JP6978825B2 - Wind power generator - Google Patents

Wind power generator Download PDF

Info

Publication number
JP6978825B2
JP6978825B2 JP2015057572A JP2015057572A JP6978825B2 JP 6978825 B2 JP6978825 B2 JP 6978825B2 JP 2015057572 A JP2015057572 A JP 2015057572A JP 2015057572 A JP2015057572 A JP 2015057572A JP 6978825 B2 JP6978825 B2 JP 6978825B2
Authority
JP
Japan
Prior art keywords
generator
motor
wind
spindle
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015057572A
Other languages
Japanese (ja)
Other versions
JP2016176414A (en
Inventor
政彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2015057572A priority Critical patent/JP6978825B2/en
Priority to PCT/JP2016/058093 priority patent/WO2016152640A1/en
Priority to TW105108530A priority patent/TW201641814A/en
Publication of JP2016176414A publication Critical patent/JP2016176414A/en
Application granted granted Critical
Publication of JP6978825B2 publication Critical patent/JP6978825B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/11Combinations of wind motors with apparatus storing energy storing electrical energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Description

本発明は、風力発電機の定格回転数を、風車の主軸に接続した電動機の回転力で維持させ、ロータが受ける風力によって生じる主軸のトルクの増減変化を、取出し電流量の自動調節によって一定化し、定格回転数を維持し、安定した電圧の出力を得るようにした風力発電装置に関する。 In the present invention, the rated rotation speed of the wind power generator is maintained by the rotational force of the motor connected to the spindle of the wind turbine, and the increase / decrease / change of the torque of the spindle caused by the wind force received by the rotor is made constant by the automatic adjustment of the extraction current amount. The present invention relates to a wind power generator that maintains a rated rotation speed and obtains a stable voltage output.

風力発電機においては、風速の変化によって電圧と電流が変動し、安定した電力の供給が困難である。
また、風力発電機は、一般的に機械的ロスが大であり、低風速では回転しにくく、回転効率は低い。更に風切り音や低周波などの問題もある。騒音の生じない風車が、特許文献1に提案されている。
In a wind power generator, the voltage and current fluctuate due to changes in wind speed, making it difficult to supply stable electric power.
In addition, wind power generators generally have a large mechanical loss, are difficult to rotate at low wind speeds, and have low rotational efficiency. There are also problems such as wind noise and low frequencies. A wind turbine that does not generate noise is proposed in Patent Document 1.

特開2004−204801号公報Japanese Unexamined Patent Publication No. 2004-204801

特許文献1に記載の風車は、回転効率が優れており、騒音の発生も小さいものである。高速回転させるには、強風を必要とするが、強風は持続して吹くことがない。しかし、風速が大であるほど、風車の回転数は大となり、低風速時における発電量との差が開き、電圧と電流の変動が大となるので、継続して安定した電力は得難いものであった。
本発明は、電動機により主軸を定格回転数で回転させることによって、風力発電機における定格電圧を維持させ、かつ風車のロータの回転に伴い、揚力型ロータブレードの揚力によって生じる主軸のトルクの増減変化を、取出し電流量を自動調節することによって一定化させて、安定した電圧を得るようにした風力発電装置を提供するものである。
The wind turbine described in Patent Document 1 has excellent rotation efficiency and generates less noise. Strong winds are required for high-speed rotation, but strong winds do not blow continuously. However, the higher the wind speed, the higher the rotation speed of the wind turbine, the wider the difference from the amount of power generation at low wind speed, and the larger the fluctuation of voltage and current, so it is difficult to continuously obtain stable power. there were.
In the present invention, the spindle is rotated at the rated rotation speed by the electric motor to maintain the rated voltage in the wind power generator, and the torque of the spindle is increased or decreased by the lift of the lift type rotor blade as the rotor of the wind turbine rotates. This is to provide a wind power generator in which the amount of take-out current is automatically adjusted to be constant to obtain a stable voltage.

本発明の具体的な内容は、次の通りである。 The specific contents of the present invention are as follows.

