WO2016152640A1 - Wind turbine generator - Google Patents
Wind turbine generator Download PDFInfo
- Publication number
- WO2016152640A1 WO2016152640A1 PCT/JP2016/058093 JP2016058093W WO2016152640A1 WO 2016152640 A1 WO2016152640 A1 WO 2016152640A1 JP 2016058093 W JP2016058093 W JP 2016058093W WO 2016152640 A1 WO2016152640 A1 WO 2016152640A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wind
- motor
- amount
- wind turbine
- electric motor
- Prior art date
Links
- 230000007423 decrease Effects 0.000 claims description 18
- 238000010248 power generation Methods 0.000 claims description 18
- 238000000605 extraction Methods 0.000 claims description 12
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 230000005540 biological transmission Effects 0.000 description 7
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/10—Combinations of wind motors with apparatus storing energy
- F03D9/11—Combinations of wind motors with apparatus storing energy storing electrical energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D15/00—Transmission of mechanical power
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/06—Rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/04—Automatic control; Regulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Definitions
- the present invention maintains the rated rotational speed of the wind power generator with the rotational force of the electric motor connected to the main shaft of the wind turbine, and stabilizes the increase / decrease change of the torque of the main shaft caused by the wind force received by the rotor by automatically adjusting the extraction current amount.
- the present invention relates to a wind turbine generator that maintains a rated rotational speed and obtains a stable voltage output.
- the windmill described in Patent Literature 1 has excellent rotational efficiency and generates little noise. To rotate at high speed, a strong wind is required, but the strong wind does not blow continuously. However, the higher the wind speed, the larger the rotation speed of the windmill, and the difference between the amount of power generation at low wind speeds opens and the fluctuations in voltage and current increase, so it is difficult to obtain stable power continuously. there were.
- the present invention maintains the rated voltage in a wind power generator by rotating the main shaft at a rated rotational speed by an electric motor, and changes in the torque of the main shaft caused by the lift of the lift-type rotor blades as the rotor of the wind turbine rotates. Is provided by automatically adjusting the take-out current amount to provide a stable voltage.
- (1) It has a main shaft of a wind power generator, an electric motor that rotates the main shaft, and a controller that automatically adjusts the amount of extraction current by detecting increase / decrease in the load of the electric motor, and by rotating the main shaft at the rated rotational speed by the electric motor,
- a wind turbine generator that maintains a rated voltage and automatically adjusts the amount of current taken out to increase and decrease changes in torque generated on the main shaft by the lift generated by the lift type blades of the windmill, thereby obtaining a stable voltage output.
- the wind power generator sets the power generation amount at the start average wind speed and the power consumption of the motor approximately the same, and automatically activates the motor when the start average wind speed is detected by the anemometer.
- the vertical main shaft of the wind power generator is supported so that the vertical axis rotor rotates horizontally, and the main shaft is rotated by an electric motor. Wind power generator.
- the rated rotational speed of the generator is maintained by the electric motor regardless of the slow speed of the wind, and a constant voltage can be taken out at all times. Therefore, if the high-speed wind continues, the lift generated by the rotation of the lift-type blades will increase, and the rotational speed and power generation amount of the windmill will increase, so the load on the motor will decrease if the amount of electric power taken is constant. To do. Further, if the lift of the lift-type blade is reduced due to a low wind speed, the rotational speed of the windmill is reduced. Therefore, unless the power generation amount is reduced, the load on the electric motor increases.
- the load on the motor will decrease, so when a change in the rotation speed of the spindle occurs, the load on the motor is automatically adjusted,
- a stable voltage can be obtained with less power consumption of a small electric motor. For example, when a flywheel is rotated by an electric motor, energy loss occurs due to rotational resistance. And build up energy.
- the wind turbine generator described in (2) reduces the amount of current taken out when the load on the motor increases, and increases the amount of current taken out when the load decreases so as to keep the load on the motor constant. Further, by automatically adjusting, the rotational speed of the main shaft of the generator is maintained at the rated rotational speed, and a stable voltage output can be obtained even if the current increases or decreases.
- the starting average wind speed is detected by the anemometer.
- the automatic controller automatically starts the motor to generate power, and when the average wind speed falls below the starting average wind speed, the motor is automatically stopped by the automatic controller so that the motor operates effectively. Can be made.
- the rated rotational speed of the main shaft of the wind power generator rotated by the vertical wind turbine is maintained by the electric motor. Therefore, the vertical wind turbine is efficient in changing the wind direction. It can rotate well and increase power generation efficiency.
- the rated rotational speed of the main shaft of the wind power generator rotated by the horizontal axis wind turbine is maintained by the electric motor. Therefore, the horizontal axis wind turbine rotates efficiently even at a low wind speed. , Power generation efficiency can be increased.
- the wind turbine generator described in (6) can switch the automatic input of the motor by remote control, it can easily start and stop even if the motor is in a position where it is difficult to reach. it can.
- Example 1 of the wind power generator of the present invention. It is a principal part vertical side view of Example 2 of the wind power generator of this invention.
- FIG. 3 is an enlarged plan view across the line III-III of the lift-type blade in FIG. 2.
- the wind power generator 1 includes a generator 2 and a windmill 3.
- the hub 5A of the vertical rotor 5 is fixed to the upper end of the vertical main shaft 4 erected on the generator 2, and the vertical lift type blades 6 () are attached to the tips of a plurality of horizontal support arms 5B supported by the hub 5A. (Hereinafter simply referred to as a blade).
- the lower end portion of the main shaft 4 is linked to the electric motor 7 via arbitrary transmission means 8A and 8B. That is, the transmission means 8B provided on the output shaft 7C of the speed reducer 7A provided on the electric motor 7 and the transmission means 8A provided on the main shaft 4 are linked via an appropriate linkage means 8C.
- an automatic control clutch is also used as necessary.
- the electric motor 7 has, for example, a rated output of 100 w specification, and a reduction gear 7A having a rated rotational speed of, for example, 300 rpm is incorporated therein.
- a controller 9 and a storage battery 10 are connected to the output cord 2A of the generator 2.
- the wind power generator 1 described above is installed in a place with good wind conditions, and the main shaft 4 of the generator 2 that supports the wind turbine 3 is rotated at the rated rotational speed by driving by the electric motor 7.
- the rotation speed of a general electric motor is 2500 rpm to 3000 rpm, if this is reduced to, for example, 300 rpm and the windmill 3 is rotated, the torque acts greatly, so even if the windmill 3 is large, it can be easily Can be rotated.
- the load on the motor 7 is less than 100w. It becomes. Therefore, the amount of current to be taken out is increased by the action of the controller 9, the load of the electric motor 7 is maintained at 100w, and the battery 10 is charged or consumed.
- the power generation amount decreases, and if the rated rotational speed of the main shaft 4 rotated by the windmill 3 is maintained at, for example, 300 rpm, the power generation amount of the generator 2 increases and the load on the motor 7 increases. To do.
- the amount of current taken from the generator 2 is automatically reduced by the action of the controller 9, the rated speed is maintained at, for example, 300 rpm, and output is performed while maintaining a constant voltage.
- the size of the vertical rotor 5 is 1 m in radius and the lift type blade 6 This corresponds to the value when the wind speed is about 16 m / s, with a length of 2.7 m, wind receiving area of 5.4 m, blade width of 0.5 m, and two blades.
