JP2008118744A - Wind turbine generator equipped with winding switching mechanism and magnetic flux control mechanism - Google Patents

Wind turbine generator equipped with winding switching mechanism and magnetic flux control mechanism Download PDF

Info

Publication number
JP2008118744A
JP2008118744A JP2006297777A JP2006297777A JP2008118744A JP 2008118744 A JP2008118744 A JP 2008118744A JP 2006297777 A JP2006297777 A JP 2006297777A JP 2006297777 A JP2006297777 A JP 2006297777A JP 2008118744 A JP2008118744 A JP 2008118744A
Authority
JP
Japan
Prior art keywords
winding
magnetic flux
wind
stator
flux control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006297777A
Other languages
Japanese (ja)
Inventor
Hideo Kawamura
英男 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Cera Tech Co Ltd
Original Assignee
Fuji Cera Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Cera Tech Co Ltd filed Critical Fuji Cera Tech Co Ltd
Priority to JP2006297777A priority Critical patent/JP2008118744A/en
Publication of JP2008118744A publication Critical patent/JP2008118744A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wind turbine generator which can generate power over a wide range of a rotational speed of a wind turbine by switch-controlling a winding, and can generates a prescribed constant voltage by controlling magnetic flux. <P>SOLUTION: In the winding 14 of a stator 4 constituted of a first winding 38 and a second winding 39 which are connected in series, a line 77 is connected to an output terminal 81 of the first winding 38 via a switch 76, and a line 78 is connected to an output terminal 79 of a second winding 39 via a switch 75. A controller 69 stores an output value which corresponds to the rotational speed of the wind turbine 52 in advance, and generates the constant voltage from a generated output by on/off-controlling the switches 75, 76 and controlling a magnetic path air gap caused by a magnetic flux control cage 7 in response to the rotational speed of the wind turbine 52 and a load. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は,複数の巻線が巻き上げられたステータ,ステータに対して風力によって回転駆動されるロータ,及びステータとロータとの間に配設されてステータに対して回転揺動する磁束制御籠を備え,巻線の接続を切り換える巻線切換え機構と磁束制御籠から成る磁束制御機構を備えた風力発電・電動機に関する。   The present invention includes a stator having a plurality of windings wound thereon, a rotor that is rotationally driven by wind power with respect to the stator, and a magnetic flux control rod that is disposed between the stator and the rotor and rotates and swings relative to the stator. The present invention relates to a wind power generator / motor equipped with a magnetic flux control mechanism including a coil switching mechanism and a magnetic flux control rod.

近年,省エネルギーや環境汚染の防止に対応するため,風力発電機の普及が叫ばれている。エネルギー危機が叫ばれる社会情勢の中で,我が国には風力ほど豊富に存在するものはなく,風力ほど環境汚染の少ないエネルギー源である。そこで,我が国では,風力エネルギーを電力に変換してその利用を促進するため,風力発電機を一般家庭用として設置できる大きさに構成し,風力発電機に対する設備投資の少ない発電機を開発することが求められている。   In recent years, the popularization of wind power generators has been screamed in order to save energy and prevent environmental pollution. In the social situation where the energy crisis is called out, there is nothing in Japan as rich as wind power, and it is an energy source with less environmental pollution than wind power. Therefore, in Japan, in order to convert wind energy into electric power and promote its use, the wind power generator should be sized so that it can be installed for general households, and a generator with less capital investment for the wind power generator should be developed. Is required.

従来,風力発電装置として,プロペラ式が多く普及しており,風力の変動に係わらず一定の電力を発電することが可能な永久磁石型交流発電機を使用したものが知られている。該風力発電装置では,永久磁石型交流発電機はプロペラによって回転駆動される。発電機で発電された電力はインバータに供給される。インバータは,プロペラの回転数に比例した周波数の信号に対して所定の位相差を有する信号によって制御されるため,風力の変動によらず一定の電力を出力することができる(例えば,特許文献1参照)。   Conventionally, as a wind power generator, a propeller type has been widely used, and one using a permanent magnet type AC generator capable of generating a constant power regardless of fluctuations in wind power is known. In the wind power generator, the permanent magnet type AC generator is rotationally driven by a propeller. The electric power generated by the generator is supplied to the inverter. Since the inverter is controlled by a signal having a predetermined phase difference with respect to a signal having a frequency proportional to the number of revolutions of the propeller, the inverter can output a constant power regardless of wind force fluctuation (for example, Patent Document 1). reference).

また,本発明者は,スイッチングレギュレータを不要にし,回転子に風車タービン取付部を直接設け,風力が極低速でも所定の一定電圧を発電でき,小形で高効率で,製造コストを低減できる磁束制御型風力発電機を開発した。該磁束制御型風力発電機は,取付部を備えたシャフト,シャフト上に取り付けられたステータ,ステータの外周側で回転可能に支持された複数の永久磁石片を備えた回転子,シャフトに揺動可能に取り付けられた磁路を通る磁束を揺動量によって制御する磁束制御籠,磁束制御籠をステータに対して揺動させるアクチュエータ,及び回転子の外周面に設けられた風車タービンを取り付けるための風車タービン取付部から構成されている(例えば,特許文献2参照)。   In addition, the present inventor eliminates the need for a switching regulator, directly provides a wind turbine turbine mounting portion on the rotor, can generate a predetermined constant voltage even when the wind force is extremely low, and is small, highly efficient, and can reduce manufacturing costs. Type wind power generator was developed. The magnetic flux control type wind power generator includes a shaft having a mounting portion, a stator mounted on the shaft, a rotor having a plurality of permanent magnet pieces rotatably supported on the outer periphery of the stator, and swinging on the shaft. A magnetic flux control rod that controls the magnetic flux that passes through the magnetic path that can be attached according to the amount of oscillation, an actuator that causes the magnetic flux control rod to oscillate with respect to the stator, and a windmill for mounting a windmill turbine provided on the outer peripheral surface of the rotor It is comprised from the turbine attaching part (for example, refer patent document 2).

また,風力発電装置の制御方法として,充電装置と放電装置等の設備の削減ができ,充/放電損失を無くし,風力発電装置のエネルギー効率を上昇させることができるものが知られている。該風力発電装置の制御方法は,風車ブレードに駆動軸を介して連結した発電機よりの風車発生電力をAC/DC変換器により直流電力に変換したのち,DC/AC変換器により直流電力に変換して電力系統に供給するものであり,AC/DC変換器とDC/AC変換器間の直流ラインに直接蓄電池を接続するとともに,上記2つの変換器や直流ライン及び蓄電池よりの検知信号を適宜選択的に取り込んで所定の演算を行ってそれぞれの変換器に出力指令信号を生成するう演算器を備え,出力指令信号に基づいてAC/DC変換器より直流ラインに供給される電圧若しくはDC/AC変換器によりの出力電離を制御しながら蓄電池の充/放電状態を制御するものである(例えば,特許文献3参照)。
特開2001−190096号公報 特開2005−33852号公報 特開平11−299295号公報
As a method for controlling a wind turbine generator, there is known a method that can reduce facilities such as a charging device and a discharge device, eliminate charge / discharge loss, and increase the energy efficiency of the wind turbine generator. The wind turbine generator is controlled by converting wind turbine generated power from a generator connected to a wind turbine blade via a drive shaft into DC power using an AC / DC converter, and then converting it into DC power using a DC / AC converter. The storage battery is connected directly to the DC line between the AC / DC converter and the DC / AC converter, and the detection signals from the two converters, the DC line, and the storage battery are appropriately transmitted. An arithmetic unit that selectively captures and performs a predetermined calculation and generates an output command signal in each converter is provided. Based on the output command signal, a voltage supplied from the AC / DC converter to the DC line or DC / DC The charge / discharge state of the storage battery is controlled while controlling the output ionization by the AC converter (see, for example, Patent Document 3).
JP 2001-190096 A JP 2005-33852 A JP 11-299295 A

しかしながら,上記の風力発電装置は,その構造がプロペラ式であるので,プロペラが風の向きに対して常に正面を向くように構成する必要があり,多くの実用例では風向計が取り付けられ,風向きによってプロペラ位置を変える構造に構成されており,その分だけ構造が複雑になる問題がある。   However, since the wind turbine generator described above is a propeller type, it is necessary to configure the propeller so that it always faces the front of the wind. In many practical examples, an anemometer is attached and the wind direction is There is a problem that the structure becomes complicated by that amount.

ところで,風力発電機に設けられている垂直翼形風車は,垂直に立つ軸に流線型の垂直翼を複数個,放射状の支柱の先端に取り付ける構造になっている。風力発電機における放射状垂直翼は,回転方向に対し,外側に僅かに迎え角をつけると,駆動力が作用して回転する。放射状垂直翼は,迎え角が大きければ大きい程,回転駆動力は大きいが,回転が大きい時には発電効率が悪くなる。しかしながら,上記タイプの風力発電機は,風の向きがどの方向から吹いていても,放射状垂直翼が回転するので,風向きが変化する風土では最適の風車ということができる。   By the way, a vertical airfoil wind turbine provided in a wind power generator has a structure in which a plurality of streamlined vertical blades are attached to the tip of a radial support on a vertically standing shaft. The radial vertical blades in a wind power generator rotate when the driving force acts when the angle of attack is slightly outward. The radial vertical wing has a larger rotational driving force as the angle of attack is larger, but the power generation efficiency becomes worse when the rotation is large. However, a wind turbine generator of the above type can be said to be an optimum windmill in a climate where the wind direction changes because the radial vertical blades rotate regardless of the direction of the wind.

風力発電機については,風速が小さい場合には,風のエネルギが大きくないので,風車の回転半径を大きくしなければならない。
風力発電機の出力特性は,次式で表される。
W=(1/2)・ρ・Cp・A・V3
但し,W:出力,ρ:空気密度,Cp:風車効率係数,A:風車回転面積,V:風速 風力発電機では,風速は3乗で出力に影響するものであり,風速が大きい時には,大きな出力が得られ,また,風速が小さい時にはほとんど出力が得られない。
また,発電機の出力Pは,次式で表される。
P=E・I=(4.44・Φ・f・Ws)2 /〔R2 +(2πfL)2 1 / 2
但し,Ws:巻線数,Φ:磁力,f:周波数,R:巻線抵抗,L:巻線リアクタンス 風力発電機は,大きな電力を得るためには,巻線の数,磁力を大きくし,また,巻線抵抗,巻線リアクタンスを小さくすることが必要である。
発電機では,出力は回転数が小さいと出力が出ず,最適の所定の回転数が良く,回転数が所定の回転数より大きくなると減少する。
従って,巻線の巻き数は,低速では大きくし,高速では小さくすることにより,回転数の幅広い回転領域において,適正な出力特性を得ることができると考えられる。
For wind power generators, when the wind speed is low, the wind energy is not large, so the turning radius of the windmill must be increased.
The output characteristics of a wind power generator are expressed by the following equation.
W = (1/2) · ρ · Cp · A · V 3
However, W: Output, ρ: Air density, Cp: Windmill efficiency coefficient, A: Windmill rotation area, V: Wind speed In wind power generators, the wind speed is the third power, which affects the output. Output is obtained, and almost no output is obtained when the wind speed is low.
Further, the output P of the generator is expressed by the following equation.
P = E · I = (4.44 · Φ · f · Ws) 2 / [R 2 + (2πfL) 2 ] 1/2
However, Ws: Number of windings, Φ: Magnetic force, f: Frequency, R: Winding resistance, L: Winding reactance In order to obtain large power, a wind power generator increases the number of windings and magnetic force, Moreover, it is necessary to reduce winding resistance and winding reactance.
In the generator, the output is not output when the rotational speed is small, the optimum predetermined rotational speed is good, and the output decreases when the rotational speed becomes larger than the predetermined rotational speed.
Therefore, it is considered that appropriate output characteristics can be obtained in a wide rotation range of the rotation speed by increasing the number of windings at a low speed and decreasing at a high speed.