(1) 翼端部が主軸方向へ傾斜する傾斜部を形成した揚力型ブレードを備えた風車の主軸を発電機の主軸に直結させるとともに、その主軸に、前記発電機とは別体の電動機を、前記電動機の減速機の出力軸に設けた伝動手段と、前記主軸に設けた伝動手段とは、オン・オフ作動を自動制御器により制御される自動制御可能のクラッチからなる連係手段を介して前記主軸を回転可能に連係させ、
前記電動機と蓄電池の間に、自動風速検知器を備えた自動制御器により切替え可能な自動スイッチを配して前記電動機の駆動・停止を制御するようにし、前記蓄電池と前記発電機の間に、前記電動機の負荷の増減変化に対応した前記発電機からの取出し電流量を自動調節するコントローラを配設し、
前記電動機を前記主軸の定格回転数と同じ回転数に設定し、風力で前記揚力型ブレードを回転させている状態で、風速の高低に関わりなく前記電動機により前記主軸を定格回転数で回転させて前記発電機により定格電圧の発電を維持させるようにするとともに、
風力による回転数の上乗せにより、前記主軸の定格回転数を超える前記主軸の回転数の変化を生じさせる一定の高速風を前記自動風速検知器が検知したときは、
前記自動制御器によって、前記電動機に関する自動スイッチをオフに作動させて前記電動機を停止させるようにし前記コントローラの作用により前記発電機の出力側の電流取出し量を増加させて前記発電機に大きな負荷をかけて前記主軸を停止させ、
風速が一定以下に低下したことを前記自動風速検知器が検知したときは、前記発電機の負荷を前記コントローラの作用により解除し、前記自動制御器により前記電動機の自動スイッチをオンにして前記主軸を、定格回転数を維持して回転したまま、前記コントローラにより発電機の出力側の電流取出し量を減少させて、定格電圧の出力を維持させるようにしてなる風力発電装置。
(1) The spindle of a wind turbine equipped with a lift-type blade having an inclined portion whose wing tip is inclined in the direction of the spindle is directly connected to the spindle of the generator, and an electric motor separate from the generator is attached to the spindle. and transmission means provided on the output shaft of the speed reducer of the electric motor, the transmission means provided in the main shaft, through the linkage means comprising automatic controllable clutch controlled by an automatic controller of the on-off operation The spindles are rotatably linked to each other.
An automatic switch that can be switched by an automatic controller equipped with an automatic wind speed detector is arranged between the motor and the storage battery to control the drive / stop of the motor, and between the storage battery and the generator. A controller that automatically adjusts the amount of current taken out from the generator in response to changes in the load of the motor is provided.
The motor is set to the same rotation speed as the rated rotation speed of the spindle, and the spindle is rotated at the rated rotation speed by the motor regardless of the height of the wind speed in a state where the lift type blade is rotated by wind power. together when so as to maintain the power of the rated voltage by said generator,
The plus speed of wind, when a certain high-speed wind causes rotation speed of change of the main shaft exceeds the rated rotational speed of the spindle is the automatic wind detector detects the
By the automatic controller, said actuates off automatic switch to an electric motor so as to stop the motor, large on the generator increases the more current extraction amount of the output side of the generator to the action of the controller A load is applied to stop the spindle,
When the automatic wind speed detector detects that the wind speed has dropped below a certain level, the load on the generator is released by the action of the controller, and the automatic controller turns on the automatic switch of the motor to turn on the main shaft. and while rotating to maintain the rated speed, the decrease the current extraction of the output side of the generator by the controller, the wind turbine generator comprising as to maintain the output of the rated voltage.

(2) 前記電動機と風力により前記揚力型ブレードを常時回転させ、前記電動機により前記主軸を定格回転数で回転させて、前記発電機により定格電圧の発電を維持させている状態において、
前記電動機にかかる負荷の増減変化に対応して前記発電機からの取出し電流量を自動調節する前記コントローラの作用による前記発電機からの取出し電流量の自動調節は、低風速によって前記発電機による発電量が低下して、前記電動機にかかる負荷が増大したことを前記コントローラが検知したとき、記発電機からの取出し電流量を前記コントローラの作用により減少させ、高風速によって前記発電機による発電量が増加し、前記電動機にかかる負荷が減少したときは、前記コントローラの作用により前記発電機からの取出し電流量を増大させるように設定され、前記発電機からの安定した定格電圧の出力を得るようにしてなる前記(1)に記載の風力発電装置。
(2) In a state where the lift type blade is constantly rotated by the motor and the wind force, the spindle is rotated at the rated rotation speed by the motor, and power generation at the rated voltage is maintained by the generator.
The automatic adjustment of the amount of current taken out from the generator by the action of the controller that automatically adjusts the amount of current taken out from the generator in response to the increase / decrease of the load applied to the motor is performed by the generator by the low wind speed. power generation amount is reduced, when the controller that the load on the motor is increased detects, the extraction amount of current from the pre-Symbol generator decreases by the action of the controller, power generation by the generator by a high wind speed the amount is increased, when the load applied is reduced before Symbol motor is set so as to increase size of the extraction amount of current from the generator by the action of the controller, a stable rated voltage from the generator The wind power generator according to (1) above , which is designed to obtain an output.

本発明によると、次のような効果が奏せられる。 According to the present invention, the following effects can be achieved.

前記(1)に記載の風力発電装置は、風速の遅速に関わらず、電動機によって発電機の定格回転数が維持され、常時一定の電圧を取出すことが出来る。
従って、高速風が続くと、電動機による回転数に上乗せされて、揚力型ブレードが回転することによって生じる揚力が増大し、風車の回転数と発電量が増加するので、電力の取出し量が一定であれば、電動機にかかる負荷は減少する。
また、低風速となって、揚力型ブレードの揚力が低下すると、風車の回転数が低下するので、発電量を減少させなければ、電動機にかかる負荷は増大する。
従って、電動機の負荷の増減を検知し、コントローラによって電力の取出し量を低下させると、電動機にかかる負荷は減少するので、主軸の回転数の変化が生じた時には、電動機の負荷を自動調節し、主軸の定格回転数を一定に維持することによって安定した電圧を、小さな電動機の少ない消費電力で得ることができる。
例えば、フライホイールを電動機で回転させると、回転抵抗によるエネルギーの損失が生じるが、揚力型ブレードを備える風車を、電動機で回転させると、揚力型ブレードに必然的に生じる揚力が、風車の回転力を生み出し、エネルギーの上積みが得られる。
In the wind power generator according to (1) above, the rated rotation speed of the generator is maintained by the electric motor regardless of the slow speed of the wind speed, and a constant voltage can be constantly taken out.
Therefore, if the high-speed wind continues, the lift generated by the rotation of the lift-type blade is increased by adding to the rotation speed of the motor, and the rotation speed of the wind turbine and the amount of power generation increase, so that the amount of electric power taken out is constant. If so, the load on the motor will be reduced.
Further, when the wind speed becomes low and the lift of the lift type blade decreases, the rotation speed of the wind turbine decreases. Therefore, unless the amount of power generation is reduced, the load applied to the electric motor increases.
Therefore, if an increase or decrease in the load of the motor is detected and the amount of power taken out by the controller is reduced, the load applied to the motor is reduced. Therefore, when the rotation speed of the spindle changes, the load of the motor is automatically adjusted. By keeping the rated rotation speed of the spindle constant, a stable voltage can be obtained with less power consumption of a small motor.
For example, when a fly wheel is rotated by an electric motor, energy is lost due to rotational resistance, but when a wind turbine equipped with a lift-type blade is rotated by an electric motor, the lift force inevitably generated by the lift-type blade is the rotational force of the wind turbine. Is produced, and an additional energy is obtained.