- the amount of power generated by the generator 2 by the wind turbine 3 rotating at this wind speed is about 6000W. That is, it is possible to generate about 6000 W by the generator 2 by driving the electric motor 7 while consuming 100 W of electric power and rotating the wind power generator 1.
- the main shaft 4 of the windmill 3 is rotated by the electric motor 7 so that the rated rotational speed is always maintained. Therefore, the increase / decrease change in the torque of the main shaft 4 caused by the rotation of the vertical axis rotor 5 also occurs. By adjusting the increase / decrease in the amount of current to be taken out, the voltage can be made constant and taken out.
- the rotational speed of the vertical axis rotor 5 gradually increases, and the air outside the rotating lift type blade 6 moves by centrifugal force, Since the inner air is attracted in the outer direction, a negative pressure is generated on the inner side of the rotation trajectory of the lift type blade 6.
- the wind power generation apparatus 1 is not simply configured to generate power, but by driving the electric motor 7 using external power generated by another method and rotating the wind power generation apparatus 1 to generate power, In addition to storing the surplus of the power generated in step 1 with a reduced loss, new power generation can be continuously performed by the rotational force generated by the lift generated in the lift-type blade 6.
- the lift type blade 6 in the wind turbine 3 can be fixed to one main shaft 4 in a multilayer shape (for example, as described in JP-A-2005-188468). Further, by making the blade tip portion of the lift-type blade 6 into the inclined portion 6A inclined in the direction of the main shaft 4, it is possible to prevent the airflow from diffusing outward from the blade tip and to improve the rotation efficiency.
- an automatic wind speed detector 21 is placed next to the generator 2 and when a certain high speed wind is detected by a typhoon or the like, the automatic controller 22 turns off the automatic switch 7B of the motor 7.
- the electric motor 7 is stopped by operating, and the main shaft 4 is stopped by applying a large load to the generator 2.
- the automatic wind speed detector 21 detects a wind speed below a certain (average) speed, the load on the generator 2 is automatically released and the automatic switch 7B of the motor 7 is automatically switched by the automatic controller 22. The rotation of the windmill 3 is restored.
- FIG. 2 is a longitudinal sectional front view of a main part of a wind power generator according to a second embodiment of the present invention.
- the same parts as those of the previous example are denoted by the same reference numerals and the description thereof is omitted.
- a horizontal axis wind turbine 13 is used in the second embodiment.
- a windmill housing 11B is mounted on the upper end of the support 11A so as to be able to turn around a vertical axis 11D.
- the windmill casing 11B has a large front part and is gradually formed narrower toward the rear end, and a horizontal axis windmill 13 is attached to the rear part.
- a hub 15A of the horizontal shaft rotor 15 is fixed to the rear end of the main shaft 14 that protrudes rearward horizontally from the generator 12 disposed in the front portion inside the windmill housing 11B.
- the hub 15A has 2 to 5 lift-type blades 16 mounted in the radial direction. As shown in FIG. 3, the cross section of the lift type blade 16 is formed such that the leading edge 16A is thick and gradually thins from the maximum blade thickness portion 16C to the trailing edge 16B.
- the front surface 16D of the lift type blade 16 is substantially straight from the leading edge 16A to the trailing edge 16B, but the back surface 16E is gently curved from the maximum blade thickness 16C to the trailing edge 16B.
- the velocity of the airflow flowing along the back surface 16E becomes faster than the velocity of the airflow flowing along the front surface 16D, and the back surface 16E portion has a negative pressure.
- An electric motor 17 having a speed reducer is disposed inside the rear portion of the windmill casing 11B, and the rotational force of the output shaft 17C of the electric motor 17 is transmitted to the main shaft 14 via the transmission means 18A and 18B.
- a controller 19 and a storage battery 20 are housed inside the front portion of the windmill casing 11B, and a cord 12A extending from the generator 12 is connected to the storage battery 20.
- the cord 20A connected to the storage battery 20 is guided downward through the inside of the column 11A and connected to a storage battery (not shown).
- the motor 17 is provided with an automatic switch 17B for remote operation in a cord 17A connected to a power source. At the beginning of the start, the switch 17 is turned on by slip ring or wireless remote operation to start the motor 17. .
- a lightning rod 11C is provided on the upper surface of the windmill housing 11B.
- the motor 17 causes the main shaft 14 of the wind turbine 13 to rotate at a rated speed, thereby generating lift in the lift-type blade 16 and increasing the rotational speed.
- the rotational speed is accelerated by the lift.
- the operation of the controller 19 that automatically adjusts the extraction current amount in order to maintain the rated rotational speed is the same as in the previous example.
- the motor can rotate the windmill at the rated speed and take out a stable voltage, so that the windmill can be driven not only by wind power generation but also by surplus power obtained by other power generation methods to rotate the windmill. Power generation and storage of surplus power can be performed with reduced loss.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Wind Motors (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
Provided is a wind turbine generator, wherein the rated rotational speed of a wind turbine is maintained by an electric motor, and fluctuations in torque caused by lift of the lift-type blade due to rotation are made uniform by regulating fluctuations in the amount of current withdrawn, enabling a stable voltage to be achieved. This wind turbine generator comprises a main shaft (4), a motor (7) which rotates this, and a controller (9) that detects fluctuations in load of the motor (7) and automatically adjusts the amount of electric current withdrawn, wherein the main shaft (4) is rotated at a rated engine speed by the motor (7), thereby maintaining a rated voltage, and fluctuations in torque generated in the main shaft (4) due to the lift generated in the lift-type blade (6) of the wind turbine are made uniform by automatically adjusting the amount of current withdrawn, enabling a stable voltage to be output.
Description
本発明は、風力発電機の定格回転数を、風車の主軸に接続した電動機の回転力で維持させ、ロータが受ける風力によって生じる主軸のトルクの増減変化を、取出し電流量の自動調節によって一定化し、定格回転数を維持し、安定した電圧の出力を得るようにした風力発電装置に関する。
The present invention maintains the rated rotational speed of the wind power generator with the rotational force of the electric motor connected to the main shaft of the wind turbine, and stabilizes the increase / decrease change of the torque of the main shaft caused by the wind force received by the rotor by automatically adjusting the extraction current amount. The present invention relates to a wind turbine generator that maintains a rated rotational speed and obtains a stable voltage output.
風力発電機においては、風速の変化によって電圧と電流が変動し、安定した電力の供給が困難である。
また、風力発電機は、一般的に機械的ロスが大であり、低風速では回転しにくく、回転効率は低い。更に風切り音や低周波などの問題もある。騒音の生じない風車が、特許文献1に提案されている。 In a wind power generator, voltage and current fluctuate due to changes in wind speed, and it is difficult to stably supply power.
In addition, the wind power generator generally has a large mechanical loss, is difficult to rotate at a low wind speed, and has a low rotation efficiency. There are also problems such as wind noise and low frequencies. A wind turbine that does not generate noise is proposed inPatent Document 1.
また、風力発電機は、一般的に機械的ロスが大であり、低風速では回転しにくく、回転効率は低い。更に風切り音や低周波などの問題もある。騒音の生じない風車が、特許文献1に提案されている。 In a wind power generator, voltage and current fluctuate due to changes in wind speed, and it is difficult to stably supply power.