この発明の目的は,上記の問題を解決するため,ステータに巻き数が異なる巻線を複数巻き上げ,ロータの回転速度に対応させて低速では巻線を多巻きに切り換え,高速では少巻きに切り換えるように巻線を切り換え制御すると共に,選択された所定の巻線において更に磁束を微小に制御するため,ステータとロータとの間に配設した磁束制御籠から成る磁束制御機構によって,ロータの回転速度に対応させて磁束制御籠を回転移動即ち揺動させてステータに流れる磁束を制御し,それによって予め決められた所定の一定電圧を発電させることを特徴とする風力発電・電動機を提供することである。   In order to solve the above problems, the object of the present invention is to wind up a plurality of windings with different numbers of windings on the stator, switch the windings to multiple windings at low speeds and switch to small windings at high speeds according to the rotational speed of the rotor. In order to control the switching of the windings as well as to further control the magnetic flux in the selected predetermined winding, the rotation of the rotor is controlled by a magnetic flux control mechanism comprising a magnetic flux control rod disposed between the stator and the rotor. Provided is a wind power generator / motor in which a magnetic flux control rod is rotated or swung according to speed to control a magnetic flux flowing in a stator, thereby generating a predetermined constant voltage. It is.

この発明は,風車の回転が伝達される回転軸に設けられ且つ周方向に隔置した永久磁石片を備えた回転数が変動するロータ,前記ロータを回転自在に支持するハウジングに固定され且つ周方向に隔置して立設された櫛部間に巻き上げられた巻線を備えたステータ,及び前記ステータと前記ロータとの間に前記ステータに対して回転可能に設けられ且つ前記ステータを通る磁束を磁路空隙の増減により電圧制御する磁束制御籠を持つ磁束制御機構から成る風力発電・電動機において,
前記ステータに巻き上げられた前記巻線は,多巻き巻線と少巻き巻線とから構成され,前記多巻き巻線には第1スイッチを介して第1出力ラインが結線され,前記少巻き巻線には第2スイッチを介して第2出力ラインが結線され,コントローラは,風速又は前記風車の回転速度に対応する出力値がマップとして予め記憶しており,前記ロータの回転数及び負荷に応答して前記第1と第2スイッチのON・OFF制御と前記磁束制御籠による前記磁路空隙とを制御して予め決められた所定の一定電圧で且つ風速に応じた発電をさせることを特徴とする風力発電・電動機に関する。
The present invention provides a rotor provided with a permanent magnet piece provided on a rotating shaft to which the rotation of a wind turbine is transmitted and spaced in the circumferential direction, a housing fixed to a housing that rotatably supports the rotor, and A stator having windings wound between comb portions that are vertically spaced apart from each other, and a magnetic flux that is provided between the stator and the rotor so as to be rotatable with respect to the stator and passes through the stator. In wind power generators and motors consisting of a magnetic flux control mechanism with a magnetic flux control rod that controls the voltage by increasing or decreasing the magnetic path gap,
The winding wound around the stator is composed of a multi-winding winding and a small winding, and a first output line is connected to the multi-winding winding via a first switch. A second output line is connected to the line via a second switch, and the controller stores in advance the output value corresponding to the wind speed or the rotational speed of the windmill as a map, and responds to the rotational speed and load of the rotor. And controlling the ON / OFF control of the first and second switches and the magnetic path gap by the magnetic flux control rod to generate power according to a predetermined constant voltage and wind speed. Related to wind power generators and motors.

また,この風力発電・電動機は,前記風車を初期駆動させるため,前記多巻き巻線に電力を送って直流電動機として作動させる。   Further, this wind power generator / motor is operated as a DC motor by sending electric power to the multi-winding winding in order to initially drive the windmill.

また,前記コントローラは,前記風車の低速回転に応答して,前記多巻き巻線に接続して前記第1出力ラインから出力させる制御と前記磁束制御籠による前記磁路空隙の制御とを行って前記所定の一定電圧で且つ風速に応じた発電をさせる。   In addition, in response to the low-speed rotation of the windmill, the controller performs control to connect to the multi-turn winding and output from the first output line, and control of the magnetic path gap by the magnetic flux control rod. Electric power is generated according to the wind speed at the predetermined constant voltage.

また,前記コントローラは,前記風車の高速回転に応答して,前記少巻き巻線に接続して前記第2出力ラインから出力させる制御と前記磁束制御籠による前記磁路空隙の制御とを行って前記所定の一定電圧で且つ風速に応じた発電をさせる。   In addition, the controller performs control to connect to the small winding and output from the second output line in response to high-speed rotation of the windmill, and control of the magnetic path gap by the magnetic flux control rod. Electric power is generated according to the wind speed at the predetermined constant voltage.

この風力発電・電動機は,上記のように構成されているので,ロータの回転速度に対応して低速では巻線を多巻き巻線に切り換え,また,高速では巻線を少巻き巻線に切り換え制御し,しかも,ロータの微小の速度変化に対してはロータの回転速度に対応させて円筒状の磁束制御籠をステータに対して揺動移動させてステータと磁束制御籠との間の磁路空隙を変化させ,永久磁石部材からステータに流れる磁束を制御することによって予め決められた所定の一定電圧を発電させることができる。   Since this wind power generator / motor is configured as described above, the winding is switched to multiple windings at low speeds and the windings are switched to small windings at high speeds according to the rotational speed of the rotor. The magnetic path between the stator and the magnetic flux control rod is controlled by swinging and moving the cylindrical magnetic flux control rod with respect to the stator in accordance with the rotational speed of the rotor. By changing the air gap and controlling the magnetic flux flowing from the permanent magnet member to the stator, a predetermined constant voltage can be generated.

以下,図面を参照して,この発明による風力発電・電動機の実施例を説明する。この風力発電・電動機は,ロータ3を回転させる駆動源を風力によって得るものであって,風力で発電された電力を予め決められた所定の電圧に制御し,該電力を用いてモータ,冷凍機等の各種の電機機器の負荷を駆動するのに適用するものである。この風力発電・電動機は,特に,ステータ4に巻き上げた巻線14を多巻き巻線38と少巻き巻線39とから構成し,ステータ4とロータ3との間に磁路空隙の増減により電圧制御する磁束制御籠7から成る磁束制御機構を設け,風車60の回転速度に応答して多巻き巻線38と少巻き巻線39との切換え制御すると共に,磁束制御籠7による磁路空隙を変化させて磁束制御を行い,予め決められた一定電圧で且つ風速に応じた発電をさせるように制御するコントローラ69に特徴を有するものである。   Embodiments of a wind power generator / motor according to the present invention will be described below with reference to the drawings. This wind power generator / motor obtains a drive source for rotating the rotor 3 by wind power, and controls the electric power generated by the wind power to a predetermined voltage and uses the electric power to produce a motor, a refrigerator The present invention is applied to drive loads of various electric devices such as the above. In this wind power generator / motor, in particular, the winding 14 wound around the stator 4 is composed of a multi-winding winding 38 and a small winding 39, and a voltage is generated by increasing or decreasing the magnetic path gap between the stator 4 and the rotor 3. A magnetic flux control mechanism comprising a magnetic flux control rod 7 to be controlled is provided to control the switching between the multi-winding winding 38 and the small winding winding 39 in response to the rotational speed of the windmill 60, and the magnetic path gap by the magnetic flux control rod 7 is reduced. The controller 69 is characterized in that the magnetic flux is controlled by changing the power and the power is generated according to the wind speed at a predetermined constant voltage.

まず,図1及び図2を参照して,この風力発電・電動機のシステムについて説明する。このシステムは,風力発電・電動機60にはロータ3を設けた回転軸2に入力歯車47が設けられており,入力歯車47は,風力によって回転する翼車即ち風車52に設けられた回転シャフト56に取り付けられた出力歯車58に噛み合っている。従って,風車52の回転は,回転シャフト56及び出力歯車58を介して入力歯車47に伝達され,入力歯車47の回転は,回転軸2を介して風力発電・電動機60のロータ3を回転させる。機械室55には,風力発電・電動機60,風車52の回転を風力発電・電動機60に伝達する伝達装置,巻線切換えリレー,整流器等のためのリレー盤59,各種のセンサ61,64,電気機器等が収容されている。リレー盤59は,コントローラ69からの指令で作動される。また,風速計82で検出した風速の情報は,リレー盤59及びコントローラ69に入力されるように構成されている。回転シャフト56には,ブレーキディスク57及び回転センサ61が設けられている。ブレーキディスク57には,エアブレーキ54が設けられ,回転シャフト56の回転は,回転センサ61で回転速度が検出されつつ,エアブレーキ54によって回転速度が調節されるように構成されている。エアブレーキ54は,それをON/OFF制御するためのソレノイドバルブ62の作動で制御され,ソレノイドバルブ62は,コントローラ即ち制御盤69からの指令で作動する圧力スイッチ67によって作動制御される。更に,圧力スイッチ67には,コントローラ69の指令によってエアコンプレッサ68からのエアがエア圧抜き用のソレノイド62Sを通じて供給されるように構成されている。また,風力発電・電動機60には,少なくともコミュテータ63,風力発電・電動機60の温度を測定する温度センサ64,磁束制御籠7をステータ4に対して相対移動させるための磁束制御用モータ65,及びステータ4の櫛部10に対する磁束制御籠7の歯部8の位置を検出する位置センサ66が設けられている。風力発電・電動機60で発電された電力は,電力供給制御盤70を通じて,バッテリ71に蓄電され,又はインバータ72,整流器74等を通じて負荷73に供給されるように構成されている。また,風車52は,例えば,図示のように,直線翼垂直型の構造のものを使用することができ,該タイプの風車52は,いずれの方向からの風力をキャッチでき,風の向きが変化する地域,都市部,山間部等で効果を発揮でき,小形の風力発電・電動機に適したものである。また,風力発電・電動機60は,確保する電力に応じて風車52を多段式に構成することができる。   First, the wind power generator / motor system will be described with reference to FIGS. In this system, an input gear 47 is provided on the rotary shaft 2 provided with the rotor 3 in the wind power generator / motor 60, and the input gear 47 is a rotating shaft 56 provided on an impeller rotated by wind power, that is, a windmill 52. Is meshed with an output gear 58 attached to the. Therefore, the rotation of the windmill 52 is transmitted to the input gear 47 via the rotation shaft 56 and the output gear 58, and the rotation of the input gear 47 rotates the rotor 3 of the wind power generator / motor 60 via the rotation shaft 2. In the machine room 55, a wind turbine generator / motor 60, a transmission device for transmitting the rotation of the wind turbine 52 to the wind turbine generator / motor 60, a coil switching relay, a relay panel 59 for a rectifier, various sensors 61, 64, Equipment etc. are accommodated. The relay panel 59 is actuated by a command from the controller 69. The information on the wind speed detected by the anemometer 82 is input to the relay panel 59 and the controller 69. A brake disk 57 and a rotation sensor 61 are provided on the rotation shaft 56. The brake disc 57 is provided with an air brake 54, and the rotation speed of the rotary shaft 56 is adjusted by the air brake 54 while the rotation speed is detected by the rotation sensor 61. The air brake 54 is controlled by the operation of a solenoid valve 62 for ON / OFF control of the air brake 54, and the solenoid valve 62 is controlled by a pressure switch 67 that operates according to a command from a controller, that is, a control panel 69. Further, the pressure switch 67 is configured so that air from the air compressor 68 is supplied through a solenoid 62S for air pressure release according to a command from the controller 69. The wind power generator / motor 60 includes at least a commutator 63, a temperature sensor 64 for measuring the temperature of the wind power generator / motor 60, a magnetic flux control motor 65 for moving the magnetic flux control rod 7 relative to the stator 4, and A position sensor 66 for detecting the position of the tooth portion 8 of the magnetic flux control rod 7 with respect to the comb portion 10 of the stator 4 is provided. The electric power generated by the wind power generator / motor 60 is stored in the battery 71 through the power supply control panel 70 or supplied to the load 73 through the inverter 72, the rectifier 74, and the like. Further, as shown in the figure, for example, a wind turbine having a straight blade vertical structure can be used as the wind turbine 52. The wind turbine 52 of this type can catch the wind force from any direction, and the direction of the wind changes. It is effective in small areas, cities, mountains, etc., and is suitable for small wind power generators / motors. Further, the wind power generator / motor 60 can configure the wind turbine 52 in a multistage manner according to the electric power to be secured.