前記(2)に記載の風力発電装置は、電動機により主軸を回転させ、発電機により定格電圧の発電を維持させている状態において、低風速になって、揚力型ブレードの揚力が低下し電動機の負荷が増加した時には、取出し電流量を減少させ、かつ負荷が減少した時には、取出し電流量を増加させて、電動機の負荷を一定に維持させるように、自動調節することによって、発電機の主軸の回転数を定格回転数に維持させ、電流の増減変化があっても、安定した電圧の出力を得ることができる。 In the wind power generator described in (2) above, in a state where the main shaft is rotated by the motor and the power generation of the rated voltage is maintained by the motor, the wind speed becomes low and the lift of the lift type blade decreases, and the motor When the load increases, the amount of take-out current is reduced, and when the load is reduced, the amount of take-out current is increased to automatically adjust the load of the motor so that the load is kept constant. The rotation speed is maintained at the rated rotation speed, and a stable voltage output can be obtained even if the current fluctuates.

本発明の風力発電装置の実施例1の正面図である。It is a front view of Example 1 of the wind power generation apparatus of this invention. 本発明の風力発電装置の実施例2の要部縦断側面図である。It is a vertical sectional side view of the main part of Example 2 of the wind power generation apparatus of this invention. 図2における揚力型ブレードのIII−III線横断拡大平面図である。FIG. 2 is an enlarged plan view across the line III-III of the lift type blade in FIG. 2.

本発明の実施例を、以下に図面を参照して説明する。 Examples of the present invention will be described below with reference to the drawings.

図1において、風力発電装置1は、発電機2と風車3とを備えている。発電機2に立設した垂直の主軸4の上端に、縦軸ロータ5のハブ5Aが固定され、ハブ5Aで支持された複数の水平の支持腕5Bの先端に、垂直の揚力型ブレード6(以下単にブレードという)が装着されている。 In FIG. 1, the wind power generator 1 includes a generator 2 and a wind turbine 3. The hub 5A of the vertical axis rotor 5 is fixed to the upper end of the vertical spindle 4 erected on the generator 2, and the vertical lift type blade 6 (to the tip of a plurality of horizontal support arms 5B supported by the hub 5A) ( (Hereafter simply referred to as a blade) is attached.

主軸4の下端部は、任意の伝動手段8A、8Bを介して、電動機7と連係されている。すなわち、電動機7に設けた減速機7Aの出力軸7Cに設けた伝動手段8Bと、主軸4に設けた伝動手段8Aとは、適宜の連係手段8Cを介して連係されている。連係手段8Cには、必要に応じて、自動制御のクラッチも使用する。 電動機7は、例えば、定格出力100w仕様で、内部に、定格回転数を例えば、300rpmとする減速機7Aが組込まれている。 The lower end of the spindle 4 is linked to the motor 7 via arbitrary transmission means 8A and 8B. That is, the transmission means 8B provided on the output shaft 7C of the speed reducer 7A provided on the electric motor 7 and the transmission means 8A provided on the spindle 4 are linked via an appropriate linking means 8C. An automatically controlled clutch is also used for the linking means 8C, if necessary. The electric motor 7 has, for example, a rated output of 100 w, and a speed reducer 7A having a rated rotation speed of, for example, 300 rpm is incorporated therein.

外部からコード7Dを介して電力を供給し、自動スイッチ7Bを遠隔操作して電動機7を起動させると、無負荷での風車3は、トルクの大きな電動機7によって、容易に高速回転し、発電機2は、この回転に伴う発電量の発電をする。 When electric power is supplied from the outside via the cord 7D and the automatic switch 7B is remotely operated to activate the electric motor 7, the windmill 3 with no load is easily rotated at high speed by the electric motor 7 having a large torque, and the generator is generated. 2 generates the amount of power generated by this rotation.

なお、発電機2の出力コード2Aには、コントローラ9及び蓄電池10が連結されている。上記の風力発電装置1を、風況のよい場所に設置し、電動機7による駆動によって、風車3を支持する発電機2の主軸4を、定格回転数で回転させる。 A controller 9 and a storage battery 10 are connected to the output code 2A of the generator 2. The above wind power generator 1 is installed in a place with good wind conditions, and the main shaft 4 of the generator 2 supporting the wind turbine 3 is rotated at a rated rotation speed by being driven by an electric motor 7.