In addition, the wind power generator generally has a large mechanical loss, is difficult to rotate at a low wind speed, and has a low rotation efficiency. There are also problems such as wind noise and low frequencies. A wind turbine that does not generate noise is proposed in
特許文献1に記載の風車は、回転効率が優れており、騒音の発生も小さいものである。高速回転させるには、強風を必要とするが、強風は持続して吹くことがない。しかし、風速が大であるほど、風車の回転数は大となり、低風速時における発電量との差が開き、電圧と電流の変動が大となるので、継続して安定した電力は得難いものであった。
本発明は、電動機により主軸を定格回転数で回転させることによって、風力発電機における定格電圧を維持させ、かつ風車のロータの回転に伴い、揚力型ロータブレードの揚力によって生じる主軸のトルクの増減変化を、取出し電流量を自動調節することによって一定化させて、安定した電圧を得るようにした風力発電装置を提供するものである。 The windmill described inPatent Literature 1 has excellent rotational efficiency and generates little noise. To rotate at high speed, a strong wind is required, but the strong wind does not blow continuously. However, the higher the wind speed, the larger the rotation speed of the windmill, and the difference between the amount of power generation at low wind speeds opens and the fluctuations in voltage and current increase, so it is difficult to obtain stable power continuously. there were.
The present invention maintains the rated voltage in a wind power generator by rotating the main shaft at a rated rotational speed by an electric motor, and changes in the torque of the main shaft caused by the lift of the lift-type rotor blades as the rotor of the wind turbine rotates. Is provided by automatically adjusting the take-out current amount to provide a stable voltage.
本発明は、電動機により主軸を定格回転数で回転させることによって、風力発電機における定格電圧を維持させ、かつ風車のロータの回転に伴い、揚力型ロータブレードの揚力によって生じる主軸のトルクの増減変化を、取出し電流量を自動調節することによって一定化させて、安定した電圧を得るようにした風力発電装置を提供するものである。 The windmill described in
The present invention maintains the rated voltage in a wind power generator by rotating the main shaft at a rated rotational speed by an electric motor, and changes in the torque of the main shaft caused by the lift of the lift-type rotor blades as the rotor of the wind turbine rotates. Is provided by automatically adjusting the take-out current amount to provide a stable voltage.
本発明の具体的な内容は、次の通りである。
The specific contents of the present invention are as follows.
(1) 風力発電機の主軸と、これを回転させる電動機と、電動機の負荷の増減検知により取出し電流量を自動調節するコントローラとを有し、主軸を電動機で定格回転数で回転させることによって、定格電圧を維持させ、風車の揚力型ブレードに生じる揚力によって、主軸に生じるトルクの増減変化を、取出し電流量を自動調節して、安定した電圧の出力を得るようにした風力発電装置。
(1) It has a main shaft of a wind power generator, an electric motor that rotates the main shaft, and a controller that automatically adjusts the amount of extraction current by detecting increase / decrease in the load of the electric motor, and by rotating the main shaft at the rated rotational speed by the electric motor, A wind turbine generator that maintains a rated voltage and automatically adjusts the amount of current taken out to increase and decrease changes in torque generated on the main shaft by the lift generated by the lift type blades of the windmill, thereby obtaining a stable voltage output.
(2) 前記取出し電流量の自動調節は、電動機の負荷が増大した時は、取出し電流量を減少させ、電動機の負荷が減少した時は、取出し電流量を増大させるようにしてなる前記(1)に記載の風力発電装置。
(2) The automatic adjustment of the extraction current amount decreases the extraction current amount when the load on the motor increases, and increases the extraction current amount when the load on the motor decreases (1 ) Wind power generator.
(3) 前記風力発電機は、起動平均風速時における発電量と、前記電動機の消費電力量とをほぼ同じに設定しておき、起動平均風速が風速計で検知された時に、電動機を自動的に起動して発電させ、起動平均風速以下の風速が検知された時には、電動機を自動的に停止させるようにしてなる前記(1)又は(2)に記載の風力発電装置。
(3) The wind power generator sets the power generation amount at the start average wind speed and the power consumption of the motor approximately the same, and automatically activates the motor when the start average wind speed is detected by the anemometer. The wind turbine generator according to (1) or (2), wherein the motor is automatically started and power is generated, and the motor is automatically stopped when a wind speed equal to or lower than the startup average wind speed is detected.
(4) 前記、風力発電機における垂直の主軸に、縦軸ロータを水平回転するように支持し、主軸を電動機で回転させるようにしてなる前記(1)~(3)のいずれかに記載の風力発電装置。
(4) In any one of (1) to (3), the vertical main shaft of the wind power generator is supported so that the vertical axis rotor rotates horizontally, and the main shaft is rotated by an electric motor. Wind power generator.
(5) 前記主軸は、横軸風車の風車筐体内に配設された発電機と、横軸ロータ間に横架されている前記(1)~(3)のいずれかに記載の風力発電装置。
(5) The wind turbine generator according to any one of (1) to (3), wherein the main shaft is installed between a generator disposed in a wind turbine casing of a horizontal axis wind turbine and a horizontal axis rotor. .
(6) 前記電動機は、遠隔操作スイッチにより、自動入力の切替えが行われる前記(1)~(5)のいずれかに記載の風力発電装置。
(6) The wind turbine generator according to any one of (1) to (5), wherein the electric motor is switched automatically by a remote operation switch.
本発明によると、次のような効果が奏せられる。
According to the present invention, the following effects can be obtained.
前記(1)に記載の風力発電装置は、風速の遅速に関わらず、電動機によって発電機の定格回転数が維持され、常時一定の電圧を取出すことが出来る。
従って、高速風が続くと、揚力型ブレードが回転することによって生じる揚力が増大し、風車の回転数と発電量が増加するので、電力の取出し量が一定であれば、電動機にかかる負荷は減少する。
また、低風速となって、揚力型ブレードの揚力が低下すると、風車の回転数が低下するので、発電量を減少させなければ、電動機にかかる負荷は増大する。
従って、電動機の負荷の増減を検知し、コントローラによって電力の取出し量を低下させると、電動機にかかる負荷は減少するので、主軸の回転数の変化が生じた時には、電動機の負荷を自動調節し、主軸の定格回転数を一定に維持することによって安定した電圧を、小さな電動機の少ない消費電力で得ることができる。
例えば、フライホィールを電動機で回転させると、回転抵抗によるエネルギーの損失が生じるが、揚力型ブレードを備える風車を、電動機で回転させると、揚力型ブレードに必然的に生じる揚力が、風車の回転力を生み出し、エネルギーの上積みが得られる。 In the wind turbine generator described in (1), the rated rotational speed of the generator is maintained by the electric motor regardless of the slow speed of the wind, and a constant voltage can be taken out at all times.
Therefore, if the high-speed wind continues, the lift generated by the rotation of the lift-type blades will increase, and the rotational speed and power generation amount of the windmill will increase, so the load on the motor will decrease if the amount of electric power taken is constant. To do.
Further, if the lift of the lift-type blade is reduced due to a low wind speed, the rotational speed of the windmill is reduced. Therefore, unless the power generation amount is reduced, the load on the electric motor increases.
Therefore, if the increase / decrease in the load on the motor is detected and the amount of power taken out is reduced by the controller, the load on the motor will decrease, so when a change in the rotation speed of the spindle occurs, the load on the motor is automatically adjusted, By maintaining the rated speed of the main shaft constant, a stable voltage can be obtained with less power consumption of a small electric motor.
