JPS5920871B2 - windmill - Google Patents

windmill

Info

Publication number
JPS5920871B2
JPS5920871B2 JP55107028A JP10702880A JPS5920871B2 JP S5920871 B2 JPS5920871 B2 JP S5920871B2 JP 55107028 A JP55107028 A JP 55107028A JP 10702880 A JP10702880 A JP 10702880A JP S5920871 B2 JPS5920871 B2 JP S5920871B2
Authority
JP
Japan
Prior art keywords
blade member
wind turbine
windmill
wind
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55107028A
Other languages
Japanese (ja)
Other versions
JPS5732074A (en
Inventor
輝 松宮
勘司 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP55107028A priority Critical patent/JPS5920871B2/en
Publication of JPS5732074A publication Critical patent/JPS5732074A/en
Publication of JPS5920871B2 publication Critical patent/JPS5920871B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0236Adjusting aerodynamic properties of the blades by changing the active surface of the wind engaging parts, e.g. reefing or furling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/202Rotors with adjustable area of intercepted fluid
    • F05B2240/2021Rotors with adjustable area of intercepted fluid by means of telescoping blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/202Rotors with adjustable area of intercepted fluid
    • F05B2240/2023Rotors with adjustable area of intercepted fluid by means of radially reefing blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/31Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape
    • F05B2240/313Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape with adjustable flow intercepting area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Description

【発明の詳細な説明】 この発明は風車に関するものである。[Detailed description of the invention] This invention relates to a windmill.

自然風から風力エネルギーを取り出すための風車は、石
油代替エネルギー開発の要請から、その実用化が推進さ
れている。
The practical application of wind turbines for extracting wind energy from natural wind is being promoted due to the need to develop alternative energy to oil.

風車の実用化を図る上での問題点の一つは、定格出力運
転の範囲を太き(すること、及び突風時の風車の破損を
回避することである。
One of the problems in putting wind turbines into practical use is widening the range of rated output operation and avoiding damage to the wind turbine during gusts.

風車のパワーPは、ρ:空気の密度、U、x、:風速、
η:効率、A:受風面積、とすると、 で与えられる。
The power P of the windmill is ρ: air density, U, x: wind speed,
If η: efficiency and A: swept area, then it is given by:

風車を使用した発電装置によって発電し、その電力を系
統電力網に給電する場合には、系統電力の品質を保つた
めに風車の定格出力運転を要求されることが多い。
When generating electricity using a power generation device using a wind turbine and feeding the generated power to a power grid, the wind turbine is often required to operate at its rated output in order to maintain the quality of the grid power.

このような運転モードの一例は第1図に示すように、風
速U1以上で起動回転するが、定格出力pRを得る定格
風速URに達するまでは出力を系統電力網に接続せず、
風速UR−U2の間でのみ一定出力を給電する。
As shown in Fig. 1, an example of such an operation mode is that the starting rotation is performed at a wind speed of U1 or more, but the output is not connected to the grid power grid until the rated wind speed UR is reached to obtain the rated output pR.
A constant output is supplied only between wind speeds UR and U2.

しかるに、我国では比較的に平均風速が低く、定格出力
運転に必要な風速の範囲が狭くなっているが、(1)式
から明らかな通り、風車の受風面積を大きくすれば、定
格出力を得るために必要な風速は小さくてもよいことに
なり、密度の低い風力も有効に活用することができるこ
ととなり、このことは平均風速が低い気候を持つ地域に
おける風力エネルギの利用上きわめて有利である。
However, in Japan, the average wind speed is relatively low, and the range of wind speeds necessary for rated output operation is narrow. However, as is clear from equation (1), if the wind turbine's receiving area is increased, the rated output can be increased. This means that the wind speed required to obtain the wind speed does not need to be small, and even low-density wind power can be used effectively, which is extremely advantageous for the use of wind energy in regions with climates where the average wind speed is low. .