一般的な電動機の回転数は、2500rpm〜3000rpmであるから、これを、例えば300rpmに減速して風車3を回転させると、トルクが大きく作用するので、風車3が大型であっても、容易に回転させることができる。 Since the rotation speed of a general electric motor is 2500 rpm to 3000 rpm, if this is decelerated to, for example, 300 rpm and the wind turbine 3 is rotated, a large torque acts, so even if the wind turbine 3 is large, it is easy. Can be rotated.

風速の変化に伴い、高速の風が吹けば、揚力型ブレード6の揚力が大となって、主軸4は風力で回転し、発電量は増加するので、電動機7にかかる負荷は100w以下の小となる。
従って、コントローラ9の作用によって、取出す電流量を増加させ、電動機7の負荷を100wに維持して、蓄電池10に蓄電するか消費する。
If a high-speed wind blows with a change in wind speed, the lift of the lift-type blade 6 becomes large, the spindle 4 rotates with wind power, and the amount of power generation increases, so the load applied to the motor 7 is small, 100 w or less. Will be.
Therefore, by the action of the controller 9, the amount of current to be taken out is increased, the load of the electric motor 7 is maintained at 100w, and the storage battery 10 is stored or consumed.

風速が低下すれば、発電量が低下し、風車3によって回転する主軸4の定格回転数を、例えば300rpmに維持させると、発電機2の発電量が増加して、電動機7にかかる負荷は増加する。 If the wind speed decreases, the amount of power generation decreases, and if the rated rotation speed of the spindle 4 rotated by the wind turbine 3 is maintained at, for example, 300 rpm, the amount of power generated by the generator 2 increases and the load on the motor 7 increases. do.

その場合には、コントローラ9の作用によって、発電機2から取出す電流量を、自動的に減少させて、定格回転数を例えば300rpmに維持させ、一定の電圧を維持して出力をする。 In that case, the amount of current taken out from the generator 2 is automatically reduced by the action of the controller 9, the rated rotation speed is maintained at, for example, 300 rpm, and a constant voltage is maintained for output.

風車3の回転によって、主軸4が300rpmの定格回転数で回転するためには、風速をどの程度必要とするのかを例示すると、例えば縦軸ロータ5の大きさが、半径1m、揚力型ブレード6の長さ2.7m、受風面積5.4m、翼幅0.5m、翼枚数2枚として、風速約16m/sの時の数値に該当する。 To exemplify how much wind speed is required for the spindle 4 to rotate at the rated rotation speed of 300 rpm due to the rotation of the wind turbine 3, for example, the size of the vertical axis rotor 5 is 1 m in radius, and the lift type blade 6 is used. The length is 2.7m, the wind receiving area is 5.4m 2 , the blade width is 0.5m, and the number of blades is 2, which corresponds to the values when the wind speed is about 16m / s.

この風速で回転する風車3による発電機2の発電量は、約6000wとなる。すなわち、100wの電力を消費して電動機7を駆動し、風力発電装置1を回転させることにより、発電機2によって約6000wの発電をすることが可能となる。 The amount of power generated by the generator 2 by the wind turbine 3 rotating at this wind speed is about 6000w. That is, by consuming 100 w of electric power to drive the electric motor 7 and rotating the wind power generator 1, the generator 2 can generate about 6000 w of electric power.

一般の風力発電機においては、風速が常に変化しているため、回転数を一定にすることは不可能であり、常に電圧と電流の変動が生じている。
従って、従来の小型風力発電機においては、定電圧の出力が困難である。
In a general wind power generator, since the wind speed is constantly changing, it is impossible to keep the rotation speed constant, and the voltage and the current are constantly fluctuating.
Therefore, it is difficult to output a constant voltage in a conventional small wind power generator.

しかし、本発明における風力発電装置1においては、電動機7によって風車3の主軸4を回転させて、常に定格回転数を維持させるので、縦軸ロータ5の回転によって生じる主軸4のトルクの増減変化も、取出す電流量の増減を調節することによって一定化させ、電圧を一定にして取出すことが出来る。 However, in the wind power generator 1 of the present invention, the spindle 4 of the wind turbine 3 is rotated by the electric motor 7 to maintain the rated rotation speed at all times, so that the torque of the spindle 4 caused by the rotation of the vertical axis rotor 5 also changes. By adjusting the increase / decrease of the amount of current to be taken out, it can be made constant and the voltage can be made constant.

風力で風車3を回転させると、風車3の回転速度が加速される時のエネルギー損失が生じるが、電動機7によって風車3を常に回転させておき、電動機7側の負荷変動を起さないように、出力側の電流取出し量を、コントローラ9により調節をすることによって、回転速度が加速した状態から出力を得られるため、風車3の加速時のエネルギー損が生じない。 When the wind turbine 3 is rotated by wind power, energy loss occurs when the rotation speed of the wind turbine 3 is accelerated. However, the electric motor 7 always rotates the wind turbine 3 so as not to cause a load fluctuation on the electric motor 7 side. By adjusting the amount of current taken out on the output side by the controller 9, the output can be obtained from the state where the rotation speed is accelerated, so that energy loss during acceleration of the wind turbine 3 does not occur.

揚力型ブレード6のスパンを、回転直径より長くしておくと、次第に縦軸ロータ5の回転数が上って、回転している揚力型ブレード6の外側の空気が、遠心力で移動し、内側の空気は外側方向に引寄せられるため、揚力型ブレード6の回転軌跡よりも内側では、負圧となる。 When the span of the lift type blade 6 is made longer than the rotation diameter, the rotation speed of the vertical axis rotor 5 gradually increases, and the air outside the rotating lift type blade 6 moves by centrifugal force. Since the air inside is attracted toward the outside, a negative pressure is applied inside the rotation trajectory of the lift type blade 6.