次に,図3〜図6を参照して,風力発電・電動機60の具体的な例について説明する。風力発電・電動機60は,ステータ4が取り付けられたハウジング1,ハウジング1に一対の軸受13を介して回転可能にそれぞれ支持された回転軸2,回転軸2に固定された永久磁石部材5から成るロータ3,ロータ3の外周側に配置され且つハウジング1に固定されたステータ4,ステータ4とロータ3との間に配設してステータ4に対して相対移動可能に取り付けられたリング状の磁束制御籠7,及び磁束制御籠7をロータ3の回転速度に対応させてステータ4に対して相対移動させるアクチュエータ25から構成されている。図1では,ステータコア15のアウタステータコア即ち円筒部材のリング状継鉄部材17は,ハウジング1の一部を構成してヨークを構成している。また,回転軸2には,その一端部に,風車等の駆動源からの駆動力が入力する入力歯車47が固定されている。風力発電・電動機60は,ロータ3を構成する回転軸2の両端が軸受13でハウジング1に回転可能に支持されている。ロータ3は,回転軸2の外周に取り付けられた冷却用の通風孔28を備えた透磁部材6,透磁性部材6の外周面に配置された永久磁石部材5,及び永久磁石部材5の外周面27に永久磁石部材5を保持するため固定された円筒状スリーブ16を備えている。ロータ3は,回転軸2の一端に形成されたねじ40に押さえ板41を介して固定ナット42が螺入されて一端が固定され,回転軸2の他端はスペーサ46と押さえ板45を介して軸受13で固定されている。回転軸2の一端には,軸受13がスペーサ43を介して一端に形成されたねじ49にナット44が螺入して固定されている。回転軸2の他端には,ロータ3を回転駆動する入力歯車47が配置され,入力歯車47は回転軸2の他端に形成されたねじ49にナット48が螺入して固定されている。また,磁束制御籠7とロータ3との間には,相対回転を可能にするように可及的に小さい隙間22が形成されている。また,風力発電・電動機60では,ロータ3の透磁性部材6とハウジング1には,冷却風が流れる通風孔28,37が形成されている。永久磁石片19は,外周面27が円弧面に形成され,周方向に非磁性材35を介在させて複数個配設されている。透磁性部材6は,例えば,透磁材と非磁性材が周方向に交互に配置して軸方向に延びて円筒状に形成されている。   Next, a specific example of the wind power generator / motor 60 will be described with reference to FIGS. The wind power generator / motor 60 includes a housing 1 to which a stator 4 is attached, a rotating shaft 2 rotatably supported on the housing 1 via a pair of bearings 13, and a permanent magnet member 5 fixed to the rotating shaft 2. A ring-shaped magnetic flux disposed between the rotor 4 and the stator 4 disposed on the outer peripheral side of the rotor 3 and the rotor 3 and fixed to the housing 1, and attached to the stator 4 so as to be relatively movable. The control rod 7 and the magnetic flux control rod 7 are configured by an actuator 25 that moves relative to the stator 4 in accordance with the rotational speed of the rotor 3. In FIG. 1, an outer stator core of the stator core 15, that is, a ring-shaped yoke member 17 that is a cylindrical member constitutes a part of the housing 1 and constitutes a yoke. An input gear 47 to which a driving force from a driving source such as a windmill is input is fixed to one end of the rotating shaft 2. In the wind power generator / motor 60, both ends of the rotary shaft 2 constituting the rotor 3 are rotatably supported by the housing 1 with bearings 13. The rotor 3 includes a permanent magnet member 5 provided on the outer peripheral surface of the magnetically permeable member 6 and the permeable member 6 provided with cooling ventilation holes 28 attached to the outer periphery of the rotary shaft 2, and the outer periphery of the permanent magnet member 5. A cylindrical sleeve 16 fixed to hold the permanent magnet member 5 on the surface 27 is provided. In the rotor 3, a fixing nut 42 is screwed into a screw 40 formed at one end of the rotating shaft 2 via a pressing plate 41 to fix one end, and the other end of the rotating shaft 2 is fixed via a spacer 46 and a pressing plate 45. The bearing 13 is fixed. At one end of the rotating shaft 2, the bearing 13 is fixed by screwing a nut 44 into a screw 49 formed at one end via a spacer 43. An input gear 47 that rotationally drives the rotor 3 is disposed at the other end of the rotating shaft 2, and the input gear 47 is fixed by screwing a nut 48 into a screw 49 formed at the other end of the rotating shaft 2. . Further, a gap 22 as small as possible is formed between the magnetic flux control rod 7 and the rotor 3 so as to enable relative rotation. In the wind power generator / motor 60, ventilation holes 28 and 37 through which cooling air flows are formed in the magnetically permeable member 6 of the rotor 3 and the housing 1. The permanent magnet piece 19 has a plurality of outer peripheral surfaces 27 formed in a circular arc surface and a nonmagnetic material 35 interposed in the circumferential direction. For example, the magnetically permeable member 6 is formed in a cylindrical shape by alternately arranging a magnetically permeable material and a nonmagnetic material in the circumferential direction and extending in the axial direction.

ステータ4は,例えば,周方向に所定間隔のスロット部11を形成するように隔置されたインナステータコアである櫛状円筒部材30とアウタステータコアであるリング状継鉄部17とから成る薄板積層形のステータコア15,及びステータコア15に巻き上げられた巻線14から構成されている。櫛状円筒部材30は,例えば,内側櫛部32と外側櫛部33とから成る櫛部10と,内側櫛部32と外側櫛部33との間にあって櫛部10を連繋するブリッジ部31から構成されている。実施例では,内側櫛部32は,外側櫛部33に対応した状態で形成されているが,それに限るものではなく,例えば,図示していないが,隣接する2本の外側櫛部33に跨がって1本が集合する状態に形成し,言い換えれば,スロット部11に対応した位置に形成してブリッジ部31で連結するように構成することができる。巻線14は,櫛部10における外側櫛部33間に形成されたスロット部11に位置して外側櫛部33に巻き上げられ,巻線14を成形固定するためスロット部11内に非磁性材36が充填されている。ステータコア15におけるスロット部11と櫛部10との内周側には,磁束制御籠7が接触状態に且つステータ4に対して揺動回転可能に配置されている。磁束制御籠7は,例えば,ステータ4を構成するステータコア15の櫛部10を流れる磁束を制御するためのリング状の形状であり,ハウジング1に軸受(図示せず)を介して回転又は揺動自在に取り付けられている。ステータ4を構成するステータコア15は,例えば,巻線14の占積率をアップさせるため,内側櫛部32と外側櫛部33を持つようにブリッジ部31で互いに接続された櫛状円筒部材30に形成され,櫛状円筒部材30の櫛部10間に外側の開口即ち外開きの外側開口53から巻線14を巻き上げた後に,櫛状円筒部材30のインナステータコアの外周面に外筒部材でなるリング状継鉄部材17のアウタステータコアを嵌合して構成されている。   The stator 4 is, for example, a thin plate laminated type formed of a comb-shaped cylindrical member 30 that is an inner stator core and a ring-shaped yoke portion 17 that is an outer stator core that are spaced apart so as to form slot portions 11 having a predetermined interval in the circumferential direction. The stator core 15 and the winding 14 wound around the stator core 15 are configured. The comb-shaped cylindrical member 30 includes, for example, a comb portion 10 including an inner comb portion 32 and an outer comb portion 33, and a bridge portion 31 that is connected between the inner comb portion 32 and the outer comb portion 33 and connects the comb portions 10. In the embodiment, the inner comb portion 32 is formed in a state corresponding to the outer comb portion 33. However, the inner comb portion 32 is not limited to this, and for example, although not shown, it straddles two adjacent outer comb portions 33. It can be configured to be formed in a state in which one is assembled, in other words, formed at a position corresponding to the slot portion 11 and connected by the bridge portion 31. The winding 14 is positioned in the slot portion 11 formed between the outer comb portions 33 in the comb portion 10 and is wound up on the outer comb portion 33, and the slot portion 11 is filled with a nonmagnetic material 36 in order to mold and fix the winding 14. ing. On the inner peripheral side of the slot portion 11 and the comb portion 10 in the stator core 15, a magnetic flux control rod 7 is arranged in a contact state and capable of swinging and rotating with respect to the stator 4. The magnetic flux control rod 7 has, for example, a ring shape for controlling the magnetic flux flowing through the comb portion 10 of the stator core 15 that constitutes the stator 4, and can be rotated or swung on the housing 1 via a bearing (not shown). Is attached. The stator core 15 constituting the stator 4 is formed on, for example, a comb-shaped cylindrical member 30 connected to each other by a bridge portion 31 so as to have an inner comb portion 32 and an outer comb portion 33 in order to increase the space factor of the winding 14. After winding the winding 14 from the outer opening, that is, the outer opening 53, between the comb portions 10 of the comb-shaped cylindrical member 30, a ring-shaped joint made of an outer cylindrical member is formed on the outer peripheral surface of the inner stator core of the comb-shaped cylindrical member 30. The outer stator core of the iron member 17 is fitted and configured.