このようなことから、風車の受風面積を増加させ得る風
車が望まれる。
For this reason, a wind turbine that can increase the area of the wind turbine that receives wind is desired.

一方、台風時の如く突風が吹く場合には、その突風が風
車に当って風車を破損させる事故が生ずることがあり、
その対策が必要である。
On the other hand, when gusts of wind blow, such as during a typhoon, the gusts can hit windmills and cause accidents that damage them.
Countermeasures are necessary.

その対策の一つとしては、台風時にのみ風車の受風面積
を縮少することが有効である。
One of the effective countermeasures is to reduce the wind turbine area only during typhoons.

このように、受風面積の大小を必要に応じて調整し得る
風車が望まれるのであるが、現在まで、この要求を容易
かつ確実に満たすものを得るに至っていない。
Thus, there is a desire for a wind turbine that can adjust the size of the wind blowing area as necessary, but to date, no wind turbine has been found that easily and reliably satisfies this requirement.

この発明は上記の如き事情に鑑みてなされたものであっ
て、受風面積を必要に応じて容易かつ確実に調整するこ
とができる風車を提供することを目的とするものである
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a wind turbine whose wind receiving area can be easily and reliably adjusted as required.

この目的に対応して、この発明の風車は、一枚若しくは
複数枚のブレードを備えた風車であって、ブレードの受
風面積を可変にすることによって風車全体の受風面積を
可変にしたことを特徴としている。
In response to this purpose, the windmill of the present invention is a windmill equipped with one or more blades, and the windmill area of the entire windmill is made variable by making the windmill area of the blades variable. It is characterized by

以下この発明の詳細を一実施例を示す図面たついて説明
する。
The details of this invention will be explained below with reference to the drawings showing one embodiment.

第2図、第3図及び第4図において、1は風車装置であ
り、風車装置1はタワー2の頂上に水平回転軸を持つ風
車3を備えている。
In FIGS. 2, 3, and 4, reference numeral 1 denotes a wind turbine device, and the wind turbine device 1 includes a wind turbine 3 having a horizontal rotation axis on the top of a tower 2.

風車3は2枚のブレード4a、4bを有している。The windmill 3 has two blades 4a and 4b.

ブレード4a、4bはそれぞれ動径Rの方向に位置する
第1のブレード部材5及び第2のブレード部材6とを備
えていて、第2のプレート部材6は第1のブレード部材
5に対して動径方向に相対変位可能である。
The blades 4a and 4b each include a first blade member 5 and a second blade member 6 located in the direction of the radius vector R, and the second plate member 6 is movable with respect to the first blade member 5. Relative displacement is possible in the radial direction.

第1のブレード部材5FL鞘状の中空体で、基端部7は
閉じており、先端部8が開口している。
The first blade member 5FL is a sheath-like hollow body, the base end 7 of which is closed, and the distal end 8 of which is open.

第1のブレード部材5の横断面の外周形状は通常のブレ
ードと同様である。
The outer peripheral shape of the cross section of the first blade member 5 is similar to that of a normal blade.

第1のブレード部材5の基端部1は取付棒9を介して回
転軸に固定されている。
A base end portion 1 of the first blade member 5 is fixed to a rotating shaft via a mounting rod 9.

第2のブレード部材6の横断面の外周形状は通常のブレ
ードと同じであって、第1のブレード部材5内に収納さ
れており、動径方向に第1のブレード部材材5から進退
可能である。
The outer circumferential shape of the cross section of the second blade member 6 is the same as that of a normal blade, and it is housed within the first blade member 5 and can move forward and backward from the first blade member 5 in the radial direction. be.

第1のブレード部材5と第2のブレード部材6との間に
は複数のコロ10が配設されて、両者の相対変位を円滑
にしている。
A plurality of rollers 10 are arranged between the first blade member 5 and the second blade member 6 to smooth relative displacement between the two.

