WO2016154958A1 - 一种具有同位素同时测量功能的加速器质谱仪 - Google Patents

一种具有同位素同时测量功能的加速器质谱仪 Download PDF

Info

Publication number
WO2016154958A1
WO2016154958A1 PCT/CN2015/075644 CN2015075644W WO2016154958A1 WO 2016154958 A1 WO2016154958 A1 WO 2016154958A1 CN 2015075644 W CN2015075644 W CN 2015075644W WO 2016154958 A1 WO2016154958 A1 WO 2016154958A1
Authority
WO
WIPO (PCT)
Prior art keywords
isotope
ions
mass spectrometer
accelerator mass
receiver
Prior art date
Application number
PCT/CN2015/075644
Other languages
English (en)
French (fr)
Inventor
姜山
包轶文
何明
苏胜勇
游曲波
胡跃明
崔大庆
Original Assignee
中国原子能科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国原子能科学研究院 filed Critical 中国原子能科学研究院
Priority to EP15886928.9A priority Critical patent/EP3279922A4/en
Priority to JP2018502298A priority patent/JP6546690B2/ja
Priority to US15/562,892 priority patent/US10395910B2/en
Priority to PCT/CN2015/075644 priority patent/WO2016154958A1/zh
Priority to CN201510520333.1A priority patent/CN105301088B/zh
Publication of WO2016154958A1 publication Critical patent/WO2016154958A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • H01J49/0086Accelerator mass spectrometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/28Static spectrometers
    • H01J49/30Static spectrometers using magnetic analysers, e.g. Dempster spectrometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/44Energy spectrometers, e.g. alpha-, beta-spectrometers
    • H01J49/46Static spectrometers
    • H01J49/48Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter

Definitions

  • the invention relates to isotope measurement technology, in particular to an accelerator mass spectrometer with simultaneous isotope measurement function.
  • Accelerator Mass Spectrometry is a high-energy isotope mass spectrometer based on accelerator technology and ion detector technology, mainly used for the measurement of isotope abundance ratio. Due to the existence of the accelerator, the current AMS is an analytical method that uses isotopes to alternately accelerate and alternately measure. Due to the use of accelerators and detectors, AMS has the ability to eliminate the molecular ion background and isobaric ion background, which greatly improves the sensitivity of the analysis, and its isotope abundance sensitivity can reach 1x10 -15 . The traditional mass spectrometer (MS) has an isotope abundance sensitivity of only 1x10 -8 due to the interference of the molecular ion background and the isobaric ion background.
  • AMS has the advantages of high sensitivity and low sample consumption, the instrument has a complicated structure compared with the conventional MS.
  • the isotope is alternately injected and alternately measured, and simultaneous isotope measurement cannot be performed. This makes the AMS measurement accuracy not high enough, generally around 1%-3%.
  • AMS is unable to perform simultaneous isotope measurements is that since the accelerator was first used in the 1840s, it has been the choice of a nuclides ion for acceleration.
  • Accelerator system by ion implantation Composed of a booster and a high-energy ion analyzer.
  • One of the main components in the injector is the injection magnet, which is used to select an isotope injection into the accelerator for acceleration. If two or more isotopes are measured, the mass parameters of the injector must be alternately changed for alternate injection and alternate acceleration to achieve alternating measurements.
  • AMS Due to the alternating measurement of isotopes, AMS leads to two major problems. First, the measurement accuracy is not high enough, generally around 1%-3%. Second, the instrument system is complex, compared with the traditional MS, in addition to the accelerator Injecting magnets and alternately injecting power and control systems.
  • an accelerator mass spectrometer having an isotope simultaneous measurement function, comprising a sputtering negative ion source for generating negative ions, the sputtering negative ion source being connected with an accelerating tube for simultaneously accelerating a plurality of isotope negative ions
  • the output end of the accelerating tube is connected to an isotope mass separation system, which is connected to a charge conversion analysis and a multi-receiving measurement system, and the charge conversion analysis and multi-receiving measurement system are connected to the ion detecting system.
  • the accelerator mass spectrometer having the isotope simultaneous measurement function as described above, wherein the isotope mass resolution system comprises a first electrostatic analyzer and a magnetic analyzer connected to each other, the first electrostatic analyzer being plural
  • the isotope negative ions are subjected to energy analysis, and the magnetic analyzer separates a plurality of isotope negative ions.
  • an accelerator mass spectrometer having an isotope simultaneous measurement function as described above, wherein the charge conversion analysis and multi-receiving measurement system comprises an electron stripper, a speed selector, a second electrostatic analyzer, and a stable isotope receiver, Stable isotope receiver for measuring stable co-location a negative ion, the electron stripper converts unstable isotope negative ions into positive ions and disintegrates all molecular ions, the velocity selector is used to exclude disintegrated molecular fragments and scattered ions, the second electrostatic analysis It is used to exclude neutral particles in a zero charge state.
  • the charge conversion analysis and multi-receiving measurement system comprises an electron stripper, a speed selector, a second electrostatic analyzer, and a stable isotope receiver, Stable isotope receiver for measuring stable co-location a negative ion, the electron stripper converts unstable isotope negative ions into positive ions and disintegrates all molecular ions, the velocity selector is used to exclude
  • an accelerator mass spectrometer having an isotope simultaneous measurement function as described above, wherein the stable isotope receiver is a Faraday cup.
  • an accelerator mass spectrometer having an isotope simultaneous measurement function as described above, wherein the ion detection system comprises a detector, a nuclear electronics, and a data acquisition unit, the detector measurement being converted by the electronic stripper Isotopic cations, the nuclear electronics and data acquisition unit respectively obtain the data measured by the stable isotope receiver and the detector, and after time matching, obtain the content and abundance of multiple isotopes simultaneously measured. ratio.
  • an accelerator mass spectrometer having an isotope simultaneous measurement function as described above, wherein the measurement signal of the stable isotope receiver is delayed by a delay line and transmitted to a nuclear electronics and data acquisition unit to be correlated with the detection The measurement signals of the device arrive at the same time.
  • the accelerator mass spectrometer having the isotope simultaneous measurement function as described above further includes an automatic control system for controlling the operation of each system, isotope measurement, data acquisition and calculation, sample replacement, and vacuum environment.
  • the beneficial effects of the present invention are as follows:
  • the accelerator mass spectrometer having the isotope simultaneous measurement function provided by the present invention directly enters the accelerating tube for electrostatic acceleration without passing through a conventional electric or magnetic analyzer for a plurality of isotope negative ions extracted from the ion source. , so that multiple isotopic negative ions are accelerated at the same time.
  • the accelerated isotopic negative ions are separated by an isotope mass separation system.
  • the stable isotope negative ions are measured by a stable isotope receiver.
  • the unstable isotope negative ions are converted into positive ions and then measured by the detector.
  • the separately measured isotope signals are time-matched. Simultaneous transfer to the core
  • the electronics and data acquisition unit performs data operations.
  • the invention has the advantages of simple structure, convenient operation and maintenance, favorable market popularization and popularization and application, improved measurement precision and more accurate measurement result compared with the traditional AMS.
  • FIG. 1 is a schematic diagram of the principle of a conventional AMS
  • FIG. 2 is a schematic diagram of the principle of the ST-AMS of the present invention.
