pressure two-phase refrigerant.
  • This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 25a acting as an evaporator via the expansion device 26a.
  • the low-pressure two-phase refrigerant flowing into the heat exchanger related to heat medium 25a evaporates by absorbing heat from the heat medium circulating in the secondary circuit 30 and cools the heat medium.
  • the low-pressure two-phase refrigerant flows out of the heat exchanger related to heat medium 25a, flows out of the relay unit 2 through the second refrigerant flow switching device 28a, and flows into the heat source device 1 again through the refrigerant pipe 4.
  • the low-temperature and low-pressure two-phase refrigerant that has flowed into the heat source device 1 flows into the heat source side heat exchanger 12 that acts as an evaporator through the check valve 13b.
  • coolant which flowed into the heat source side heat exchanger 12 absorbs heat from external air in the heat source side heat exchanger 12, and turns into a low temperature and low pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the opening degree of the expansion device 26b is controlled so that the subcooling (supercooling degree) of the outlet refrigerant of the heat exchanger related to heat medium 25b becomes a target value. Note that the expansion device 26b may be fully opened, and the subcool may be controlled by the expansion device 26a.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 25b, and the heated heat medium is caused to flow in the pipe 5 by the pump 31b.
  • the heated heat medium that has been pressurized and discharged by the pump 31b flows into the use-side heat exchanger 35 where the thermal load is generated via the heat medium flow switching flow rate adjusting device 40.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium in the intermediate heat exchanger 25a, and the cooled heat medium is caused to flow in the pipe 5 by the pump 31a.
  • the cooled heat medium that has been pressurized and flowed out by the pump 31a flows into the use-side heat exchanger 35 where the cold load is generated via the heat medium flow switching flow rate adjusting device 40.
  • the heat medium flow switching flow rate adjustment device 40 is switched to the direction in which the heat exchanger related to heat medium 25b and the pump 31b are connected.
  • the indoor unit 3 is switched to the direction in which the heat exchanger related to heat medium 25a and the pump 31a are connected. That is, the heat medium flow switching device 40 can switch the heat medium supplied to the indoor unit 3 for heating or cooling.
  • the cooling operation of the living space 7 by the heat medium absorbing heat from the indoor air or the heating operation of the living space 7 by the heat medium radiating heat to the indoor air is performed.
  • the flow rate of the heat medium is controlled to a flow rate necessary to cover the air conditioning load required indoors by the action of the heat medium flow switching flow rate adjusting device 40 and flows into the use side heat exchanger 35.
  • the heat medium that has been used for the cooling operation and has passed through the use-side heat exchanger 35 and whose temperature has risen slightly passes through the heat medium flow switching flow rate adjusting device 40 and flows into the heat exchanger related to heat medium 25a, and is again pumped. It is sucked into 31a.
  • the heat medium that has been used for the heating operation and has passed through the use-side heat exchanger 35 and has slightly decreased in temperature passes through the heat medium flow switching flow adjustment device 40 and flows into the heat exchanger related to heat medium 25b, and is again pumped. It is sucked into 31b.
  • the heat medium flow switching flow rate adjustment device 40 is switched to the direction in which the heat exchanger related to heat medium 25b and the pump 31b are connected.
  • the indoor unit 3 is switched to the direction in which the heat exchanger related to heat medium 25a and the pump 31a are connected.
  • the warm heat medium and the cold heat medium are introduced into the use-side heat exchanger 35 having a heat load and a heat load, respectively, without being mixed by the action of the heat medium flow switching flow control device 40.
  • the heat medium used in the heating operation mode is caused to flow into the heat exchanger related to heat medium 25b, which gives heat from the refrigerant for heating use, and the heat medium used in the cooling operation mode is used for cooling use.
  • the heat is introduced into the heat exchanger related to heat medium 25a that receives the heat, and each heat exchanges again with the refrigerant, and then is transferred to the pumps 31a and 31b.
  • the air conditioning load required in the living space 7 is the difference between the temperature detected by the temperature sensor 55b on the heating side and the temperature of the heat medium flowing out from the use side heat exchanger 35 on the cooling side. This can be covered by controlling the difference between the temperature of the heat medium flowing out from the use side heat exchanger 35 and the temperature detected by the temperature sensor 55a as a target value.
  • FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is in the heating only operation mode.
  • the heating only operation mode will be described by taking as an example a case where a heating load is generated in all of the use side heat exchangers 35a to 35d.
  • the flow direction is indicated by a solid arrow.
  • the heat source side refrigerant discharged from the compressor 10 does not pass through the heat source side heat exchanger 12 in the first refrigerant flow switching device 11. It switches so that it may flow into relay unit 2.
  • the pumps 31a and 31b are driven, the heat medium flow switching flow rate adjusting devices 40a to 40d are opened, and the heat exchangers 25a and 25b between the heat medium and the use side heat exchangers 35a to 35d are connected. The heat medium circulates between them.
  • the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b are switched to the heating side, the opening / closing device 27 is closed, and the opening / closing device 29 is open.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, conducts the refrigerant connection pipe 4 a, passes through the check valve 13 d, and flows out of the heat source device 1.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the heat source device 1 flows into the relay unit 2 through the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the relay unit 2 is branched, passes through the second refrigerant flow switching devices 28a and 28b, and flows into the heat exchangers 25a and 25b, respectively.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the intermediate heat exchangers 25a and 25b is condensed and liquefied while dissipating heat to the heat medium passing through the secondary circuit 30, and becomes a high-pressure liquid refrigerant.
  • the liquid refrigerant flowing out from the heat exchangers 25a and 25b is expanded by the expansion devices 26a and 26b, and becomes a low-temperature and low-pressure two-phase refrigerant.
  • These two-phase refrigerants merge, flow out of the relay unit 2 through the opening / closing device 29, and flow into the heat source device 1 again through the refrigerant pipe 4.
  • the refrigerant flowing into the heat source device 1 is conducted through the refrigerant connection pipe 4b, passes through the check valve 13b, and flows into the heat source side heat exchanger 12 that functions as an evaporator.
  • the heat-source-side refrigerant that has flowed into the heat-source-side heat exchanger 12 absorbs heat from the air in the outdoor space 6 (hereinafter referred to as “outside air”) by the heat-source-side heat exchanger 12, and becomes a low-temperature / low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the expansion device 26 has a value obtained by converting the pressure of the heat-source-side refrigerant flowing between the heat exchanger related to heat medium 25 and the expansion device 26 into a saturation temperature, and the temperature on the outlet side of the heat exchanger related to heat medium 25.
  • the degree of opening is controlled so that the subcool (degree of supercooling) obtained as a difference from the above becomes constant.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchangers 25a and 25b, and the heated heat medium is caused to flow in the pipe 5 by the pumps 31a and 31b.
  • the heat medium pressurized and discharged by the pumps 31a and 31b flows into the use side heat exchangers 35a to 35d via the heat medium flow switching flow rate adjusting device 40.
  • the living space 7 is heated by the heat medium radiating heat to the indoor air by the use side heat exchangers 35a to 35d.
  • the heat medium flows out of the use side heat exchangers 35a to 35d and flows into the heat medium flow switching flow rate adjusting device 40 again.
  • the heat medium flow switching device 40 controls the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use side heat exchangers 35a to 35d are used. Flow into.
  • the heat medium that has flowed out of the heat medium flow switching flow control device 40 flows into the heat exchangers 25a and 25b between the heat medium, receives the amount of heat supplied to the living space 7 through the indoor unit 3 from the refrigerant side, and pumps again. It is sucked into 31a and 31b.
  • the air conditioning load required in the living space 7 is the temperature detected by the temperature sensor 55a, or the temperature detected by the temperature sensor 55b and the temperature of the heat medium flowing out from the use side heat exchanger 35. This can be covered by controlling the flow rate of the heat medium flow switching device 40 so as to keep the difference at the target value.
  • the outlet temperature of the heat exchanger related to heat medium 25 the temperature of either the temperature sensor 55a or the temperature sensor 55b may be used, or the average temperature thereof may be used.
  • the refrigerant is flowing into both of the heat exchangers 25a and 25b, and the pumps 31a and 31b for transporting the heat medium are also operated, so that they are connected to the branch ports.
  • the pumps 31a and 31b for transporting the heat medium are also operated, so that they are connected to the branch ports.
  • FIG. 5 is a diagram showing the flow of the heat medium during the air removal operation mode of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the air removal operation mode is a mode in which, for example, the secondary side circuit 30 is filled with a heat medium during construction (installation) of the air conditioner 100 (before operation by the actual air conditioning operation described above).
  • the heat medium is caused to flow in the pipe 5 by the pressurization of the pump 31.
  • the heat medium sucked into the pumps 31a and 31b and pressurized and flowed out passes through the heat medium flow switching flow rate adjusting device 40 and flows into the use side heat exchangers 35a to 35d.
  • the blowers included in the indoor units 3a to 3d may be stopped so that the heat exchange between the heat medium and the indoor air is not actively performed in the use side heat exchangers 35a to 35d.
  • the heat medium that has passed through the use side heat exchangers 35a to 35d returns to the heat medium flow switching flow control device 40, passes through the heat exchangers between heat mediums 25a and 25b, and is sucked into the pumps 31a and 31b again.
  • the air removal valves 41 and 42 are opened, and the air in the heat medium is removed from the air removal valves 41 and 42.
  • the air removal valves 41 and 42 are closed when the air removal operation mode is completed.
  • the operation of the primary side circuit 20 is not performed here, for example, in the air removal operation mode, the operation may be performed in the same manner as in the heating only operation mode.
  • the operation may be performed in the same manner as in the heating only operation mode.
  • FIG. 6 is a diagram illustrating a flow in the air removal operation mode performed by the control device 50 according to Embodiment 1 of the present invention. Based on FIG. 6, the content of the process which the control apparatus 50 performs in the air removal operation mode is demonstrated.
  • the control device 50 starts the air removal operation mode (step S1). After the operation is started, the air removal valves 41 and 42 in the secondary circuit are opened (step S2). Thereafter, the pumps 31a and 31b are stopped for a predetermined time (for example, 10 seconds) and driven intermittently (step S3).
  • control is performed to determine whether or not the air in the secondary circuit 30 has been exhausted during step S3 based on the rotational speeds of the pumps 31a and 31b (step S4).
  • the pumps 31a and 31b use water pumps that can use, for example, water, antifreeze, a mixture of water and antifreeze, or a mixture of water and an additive having a high anticorrosive effect. Occurs, causing the pumps 31a and 31b to idle. Therefore, when air is inhaled, the rotational speed of the pumps 31a and 31b temporarily increases as compared to the normal rotational speed.
  • FIG. 7 is a diagram showing the relationship between the rotational speeds of the pumps 31a and 31b and the operation time of the air removal operation during the air removal operation according to Embodiment 1 of the present invention.
  • the rotational speed N of the pumps 31a and 31b temporarily increases as compared to the normal rotational speed Na.
  • the control device 50 constantly acquires the rotational speed N of the pumps 31a and 31b, if a large amount of air remains in the secondary circuit 30, the rotational speed Nb when air is sucked in is frequently detected.
  • the frequency of detecting the rotational speed Nb decreases.
  • the control device 50 completes the air removal operation when the generation interval (elapsed time Tx) of the rotation speed Nb when the air of the pumps 31a and 31b is sucked becomes equal to or longer than a preset time interval (Te). To do. In other words, the control device 50 can be said to complete the air removal operation when the generation of the rotational speed Nb when the air of the pumps 31a and 31b is sucked does not continue within a preset time (Te).
  • Tr the time taken to make a round of the secondary circuit 30 after the air bubbles are discharged from the pumps 31a and 31b.
  • step S4 After the end of step S4, it is determined whether or not a predetermined time (for example, 20 minutes) has elapsed since the start of step S3 (step S5). If it is determined that the predetermined time has not elapsed, the processes of steps S3 to S5 are repeated. On the other hand, if it is determined that the predetermined time has elapsed, the intermittent operation in step S3 is terminated, and the process proceeds to step S6.
  • a predetermined time for example, 20 minutes
  • step S6 the individual indoor unit operation is started (step S6).
  • step S6 the opening degree of the heat medium flow switching flow rate adjusting device 40a is maximized, the heat medium flow switching flow rate adjusting devices 40b, 40c, and 40d are closed, and the heat medium does not flow toward the indoor units 3b, 3c, and 3d. Like that. Further, after the operation of the indoor unit 3a, the same operation is performed for each of the indoor units 3b, 3c, and 3d. For this reason, the path length in the secondary side circuit 30 becomes short, and the flow rate of the heat medium with respect to the output can be increased.
  • step S6 control is performed to determine whether or not the air in the secondary circuit 30 has been exhausted based on the rotational speed N of the pumps 31a and 31b (step S7).
  • step S7 the same calculation as in step S4 described above is performed, and when Tx ⁇ Te is established, the air removal operation is terminated (step S13).
  • Tx ⁇ Te is not established in step S7, it is determined whether or not a predetermined time (for example, the number of specified branches ⁇ 10 minutes) has elapsed since the start of step S6 (step S8). If it is determined that the predetermined time has not elapsed, steps S6 to S8 are repeated. If it is determined that the predetermined time has elapsed, the individual indoor unit operation in step S6 is terminated, and the process proceeds to step S9.
  • a predetermined time for example, the number of specified branches ⁇ 10 minutes
  • step S8 When step S8 is completed, all the indoor units 3a to 3d are heated by maximizing the openings of all the heat medium flow switching flow rate adjusting devices 40a to 40d (step S9). For this reason, the primary side circuit 20 is also operated in the heating only operation mode.
  • whether or not to drive the blower (not shown) of the indoor unit 3 is not particularly limited.
  • step S9 control is performed to determine whether or not the air in the secondary circuit 30 has been exhausted based on the rotational speed N of the pumps 31a and 31b (step S10).
  • step S10 the same calculation as in steps S4 and S7 described above is performed, and when Tx ⁇ Te is satisfied, the air removal operation is terminated (step S13).
  • step S10 when Tx ⁇ Te is not established in step S10, it is determined whether or not a predetermined time (for example, 20 minutes) has elapsed since the start of step S9 (step S11). If it is determined that the predetermined time has not elapsed, the processes of steps S9 to S11 are repeated.
  • a predetermined time for example, 20 minutes
  • step S12 control is performed to determine whether or not the air in the secondary circuit 30 has been exhausted based on the rotational speed N of the pumps 31a and 31b (step S12). That is, in step S12, it is determined again whether Tx ⁇ Te is satisfied. If Tx ⁇ Te is established, the operation in the air removal operation mode is completed (step S13). When Tx ⁇ Te is not established, the process proceeds to step S3 and the operation is resumed.
  • the control device 50 when the secondary circuit 30 is installed, the control device 50 automatically determines the completion of the air removal operation. It can be carried out.
  • the air removal valves 41 and 42 are opened, the pumps 31a and 31b are driven to circulate the heat medium, and the inside of the secondary circuit 30
  • the control apparatus 50 which performs the air removal operation which extracts the air of this, and determines completion of air removal operation based on the rotation speed of pump 31a, 31b is provided. According to this, the completion of the air removal operation is determined based on the number of rotations of the pumps 31a and 31b, and the determination to complete the air removal operation is quantitatively performed. And prolonged construction time can be avoided.
  • the control device 50 determines the completion of the air removal operation based on the generation of the rotational speed Nb when the air of the pumps 31a and 31b is sucked. According to this, since the determination to complete the air removal operation is quantitatively made based on the generation of the rotational speed Nb when the air of the pumps 31a and 31b is sucked, the residual air in the secondary circuit 30 and the construction Prolonged time can be avoided.
  • the control device 50 completes the air removal operation when the generation interval (elapsed time Tx) of the rotational speed Nb when the air of the pumps 31a and 31b is sucked becomes equal to or longer than a preset time interval (Te). According to this, since the determination to complete the air removal operation is quantitatively performed based on the relational expression of Tx ⁇ Te, it is possible to avoid the remaining of air in the secondary circuit 30 and the lengthening of the construction time. .
  • 1 Heat source device 2 relay unit, 3 (3a, 3b, 3c, 3d) indoor unit, 4 refrigerant pipe, 4a, 4b refrigerant connection pipe, 5 pipe, 6 outdoor space, 7 residential space, 8 non-residential space, 9 Building, 10 compressor, 11 first refrigerant flow switching device, 12 heat source side heat exchanger, 13a, 13b, 13c, 13d check valve, 19 accumulator, 20 primary side circuit, 25 (25a, 25b) heat Inter-medium heat exchanger, 26 (26a, 26b) throttle device, 27, 29 switchgear, 28 (28a, 28b) second refrigerant flow switching device, 30 secondary circuit, 31 (31a, 31b) pump, 35 (35a, 35b, 35c, 35d) User side heat exchanger, 40 (40a, 40b, 40c, 40d) Heat medium flow switching flow control device, 41, 42 Air removal valve, 0 controller, 55 (55a, 55b) a temperature sensor, 100 an air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