第1のブレード部材5と第2のブレード部材6とを相対
変位させるためには両者の間に駆動装置11が設げられ
る。
In order to relatively displace the first blade member 5 and the second blade member 6, a drive device 11 is provided between them.

すなわち、駆動装置11はモータ12、スクリューシャ
フト13及びナツト14からなっている。
That is, the drive device 11 includes a motor 12, a screw shaft 13, and a nut 14.

モータ12は第1のブレード部材5の基端部7近傍の内
側に固定されており、このスクリューシャフト13はモ
ータ12の出力軸に連結し、かつ第1のブレード部材5
及び第2のブレード部材6の内側に位置する。
The motor 12 is fixed inside near the base end 7 of the first blade member 5, and this screw shaft 13 is connected to the output shaft of the motor 12, and the screw shaft 13 is connected to the output shaft of the motor 12, and
and located inside the second blade member 6.

第2のブレード部材6の内側にはナツト14が取付けら
れており、スクリューシャフト13はこのナツト14に
嵌合する。
A nut 14 is attached to the inside of the second blade member 6, and the screw shaft 13 is fitted into this nut 14.

したがって、モータ12を正転若しくは逆転させること
によって、ナツト14と嵌合するスクリューシャフト1
3が正転若しくは逆転し、第1のブレード部材5に対し
て第2のブレード部材が出入し、結局ブレード4 a
、4 bの受風面積が変化する。
Therefore, by rotating the motor 12 in the forward or reverse direction, the screw shaft 1 that is fitted with the nut 14 is rotated.
3 rotates forward or reverse, the second blade member moves in and out of the first blade member 5, and eventually the blade 4 a
, 4 b changes the affected area.

このように構成された風車において&ζ可変長さのブレ
ード4a、4bを持つこととなり、第2のブレード部材
6を第1のブレード部材5に対して進退させることによ
り、風車の直径、したがって受風面積を調節し、風車出
力を所要に制御することができ、例えば、台風時及び強
風時には風車の直径を最短とすることによって、ブレー
ドに加わる風圧を低減し、風車の損傷を回避する安全対
策とすることができる。
The wind turbine configured in this manner has blades 4a and 4b of &ζ variable length, and by moving the second blade member 6 forward and backward with respect to the first blade member 5, the diameter of the wind turbine and, therefore, the wind The area can be adjusted and the wind turbine output can be controlled as required. For example, during typhoons and strong winds, the diameter of the wind turbine can be minimized to reduce the wind pressure on the blades and prevent damage to the wind turbine. can do.

また、低風速時には、風車の直径を最長となし、風力エ
ネルギーを有効に取り出すことができる。
Furthermore, when the wind speed is low, the diameter of the wind turbine is set to be the longest, so that wind energy can be effectively extracted.

さらに、負荷系の状態に応じて、ブレードの長さを調整
し、必要に応じた電力を送ることができ、制御の自由度
を増すことができる。
Furthermore, the length of the blades can be adjusted according to the state of the load system, and power can be sent as needed, increasing the degree of freedom in control.

ところで、ψニブレード取付角、αニブレードの周速、
rニブレードの動径、ωニブレードの角速度とすると、 で表わされ、このうち異型が決まればαはほぼ一定であ
るが、プロペラ型風車の場合ψは動径rによって変化す
るので、第2のブレード部材6を進退させるについて、
単に動径方向に直線変位させるだけでなく、動径のまわ
りに回転変位(ねじり)を与えることが望ましい。
By the way, the installation angle of the ψ blade, the circumferential speed of the α blade,
If r is the radius vector of two blades, and the angular velocity of two blades is expressed by Regarding advancing and retreating the blade member 6,
It is desirable not only to simply provide linear displacement in the radial direction, but also to provide rotational displacement (twisting) around the radius vector.

この場合には第1のブレード部材5及び第2のブレード
部材6の形成を次のようにする。
In this case, the first blade member 5 and the second blade member 6 are formed as follows.