For example, when a flywheel is rotated by an electric motor, energy loss occurs due to rotational resistance. And build up energy.
従って、高速風が続くと、揚力型ブレードが回転することによって生じる揚力が増大し、風車の回転数と発電量が増加するので、電力の取出し量が一定であれば、電動機にかかる負荷は減少する。
また、低風速となって、揚力型ブレードの揚力が低下すると、風車の回転数が低下するので、発電量を減少させなければ、電動機にかかる負荷は増大する。
従って、電動機の負荷の増減を検知し、コントローラによって電力の取出し量を低下させると、電動機にかかる負荷は減少するので、主軸の回転数の変化が生じた時には、電動機の負荷を自動調節し、主軸の定格回転数を一定に維持することによって安定した電圧を、小さな電動機の少ない消費電力で得ることができる。
例えば、フライホィールを電動機で回転させると、回転抵抗によるエネルギーの損失が生じるが、揚力型ブレードを備える風車を、電動機で回転させると、揚力型ブレードに必然的に生じる揚力が、風車の回転力を生み出し、エネルギーの上積みが得られる。 In the wind turbine generator described in (1), the rated rotational speed of the generator is maintained by the electric motor regardless of the slow speed of the wind, and a constant voltage can be taken out at all times.
Therefore, if the high-speed wind continues, the lift generated by the rotation of the lift-type blades will increase, and the rotational speed and power generation amount of the windmill will increase, so the load on the motor will decrease if the amount of electric power taken is constant. To do.
Further, if the lift of the lift-type blade is reduced due to a low wind speed, the rotational speed of the windmill is reduced. Therefore, unless the power generation amount is reduced, the load on the electric motor increases.
Therefore, if the increase / decrease in the load on the motor is detected and the amount of power taken out is reduced by the controller, the load on the motor will decrease, so when a change in the rotation speed of the spindle occurs, the load on the motor is automatically adjusted, By maintaining the rated speed of the main shaft constant, a stable voltage can be obtained with less power consumption of a small electric motor.
For example, when a flywheel is rotated by an electric motor, energy loss occurs due to rotational resistance. And build up energy.
前記(2)に記載の風力発電装置は、電動機の負荷が増大した時には、取出し電流量を減少させ、負荷が減少した時には、取出し電流量を増大させて、電動機の負荷を一定に維持させるように、自動調節することによって、発電機の主軸の回転数を定格回転数に維持させ、電流の増減変化があっても、安定した電圧の出力を得ることができる。
The wind turbine generator described in (2) reduces the amount of current taken out when the load on the motor increases, and increases the amount of current taken out when the load decreases so as to keep the load on the motor constant. Further, by automatically adjusting, the rotational speed of the main shaft of the generator is maintained at the rated rotational speed, and a stable voltage output can be obtained even if the current increases or decreases.
前記(3)に記載の風力発電装置は、起動平均風速時における風力発電機の発電量と、電動機の消費電力量とを、ほぼ同じに設定してあるので、起動平均風速が風速計で検知された時に、自動制御器により、電動機を自動的に起動させて発電させ、その後、起動平均風速以下となった時には、電動機を自動制御器によって自動的に停止させるようにし、電動機を有効に稼働させることができる。
In the wind power generator described in (3) above, since the power generation amount of the wind power generator at the time of starting average wind speed and the power consumption amount of the motor are set substantially the same, the starting average wind speed is detected by the anemometer. When the engine starts, the automatic controller automatically starts the motor to generate power, and when the average wind speed falls below the starting average wind speed, the motor is automatically stopped by the automatic controller so that the motor operates effectively. Can be made.
前記(4)に記載の風力発電装置は、縦軸風車により回転する風力発電機の主軸の定格回転数を、電動機で維持させるようにしてあるので、縦軸風車は、風向きの変化にも効率良く回転し、発電効率を高めることができる。
In the wind power generator described in (4) above, the rated rotational speed of the main shaft of the wind power generator rotated by the vertical wind turbine is maintained by the electric motor. Therefore, the vertical wind turbine is efficient in changing the wind direction. It can rotate well and increase power generation efficiency.
前記(5)に記載の風力発電装置は、横軸風車により回転する風力発電機の主軸の定格回転数を、電動機で維持させるようにしてあるので、横軸風車は低風速でも効率良く回転し、発電効率を高めることができる。
In the wind power generator described in (5) above, the rated rotational speed of the main shaft of the wind power generator rotated by the horizontal axis wind turbine is maintained by the electric motor. Therefore, the horizontal axis wind turbine rotates efficiently even at a low wind speed. , Power generation efficiency can be increased.
前記(6)に記載の風力発電装置は、電動機の自動入力の切替えを、遠隔操作で行うことができるので、電動機が手の届きにくい位置にあっても、始動及び停止を容易にさせることができる。
Since the wind turbine generator described in (6) can switch the automatic input of the motor by remote control, it can easily start and stop even if the motor is in a position where it is difficult to reach. it can.
本発明の実施例を、以下に図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.
図1において、風力発電装置1は、発電機2と風車3とを備えている。発電機2に立設した垂直の主軸4の上端に、縦軸ロータ5のハブ5Aが固定され、ハブ5Aで支持された複数の水平の支持腕5Bの先端に、垂直の揚力型ブレード6(以下単にブレードという)が装着されている。
In FIG. 1, the wind power generator 1 includes a generator 2 and a windmill 3. The hub 5A of the vertical rotor 5 is fixed to the upper end of the vertical main shaft 4 erected on the generator 2, and the vertical lift type blades 6 () are attached to the tips of a plurality of horizontal support arms 5B supported by the hub 5A. (Hereinafter simply referred to as a blade).
主軸4の下端部は、任意の伝動手段8A、8Bを介して、電動機7と連係されている。すなわち、電動機7に設けた減速機7Aの出力軸7Cに設けた伝動手段8Bと、主軸4に設けた伝動手段8Aとは、適宜の連係手段8Cを介して連係されている。連係手段8Cには、必要に応じて、自動制御のクラッチも使用する。 電動機7は、例えば、定格出力100w仕様で、内部に、定格回転数を例えば、300rpmとする減速機7Aが組込まれている。
The lower end portion of the main shaft 4 is linked to the electric motor 7 via arbitrary transmission means 8A and 8B. That is, the transmission means 8B provided on the output shaft 7C of the speed reducer 7A provided on the electric motor 7 and the transmission means 8A provided on the main shaft 4 are linked via an appropriate linkage means 8C. For the linkage means 8C, an automatic control clutch is also used as necessary. The electric motor 7 has, for example, a rated output of 100 w specification, and a reduction gear 7A having a rated rotational speed of, for example, 300 rpm is incorporated therein.
外部からコード7Dを介して電力を供給し、自動スイッチ7Bを遠隔操作して電動機7を起動させると、無負荷での風車3は、トルクの大きな電動機7によって、容易に高速回転し、発電機2は、この回転に伴う発電量の発電をする。
When electric power is supplied from the outside via the cord 7D and the automatic switch 7B is remotely operated to start the electric motor 7, the unloaded windmill 3 is easily rotated at a high speed by the electric motor 7 having a large torque. 2 generates the amount of power generated by this rotation.