In order to quantitatively make a determination for ending an air removal operation, and to prevent air from remaining in a heat medium circulation circuit and prevent an increase in the installation time, an air-conditioning device is equipped with: a primary-side circuit 20, formed by connecting by means of piping a compressor 10, a heat-source-side heat exchanger 12, throttle devices 26, and the heat-source-side and refrigerant-side of inter-heat-medium heat exchangers 25; and a secondary-side circuit 30, formed by connecting by means of piping the heat-medium side of the inter-heat-medium heat exchangers 25, pumps 31, and usage-side heat exchangers 35. The secondary-side circuit 30 has air removal valves 41 and 42 for discharging air in the circuit. Furthermore, a control device 50 is provided for executing an air removal operation, in which the air removal valves 41 and 42 are opened and the pumps 31 are driven, thereby circulating the heat medium and removing air from within the secondary-side circuit 30 when the secondary-side circuit 30 is installed, and for determining the end of the air removal operation on the basis of the rotational frequency of the pumps 31.

Description

空気調和装置Air conditioner
 本発明は、たとえばビル用マルチエアコンなどに適用する施工時に熱媒体循環回路内から空気を抜く空気調和装置に関する。 The present invention relates to an air conditioner that extracts air from a heat medium circulation circuit during construction applied to, for example, a building multi-air conditioner.
 たとえば室外機と中継ユニットとの間を配管接続して構成する冷凍サイクル回路(以下、1次側回路と称する)を循環する熱源側冷媒と、中継ユニットと室内機との間を配管接続して構成する熱媒体循環回路(以下、2次側回路と称する)を循環する屋内側冷媒と、を熱交換させる空気調和装置がある。 For example, by connecting a pipe between the heat source side refrigerant circulating in a refrigeration cycle circuit (hereinafter referred to as a primary side circuit) configured by connecting a pipe between the outdoor unit and the relay unit, and between the relay unit and the indoor unit. There is an air conditioner that exchanges heat with an indoor-side refrigerant that circulates in a heat medium circulation circuit (hereinafter referred to as a secondary circuit).
 そして、このような構成の空気調和装置をビル用マルチエアコンなどに適用する際、熱媒体の搬送動力を低減させるようにして省エネルギーを図っているものがある(たとえば、特許文献1参照)。 When applying an air conditioner having such a configuration to a building multi-air conditioner or the like, there is one that saves energy by reducing the conveyance power of the heat medium (see, for example, Patent Document 1).
 特許文献1に開示された技術において、室内機との間を配管接続して構成する2次側回路を循環する屋内側冷媒は、水や水にブラインを混ぜた溶液を用いている。ここで、特に屋内側の循環回路の施工過程では、回路内に空気が混入し易い。2次側回路の水またはブライン溶液に空気が混入することによって故障が生じる可能性がある。よって、空気調和装置を稼働する前の段階で、2次側回路内の空気を除去する運転(以下、空気除去運転と称する)を行う必要があった(たとえば、特許文献2参照)。 In the technology disclosed in Patent Document 1, an indoor refrigerant that circulates in a secondary circuit configured by connecting a pipe to an indoor unit uses water or a solution obtained by mixing brine with water. Here, especially in the construction process of the circulation circuit on the indoor side, air is likely to enter the circuit. Failure can occur due to air entering the water or brine solution of the secondary circuit. Therefore, it is necessary to perform an operation for removing air in the secondary circuit (hereinafter referred to as an air removal operation) before operating the air conditioner (see, for example, Patent Document 2).
国際公開第2010/049998号International Publication No. 2010/049998 国際公開第2014/083682号International Publication No. 2014/083682
 特許文献2に開示された技術において、2次側回路内の空気を除去する空気除去運転を完了するか否かは、作業者の目視によって空気の排出量を確認して判断していた。
 ここで、作業者の目視による空気の排出量の確認は、個人差によって判断にばらつきが生じる。このため、空気が2次側回路内に残留したり、空気除去運転に時間をかけすぎることによって施工時間が長期化したりする課題があった。
In the technique disclosed in Patent Document 2, whether or not to complete the air removal operation for removing the air in the secondary circuit has been determined by checking the amount of air discharged by the operator's visual observation.
Here, the operator's visual confirmation of the air discharge amount varies depending on individual differences. For this reason, there existed a subject that construction time was prolonged because air remained in a secondary side circuit or it took time for air removal operation too much.
 本発明は上述の課題を解決するためのものであり、空気除去運転を完了する判断を定量的に行い、熱媒体循環回路内の空気の残留や施工時間の長期化を回避することを目的とする。 The present invention is intended to solve the above-described problems, and quantitatively determines the completion of the air removal operation, and aims to avoid air remaining in the heat medium circulation circuit and prolonged construction time. To do.
 本発明に係る空気調和装置は、熱源側冷媒を圧縮する圧縮機、前記熱源側冷媒を熱交換させる熱源側熱交換器、前記熱源側冷媒を圧力調整する絞り装置および前記熱源側冷媒と熱媒体との熱交換を行う熱媒体間熱交換器の熱源側冷媒側を配管接続して構成された冷媒循環回路と、前記熱媒体間熱交換器の熱媒体側、前記熱媒体を循環させるポンプおよび前記熱媒体と空調対象空間の空気との熱交換を行う利用側熱交換器を配管接続して構成された熱媒体循環回路と、を備え、前記熱媒体循環回路は、内部の空気を放出させる空気除去弁を有し、前記熱媒体循環回路を施工したときに前記空気除去弁を開弁して前記ポンプを駆動させて前記熱媒体を循環させて前記熱媒体循環回路内の空気を抜く空気除去運転を実行し、前記空気除去運転の完了を、前記ポンプの回転数に基づいて判定を行う制御装置を備えるものである。 An air conditioner according to the present invention includes a compressor that compresses a heat source side refrigerant, a heat source side heat exchanger that exchanges heat with the heat source side refrigerant, a throttling device that adjusts the pressure of the heat source side refrigerant, and the heat source side refrigerant and heat medium A refrigerant circulation circuit configured by pipe-connecting a heat source side refrigerant side of a heat exchanger related to heat medium that performs heat exchange with the heat medium, a heat medium side of the heat exchanger related to heat medium, a pump for circulating the heat medium, and A heat medium circulation circuit configured by pipe connection of a use side heat exchanger that exchanges heat between the heat medium and the air in the air-conditioning target space, and the heat medium circulation circuit releases internal air Air that has an air removal valve, opens the air removal valve when the heat medium circulation circuit is installed, drives the pump to circulate the heat medium, and removes air from the heat medium circulation circuit The removal operation is executed and the air removal operation is completed. The one in which a control device for determining on the basis of the rotational speed of the pump.
 本発明に係る空気調和装置によれば、空気除去運転の完了を、ポンプの回転数に基づいて判定を行い、空気除去運転を完了する判断を定量的に行うので、熱媒体循環回路内の空気の残留や施工時間の長期化を回避することができる。 According to the air conditioner of the present invention, the completion of the air removal operation is determined based on the number of revolutions of the pump, and the determination to complete the air removal operation is quantitatively performed. It is possible to avoid residuals and prolonged construction time.
本発明の実施の形態1に係る空気調和装置の設置例を示す概略図である。It is the schematic which shows the example of installation of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の構成を示す概略回路図である。It is a schematic circuit diagram which shows the structure of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の混在運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of the mixed operation mode of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of the heating only operation mode of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の空気除去運転モード時における熱媒体の流れを示す図である。It is a figure which shows the flow of the heat medium at the time of the air removal operation mode of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る制御装置が行う空気除去運転モード時におけるフローを説明する図である。It is a figure explaining the flow in the air removal operation mode which the control apparatus which concerns on Embodiment 1 of this invention performs. 本発明の実施の形態1に係る空気除去運転時におけるポンプの回転数と空気除去運転の運転時間の関係を示す図である。It is a figure which shows the relationship between the rotation speed of the pump at the time of the air removal driving | operation which concerns on Embodiment 1 of this invention, and the driving | running time of air removal driving | operation.
実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和装置100の設置例を示す概略図である。
 図1に基づいて、空気調和装置100の構成について説明する。この空気調和装置100は、熱源側冷媒を循環させる1次側回路20および水や不凍液などの熱媒体を循環させる2次側回路30を利用し、冷房運転または暖房運転を実行するものである。ここで、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、添字で区別している複数の同種の機器などについて、特に区別したり、特定したりする必要がない場合には、添字を省略して記載する場合もある。また、温度、圧力などの高低については、特に絶対的な値との関係で高低などが定まっているものではなく、システム、装置などにおける状態、動作などにおいて相対的に定まるものとする。
Embodiment 1 FIG.
FIG. 1 is a schematic diagram illustrating an installation example of an air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
Based on FIG. 1, the structure of the air conditioning apparatus 100 is demonstrated. The air conditioner 100 performs a cooling operation or a heating operation using a primary side circuit 20 that circulates a heat source side refrigerant and a secondary side circuit 30 that circulates a heat medium such as water or antifreeze. Here, in the following drawings including FIG. 1, the size relationship of each component may be different from the actual one. In addition, when there is no need to distinguish or identify a plurality of similar devices that are distinguished by subscripts, the subscripts may be omitted. In addition, the level of temperature, pressure, etc. is not particularly determined in relation to absolute values, but is relatively determined in terms of the state and operation of the system, apparatus, and the like.
 図1に示すように、本実施の形態の空気調和装置100は、たとえば熱源機である1台の熱源装置1と、複数台の室内機3と、熱源装置1と室内機3との間に介在する中継ユニット2と、を有している。
 中継ユニット2は、熱源側冷媒と熱媒体とで熱交換を行うものである。熱源装置1と中継ユニット2とは、熱源側冷媒を導通する冷媒配管4で接続される。中継ユニット2と室内機3とは、熱媒体を導通する配管5で接続される。冷媒配管4および配管5を有することにより、熱源装置1で生成された冷熱あるいは温熱を室内機3に配送する。
 なお、熱源装置1、室内機3および中継ユニット2の接続台数を図示した台数に限定するものではない。
As shown in FIG. 1, an air conditioner 100 according to the present embodiment includes, for example, one heat source device 1 that is a heat source device, a plurality of indoor units 3, and between the heat source device 1 and the indoor unit 3. And an intervening relay unit 2.
The relay unit 2 performs heat exchange between the heat source side refrigerant and the heat medium. The heat source device 1 and the relay unit 2 are connected by a refrigerant pipe 4 that conducts the heat source side refrigerant. The relay unit 2 and the indoor unit 3 are connected by a pipe 5 that conducts the heat medium. By having the refrigerant pipe 4 and the pipe 5, cold heat or hot heat generated by the heat source device 1 is delivered to the indoor unit 3.
The number of connected heat source devices 1, indoor units 3, and relay units 2 is not limited to the illustrated number.
 熱源装置1は、通常、ビルなどの建物9の外の空間である室外空間6に配置され、中継ユニット2を介して室内機3に冷熱または温熱を供給する。
 室内機3は、冷房用空気あるいは暖房用空気を搬送できる建物9の内部の居室やサーバールームなどの居住空間7に配置され、空調対象域となる居住空間7に冷房用空気あるいは暖房用空気を供給する。
 中継ユニット2は、熱源装置1および室内機3とは別体として、室外空間6および居住空間7とは別の位置である非居住空間8に配置され、熱源装置1と室内機3とを接続し、熱源装置1から供給される冷熱または温熱を室内機3に伝達する。
The heat source device 1 is normally disposed in an outdoor space 6 that is a space outside a building 9 such as a building, and supplies cold or hot heat to the indoor unit 3 via the relay unit 2.
The indoor unit 3 is disposed in a living space 7 such as a living room or a server room in a building 9 that can carry cooling air or heating air, and the cooling air or heating air is supplied to the living space 7 that is an air-conditioning target area. Supply.
The relay unit 2 is disposed separately from the heat source device 1 and the indoor unit 3 in a non-residential space 8 that is a position different from the outdoor space 6 and the residential space 7, and connects the heat source device 1 and the indoor unit 3. Then, the cold or warm heat supplied from the heat source device 1 is transmitted to the indoor unit 3.
 1次側回路20の熱源側冷媒としては、たとえばR-22、R-134a、R32などの単一冷媒、R-410A、R-404Aなどの擬似共沸混合冷媒、R-407Cなどの非共沸混合冷媒、化学式内に二重結合を含む、CFCF=CHなどの地球温暖化係数が比較的小さい値とされている冷媒やその混合物、あるいはCOやプロパンなどの自然冷媒を用いることができる。 Examples of the heat source side refrigerant of the primary side circuit 20 include single refrigerants such as R-22, R-134a, and R32, pseudo-azeotropic refrigerant mixtures such as R-410A and R-404A, and non-common refrigerants such as R-407C. Use boiling refrigerants, refrigerants that contain double bonds in the chemical formula, such as CF 3 CF═CH 2, etc., which have a relatively low global warming potential, or mixtures thereof, or natural refrigerants such as CO 2 or propane be able to.
 一方、2次側回路30の熱媒体としては、たとえば水、不凍液、水と不凍液の混合液、水と防食効果が高い添加剤の混合液などを用いることができる。 On the other hand, as the heat medium of the secondary side circuit 30, for example, water, an antifreeze solution, a mixed solution of water and antifreeze solution, a mixed solution of water and an additive having a high anticorrosion effect, or the like can be used.
 室外空間6は、建物9の外部に存在する場所、たとえば図1に示すような屋上を想定している。
 非居住空間8は、建物9の内部ではあるが居住空間7とは別の空間、たとえば廊下の上などの人が常時存在しない場所や、共用ゾーンの天井裏、エレベータなどがある共用部、機械室、電算室、倉庫などを想定している。
 居住空間7は、建物9の内部であって、常に人が存在する場所や一時的にも多数あるいは小数の人が存在する場所、たとえばオフィス、教室、会議室、食堂、サーバールームなどを想定している。
The outdoor space 6 assumes a place existing outside the building 9, for example, a rooftop as shown in FIG.
The non-residential space 8 is a space inside the building 9 but different from the residential space 7, for example, a place where there is no person at all times, such as on the corridor, a common zone with a ceiling in the common zone, an elevator, etc. A room, a computer room, a warehouse, etc. are assumed.
The living space 7 is assumed to be an interior of the building 9 where there are always people or where there are many or a small number of people temporarily, such as offices, classrooms, conference rooms, canteens, server rooms, etc. ing.
 熱源装置1と中継ユニット2とは、2本の冷媒配管4を用いて接続されている。また、中継ユニット2と各室内機3とは、それぞれ2本の配管5で接続されている。このように、熱源装置1を2本の冷媒配管4で中継ユニット2に接続し、室内機3を2本の配管5で中継ユニット2に接続することにより、空気調和装置100の施工が容易になる。 The heat source device 1 and the relay unit 2 are connected using two refrigerant pipes 4. The relay unit 2 and each indoor unit 3 are connected by two pipes 5 respectively. Thus, the construction of the air conditioner 100 is facilitated by connecting the heat source device 1 to the relay unit 2 through the two refrigerant pipes 4 and connecting the indoor unit 3 to the relay unit 2 through the two pipes 5. Become.
 図2は、本発明の実施の形態1に係る空気調和装置100の構成を示す概略回路図である。
 図2に示すように、熱源装置1と中継ユニット2とが、中継ユニット2に備えられている熱媒体間熱交換器25a、25bを介して冷媒配管4で接続されている。
 また、中継ユニット2と室内機3とが、配管5で接続されている。
FIG. 2 is a schematic circuit diagram showing the configuration of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
As shown in FIG. 2, the heat source device 1 and the relay unit 2 are connected by the refrigerant pipe 4 via the heat exchangers 25 a and 25 b provided in the relay unit 2.
Further, the relay unit 2 and the indoor unit 3 are connected by a pipe 5.