  • FIG. 3 is a schematic view showing the structure of ST-AMS in which carbon isotope is simultaneously measured in a specific embodiment of the present invention.
  • FIG. 1 is a schematic diagram of the principle of a conventional AMS.
  • the masses of two isotopes separated from the sputter negative ion source 1 are M and M-1, respectively, and AMS cannot perform two at the back end of a high-energy magnetic analyzer or an electrostatic analyzer.
  • the electric and magnetic analyzer 2 can only select a certain mass of the isotope to be accelerated by the tandem accelerator 3, and the accelerated isotope reaches the detector 6 through the high energy magnetic analyzer 4 and the high energy electrostatic analyzer 5. Alternate measurements are achieved by alternately changing the mass parameters of the injector for alternate injection and alternating acceleration.
  • the accelerator mass spectrometer of the present invention having the at the Same Time measurement function, abbreviated as ST-AMS.
  • ST-AMS The two technical problems that ST-AMS mainly solves are: first, the realization of simultaneous acceleration, and second, the realization of simultaneous measurement.
  • the negative ions extracted from the sputtering negative ion source 1 directly enter the accelerating tube 7 (including the pre-acceleration tube and the main accelerating tube), and thus each isotope negative ion contained in the negative ion, such as analysis
  • the carbon isotope is 12 C, 13 C and 14 C anions, all of which are accelerated into the accelerating tube.
  • the electric and magnetic analyzer 8 is directly used to distinguish the isotope mass. For example, after analyzing the carbon isotope by this analyzer, the 12 C, 13 C and 14 C negative ions in the carbon isotope are separated.
  • 12 C and 13 C are stable isotopes capable of forming a directly measured negative ion beam, and 12 C and 13 C negative ions can be simultaneously measured using a stable isotope receiver 9 (such as a Faraday cup).
  • a stable isotope receiver 9 such as a Faraday cup.
  • 14 C anions are not able to form measurable beams due to extremely low abundance (14C/12C in the range of 10 -12 -10 -16 ), with a maximum of 300 counts per second. In this way, the heavy particle detector is used to record the number of atoms of the 14 C ion, and the stable isotope receiver 9 cannot be used.
  • molecular ions of other isotopes in the 14 C anion such as 13 CH, 12 CH 2 and 7 Li 2 negative ions
  • all molecular ions are disintegrated by the electron stripper 10 using the stripper technique in the AMS analysis method.
  • the molecular separator plasma is discharged through the speed selector 11, the electrostatic analyzer 12, etc., and only 14 C + ions are used to enter the heavy ion detector 13 and recorded, wherein the velocity selector 11 is mainly used to exclude the disintegrated molecular fragments and scattering.
  • the ion, electrostatic analyzer 12 is primarily used to exclude neutral particles in a zero charge state.
  • the present invention uses a dedicated delay line to delay the signal of the stable isotope receiver. At the same time as the signal on the detector is reached, simultaneous measurement of 14 C + ions, 12 C and 13 C negative ions is obtained, and simultaneous simultaneous reception of isotopes is achieved.
  • FIG. 3 shows the specific structure of the ST-AMS of the present invention.
  • the instrument comprises five parts, namely:
  • Negative ion generation and acceleration system including a sputtering negative ion source 1 and an acceleration tube 7.
  • Isotope mass resolution system The use includes a first electrostatic analyzer 14 and a magnetic analyzer 15.
  • the charge conversion analysis and multi-receiving measurement system includes an electron stripper 10, a speed selector 11, a second electrostatic analyzer 12, and a stable isotope receiver 9.
  • Ion detection system including detector 13, nuclear electronics and data acquisition system.
  • Automatic control system Realize the control of the above systems, real-time measurement of isotope, data acquisition and calculation, sample replacement and automatic control of vacuum environment.
  • the sputtering negative ion source 1 is connected to an accelerating tube 7 for simultaneously accelerating a plurality of isotope ions.
  • the accelerating tube 7 is divided into a pre-acceleration section and a main accelerating section, and a lens is arranged in the middle, and an output end of the accelerating tube 7 is connected to the isotope mass.
  • Resolution system The first electrostatic analyzer 14 of the isotope mass resolution system performs energy analysis on a plurality of isotope ions, and the magnetic analyzer 15 separates the plurality of isotope ions.
  • the charge isolating analysis and the stable isotope receiver 9 of the multi-receiving measurement system measure stable isotope negative ions (eg, 12 C beam a, 13 C beam b), and the electron stripper 10 converts unstable isotope negative ions (eg, 14 C) It is a positive ion and disintegrates all molecular ions.
  • the detector 13 of the ion detection system measures the isotope cations (e.g., 14 C beam c) converted by the electron stripper 10, and the nuclear electronics and data acquisition unit respectively acquires the stable isotope receiver 9 and The data measured by the detector 13 is time-matched to obtain the content of a plurality of isotopes measured simultaneously and their abundance ratio.
  • the present invention delays the measurement signal of the stable isotope receiver 9 (Faraday cup) via a delay line and transmits it to the nuclear electronics and data acquisition unit to arrive at the same time as the measurement signal of the detector 13.
  • an atmospheric particulate sample is prepared into graphite.
  • the prepared graphite sample is pressed into the sample target cone and placed in a Cs ion source.
  • the target material is bombarded with a Cs ion beam, and C - is taken out, and then introduced into the pre-acceleration tube and the main accelerating tube to accelerate the ions to a predetermined energy.
  • the fourth step then enters and then enters the first electrostatic analyzer for energy selection, and then separates the 14 C, 12 C, and 13 C by the magnetic analyzer.
  • the fifth step, 12 C and 13 C are measured by the Faraday cup.
  • 14 C is converted into positive ions by a gas stripper, and at the same time, the molecules are disintegrated, and then the magnetic field and electric field are analyzed by a speed selector and a second electrostatic analyzer, and finally the 14 C ion count is obtained by the detector system.
  • the data acquisition system through time matching, obtains 14 C, 12 C, 13 C measured simultaneously and obtains their abundance ratio.
  • the accurate 14 C content is obtained.
  • the present invention is applicable not only to the measurement of carbon 12 C, 13 C and 14 C isotopes, but also to the simultaneous measurement of nuclei such as 3 H, 10 Be, 26 Al and their isotopes, in a manner similar to that described above.
  • a person skilled in the art can carry out a specific design in combination with actual conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