次に,図7を参照して,風力発電・電動機60のステータ4に巻き上げられた第1巻線38と第2巻線39から成る巻線14の一例について説明する。巻線14は,例えば,ステータ4のステータコア15の櫛部10に巻き上げられた第1巻線38と,櫛部10に巻き上げられた第2巻線39とから構成されている。図7では,第1巻線38と第2巻線39とが直列に結線されている。巻線14は,具体的には,図7に示すように,三相交流を発電するタイプに結線され,中性点80を中心に三方にそれぞれ延びるU相の第2巻線39Uと第2巻線39Uに直列に結線された第1巻線38U,V相の第2巻線39Vと第2巻線39Vに直列に結線された第1巻線38V,及びW相の第2巻線39Wと第2巻線39Wに直列に結線された第1巻線38Wから形成されている。風力発電・電動機60について,第1巻線38による発電電力は,第1巻線38U,38V,38Wの出力端子81U,81V,81W(総称は81)からライン77U,77V,77W(総称は77)を通じてスイッチ76U,76V,76W及び整流器74Aを介して負荷73Aへと出力される。また,第2巻線39による発電電力は,第2巻線39U,39V,39Wの出力端子79U,79V,79W(総称は79)からライン78U,78V,78W(総称は78)を通じてスイッチ75U,75V,75W及び整流器74Bを介して負荷73Bへと出力される。従って,この風力発電・電動機では,コントローラ69がスイッチ78をOFFし且つスイッチ75をONし,巻線14の中間部の出力端子79からライン78を通じて出力を取り出す時には,第2巻線39のみの出力状態となって巻き数が少巻き巻線になる出力状態になり,少巻き巻線からの発電出力となる。また,コントローラ69がスイッチ78をONし且つスイッチ75をOFFし,巻線14の出力端子81からライン77を通じて出力を取り出す時には,第1巻線38と第2巻線39とが直列結線され,巻き数が多巻き巻線になる出力状態になり,多巻き巻線からの発電出力となる。   Next, an example of the winding 14 composed of the first winding 38 and the second winding 39 wound around the stator 4 of the wind power generator / motor 60 will be described with reference to FIG. The winding 14 includes, for example, a first winding 38 wound around the comb portion 10 of the stator core 15 of the stator 4 and a second winding 39 wound around the comb portion 10. In FIG. 7, the first winding 38 and the second winding 39 are connected in series. Specifically, as shown in FIG. 7, the winding 14 is connected to a type that generates three-phase alternating current, and has a U-phase second winding 39 </ b> U and a second winding extending in three directions around a neutral point 80. The first winding 38U connected in series to the winding 39U, the V-phase second winding 39V, the first winding 38V connected in series to the second winding 39V, and the W-phase second winding 39W. And the first winding 38W connected in series to the second winding 39W. With respect to the wind power generator / motor 60, the power generated by the first winding 38 is changed from the output terminals 81U, 81V, 81W (generally referred to as 81) of the first windings 38U, 38V, 38W to lines 77U, 77V, 77W (generally referred to as 77). ) Through the switches 76U, 76V, 76W and the rectifier 74A to the load 73A. The power generated by the second winding 39 is supplied from the output terminals 79U, 79V, 79W (generally 79) of the second windings 39U, 39V, 39W through the lines 78U, 78V, 78W (generally 78) to the switch 75U, It is output to the load 73B via 75V, 75W and the rectifier 74B. Therefore, in this wind power generator / motor, when the controller 69 turns off the switch 78 and turns on the switch 75 and takes out the output from the output terminal 79 in the middle of the winding 14 through the line 78, only the second winding 39 is used. The output state becomes an output state in which the number of turns becomes a small number of windings, and the power generation output from the small number of windings. When the controller 69 turns on the switch 78 and turns off the switch 75 and takes out the output from the output terminal 81 of the winding 14 through the line 77, the first winding 38 and the second winding 39 are connected in series, The output state is such that the number of turns becomes a multi-turn winding, and the power generation output from the multi-turn winding is obtained.

また,円筒状スリーブ16は,長手方向に延びる永久磁石片19の外面に対して長手方向に短冊状に延びる複数の透磁性金属板20と,透磁性金属板20間に長手方向に短冊状に延びて透磁性金属板20に接合された非透磁性金属板21とから構成されている。円筒状スリーブ16は,永久磁石部材5の外周面27に対して圧入によって取り付けられている。円筒状スリーブ16を構成する透磁性金属板20と非透磁性金属板21とは,交互に配設して互いに溶接によって接合されている。また,円筒状スリーブ16について,透磁性金属板20の幅は,非透磁性金属板21の幅の実質的に2倍の大きさに形成され,言い換えれば,透磁性金属板20は,永久磁石片19の円周方向幅の65〜85%を被覆即ちカバーしている。透磁性金属板20は,フェライト,マルテンサイト系ステンレススチール又は炭素鋼から作製されている。また,非透磁性金属板21は,オーステナイト系ステンレススチールから作製されている。円筒状スリーブ16は,透磁性金属板20と非透磁性金属板21とが交互に配設して溶着部34で互いに溶接によって接合され(図5,図6),透磁性金属板20と非透磁性金属板21とが交互に周方向に位置するように円筒状に成形して作製されている。また,1つの永久磁石片19の円弧面の外周面27が対応する透磁性金属板20には,ステータ4の櫛部10が3個程度対応して位置し,永久磁石部材5の磁束が透磁性金属板20に集まる構造に構成されている。   The cylindrical sleeve 16 has a plurality of magnetically permeable metal plates 20 extending in a strip shape in the longitudinal direction with respect to the outer surface of the permanent magnet piece 19 extending in the longitudinal direction, and a strip shape in the longitudinal direction between the permeable metal plates 20. The non-permeable metal plate 21 is extended and joined to the permeable metal plate 20. The cylindrical sleeve 16 is attached to the outer peripheral surface 27 of the permanent magnet member 5 by press fitting. The permeable metal plates 20 and the non-permeable metal plates 21 constituting the cylindrical sleeve 16 are alternately arranged and joined to each other by welding. In the cylindrical sleeve 16, the width of the permeable metal plate 20 is formed to be substantially twice the width of the non-permeable metal plate 21, in other words, the permeable metal plate 20 is formed of a permanent magnet. 65 to 85% of the circumferential width of the piece 19 is covered or covered. The permeable metal plate 20 is made of ferrite, martensitic stainless steel, or carbon steel. The non-permeable metal plate 21 is made of austenitic stainless steel. In the cylindrical sleeve 16, the permeable metal plate 20 and the non-permeable metal plate 21 are alternately arranged and joined to each other by welding at the welding portion 34 (FIGS. 5 and 6). The magnetically permeable metal plates 21 are formed in a cylindrical shape so that they are alternately positioned in the circumferential direction. Further, on the magnetically permeable metal plate 20 to which the outer peripheral surface 27 of the arc surface of one permanent magnet piece 19 corresponds, about three comb portions 10 of the stator 4 are positioned so that the magnetic flux of the permanent magnet member 5 is magnetically permeable. The metal plate 20 is configured to gather.

風力発電・電動機60は,ステータ4とロータ3との間でステータ4に対して相対回転移動即ち揺動可能に配置された磁束密度を調整して電圧を制御する磁束制御籠7,磁束制御籠7をステータ4に対してロッド26を介して揺動させるアクチュエータ25,及びロータ3の回転速度に応答して磁束制御籠7の揺動量を制御するコントローラ69を有する。磁束制御籠7は,外周側がステータ4の櫛部10と同数であって凹部12で隔置され且つ櫛部10に接触可能な透磁性突起部である透磁部即ち歯部8と,内周側で歯部8を互いに連繋する円筒部9とから構成されたリング状連続体に形成されている。また,磁束制御籠7は,図4及び図5に示すように,ステータ4の櫛部10側に位置する周方向に順次配列された歯部8と,ロータ3側に位置して歯部8が一体に構成された連続体の円筒部9とから形成されている。櫛部10には周方向両端に実質的に45°のチャンファ51が施され,また,歯部8には周方向両端に実質的に45°のチャンファ50が施されている。磁束制御籠7は,透磁性の珪素鋼板,ニッケル−鉄系合金板の板材を積層して構成され,板材は樹脂材又はセラミックス材の絶縁部材によって接着されている。また,磁束制御籠7の歯部8は,周方向に隔置して配置され且つステータ4の櫛部10間のスロット部11の幅より小さい幅を有する概略断面四角形状に形成され,歯部8の外面23が櫛部10の内面24に対向状態に接触可能に構成されている。また,ステータコア15の櫛部10には,その内周端面の角部にチャンファ51が形成されており,また,磁束制御籠7の歯部8には,その外周端面の角部にチャンファ50が形成されている。更に,磁束制御籠7は,歯部8と円筒部9との境界における磁束の流れをスムースにするため,歯部8に形成された凹部12の角部がR部に形成されている。磁束制御籠7の歯部8は,ロータ3側の内側部が周方向に幅広になる張り出し部となるR部に形成されている。従って,磁束制御籠7の円筒部9は,永久磁石部材5からの磁束の流れをスムーズにして磁束の漏れを低減する集磁部として機能する。   The wind power generator / motor 60 adjusts the magnetic flux density between the stator 4 and the rotor 3 so that the stator 4 and the rotor 4 can move relative to the stator 4, that is, swingable, and controls the voltage. And an actuator 25 that swings the rotor 7 with respect to the stator 4 via the rod 26, and a controller 69 that controls the swing amount of the magnetic flux control rod 7 in response to the rotational speed of the rotor 3. The magnetic flux control rod 7 has the same number of outer peripheral sides as the comb portions 10 of the stator 4 and is separated by the concave portions 12 and is a magnetically permeable projection portion that can contact the comb portion 10. It is formed in the ring-shaped continuous body comprised from the cylindrical part 9 which connects the tooth | gear part 8 mutually. As shown in FIGS. 4 and 5, the magnetic flux control rod 7 has teeth 8 arranged sequentially in the circumferential direction on the comb 10 side of the stator 4 and teeth 8 on the rotor 3 side. It is formed from a continuous cylindrical portion 9 formed integrally. The comb portion 10 is provided with substantially 45 ° chamfers 51 at both circumferential ends, and the tooth portion 8 is provided with substantially 45 ° chamfers 50 at both circumferential ends. The magnetic flux control rod 7 is configured by laminating a magnetically permeable silicon steel plate and a nickel-iron alloy plate, and the plate is bonded by an insulating member made of a resin material or a ceramic material. The teeth 8 of the magnetic flux control rod 7 are spaced apart in the circumferential direction and formed in a substantially rectangular cross section having a width smaller than the width of the slot 11 between the combs 10 of the stator 4. The outer surface 23 is configured to be able to contact the inner surface 24 of the comb portion 10 in an opposed state. The comb portion 10 of the stator core 15 is formed with a chamfer 51 at the corner portion of the inner peripheral end surface thereof, and the chamfer 50 is formed at the corner portion of the outer peripheral end surface of the tooth portion 8 of the magnetic flux control rod 7. Has been. Further, in the magnetic flux control rod 7, in order to make the flow of magnetic flux at the boundary between the tooth portion 8 and the cylindrical portion 9 smooth, the corner portion of the concave portion 12 formed in the tooth portion 8 is formed in the R portion. The tooth portion 8 of the magnetic flux control rod 7 is formed in an R portion that is an overhang portion in which the inner portion on the rotor 3 side becomes wider in the circumferential direction. Accordingly, the cylindrical portion 9 of the magnetic flux control rod 7 functions as a magnetic flux collecting portion that smoothes the flow of magnetic flux from the permanent magnet member 5 and reduces leakage of magnetic flux.