第5図に示す如く、R1:第1のブレード部材5の外径
、X:第2のブレード部材の突出量、r−R1+x、と
すると、 r>R1の範囲では、V>Uであるから、jan (ψ
+α)二ψ+α としてよいので r=R1でψ=91とすれば、 r=R1+xとすれば、 X < Rtの範囲では で近似できる。
As shown in FIG. 5, where R1 is the outer diameter of the first blade member 5, and X is the protrusion amount of the second blade member, r-R1+x, in the range of r>R1, V>U. , jan (ψ
+α)2ψ+α, so if r=R1 and ψ=91, then if r=R1+x, it can be approximated by in the range of X < Rt.

これより、r〉R1では、ブレードの取り付は角の変化
率は動径方向に一定であるとしてよい。
From this, when r>R1, it may be assumed that the rate of change in the angle of blade attachment is constant in the radial direction.

したがって、次の変形が成り立つ。Therefore, the following transformation holds.

つまり、r〉R1の範囲で、第1のプレート着3材5の
案内面の溝の捩り及び第2のブレード部材6の外形にお
ける捩りを(2′)式を満すように与えれば、ブレード
長さ方向(動径方向)のブレード取り付は角Q変化も考
慮した精密な動径及び受風面積の制御が可能となる。
In other words, in the range r>R1, if the torsion of the groove in the guide surface of the first plate attachment 3 material 5 and the torsion in the external shape of the second blade member 6 are given so as to satisfy equation (2'), the blade By attaching the blade in the length direction (radial direction), it is possible to precisely control the radius vector and the swept area, taking into consideration the change in the angle Q.

以上の説明は、この発明をプロペラ型風車に適用した実
施例についてなされたが、この発明はそのまま、他の形
式の風車にも適用することができる。
Although the above description has been made regarding an embodiment in which the present invention is applied to a propeller type wind turbine, the present invention can be applied as is to other types of wind turbines.

第6図はこの発明をジャイロミル型風車装置に適用した
実施例である。
FIG. 6 shows an embodiment in which the present invention is applied to a gyro mill type wind turbine device.

ジャイロミル型風車装置21は垂直に位置する風車回転
軸22の周囲にステム27を介してブレード24a、2
4bが取りつげられている。
The gyro mill type wind turbine device 21 has blades 24a, 2 through a stem 27 around a vertically located wind turbine rotating shaft 22.
4b is obsessed.

この場合のブレード24a。24bも前述の実施の場合
と同様に、中空の第1のブレード部材25と、その内に
相対変位可能に位置する第2のブレード部材26を備え
ている。
Blade 24a in this case. 24b also includes a hollow first blade member 25 and a second blade member 26 disposed within the hollow first blade member 25 so as to be relatively displaceable.

第2のブレード部材26を駆動する駆動装置としては前
述した駆動装置11と同様のものを使用し得る。
As a drive device for driving the second blade member 26, the same drive device as the drive device 11 described above can be used.

以上の説明から明らかな通り、この発明によれば、受風
面積を必要に応じて容易かつ確実に調整することができ
、したがって、風速が低い場合の風力エネルギーを有効
に利用することが可能で、また、台風時や強風時の安全
対策を施した風車を得ることができる。
As is clear from the above explanation, according to the present invention, the area of the wind receiving area can be easily and reliably adjusted as necessary, and therefore, it is possible to effectively utilize wind energy when the wind speed is low. Furthermore, it is possible to obtain a wind turbine with safety measures taken during typhoons and strong winds.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は発電用風車の運転モードを示す線図、第2図は
風車装置の正面図、第3図はブレードの斜視図、第4図
は第3図におけるIV −IV部部面面図第5図はブレ
ードの正面説明図及び第6図は他の風車装置の斜視図で
ある。 1・・・・・・プロペラ型風車装置、3・・・・・・風
車、4a。 4b・・・・・・ブレード、5・・・・・・第1のブレ
ード部材、6・・・・・・第2のブレード部材材、11
・・・・・・駆動装置、13・・・・・・スクリューシ
ャフト、21・・・・・・ジャイロミル型風車装置、2
4 a 、24 b・・・・・・ブレード、25・・・
・・・第1のブレード部材材、26・・・・・・第2の
ブレード部材。
Fig. 1 is a diagram showing the operation mode of the wind turbine for power generation, Fig. 2 is a front view of the wind turbine device, Fig. 3 is a perspective view of the blades, and Fig. 4 is a partial sectional view of the IV-IV section in Fig. 3. FIG. 5 is a front explanatory view of the blades, and FIG. 6 is a perspective view of another wind turbine device. 1... Propeller type windmill device, 3... Windmill, 4a. 4b...Blade, 5...First blade member, 6...Second blade member material, 11
... Drive device, 13 ... Screw shaft, 21 ... Gyro mill type wind turbine device, 2
4 a, 24 b...Blade, 25...
...First blade member material, 26...Second blade member.