一种具有同位素同时测量功能的加速器质谱仪,包括用于产生负离子的溅射负离子源(1),所述溅射负离子源(1)与用于同时加速多个同位素离子的加速管(7)相连,所述加速管(7)的输出端连接同位素质量分辨系统(8),所述同位素质量分辨系统(8)连接电荷转换分析及多接收测量系统,所述电荷转换分析及多接收测量系统连接离子探测系统(13)。能够对多个同位素负离子同时进行加速,加速后的多个同位素负离子中稳定的同位素负离子被稳定同位素接收器(9)进行测量,不稳定的同位素负离子转换为正离子后被探测器(13)测量,测量信号经时间匹配后同时传送至核电子学和数据获取单元进行数据运算。

Description

一种具有同位素同时测量功能的加速器质谱仪 技术领域
本发明涉及同位素测量技术,具体涉及一种具有同位素同时测量功能的加速器质谱仪。
背景技术
加速器质谱仪(Accelerator Mass Spectrometry,以下简称AMS)是一种基于加速器技术和离子探测器技术的高能量同位素质谱仪,主要用于同位素丰度比值的测量。目前的AMS因加速器的存在,都是采用同位素先后交替加速、交替测量的分析方法。由于加速器和探测器的运用,AMS具有排除分子离子本底和同量异位素离子本底的能力,从而极大地提高了分析灵敏度,其同位素丰度灵敏度能够达到1x10-15。传统质谱仪(Mass Spectrometry,以下简称MS)由于存在分子离子本底和同量异位素离子本底的干扰,其同位素丰度灵敏度仅为1x10-8
AMS虽然具有灵敏度高、样品用量少等优点,但是与普通MS相比一方面仪器结构复杂,另一方面采用同位素交替注入、交替测量,不能够进行同位素同时测量。这就使得AMS测量精度不够高,一般在1%-3%左右。
AMS与MS的优缺点比较如下表所示:
Figure PCTCN2015075644-appb-000001
AMS不能够进行同位素同时测量的主要原因是:自从19世纪40年代加速器开始应用以来,一直是选择一种核素的离子进行加速。加速器系统由离子注入 器、加速器和高能离子分析器组成。注入器中有一个主要部件是注入磁铁,是用来选定一个同位素注入到加速器进行加速。若实现两个以上同位素的测量,必须交替改变注入器的质量参数进行交替注入、交替加速,从而实现交替测量。
AMS由于同位素的交替测量,导致两个主要问题的出现,第一、测量精度不够高,一般在1%-3%左右;第二、仪器系统复杂,与传统MS相比,除了加速器外还多出了注入磁铁和交替注入电源以及控制系统。
发明内容
本发明的目的在于针对现有技术的缺陷,提供一种具有同位素同时测量功能的加速器质谱仪,以提高质谱仪的测量精度并简化结构。
本发明的技术方案如下:一种具有同位素同时测量功能的加速器质谱仪,包括用于产生负离子的溅射负离子源,所述溅射负离子源与用于同时加速多个同位素负离子的加速管相连接,所述加速管的输出端连接同位素质量分辨系统,所述同位素质量分辨系统连接电荷转换分析及多接收测量系统,所述电荷转换分析及多接收测量系统连接离子探测系统。
进一步,如上所述的具有同位素同时测量功能的加速器质谱仪,其中,所述的同位素质量分辨系统包括相互连接的第一静电分析器和磁分析器,所述的第一静电分析器对多个同位素负离子进行能量分析,所述的磁分析器对多个同位素负离子进行分离。
进一步,如上所述的具有同位素同时测量功能的加速器质谱仪,其中,所述的电荷转换分析及多接收测量系统包括电子剥离器、速度选择器、第二静电分析器和稳定同位素接收器,所述的稳定同位素接收器测量稳定的同位 素负离子,所述的电子剥离器将不稳定的同位素负离子转换为正离子,并瓦解所有分子离子,所述的速度选择器用于排除被瓦解的分子碎片和散射离子,所述的第二静电分析器用于排除零电荷态的中性粒子。
更进一步,如上所述的具有同位素同时测量功能的加速器质谱仪,其中,所述的稳定同位素接收器为法拉第杯。
进一步,如上所述的具有同位素同时测量功能的加速器质谱仪,其中,所述的离子探测系统包括探测器、核电子学和数据获取单元,所述的探测器测量经所述电子剥离器转换后的同位素正离子,所述的核电子学和数据获取单元分别获取所述稳定同位素接收器和所述探测器测量的数据,经过时间匹配后,得到同时测量的多个同位素的含量及其丰度比。
更进一步,如上所述的具有同位素同时测量功能的加速器质谱仪,其中,所述的稳定同位素接收器的测量信号经延迟线延迟后传送至核电子学和数据获取单元,使之与所述探测器的测量信号同时到达。
进一步,如上所述的具有同位素同时测量功能的加速器质谱仪,其中,还包括用于对各系统的操作、同位素测量、数据获取与运算、样品更换、真空环境进行控制的自动控制系统。
本发明的有益效果如下:本发明所提供的具有同位素同时测量功能的加速器质谱仪,对于从离子源引出的多个同位素负离子,不经过传统的电、磁分析器,直接进入加速管进行静电加速,使得多个同位素负离子同时进行了加速。加速后的多个同位素负离子经同位素质量分辨系统进行分离,稳定的同位素负离子被稳定同位素接收器进行测量,不稳定的同位素负离子转换为正离子后被探测器测量,分开测量的同位素信号经时间匹配后同时传送至核 电子学和数据获取单元进行数据运算。本发明结构简单、操作维护方便,有利于市场普及和推广应用,与传统的AMS相比提高了测量精度,测量结果更加准确。
附图说明
图1为传统AMS的原理示意图;
图2为本发明ST-AMS的原理示意图;