なお、発電機2の出力コード2Aには、コントローラ9及び蓄電池10が連結されている。上記の風力発電装置1を、風況のよい場所に設置し、電動機7による駆動によって、風車3を支持する発電機2の主軸4を、定格回転数で回転させる。
A controller 9 and a storage battery 10 are connected to the output cord 2A of the generator 2. The wind power generator 1 described above is installed in a place with good wind conditions, and the main shaft 4 of the generator 2 that supports the wind turbine 3 is rotated at the rated rotational speed by driving by the electric motor 7.
一般的な電動機の回転数は、2500rpm~3000rpmであるから、これを、例えば300rpmに減速して風車3を回転させると、トルクが大きく作用するので、風車3が大型であっても、容易に回転させることができる。
Since the rotation speed of a general electric motor is 2500 rpm to 3000 rpm, if this is reduced to, for example, 300 rpm and the windmill 3 is rotated, the torque acts greatly, so even if the windmill 3 is large, it can be easily Can be rotated.
風速の変化に伴い、高速の風が吹けば、揚力型ブレード6の揚力が大となって、主軸4は風力で回転し、発電量は増加するので、電動機7にかかる負荷は100w以下の小となる。
従って、コントローラ9の作用によって、取出す電流量を増加させ、電動機7の負荷を100wに維持して、蓄電池10に蓄電するか消費する。 As the wind speed changes, if the high-speed wind blows, the lift of the lift-type blade 6 increases, the main shaft 4 rotates with wind power, and the amount of power generation increases. Therefore, the load on the motor 7 is less than 100w. It becomes.
Therefore, the amount of current to be taken out is increased by the action of thecontroller 9, the load of the electric motor 7 is maintained at 100w, and the battery 10 is charged or consumed.
従って、コントローラ9の作用によって、取出す電流量を増加させ、電動機7の負荷を100wに維持して、蓄電池10に蓄電するか消費する。 As the wind speed changes, if the high-speed wind blows, the lift of the lift-
Therefore, the amount of current to be taken out is increased by the action of the
風速が低下すれば、発電量が低下し、風車3によって回転する主軸4の定格回転数を、例えば300rpmに維持させると、発電機2の発電量が増加して、電動機7にかかる負荷は増加する。
If the wind speed decreases, the power generation amount decreases, and if the rated rotational speed of the main shaft 4 rotated by the windmill 3 is maintained at, for example, 300 rpm, the power generation amount of the generator 2 increases and the load on the motor 7 increases. To do.
その場合には、コントローラ9の作用によって、発電機2から取出す電流量を、自動的に減少させて、定格回転数を例えば300rpmに維持させ、一定の電圧を維持して出力をする。
In that case, the amount of current taken from the generator 2 is automatically reduced by the action of the controller 9, the rated speed is maintained at, for example, 300 rpm, and output is performed while maintaining a constant voltage.
風車3の回転によって、主軸4が300rpmの定格回転数で回転するためには、風速をどの程度必要とするのかを例示すると、例えば縦軸ロータ5の大きさが、半径1m、揚力型ブレード6の長さ2.7m、受風面積5.4m、翼幅0.5m、翼枚数2枚として、風速約16m/sの時の数値に該当する。
In order to illustrate how much the wind speed is required for the main shaft 4 to rotate at the rated speed of 300 rpm by the rotation of the windmill 3, for example, the size of the vertical rotor 5 is 1 m in radius and the lift type blade 6 This corresponds to the value when the wind speed is about 16 m / s, with a length of 2.7 m, wind receiving area of 5.4 m, blade width of 0.5 m, and two blades.
この風速で回転する風車3による発電機2の発電量は、約6000Wとなる。すなわち、100Wの電力を消費して電動機7を駆動し、風力発電装置1を回転させることにより、発電機2によって約6000Wの発電をすることが可能となる。
The amount of power generated by the generator 2 by the wind turbine 3 rotating at this wind speed is about 6000W. That is, it is possible to generate about 6000 W by the generator 2 by driving the electric motor 7 while consuming 100 W of electric power and rotating the wind power generator 1.
一般の風力発電機においては、風速が常に変化しているため、回転数を一定にすることは不可能であり、常に電圧と電流の変動が生じている。
従って、従来の小型風力発電機においては、定電圧の出力が困難である。 In a general wind power generator, since the wind speed is constantly changing, it is impossible to make the rotation speed constant, and fluctuations in voltage and current always occur.
Therefore, it is difficult to output a constant voltage in the conventional small wind power generator.
従って、従来の小型風力発電機においては、定電圧の出力が困難である。 In a general wind power generator, since the wind speed is constantly changing, it is impossible to make the rotation speed constant, and fluctuations in voltage and current always occur.
Therefore, it is difficult to output a constant voltage in the conventional small wind power generator.
しかし、本発明における風力発電装置1においては、電動機7によって風車3の主軸4を回転させて、常に定格回転数を維持させるので、縦軸ロータ5の回転によって生じる主軸4のトルクの増減変化も、取出す電流量の増減を調節することによって一定化させ、電圧を一定にして取出すことが出来る。
However, in the wind turbine generator 1 according to the present invention, the main shaft 4 of the windmill 3 is rotated by the electric motor 7 so that the rated rotational speed is always maintained. Therefore, the increase / decrease change in the torque of the main shaft 4 caused by the rotation of the vertical axis rotor 5 also occurs. By adjusting the increase / decrease in the amount of current to be taken out, the voltage can be made constant and taken out.
風力で風車3を回転させると、風車3の回転速度が加速される時のエネルギー損失が生じるが、電動機7によって風車3を常に回転させておき、電動機7側の負荷変動を起さないように、出力側の電流取出し量を、コントローラ9により調節をすることによって、回転速度が加速した状態から出力を得られるため、風車3の加速時のエネルギー損が生じない。
When the wind turbine 3 is rotated by wind power, energy loss occurs when the rotational speed of the wind turbine 3 is accelerated. However, the wind turbine 3 is always rotated by the electric motor 7 so as not to cause load fluctuation on the electric motor 7 side. Since the output can be obtained from the state where the rotational speed is accelerated by adjusting the current extraction amount on the output side by the controller 9, no energy loss occurs when the wind turbine 3 is accelerated.
揚力型ブレード6のスパンを、回転直径より長くしておくと、次第に縦軸ロータ5の回転数が上って、回転している揚力型ブレード6の外側の空気が、遠心力で移動し、内側の空気は外側方向に引寄せられるため、揚力型ブレード6の回転軌跡よりも内側では、負圧となる。
If the span of the lift type blade 6 is made longer than the rotation diameter, the rotational speed of the vertical axis rotor 5 gradually increases, and the air outside the rotating lift type blade 6 moves by centrifugal force, Since the inner air is attracted in the outer direction, a negative pressure is generated on the inner side of the rotation trajectory of the lift type blade 6.
その結果、縦軸ロータ5の上下方向から、負圧となったハブ5Aの方向へ、外部から空気が引込まれ、回転する揚力型ブレード6によって、遠心方向へ吸い出される気流は、揚力型ブレード6の後縁に沿って外方へ流出し、その反動で、揚力型ブレード6は、回転方向へ揚力(推進力)が生じて回転する。
As a result, air is drawn from the outside from the vertical direction of the vertical rotor 5 toward the hub 5A where the negative pressure is generated, and the airflow sucked in the centrifugal direction by the rotating lift-type blade 6 is lift-type blade. 6 flows outward along the rear edge of the blade 6, and the lift-type blade 6 rotates with a lift (propulsive force) generated in the rotational direction.