[熱源装置(室外ユニット)1]
 熱源装置1には、圧縮機10と、四方弁などの第1冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレーター19とが冷媒配管4で直列に接続されて搭載されている。
 また、熱源装置1には、冷媒用接続配管4a、4bおよび逆止弁13a、13b、13c、13dが設けられている。冷媒用接続配管4a、4bおよび逆止弁13a、13b、13c、13dを設けることで、室内機3の要求する運転にかかわらず、中継ユニット2に流入させる熱源側冷媒の流れを一定方向にすることができる。
[Heat source device (outdoor unit) 1]
In the heat source device 1, a compressor 10, a first refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 19 are connected and connected in series through a refrigerant pipe 4. Yes.
Further, the heat source device 1 is provided with refrigerant connection pipes 4a and 4b and check valves 13a, 13b, 13c and 13d. By providing the refrigerant connection pipes 4a and 4b and the check valves 13a, 13b, 13c, and 13d, the flow of the heat source side refrigerant flowing into the relay unit 2 is made to be a constant direction regardless of the operation requested by the indoor unit 3. be able to.
 圧縮機10は、熱源側冷媒を吸入し、その熱源側冷媒を圧縮して高温・高圧の状態にして1次側回路20に搬送するものであり、たとえば容量制御可能なインバータ圧縮機などで構成するとよい。
 第1冷媒流路切替装置11は、暖房運転時における熱源側冷媒の流れと冷房運転時における熱源側冷媒の流れとを切り替えるものである。
The compressor 10 sucks the heat-source-side refrigerant, compresses the heat-source-side refrigerant, transfers the heat-source-side refrigerant to a primary side circuit 20 in a high temperature / high pressure state, and includes, for example, an inverter compressor capable of capacity control. Good.
The first refrigerant flow switching device 11 switches the flow of the heat source side refrigerant during the heating operation and the flow of the heat source side refrigerant during the cooling operation.
 熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器(または放熱器)として機能し、図示省略のファンなどの送風機から供給される空気の流体と熱源側冷媒との間で熱交換を行い、その熱源側冷媒を蒸発ガス化または凝縮液化する。
 アキュムレーター19は、圧縮機10の吸入側に設けられており、暖房運転時と冷房運転時の違いによる余剰冷媒、または過渡的な運転の変化に対する余剰冷媒を蓄えるものである。
The heat source side heat exchanger 12 functions as an evaporator during heating operation, functions as a condenser (or radiator) during cooling operation, and includes a fluid of air supplied from a blower such as a fan (not shown), a heat source side refrigerant, and the like. The heat source side refrigerant is evaporated and condensed or liquefied.
The accumulator 19 is provided on the suction side of the compressor 10 and stores excess refrigerant due to a difference between the heating operation and the cooling operation, or excess refrigerant with respect to a transient change in operation.
 逆止弁13cは、中継ユニット2と第1冷媒流路切替装置11との間における冷媒配管4に設けられ、所定の方向(中継ユニット2から熱源装置1への方向)のみに熱源側冷媒の流れを許容する。逆止弁13aは、熱源側熱交換器12と中継ユニット2との間における冷媒配管4に設けられ、所定の方向(熱源装置1から中継ユニット2への方向)のみに熱源側冷媒の流れを許容する。逆止弁13dは、冷媒用接続配管4aに設けられ、暖房運転時において圧縮機10から吐出された熱源側冷媒を中継ユニット2に流通させる。逆止弁13bは、冷媒用接続配管4bに設けられ、暖房運転時において中継ユニット2から戻ってきた熱源側冷媒を圧縮機10の吸入側に流通させる。 The check valve 13c is provided in the refrigerant pipe 4 between the relay unit 2 and the first refrigerant flow switching device 11, and the heat source side refrigerant is only in a predetermined direction (direction from the relay unit 2 to the heat source device 1). Allow flow. The check valve 13a is provided in the refrigerant pipe 4 between the heat source side heat exchanger 12 and the relay unit 2, and allows the flow of the heat source side refrigerant only in a predetermined direction (direction from the heat source device 1 to the relay unit 2). Allow. The check valve 13d is provided in the refrigerant connection pipe 4a and causes the heat source side refrigerant discharged from the compressor 10 to flow through the relay unit 2 during the heating operation. The check valve 13 b is provided in the refrigerant connection pipe 4 b and distributes the heat source side refrigerant returned from the relay unit 2 during the heating operation to the suction side of the compressor 10.
 冷媒用接続配管4aは、熱源装置1内において、第1冷媒流路切替装置11と逆止弁13cとの間における冷媒配管4と、逆止弁13aと中継ユニット2との間における冷媒配管4と、を接続する。冷媒用接続配管4bは、熱源装置1内において、逆止弁13cと中継ユニット2との間における冷媒配管4と、熱源側熱交換器12と逆止弁13aとの間における冷媒配管4と、を接続する。
 なお、図2では、冷媒用接続配管4a、4bおよび逆止弁13a、13b、13c、13dを設けた場合を例に示しているが、これに限定するものではなく、これらを必ずしも設ける必要はない。
In the heat source device 1, the refrigerant connection pipe 4 a includes a refrigerant pipe 4 between the first refrigerant flow switching device 11 and the check valve 13 c, and a refrigerant pipe 4 between the check valve 13 a and the relay unit 2. And connect. In the heat source device 1, the refrigerant connection pipe 4b includes a refrigerant pipe 4 between the check valve 13c and the relay unit 2, a refrigerant pipe 4 between the heat source side heat exchanger 12 and the check valve 13a, Connect.
In addition, in FIG. 2, the case where the refrigerant connection pipes 4a and 4b and the check valves 13a, 13b, 13c and 13d are provided is shown as an example. However, the present invention is not limited to this, and it is not always necessary to provide them. Absent.
[室内機(室内ユニット)3]
 室内機3には、それぞれ利用側熱交換器35が搭載されている。この利用側熱交換器35は、配管5によって中継ユニット2の熱媒体流路切替流量調整装置40に接続する。この利用側熱交換器35は、図示省略のファンなどの送風機から供給される空気と熱媒体との間で熱交換を行い、居住空間7に供給するための暖房用空気あるいは冷房用空気を生成する。
[Indoor unit (indoor unit) 3]
Each indoor unit 3 is equipped with a use side heat exchanger 35. The use side heat exchanger 35 is connected to the heat medium flow switching flow rate adjusting device 40 of the relay unit 2 by the pipe 5. The use side heat exchanger 35 exchanges heat between air supplied from a blower such as a fan (not shown) and a heat medium, and generates heating air or cooling air to be supplied to the living space 7. To do.
 図2では、4台の室内機3が中継ユニット2に接続されている場合を例に示し、紙面上側から室内機3a、室内機3b、室内機3c、室内機3dとして図示している。また、室内機3a、3b、3c、3dに応じて、利用側熱交換器35も、紙面上側から利用側熱交換器35a、利用側熱交換器35b、利用側熱交換器35c、利用側熱交換器35dとして図示している。なお、図1と同様に、室内機3の接続台数を図2に示す4台に限定するものではない。 FIG. 2 shows an example in which four indoor units 3 are connected to the relay unit 2, and are illustrated as an indoor unit 3a, an indoor unit 3b, an indoor unit 3c, and an indoor unit 3d from the upper side of the drawing. Further, in accordance with the indoor units 3a, 3b, 3c, and 3d, the use side heat exchanger 35 is also used from the upper side of the page with the use side heat exchanger 35a, the use side heat exchanger 35b, the use side heat exchanger 35c, and the use side heat. It is illustrated as an exchanger 35d. As in FIG. 1, the number of connected indoor units 3 is not limited to the four shown in FIG.
[中継ユニット2]
 中継ユニット2には、2つの熱媒体間熱交換器25と、2つの絞り装置26と、2つの開閉装置(開閉装置27、開閉装置29)と、2つの第2冷媒流路切替装置28と、2つの熱媒体搬送装置であるポンプ31と、4つの熱媒体流路切替流量調整装置40と、2つの空気除去弁41、42と、が搭載されている。
[Relay unit 2]
The relay unit 2 includes two heat exchangers for heat medium 25, two expansion devices 26, two switch devices (switch devices 27, switch devices 29), and two second refrigerant flow switching devices 28. A pump 31 that is two heat medium transfer devices, four heat medium flow switching flow rate adjustment devices 40, and two air removal valves 41 and 42 are mounted.
 2つの熱媒体間熱交換器25(熱媒体間熱交換器25a、25b)は、暖房運転をしている室内機3に対して温熱を供給する際には凝縮器(放熱器)として、冷房運転をしている室内機3に対して冷熱を供給する際には蒸発器として機能し、熱源側冷媒と熱媒体とで熱交換を行い、熱源装置1で生成され熱源側冷媒に貯えられた冷熱または温熱を熱媒体に伝達する。
 熱媒体間熱交換器25aは、1次側回路20における絞り装置26aと第2冷媒流路切替装置28aとの間に設けられ、冷房暖房混在運転モード時において熱媒体の冷却に供する。また、熱媒体間熱交換器25bは、1次側回路20における絞り装置26bと第2冷媒流路切替装置28bとの間に設けられ、冷房暖房混在運転モード時において熱媒体の加熱に供する。
The two heat exchangers for heat medium 25 (heat exchangers for heat medium 25a, 25b) serve as condensers (heat radiators) for cooling when supplying heat to the indoor unit 3 that is performing the heating operation. When supplying cold heat to the indoor unit 3 in operation, it functions as an evaporator, performs heat exchange between the heat source side refrigerant and the heat medium, and is generated by the heat source device 1 and stored in the heat source side refrigerant. Transfers cold or warm heat to the heat medium.
The heat exchanger related to heat medium 25a is provided between the expansion device 26a and the second refrigerant flow switching device 28a in the primary circuit 20, and serves to cool the heat medium in the cooling / heating mixed operation mode. Further, the heat exchanger related to heat medium 25b is provided between the expansion device 26b and the second refrigerant flow switching device 28b in the primary circuit 20, and serves to heat the heat medium in the cooling / heating mixed operation mode.
 2つの絞り装置26(絞り装置26a、26b)は、減圧弁や膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させる。
 絞り装置26aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器25aの上流側に設けられている。絞り装置26bは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器25bの上流側に設けられている。2つの絞り装置26は、開度が可変に制御可能なもの、たとえば電子式膨張弁などで構成するとよい。
The two expansion devices 26 (the expansion devices 26a and 26b) have functions as pressure reducing valves and expansion valves, and expand the heat source side refrigerant by reducing the pressure.
The expansion device 26a is provided on the upstream side of the heat exchanger related to heat medium 25a in the flow of the heat source side refrigerant during the cooling operation. The expansion device 26b is provided on the upstream side of the heat exchanger related to heat medium 25b in the flow of the heat source side refrigerant during the cooling operation. The two throttling devices 26 may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
 2つの開閉装置(開閉装置27、29)は、通電により開閉動作が可能な電磁弁などで構成され、冷媒配管4を開閉するものである。つまり、2つの開閉装置27、29は、運転モードに応じて開閉が制御され、熱源側冷媒の流路を切り替えている。
 開閉装置27は、熱源側冷媒の入口側における冷媒配管4に設けられている。開閉装置29は、熱源側冷媒の入口側の冷媒配管4と出口側の冷媒配管4とを接続した配管に設けられている。
 なお、開閉装置27、29は、冷媒流路の切り替えが可能なものであればよく、たとえば電子式膨張弁などの開度を可変に制御できるものを用いてもよい。
The two opening / closing devices (opening / closing devices 27, 29) are configured by electromagnetic valves or the like that can be opened / closed by energization, and open / close the refrigerant pipe 4. That is, the opening and closing of the two opening / closing devices 27 and 29 is controlled according to the operation mode, and the flow path of the heat source side refrigerant is switched.
The opening / closing device 27 is provided in the refrigerant pipe 4 on the inlet side of the heat source side refrigerant. The opening / closing device 29 is provided in a pipe connecting the refrigerant pipe 4 on the inlet side of the heat source side refrigerant and the refrigerant pipe 4 on the outlet side.
The opening / closing devices 27 and 29 may be any devices that can switch the refrigerant flow path. For example, an electronic expansion valve or the like that can variably control the opening degree may be used.
 2つの第2冷媒流路切替装置28(第2冷媒流路切替装置28a、28b)は、たとえば四方弁などで構成され、運転モードに応じて熱媒体間熱交換器25が凝縮器または蒸発器として作用するよう、熱源側冷媒の流れを切り替える。
 第2冷媒流路切替装置28aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器25aの下流側に設けられている。第2冷媒流路切替装置28bは、冷房運転モード時の熱源側冷媒の流れにおいて熱媒体間熱交換器25bの下流側に設けられている。
The two second refrigerant flow switching devices 28 (second refrigerant flow switching devices 28a and 28b) are constituted by, for example, a four-way valve or the like, and the heat exchanger related to heat medium 25 is a condenser or an evaporator depending on the operation mode. The flow of the heat source side refrigerant is switched so as to act as
The second refrigerant flow switching device 28a is provided on the downstream side of the heat exchanger related to heat medium 25a in the flow of the heat source side refrigerant during the cooling operation. The second refrigerant flow switching device 28b is provided on the downstream side of the heat exchanger related to heat medium 25b in the flow of the heat source side refrigerant in the cooling operation mode.
 2つのポンプ31(ポンプ31a、31b)は、配管5を導通する熱媒体を2次側回路30に循環させる。
 ポンプ31aは、熱媒体間熱交換器25aと熱媒体流路切替流量調整装置40との間における配管5に設けられている。ポンプ31bは、熱媒体間熱交換器25bと熱媒体流路切替流量調整装置40との間における配管5に設けられている。
 2つのポンプ31は、たとえば容量制御可能なポンプなどで構成し、室内機3における負荷の大きさによってその流量を調整できるようにしておくとよい。
The two pumps 31 (pumps 31 a and 31 b) circulate the heat medium that conducts the pipe 5 to the secondary circuit 30.
The pump 31 a is provided in the pipe 5 between the heat exchanger related to heat medium 25 a and the heat medium flow switching flow control device 40. The pump 31 b is provided in the pipe 5 between the heat exchanger related to heat medium 25 b and the heat medium flow switching flow control device 40.
The two pumps 31 may be configured by, for example, capacity-controllable pumps, and the flow rate thereof may be adjusted according to the load in the indoor unit 3.
 2つの空気除去弁41、42は施工時に2次側回路30の空気を抜くために使用される。なお、空気除去弁の接続数を図2に示す2個に限定するものではない。 The two air removal valves 41 and 42 are used to evacuate the secondary circuit 30 during construction. The number of connected air removal valves is not limited to two as shown in FIG.
 4つの熱媒体流路切替流量調整装置40(熱媒体流路切替流量調整装置40a~40d)は、一つの駆動装置と弁体などで構成され、熱媒体の流路を熱媒体間熱交換器25aと熱媒体間熱交換器25bとの間で切り替えると共に各分岐へ対する熱媒体の流量を調整する。熱媒体流路切替流量調整装置40は、室内機3の設置台数に応じた個数(ここでは4つ)が設けられるようになっており、それぞれが相互に連結することも可能とした構造である。さらに、この熱媒体流路切替流量調整装置40は、その内部にて、一方が熱媒体間熱交換器25aに、他方が熱媒体間熱交換器25bに、それぞれ接続されており、利用側熱交換器35にも接続されている。
 なお、室内機3に対応させて、紙面上側から熱媒体流路切替流量調整装置40a、熱媒体流路切替流量調整装置40b、熱媒体流路切替流量調整装置40c、熱媒体流路切替流量調整装置40dとして図示している。また、熱媒体流路の切替には、一方から他方への完全な切替だけでなく、一方から他方への部分的な切替も含んでいるものとする。
The four heat medium flow path switching flow rate adjusting devices 40 (heat medium flow path switching flow rate adjusting devices 40a to 40d) are composed of one drive device and a valve body, and the heat medium flow path is used as a heat exchanger between heat mediums. It switches between 25a and the heat exchanger between heat media 25b, and adjusts the flow rate of the heat medium to each branch. The number of heat medium flow switching flow rate adjusting devices 40 according to the number of indoor units 3 installed (here, four) is provided, and each of them can be connected to each other. . Further, in the heat medium flow switching flow rate adjusting device 40, one of them is connected to the heat exchanger related to heat medium 25a and the other is connected to the heat exchanger related to heat medium 25b. It is also connected to the exchanger 35.
In correspondence with the indoor unit 3, from the upper side of the page, the heating medium channel switching flow rate adjustment device 40a, the heating medium channel switching flow rate adjustment device 40b, the heating medium channel switching flow rate adjustment device 40c, and the heating medium channel switching flow rate adjustment are adjusted. Illustrated as device 40d. The switching of the heat medium flow path includes not only complete switching from one to the other but also partial switching from one to the other.