コントローラ69は,磁束制御籠7のステータ4に対する揺動によって,歯部8の外面23と,櫛部10の内面24との対向面積即ち接触面積との量を制御するように構成されている。コントローラ69の指令によってアクチュエータ25を作動してロッド26のピニオン29に螺合した磁束制御籠7に設けたラックが揺動し,磁束制御籠7がステータ4に対して相対揺動すると,歯部8の外面23と櫛部10の内面24との密接状態は調整され,磁束制御籠7の歯部8からステータコア15の櫛部10へ流れる磁束が制御されることになる。例えば,コントローラ69は,ロータ3の低速時には,図4に示すように,アクチュエータ25を作動して歯部8と櫛部10との合口が整合状態になる制御を行い,また,ロータ3の高速時には,図5に示すように,アクチュエータ25を作動して歯部8を櫛部10間のスロット部11へと移動させ,櫛部10との対向面積を低減させる制御を行う。また,コントローラ69は,ロータ3のステータ4に対する回転速度,即ち,周波数fとステータ4の櫛部10を流れる磁束φとの積(=f×φ)が一定になるように,アクチュエータ25によって磁束制御籠7を揺動させて予め決められた所定の一定の電圧を発電させる制御を行う。コントローラ69の制御によって磁束制御籠7が移動して磁束制御籠7の歯部8がステータコア15の櫛部10間に位置した状態では,図5に示すように,櫛部10のチャンファ51と歯部8のチャンファ50との間には,高精度に隙間Sが形成されことになり,ロータ3からステータ4へ流れる磁束は最も抑制される状態になる。従って,このような磁束制御形の発電機で,電圧を一定にし,インバータを用いて駆動に必要な周波数の電流を作ることにより,直接,永久磁石式電動機を作動させた方が効率的であることが多い。   The controller 69 is configured to control the amount of the facing area, that is, the contact area between the outer surface 23 of the tooth portion 8 and the inner surface 24 of the comb portion 10 by swinging the magnetic flux control rod 7 with respect to the stator 4. When the actuator 25 is actuated by a command from the controller 69 and the rack provided on the magnetic flux control rod 7 screwed into the pinion 29 of the rod 26 swings, and the magnetic flux control rod 7 swings relative to the stator 4, the tooth portion 8 is adjusted so that the magnetic flux flowing from the tooth portion 8 of the magnetic flux control rod 7 to the comb portion 10 of the stator core 15 is controlled. For example, when the rotor 3 is at a low speed, the controller 69 controls the actuator 25 to operate so that the joint of the tooth portion 8 and the comb portion 10 is aligned as shown in FIG. As shown in FIG. 5, the actuator 25 is operated to move the tooth portion 8 to the slot portion 11 between the comb portions 10, and control to reduce the area facing the comb portion 10 is performed. The controller 69 controls the magnetic flux by the actuator 25 so that the rotational speed of the rotor 3 with respect to the stator 4, that is, the product (= f × φ) of the frequency f and the magnetic flux φ flowing through the comb portion 10 of the stator 4 becomes constant. Control is performed to generate a predetermined constant voltage by swinging the cage 7. In a state where the magnetic flux control rod 7 is moved by the control of the controller 69 and the tooth portion 8 of the magnetic flux control rod 7 is located between the comb portions 10 of the stator core 15, as shown in FIG. 5, the chamfer 51 and the tooth portion 8 of the comb portion 10. The gap S is formed with high accuracy between the chamfer 50 and the magnetic flux flowing from the rotor 3 to the stator 4 is most suppressed. Therefore, it is more efficient to operate the permanent magnet motor directly with such a magnetic flux control generator by making the voltage constant and using the inverter to generate the current at the frequency required for driving. There are many cases.

次に,図10〜図12に示す処理フロー図を参照して,風力発電・電動機60のシステムの作動について説明する。風力発電・電動機60は,翼車である風車52の回転シャフト56に設けた出力歯車58に入力歯車47が噛み合って取り付けられており,風力により発電駆動される。
まず,風力発電・電動機60をONし,風速計82で測定した現在の風速Vが2m/sより速いか否かを判断し(S1),風速Vが2m/sより速くない時には駆動状態をΔt保持し(S2),風力発電・電動機60を発電させることができない風力であるので,所定時間経過後に処理をステップS1に戻す。風速Vが2m/sより速い時には,風速Vが15m/s以下か否かを判断し(S3),風速Vが15m/s以下の時には,風力発電・電動機60のブレーキ54を解除し(S4),風力発電・電動機60にバッテリ71からの電流を供給して起動モータとして駆動する(S5)。そこで,風車52の回転速度が40rpm以上になったか否かを判断し(S6),風車52の回転速度が40rpm以上にならない時には,風力発電・電動機60が故障している可能性があるので,異常信号を発する(S8)。風車52の回転速度が40rpm以上である時には,起動モータをONして駆動した時間を積算し(S7),積算時間t1が60sec以上であるか否かを判断する(S9)。積算時間t1が60sec以上にならない場合には起動モータを再度ONするため,処理をステップS5に戻す。起動モータの駆動時間が積算時間t1が60sec以上になっていると,風力発電・電動機60へのバッテリからの電流供給を停止して起動モータを停止する(S10)。
Next, the operation of the system of the wind power generator / motor 60 will be described with reference to the processing flowcharts shown in FIGS. The wind power generator / motor 60 has an input gear 47 meshed with an output gear 58 provided on a rotating shaft 56 of a wind turbine 52, which is an impeller, and is driven by wind power.
First, the wind power generator / motor 60 is turned on, and it is determined whether or not the current wind speed V measured by the anemometer 82 is faster than 2 m / s (S1). Since Δt is held (S2) and wind power cannot be generated by the wind power generator / motor 60, the process returns to step S1 after a predetermined time has elapsed. When the wind speed V is higher than 2 m / s, it is determined whether or not the wind speed V is 15 m / s or less (S3). When the wind speed V is 15 m / s or less, the brake 54 of the wind power generator / motor 60 is released (S4). ), Current from the battery 71 is supplied to the wind power generator / motor 60 and driven as a starter motor (S5). Therefore, it is determined whether or not the rotational speed of the windmill 52 is 40 rpm or more (S6), and when the rotational speed of the windmill 52 does not exceed 40 rpm, the wind power generator / motor 60 may be broken. An abnormal signal is issued (S8). When the rotational speed of the windmill 52 is 40 rpm or more, the time for which the starter motor is turned on is accumulated (S7), and it is determined whether the accumulated time t1 is 60 seconds or more (S9). If the integration time t1 does not exceed 60 seconds, the process returns to step S5 in order to turn on the starting motor again. When the driving time of the starter motor is equal to or greater than 60 seconds, the current supply from the battery to the wind power generator / motor 60 is stopped to stop the starter motor (S10).

ステップS3において,風速Vが15m/s以上の時には,風速15m/s以上が連続して吹く時間t3を積算し(S11),積算間t3が5sec以上になったか否かを判断し(S12),積算間t3が5sec以上でない時にはステップS1に戻って処理を繰り返し,積算間t3が5sec以上の時には,風車52のブレーキ54を所定時間,例えば,20秒間だけ作動する(S13)。次いで,風速Vが7m/s以下であるか否かを判断し(S14),風速Vが7m/s以下である時には,ブレーキ54を解除し(S14A),処理は図11に示すステップS16に進んで処理を続ける。風速Vが7m/s以下でない時には,風車52の回転数Nが一旦N=0になるまで,風車52にブレーキ54をかけて風車52を停止させ(S15),回転数Nが0になるまで処理をステップS13に戻してブレーキ54をかけ,風車52の回転数Nが0になれば,処理をステップS1に戻して繰り返す。   In step S3, when the wind speed V is 15 m / s or more, the time t3 when the wind speed 15 m / s or more continuously blows is integrated (S11), and it is determined whether or not the integration interval t3 is 5 seconds or more (S12). When the integration interval t3 is not 5 seconds or more, the process returns to step S1 and the process is repeated. When the integration interval t3 is 5 seconds or more, the brake 54 of the wind turbine 52 is operated for a predetermined time, for example, 20 seconds (S13). Next, it is determined whether or not the wind speed V is 7 m / s or less (S14). When the wind speed V is 7 m / s or less, the brake 54 is released (S14A), and the process proceeds to step S16 shown in FIG. Proceed and continue processing. When the wind speed V is not less than 7 m / s, the wind turbine 52 is stopped by applying the brake 54 to the wind turbine 52 until the rotational speed N of the wind turbine 52 reaches N = 0 (S15). The process returns to step S13, the brake 54 is applied, and if the rotational speed N of the windmill 52 becomes 0, the process returns to step S1 and is repeated.

ステップS10において,起動モータを停止し,次いで,風車52の回転速度Nが150rpm以下であるか否かを判断する(S16)。風車52の回転速度Nが150rpm以下である時には,風力発電・電動機60のロータ3の回転がスムーズになり,発電能力を有する状態になったので,巻線14のスイッチをONし,風力発電・電動機60の発電状態に切り換え,第1巻線38と第2巻線39とを直列に結線した多巻き巻線の出力端子81から引き出されたライン77U,77V,77Wに設けたU相,V相及びW相の各スイッチ76U,76V相,76W(総称は76)をONし,巻線14の中間から引き出されたライン78U,78V,78Wに設けたU相,V相及びW相の各スイッチ75U,75V相,75W(総称は75)をOFFする(S17)。風力発電・電動機60は風力による発電状態になるので,その時の風速V1を読み取ると共に,風速V1に対する風車52の持つ正味出力値WNET を読み取り,その時の風力発電・電動機60の実出力値WE を計算する(S18)。 In step S10, the starting motor is stopped, and then it is determined whether or not the rotational speed N of the windmill 52 is 150 rpm or less (S16). When the rotational speed N of the windmill 52 is 150 rpm or less, the rotation of the rotor 3 of the wind power generator / motor 60 becomes smooth and has a power generation capability. The motor 60 is switched to the power generation state, and the U phase, V provided on the lines 77U, 77V, 77W drawn from the output terminal 81 of the multi-winding winding in which the first winding 38 and the second winding 39 are connected in series. The switches 76U, 76V, and 76W (generally 76) of the phase and the W phase are turned on, and each of the U, V, and W phases provided in the lines 78U, 78V, and 78W drawn from the middle of the winding 14 The switches 75U, 75V phase, 75W (generally called 75) are turned off (S17). Since the wind power generator / motor 60 is in a power generation state by wind power, the wind speed V1 at that time is read, and the net output value W NET of the wind turbine 52 with respect to the wind speed V1 is read, and the actual output value W E of the wind power generator / motor 60 at that time is read. Is calculated (S18).