この風力発電装置1は、単純に発電するだけではなく、他の方法で発電された外部電力を使用して電動機7を駆動させ、風力発電装置1を回転させて発電することによって、他の方法で発電された電力の余剰分を、ロスを少なくして保存すると共に、揚力型ブレード6に生じる揚力による回転力によって、新たな発電を継続的に行うこともできる。
The wind power generation apparatus 1 is not simply configured to generate power, but by driving the electric motor 7 using external power generated by another method and rotating the wind power generation apparatus 1 to generate power, In addition to storing the surplus of the power generated in step 1 with a reduced loss, new power generation can be continuously performed by the rotational force generated by the lift generated in the lift-type blade 6.
なお、この風車3における揚力型ブレード6を、1本の主軸4に多層状(例えば特開2005-188468号記載のよう)に固定することもできる。
また、揚力型ブレード6の翼端部を、主軸4方向へ傾斜する傾斜部6Aとすることによって、翼端外方向へ気流が拡散することを抑止し、回転効率を高めることができる。 Thelift type blade 6 in the wind turbine 3 can be fixed to one main shaft 4 in a multilayer shape (for example, as described in JP-A-2005-188468).
Further, by making the blade tip portion of the lift-type blade 6 into the inclined portion 6A inclined in the direction of the main shaft 4, it is possible to prevent the airflow from diffusing outward from the blade tip and to improve the rotation efficiency.
また、揚力型ブレード6の翼端部を、主軸4方向へ傾斜する傾斜部6Aとすることによって、翼端外方向へ気流が拡散することを抑止し、回転効率を高めることができる。 The
Further, by making the blade tip portion of the lift-
更に、台風対策として、自動風速検知器21を発電機2の横に臨設し、台風等により、一定の高速風を検知した時は、自動制御器22によって、電動機7の自動スイッチ7Bをオフに作動させて、電動機7を停止させると共に、発電機2に大きな負荷をかけて、主軸4を停止させる。
Furthermore, as a countermeasure against typhoons, an automatic wind speed detector 21 is placed next to the generator 2 and when a certain high speed wind is detected by a typhoon or the like, the automatic controller 22 turns off the automatic switch 7B of the motor 7. The electric motor 7 is stopped by operating, and the main shaft 4 is stopped by applying a large load to the generator 2.
また、一定(平均)以下の風速を、自動風速検知器21が検知した時には、発電機2の負荷を、自動的に解除すると共に、電動機7の自動スイッチ7Bを、自動制御器22によって自動的にオンにして、風車3の回転の復元を図る。
When the automatic wind speed detector 21 detects a wind speed below a certain (average) speed, the load on the generator 2 is automatically released and the automatic switch 7B of the motor 7 is automatically switched by the automatic controller 22. The rotation of the windmill 3 is restored.
図2は、本発明の風力発電装置の実施例2の要部縦断正面図である。前例と同じ部分は、同じ符号を付して説明を省略する。
この実施例2においては、横軸風車13を使用してある。支柱11Aの上端に、風車筐体11Bが、垂直軸11Dの周りを旋回可能に装着されている。 FIG. 2 is a longitudinal sectional front view of a main part of a wind power generator according to a second embodiment of the present invention. The same parts as those of the previous example are denoted by the same reference numerals and the description thereof is omitted.
In the second embodiment, a horizontalaxis wind turbine 13 is used. A windmill housing 11B is mounted on the upper end of the support 11A so as to be able to turn around a vertical axis 11D.
この実施例2においては、横軸風車13を使用してある。支柱11Aの上端に、風車筐体11Bが、垂直軸11Dの周りを旋回可能に装着されている。 FIG. 2 is a longitudinal sectional front view of a main part of a wind power generator according to a second embodiment of the present invention. The same parts as those of the previous example are denoted by the same reference numerals and the description thereof is omitted.
In the second embodiment, a horizontal
風車筐体11Bは、前部が大きく、後端へかけて次第に細く形成してあり、後部に横軸風車13を装着してある。
風車筐体11Bの内部の、前方部分に配した発電機12から、水平に後方へ突出する主軸14の後端に、横軸ロータ15のハブ15Aを固定してある。 Thewindmill casing 11B has a large front part and is gradually formed narrower toward the rear end, and a horizontal axis windmill 13 is attached to the rear part.
Ahub 15A of the horizontal shaft rotor 15 is fixed to the rear end of the main shaft 14 that protrudes rearward horizontally from the generator 12 disposed in the front portion inside the windmill housing 11B.
風車筐体11Bの内部の、前方部分に配した発電機12から、水平に後方へ突出する主軸14の後端に、横軸ロータ15のハブ15Aを固定してある。 The
A
ハブ15Aには、2枚~5枚の揚力型ブレード16を、放射方向に向けて装着してある。揚力型ブレード16の断面は、図3に示すように、前縁16Aが厚く、最大翼厚部16Cから後縁16Bにかけて、次第に薄く形成してある。
The hub 15A has 2 to 5 lift-type blades 16 mounted in the radial direction. As shown in FIG. 3, the cross section of the lift type blade 16 is formed such that the leading edge 16A is thick and gradually thins from the maximum blade thickness portion 16C to the trailing edge 16B.
揚力型ブレード16の前面16Dは、前縁16Aから後縁16Bへかけて、ほぼ直線的であるが、背面16Eは、最大翼厚部16Cを頂点として、後縁16Bへかけて緩く湾曲しており、回転すると、前面16Dに沿って流れる気流の速度よりも、背面16Eに沿って流れる気流の速度の方が早くなり、背面16E部分が負圧となる。
The front surface 16D of the lift type blade 16 is substantially straight from the leading edge 16A to the trailing edge 16B, but the back surface 16E is gently curved from the maximum blade thickness 16C to the trailing edge 16B. When rotating, the velocity of the airflow flowing along the back surface 16E becomes faster than the velocity of the airflow flowing along the front surface 16D, and the back surface 16E portion has a negative pressure.
従って、電動機17によって、横軸ロータ15を高速で空回転させると、揚力型ブレード16の前面16D方向から、後縁16B方向へ向かう気流が生じ、図3におけるX矢示方向へ流れて、その反動で横軸ロータ15の、前縁16A方向への回転が助長される。また湾曲面をなす背面16Eへ、後縁16B方向から押す気流が生じて、回転に伴って、回転を助長する。
Therefore, when the horizontal axis rotor 15 is idly rotated by the electric motor 17 at high speed, an air flow is generated from the front surface 16D direction of the lift-type blade 16 toward the trailing edge 16B and flows in the direction indicated by the arrow X in FIG. The reaction promotes rotation of the horizontal shaft rotor 15 in the direction of the leading edge 16A. Further, an airflow that is pushed from the direction of the trailing edge 16B is generated on the back surface 16E that forms a curved surface, and the rotation is promoted along with the rotation.