その結果、縦軸ロータ5の上下方向から、負圧となったハブ5Aの方向へ、外部から空気が引込まれ、回転する揚力型ブレード6によって、遠心方向へ吸い出される気流は、揚力型ブレード6の後縁に沿って外方へ流出し、その反動で、揚力型ブレード6は、回転方向へ揚力(推進力)が生じて回転する。 As a result, the airflow that is drawn in from the outside in the direction of the hub 5A that has become negative pressure from the vertical direction of the vertical axis rotor 5 and is sucked out in the centrifugal direction by the lift type blade 6 that rotates is the lift type blade. It flows outward along the trailing edge of 6 and, due to the reaction, lift (propulsion force) is generated in the rotation direction of the lift type blade 6 to rotate.

この風力発電装置1は、単純に発電するだけではなく、他の方法で発電された外部電力を使用して電動機7を駆動させ、風力発電装置1を回転させて発電することによって、他の方法で発電された電力の余剰分を、ロスを少なくして保存すると共に、揚力型ブレード6に生じる揚力による回転力によって、新たな発電を継続的に行うこともできる。 This wind power generation device 1 does not simply generate power, but also uses external power generated by another method to drive an electric motor 7 and rotate the wind power generation device 1 to generate power in another method. The surplus power generated in the above can be stored with less loss, and new power generation can be continuously performed by the rotational force generated by the lift generated in the lift type blade 6.

なお、この風車3における揚力型ブレード6を、1本の主軸4に多層状(例えば特開2005-188468号記載のよう)に固定することもできる。
また、揚力型ブレード6の翼端部を、主軸4方向へ傾斜する傾斜部6Aとすることによって、翼端外方向へ気流が拡散することを抑止し、回転効率を高めることができる。
The lift type blade 6 in the wind turbine 3 can also be fixed to one main shaft 4 in a multi-layered manner (for example, as described in Japanese Patent Application Laid-Open No. 2005-188468).
Further, by making the blade tip portion of the lift type blade 6 an inclined portion 6A inclined in the direction of the main shaft 4, it is possible to suppress the diffusion of the airflow in the outward direction of the blade tip and improve the rotation efficiency.

更に、台風対策として、自動風速検知器21を発電機2の横に臨設し、台風等により、一定の高速風を検知した時は、自動制御器22によって、電動機7の自動スイッチ7Bをオフに作動させて、電動機7を停止させると共に、発電機2に大きな負荷をかけて、主軸4を停止させる。 Further, as a measure against typhoons, an automatic wind speed detector 21 is installed next to the generator 2, and when a constant high-speed wind is detected due to a typhoon or the like, the automatic controller 22 turns off the automatic switch 7B of the motor 7. It is operated to stop the electric motor 7, and a large load is applied to the generator 2 to stop the main shaft 4.

また、一定(平均)以下の風速を、自動風速検知器21が検知した時には、発電機2の負荷を、自動的に解除すると共に、電動機7の自動スイッチ7Bを、自動制御器22によって自動的にオンにして、風車3の回転の復元を図る。 Further, when the automatic wind speed detector 21 detects a wind speed below a certain level (average), the load of the generator 2 is automatically released, and the automatic switch 7B of the motor 7 is automatically switched by the automatic controller 22. Turn on to restore the rotation of the wind turbine 3.

図2は、本発明の風力発電装置の実施例2の要部縦断正面図である。前例と同じ部分は、同じ符号を付して説明を省略する。
この実施例2においては、横軸風車13を使用してある。支柱11Aの上端に、風車筐体11Bが、垂直軸11Dの周りを旋回可能に装着されている。
FIG. 2 is a vertical sectional front view of a main part of the second embodiment of the wind power generation device of the present invention. The same parts as in the previous example are designated by the same reference numerals and the description thereof will be omitted.
In the second embodiment, the horizontal axis wind turbine 13 is used. A wind turbine housing 11B is mounted on the upper end of the support column 11A so as to be rotatable around the vertical axis 11D.

風車筐体11Bは、前部が大きく、後端へかけて次第に細く形成してあり、後部に横軸風車13を装着してある。
風車筐体11Bの内部の、前方部分に配した発電機12から、水平に後方へ突出する主軸14の後端に、横軸ロータ15のハブ15Aを固定してある。
The wind turbine housing 11B has a large front portion and is gradually formed to be thinner toward the rear end, and a horizontal axis wind turbine 13 is attached to the rear portion.
The hub 15A of the horizontal axis rotor 15 is fixed to the rear end of the main shaft 14 that horizontally projects rearward from the generator 12 arranged in the front portion inside the wind turbine housing 11B.

ハブ15Aには、2枚〜5枚の揚力型ブレード16を、放射方向に向けて装着してある。揚力型ブレード16の断面は、図3に示すように、前縁16Aが厚く、最大翼厚部16Cから後縁16Bにかけて、次第に薄く形成してある。 Two to five lift-type blades 16 are mounted on the hub 15A in the radial direction. As shown in FIG. 3, the cross section of the lift type blade 16 has a thick leading edge 16A and is gradually formed thinner from the maximum blade thickness portion 16C to the trailing edge 16B.