图3为本发明具体实施方式中碳同位素同时测量的ST-AMS结构示意图。
具体实施方式
下面结合说明书附图与具体实施方式对本发明做进一步的详细说明。
图1为传统AMS的原理示意图,从溅射负离子源1分离出的两个同位素的质量数分别为M和M-1,AMS不能够在高能磁分析器或静电分析器的后端进行两个同位素的同时测量,电、磁分析器2只能选择某一个质量的同位素通过串列加速器3进行加速,加速后的同位素经过高能磁分析器4和高能静电分析器5到达探测器6。通过交替改变注入器的质量参数进行交替注入、交替加速,从而实现交替测量。
本发明的具有同位素同时(at the Same Time)测量功能的加速器质谱仪,简称ST-AMS。ST-AMS主要解决的两个技术问题是,一、同时加速的实现,二、同时测量的实现。
图2为本发明ST-AMS的原理示意图,从溅射负离子源1引出的负离子直接进入到加速管7(包括预加速管和主加速管),因此负离子中包含的各一个同位素负离子,如分析碳同位素是12C、13C和14C负离子,都一同进入到加速管中进行了加速。经过加速器后,直接采用电、磁分析器8进行同位素质量的分辨。例如经过此分析器分析碳同位素,碳同位素中的12C、13C和14C负离子被分开。12C 和13C是稳定的同位素,能够形成直接测量的负离子束流,采用稳定同位素接收器9(如法拉第杯)就能够同时测量到12C和13C负离子。而对于不稳定的同位素,例如14C负离子由于丰度极其低(14C/12C在10-12—10-16范围)不能够形成可测量束流,最高每秒钟有300个计数。这样一方面采用重粒子探测器记录14C离子的原子数目,而不能够采用稳定同位素接收器9。另一方面,在14C负离子中存在其他同位素的分子离子,例如13CH、12CH27Li2负离子,因此,采用AMS分析方法中的剥离器技术,通过电子剥离器10瓦解所有分子离子,再经过速度选择器11、静电分析器12等排出分子碎片等离子,只选用14C+离子进入重离子探测器13并记录,其中,速度选择器11主要用于排除被瓦解的分子碎片和散射离子,静电分析器12主要用于排除零电荷态的中性粒子。由于到达探测器上的14C+离子时间比到达稳定同位素接收器9的12C和13C离子束流要迟到一点,本发明采用专用的延迟线对稳定同位素接收器的信号进行延迟,使之与探测器上的信号达到同时,从而得到14C+离子、12C和13C负离子的同时测量,实现同位素的同时多接收。
下面以分析碳同位素12C、13C和14C负离子为例,结合ST-AMS的具体结构对本发明进行实施例的描述。
图3为本发明ST-AMS的具体结构,该仪器包括五个部分,分别是:
负离子产生与加速系统:包括一台溅射负离子源1和一个加速管7。
同位素质量分辨系统:采用包括第一静电分析器14和一个磁分析器15。
电荷转换分析与多接收测量系统:包括电子剥离器10、速度选择器11、第二静电分析器12和稳定同位素接收器9。
离子探测系统:包括探测器13、核电子学和数据获取系统。
自动控制系统:实现对于上述各系统的操控、同位素实时测量、数据获取与运算、样品更换以及对真空环境等的自动控制。
溅射负离子源1与用于同时加速多个同位素离子的加速管7相连接,所述加速管7分为预加速段和主加速段,中间设有透镜,加速管7的输出端连接同位素质量分辨系统。所述同位素质量分辨系统的第一静电分析器14对多个同位素离子进行能量分析,磁分析器15对多个同位素离子进行分离。电荷转换分析及多接收测量系统的稳定同位素接收器9测量稳定的同位素负离子(如12C束流a、13C束流b),电子剥离器10将不稳定的同位素负离子(如14C)转换为正离子,并瓦解所有分子离子。离子探测系统的探测器13测量经所述电子剥离器10转换后的同位素正离子(如14C束流c),所述的核电子学和数据获取单元分别获取所述稳定同位素接收器9和所述探测器13测量的数据,经过时间匹配后,得到同时测量的多个同位素的含量及其丰度比。本发明将稳定同位素接收器9(法拉第杯)的测量信号经延迟线延迟后传送至核电子学和数据获取单元,使之与所述探测器13的测量信号同时到达。
以大气颗粒物中碳12C、13C和14C同位素的测量为例,说明ST-AMS测量的步骤:
第一步、将大气颗粒物样品制备成石墨。
第二步、将制成的石墨样品压入样品靶锥,并置于Cs离子源中。
第三步、用Cs离子束轰击靶物质,引出C-,引出后进入预加速管和主加速管把离子加速到预定的能量。
第四步、然后进入然后进入第一静电分析器进行能量选择,再经磁分析器进行14C、12C、13C的分离。
第五步、12C和13C由法拉第杯进行测量。14C要经过气体剥离器转换为正离子,同时瓦解分子,再经过速度选择器和第二静电分析器进行磁场和电场的分析,最终由探测器系统得到14C离子的计数。
第六步、由数据获取系统,经过时间的匹配,得到同时测量的14C、12C、13C,并得到它们的丰度比。
第七步、经过与标准样品的测量结果进行比较后,就得到准确的14C含量。
本发明除了可用于测量碳12C、13C和14C同位素外,还适用于3H、10Be、26Al等核素及其同位素的同时测量,其方法与上述所描述的实施例类似,本领域的技术人员可结合实际情况进行具体的设计。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其同等技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (7)