風力によって、揚力型ブレード16が回転する時には、風力によって回転することに加えて、回転する揚力型ブレード16自体によって生じる揚力により、回転力が付加され、横軸ロータ15が風速よりも早く回転し、発電量が増加する。
When the lift type blade 16 is rotated by the wind force, in addition to the rotation by the wind force, a rotational force is added by the lift force generated by the rotating lift type blade 16 itself, and the horizontal axis rotor 15 rotates faster than the wind speed. , Power generation will increase.
風車筐体11Bの後部内側に、減速機を備える電動機17を配設してあり、電動機17の出力軸17Cの回転力は、伝動手段18A、18Bを介して主軸14に伝達される。
風車筐体11Bの前部内側に、コントローラ19と蓄電池20を収容してあり、発電機12から延出するコード12Aを、蓄電池20に接続してある。 Anelectric motor 17 having a speed reducer is disposed inside the rear portion of the windmill casing 11B, and the rotational force of the output shaft 17C of the electric motor 17 is transmitted to the main shaft 14 via the transmission means 18A and 18B.
Acontroller 19 and a storage battery 20 are housed inside the front portion of the windmill casing 11B, and a cord 12A extending from the generator 12 is connected to the storage battery 20.
風車筐体11Bの前部内側に、コントローラ19と蓄電池20を収容してあり、発電機12から延出するコード12Aを、蓄電池20に接続してある。 An
A
蓄電池20に接続したコード20Aは、支柱11Aの内部を通して下方へ導かれ、図示しない蓄電池に接続してある。電動機17には、電源に接続したコード17Aに、遠隔操作のための自動スイッチ17Bを介在させてあり、始動当初において、スリップリング、もしくは、無線による遠隔操作によってスイッチオンさせ、電動機17を始動させる。風車筐体11Bの上面に、図示するように避雷針11Cを設ける。
The cord 20A connected to the storage battery 20 is guided downward through the inside of the column 11A and connected to a storage battery (not shown). The motor 17 is provided with an automatic switch 17B for remote operation in a cord 17A connected to a power source. At the beginning of the start, the switch 17 is turned on by slip ring or wireless remote operation to start the motor 17. . As shown in the figure, a lightning rod 11C is provided on the upper surface of the windmill housing 11B.
この実施例2において、電動機17により、風車13の主軸14を定格回転させることによって、揚力型ブレード16に揚力が生じ、回転速度が高められる。揚力型ブレード16が風を受けて回転すると、揚力によって回転速度が加速される。
定格回転数の維持のために、取出し電流量を自動調節するコントローラ19の作用は、前例と同じである。 In the second embodiment, themotor 17 causes the main shaft 14 of the wind turbine 13 to rotate at a rated speed, thereby generating lift in the lift-type blade 16 and increasing the rotational speed. When the lift type blade 16 receives wind and rotates, the rotational speed is accelerated by the lift.
The operation of thecontroller 19 that automatically adjusts the extraction current amount in order to maintain the rated rotational speed is the same as in the previous example.
定格回転数の維持のために、取出し電流量を自動調節するコントローラ19の作用は、前例と同じである。 In the second embodiment, the
The operation of the
電動機によって、風車を定格回転数で回転させて、安定した電圧を取出すことができるので、風力発電のみならず、他の発電方法で得た電力の余剰分で電動機を駆動させて、風車を回転させて発電し、余剰電力の蓄電を、ロスを少なくして行うことができる。
The motor can rotate the windmill at the rated speed and take out a stable voltage, so that the windmill can be driven not only by wind power generation but also by surplus power obtained by other power generation methods to rotate the windmill. Power generation and storage of surplus power can be performed with reduced loss.
1.風力発電装置
2.発電機
2A.出力コード
3.風車
4.主軸
5.縦軸ロータ
5A.ハブ
5B.支持腕
5C.筋交
6.揚力型ブレード
6A.翼端部
7.電動機
7A.変速機
7B.自動スイッチ
7C.出力軸
7D.コード
8A.8B.伝動手段
8C.連係手段
9.コントローラ
10.蓄電池
11.風力発電装置
11A.支柱
11B.風車筐体
11C.避雷針
11D.垂直軸
12.発電機
12A.コード
13.横軸風車
14.主軸
15.横軸ロータ
15A.ハブ
16.揚力型ブレード
16A.前縁
16B.後縁
16C.最大翼厚部
16D.前面
16E.背面
17.電動機
17A.コード
17B.自動スイッチ
17C.出力軸
18A、18B.伝動手段
19.コントローラ
20.蓄電池
20A.コード
21.自動風速検知器
22.自動制御器 1.Wind power generator 2. Generator 2A. Output code 3. Windmill4. Spindle 5. Vertical axis rotor 5A. Hub 5B. Support arm 5C. Intermuscular 6. Lift type blade 6A. 6. Wing tip Electric motor 7A. Transmission 7B. Automatic switch 7C. Output shaft 7D. Code 8A. 8B. Transmission means 8C. Linking means 9. controller
Ten. Storage battery
11. Wind power generator
11A. Prop
11B. Windmill housing
11C. lightning rod
11D. Vertical axis
12. Generator
12A. code
13. Horizontal axis windmill
14. Spindle
15. Horizontal axis rotor
15A. Hub
16. Lift type blade
16A. Leading edge
16B. Trailing edge
16C. Maximum blade thickness
16D. Front
16E. back
17. Electric motor
17A. code
17B. Automatic switch
17C. Output shaft
18A, 18B. Transmission means
19. controller
20. Storage battery
20A. code
twenty one. Automatic wind speed detector
twenty two. Automatic controller
2.発電機
2A.出力コード
3.風車
4.主軸
5.縦軸ロータ
5A.ハブ
5B.支持腕
5C.筋交
6.揚力型ブレード
6A.翼端部
7.電動機
7A.変速機
7B.自動スイッチ
7C.出力軸
7D.コード
8A.8B.伝動手段
8C.連係手段
9.コントローラ
10.蓄電池
11.風力発電装置
11A.支柱
11B.風車筐体
11C.避雷針
11D.垂直軸
12.発電機
12A.コード
13.横軸風車
14.主軸
15.横軸ロータ
15A.ハブ
16.揚力型ブレード
16A.前縁
16B.後縁
16C.最大翼厚部
16D.前面
16E.背面
17.電動機
17A.コード
17B.自動スイッチ
17C.出力軸
18A、18B.伝動手段
19.コントローラ
20.蓄電池
20A.コード
21.自動風速検知器
22.自動制御器 1.
Ten. Storage battery
11. Wind power generator
11A. Prop
11B. Windmill housing
11C. lightning rod
11D. Vertical axis
12. Generator
12A. code
13. Horizontal axis windmill
14. Spindle
15. Horizontal axis rotor
15A. Hub
16. Lift type blade
16A. Leading edge
16B. Trailing edge
16C. Maximum blade thickness
16D. Front
16E. back
17. Electric motor
17A. code
17B. Automatic switch
17C. Output shaft
18A, 18B. Transmission means
19. controller
20. Storage battery
20A. code
twenty one. Automatic wind speed detector
twenty two. Automatic controller
Claims (6)
- 風力発電機の主軸と、これを回転させる電動機と、電動機の負荷の増減を検知して、取出し電流量を自動調節するコントローラとを有し、主軸を電動機で定格回転数で回転させることによって、定格電圧を維持させ、風車の揚力型ブレードに生じる揚力により、主軸に生じるトルクの増減変化を、取出し電流量を自動調節して一定化させ、安定した電圧の出力を得るようにしたことを特徴とする風力発電装置。 By having a spindle of the wind power generator, an electric motor that rotates the spindle, and a controller that automatically detects the increase / decrease in the load of the electric motor and automatically adjusts the amount of extraction current, by rotating the spindle at the rated speed with the electric motor, The rated voltage is maintained, and the increase and decrease of the torque generated in the main shaft is made constant by automatically adjusting the extraction current amount by the lift generated in the lift type blade of the windmill, and a stable voltage output is obtained. Wind power generator.