揚力型ブレード16の前面16Dは、前縁16Aから後縁16Bへかけて、ほぼ直線的であるが、背面16Eは、最大翼厚部16Cを頂点として、後縁16Bへかけて緩く湾曲しており、回転すると、前面16Dに沿って流れる気流の速度よりも、背面16Eに沿って流れる気流の速度の方が早くなり、背面16E部分が負圧となる。 The front surface 16D of the lift type blade 16 is almost linear from the leading edge 16A to the trailing edge 16B, while the rear surface 16E is gently curved toward the trailing edge 16B with the maximum blade thickness 16C as the apex. When rotated, the velocity of the airflow flowing along the back surface 16E becomes faster than the velocity of the airflow flowing along the front surface 16D, and the back surface 16E portion becomes a negative pressure.

従って、電動機17によって、横軸ロータ15を高速で空回転させると、揚力型ブレード16の前面16D方向から、後縁16B方向へ向かう気流が生じ、図3におけるX矢示方向へ流れて、その反動で横軸ロータ15の、前縁16A方向への回転が助長される。また湾曲面をなす背面16Eへ、後縁16B方向から押す気流が生じて、回転に伴って、回転を助長する。 Therefore, when the horizontal axis rotor 15 is idlely rotated at high speed by the electric motor 17, an air flow is generated from the front surface 16D direction of the lift type blade 16 toward the trailing edge 16B direction, and flows in the direction indicated by the X arrow in FIG. The reaction encourages the rotation of the horizontal axis rotor 15 in the direction of the leading edge 16A. Further, an air flow pushed from the trailing edge 16B direction is generated on the back surface 16E forming a curved surface, and the rotation is promoted as the rotation occurs.

風力によって、揚力型ブレード16が回転する時には、風力によって回転することに加えて、回転する揚力型ブレード16自体によって生じる揚力により、回転力が付加され、横軸ロータ15が風速よりも早く回転し、発電量が増加する。 When the lift type blade 16 is rotated by the wind force, in addition to the rotation by the wind force, the lift generated by the rotating lift type blade 16 itself adds a rotational force, and the horizontal axis rotor 15 rotates faster than the wind speed. , The amount of power generation increases.

風車筐体11Bの後部内側に、減速機を備える電動機17を配設してあり、電動機17の出力軸17Cの回転力は、伝動手段18A、18Bを介して主軸14に伝達される。風車筐体11Bの前部内側に、コントローラ19と蓄電池20を収容してあり、発電機12から延出するコード12Aを、蓄電池20に接続してある。 An electric motor 17 provided with a speed reducer is arranged inside the rear portion of the wind turbine housing 11B, and the rotational force of the output shaft 17C of the electric motor 17 is transmitted to the main shaft 14 via the transmission means 18A and 18B. A controller 19 and a storage battery 20 are housed inside the front portion of the wind turbine housing 11B, and a cord 12A extending from the generator 12 is connected to the storage battery 20.

蓄電池20に接続したコード20Aは、支柱11Aの内部を通して下方へ導かれ、図示しない蓄電池に接続してある。電動機17には、電源に接続したコード17Aに、遠隔操作のための自動スイッチ17Bを介在させてあり、始動当初において、スリップリング、もしくは、無線による遠隔操作によってスイッチオンさせ、電動機17を始動させる。風車筐体11Bの上面に、図示するように避雷針11Cを設ける。 The cord 20A connected to the storage battery 20 is guided downward through the inside of the support column 11A and is connected to a storage battery (not shown). The motor 17 has an automatic switch 17B for remote control interposed in the cord 17A connected to the power supply, and is switched on by a slip ring or wireless remote control at the beginning of starting to start the motor 17. .. A lightning rod 11C is provided on the upper surface of the wind turbine housing 11B as shown in the figure.

この実施例2において、電動機17により、風車13の主軸14を定格回転させることによって、揚力型ブレード16に揚力が生じ、回転速度が高められる。揚力型ブレード16が風を受けて回転すると、揚力によって回転速度が加速される。
定格回転数の維持のために、取出し電流量を自動調節するコントローラ19の作用は、前例と同じである。
In the second embodiment, the electric motor 17 causes the main shaft 14 of the wind turbine 13 to rotate at a rated value, so that lift is generated in the lift type blade 16 and the rotation speed is increased. When the lift type blade 16 receives wind and rotates, the rotation speed is accelerated by the lift.
The operation of the controller 19 that automatically adjusts the take-out current amount to maintain the rated rotation speed is the same as the previous example.

電動機によって、風車を定格回転数で回転させて、安定した電圧を取出すことができるので、風力発電のみならず、他の発電方法で得た電力の余剰分で電動機を駆動させて、風車を回転させて発電し、余剰電力の蓄電を、ロスを少なくして行うことができる。 Since the electric motor can rotate the wind turbine at the rated rotation speed and take out a stable voltage, the electric motor is driven not only by wind power generation but also by the surplus of electric power obtained by other power generation methods to rotate the wind turbine. It is possible to generate electricity by making it generate electricity and store surplus electricity with less loss.