  1. 一种具有同位素同时测量功能的加速器质谱仪,包括用于产生负离子的溅射负离子源(1),其特征在于:所述溅射负离子源(1)与用于同时加速多个同位素离子的加速管(7)相连接,所述加速管(7)的输出端连接同位素质量分辨系统,所述同位素质量分辨系统连接电荷转换分析及多接收测量系统,所述电荷转换分析及多接收测量系统连接离子探测系统。
  2. 如权利要求1所述的具有同位素同时测量功能的加速器质谱仪,其特征在于:所述的同位素质量分辨系统包括相互连接的第一静电分析器(14)和磁分析器(15),所述的第一静电分析器(14)对多个同位素离子进行能量分析,所述的磁分析器(15)对多个同位素离子进行分离。
  3. 如权利要求2所述的具有同位素同时测量功能的加速器质谱仪,其特征在于:所述的电荷转换分析及多接收测量系统包括电子剥离器(10)、速度选择器(11)、第二静电分析器(12)和稳定同位素接收器(9),所述的稳定同位素接收器(9)测量稳定的同位素负离子,所述的电子剥离器(10)将不稳定的同位素负离子转换为正离子,并瓦解所有分子离子,所述的速度选择器(11)用于排除被瓦解的分子碎片和散射离子,所述的第二静电分析器(12)用于排除零电荷态的中性粒子。
  4. 如权利要求3所述的具有同位素同时测量功能的加速器质谱仪,其特征在于:所述的稳定同位素接收器(9)为法拉第杯。
  5. 如权利要求3所述的具有同位素同时测量功能的加速器质谱仪,其特征在于:所述的离子探测系统包括探测器(13)、核电子学和数据获取单 元,所述的探测器(13)测量经所述电子剥离器(10)转换后的同位素正离子,所述的核电子学和数据获取单元分别获取所述稳定同位素接收器(9)和所述探测器(13)测量的数据,经过时间匹配后,得到同时测量的多个同位素的含量及其丰度比。
  6. 如权利要求5所述的具有同位素同时测量功能的加速器质谱仪,其特征在于:所述的稳定同位素接收器(9)的测量信号经延迟线延迟后传送至核电子学和数据获取单元,使之与所述探测器(13)的测量信号同时到达。
  7. 如权利要求1-6中任一项所述的具有同位素同时测量功能的加速器质谱仪,其特征在于:还包括用于对各系统的操作、同位素测量、数据获取与运算、样品更换、真空环境进行控制的自动控制系统。
PCT/CN2015/075644 2015-04-01 2015-04-01 一种具有同位素同时测量功能的加速器质谱仪 WO2016154958A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15886928.9A EP3279922A4 (en) 2015-04-01 2015-04-01 Accelerator mass spectrometry device for simultaneously measuring isotopes
JP2018502298A JP6546690B2 (ja) 2015-04-01 2015-04-01 同位体同時測定機能を有する加速器質量分析装置
US15/562,892 US10395910B2 (en) 2015-04-01 2015-04-01 Accelerator mass spectrometry device for simultaneously measuring isotopes
PCT/CN2015/075644 WO2016154958A1 (zh) 2015-04-01 2015-04-01 一种具有同位素同时测量功能的加速器质谱仪
CN201510520333.1A CN105301088B (zh) 2015-04-01 2015-08-21 一种具有同位素同时测量功能的加速器质谱仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/075644 WO2016154958A1 (zh) 2015-04-01 2015-04-01 一种具有同位素同时测量功能的加速器质谱仪