ステップS16において,風車52の回転速度Nが150rpm以下でない時には,風力発電・電動機60を発電駆動するには風速Vが速過ぎるので,風力発電・電動機60における巻線14の切換えを行う必要があるので,まず,風車52の回転速度Nが230rpm以下であるか否かを判断する(S21)。風車52の回転速度Nが230rpm以下である時には,巻線14のスイッチ75,76を切り換える制御を行うため,第1巻線38と第2巻線39の直列結線,即ち多巻き巻線から引き出したライン77に設けたU相,V相及びW相の各スイッチ76をOFFし,巻線14の中間から引き出されたライン78に設けたU相,V相及びW相の各スイッチ75をONする(S23)。次いで,ステップ18の処理,即ち,その時の風速V1を読み取ると共に,風速V1に対する正味出力値WNET を読み取り,その時の電圧,電流の実出力値WE を読み取る。また,風車52の回転速度Nが230rpm以下でない時には,風速Vが速過ぎるので,初期状態,即ち,磁路空隙を最小に戻し(S22),処理を図12に示すステップS22Aに進んで処理を続ける。ステップS22Aにおいて,風車52の回転速度Nが230rpmより小さいか否かを判断し,風車52の回転速度Nが230rpmより小さい時にはステップS23に進んで処理を行う。また,風車52の回転速度Nが230rpmより大きい時には,ブレーキ54を20秒間だけONしてブレーキをかけ(S22B),次いで,風車52の回転速度Nが0になったか否かを判断し(S22C),回転速度Nが0になっていない時には,ステップS22Bに戻って再度ブレーキをかけ,また,回転速度Nが0になった時には,処理をステップS1に戻って処理を繰り返す。 In step S16, when the rotational speed N of the windmill 52 is not 150 rpm or less, the wind speed V is too high to drive the wind power generator / motor 60, so it is necessary to switch the winding 14 in the wind power generator / motor 60. Therefore, first, it is determined whether or not the rotational speed N of the windmill 52 is 230 rpm or less (S21). When the rotational speed N of the wind turbine 52 is 230 rpm or less, in order to perform control for switching the switches 75 and 76 of the winding 14, the series connection of the first winding 38 and the second winding 39, that is, drawing from the multi-winding winding. The U-phase, V-phase, and W-phase switches 76 provided on the line 77 are turned off, and the U-phase, V-phase, and W-phase switches 75 provided on the line 78 drawn from the middle of the winding 14 are turned on. (S23). Next, in step 18, the current wind speed V1 is read, the net output value W NET for the wind speed V1 is read, and the actual voltage and current output values W E at that time are read. When the rotational speed N of the windmill 52 is not 230 rpm or less, the wind speed V is too high. Therefore, the initial state, that is, the magnetic path gap is returned to the minimum (S22), and the process proceeds to step S22A shown in FIG. to continue. In step S22A, it is determined whether or not the rotational speed N of the windmill 52 is smaller than 230 rpm. If the rotational speed N of the windmill 52 is smaller than 230 rpm, the process proceeds to step S23 to perform processing. When the rotational speed N of the windmill 52 is greater than 230 rpm, the brake 54 is turned on for 20 seconds to apply the brake (S22B), and then it is determined whether the rotational speed N of the windmill 52 has become 0 (S22C). ) When the rotational speed N is not 0, the process returns to step S22B and the brake is applied again. When the rotational speed N becomes 0, the process returns to step S1 and the process is repeated.

ステップS18で読み取った風力発電・電動機60の実出力値WE が風車52の持つ正味出力値WNET より大きいか否かを判断し(S19),実出力値WE が正味出力値WNET より大きい時には,発電電圧を低減させるため,磁束制御籠7の移動角を5°側に移動させ,ステータ4の櫛部10と磁束制御籠7の歯部8との磁路空隙を大きくし,ステータ4を通る磁束を抑制し(S20),次いで回転速度Vが10rpm以上であるか否かを判断し(S20A),回転速度Vが10rpm以上であれば,図12に示すステップS26に進み,また,回転速度Vが10rpm以下であれば,ステップS1に戻って処理を繰り返す。実出力値WE が正味出力値WNET より大きくない時には,発電電圧を低減させる必要がないので,磁束制御籠7の移動角を0°側に移動させ,ステータ4の櫛部10と磁束制御籠7の歯部8との磁路空隙を小さくする(S24)。次いで,実出力値WE が正味出力値WNET ×0.9より小さいか否を判断する(S25)。WE が正味出力値WNET ×0.9より小さくない場合には,小さくなるように制御するため,再度,磁束制御籠7の移動角を0°側に移動させる(S24)。WE がWNET ×0.9より小さい時には,その時に磁路空隙を維持するため,磁束制御籠7を固定し,所定の時間t2,例えば,5秒間経過するのを待つ(S27)。 It is determined whether or not the actual output value W E of the wind power generator / motor 60 read in step S18 is larger than the net output value W NET of the wind turbine 52 (S19), and the actual output value W E is calculated from the net output value W NET . When it is large, in order to reduce the generated voltage, the moving angle of the magnetic flux control rod 7 is moved to 5 °, the magnetic path gap between the comb portion 10 of the stator 4 and the tooth portion 8 of the magnetic flux control rod 7 is increased, and the stator 4 (S20), it is then determined whether or not the rotational speed V is 10 rpm or more (S20A). If the rotational speed V is 10 rpm or more, the process proceeds to step S26 shown in FIG. If the rotation speed V is 10 rpm or less, the process returns to step S1 and is repeated. When the actual output value W E is not larger than the net output value W NET , it is not necessary to reduce the generated voltage. Therefore, the moving angle of the magnetic flux control rod 7 is moved to 0 °, and the comb portion 10 of the stator 4 and the magnetic flux control rod are moved. 7 is reduced (S24). Next, it is determined whether or not the actual output value W E is smaller than the net output value W NET × 0.9 (S25). If W E is not less than the net power value W NET × 0.9, in order to control so as to reduce, to move again, the movement angle of the flux control basket 7 to 0 ° side (S24). When W E is smaller than W NET × 0.9, in order to maintain the magnetic path gap at that time, the magnetic flux control rod 7 is fixed and waits for a predetermined time t2, for example, 5 seconds (S27).

ステップS20において,磁束制御籠7の移動角を5°側に移動させ,WE がWNET より小さいか否かを判断する(S26)。WE がWNET より大きい時には,図1に示すステップ20に進み,磁束制御籠7の移動角を5°側に移動させる処理をする。また,WE がWNET より小さい時には,その時に磁路空隙を維持するため,磁束制御籠7を固定し,所定の時間,t2秒間,例えば,5秒間経過するのを待つ(S27)。所定の時間t2が5秒間経過したか否かを判断し(S28),磁束制御籠7の固定状態が所定の時間t2が経過した時には,風速Vを測定し(S29),ロータ3の軸速度NS を測定する(S30)。次いで,コントローラ69は,β・V・αを演算する(S31)。ここで,βは周速比,αは30/π・r,rは風車52の半径である。β=〔2πr・(N/60)〕/V=π・r・N/30・V
従って,風速Vの時,風車52の最適な回転速度即ち回転数Nは,上式より次式になる。N=β・30・V/π・r=β・V・α
現在の軸回転数がNsであり,理想の回転数がNsの場合,最適に移動させる手段となる。
In step S20, the moving angle of the magnetic flux control rod 7 is moved to 5 °, and it is determined whether or not W E is smaller than W NET (S26). When W E is larger than W NET , the process proceeds to step 20 shown in FIG. 1 to perform a process of moving the moving angle of the magnetic flux control rod 7 to the 5 ° side. When W E is smaller than W NET , the magnetic flux control rod 7 is fixed in order to maintain the magnetic path gap at that time, and a predetermined time, t2 seconds, for example, 5 seconds is waited (S27). It is determined whether or not the predetermined time t2 has passed for 5 seconds (S28), and when the fixed state of the magnetic flux control rod 7 has passed the predetermined time t2, the wind speed V is measured (S29) and the shaft speed of the rotor 3 is determined. N S is measured (S30). Next, the controller 69 calculates β · V · α (S31). Here, β is the peripheral speed ratio, α is 30 / π · r, and r is the radius of the windmill 52. β = [2πr · (N / 60)] / V = π · r · N / 30 · V
Therefore, when the wind speed is V, the optimum rotational speed of the wind turbine 52, that is, the rotational speed N is expressed by the following equation from the above equation. N = β · 30 · V / π · r = β · V · α
When the current shaft rotation speed is Ns and the ideal rotation speed is Ns, it is a means for optimal movement.

風力発電・電動機60は,コントローラ69が上記のように演算した後に,ロータ3の軸速度NS がβ・V・α×1.1がより大きいか否かを判断する(S32)。ロータ3の軸速度NS がβ・V・α×1.1がより大きい時には,磁束制御籠7による磁束抑制を低減するため,磁束制御籠7の移動角を0°側にΔθだけ移動させる(S33)。次いで,ロータ3の軸速度NS がβ・V・αがより小さいか否かを判断し(S34),軸速度NS がβ・V・αがより小さいならば,磁束制御籠7による磁路空隙が適正になっているので,磁束制御籠7の移動を停止させ,その磁路空隙を所定時間,例えば,10秒間固定し(S35),次いで,処理を図11に示すステップS16に戻して,上記各処理を繰り返す。 Wind motor-generator 60, the controller 69 after the operation as described above, the shaft speed N S of the rotor 3 is β · V · α × 1.1 is determined whether larger (S32). When shaft speed N S of the rotor 3 is β · V · α × 1.1 is larger than, for reducing the magnetic flux inhibition by flux control cage 7, is moved by Δθ movement angle of the magnetic flux control basket 7 to 0 ° side (S33). Then, the shaft speed N S of the rotor 3, it is determined whether the difference is less than the β · V · α (S34) , magnetic by shaft speed N if S is β · V · α is smaller than flux control basket 7 Since the path gap is appropriate, the movement of the magnetic flux control rod 7 is stopped, the magnetic path gap is fixed for a predetermined time, for example, 10 seconds (S35), and then the process returns to step S16 shown in FIG. The above processes are repeated.