1.風力発電装置
2.発電機
2A.出力コード
3.風車
4.主軸
5.縦軸ロータ
5A.ハブ
5B.支持腕
5C.筋交
6.揚力型ブレード
6A.翼端部
7.電動機
7A.変速機
7B.自動スイッチ
7C.出力軸
7D.コード
8A.8B.伝動手段
8C.連係手段
9.コントローラ
10.蓄電池
11.風力発電装置
11A.支柱
11B.風車筐体
11C.避雷針
11D.垂直軸
12.発電機
12A.コード
13.横軸風車
14.主軸
15.横軸ロータ
15A.ハブ
16.揚力型ブレード
16A.前縁
16B.後縁
16C.最大翼厚部
16D.前面
16E.背面
17.電動機
17A.コード
17B.自動スイッチ
17C.出力軸
18A、18B.伝動手段
19.コントローラ
20.蓄電池
20A.コード
21.自動風速検知器
22.自動制御器
1. 1. Wind power generator 2. Generator
2A. Output code 3. Windmill 4. Main shaft 5. Vertical axis rotor 5A. Hub 5B. Support arm 5C. Brace 6. Lift type blade 6A. Wing tip 7. Motor 7A. Transmission 7B. Automatic switch 7C. Output shaft 7D. Code 8A. 8B. Transmission means 8C. Coordination means 9. controller
10. Storage battery
11. 11. Wind power generator
11A. Prop
11B. Windmill housing
11C. lightning rod
11D. Vertical axis
12. Generator
12A. code
13. Horizontal axis windmill
14. Spindle
15. 15. Horizontal axis rotor
15A. Hub
16. Lift type blade
16A. Leading edge
16B. Trailing edge
16C. Maximum wing thickness
16D. Front
16E. back
17. 17. Electric motor
17A. code
17B. Automatic switch
17C. Output axis
18A, 18B. Transmission means
19. controller
20. Storage battery
20A. code
twenty one. Automatic wind speed detector
twenty two. Automatic controller

Claims (2)

翼端部が主軸方向へ傾斜する傾斜部を形成した揚力型ブレードを備えた風車の主軸を発電機の主軸に直結させるとともに、その主軸に、前記発電機とは別体の電動機を、前記電動機の減速機の出力軸に設けた伝動手段と、前記主軸に設けた伝動手段とは、自動制御可能のクラッチからなる連係手段を介して前記主軸を回転可能に連係させ、
前記電動機と蓄電池の間に、自動風速検知器を備えた自動制御器により切替え可能な自動スイッチを配して前記電動機の駆動・停止を制御するようにし、前記蓄電池と前記発電機の間に、前記電動機の負荷の増減変化に対応した前記発電機からの取出し電流量を自動調節するコントローラを配設し、
前記電動機を前記主軸の定格回転数と同じ回転数に設定し、風力で前記揚力型ブレードを回転させている状態で、風速の高低に関わりなく前記電動機により前記主軸を定格回転数で回転させて前記発電機により定格電圧の発電を維持させるようにするとともに、
風力による回転数の上乗せにより、前記主軸の定格回転数を超える前記主軸の回転数の変化を生じさせる一定の高速風を前記自動風速検知器が検知したときは、前記自動制御器によって、前記電動機に関する自動スイッチをオフに作動させて前記電動機を停止させるようにし、前記コントローラの作用により前記発電機の出力側の電流取出し量を増加させて前記発電機に大きな負荷をかけて前記主軸を停止させ、
風速が一定(平均)以下に低下したことを前記自動風速検知器が検知したときは、前記発電機の負荷を前記コントローラの作用により解除し、前記自動制御器により前記電動機の自動スイッチをオンにして前記主軸を、定格回転数を維持して回転したまま、前記コントローラにより発電機の出力側の電流取出し量を減少させて、定格電圧の出力を維持させるようにしてなることを特徴とする風力発電装置。
The spindle of a wind turbine equipped with a lift-type blade having an inclined portion whose wing tip is inclined in the direction of the spindle is directly connected to the spindle of the generator, and an electric motor separate from the generator is attached to the spindle. and transmission means provided on the output shaft of the reduction gear of the transmission means provided in the main shaft is rotatably is linked the main shaft via the linkage means comprising automatically controllable clutch,
An automatic switch that can be switched by an automatic controller equipped with an automatic wind speed detector is arranged between the motor and the storage battery to control the drive / stop of the motor, and between the storage battery and the generator. A controller that automatically adjusts the amount of current taken out from the generator in response to changes in the load of the motor is provided.
The motor is set to the same rotation speed as the rated rotation speed of the spindle, and the spindle is rotated at the rated rotation speed by the motor regardless of the height of the wind speed in a state where the lift type blade is rotated by wind power. In addition to maintaining the power generation at the rated voltage by the generator,
When the automatic wind speed detector detects a constant high-speed wind that causes a change in the rotation speed of the spindle exceeding the rated rotation speed of the spindle due to the addition of the rotation speed by the wind power, the automatic controller detects the electric motor. The automatic switch for is turned off to stop the motor, and the action of the controller increases the amount of current taken out on the output side of the generator to apply a large load to the generator and stop the spindle. ,
When the automatic wind speed detector detects that the wind speed has dropped below a certain level (average) , the load on the generator is released by the action of the controller, and the automatic switch of the motor is turned on by the automatic controller. The wind power is characterized in that the spindle is rotated while maintaining the rated rotation speed, and the current extraction amount on the output side of the generator is reduced by the controller to maintain the output of the rated voltage. Power generator.
前記電動機と風力により前記揚力型ブレードを常時回転させ、前記電動機により前記主軸を定格回転数で回転させて、前記発電機により定格電圧の発電を維持させている状態において、
前記電動機にかかる負荷の増減変化に対応して前記発電機からの取出し電流量を自動調節する前記コントローラの作用による、前記発電機からの取出し電流量の自動調節は、低風速によって前記発電機による発電量が低下して、前記電動機にかかる負荷が増大したことを前記コントローラが検知したとき、前記発電機からの取出し電流量を前記コントローラの作用により減少させ、高風速によって前記発電機による発電量が増加し、前記電動機にかかる負荷が減少したときは、前記コントローラの作用により前記発電機からの取出し電流量を増大させるように設定され、前記発電機からの安定した定格電圧の出力を得るようにしてなることを特徴とする、請求項1に記載の風力発電装置。
In a state where the lift type blade is constantly rotated by the motor and the wind force, the spindle is rotated at the rated rotation speed by the motor, and power generation at the rated voltage is maintained by the generator.
The automatic adjustment of the amount of current taken out from the generator by the action of the controller that automatically adjusts the amount of current taken out from the generator in response to the increase / decrease of the load applied to the motor is performed by the generator by the low wind speed. When the controller detects that the amount of power generation has decreased and the load applied to the motor has increased, the amount of current taken out from the generator is reduced by the action of the controller, and the amount of power generated by the generator due to the high wind speed. Is increased and the load applied to the motor is reduced, the controller is set to increase the amount of current taken out from the generator so as to obtain a stable rated voltage output from the generator. The wind power generator according to claim 1, wherein the wind power generator is characterized by the above.
JP2015057572A 2015-03-20 2015-03-20 Wind power generator Active JP6978825B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015057572A JP6978825B2 (en) 2015-03-20 2015-03-20 Wind power generator
PCT/JP2016/058093 WO2016152640A1 (en) 2015-03-20 2016-03-15 Wind turbine generator
TW105108530A TW201641814A (en) 2015-03-20 2016-03-18 Wind turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015057572A JP6978825B2 (en) 2015-03-20 2015-03-20 Wind power generator