Publications (1)

Publication Number Publication Date
WO2016154958A1 true WO2016154958A1 (zh) 2016-10-06

Family

ID=57003798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075644 WO2016154958A1 (zh) 2015-04-01 2015-04-01 一种具有同位素同时测量功能的加速器质谱仪

Country Status (4)

Country Link
US (1) US10395910B2 (zh)
EP (1) EP3279922A4 (zh)
JP (1) JP6546690B2 (zh)
WO (1) WO2016154958A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109580761A (zh) * 2018-11-27 2019-04-05 中国科学院广州地球化学研究所 一种适用于铪(氧)同位素与铀铅年龄的绝对微区原位分析的装置及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109830423B (zh) * 2018-03-12 2021-06-25 姜山 一种加速器质谱测量方法和系统
EP3582248B1 (en) * 2018-06-14 2021-01-06 High Voltage Engineering Europa B.V. Accelerator mass spectrometry system and associated method
CN108987242A (zh) * 2018-07-17 2018-12-11 姜山 一种同位素质谱仪

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118936A (en) * 1991-05-06 1992-06-02 High Voltage Engineeering Europa B.V. Accuracy of AMS isotopic ratio measurements
US5189302A (en) * 1991-10-28 1993-02-23 The United States Of America As Represented By The United States Department Of Energy Small system for tritium accelerator mass spectrometry
US6455844B1 (en) * 1999-09-15 2002-09-24 Lockheed Martin Energy Research Single-atom detection of isotopes
US20040046116A1 (en) * 2002-09-06 2004-03-11 Schroeder James B. Single stage accelerator mass spectrometer
CN102062755A (zh) * 2010-10-18 2011-05-18 南京大学 正热电离质谱计静态双接收法测定硼同位素组成的方法
CN103094051A (zh) * 2013-01-16 2013-05-08 中国科学院大连化学物理研究所 一种同向双通道飞行时间质谱仪
CN104067116A (zh) * 2011-11-02 2014-09-24 莱克公司 离子迁移率谱仪

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120956A (en) * 1991-05-06 1992-06-09 High Voltage Engineering Europa B.V. Acceleration apparatus which reduced backgrounds of accelerator mass spectrometry measurements of 14 C and other radionuclides
US5569915A (en) * 1995-04-14 1996-10-29 Purser; Kenneth H. Sensitive mass spectroscopy using molecular fragmentation
US5644130A (en) * 1996-03-20 1997-07-01 National Electrostatics Corp. Multi-gas cathode ion surge
CN100561221C (zh) * 2005-08-19 2009-11-18 北京大学 一种加速器质谱装置及加速器质谱14c测量方法
US7979228B2 (en) * 2007-07-20 2011-07-12 The Regents Of The University Of Michigan High resolution time measurement in a FPGA
EP2375437A1 (en) * 2010-04-12 2011-10-12 ETH Zurich Mass spectrometry system with molecular dissociation and associated method
GB2521579B (en) * 2012-10-10 2018-12-19 California Inst Of Techn Mass spectrometer, system and use of the mass spectrometer for determining isotopic anatomy of compounds
JP6086587B2 (ja) * 2013-02-04 2017-03-01 国立研究開発法人日本原子力研究開発機構 加速器質量分析による妨害核種分別方法およびその装置
GB2520086B (en) * 2013-11-11 2020-02-19 Thermo Fisher Scient Bremen Gmbh Method of measuring isotope ratio