 また、熱媒体流路切替流量調整装置40は、流量調整も可能であり、開口面積を調整することで、配管5に流れる熱媒体の流量を制御する。熱媒体流路切替流量調整装置40は、一方が利用側熱交換器35に、他方が熱媒体間熱交換器25に、それぞれ接続されている。すなわち、熱媒体流路切替流量調整装置40は、室内機3へ流入する熱媒体の温度および流出する熱媒体の温度により室内機3に流入する熱媒体の量を調整し、室内負荷に応じた最適な熱媒体量を室内機3に提供可能とする。 Further, the heat medium flow switching flow rate adjusting device 40 can also adjust the flow rate, and controls the flow rate of the heat medium flowing through the pipe 5 by adjusting the opening area. One of the heat medium flow switching flow rate adjusting devices 40 is connected to the use side heat exchanger 35 and the other is connected to the heat exchanger related to heat medium 25. That is, the heat medium flow switching flow rate adjusting device 40 adjusts the amount of the heat medium flowing into the indoor unit 3 according to the temperature of the heat medium flowing into the indoor unit 3 and the temperature of the heat medium flowing out, according to the indoor load. An optimal amount of heat medium can be provided to the indoor unit 3.
 なお、室内機3において、停止やサーモOFFなどの負荷を必要としていないとき、または、メンテナンスなどにより、熱媒体の流路を遮断したい場合、熱媒体流路切替流量調整装置40を全閉にすることにより、室内機3への熱媒体供給を止めることができる。 When the indoor unit 3 does not require a load such as stop or thermo OFF, or when it is desired to shut off the heat medium flow path due to maintenance or the like, the heat medium flow path switching flow rate adjustment device 40 is fully closed. As a result, the supply of the heat medium to the indoor unit 3 can be stopped.
 また、中継ユニット2には、熱媒体間熱交換器25の出口側における熱媒体の温度を検出するための温度センサー55(温度センサー55a、55b)が設けられている。温度センサー55で検出された情報(温度情報)は、空気調和装置100の動作を統括制御する制御装置50に送られ、圧縮機10の駆動周波数、図示省略の送風機の回転数、第1冷媒流路切替装置11の切り替え、ポンプ31の駆動周波数、第2冷媒流路切替装置28の切り替え、熱媒体の流路の切り替え、室内機3の熱媒体流量の調整などの制御に利用されることになる。
 なお、制御装置50が中継ユニット2内に搭載されている状態を例に示しているが、これに限定するものではなく、熱源装置1または室内機3、あるいは、各ユニットに通信可能に搭載するようにしてもよい。
In addition, the relay unit 2 is provided with a temperature sensor 55 ( temperature sensors 55a and 55b) for detecting the temperature of the heat medium on the outlet side of the heat exchanger related to heat medium 25. Information (temperature information) detected by the temperature sensor 55 is sent to a control device 50 that performs overall control of the operation of the air-conditioning apparatus 100, and the driving frequency of the compressor 10, the rotational speed of the blower (not shown), the first refrigerant flow It is used for control such as switching of the path switching device 11, driving frequency of the pump 31, switching of the second refrigerant flow switching device 28, switching of the flow path of the heat medium, adjustment of the heat medium flow rate of the indoor unit 3. Become.
In addition, although the state in which the control device 50 is mounted in the relay unit 2 is shown as an example, the present invention is not limited to this, and the control device 50 is mounted to be communicable with the heat source device 1 or the indoor unit 3 or each unit. You may do it.
 制御装置50は、マイコンなどで構成され、各種検出手段での検出情報およびリモコンからの指示に基づいて、圧縮機10の駆動周波数、送風機の回転数(ON/OFF含む)、第1冷媒流路切替装置11の切り替え、ポンプ31の駆動、絞り装置26の開度、開閉装置27、29の開閉、第2冷媒流路切替装置28の切り替え、熱媒体流路切替流量調整装置40の切り替えおよび駆動など、各アクチュエーター(ポンプ31、絞り装置26)を制御するようになっている。
 本実施の形態では、制御装置50は、後述する空気除去運転モードにて、ポンプ31a、31bの回転数Nを常時取得し、空気を吸入したときの回転数Nbが検知されるとタイマを起動して次の回転数Nbまでの回転数Nb間の発生間隔を検知する。
The control device 50 is constituted by a microcomputer or the like, and based on detection information from various detection means and instructions from a remote controller, the driving frequency of the compressor 10, the rotational speed of the blower (including ON / OFF), the first refrigerant flow path. Switching of the switching device 11, driving of the pump 31, opening of the expansion device 26, opening and closing of the switching devices 27 and 29, switching of the second refrigerant flow switching device 28, switching and driving of the heat medium flow switching flow rate adjusting device 40 Etc., each actuator (pump 31, throttle device 26) is controlled.
In the present embodiment, the control device 50 constantly acquires the rotation speed N of the pumps 31a and 31b in the air removal operation mode described later, and starts a timer when the rotation speed Nb when air is sucked is detected. Then, the generation interval between the rotation speeds Nb up to the next rotation speed Nb is detected.
 熱媒体を導通する配管5は、熱媒体間熱交換器25aに接続されるものと、熱媒体間熱交換器25bに接続されるものと、で構成されている。配管5は、中継ユニット2に接続される室内機3の台数に応じて分岐(ここでは、各4分岐)されている。そして、配管5は、熱媒体流路切替流量調整装置40で接続されている。熱媒体流路切替流量調整装置40を制御することで、熱媒体間熱交換器25aからの熱媒体を利用側熱交換器35に流入させるか、熱媒体間熱交換器25bからの熱媒体を利用側熱交換器35に流入させるかが決定される。 The pipe 5 that conducts the heat medium is composed of one that is connected to the heat exchanger related to heat medium 25a and one that is connected to the heat exchanger related to heat medium 25b. The pipe 5 is branched (here, four branches each) according to the number of indoor units 3 connected to the relay unit 2. The pipe 5 is connected by a heat medium flow switching flow rate adjusting device 40. By controlling the heat medium flow switching flow rate adjusting device 40, the heat medium from the heat exchanger related to heat medium 25a flows into the use side heat exchanger 35, or the heat medium from the heat exchanger related to heat medium 25b is used as the heat medium. Whether to flow into the use side heat exchanger 35 is determined.
 そして、空気調和装置100では、圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12、開閉装置27、開閉装置29、第2冷媒流路切替装置28、熱媒体間熱交換器25の冷媒流路、絞り装置26、およびアキュムレーター19を、冷媒配管4で接続して1次側回路20を構成している。
 また、熱媒体間熱交換器25の熱媒体流路、ポンプ31、熱媒体流路切替流量調整装置40、利用側熱交換器35を、配管5で接続して2次側回路30を構成している。
 さらに、熱媒体間熱交換器25のそれぞれに複数台の利用側熱交換器35が並列に接続され、2次側回路30を複数系統としている。
In the air conditioner 100, the compressor 10, the first refrigerant flow switching device 11, the heat source side heat exchanger 12, the switching device 27, the switching device 29, the second refrigerant flow switching device 28, and heat exchange between heat media. The refrigerant flow path of the container 25, the expansion device 26, and the accumulator 19 are connected by the refrigerant pipe 4 to constitute the primary side circuit 20.
Further, the secondary medium circuit 30 is configured by connecting the heat medium flow path of the heat exchanger 25 between the heat medium 25, the pump 31, the heat medium flow path switching flow rate adjusting device 40, and the use side heat exchanger 35 with the pipe 5. ing.
Further, a plurality of use side heat exchangers 35 are connected in parallel to each of the heat exchangers 25 between heat mediums, and the secondary side circuit 30 has a plurality of systems.
 よって、空気調和装置100では、熱源装置1と中継ユニット2とが、中継ユニット2に設けられている熱媒体間熱交換器25a、25bを介して接続され、中継ユニット2と室内機3とが、熱媒体間熱交換器25a、25bを介して接続されている。すなわち、空気調和装置100では、熱媒体間熱交換器25a、25bで1次側回路20を循環する熱源側冷媒と2次側回路30を循環する熱媒体とが熱交換する。このような構成を用いることで、空気調和装置100は、室内負荷に応じた最適な冷房運転または暖房運転を実現することができる。 Therefore, in the air conditioner 100, the heat source device 1 and the relay unit 2 are connected via the heat exchangers 25a and 25b provided in the relay unit 2, and the relay unit 2 and the indoor unit 3 are connected. Are connected via heat exchangers 25a and 25b. That is, in the air conditioner 100, the heat source side refrigerant circulating in the primary circuit 20 and the heat medium circulating in the secondary circuit 30 exchange heat in the intermediate heat exchangers 25a and 25b. By using such a configuration, the air conditioner 100 can realize an optimal cooling operation or heating operation according to the indoor load.
 次に、各運転モードによる1次側回路20および2次側回路30の流れについて説明する。 Next, the flow of the primary side circuit 20 and the secondary side circuit 30 in each operation mode will be described.
[混在運転モード]
 図3は、本発明の実施の形態1に係る空気調和装置100の混在運転モード時における冷媒の流れを示す冷媒回路図である。図3では、利用側熱交換器35のうちのいずれかで温熱負荷が発生し、利用側熱交換器35のうちの残りで冷熱負荷が発生している場合である混在運転のうち、暖房主体運転モードについて説明する。
 なお、図3では、太線で表された配管が熱源側冷媒の循環する配管を示している。また、図3では、流れ方向を実線矢印で示している。
[Mixed operation mode]
FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow in the mixed operation mode of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. In FIG. 3, in the mixed operation in which the thermal load is generated in any of the use side heat exchangers 35 and the cold load is generated in the remaining of the use side heat exchangers 35, the heating main The operation mode will be described.
In addition, in FIG. 3, the pipe | tube represented by the thick line has shown the piping through which the heat source side refrigerant | coolant circulates. Moreover, in FIG. 3, the flow direction is shown by the solid line arrow.
 図3に示す暖房主体運転モードの場合、熱源装置1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を、熱源側熱交換器12を経由させずに中継ユニット2へ流入させるように切り替える。
 中継ユニット2では、ポンプ31a、31bを駆動させ、熱媒体流路切替流量調整装置40a~40dを開放し、熱媒体間熱交換器25aと冷熱負荷が発生している利用側熱交換器35との間を、熱媒体間熱交換器25bと温熱負荷が発生している利用側熱交換器35との間を、それぞれ熱媒体が循環するようにしている。また、第2冷媒流路切替装置28aは冷房側、第2冷媒流路切替装置28bは暖房側に切り替えられており、絞り装置26aは全開、開閉装置27は閉、開閉装置29は閉となっている。
In the heating main operation mode shown in FIG. 3, in the heat source device 1, the first refrigerant flow switching device 11 relays the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. Switch to flow into unit 2.
In the relay unit 2, the pumps 31a and 31b are driven, the heat medium flow switching flow rate adjusting devices 40a to 40d are opened, the heat exchanger 25a between the heat medium and the use side heat exchanger 35 generating the cooling load, The heat medium is circulated between the heat exchanger 25b between the heat medium and the use side heat exchanger 35 where the heat load is generated. The second refrigerant flow switching device 28a is switched to the cooling side, the second refrigerant flow switching device 28b is switched to the heating side, the expansion device 26a is fully opened, the opening / closing device 27 is closed, and the opening / closing device 29 is closed. ing.
 始めに、1次側回路20における熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を通り、冷媒用接続配管4aを導通し、逆止弁13dを通過し、熱源装置1から流出する。熱源装置1から流出した高温・高圧のガス冷媒は、冷媒配管4を通って中継ユニット2に流入する。中継ユニット2に流入した高温・高圧のガス冷媒は、第2冷媒流路切替装置28bを通って凝縮器として作用する熱媒体間熱交換器25bに流入する。
First, the flow of the heat source side refrigerant in the primary side circuit 20 will be described.
The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, conducts the refrigerant connection pipe 4 a, passes through the check valve 13 d, and flows out of the heat source device 1. The high-temperature and high-pressure gas refrigerant that has flowed out of the heat source device 1 flows into the relay unit 2 through the refrigerant pipe 4. The high-temperature and high-pressure gas refrigerant that has flowed into the relay unit 2 flows through the second refrigerant flow switching device 28b into the heat exchanger related to heat medium 25b that acts as a condenser.
 熱媒体間熱交換器25bに流入したガス冷媒は、2次側回路30を循環する熱媒体に放熱しながら凝縮液化し、液冷媒となる。熱媒体間熱交換器25bから流出した液冷媒は、絞り装置26bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置26aを介して蒸発器として作用する熱媒体間熱交換器25aに流入する。熱媒体間熱交換器25aに流入した低圧二相冷媒は、2次側回路30を循環する熱媒体から吸熱することで蒸発し、熱媒体を冷却する。この低圧二相冷媒は、熱媒体間熱交換器25aから流出し、第2冷媒流路切替装置28aを介して中継ユニット2から流出し、冷媒配管4を通って再び熱源装置1へ流入する。 The gas refrigerant that has flowed into the heat exchanger related to heat medium 25b is condensed and liquefied while dissipating heat to the heat medium circulating in the secondary circuit 30, and becomes liquid refrigerant. The liquid refrigerant flowing out of the heat exchanger related to heat medium 25b is expanded by the expansion device 26b and becomes a low-pressure two-phase refrigerant. This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 25a acting as an evaporator via the expansion device 26a. The low-pressure two-phase refrigerant flowing into the heat exchanger related to heat medium 25a evaporates by absorbing heat from the heat medium circulating in the secondary circuit 30 and cools the heat medium. The low-pressure two-phase refrigerant flows out of the heat exchanger related to heat medium 25a, flows out of the relay unit 2 through the second refrigerant flow switching device 28a, and flows into the heat source device 1 again through the refrigerant pipe 4.
 熱源装置1に流入した低温・低圧の二相冷媒は、逆止弁13bを通って、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で外気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11およびアキュムレーター19を介して圧縮機10へ再度吸入される。 The low-temperature and low-pressure two-phase refrigerant that has flowed into the heat source device 1 flows into the heat source side heat exchanger 12 that acts as an evaporator through the check valve 13b. And the refrigerant | coolant which flowed into the heat source side heat exchanger 12 absorbs heat from external air in the heat source side heat exchanger 12, and turns into a low temperature and low pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
 なお、絞り装置26bは、熱媒体間熱交換器25bの出口冷媒のサブクール(過冷却度)が目標値になるように開度が制御される。なお、絞り装置26bを全開とし、絞り装置26aで、サブクールを制御するようにしてもよい。 The opening degree of the expansion device 26b is controlled so that the subcooling (supercooling degree) of the outlet refrigerant of the heat exchanger related to heat medium 25b becomes a target value. Note that the expansion device 26b may be fully opened, and the subcool may be controlled by the expansion device 26a.
 次に、2次側回路30における熱媒体の流れについて説明する。
 暖房主体運転モードでは、熱媒体間熱交換器25bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ31bによって配管5内を流動させられる。ポンプ31bで加圧されて流出した暖められた熱媒体は、温熱負荷が発生している利用側熱交換器35に熱媒体流路切替流量調整装置40を介して流入する。
 また、暖房主体運転モードでは、熱媒体間熱交換器25aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ31aによって配管5内を流動させられる。ポンプ31aで加圧されて流出した冷やされた熱媒体は、冷熱負荷が発生している利用側熱交換器35に熱媒体流路切替流量調整装置40を介して流入する。
Next, the flow of the heat medium in the secondary side circuit 30 will be described.
In the heating main operation mode, the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 25b, and the heated heat medium is caused to flow in the pipe 5 by the pump 31b. The heated heat medium that has been pressurized and discharged by the pump 31b flows into the use-side heat exchanger 35 where the thermal load is generated via the heat medium flow switching flow rate adjusting device 40.
Further, in the heating main operation mode, the cold heat of the heat source side refrigerant is transmitted to the heat medium in the intermediate heat exchanger 25a, and the cooled heat medium is caused to flow in the pipe 5 by the pump 31a. The cooled heat medium that has been pressurized and flowed out by the pump 31a flows into the use-side heat exchanger 35 where the cold load is generated via the heat medium flow switching flow rate adjusting device 40.