Claims (1)

【特許請求の範囲】 1 〒枚若しくは複数枚のブレードを備えた風車であつ
\前記ブレードの受風面積を可変にすることによって風
車全体の受風面積を可変にしたことを特徴とする風車。 2 前記プレート1ま少なくとも、第1のブレード部材
と、前記第1のブレード部材内に収納可能でかつ前記第
1のブレード部材の内外に進退可能な第2のブレード部
材とを備えることを特徴とする特許請求の範囲第1項記
載の風車。 3 前記風車はプロペラ型風車であることを特徴とする
特許請求の範囲第1項または第2項記載の風車。 4 前記第2のブレード部材の前記進退が前記ブレード
のねじり角に沿って行なわれるように構成したことを特
徴とする特許請求の範囲第1項、第2項または第3項記
載の風車。 5 前記風車はジャイロミル型風車であることを特徴と
する特許請求の範囲第1項または第2項記載の風車。
[Scope of Claims] 1. A windmill comprising one or more blades, characterized in that the area of the wind turbine as a whole is made variable by making the area of the blades variable. 2. The plate 1 is characterized in that it includes at least a first blade member and a second blade member that can be stored in the first blade member and can move in and out of the first blade member. A wind turbine according to claim 1. 3. The windmill according to claim 1 or 2, wherein the windmill is a propeller type windmill. 4. The wind turbine according to claim 1, 2 or 3, wherein the second blade member is moved back and forth along a twist angle of the blade. 5. The windmill according to claim 1 or 2, wherein the windmill is a gyro mill type windmill.
JP55107028A 1980-08-04 1980-08-04 windmill Expired JPS5920871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55107028A JPS5920871B2 (en) 1980-08-04 1980-08-04 windmill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55107028A JPS5920871B2 (en) 1980-08-04 1980-08-04 windmill

Publications (2)

Publication Number Publication Date
JPS5732074A JPS5732074A (en) 1982-02-20
JPS5920871B2 true JPS5920871B2 (en) 1984-05-16

Family

ID=14448678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55107028A Expired JPS5920871B2 (en) 1980-08-04 1980-08-04 windmill

Country Status (1)

Country Link
JP (1) JPS5920871B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077449A1 (en) * 1999-11-11 2002-10-03 Hitachi Zosen Corporation Propeller type windmill for power generation
US6972498B2 (en) 2002-05-28 2005-12-06 General Electric Company Variable diameter wind turbine rotor blades