ステップS32において,軸速度NS がβ・V・α×1.1がより大きくない場合には,軸速度NS がβ・V・α×0.9がより小さいか否かを判断する(S36)。軸速度NS がβ・V・α×0.9がより小さい時には,軸速度NS による発電が大き過ぎるので,磁束制御籠7による磁束制御をするため,磁束制御籠7を磁路空隙が5°側へ移動角Δθだけ移動させる(S37)。次いで,軸速度NS がβ・V・αがより大きいか否かを判断する(S38)。軸速度NS がβ・V・αがより大きい時には,軸速度NS は,β・V・α×1.1〜β・V・α×0.9の範囲であるので,磁束制御籠7の磁束制御が適正であるので,磁束制御籠7を停止させて磁路空隙を固定し,所定の時間,例えば,10秒間保持する(S39)。また,軸速度NS がβ・V・α×1.1より大きくない時には,更に磁束制御籠7を磁路空隙が5°側へ移動角Δθだけ移動させる処理を繰り返す(S37)。ステップS36において,軸速度NS がβ・V・α×0.9がより小さいない時には,軸速度NS は,β・V・α×1.1〜β・V・α×0.9の範囲であるので,磁束制御籠7の磁束制御が適正であるので,磁束制御籠7を停止させて磁路空隙を固定し,所定の時間,例えば,10秒間保持し(S39),次いで,処理を図11に示すステップS16に戻して処理を続行する。 In step S32, when the shaft speed N S is β · V · α × 1.1 Gayori not, the shaft speed N S is β · V · α × 0.9 is determined whether the difference is less than ( S36). When the shaft speed N S is β · V · α × 0.9 is smaller than, the power is too large due to shaft speed N S, to the magnetic flux control by the magnetic flux control cage 7, a magnetic flux control cage 7 is a magnetic path gap Move to the 5 ° side by a movement angle Δθ (S37). Next, it is determined whether or not the shaft speed N S is larger than β · V · α (S38). When the shaft speed N S is β · V · α is larger than the shaft speed N S, since in the range of β · V · α × 1.1~β · V · α × 0.9, flux control basket 7 Since the magnetic flux control is appropriate, the magnetic flux control rod 7 is stopped and the magnetic path gap is fixed and held for a predetermined time, for example, 10 seconds (S39). Further, when the shaft speed N S is not greater than β · V · α × 1.1 repeats the process of moving further by moving angle Δθ flux control basket 7 to the magnetic path gap is 5 ° side (S37). In step S36, when the shaft speed N S is not smaller than β · V · α × 0.9, the shaft speed N S is β · V · α × 1.1 to β · V · α × 0.9. Since the magnetic flux control of the magnetic flux control rod 7 is appropriate because it is within the range, the magnetic flux control rod 7 is stopped and the magnetic path gap is fixed and held for a predetermined time, for example, 10 seconds (S39), and then the processing Is returned to step S16 shown in FIG. 11 to continue the processing.

次に,図8及び図9を参照して,この発明による風力発電・電動機60で発電した出力と,従来の発電機で発電した出力とをグラフで対比して説明する。図8には,本風力発電・電動機60のシステムを用いて発電した時のロータ3の回転速度(回転数)に対する風車52と本風力発電・電動機との出力が示されている。図9には,従来の発電機を用いて発電した時のロータの回転速度(回転数)に対する風車52と従来の発電機との出力が示されている。   Next, with reference to FIG. 8 and FIG. 9, the output generated by the wind power generator / motor 60 according to the present invention and the output generated by the conventional generator will be described in a graph. FIG. 8 shows the outputs of the wind turbine 52 and the wind power generator / motor with respect to the rotational speed (rotation speed) of the rotor 3 when power is generated using the system of the wind power generator / motor 60. FIG. 9 shows the output of the wind turbine 52 and the conventional generator with respect to the rotational speed (rotation speed) of the rotor when power is generated using the conventional generator.

本発明による風力発電・電動機60は,図8に示すように,巻線14が巻き数が異なる巻線,即ち,第1巻線38と第2巻線39とを直列に結線した多巻き巻線と,第2巻線39のみの少巻き巻線とから構成されている。コントローラ69は,ロータ3即ち風車52の回転速度が所定の回転数R1に応答して,巻線14を多巻き巻線から第2巻線39のみの少巻き巻線に切り換えると共に,磁束制御籠7による磁路空隙の制御によってステータ4に流れる磁束を制御し,それによって,風速又は風車の回転速度が予め決められた所定の一定電圧で且つ風速に応じた発電をさせることができる。具体的には,回転数R1より遅い時には,第1巻線38と第2巻線39の直列結線の多巻き巻線に切り換えられ,該多巻き巻線で発電を行うと共に,風力発電・電動機60の出力G1を風車52の出力Fに磁束制御籠7の制御によって予め決められた一定電圧を発電することができ,発電機能を十分に発揮させることができる。また,風車の回転速度が予め決められた回転数R1より速い時には,巻線14は第2巻線39のみの少巻き巻線で発電を行うと共に,風力発電・電動機60の出力G2を風車52の出力Fに磁束制御籠7の制御によって予め決められた一定電圧を発電することができ,発電機能を十分に発揮させることができる。従って,本発明の風力発電・電動機では,風車52の回転速度に対する発電できる速度範囲が広範囲になり,広範囲の風力を有効に利用することができることになる。   As shown in FIG. 8, the wind power generator / motor 60 according to the present invention has multiple windings in which the winding 14 has different winding numbers, that is, a first winding 38 and a second winding 39 are connected in series. It is composed of a wire and a small number of windings of only the second winding 39. The controller 69 switches the winding 14 from the multiple winding to the small winding of only the second winding 39 in response to the rotational speed of the rotor 3, that is, the windmill 52, in response to the predetermined rotational speed R 1, The magnetic flux flowing through the stator 4 is controlled by the control of the magnetic path gap by 7, so that the wind speed or the rotational speed of the wind turbine can be generated at a predetermined constant voltage and according to the wind speed. Specifically, when the rotational speed is slower than R1, the first winding 38 and the second winding 39 are switched to the multi-winding winding connected in series, and power is generated by the multi-winding winding, and the wind power generator / motor The output G1 of 60 can be generated to the output F of the wind turbine 52 with a constant voltage determined in advance by the control of the magnetic flux control rod 7, and the power generation function can be sufficiently exhibited. When the rotational speed of the windmill is higher than a predetermined rotational speed R1, the winding 14 generates power with only a small number of windings of the second winding 39, and the output G2 of the wind power generator / motor 60 is generated by the windmill 52. A constant voltage predetermined by the control of the magnetic flux control rod 7 can be generated at the output F of the output F, and the power generation function can be sufficiently exhibited. Therefore, in the wind power generator / motor of the present invention, the speed range in which power generation is possible with respect to the rotational speed of the windmill 52 is wide, and a wide range of wind power can be used effectively.

これに対して,従来の発電機は,図9に示すように,巻線の巻き数が一種類であってロータの回転速度に対応して巻線を切り換えていないので,ロータ即ち風車の回転速度が所定の回転数R3より遅い時には発電機の出力G3が風車の出力Fより低くなってマッチングしておらず,発電ができず出力がでない領域Cとなって発電機能を発揮できず,風車の回転速度が所定の回転数R4より速い時にも発電機の出力G3が風車の出力Fより低くなってマッチングしておらず,発電ができず出力がでない領域Eとなって発電機能を発揮できず,また,風車の回転速度が回転数R3〜R4の範囲では,発電機の出力G3が風車の出力Fより高くなって発電可能な領域Dになり,その時,一定電圧を発電させるために発電機の出力G3を風車の出力Fに合わせるようにブレーキを用いて調整している。従って,従来の発電機では,風車の回転速度に対する発電できる速度範囲が狭くなり,適正な風速Vで無ければ発電できない現象が発生している。   On the other hand, as shown in FIG. 9, the conventional generator has one type of winding and does not switch the winding according to the rotational speed of the rotor. When the speed is lower than the predetermined rotational speed R3, the output G3 of the generator is lower than the output F of the windmill and is not matched. Even when the rotational speed of the generator is higher than the predetermined rotational speed R4, the output G3 of the generator is lower than the output F of the windmill and is not matched, so that the power generation function cannot be performed and the power generation function can be performed. In addition, when the rotational speed of the windmill is in the range of the rotational speeds R3 to R4, the output G3 of the generator becomes higher than the output F of the windmill and becomes a region D in which power can be generated. Output G3 of the machine is output F of the windmill It is adjusted by using a brake to match. Therefore, in the conventional generator, the speed range in which power generation can be performed with respect to the rotational speed of the windmill is narrowed, and a phenomenon in which power generation cannot be performed without an appropriate wind speed V occurs.

この発明による風力発電・電動機は,例えば,個人用,産業用等に利用でき,発電された電力を各種機器の駆動,電灯,照明等の一般消費電力として,或いは電子機器,補機等で消費するのに適用できる。   The wind power generator / motor according to the present invention can be used, for example, for personal use, industrial use, etc., and the generated power is consumed as general power consumption for driving various devices, lighting, lighting, etc., or using electronic devices, auxiliary machines, etc. Applicable to do.

この発明による風力発電・電動機の一実施例のシステム構成を示す概略説明図である。It is a schematic explanatory drawing which shows the system configuration | structure of one Example of the wind power generator and motor by this invention. 図1の風力発電・電動機の概略を示す斜視図である。It is a perspective view which shows the outline of the wind power generator and electric motor of FIG. 図1の風力発電・電動機の一実施例を示す概略断面図である。It is a schematic sectional drawing which shows one Example of the wind power generator and electric motor of FIG. 図3の風力発電・電動機であって磁束制御籠の歯部をステータの櫛部に整合させた状態を示す断面図である。FIG. 4 is a cross-sectional view showing the state of the wind power generator / motor of FIG. 3 in which the teeth of the magnetic flux control rod are aligned with the comb of the stator. 図3の永久磁石式発電機における磁束制御籠の作動状態を示し,ステータの櫛部と磁束制御籠の歯部とが整合した磁束を抑制しない状態を示す拡大説明図である。FIG. 4 is an enlarged explanatory view showing an operation state of a magnetic flux control rod in the permanent magnet generator of FIG. 3 and showing a state where a magnetic flux in which a comb portion of a stator and a tooth portion of the magnetic flux control rod are aligned is not suppressed. 図3の永久磁石式発電機における磁束制御籠の作動状態を示し,ステータの櫛部と磁束制御籠の歯部とが非整合した磁束を抑制する状態を示す拡大説明図である。FIG. 4 is an enlarged explanatory view showing an operating state of a magnetic flux control rod in the permanent magnet generator of FIG. 3 and showing a state in which a magnetic flux in which a comb portion of the stator and a tooth portion of the magnetic flux control rod are not aligned is suppressed. 図1の風力発電・電動機に組み込まれた巻線の多巻き巻線と少巻き巻線との切り換えを行う回路図である。FIG. 2 is a circuit diagram for switching between a multi-turn winding and a small-turn winding of a winding incorporated in the wind power generator / motor of FIG. 1. 図1の風力発電・電動機によって得られる風速に対する出力の関係を示すグラフである。It is a graph which shows the relationship of the output with respect to the wind speed obtained by the wind power generator and motor of FIG. 従来の風力発電・電動機によって得られる風速に対する出力の関係を示すグラフである。It is a graph which shows the relationship of the output with respect to the wind speed obtained by the conventional wind power generator and electric motor. 図1の風力発電・電動機の作動を示す処理フロー図である。It is a processing flowchart which shows the action | operation of the wind power generator and electric motor of FIG. 図1の風力発電・電動機の作動を示す図10の処理に続く処理フロー図である。FIG. 11 is a process flow diagram following the process of FIG. 10 illustrating the operation of the wind power generator / motor of FIG. 1. 図1の風力発電・電動機の作動を示す図11の処理に続く処理フロー図である。FIG. 12 is a process flow diagram following the process of FIG. 11 illustrating the operation of the wind power generator / motor of FIG. 1.