 このとき、熱媒体流路切替流量調整装置40は、接続されている室内機3が暖房運転モードであるときは、熱媒体間熱交換器25bおよびポンプ31bが接続されている方向に切り替えられ、接続されている室内機3が冷房運転モードであるときは、熱媒体間熱交換器25aおよびポンプ31aが接続されている方向に切り替えられる。すなわち、熱媒体流路切替流量調整装置40によって、室内機3へ供給する熱媒体を暖房用または冷房用に切り替えることを可能としている。 At this time, when the connected indoor unit 3 is in the heating operation mode, the heat medium flow switching flow rate adjustment device 40 is switched to the direction in which the heat exchanger related to heat medium 25b and the pump 31b are connected, When the connected indoor unit 3 is in the cooling operation mode, the indoor unit 3 is switched to the direction in which the heat exchanger related to heat medium 25a and the pump 31a are connected. That is, the heat medium flow switching device 40 can switch the heat medium supplied to the indoor unit 3 for heating or cooling.
 利用側熱交換器35では、熱媒体が室内空気から吸熱することによる居住空間7の冷房運転、または、熱媒体が室内空気に放熱することによる居住空間7の暖房運転を行う。このとき、熱媒体流路切替流量調整装置40の作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器35に流入する。 In the use side heat exchanger 35, the cooling operation of the living space 7 by the heat medium absorbing heat from the indoor air or the heating operation of the living space 7 by the heat medium radiating heat to the indoor air is performed. At this time, the flow rate of the heat medium is controlled to a flow rate necessary to cover the air conditioning load required indoors by the action of the heat medium flow switching flow rate adjusting device 40 and flows into the use side heat exchanger 35.
 冷房運転に利用され、利用側熱交換器35を通過し若干温度が上昇した熱媒体は、熱媒体流路切替流量調整装置40を通って、熱媒体間熱交換器25aに流入し、再びポンプ31aへ吸い込まれる。暖房運転に利用され、利用側熱交換器35を通過し若干温度が低下した熱媒体は、熱媒体流路切替流量調整装置40を通って、熱媒体間熱交換器25bへ流入し、再びポンプ31bへ吸い込まれる。
 このとき、熱媒体流路切替流量調整装置40は、接続されている室内機3が暖房運転モードであるときは、熱媒体間熱交換器25bおよびポンプ31bが接続されている方向に切り替えられ、接続されている室内機3が冷房運転モードであるときは、熱媒体間熱交換器25aおよびポンプ31aが接続されている方向に切り替えられる。
The heat medium that has been used for the cooling operation and has passed through the use-side heat exchanger 35 and whose temperature has risen slightly passes through the heat medium flow switching flow rate adjusting device 40 and flows into the heat exchanger related to heat medium 25a, and is again pumped. It is sucked into 31a. The heat medium that has been used for the heating operation and has passed through the use-side heat exchanger 35 and has slightly decreased in temperature passes through the heat medium flow switching flow adjustment device 40 and flows into the heat exchanger related to heat medium 25b, and is again pumped. It is sucked into 31b.
At this time, when the connected indoor unit 3 is in the heating operation mode, the heat medium flow switching flow rate adjustment device 40 is switched to the direction in which the heat exchanger related to heat medium 25b and the pump 31b are connected, When the connected indoor unit 3 is in the cooling operation mode, the indoor unit 3 is switched to the direction in which the heat exchanger related to heat medium 25a and the pump 31a are connected.
 この間、暖かい熱媒体と冷たい熱媒体とは、熱媒体流路切替流量調整装置40の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器35へ導入される。これにより、暖房運転モードで利用された熱媒体を暖房用途として冷媒から熱を与えている熱媒体間熱交換器25bへと流入させ、冷房運転モードで利用された熱媒体を冷房用途として冷媒が熱を受け取っている熱媒体間熱交換器25aへと流入させ、再度それぞれが冷媒と熱交換を行った後、ポンプ31a、31bへと搬送される。 During this time, the warm heat medium and the cold heat medium are introduced into the use-side heat exchanger 35 having a heat load and a heat load, respectively, without being mixed by the action of the heat medium flow switching flow control device 40. As a result, the heat medium used in the heating operation mode is caused to flow into the heat exchanger related to heat medium 25b, which gives heat from the refrigerant for heating use, and the heat medium used in the cooling operation mode is used for cooling use. The heat is introduced into the heat exchanger related to heat medium 25a that receives the heat, and each heat exchanges again with the refrigerant, and then is transferred to the pumps 31a and 31b.
 なお、居住空間7にて必要とされる空調負荷は、暖房側においては温度センサー55bで検出された温度と利用側熱交換器35から流出した熱媒体の温度との差を、冷房側においては利用側熱交換器35から流出した熱媒体の温度と温度センサー55aで検出された温度との差を目標値として保つように制御することにより、賄うことができる。 The air conditioning load required in the living space 7 is the difference between the temperature detected by the temperature sensor 55b on the heating side and the temperature of the heat medium flowing out from the use side heat exchanger 35 on the cooling side. This can be covered by controlling the difference between the temperature of the heat medium flowing out from the use side heat exchanger 35 and the temperature detected by the temperature sensor 55a as a target value.
[全暖房運転モード]
 図4は、本発明の実施の形態1に係る空気調和装置100の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。図4では、利用側熱交換器35a~35dの全部で温熱負荷が発生している場合を例に全暖房運転モードについて説明する。なお、図4では、流れ方向を実線矢印で示している。
[Heating operation mode]
FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is in the heating only operation mode. In FIG. 4, the heating only operation mode will be described by taking as an example a case where a heating load is generated in all of the use side heat exchangers 35a to 35d. In FIG. 4, the flow direction is indicated by a solid arrow.
 図4に示す全暖房運転モードの場合には、熱源装置1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒が熱源側熱交換器12を経由せずに中継ユニット2へ流入するように切り替える。
 中継ユニット2では、ポンプ31a、31bを駆動させ、熱媒体流路切替流量調整装置40a~40dを開放し、熱媒体間熱交換器25a、25bのそれぞれと利用側熱交換器35a~35dとの間を熱媒体が循環するようにしている。また、第2冷媒流路切替装置28aおよび第2冷媒流路切替装置28bは暖房側に切り替えられ、開閉装置27は閉、開閉装置29は開となっている。
In the heating only operation mode shown in FIG. 4, in the heat source device 1, the heat source side refrigerant discharged from the compressor 10 does not pass through the heat source side heat exchanger 12 in the first refrigerant flow switching device 11. It switches so that it may flow into relay unit 2.
In the relay unit 2, the pumps 31a and 31b are driven, the heat medium flow switching flow rate adjusting devices 40a to 40d are opened, and the heat exchangers 25a and 25b between the heat medium and the use side heat exchangers 35a to 35d are connected. The heat medium circulates between them. The second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b are switched to the heating side, the opening / closing device 27 is closed, and the opening / closing device 29 is open.
 始めに、1次側回路20における熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を通り、冷媒用接続配管4aを導通し、逆止弁13dを通過し、熱源装置1から流出する。熱源装置1から流出した高温・高圧のガス冷媒は、冷媒配管4を通って中継ユニット2に流入する。中継ユニット2に流入した高温・高圧のガス冷媒は、分岐されて第2冷媒流路切替装置28a、28bのそれぞれを通って、熱媒体間熱交換器25a、25bのそれぞれに流入する。
First, the flow of the heat source side refrigerant in the primary side circuit 20 will be described.
The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, conducts the refrigerant connection pipe 4 a, passes through the check valve 13 d, and flows out of the heat source device 1. The high-temperature and high-pressure gas refrigerant that has flowed out of the heat source device 1 flows into the relay unit 2 through the refrigerant pipe 4. The high-temperature and high-pressure gas refrigerant that has flowed into the relay unit 2 is branched, passes through the second refrigerant flow switching devices 28a and 28b, and flows into the heat exchangers 25a and 25b, respectively.
 熱媒体間熱交換器25a、25bに流入した高温・高圧のガス冷媒は、2次側回路30を通る熱媒体に放熱しながら凝縮液化し、高圧の液冷媒となる。熱媒体間熱交換器25a、25bから流出した液冷媒は、絞り装置26a、26bで膨張させられ、低温・低圧の二相冷媒となる。これらの二相冷媒は、合流した後、開閉装置29を通って、中継ユニット2から流出し、冷媒配管4を通って再び熱源装置1に流入する。熱源装置1に流入した冷媒は、冷媒用接続配管4bを導通し、逆止弁13bを通過して、蒸発器として作用する熱源側熱交換器12に流入する。 The high-temperature and high-pressure gas refrigerant that has flowed into the intermediate heat exchangers 25a and 25b is condensed and liquefied while dissipating heat to the heat medium passing through the secondary circuit 30, and becomes a high-pressure liquid refrigerant. The liquid refrigerant flowing out from the heat exchangers 25a and 25b is expanded by the expansion devices 26a and 26b, and becomes a low-temperature and low-pressure two-phase refrigerant. These two-phase refrigerants merge, flow out of the relay unit 2 through the opening / closing device 29, and flow into the heat source device 1 again through the refrigerant pipe 4. The refrigerant flowing into the heat source device 1 is conducted through the refrigerant connection pipe 4b, passes through the check valve 13b, and flows into the heat source side heat exchanger 12 that functions as an evaporator.
 そして、熱源側熱交換器12に流入した熱源側冷媒は、熱源側熱交換器12で室外空間6の空気(以下、外気と称する)から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11およびアキュムレーター19を介して圧縮機10に再度吸入される。 The heat-source-side refrigerant that has flowed into the heat-source-side heat exchanger 12 absorbs heat from the air in the outdoor space 6 (hereinafter referred to as “outside air”) by the heat-source-side heat exchanger 12, and becomes a low-temperature / low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
 このとき、絞り装置26は、熱媒体間熱交換器25と絞り装置26との間を流れる熱源側冷媒の圧力を飽和温度に換算した値と、熱媒体間熱交換器25の出口側の温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。なお、熱媒体間熱交換器25の中間位置の温度が測定できる場合は、その中間位置での温度を換算した飽和温度の代わりに用いてもよい。この場合、圧力センサーを設置しなくて済み、安価にシステムを構成できる。 At this time, the expansion device 26 has a value obtained by converting the pressure of the heat-source-side refrigerant flowing between the heat exchanger related to heat medium 25 and the expansion device 26 into a saturation temperature, and the temperature on the outlet side of the heat exchanger related to heat medium 25. The degree of opening is controlled so that the subcool (degree of supercooling) obtained as a difference from the above becomes constant. In addition, when the temperature of the intermediate position of the heat exchanger 25 between heat media can be measured, you may use it instead of the saturation temperature which converted the temperature in the intermediate position. In this case, it is not necessary to install a pressure sensor, and the system can be configured at low cost.
 次に、2次側回路30における熱媒体の流れについて説明する。
 全暖房運転モードでは、熱媒体間熱交換器25a、25bの双方で熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ31a、31bによって配管5内を流動させられる。ポンプ31a、31bで加圧されて流出した熱媒体は、熱媒体流路切替流量調整装置40を介して、利用側熱交換器35a~35dに流入する。そして、熱媒体が利用側熱交換器35a~35dで室内空気に放熱することで、居住空間7の暖房を行う。
Next, the flow of the heat medium in the secondary side circuit 30 will be described.
In the heating only operation mode, the heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchangers 25a and 25b, and the heated heat medium is caused to flow in the pipe 5 by the pumps 31a and 31b. The heat medium pressurized and discharged by the pumps 31a and 31b flows into the use side heat exchangers 35a to 35d via the heat medium flow switching flow rate adjusting device 40. The living space 7 is heated by the heat medium radiating heat to the indoor air by the use side heat exchangers 35a to 35d.
 それから、熱媒体は、利用側熱交換器35a~35dから流出して熱媒体流路切替流量調整装置40に再度流入する。このとき、熱媒体流路切替流量調整装置40の流量調整作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器35a~35dに流入する。熱媒体流路切替流量調整装置40から流出した熱媒体は、熱媒体間熱交換器25a、25bに流入し、室内機3を通じて居住空間7に供給した分の熱量を冷媒側から受け取り、再びポンプ31a、31bに吸い込まれる。 Then, the heat medium flows out of the use side heat exchangers 35a to 35d and flows into the heat medium flow switching flow rate adjusting device 40 again. At this time, the heat medium flow switching device 40 controls the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use side heat exchangers 35a to 35d are used. Flow into. The heat medium that has flowed out of the heat medium flow switching flow control device 40 flows into the heat exchangers 25a and 25b between the heat medium, receives the amount of heat supplied to the living space 7 through the indoor unit 3 from the refrigerant side, and pumps again. It is sucked into 31a and 31b.
 なお、居住空間7にて必要とされる空調負荷は、温度センサー55aで検出された温度、あるいは、温度センサー55bで検出された温度と利用側熱交換器35から流出した熱媒体の温度との差を目標値に保つように熱媒体流路切替流量調整装置40によって制御することにより、賄うことができる。熱媒体間熱交換器25の出口温度は、温度センサー55aまたは温度センサー55bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。 The air conditioning load required in the living space 7 is the temperature detected by the temperature sensor 55a, or the temperature detected by the temperature sensor 55b and the temperature of the heat medium flowing out from the use side heat exchanger 35. This can be covered by controlling the flow rate of the heat medium flow switching device 40 so as to keep the difference at the target value. As the outlet temperature of the heat exchanger related to heat medium 25, the temperature of either the temperature sensor 55a or the temperature sensor 55b may be used, or the average temperature thereof may be used.
 このとき、前述の通り、熱媒体間熱交換器25a、25bの双方に冷媒は流入していると共に、それぞれに熱媒体を搬送するポンプ31a、31bも動作をしているため、分岐口に接続されている複数の室内機3に対しては、それぞれの熱媒体間熱交換器25により熱交換を行った熱媒体を各室内負荷に応じて適切に搬送する必要がある。 At this time, as described above, the refrigerant is flowing into both of the heat exchangers 25a and 25b, and the pumps 31a and 31b for transporting the heat medium are also operated, so that they are connected to the branch ports. For the plurality of indoor units 3, it is necessary to appropriately transport the heat medium subjected to heat exchange by the heat exchangers 25 between the heat mediums according to each indoor load.
[空気除去運転モード]
 図5は、本発明の実施の形態1に係る空気調和装置100の空気除去運転モード時における熱媒体の流れを示す図である。空気除去運転モードとは、たとえば空気調和装置100の施工(設置)時(前述した実際の冷暖房運転による運用前)において、2次側回路30に熱媒体の充填を行うモードである。
[Air removal operation mode]
FIG. 5 is a diagram showing the flow of the heat medium during the air removal operation mode of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. The air removal operation mode is a mode in which, for example, the secondary side circuit 30 is filled with a heat medium during construction (installation) of the air conditioner 100 (before operation by the actual air conditioning operation described above).
 ここで、空気除去運転モードでは、1次側回路20の運転は任意であるため、ここでは1次側回路20についての運転は行わず、2次側回路30のみ運転させるものとして説明する。したがって、図5に基づいて2次側回路30における熱媒体の流れについて説明する。 Here, since the operation of the primary circuit 20 is arbitrary in the air removal operation mode, the operation of the primary circuit 20 is not performed here, and only the secondary circuit 30 is operated. Therefore, the flow of the heat medium in the secondary circuit 30 will be described with reference to FIG.
 空気除去運転モードでは、熱媒体はポンプ31の加圧によって配管5内を流動させられることになる。ポンプ31a、31bに吸い込まれ、加圧されて流出した熱媒体は、熱媒体流路切替流量調整装置40を通過して利用側熱交換器35a~35dに流入する。ここで、例えば、室内機3a~3dが有する送風機を停止状態とし、利用側熱交換器35a~35dにおいて熱媒体と室内空気との熱交換を積極的には行わないようにしてもよい。
 利用側熱交換器35a~35dを通過した熱媒体は、熱媒体流路切替流量調整装置40に戻り、熱媒体間熱交換器25a、25bを通過し、再びポンプ31a、31bに吸い込まれる。
In the air removal operation mode, the heat medium is caused to flow in the pipe 5 by the pressurization of the pump 31. The heat medium sucked into the pumps 31a and 31b and pressurized and flowed out passes through the heat medium flow switching flow rate adjusting device 40 and flows into the use side heat exchangers 35a to 35d. Here, for example, the blowers included in the indoor units 3a to 3d may be stopped so that the heat exchange between the heat medium and the indoor air is not actively performed in the use side heat exchangers 35a to 35d.