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4715782A (en) * 1985-12-24 1987-12-29 Fayette Manufacturing Corp. Hydraulic control device for wind turbine
JP2001132615A (en) 1999-11-11 2001-05-18 Hitachi Zosen Corp Propeller type windmill for power generation
US6726439B2 (en) * 2001-08-22 2004-04-27 Clipper Windpower Technology, Inc. Retractable rotor blades for power generating wind and ocean current turbines and means for operating below set rotor torque limits
US7131812B2 (en) 2002-01-18 2006-11-07 Manfred Karl Brueckner Sky turbine that is mounted on a city
US6902370B2 (en) * 2002-06-04 2005-06-07 Energy Unlimited, Inc. Telescoping wind turbine blade
JP2005061320A (en) * 2003-08-12 2005-03-10 Kunio Miyazaki Windmill structure of wind power generation device
CN100458145C (en) * 2006-03-29 2009-02-04 代运波 Wind power generator with functions of changing diameter and solidity, and power supply scheme
EP2092191B1 (en) * 2006-07-21 2011-09-14 Clipper Windpower, Inc. Retractable rotor blade structure
KR100963765B1 (en) 2008-02-26 2010-06-14 김재효 A RPM Compensation Equipment of Windmill Wings
CN101660496B (en) * 2008-12-12 2012-04-18 中金富华能源科技有限公司 Vertical shaft wind power generating system being capable of avoiding strong wind
CN102086841B (en) * 2011-03-01 2013-06-19 国能风力发电有限公司 Wind wheel cable-stayed structure of wind driven generator with vertical shaft
JP2011149435A (en) * 2011-03-04 2011-08-04 Tokyo Electric Power Co Inc:The Wind power generator and control program for wind power generator
KR101313212B1 (en) * 2011-08-23 2013-09-30 삼성중공업 주식회사 Wind turbine
CN107905943A (en) * 2012-10-17 2018-04-13 李洪泽 Adjust the end plate of the Universal Windmill of paddle length
JP5421474B1 (en) * 2013-02-12 2014-02-19 英治 川西 Wind power generator
EP4074959A1 (en) * 2021-04-12 2022-10-19 LM Wind Power A/S Extendable wind turbine blade

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077449A1 (en) * 1999-11-11 2002-10-03 Hitachi Zosen Corporation Propeller type windmill for power generation
EP1375911A1 (en) * 2001-03-26 2004-01-02 Hitachi Zosen Corporation Propeller type windmill for power generation
EP1375911A4 (en) * 2001-03-26 2005-11-23 Hitachi Shipbuilding Eng Co Propeller type windmill for power generation
US6972498B2 (en) 2002-05-28 2005-12-06 General Electric Company Variable diameter wind turbine rotor blades

Also Published As

Publication number Publication date
JPS5732074A (en) 1982-02-20

Similar Documents

Publication Publication Date Title
JPS5920871B2 (en) windmill
US4180369A (en) Wind mills
US5553996A (en) Wind powered turbine
US4310284A (en) Automatically controlled wind propeller and tower shadow eliminator
JP4690829B2 (en) Horizontal axis windmill
JP4355635B2 (en) Single rotor type wind power generator system combining horizontal and vertical axes
EP1890034A1 (en) Horizontal axis windmill
US4335996A (en) Windmill construction
US20050042101A1 (en) Wind generator
WO2007043895A1 (en) Speed control system for a wind power plant&#39;s rotor and an aerodynamic brake
JP2007085182A (en) Vertical shaft type straight wing windmill having aerodynamic governor mechanism
JPS5951677B2 (en) Windmill with variable position blades
US4439105A (en) Offset-axis windmill having inclined power shaft
US4443154A (en) Windmill tower shadow eliminator
CN101413477A (en) Floating raft-reducing three-vane wind wheel
KR102353102B1 (en) Wind speed interlocking blade type wind power generator
US4219308A (en) Torque control system for wind energy conversion devices
WO2011065840A2 (en) Method for turning a wind power plant relative to the wind direction
US4872804A (en) Wind turbine having combination wind deflecting and frame orienting means as well as dual rudders
JPS5584871A (en) Savonius windmill
JP3842254B2 (en) Wind turbine structure in wind turbine generator
KR101700157B1 (en) Vertical shaft windmill
JP2007016628A (en) Horizontal axis windmill
JP2001165034A (en) Movable blade windmill with safety valve
JPH11270455A (en) Wind power generator