- 前記取出し電流量の自動調節は、電動機の負荷が増大した時は、取出し電流量を減少させ、電動機の負荷が減少したときは、取出し電流量を増大させることを特徴とする請求項1に記載の風力発電装置。 The automatic adjustment of the amount of extraction current decreases the amount of extraction current when the load on the motor increases, and increases the amount of extraction current when the load on the motor decreases. Wind power generator.
- 前記風力発電機は、起動平均風速時における発電量と、電動機の消費電力量とをほぼ同じに設定しておき、起動平均風速が、風速計で検知された時に、電動機を自動的に起動させて発電させ、起動平均風速以下の風速が検知された時には、電動機を自動的に停止させるようにしてなることを特徴とする請求項1又は2に記載の風力発電装置。 The wind power generator sets the power generation amount at the start average wind speed and the power consumption of the motor to be substantially the same, and automatically starts the motor when the start average wind speed is detected by the anemometer. The wind turbine generator according to claim 1 or 2, wherein the motor is automatically stopped when a wind speed equal to or lower than the startup average wind speed is detected.
- 前記風力発電機に、垂直に設けた主軸に縦軸ロータを水平回転するように支持し、主軸を電動機で回転させるようにしてなることを特徴とする請求項1~3の何れかに記載の風力発電装置。 The vertical axis rotor is supported by the wind power generator so as to rotate horizontally, and the main axis is rotated by an electric motor. Wind power generator.
- 前記主軸は、横軸風車の風車筐体内に配設された発電機と、横軸ロータとの間に横架されていることを特徴とする請求項1~3のいずれかに記載の風力発電装置。 The wind power generator according to any one of claims 1 to 3, wherein the main shaft is horizontally mounted between a generator disposed in a wind turbine casing of a horizontal axis wind turbine and a horizontal axis rotor. apparatus.
- 前記電動機は、遠隔操作スイッチにより、自動的に入力切替えが行われることを特徴とする請求項1~5のいずれかに記載の風力発電装置。 The wind turbine generator according to any one of claims 1 to 5, wherein the electric motor is automatically switched by a remote operation switch.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-057572 | 2015-03-20 | ||
JP2015057572A JP6978825B2 (en) | 2015-03-20 | 2015-03-20 | Wind power generator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016152640A1 true WO2016152640A1 (en) | 2016-09-29 |
Family
ID=56977353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/058093 WO2016152640A1 (en) | 2015-03-20 | 2016-03-15 | Wind turbine generator |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6978825B2 (en) |
TW (1) | TW201641814A (en) |
WO (1) | WO2016152640A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021118488A1 (en) * | 2019-12-12 | 2021-06-17 | Yalcin Ahmet Cem | Innovation to increase the power generation capacity and efficiency in wind turbines |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5183386A (en) * | 1988-12-23 | 1993-02-02 | Lewis Feldman | Vertical axis sail bladed wind turbine |
JP2003314429A (en) * | 2002-04-17 | 2003-11-06 | Energy Products Co Ltd | Wind power generator |
JP2006118384A (en) * | 2004-10-20 | 2006-05-11 | Fjc:Kk | Vertical-shaft windmill |
JP2013034361A (en) * | 2011-07-29 | 2013-02-14 | National Sun Yat-Sen Univ | Excitation synchronous power generation system for wind power generation and control method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008118744A (en) * | 2006-11-01 | 2008-05-22 | Hideo Kawamura | Wind turbine generator equipped with winding switching mechanism and magnetic flux control mechanism |
TWI488425B (en) * | 2012-07-16 | 2015-06-11 | Univ Nat Sun Yat Sen | Wind power generation system and method for controlling excitation synchronous generator thereof |
-
2015
- 2015-03-20 JP JP2015057572A patent/JP6978825B2/en active Active
-
2016
- 2016-03-15 WO PCT/JP2016/058093 patent/WO2016152640A1/en active Application Filing
- 2016-03-18 TW TW105108530A patent/TW201641814A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5183386A (en) * | 1988-12-23 | 1993-02-02 | Lewis Feldman | Vertical axis sail bladed wind turbine |
JP2003314429A (en) * | 2002-04-17 | 2003-11-06 | Energy Products Co Ltd | Wind power generator |
JP2006118384A (en) * | 2004-10-20 | 2006-05-11 | Fjc:Kk | Vertical-shaft windmill |
JP2013034361A (en) * | 2011-07-29 | 2013-02-14 | National Sun Yat-Sen Univ | Excitation synchronous power generation system for wind power generation and control method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021118488A1 (en) * | 2019-12-12 | 2021-06-17 | Yalcin Ahmet Cem | Innovation to increase the power generation capacity and efficiency in wind turbines |
Also Published As
Publication number | Publication date |
---|---|
TW201641814A (en) | 2016-12-01 |
JP6978825B2 (en) | 2021-12-08 |
JP2016176414A (en) | 2016-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102518555B (en) | Megawatt wind driven generator set as well as control method and control system thereof | |
US9581132B2 (en) | Wind turbine having flow-aligned blades | |
KR101331169B1 (en) | Variable horizontal wing for small size wind powered generator and power control method of the same | |
EP3032095A1 (en) | Methods of operating a wind turbine and wind turbines | |
JP2010121518A (en) | Vertical shaft magnus type wind turbine generator | |
JP2006152922A (en) | Windmill | |
JP2004060646A (en) | Starting wind speed reducing device for wind mill | |
JP2010523880A (en) | Improvements in or related to wind turbines | |
JP5066648B2 (en) | Wind power generator | |
CN210985876U (en) | Novel electric culvert power device | |
JP2009114975A (en) | Rotary blade attack angle variable mechanism for vertical blade type wind mill | |
WO2017063003A1 (en) | Method of determining and controlling the attack angle of fixed-speed wind turbine blade | |
WO2016152640A1 (en) | Wind turbine generator | |
KR101363516B1 (en) | Method for controlling a generator of wind turbine generator | |
JP2008057350A (en) | Wind power generator | |
WO2003016712A1 (en) | Wind power generator | |
KR101466092B1 (en) | Yawing apparatus, wind power generator including the same | |
KR101448540B1 (en) | Start-up and braking control of a wind turbine | |
KR100984862B1 (en) | Vertical axis wind turbine | |
JP2018119427A (en) | Wind-power generation system or operation method of wind-power generation system | |
KR101758011B1 (en) | Blade pitch control apparatus for small size wind power generator | |
KR100970302B1 (en) | Horizontal Axis Wind Turbine Generator Using Dual Blade and Operating method thereof | |
KR20150038888A (en) | Start-up and braking control method of a wind turbine | |
KR20020045601A (en) | Wind turbine | |
KR101630111B1 (en) | Blade angle control system of wind power generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16768543 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16768543 Country of ref document: EP Kind code of ref document: A1 |