The heat medium that has passed through the use side heat exchangers 35a to 35d returns to the heat medium flow switching flow control device 40, passes through the heat exchangers between heat mediums 25a and 25b, and is sucked into the pumps 31a and 31b again.
 また、空気除去運転モードでは、空気除去弁41、42を開弁し、空気除去弁41、42から熱媒体内の空気を除去する。空気除去弁41、42は、空気除去運転モードが完了すると、閉じられる。 In the air removal operation mode, the air removal valves 41 and 42 are opened, and the air in the heat medium is removed from the air removal valves 41 and 42. The air removal valves 41 and 42 are closed when the air removal operation mode is completed.
 また、ここでは1次側回路20の運転を行っていないが、たとえば空気除去運転モードにおいて、全暖房運転モードと同じように運転を行うようにしてもよい。熱媒体の温度を高くすることで、熱媒体中に含まれる空気の析出を促すことができ、さらに効率よく回路内の空気を抜くことができる。 In addition, although the operation of the primary side circuit 20 is not performed here, for example, in the air removal operation mode, the operation may be performed in the same manner as in the heating only operation mode. By increasing the temperature of the heat medium, precipitation of air contained in the heat medium can be promoted, and the air in the circuit can be extracted more efficiently.
 図6は、本発明の実施の形態1に係る制御装置50が行う空気除去運転モード時におけるフローを説明する図である。図6に基づいて制御装置50が空気除去運転モード時において行う処理の内容について説明する。 FIG. 6 is a diagram illustrating a flow in the air removal operation mode performed by the control device 50 according to Embodiment 1 of the present invention. Based on FIG. 6, the content of the process which the control apparatus 50 performs in the air removal operation mode is demonstrated.
 制御装置50は、施工者などが空気除去運転モード用のスイッチをONにしたものと判断すると空気除去運転モードを開始する(ステップS1)。
 運転開始後、2次側回路内の空気除去弁41、42を開弁する(ステップS2)。
 その後、ポンプ31a、31bを所定時間(例えば10秒)停止させ、間欠的に駆動させる(ステップS3)。
When it is determined that the installer or the like has turned on the switch for the air removal operation mode, the control device 50 starts the air removal operation mode (step S1).
After the operation is started, the air removal valves 41 and 42 in the secondary circuit are opened (step S2).
Thereafter, the pumps 31a and 31b are stopped for a predetermined time (for example, 10 seconds) and driven intermittently (step S3).
 ここで、ステップS3中に2次側回路30内の空気が抜けきったか否かをポンプ31a、31bの回転数により判定する制御を行う(ステップS4)。
 ポンプ31a、31bは、たとえば水、不凍液、水と不凍液の混合液、水と防食効果が高い添加剤の混合液などが使用できる水ポンプを使用するため、空気を吸入するとケース内に空気の隙間が生じてポンプ31a、31bが空回りする。そのため、空気を吸入するとポンプ31a、31bの回転数は、正常回転数に比して空気を吸入したときの回転数が一時的に上昇する。
Here, control is performed to determine whether or not the air in the secondary circuit 30 has been exhausted during step S3 based on the rotational speeds of the pumps 31a and 31b (step S4).
The pumps 31a and 31b use water pumps that can use, for example, water, antifreeze, a mixture of water and antifreeze, or a mixture of water and an additive having a high anticorrosive effect. Occurs, causing the pumps 31a and 31b to idle. Therefore, when air is inhaled, the rotational speed of the pumps 31a and 31b temporarily increases as compared to the normal rotational speed.
 図7は、本発明の実施の形態1に係る空気除去運転時におけるポンプ31a、31bの回転数と空気除去運転の運転時間の関係を示す図である。
 図7に示すように、空気を吸入するとポンプ31a、31bの回転数Nは、正常回転数Naに比して空気を吸入したときの回転数Nbが一時的に上昇する。
 制御装置50がポンプ31a、31bの回転数Nを常時取得しているとき、2次側回路30内に空気が大量に残っていると、空気を吸入したときの回転数Nbを頻発して検知し、2次側回路30内の空気が抜けていくと、この回転数Nbを検知する頻度は減少していく。
 そこで、回転数Nbが検知されてから制御装置50のタイマを起動し、経過時間Txをカウントする。Txが一定時間(Te)以上経過すると(Tx≧Teが成立したとき)、2次側回路30内に空気が残っていないと判断して、空気除去運転を終了する(ステップS13)。
 すなわち、制御装置50は、空気除去運転を、ポンプ31a、31bの空気を吸入したときの回転数Nbの発生間隔(経過時間Tx)が予め設定した時間間隔(Te)以上になったときに完了する。言い換えると、制御装置50は、空気除去運転を、ポンプ31a、31bの空気を吸入したときの回転数Nbの発生が予め設定した時間(Te)内に連続しないときに完了するともいえる。
FIG. 7 is a diagram showing the relationship between the rotational speeds of the pumps 31a and 31b and the operation time of the air removal operation during the air removal operation according to Embodiment 1 of the present invention.
As shown in FIG. 7, when air is inhaled, the rotational speed N of the pumps 31a and 31b temporarily increases as compared to the normal rotational speed Na.
When the control device 50 constantly acquires the rotational speed N of the pumps 31a and 31b, if a large amount of air remains in the secondary circuit 30, the rotational speed Nb when air is sucked in is frequently detected. When the air in the secondary circuit 30 is released, the frequency of detecting the rotational speed Nb decreases.
Therefore, after the rotation speed Nb is detected, the timer of the control device 50 is started and the elapsed time Tx is counted. When Tx elapses for a certain time (Te) or more (when Tx ≧ Te is established), it is determined that no air remains in the secondary circuit 30, and the air removal operation is terminated (step S13).
That is, the control device 50 completes the air removal operation when the generation interval (elapsed time Tx) of the rotation speed Nb when the air of the pumps 31a and 31b is sucked becomes equal to or longer than a preset time interval (Te). To do. In other words, the control device 50 can be said to complete the air removal operation when the generation of the rotational speed Nb when the air of the pumps 31a and 31b is sucked does not continue within a preset time (Te).
 ここで、判定時間Teを定義する。空気の気泡がポンプ31a、31bより吐出されてから、2次側回路30を一周する時間をTrとするとTe=Tr×3とする。
 このとき、Trは、ポンプ31a、31bの回転数Nから求められる水の流量Grと、中継ユニット2から最遠方に設置された室内機3に接続されている配管5の長さLと、配管5の断面積Sから、Tr=L/(Gr/S)とする。
Here, the determination time Te is defined. Te = Tr × 3, where Tr is the time taken to make a round of the secondary circuit 30 after the air bubbles are discharged from the pumps 31a and 31b.
At this time, Tr is the flow rate Gr of water obtained from the rotational speed N of the pumps 31a and 31b, the length L of the pipe 5 connected to the indoor unit 3 installed farthest from the relay unit 2, and the pipe. From the cross-sectional area S of 5, Tr = L / (Gr / S).
 ステップS4の終了後、ステップS3を開始してから所定時間(たとえば20分)経過したか否かを判断する(ステップS5)。
 所定時間を経過していないと判断すると、ステップS3~S5の処理を繰り返し行う。一方、所定時間経過したものと判断するとステップS3の間欠運転を終了し、ステップS6に移行する。
After the end of step S4, it is determined whether or not a predetermined time (for example, 20 minutes) has elapsed since the start of step S3 (step S5).
If it is determined that the predetermined time has not elapsed, the processes of steps S3 to S5 are repeated. On the other hand, if it is determined that the predetermined time has elapsed, the intermittent operation in step S3 is terminated, and the process proceeds to step S6.
 ステップS5を終了すると、個別室内機運転を開始する(ステップS6)。
 ステップS6では、熱媒体流路切替流量調整装置40aの開度を最大にし、熱媒体流路切替流量調整装置40b、40c、40dを閉じて室内機3b、3c、3d側に熱媒体が流れないようにする。また、室内機3aの運転後、室内機3b、3c、3dのそれぞれについても同じ動作を行う。このため、2次側回路30における経路長が短くなり、出力に対する熱媒体の流速を高くすることができる。
When step S5 is completed, the individual indoor unit operation is started (step S6).
In step S6, the opening degree of the heat medium flow switching flow rate adjusting device 40a is maximized, the heat medium flow switching flow rate adjusting devices 40b, 40c, and 40d are closed, and the heat medium does not flow toward the indoor units 3b, 3c, and 3d. Like that. Further, after the operation of the indoor unit 3a, the same operation is performed for each of the indoor units 3b, 3c, and 3d. For this reason, the path length in the secondary side circuit 30 becomes short, and the flow rate of the heat medium with respect to the output can be increased.
 次に、ステップS6中に2次側回路30内の空気が抜けきったか否かをポンプ31a、31bの回転数Nにより判定する制御を行う(ステップS7)。
 ステップS7は前述のステップS4と同様の計算を行い、Tx≧Teが成立したとき、空気除去運転を終了する(ステップS13)。
 ステップS7にてTx≧Teが成立しないとき、ステップS6を開始してから所定時間(たとえば仕様分岐数×10分)経過したか否かを判断する(ステップS8)。
 所定時間を経過していないと判断すると、ステップS6~S8の処理を繰り返し行う。所定時間経過したものと判断すると、ステップS6の個別室内機運転を終了し、ステップS9に移行する。
Next, in step S6, control is performed to determine whether or not the air in the secondary circuit 30 has been exhausted based on the rotational speed N of the pumps 31a and 31b (step S7).
In step S7, the same calculation as in step S4 described above is performed, and when Tx ≧ Te is established, the air removal operation is terminated (step S13).
When Tx ≧ Te is not established in step S7, it is determined whether or not a predetermined time (for example, the number of specified branches × 10 minutes) has elapsed since the start of step S6 (step S8).
If it is determined that the predetermined time has not elapsed, steps S6 to S8 are repeated. If it is determined that the predetermined time has elapsed, the individual indoor unit operation in step S6 is terminated, and the process proceeds to step S9.
 ステップS8を終了すると、全ての熱媒体流路切替流量調整装置40a~40dの開度を最大にさせて、全室内機3a~3dにおいて暖房を行う(ステップS9)。
 このため、1次側回路20についても全暖房運転モードでの運転を行う。ここで、室内機3の送風機(図示せず)を駆動させるか否かについては、特に限定しない。
When step S8 is completed, all the indoor units 3a to 3d are heated by maximizing the openings of all the heat medium flow switching flow rate adjusting devices 40a to 40d (step S9).
For this reason, the primary side circuit 20 is also operated in the heating only operation mode. Here, whether or not to drive the blower (not shown) of the indoor unit 3 is not particularly limited.
 次に、ステップS9中に2次側回路30内の空気が抜けきったか否かをポンプ31a、31bの回転数Nにより判定する制御を行う(ステップS10)。
 ステップS10は前述のステップS4、S7と同様の計算を行い、Tx≧Teが成立したとき、空気除去運転を終了する(ステップS13)。
Next, in step S9, control is performed to determine whether or not the air in the secondary circuit 30 has been exhausted based on the rotational speed N of the pumps 31a and 31b (step S10).
In step S10, the same calculation as in steps S4 and S7 described above is performed, and when Tx ≧ Te is satisfied, the air removal operation is terminated (step S13).
 次に、ステップS10にてTx≧Teが成立しないとき、ステップS9を開始してから所定時間(たとえば20分)経過したかを判断する(ステップS11)。
 所定時間を経過していないと判断すると、ステップS9~S11の処理を繰り返し行う。
Next, when Tx ≧ Te is not established in step S10, it is determined whether or not a predetermined time (for example, 20 minutes) has elapsed since the start of step S9 (step S11).
If it is determined that the predetermined time has not elapsed, the processes of steps S9 to S11 are repeated.
 所定時間が経過したとき、2次側回路30内の空気が抜けきったか否かをポンプ31a、31bの回転数Nにより判定する制御を行う(ステップS12)。すなわち、ステップS12では、再度Tx≧Teが成立したか否かの判定を行う。
 Tx≧Teが成立したならば空気除去運転モードによる運転を完了する(ステップS13)。
 Tx≧Teが成立しないとき、ステップS3に移行して運転を再開する。
When a predetermined time has elapsed, control is performed to determine whether or not the air in the secondary circuit 30 has been exhausted based on the rotational speed N of the pumps 31a and 31b (step S12). That is, in step S12, it is determined again whether Tx ≧ Te is satisfied.
If Tx ≧ Te is established, the operation in the air removal operation mode is completed (step S13).
When Tx ≧ Te is not established, the process proceeds to step S3 and the operation is resumed.
 以上のように、実施の形態1の空気調和装置100によれば、2次側回路30を施工したときに、空気除去運転の完了を制御装置50により自動で判定するため、効率良く空気除去を行うことができる。 As described above, according to the air conditioner 100 of the first embodiment, when the secondary circuit 30 is installed, the control device 50 automatically determines the completion of the air removal operation. It can be carried out.
 以上説明した本実施の形態では、2次側回路30を施工したときに空気除去弁41、42を開弁してポンプ31a、31bを駆動させて熱媒体を循環させて2次側回路30内の空気を抜く空気除去運転を実行し、空気除去運転の完了を、ポンプ31a、31bの回転数に基づいて判定を行う制御装置50を備える。これによれば、空気除去運転の完了を、ポンプ31a、31bの回転数に基づいて判定を行い、空気除去運転を完了する判断を定量的に行うので、2次側回路30内の空気の残留や施工時間の長期化を回避することができる。 In the present embodiment described above, when the secondary circuit 30 is constructed, the air removal valves 41 and 42 are opened, the pumps 31a and 31b are driven to circulate the heat medium, and the inside of the secondary circuit 30 The control apparatus 50 which performs the air removal operation which extracts the air of this, and determines completion of air removal operation based on the rotation speed of pump 31a, 31b is provided. According to this, the completion of the air removal operation is determined based on the number of rotations of the pumps 31a and 31b, and the determination to complete the air removal operation is quantitatively performed. And prolonged construction time can be avoided.
 制御装置50は、空気除去運転の完了を、ポンプ31a、31bの空気を吸入したときの回転数Nbの発生に基づいて判定を行う。これによれば、空気除去運転を完了する判断をポンプ31a、31bの空気を吸入したときの回転数Nbの発生に基づいて定量的に行うので、2次側回路30内の空気の残留や施工時間の長期化を回避することができる。 The control device 50 determines the completion of the air removal operation based on the generation of the rotational speed Nb when the air of the pumps 31a and 31b is sucked. According to this, since the determination to complete the air removal operation is quantitatively made based on the generation of the rotational speed Nb when the air of the pumps 31a and 31b is sucked, the residual air in the secondary circuit 30 and the construction Prolonged time can be avoided.
 制御装置50は、空気除去運転を、ポンプ31a、31bの空気を吸入したときの回転数Nbの発生間隔(経過時間Tx)が予め設定した時間間隔(Te)以上になったときに完了する。これによれば、空気除去運転を完了する判断をTx≧Teの関係式に基づいて定量的に行うので、2次側回路30内の空気の残留や施工時間の長期化を回避することができる。 The control device 50 completes the air removal operation when the generation interval (elapsed time Tx) of the rotational speed Nb when the air of the pumps 31a and 31b is sucked becomes equal to or longer than a preset time interval (Te). According to this, since the determination to complete the air removal operation is quantitatively performed based on the relational expression of Tx ≧ Te, it is possible to avoid the remaining of air in the secondary circuit 30 and the lengthening of the construction time. .
 1 熱源装置、2 中継ユニット、3(3a、3b、3c、3d) 室内機、4 冷媒配管、4a、4b 冷媒用接続配管、5 配管、6 室外空間、7 居住空間、8 非居住空間、9 建物、10 圧縮機、11 第1冷媒流路切替装置、12 熱源側熱交換器、13a、13b、13c、13d 逆止弁、19 アキュムレーター、20 1次側回路、25(25a、25b) 熱媒体間熱交換器、26(26a、26b) 絞り装置、27、29 開閉装置、28(28a、28b) 第2冷媒流路切替装置、30 2次側回路、31(31a、31b) ポンプ、35(35a、35b、35c、35d) 利用側熱交換器、40(40a、40b、40c、40d) 熱媒体流路切替流量調整装置、41、42 空気除去弁、50 制御装置、55(55a、55b) 温度センサー、100 空気調和装置。 1 Heat source device, 2 relay unit, 3 (3a, 3b, 3c, 3d) indoor unit, 4 refrigerant pipe, 4a, 4b refrigerant connection pipe, 5 pipe, 6 outdoor space, 7 residential space, 8 non-residential space, 9 Building, 10 compressor, 11 first refrigerant flow switching device, 12 heat source side heat exchanger, 13a, 13b, 13c, 13d check valve, 19 accumulator, 20 primary side circuit, 25 (25a, 25b) heat Inter-medium heat exchanger, 26 (26a, 26b) throttle device, 27, 29 switchgear, 28 (28a, 28b) second refrigerant flow switching device, 30 secondary circuit, 31 (31a, 31b) pump, 35 (35a, 35b, 35c, 35d) User side heat exchanger, 40 (40a, 40b, 40c, 40d) Heat medium flow switching flow control device, 41, 42 Air removal valve, 0 controller, 55 (55a, 55b) a temperature sensor, 100 an air conditioner.