Publications (2)

Publication Number Publication Date
JP2016176414A JP2016176414A (en) 2016-10-06
JP6978825B2 true JP6978825B2 (en) 2021-12-08

Family

ID=56977353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015057572A Active JP6978825B2 (en) 2015-03-20 2015-03-20 Wind power generator

Country Status (3)

Country Link
JP (1) JP6978825B2 (en)
TW (1) TW201641814A (en)
WO (1) WO2016152640A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR201920004A1 (en) * 2019-12-12 2021-06-21 Ahmet Cem Yalcin Innovation to increase electricity generation capacity and efficiency in wind turbines

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5183386A (en) * 1988-12-23 1993-02-02 Lewis Feldman Vertical axis sail bladed wind turbine
JP2003314429A (en) * 2002-04-17 2003-11-06 Energy Products Co Ltd Wind power generator
JP4907073B2 (en) * 2004-10-20 2012-03-28 株式会社グローバルエナジー Vertical axis windmill
JP2008118744A (en) * 2006-11-01 2008-05-22 Hideo Kawamura Wind turbine generator equipped with winding switching mechanism and magnetic flux control mechanism
TWI446138B (en) * 2011-07-29 2014-07-21 Univ Nat Sun Yat Sen Wind power excitation synchronous generator system and control method thereof
TWI488425B (en) * 2012-07-16 2015-06-11 Univ Nat Sun Yat Sen Wind power generation system and method for controlling excitation synchronous generator thereof

Also Published As

Publication number Publication date
JP2016176414A (en) 2016-10-06
TW201641814A (en) 2016-12-01
WO2016152640A1 (en) 2016-09-29

Similar Documents

Publication Publication Date Title
EP2690285A2 (en) Controlling tower clearance in a wind turbine
EP0610905A1 (en) Wind powered turbine
EP2764238B1 (en) Wind turbine having flow-aligned blades
JP4982733B2 (en) Vertical-axis linear blade wind turbine with aerodynamic speed control mechanism
JP2006336505A (en) Horizontal shaft windmill
EP2769089B1 (en) Vertical axis wind turbine with variable pitch mechanism
JPS5951677B2 (en) Windmill with variable position blades
EP3032095A1 (en) Methods of operating a wind turbine and wind turbines
JP2010523880A (en) Improvements in or related to wind turbines
JP2006152922A (en) Windmill
JPS5920871B2 (en) windmill
KR101331169B1 (en) Variable horizontal wing for small size wind powered generator and power control method of the same
JP5066648B2 (en) Wind power generator
JP2004060646A (en) Starting wind speed reducing device for wind mill
JP6978825B2 (en) Wind power generator
JP2018119427A (en) Wind-power generation system or operation method of wind-power generation system
WO2003016712A1 (en) Wind power generator
KR100984862B1 (en) Vertical axis wind turbine
JP2016014361A (en) Down-wind type wind turbine and its stop method
KR20140120461A (en) Yawing apparatus, wind power generator including the same and operating method thereof
WO2011158256A2 (en) Self governing pitch control mechanism in vertical axis wind turbine
KR101448540B1 (en) Start-up and braking control of a wind turbine
CN209892383U (en) Wind wheel device of wind driven generator with tiltable blades
WO2006102719A1 (en) A vertical axis windmill
CN201908790U (en) Wide-top blade capable of self adjusting blade pitch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200108

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200108

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200117

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200121

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200228

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200303

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200929

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210121

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210518

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210608

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210914

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211019

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211112

R150 Certificate of patent or registration of utility model

Ref document number: 6978825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150