符号の説明Explanation of symbols

1 ハウジング
2 回転軸
3 ロータ
4 ステータ
5 永久磁石部材
7 磁束制御籠
8 歯部
10 櫛部
14 巻線
19 永久磁石片
38,38U,38V,38W 第1巻線
39,39U,39V,39W 第2巻線
60 風力発電・電動機
69 コントローラ
75,75U,75V,75W スイッチ
76,76U,76V,76W スイッチ
77,77U,77V,77W ライン
78,78U,78V,78W ライン
79,79U,79V,79W 出力端子
81,81U,81V,81W 出力端子
DESCRIPTION OF SYMBOLS 1 Housing 2 Rotating shaft 3 Rotor 4 Stator 5 Permanent magnet member 7 Magnetic flux control rod 8 Tooth part 10 Comb part 14 Winding 19 Permanent magnet piece 38, 38U, 38V, 38W 1st winding 39, 39U, 39V, 39W 2nd volume Line 60 Wind power generator / motor 69 Controller 75, 75U, 75V, 75W Switch 76, 76U, 76V, 76W Switch 77, 77U, 77V, 77W Line 78, 78U, 78V, 78W Line 79, 79U, 79V, 79W Output terminal 81 , 81U, 81V, 81W Output terminal

Claims (4)

風車の回転が伝達される回転軸に設けられ且つ周方向に隔置した永久磁石片を備えた回転数が変動するロータ,前記ロータを回転自在に支持するハウジングに固定され且つ周方向に隔置して立設された櫛部間に巻き上げられた巻線を備えたステータ,及び前記ステータと前記ロータとの間に前記ステータに対して回転可能に設けられ且つ前記ステータを通る磁束を磁路空隙の増減により電圧制御する磁束制御籠を持つ磁束制御機構から成る風力発電・電動機において,
前記ステータに巻き上げられた前記巻線は,多巻き巻線と少巻き巻線とから構成され,前記多巻き巻線には第1スイッチを介して第1出力ラインが結線され,前記少巻き巻線には第2スイッチを介して第2出力ラインが結線され,コントローラは,風速又は前記風車の回転速度に対応する出力値がマップとして予め記憶しており,前記ロータの回転数及び負荷に応答して前記第1と第2スイッチのON・OFF制御と前記磁束制御籠による前記磁路空隙とを制御して予め決められた所定の一定電圧で且つ風速に応じた発電をさせることを特徴とする風力発電・電動機。
A rotor with a permanent magnet piece provided on a rotating shaft to which the rotation of the windmill is transmitted and spaced apart in the circumferential direction, and a rotor fixed to a housing that rotatably supports the rotor and spaced apart in the circumferential direction And a stator provided with a winding wound between the comb portions erected, and a magnetic flux that is provided between the stator and the rotor so as to be rotatable with respect to the stator and passes through the stator. In wind power generators and motors consisting of a magnetic flux control mechanism with a magnetic flux control rod that controls voltage by increasing and decreasing,
The winding wound around the stator is composed of a multi-winding winding and a small winding, and a first output line is connected to the multi-winding winding via a first switch. A second output line is connected to the line via a second switch, and the controller stores in advance the output value corresponding to the wind speed or the rotational speed of the windmill as a map, and responds to the rotational speed and load of the rotor. And controlling the ON / OFF control of the first and second switches and the magnetic path gap by the magnetic flux control rod to generate power according to a predetermined constant voltage and wind speed. Wind power generator / motor.
前記風車を初期駆動させるため,前記多巻き巻線に電力を送って直流電動機として作動させることを特徴とする請求項1に記載の風力発電・電動機。 2. The wind power generator / motor according to claim 1, wherein in order to initially drive the windmill, electric power is sent to the multi-winding winding to operate as a DC motor. 前記コントローラは,前記風車の低速回転に応答して,前記多巻き巻線に接続して前記第1出力ラインから出力させる制御と前記磁束制御籠による前記磁路空隙の制御とを行って前記所定の一定電圧で且つ風速に応じた発電をさせることを特徴とする請求項1又は2に記載の風力発電・電動機。 In response to the low speed rotation of the wind turbine, the controller performs control to connect to the multi-turn winding and output from the first output line and control the magnetic path gap by the magnetic flux control rod to perform the predetermined 3. The wind power generator / motor according to claim 1, wherein power generation is performed at a constant voltage and in accordance with wind speed. 前記コントローラは,前記風車の高速回転に応答して,前記少巻き巻線に接続して前記第2出力ラインから出力させる制御と前記磁束制御籠による前記磁路空隙の制御とを行って前記所定の一定電圧で且つ風速に応じた発電をさせることを特徴とする請求項1〜3のいずれか1項に記載の風力発電・電動機。 In response to high-speed rotation of the wind turbine, the controller performs control to connect to the small winding and output from the second output line, and control of the magnetic path gap by the magnetic flux control rod. The wind power generator / motor according to any one of claims 1 to 3, wherein the power generation is performed at a constant voltage and in accordance with the wind speed.
JP2006297777A 2006-11-01 2006-11-01 Wind turbine generator equipped with winding switching mechanism and magnetic flux control mechanism Pending JP2008118744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006297777A JP2008118744A (en) 2006-11-01 2006-11-01 Wind turbine generator equipped with winding switching mechanism and magnetic flux control mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006297777A JP2008118744A (en) 2006-11-01 2006-11-01 Wind turbine generator equipped with winding switching mechanism and magnetic flux control mechanism

Publications (1)

Publication Number Publication Date
JP2008118744A true JP2008118744A (en) 2008-05-22

Family

ID=39504233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006297777A Pending JP2008118744A (en) 2006-11-01 2006-11-01 Wind turbine generator equipped with winding switching mechanism and magnetic flux control mechanism

Country Status (1)

Country Link
JP (1) JP2008118744A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207052A (en) * 2009-03-06 2010-09-16 Nisca Corp Power generator and power generation system with the same
JP2010207046A (en) * 2009-03-06 2010-09-16 Nisca Corp Generator and power generation system with the same
KR101042756B1 (en) * 2008-10-22 2011-06-20 충주대학교 산학협력단 Double coil type small wind generator
JP2013509856A (en) * 2009-10-30 2013-03-14 ルイ フィンクル Motor that can be reconfigured from induction to synchronous
CN103391038A (en) * 2012-05-09 2013-11-13 西门子公司 Method and arrangement for damping shaft oscillation
JP2014027715A (en) * 2012-07-24 2014-02-06 Kodai Hitec:Kk Permanent magnet type generator
CN103701288A (en) * 2014-01-08 2014-04-02 洛阳市睿仕行智能科技发展有限公司 Multi-winding motor
WO2015173969A1 (en) * 2014-05-15 2015-11-19 由次 近藤 Driving/power-generation motor
JP2016039768A (en) * 2014-08-11 2016-03-22 由次 近藤 Driving/power-generation motor
JP2016176414A (en) * 2015-03-20 2016-10-06 株式会社ベルシオン Wind power generator
CN110492641A (en) * 2019-07-19 2019-11-22 哈尔滨理工大学 A kind of permanent magnet synchronous motor of automobile-used multi gear position speed regulation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101042756B1 (en) * 2008-10-22 2011-06-20 충주대학교 산학협력단 Double coil type small wind generator
JP2010207052A (en) * 2009-03-06 2010-09-16 Nisca Corp Power generator and power generation system with the same
JP2010207046A (en) * 2009-03-06 2010-09-16 Nisca Corp Generator and power generation system with the same
JP2013509856A (en) * 2009-10-30 2013-03-14 ルイ フィンクル Motor that can be reconfigured from induction to synchronous
CN103391038A (en) * 2012-05-09 2013-11-13 西门子公司 Method and arrangement for damping shaft oscillation
JP2014027715A (en) * 2012-07-24 2014-02-06 Kodai Hitec:Kk Permanent magnet type generator
CN103701288A (en) * 2014-01-08 2014-04-02 洛阳市睿仕行智能科技发展有限公司 Multi-winding motor
WO2015173969A1 (en) * 2014-05-15 2015-11-19 由次 近藤 Driving/power-generation motor
JP2016039768A (en) * 2014-08-11 2016-03-22 由次 近藤 Driving/power-generation motor
JP2016176414A (en) * 2015-03-20 2016-10-06 株式会社ベルシオン Wind power generator
CN110492641A (en) * 2019-07-19 2019-11-22 哈尔滨理工大学 A kind of permanent magnet synchronous motor of automobile-used multi gear position speed regulation

Similar Documents

Publication Publication Date Title
JP2008118744A (en) Wind turbine generator equipped with winding switching mechanism and magnetic flux control mechanism
US6252325B1 (en) Switched reluctance motor
JP5867628B2 (en) Double stator type switched reluctance rotating machine
JP5845429B2 (en) motor
Cao et al. Compensation strategy of levitation forces for single-winding bearingless switched reluctance motor with one winding total short circuited
EP2081276A1 (en) Electro-magnetical device with reversible generator-motor operation
JP5026243B2 (en) Generator and method for controlling the frequency of alternating current generated by the generator
JP2019049266A (en) Turbo-compressor
JP2010246196A (en) Rotary electric machine
JP2006345591A (en) Flux controller in permanent magnet generator
JP2014241725A (en) Bearingless motor
JP5204554B2 (en) motor
JP2010207052A (en) Power generator and power generation system with the same
JP2004266883A (en) Power generation provision
WO2006019058A1 (en) Variable magnetoresistive generator
JP6244598B2 (en) Wind turbine generator having variable magnetic flux field type synchronous generator
JP2011030423A (en) Synchronous motor, exhaust fan, refrigerant compressor, air blower, liquid pump, air conditioner, and refrigerator
JP2010200439A (en) Motor drive unit for washing machine, and washing machine using the same
JP3822192B2 (en) Magnetic flux control type wind power generator
JP2000170766A (en) Generator set utilizing magnetic bearing
Rasmussen et al. Variable speed brushless DC motor drive for household refrigerator compressor
JP2010516224A (en) Multi-phase drive or generator machine
JP5795170B2 (en) Power generation system
JP3938331B2 (en) Magnetic bearing generator motor
KR20140010055A (en) Three phased balanced or unbalanced asymmetric reluctance motor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080924