Claims (3)

  1.  熱源側冷媒を圧縮する圧縮機、前記熱源側冷媒を熱交換させる熱源側熱交換器、前記熱源側冷媒を圧力調整する絞り装置および前記熱源側冷媒と熱媒体との熱交換を行う熱媒体間熱交換器の熱源側冷媒側を配管接続して構成する冷媒循環回路と、
     前記熱媒体間熱交換器の熱媒体側、前記熱媒体を循環させるポンプおよび前記熱媒体と空調対象空間の空気との熱交換を行う利用側熱交換器を配管接続して構成された熱媒体循環回路と、
    を備え、
     前記熱媒体循環回路は、内部の空気を放出させる空気除去弁を有し、
     前記熱媒体循環回路を施工したときに前記空気除去弁を開弁して前記ポンプを駆動させて前記熱媒体を循環させて前記熱媒体循環回路内の空気を抜く空気除去運転を実行し、前記空気除去運転の完了を、前記ポンプの回転数に基づいて判定を行う制御装置を備える空気調和装置。
    A compressor that compresses the heat source side refrigerant, a heat source side heat exchanger that exchanges heat with the heat source side refrigerant, a throttling device that adjusts the pressure of the heat source side refrigerant, and a heat medium that exchanges heat between the heat source side refrigerant and the heat medium A refrigerant circulation circuit configured by pipe connection of the heat source side refrigerant side of the heat exchanger;
    A heat medium configured by pipe-connecting a heat medium side of the heat exchanger between the heat medium, a pump for circulating the heat medium, and a use side heat exchanger for exchanging heat between the heat medium and the air in the air conditioning target space A circulation circuit;
    With
    The heat medium circulation circuit has an air removal valve that discharges internal air,
    When the heat medium circulation circuit is installed, the air removal valve is opened and the pump is driven to circulate the heat medium to remove the air in the heat medium circulation circuit, An air conditioner including a control device that determines completion of an air removal operation based on the number of rotations of the pump.
  2.  前記制御装置は、前記空気除去運転の完了を、前記ポンプの空気を吸入したときの回転数の発生に基づいて判定を行う請求項1に記載の空気調和装置。 The air conditioner according to claim 1, wherein the control device determines completion of the air removal operation based on generation of a rotation speed when the air of the pump is sucked.
  3.  前記制御装置は、前記空気除去運転を、前記ポンプの空気を吸入したときの回転数の発生間隔が予め設定した時間間隔以上になったときに完了する請求項1または2に記載の空気調和装置。 3. The air conditioner according to claim 1, wherein the control device completes the air removal operation when a generation interval of a rotation speed when the air of the pump is sucked becomes equal to or longer than a preset time interval. .
PCT/JP2015/060391 2015-04-01 2015-04-01 Air-conditioning device WO2016157481A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1711510.6A GB2549231B (en) 2015-04-01 2015-04-01 Air-conditioning apparatus
PCT/JP2015/060391 WO2016157481A1 (en) 2015-04-01 2015-04-01 Air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060391 WO2016157481A1 (en) 2015-04-01 2015-04-01 Air-conditioning device