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118936A (en) * 1991-05-06 1992-06-02 High Voltage Engineeering Europa B.V. Accuracy of AMS isotopic ratio measurements
US5189302A (en) * 1991-10-28 1993-02-23 The United States Of America As Represented By The United States Department Of Energy Small system for tritium accelerator mass spectrometry
US6455844B1 (en) * 1999-09-15 2002-09-24 Lockheed Martin Energy Research Single-atom detection of isotopes
US20040046116A1 (en) * 2002-09-06 2004-03-11 Schroeder James B. Single stage accelerator mass spectrometer
CN102062755A (zh) * 2010-10-18 2011-05-18 南京大学 正热电离质谱计静态双接收法测定硼同位素组成的方法
CN104067116A (zh) * 2011-11-02 2014-09-24 莱克公司 离子迁移率谱仪
CN103094051A (zh) * 2013-01-16 2013-05-08 中国科学院大连化学物理研究所 一种同向双通道飞行时间质谱仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3279922A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109580761A (zh) * 2018-11-27 2019-04-05 中国科学院广州地球化学研究所 一种适用于铪(氧)同位素与铀铅年龄的绝对微区原位分析的装置及方法
CN109580761B (zh) * 2018-11-27 2020-05-05 中国科学院广州地球化学研究所 一种适用于铪同位素与铀铅年龄的绝对微区原位分析的装置及方法

Also Published As

Publication number Publication date
EP3279922A1 (en) 2018-02-07
US20180082828A1 (en) 2018-03-22
JP2018511925A (ja) 2018-04-26
US10395910B2 (en) 2019-08-27
JP6546690B2 (ja) 2019-07-17
EP3279922A4 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
CN105301088B (zh) 一种具有同位素同时测量功能的加速器质谱仪
Lee et al. Coincidence ion imaging with a fast frame camera
WO2016154958A1 (zh) 一种具有同位素同时测量功能的加速器质谱仪
US8575544B1 (en) Methods and devices for improving atom probe detector performance
Kapoor et al. Emission of prompt neutrons in the thermal neutron fission of U 235
Zhou et al. The 3MV multi-element AMS in Xi'an, China: unique features and preliminary tests
Parkhomchuk et al. Accelerator mass spectrometer of the center for collective use of the Siberian Branch of the Russian Academy of Sciences
CN108987242A (zh) 一种同位素质谱仪
US20210104391A1 (en) Inorganic mass spectrometer
CN107808817B (zh) 用于空间微小碎片和微流星体成分探测的飞行时间质谱计
Sun et al. The charged fragment detector system of the External Target Facility
CN103745909B (zh) 选择性离子筛除飞行时间质量分析器及其实现方法与应用
CN210155340U (zh) 基于能量粒子穿透特性测量离子束粒子成分的能量分析器
Catoire et al. New developments for an electron impact (e, 2e)∕(e, 3e) spectrometer with multiangle collection and multicoincidence detection
US11410843B1 (en) Mass spectrometry system and measuring method thereof
Kalvas Ion beam intensity and phase space measurement techniques for ion sources
De et al. A setup for probing ion–molecule collision dynamics
CN111293031B (zh) 一种多质荷比离子束质谱分析装置和方法
Xiang-Gao et al. Primary result of 236U measurement with accelerator mass spectrometry at CIAE
De Lellis The SHiP experiment and the RPC technology
Komatsu et al. SHiP: a new facility with a dedicated detector for studying tau neutrino properties
Shabanov et al. Calibration of the electromagnetic calorimeter ECal of the HADES experiment
CN203351553U (zh) 微型双电离源飞行时间质谱仪
De Jesús et al. 236U identification in the new AMS beamline at the TANDAR accelerator
Franz et al. Highlights from PHENIX: I

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886928

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018502298

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15562892

Country of ref document: US