Publications (1)

Publication Number Publication Date
WO2016157481A1 true WO2016157481A1 (en) 2016-10-06

Family

ID=57006627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060391 WO2016157481A1 (en) 2015-04-01 2015-04-01 Air-conditioning device

Country Status (2)

Country Link
GB (1) GB2549231B (en)
WO (1) WO2016157481A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020246502A1 (en) * 2019-06-03 2020-12-10 ダイキン工業株式会社 Apparatus management device, heat source system, management device, and apparatus management system
JP2020197346A (en) * 2019-06-03 2020-12-10 ダイキン工業株式会社 Device management apparatus and heat source system
JP2023510358A (en) * 2020-01-21 2023-03-13 エルジー エレクトロニクス インコーポレイティド air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7199594B2 (en) * 2020-03-04 2023-01-05 三菱電機株式会社 Air conditioner and method for discharging air from air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269174A (en) * 2002-03-14 2003-09-25 Sanyo Electric Co Ltd Air conditioning device
JP2010048447A (en) * 2008-08-20 2010-03-04 Sanyo Electric Co Ltd Air conditioner
JP2010230260A (en) * 2009-03-27 2010-10-14 Sanyo Electric Co Ltd Air conditioner
WO2013171781A1 (en) * 2012-05-14 2013-11-21 三菱電機株式会社 Air conditioning device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269174A (en) * 2002-03-14 2003-09-25 Sanyo Electric Co Ltd Air conditioning device
JP2010048447A (en) * 2008-08-20 2010-03-04 Sanyo Electric Co Ltd Air conditioner
JP2010230260A (en) * 2009-03-27 2010-10-14 Sanyo Electric Co Ltd Air conditioner
WO2013171781A1 (en) * 2012-05-14 2013-11-21 三菱電機株式会社 Air conditioning device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020246502A1 (en) * 2019-06-03 2020-12-10 ダイキン工業株式会社 Apparatus management device, heat source system, management device, and apparatus management system
JP2020197346A (en) * 2019-06-03 2020-12-10 ダイキン工業株式会社 Device management apparatus and heat source system
CN113950599A (en) * 2019-06-03 2022-01-18 大金工业株式会社 Device management apparatus, heat source system, management apparatus, and device management system
CN113950599B (en) * 2019-06-03 2023-09-22 大金工业株式会社 Device management apparatus, heat source system, management apparatus, and device management system
JP7421057B2 (en) 2019-06-03 2024-01-24 ダイキン工業株式会社 Equipment management device and heat source system
JP2023510358A (en) * 2020-01-21 2023-03-13 エルジー エレクトロニクス インコーポレイティド air conditioner
JP7455214B2 (en) 2020-01-21 2024-03-25 エルジー エレクトロニクス インコーポレイティド air conditioner

Also Published As

Publication number Publication date
GB2549231A9 (en) 2020-05-27
GB201711510D0 (en) 2017-08-30
GB2549231A (en) 2017-10-11
GB2549231B (en) 2020-08-12

Similar Documents

Publication Publication Date Title
JP6385436B2 (en) Air conditioner
JP6141454B2 (en) Air conditioner and control method of air conditioner
US9513036B2 (en) Air-conditioning apparatus
JP5752148B2 (en) Air conditioner
US20150176864A1 (en) Air-conditioning apparatus
JP5774128B2 (en) Air conditioner
US9638430B2 (en) Air-conditioning apparatus
WO2014128970A1 (en) Air conditioner
WO2014132378A1 (en) Air conditioning device
US9816736B2 (en) Air-conditioning apparatus
JP5972397B2 (en) Air conditioner and design method thereof
WO2016157481A1 (en) Air-conditioning device
US10451305B2 (en) Air-conditioning apparatus
US9599380B2 (en) Refrigerant charging method for air-conditioning apparatus and air-conditioning apparatus
WO2014083652A1 (en) Air conditioning device
WO2014083678A1 (en) Air conditioning device
US9587861B2 (en) Air-conditioning apparatus
WO2016071978A1 (en) Air conditioning device
WO2014128971A1 (en) Air conditioner
WO2015079531A1 (en) Air conditioning apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887628

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201711510

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150401

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP