WO2016152371A1 - Substrate processing method and substrate processing device - Google Patents

Substrate processing method and substrate processing device Download PDF

Info

Publication number
WO2016152371A1
WO2016152371A1 PCT/JP2016/055646 JP2016055646W WO2016152371A1 WO 2016152371 A1 WO2016152371 A1 WO 2016152371A1 JP 2016055646 W JP2016055646 W JP 2016055646W WO 2016152371 A1 WO2016152371 A1 WO 2016152371A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
spm
mixed
hydrogen peroxide
hydrofluoric acid
Prior art date
Application number
PCT/JP2016/055646
Other languages
French (fr)
Japanese (ja)
Inventor
佑介 秋月
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015246629A external-priority patent/JP6493839B2/en
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to KR1020177026290A priority Critical patent/KR101988848B1/en
Priority to US15/559,076 priority patent/US10668497B2/en
Priority to CN201680017231.0A priority patent/CN107430987B/en
Publication of WO2016152371A1 publication Critical patent/WO2016152371A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/02Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface
    • B05C11/08Spreading liquid or other fluent material by manipulating the work, e.g. tilting

Definitions

  • the present invention relates to a substrate processing apparatus and a substrate processing method for removing a resist from the surface of a substrate.
  • substrates to be processed include semiconductor wafers, liquid crystal display substrates, plasma display substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, photomask substrates, ceramic substrates, and solar cells. For example.
  • the surface layer of the resist is hardened due to carbonization and alteration of the resist, so that a hardened layer may be formed on the surface of the resist.
  • Patent Document 1 proposes a method of removing a resist from the surface of a substrate without ashing even a resist having a hardened layer on the surface. This document discloses a method of supplying high-temperature SPM to a substrate in order to remove the resist whose surface layer is cured by ion implantation from the substrate.
  • an object of the present invention is to provide a substrate processing method and a substrate processing apparatus that can satisfactorily remove the resist from the surface of the substrate.
  • One embodiment of the present invention is a substrate processing method for removing a resist from a surface of a substrate, wherein a mixing step of mixing a hydrogen peroxide solution and hydrofluoric acid to generate a mixed solution of the hydrogen peroxide solution and hydrofluoric acid. And, after the mixing step, a mixture step of mixing the hydrogen peroxide solution and hydrofluoric acid with sulfuric acid to generate an HF mixed SPM that is a mixture solution of sulfuric acid, hydrogen peroxide solution, and hydrofluoric acid. And a supply step of supplying the HF mixed SPM to the surface of the substrate.
  • the hydrogen peroxide solution and hydrofluoric acid mixed in the mixing step may both be at room temperature.
  • the generating step may be a step of mixing the hydrogen peroxide solution and hydrofluoric acid mixed solution with sulfuric acid at a position away from the substrate.
  • the generating step may be a step of mixing the hydrogen peroxide solution and hydrofluoric acid mixed solution and sulfuric acid on the surface of the substrate.
  • Another embodiment of the present invention includes a substrate holding unit for holding a substrate whose surface is covered with a resist, and sulfuric acid, hydrogen peroxide solution, and hydrofluoric acid on the surface of the substrate held by the substrate holding unit.
  • the SPM supply unit supplies an HF mixed SPM that is a mixed solution of the above, and the SPM supply unit mixes hydrogen peroxide solution and hydrofluoric acid to generate a mixture solution of hydrogen peroxide solution and hydrofluoric acid.
  • the mixing unit mixes the hydrogen peroxide solution and hydrofluoric acid, the hydrogen peroxide solution and hydrofluoric acid mixed solution and sulfuric acid are mixed to generate an HF mixed SPM, and A substrate processing apparatus is provided. According to this configuration, it is possible to satisfactorily remove the resist while suppressing damage to devices on the wafer.
  • the mixing unit may include a mixing tank in which hydrogen peroxide solution and hydrofluoric acid are separately supplied, and the mixture solution of the hydrogen peroxide solution and hydrofluoric acid supplied to the HF mixed SPM generating unit is stored. . According to this configuration, the hydrogen peroxide solution and the hydrofluoric acid can be reliably mixed before the mixed solution of the hydrogen peroxide solution and the hydrofluoric acid is mixed with the sulfuric acid.
  • the mixing unit may further include a stirring unit for stirring the mixed solution in the mixing tank.
  • a stirring unit for stirring the mixed solution in the mixing tank.
  • the stirring unit may be a rotor that rotates in the liquid mixture stored in the mixing tank, or may be a bubbling unit that generates bubbles in the liquid mixture stored in the mixing tank.
  • the stirring unit may include a bubbling unit that generates bubbles in the mixed solution by discharging gas from a gas discharge port disposed in the mixed solution stored in the mixing tank. According to this configuration, the hydrogen peroxide solution and hydrofluoric acid are uniformly mixed by the generation of bubbles.
  • the mixing unit may mix a hydrogen peroxide solution and a smaller amount of hydrofluoric acid than the hydrogen peroxide solution.
  • the HF mixed SPM generating unit may mix sulfuric acid and the mixed liquid in a smaller amount than the sulfuric acid. According to this configuration, it is possible to generate an HF mixed SPM capable of peeling the resist while suppressing damage to the substrate, that is, an HF mixed SPM having a low HF concentration.
  • FIG. 1 is a schematic plan view showing a substrate processing apparatus according to an embodiment of the present invention. It is the schematic diagram which looked at the inside of the chamber with which the substrate processing apparatus shown in FIG. 1 was equipped horizontally. It is a block diagram which shows the control apparatus with which the substrate processing apparatus was equipped. It is a flowchart which shows an example of the resist removal process performed by the processing unit shown in FIG. It is a figure which shows the conditions and result of a resist removal test. It is a figure which shows a part of substrate processing apparatus which concerns on other embodiment of this invention. It is a figure which shows a part of substrate processing apparatus which concerns on other embodiment of this invention.
  • FIG. 1 is a schematic plan view showing a substrate processing apparatus 1 according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of the inside of the chamber 4 provided in the substrate processing apparatus 1 as viewed horizontally.
  • the substrate processing apparatus 1 is a single-wafer type apparatus that processes a disk-shaped substrate W such as a semiconductor wafer one by one.
  • the substrate processing apparatus 1 includes a plurality of load ports LP that hold a plurality of carriers C that accommodate a substrate W, and a plurality of processing units 2 that process the substrate W transferred from the plurality of load ports LP with a processing liquid or a processing gas.
  • substrate transfer robots IR and CR that transfer the substrate W between the plurality of load ports LP and the plurality of processing units 2, and the control device 3 that controls the substrate processing apparatus 1.
  • each processing unit 2 is a single-wafer type unit.
  • Each processing unit 2 holds a box-shaped chamber 4 having an internal space and a single substrate W in the chamber 4 in a horizontal posture, and the substrate W around a vertical rotation axis A1 passing through the center of the substrate W.
  • SPM, H 2 O 2 and HF mixed SPM (hereinafter collectively referred to as SPM, etc.) are supplied to a spin chuck (substrate holding unit) 5 that rotates the substrate and a substrate W held on the spin chuck 5
  • HF mixed SPM means SPM to which HF is added.
  • the spin chuck 5 includes a disc-shaped spin base 10 held in a horizontal posture, a plurality of chuck pins 11 that hold the substrate W in a horizontal posture above the spin base 10, and a central portion of the spin base 10.
  • a rotation shaft 12 extending downward, and a spin motor 13 that rotates the rotation shaft 12 to rotate the substrate W and the spin base 10 around the rotation axis A1.
  • the spin chuck 5 is not limited to a clamping chuck in which a plurality of chuck pins 11 are brought into contact with the peripheral end surface of the substrate W, and the back surface (lower surface) of the substrate W, which is a non-device forming surface, is adsorbed to the upper surface of the spin base 10.
  • a vacuum chuck that holds the substrate W horizontally may be used.
  • the cup 9 is disposed outward (in a direction away from the rotation axis A1) from the substrate W held by the spin chuck 5.
  • the cup 9 surrounds the periphery of the spin base 10.
  • the processing liquid supplied to the substrate W is shaken off around the substrate W.
  • the upper end portion 9 a of the cup 9 that opens upward is disposed above the spin base 10. Therefore, the processing liquid such as SPM and rinse liquid discharged around the substrate W is received by the cup 9. Then, the processing liquid received by the cup 9 is sent to a collecting device or a draining device (not shown).
  • the rinsing liquid supply unit 8 includes a rinsing liquid nozzle 35 that discharges the rinsing liquid toward the substrate W held by the spin chuck 5, a rinsing liquid pipe 36 that supplies the rinsing liquid to the rinsing liquid nozzle 35, and a rinsing liquid pipe. And a rinsing liquid valve 37 for switching supply and stop of the rinsing liquid from 36 to the rinsing liquid nozzle 35.
  • the rinse liquid nozzle 35 is a fixed nozzle that discharges the rinse liquid in a state where the discharge port of the rinse liquid nozzle 35 is stationary.
  • the rinsing liquid supply unit 8 may include a rinsing liquid nozzle moving unit that moves the rinsing liquid landing position relative to the upper surface of the substrate W by moving the rinsing liquid nozzle 35.
  • the rinse liquid is, for example, pure water (deionized water) at room temperature (about 23 ° C.).
  • the temperature of pure water is not limited to room temperature, and may be higher than room temperature (for example, 70 to 90 ° C.). That is, the rinse liquid may be warm water (pure water having a temperature higher than normal temperature).
  • the rinse liquid is not limited to pure water, but may be any of carbonated water, electrolytic ion water, hydrogen water, ozone water, and hydrochloric acid water having a diluted concentration (for example, about 10 to 100 ppm).
  • the SPM supply unit 6 includes an SPM nozzle 14 that selectively discharges SPM and the like toward the upper surface of the substrate W, a first nozzle arm 15 having the SPM nozzle 14 attached to the tip, and a first nozzle arm 15. And a first nozzle moving unit 16 that moves the SPM nozzle 14.
  • the SPM nozzle 14 is, for example, a straight nozzle that selectively discharges SPM or the like in a continuous flow state.
  • the SPM nozzle 14 is applied to the first nozzle arm 15 in a vertical posture that discharges the processing liquid in a direction perpendicular to the upper surface of the substrate W. It is attached.
  • the first nozzle arm 15 extends in the horizontal direction and is provided to be rotatable around a first swing axis (not shown) extending in the vertical direction around the spin chuck 5.
  • the SPM nozzle 14 is an inward direction in which SPM or the like is discharged in a discharge direction inclined with respect to the upper surface of the substrate W so that the SPM or the like is deposited inward (rotation axis A1 side) from the discharge port. It may be held by the first nozzle arm 15 in a posture, or with respect to the upper surface of the substrate W so that SPM or the like is deposited outside the discharge port (on the opposite side to the rotation axis A1). You may hold
  • the first nozzle moving unit 16 rotates the first nozzle arm 15 around the first swing axis, thereby causing the SPM nozzle 14 to move horizontally along a trajectory passing through the center of the upper surface of the substrate W in plan view. Move.
  • the first nozzle moving unit 16 includes a processing position where the SPM discharged from the SPM nozzle 14 is deposited on the upper surface of the substrate W and a home position where the SPM nozzle 14 is positioned around the spin chuck 5 in plan view. In the meantime, the SPM nozzle 14 is moved horizontally.
  • the processing position includes a central position where the SPM discharged from the SPM nozzle 14 lands on the center of the upper surface of the substrate W, and a peripheral position where the SPM discharged from the SPM nozzle 14 lands on the periphery of the upper surface of the substrate W. Including.
  • the SPM supply unit 6 is connected to the SPM nozzle 14 and is connected to the sulfuric acid pipe 17 to which H 2 SO 4 is supplied from the sulfuric acid supply source.
  • the SPM supply unit 6 is connected to the SPM nozzle 14 and is mixed with hydrogen peroxide and hydrofluoric acid.
  • a mixed liquid pipe 27 to which hydrogen oxide water is supplied.
  • the upstream end of the mixed liquid pipe 27 is connected to the mixing unit 30, and the downstream end of the mixed liquid pipe 27 is connected to the SPM nozzle 14.
  • the mixing unit 30 is an example of a mixing unit that mixes H 2 O 2 and HF before being mixed with H 2 SO 4 .
  • the mixing unit 30 is connected to a hydrogen peroxide water pipe 18 to which H 2 O 2 is supplied from a hydrogen peroxide supply source, and a hydrofluoric acid pipe 28 to which HF is supplied from a hydrofluoric acid supply source.
  • H 2 SO 4 supplied from the sulfuric acid supply source, H 2 O 2 supplied from the hydrogen peroxide supply source, and HF supplied from the hydrofluoric acid supply source are all aqueous solutions.
  • the concentration of H 2 SO 4 is, for example, 90 to 98%
  • the concentration of H 2 O 2 is, for example, 30 to 50%
  • the concentration of HF is, for example, 47 to 51%.
  • the sulfuric pipe 17, a sulfate valve 19 for opening and closing the sulfuric pipe 17, the sulfuric acid flow rate adjusting valve 20 to change the flow rate of H 2 SO 4, a heater 21 for heating the H 2 SO 4 is from SPM nozzle 14 side They are inserted in this order.
  • the sulfuric acid flow rate adjusting valve 20 includes a valve body in which a valve seat is provided, a valve body that opens and closes the valve seat, and an actuator that moves the valve body between an open position and a closed position. Including. The same applies to the other valves. The actuator of each valve is controlled by the control device 3.
  • the heater 21 maintains H 2 SO 4 at a temperature higher than room temperature (a constant temperature within a range of 70 to 100 ° C., for example, 90 ° C.).
  • Heater 21 for heating the H 2 SO 4 may be a heater of one-pass system as shown in FIG. 2, for heating the H 2 SO 4 by circulating H 2 SO 4 in a circulating path including a heater A circulating heater may be used.
  • the one-pass method is a method in which the heated liquid passes through the heater only once
  • the circulation method is a method in which the heated liquid passes through the heater a plurality of times.
  • the hydrogen peroxide solution pipe 18 includes a hydrogen peroxide solution valve 22 that opens and closes the hydrogen peroxide solution pipe 18 and a hydrogen peroxide solution flow rate adjustment valve 23 that changes the flow rate of H 2 O 2.
  • the mixing unit 30 is supplied with normal temperature (about 23 ° C.) H 2 O 2 whose temperature is not adjusted through the hydrogen peroxide pipe 18.
  • a micropump 31 for supplying HF to the mixing unit 30 is interposed.
  • the micropump 31 has a function of sending the liquid downstream and a function of blocking the flow of the liquid.
  • HF at room temperature (about 23 ° C.) whose temperature is not adjusted is supplied to the mixing unit 30 through the hydrofluoric acid pipe 28.
  • the flow rate of HF sent from the micropump 31 to the mixing unit 30 is controlled by the control device 3.
  • the micropump 31 is an example of a hydrofluoric acid switching unit that switches between a supply state in which HF is supplied to the mixing unit 30 and a supply stop state in which the supply of HF to the mixing unit 30 is stopped.
  • the hydrofluoric acid switching unit may be a hydrofluoric acid valve 32 (see FIG. 6) that opens and closes the hydrofluoric acid pipe 28.
  • the mixing unit 30 is a substantially cylindrical member, and H 2 O 2 and HF are stirred and mixed inside the mixing unit 30.
  • the mixing unit 30 may be a mixing valve having the functions of the hydrogen peroxide solution valve 22 and the hydrofluoric acid switching unit. In this case, the hydrogen peroxide valve 22 and the hydrofluoric acid switching unit may be omitted.
  • the flow rates of H 2 O 2 and HF flowing into the mixing unit 30 are adjusted by the hydrogen peroxide flow rate adjusting valve 23 and the micropump 31.
  • the flow rate of H 2 O 2 is 300 ml / min.
  • the flow rate of HF is, for example, 90 ⁇ l / min. It is. Even when the flow rates are different from each other as in this example, H 2 O 2 and HF are uniformly mixed by being stirred in the mixing unit 30.
  • the SPM nozzle 14 has, for example, a substantially cylindrical casing.
  • a mixing chamber is formed inside the casing.
  • the sulfuric acid pipe 17 is connected to a sulfuric acid introduction port arranged on the side wall of the casing of the SPM nozzle 14.
  • the mixed liquid pipe 27 is connected to a mixed liquid inlet disposed on the side wall of the casing of the SPM nozzle 14.
  • the liquid mixture inlet is disposed above the sulfuric acid inlet.
  • H 2 SO 4 from the sulfuric acid pipe 17 is supplied to the SPM nozzle 14. While being supplied from the sulfuric acid inlet to the mixing chamber, H 2 O 2 and HF from the mixed liquid pipe 27 are supplied from the mixed liquid inlet of the SPM nozzle 14 to the mixing chamber.
  • H 2 SO 4 , H 2 O 2 , and HF that have flowed into the mixing chamber of the SPM nozzle 14 are sufficiently stirred and mixed in the mixing chamber.
  • This mixture H 2 SO 4 and H 2 O 2 and is mingled evenly, a mixed solution of H 2 SO 4 and H 2 O 2 by reaction of H 2 SO 4 and H 2 O 2 (SPM) is generated Is done.
  • SPM containing HF that is, HF mixed SPM is generated.
  • SPM contains peroxymonosulfuric acid (H 2 SO 5 ) having a strong oxidizing power, and is higher than the temperature of H 2 SO 4 and H 2 O 2 before mixing (100 ° C. or higher, for example, 160 ° C.). Until heated.
  • the high-temperature HF mixed SPM generated in the mixing chamber of the SPM nozzle 14 is discharged from a discharge port opened at the front end (lower end) of the casing.
  • FIG. 3 is a block diagram showing the control device 3.
  • FIG. 4 is a flowchart showing an example of the resist removal process performed by the processing unit 2.
  • the control device 3 is constituted by, for example, a microcomputer.
  • the control device 3 controls the operations of the spin motor 13, the nozzle moving unit 16, the heater 21 and the like according to a predetermined program.
  • the control device 3 controls the opening and closing of the sulfuric acid valve 19, the hydrogen peroxide water valve 22, the micropump 31, the rinse liquid valve 37 and the like, and controls the actuators of the flow rate adjusting valves 20, 23, 33 to The opening degree of the flow regulating valves 20 and 23 is controlled.
  • the control device 3 includes a storage unit 3b that stores information such as a program and an arithmetic unit 3a that controls the substrate processing apparatus 1 according to the information stored in the storage unit 3b.
  • a recipe indicating the processing procedure and processing steps of the substrate W is stored in the storage unit 3b.
  • the control device 3 is programmed to cause the substrate processing apparatus 1 to execute each process described below by controlling the substrate processing apparatus 1 based on the recipe stored in the storage unit 3b.
  • the substrate W to be processed is a substrate that has been subjected to ion implantation at a high dose. It is assumed that this substrate W has not undergone a process for ashing the resist.
  • a loading process for loading the substrate W into the chamber 4 is performed (step S1). Specifically, the control device 3 moves the hand of the substrate transport robot CR (see FIG. 1) holding the substrate W in the chamber 4 in a state where all the nozzles and the like are retracted from above the spin chuck 5. By entering the inside, the substrate W is placed on the spin chuck 5 with the surface thereof directed upward. Thereafter, the control device 3 starts the rotation of the substrate W by the spin motor 13 (step S2). The rotational speed of the substrate W is increased to a predetermined processing rotational speed (in the range of 100 to 500 rpm, for example, about 300 rpm), and is maintained at the processing rotational speed.
  • a predetermined processing rotational speed in the range of 100 to 500 rpm, for example, about 300 rpm
  • step S3 When the rotational speed of the substrate W reaches the processing rotational speed, the control device 3 then performs an SPM processing step (step S3) for supplying SPM to the substrate W. Specifically, the control device 3 moves the SPM nozzle 14 from the home position to the processing position by controlling the first nozzle moving unit 16. Thereby, the SPM nozzle 14 is disposed above the substrate W.
  • the control device 3 opens the sulfuric acid valve 19 and the hydrogen peroxide water valve 22 and further drives the micropump 31.
  • the H 2 O 2 flowing hydrogen peroxide water pipe 18, and the HF flowing through the hydrofluoric acid pipe 28 flows into the mixing portion 30, a mixed solution (HF mixture H 2 O 2) is generated ( Mixing step).
  • the mixed solution that has passed through the mixing unit 30 and H 2 SO 4 that flows through the sulfuric acid pipe 17 are supplied to the SPM nozzle 14, and H 2 SO 4 , H 2 O 2, and HF are mixed in the mixing chamber of the SPM nozzle 14.
  • HF mixed SPM at a high temperature for example, 160 ° C.
  • the HF mixed SPM is discharged from the discharge port of the SPM nozzle 14 and is deposited on the upper surface of the substrate W (supply process).
  • the control device 3 controls the first nozzle moving unit 16 to move the liquid deposition position of the HF mixed SPM with respect to the upper surface of the substrate W in this state between the central portion and the peripheral portion.
  • the HF mixed SPM discharged from the SPM nozzle 14 lands on the upper surface of the substrate W rotating at a processing rotation speed (for example, 300 rpm), and then flows outward along the upper surface of the substrate W by centrifugal force. Therefore, the HF mixed SPM is supplied to the entire upper surface of the substrate W, and a liquid film of the HF mixed SPM that covers the entire upper surface of the substrate W is formed on the substrate W.
  • a processing rotation speed for example, 300 rpm
  • the cured layer on the resist surface is obtained by curing an organic substance mainly composed of carbon by ion implantation.
  • the reason why the resist is effectively removed is that HF has a function of dissolving a group 14 element oxide (such as SiO 2 ), and HF contained in the HF mixed SPM effectively removes the organic oxide on the resist surface. This is probably because
  • HF that has penetrated into the non-hardened layer of the resist slightly etches Si and SiO 2 constituting the surface of the substrate W at the boundary between the resist and the surface of the substrate W, thereby improving the resist peeling performance. It is also possible to do.
  • control device 3 moves the liquid deposition position of the HF mixed SPM with respect to the upper surface of the substrate W between the central portion and the peripheral edge while the substrate W is rotating, the liquid deposition position of the HF mixed SPM is Passes through the entire upper surface of the substrate W, and the entire upper surface of the substrate W is scanned. Therefore, the HF mixed SPM discharged from the SPM nozzle 14 is supplied to the entire upper surface of the substrate W, and the entire upper surface of the substrate W is processed uniformly.
  • step S3 When a predetermined HF mixing SPM processing time has elapsed from the start of discharging the HF mixing SPM, the SPM processing step (step S3) ends. Subsequent to the end of the SPM processing step (step S3), a hydrogen peroxide solution supplying step (step S4) for supplying H 2 O 2 to the substrate W is performed.
  • the control device 3 controls the first nozzle moving unit 16 to dispose the SPM nozzle 14 above the center of the upper surface of the substrate W, and then opens the hydrogen peroxide solution valve 22.
  • the sulfuric acid valve 19 is closed while maintaining the state.
  • the control device 3 stops the micropump 31.
  • only H 2 O 2 flows through the hydrogen peroxide solution pipe 18 and the mixed solution pipe 27 and is supplied to the SPM nozzle 14.
  • the hydrogen peroxide solution supplied to the SPM nozzle 14 passes through the inside of the SPM nozzle 14 and is discharged from the discharge port of the SPM nozzle 14.
  • the H 2 O 2 is deposited on the center of the upper surface of the substrate W rotating at the processing rotation speed. That is, the processing liquid discharged from the SPM nozzle 14 is switched from the HF mixed SPM to H 2 O 2 .
  • the H 2 O 2 deposited on the center of the upper surface of the substrate W flows outward on the substrate W toward the peripheral edge of the substrate W.
  • the SPM on the substrate W is replaced with H 2 O 2 , and eventually, the entire upper surface of the substrate W is covered with a liquid film of H 2 O 2 .
  • the control device 3 closes the hydrogen peroxide solution valve 22 and stops the discharge of H 2 O 2 from the SPM nozzle 14. Further, the control device 3 controls the first nozzle moving unit 16 to move the SPM nozzle 14 from the processing position to the home position. As a result, the SPM nozzle 14 is retracted from above the substrate W.
  • a rinsing liquid supply step (step S5) for supplying the rinsing liquid to the substrate W is performed.
  • the control device 3 opens the rinse liquid valve 37 and discharges the rinse liquid from the rinse liquid nozzle 35 toward the center of the upper surface of the substrate W.
  • the rinse liquid discharged from the rinse liquid nozzle 35 is deposited on the center of the upper surface of the substrate W covered with H 2 O 2 .
  • the rinse liquid deposited on the center of the upper surface of the substrate W flows outward on the substrate W toward the peripheral edge of the substrate W. As a result, H 2 O 2 on the substrate W is pushed outward by the rinse liquid and discharged around the substrate W.
  • the liquid film of H 2 O 2 on the substrate W is replaced with the liquid film of the rinsing liquid that covers the entire upper surface of the substrate W.
  • H 2 O 2 is washed away in the entire upper surface of the substrate W.
  • a drying process for drying the substrate W is performed.
  • the control device 3 controls the spin motor 13 to accelerate the substrate W to a drying rotation speed (for example, several thousand rpm) and rotate the substrate W at the drying rotation speed. Thereby, a large centrifugal force is applied to the liquid on the substrate W, and the liquid adhering to the substrate W is shaken off around the substrate W. In this way, the liquid is removed from the substrate W, and the substrate W is dried.
  • the control device 3 controls the spin motor 13 to stop the rotation of the substrate W by the spin chuck 5 (step S7).
  • step S8 an unloading process for unloading the substrate W from the chamber 4 is performed (step S8).
  • the control device 3 causes the hand of the substrate transport robot CR to enter the chamber 4 in a state where all the nozzles and the like are retracted from above the spin chuck 5. Then, the control device 3 holds the substrate W on the spin chuck 5 by the hand of the substrate transport robot CR. Thereafter, the control device 3 retracts the hand of the substrate transport robot CR from the chamber 4. Thereby, the processed substrate W is unloaded from the chamber 4.
  • the hydrogen peroxide solution supply step (step S4) is executed after the SPM treatment step (step S3), but the hydrogen peroxide solution supply step (step S4) can be omitted. .
  • the substrate W may be in a paddle state.
  • the paddle state means a state in which the upper surface of the substrate W is covered with a liquid film and the substrate is stationary in the rotation direction or rotating at a low rotation speed (50 rpm or less).
  • the discharge of SPM from the substrate W is suppressed, and the SPM liquid film is held on the upper surface of the substrate W.
  • the supply of SPM (discharge of SPM) to the substrate W may be stopped.
  • FIG. 5 is a diagram showing conditions and results of a resist removal test. This resist removal test is for confirming the relationship between the concentration of HF in the SPM and the resist removal performance.
  • the substrate processing apparatus 1 was used to carry out resist removal processing of Examples and Comparative Examples described below. Then, the presence or absence of the remaining resist after the resist removal treatment and the degree of damage to other than the resist were observed using an electron microscope.
  • the mixing ratio (flow rate ratio) of H 2 SO 4 and H 2 O 2 in the SPM used in the SPM processing step of Step S3 is 2: 1, and the processing time of the SPM processing step of Step S3 is 1 minute. did.
  • the concentration of HF was changed from 0 (comparative example) to 10000 ppm (data 3).
  • flow rate of H 2 O 2 means the flow rate of the mixed solution of HF and H 2 O 2.
  • Example> The same treatment was performed with HF mixed SPM having different HF concentrations.
  • the HF concentration in the HF mixed SPM at this time is as follows.
  • FIG. 5 The results of this resist removal test are shown in FIG. In FIG. 5, “ ⁇ ” indicates that there is no resist residue and no damage to the substrate surface, and “ ⁇ 1” indicates that a small amount of resist residue is generated. The case where there is damage is indicated by “ ⁇ 2”, the case where a large amount of resist remains, or the case where the resist is not peeled off at all, is indicated by “X”.
  • the resist stripping performance is improved as the HF concentration increases.
  • damage to the substrate surface that is, etching of the substrate surface was confirmed even when the HF concentration was 1000 ppm.
  • the HF concentration was 10,000 ppm, damage to the substrate surface was confirmed in all pattern shapes.
  • the comparative example almost no resist peeling was observed with respect to the silicon wafer W on which high-dose ion implantation was performed.
  • the resist stripping performance can be improved by mixing HF with SPM.
  • the SPM supply unit 6 includes the mixed solution pipe 27 that guides the mixed solution mixed by the mixing unit 30 to the SPM nozzle 14, but is not limited thereto.
  • FIG. 6 is a diagram showing an SPM supply unit 6a according to another embodiment. In FIG. 6, the same devices as those in FIG.
  • a mixed liquid pipe 27 of the SPM supply unit 6 a shown in FIG. 6 is connected to the mixing tank 130 instead of the mixing unit 30.
  • the mixed liquid pump 131 is interposed in the mixed liquid pipe 27.
  • Connected to the mixing tank 130 are a hydrogen peroxide pipe 18 to which H 2 O 2 is supplied from a hydrogen peroxide supply source and a hydrofluoric acid pipe 28 to which HF is supplied from a hydrofluoric acid supply source.
  • the hydrofluoric acid pipe 28 is provided with a hydrofluoric acid valve 32 for opening and closing the hydrofluoric acid pipe 28 and a hydrofluoric acid flow rate adjusting valve 33 for changing the flow rate of HF in this order from the mixing tank 130 side.
  • the mixing tank 130 is supplied with HF at room temperature (about 23 ° C.) whose temperature is not adjusted through the hydrofluoric acid pipe 28.
  • the control device 3 Prior to the SPM processing step (step S3), the control device 3 executes a blending step of blending the mixed solution (HF mixed H 2 O 2 ) in the mixing tank 130. Specifically, the control device 3 supplies 30 L of a predetermined concentration of H 2 O 2 to the mixing tank 130 by opening the hydrogen peroxide solution valve 22. Thereafter, the control device 3 opens the hydrofluoric acid valve 32 to supply 10 ml to 100 ml of HF having a predetermined concentration to the mixing tank 130. The supply of HF to the mixing tank 130 may be started before or after the supply of H 2 O 2 is started, or may be started simultaneously with the supply of H 2 O 2 .
  • the SPM supply unit 6 a may further include a stirring unit that stirs the H 2 O 2 and HF in the mixing tank 130.
  • the stirring unit is, for example, a bubbling unit 132 that generates bubbles in the liquid mixture by discharging a gas such as nitrogen gas from a gas discharge port 132a disposed in the liquid mixture in the mixing tank 130.
  • a stirring unit When a stirring unit is provided, H 2 O 2 and HF in the mixing tank 130 are mixed more uniformly.
  • the HF mixed H 2 O 2 generated in the mixing tank 130 is supplied to the SPM nozzle 14 by the mixed liquid pump 131.
  • H 2 SO 4 is supplied from the sulfuric acid pipe 17 to the SPM nozzle 14.
  • the H 2 SO 4 , H 2 O 2 , and HF that have flowed into the mixing chamber of the SPM nozzle 14 are sufficiently stirred and mixed in the mixing chamber, thereby generating an HF mixed SPM.
  • the HF mixed SPM is discharged from the SPM nozzle 14 and supplied onto the substrate W.
  • the SPM supply unit 6a it is possible to generate a H 2 O 2 / HF mixed liquid having a HF concentration lower than that in the above-described embodiment. The reason is that the ratio of H 2 O 2 and HF can be freely changed as compared with the case where H 2 O 2 and HF are mixed in a pipe or a valve.
  • FIG. 7 is a diagram showing an SPM supply unit 6b according to another embodiment.
  • the SPM supply unit 6b includes a sulfuric acid nozzle 14a and an H 2 O 2 / HF nozzle 14b.
  • the sulfuric acid nozzle 14 a discharges H 2 SO 4 toward the substrate W.
  • the H 2 O 2 / HF nozzle 14 b discharges the H 2 O 2 / HF mixed solution supplied from the mixing unit 30 toward the substrate W.
  • the H 2 O 2 / HF nozzle 14 b may discharge the H 2 O 2 / HF mixed solution supplied from the mixing tank 130 toward the substrate W.
  • the sulfuric acid from the sulfuric acid nozzle 14a and the H 2 O 2 / HF mixed solution from the H 2 O 2 / HF nozzle 14b are supplied to the rotating substrate W, whereby H 2 SO 4 , H 2 O 2 , And HF are stirred and mixed on the substrate W. Thereby, HF mixing SPM is produced
  • the HF mixed SPM generating unit including the sulfuric acid nozzle 14 a and the H 2 O 2 / HF nozzle 14 b generates the HF mixed SPM on the substrate W.
  • the HF mixed SPM is generated in a region closer to the substrate W than in the above-described embodiment. Therefore, it becomes possible to process the substrate W while maintaining the chemical activity of the SPM at a high level.
  • the substrate processing apparatus 1 is an apparatus that processes the disk-shaped substrate W.
  • the substrate processing apparatus 1 is a polygonal substrate such as a substrate for a liquid crystal display device.
  • An apparatus for processing W may be used.

Abstract

In order to solve the problem of satisfactorily removing a resist from the surface of a substrate, the present invention is a substrate processing device (1) having a spin chuck (5) and an SPM feed unit (6) for feeding SPM to the substrate (W) held by the spin chuck (5), wherein the SPM feed unit (6) includes a mixing unit (30) for mixing an aqueous hydrogen peroxide solution and hydrofluoric acid and producing a liquid mixture of hydrogen peroxide water and hydrofluoric acid, and an HF-mixed SPM production unit (14) for mixing the liquid mixture and sulfuric acid and producing HF-mixed SPM.

Description

基板処理方法および基板処理装置Substrate processing method and substrate processing apparatus
 本発明は、基板の表面からレジストを除去する基板処理装置および基板処理方法に関する。処理の対象となる基板には、たとえば、半導体ウエハ、液晶表示装置用基板、プラズマディスプレイ用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板等が含まれる。 The present invention relates to a substrate processing apparatus and a substrate processing method for removing a resist from the surface of a substrate. Examples of substrates to be processed include semiconductor wafers, liquid crystal display substrates, plasma display substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, photomask substrates, ceramic substrates, and solar cells. For example.
 基板の表面からレジストを除去するために、基板の表面に硫酸過酸化水素水混合液(sulfuric acid/hydrogen peroxide mixture:SPM)を供給することが知られている。 In order to remove the resist from the surface of the substrate, it is known to supply a mixed solution of sulfuric acid and hydrogen peroxide (SPM) to the surface of the substrate.
 高ドーズのイオン注入が行われたウエハでは、レジストの炭化および変質によりレジストの表層が硬化するので、硬化層がレジストの表面に形成されていることがある。 In a wafer subjected to high dose ion implantation, the surface layer of the resist is hardened due to carbonization and alteration of the resist, so that a hardened layer may be formed on the surface of the resist.
 特許文献1では、表面に硬化層を有するレジストであっても、アッシングすることなく基板の表面からレジストを除去する方法が提案されている。この文献には、イオン注入により表層が硬化したレジストを基板から除去するために、高温のSPMを基板に供給する方法が開示されている。 Patent Document 1 proposes a method of removing a resist from the surface of a substrate without ashing even a resist having a hardened layer on the surface. This document discloses a method of supplying high-temperature SPM to a substrate in order to remove the resist whose surface layer is cured by ion implantation from the substrate.
特開2008-4878号公報Japanese Patent Laid-Open No. 2008-4878
 しかしながら、特許文献1の方法では、窒素ガスで加速された高温のSPMの液滴が基板に衝突するので、ウエハ上のデバイスにダメージが発生し得る。さらに、SPMが液滴で供給されるため、レジストを剥離するために十分な液量を確保することが難しい場合がある。 However, in the method of Patent Document 1, a high-temperature SPM droplet accelerated by nitrogen gas collides with the substrate, so that the device on the wafer may be damaged. Furthermore, since the SPM is supplied as droplets, it may be difficult to secure a sufficient amount of liquid for removing the resist.
 そこで、本発明の目的は、基板の表面からレジストを良好に除去できる、基板処理方法および基板処理装置を提供することである。 Therefore, an object of the present invention is to provide a substrate processing method and a substrate processing apparatus that can satisfactorily remove the resist from the surface of the substrate.
 本発明の一実施形態は、基板の表面からレジストを除去する基板処理方法であって、過酸化水素水とフッ酸とを混合し、過酸化水素水およびフッ酸の混合液を生成する混合工程と、前記混合工程の後に、前記過酸化水素水およびフッ酸の混合液と硫酸とを混合し、硫酸、過酸化水素水、およびフッ酸の混合液であるHF混合SPMを生成する生成工程と、前記HF混合SPMを前記基板の表面に供給する供給工程と、を含む、基板処理方法を提供する。 One embodiment of the present invention is a substrate processing method for removing a resist from a surface of a substrate, wherein a mixing step of mixing a hydrogen peroxide solution and hydrofluoric acid to generate a mixed solution of the hydrogen peroxide solution and hydrofluoric acid. And, after the mixing step, a mixture step of mixing the hydrogen peroxide solution and hydrofluoric acid with sulfuric acid to generate an HF mixed SPM that is a mixture solution of sulfuric acid, hydrogen peroxide solution, and hydrofluoric acid. And a supply step of supplying the HF mixed SPM to the surface of the substrate.
 前記混合工程で混合される過酸化水素水およびフッ酸は、いずれも常温であってもよい。 The hydrogen peroxide solution and hydrofluoric acid mixed in the mixing step may both be at room temperature.
 前記生成工程は、前記基板から離れた位置で前記過酸化水素水およびフッ酸の混合液と硫酸とを混合する工程であってもよい。 The generating step may be a step of mixing the hydrogen peroxide solution and hydrofluoric acid mixed solution with sulfuric acid at a position away from the substrate.
 前記生成工程は、前記基板の表面で前記過酸化水素水およびフッ酸の混合液と硫酸とを混合する工程であってもよい。 The generating step may be a step of mixing the hydrogen peroxide solution and hydrofluoric acid mixed solution and sulfuric acid on the surface of the substrate.
 これらの方法によれば、ウエハ上のデバイスへのダメージを抑制しつつ、レジストを良好に除去することができる。 According to these methods, it is possible to remove the resist satisfactorily while suppressing damage to the device on the wafer.
 本発明の他の実施形態は、表面がレジストで覆われている基板を保持する基板保持ユニットと、前記基板保持ユニットに保持されている基板の表面に、硫酸、過酸化水素水、およびフッ酸の混合液であるHF混合SPMを供給するSPM供給ユニットを備え、前記SPM供給ユニットは、過酸化水素水とフッ酸とを混合し、過酸化水素水およびフッ酸の混合液を生成する混合ユニットと、前記混合ユニットが過酸化水素水とフッ酸とを混合した後に、前記過酸化水素水およびフッ酸の混合液と硫酸とを混合し、HF混合SPMを生成するHF混合SPM生成ユニットと、を含む、基板処理装置を提供する。この構成によれば、ウエハ上のデバイスへのダメージを抑制しつつ、レジストを良好に除去することができる。 Another embodiment of the present invention includes a substrate holding unit for holding a substrate whose surface is covered with a resist, and sulfuric acid, hydrogen peroxide solution, and hydrofluoric acid on the surface of the substrate held by the substrate holding unit. The SPM supply unit supplies an HF mixed SPM that is a mixed solution of the above, and the SPM supply unit mixes hydrogen peroxide solution and hydrofluoric acid to generate a mixture solution of hydrogen peroxide solution and hydrofluoric acid. And after the mixing unit mixes the hydrogen peroxide solution and hydrofluoric acid, the hydrogen peroxide solution and hydrofluoric acid mixed solution and sulfuric acid are mixed to generate an HF mixed SPM, and A substrate processing apparatus is provided. According to this configuration, it is possible to satisfactorily remove the resist while suppressing damage to devices on the wafer.
 前記混合ユニットは、過酸化水素水およびフッ酸が個別に供給され、前記HF混合SPM生成ユニットに供給される前記過酸化水素水およびフッ酸の混合液を貯留する混合タンクを含んでいてもよい。この構成によれば、過酸化水素水およびフッ酸の混合液が硫酸と混合される前に、過酸化水素水およびフッ酸を確実に混合することができる。 The mixing unit may include a mixing tank in which hydrogen peroxide solution and hydrofluoric acid are separately supplied, and the mixture solution of the hydrogen peroxide solution and hydrofluoric acid supplied to the HF mixed SPM generating unit is stored. . According to this configuration, the hydrogen peroxide solution and the hydrofluoric acid can be reliably mixed before the mixed solution of the hydrogen peroxide solution and the hydrofluoric acid is mixed with the sulfuric acid.
 前記混合ユニットは、前記混合タンク内の前記混合液を撹拌する撹拌ユニットをさらに含んでいてもよい。この構成によれば、過酸化水素水およびフッ酸を均一に混合することができる。撹拌ユニットは、混合タンクに貯留されている混合液中で回転するロータであってもよいし、混合タンクに貯留されている混合液中に気泡を発生させるバブリングユニットであってもよい。 The mixing unit may further include a stirring unit for stirring the mixed solution in the mixing tank. According to this configuration, the hydrogen peroxide solution and hydrofluoric acid can be uniformly mixed. The stirring unit may be a rotor that rotates in the liquid mixture stored in the mixing tank, or may be a bubbling unit that generates bubbles in the liquid mixture stored in the mixing tank.
 前記撹拌ユニットは、前記混合タンクに貯留されている前記混合液中に配置された気体吐出口から気体を吐出することにより、前記混合液中に気泡を発生させるバブリングユニットを含んでいてもよい。この構成によれば、気泡の発生により過酸化水素水およびフッ酸が均一に混合される。 The stirring unit may include a bubbling unit that generates bubbles in the mixed solution by discharging gas from a gas discharge port disposed in the mixed solution stored in the mixing tank. According to this configuration, the hydrogen peroxide solution and hydrofluoric acid are uniformly mixed by the generation of bubbles.
 前記混合ユニットは、過酸化水素水と、前記過酸化水素水よりも少量のフッ酸とを混合してもよい。この場合、前記HF混合SPM生成ユニットは、硫酸と、前記硫酸よりも少量の前記混合液とを混合してもよい。この構成によれば、基板のダメージを抑えながらレジストを剥離できるHF混合SPM、つまり、HFの濃度が低いHF混合SPMを生成することができる。 The mixing unit may mix a hydrogen peroxide solution and a smaller amount of hydrofluoric acid than the hydrogen peroxide solution. In this case, the HF mixed SPM generating unit may mix sulfuric acid and the mixed liquid in a smaller amount than the sulfuric acid. According to this configuration, it is possible to generate an HF mixed SPM capable of peeling the resist while suppressing damage to the substrate, that is, an HF mixed SPM having a low HF concentration.
 本発明における前述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。 The above-described or other objects, features, and effects of the present invention will be clarified by the following description of embodiments with reference to the accompanying drawings.
本発明の一実施形態に係る基板処理装置を示す模式的な平面図である。1 is a schematic plan view showing a substrate processing apparatus according to an embodiment of the present invention. 図1に示す基板処理装置に備えられたチャンバの内部を水平に見た模式図である。It is the schematic diagram which looked at the inside of the chamber with which the substrate processing apparatus shown in FIG. 1 was equipped horizontally. 基板処理装置に備えられた制御装置を示すブロック図である。It is a block diagram which shows the control apparatus with which the substrate processing apparatus was equipped. 図2に示す処理ユニットによって行われるレジスト除去処理の一例を示すフローチャートである。It is a flowchart which shows an example of the resist removal process performed by the processing unit shown in FIG. レジスト除去試験の条件および結果を示す図である。It is a figure which shows the conditions and result of a resist removal test. 本発明の他の実施形態に係る基板処理装置の一部を示す図である。It is a figure which shows a part of substrate processing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る基板処理装置の一部を示す図である。It is a figure which shows a part of substrate processing apparatus which concerns on other embodiment of this invention.
 図1は、本発明の一実施形態に係る基板処理装置1を示す模式的な平面図である。図2は、基板処理装置1に備えられたチャンバ4の内部を水平に見た模式図である。 FIG. 1 is a schematic plan view showing a substrate processing apparatus 1 according to an embodiment of the present invention. FIG. 2 is a schematic view of the inside of the chamber 4 provided in the substrate processing apparatus 1 as viewed horizontally.
 図1に示すように、基板処理装置1は、半導体ウエハなどの円板状の基板Wを一枚ずつ処理する枚葉式の装置である。基板処理装置1は、基板Wを収容する複数のキャリアCを保持する複数のロードポートLPと、複数のロードポートLPから搬送された基板Wを処理液や処理ガスで処理する複数の処理ユニット2と、複数のロードポートLPと複数の処理ユニット2との間で基板Wを搬送する基板搬送ロボットIR、CRと、基板処理装置1を制御する制御装置3とを含む。 As shown in FIG. 1, the substrate processing apparatus 1 is a single-wafer type apparatus that processes a disk-shaped substrate W such as a semiconductor wafer one by one. The substrate processing apparatus 1 includes a plurality of load ports LP that hold a plurality of carriers C that accommodate a substrate W, and a plurality of processing units 2 that process the substrate W transferred from the plurality of load ports LP with a processing liquid or a processing gas. And substrate transfer robots IR and CR that transfer the substrate W between the plurality of load ports LP and the plurality of processing units 2, and the control device 3 that controls the substrate processing apparatus 1.
 図2に示すように、各処理ユニット2は、枚葉式のユニットである。各処理ユニット2は、内部空間を有する箱形のチャンバ4と、チャンバ4内で一枚の基板Wを水平な姿勢で保持して、基板Wの中心を通る鉛直な回転軸線A1まわりに基板Wを回転させるスピンチャック(基板保持ユニット)5と、スピンチャック5に保持されている基板WにSPM、H2、およびHF混合SPM(以下、これらをまとめてSPM等、と称する)を供給するSPM供給ユニット6と、リンス液供給ユニット8と、スピンチャック5を取り囲む筒状のカップ9とを含む。HF混合SPMは、HFが添加されたSPMを意味する。 As shown in FIG. 2, each processing unit 2 is a single-wafer type unit. Each processing unit 2 holds a box-shaped chamber 4 having an internal space and a single substrate W in the chamber 4 in a horizontal posture, and the substrate W around a vertical rotation axis A1 passing through the center of the substrate W. SPM, H 2 O 2 and HF mixed SPM (hereinafter collectively referred to as SPM, etc.) are supplied to a spin chuck (substrate holding unit) 5 that rotates the substrate and a substrate W held on the spin chuck 5 An SPM supply unit 6, a rinse liquid supply unit 8, and a cylindrical cup 9 surrounding the spin chuck 5. HF mixed SPM means SPM to which HF is added.
 スピンチャック5は、水平な姿勢で保持された円板状のスピンベース10と、スピンベース10の上方で基板Wを水平な姿勢で保持する複数のチャックピン11と、スピンベース10の中央部から下方に延びる回転軸12と、回転軸12を回転させることにより基板Wおよびスピンベース10を回転軸線A1まわりに回転させるスピンモータ13とを含む。スピンチャック5は、複数のチャックピン11を基板Wの周端面に接触させる挟持式のチャックに限らず、非デバイス形成面である基板Wの裏面(下面)をスピンベース10の上面に吸着させることにより基板Wを水平に保持するバキューム式のチャックであってもよい。 The spin chuck 5 includes a disc-shaped spin base 10 held in a horizontal posture, a plurality of chuck pins 11 that hold the substrate W in a horizontal posture above the spin base 10, and a central portion of the spin base 10. A rotation shaft 12 extending downward, and a spin motor 13 that rotates the rotation shaft 12 to rotate the substrate W and the spin base 10 around the rotation axis A1. The spin chuck 5 is not limited to a clamping chuck in which a plurality of chuck pins 11 are brought into contact with the peripheral end surface of the substrate W, and the back surface (lower surface) of the substrate W, which is a non-device forming surface, is adsorbed to the upper surface of the spin base 10. Thus, a vacuum chuck that holds the substrate W horizontally may be used.
 カップ9は、スピンチャック5に保持されている基板Wよりも外方(回転軸線A1から離れる方向)に配置されている。カップ9は、スピンベース10の周囲を取り囲んでいる。スピンチャック5が基板Wを回転させている状態で、処理液が基板Wに供給されると、基板Wに供給された処理液が基板Wの周囲に振り切られる。処理液が基板Wに供給されるとき、上向きに開いたカップ9の上端部9aは、スピンベース10よりも上方に配置される。したがって、基板Wの周囲に排出されたSPMやリンス液などの処理液は、カップ9によって受け止められる。そして、カップ9に受け止められた処理液は、図示しない回収装置または排液装置に送られる。 The cup 9 is disposed outward (in a direction away from the rotation axis A1) from the substrate W held by the spin chuck 5. The cup 9 surrounds the periphery of the spin base 10. When the processing liquid is supplied to the substrate W while the spin chuck 5 is rotating the substrate W, the processing liquid supplied to the substrate W is shaken off around the substrate W. When the processing liquid is supplied to the substrate W, the upper end portion 9 a of the cup 9 that opens upward is disposed above the spin base 10. Therefore, the processing liquid such as SPM and rinse liquid discharged around the substrate W is received by the cup 9. Then, the processing liquid received by the cup 9 is sent to a collecting device or a draining device (not shown).
 リンス液供給ユニット8は、スピンチャック5に保持されている基板Wに向けてリンス液を吐出するリンス液ノズル35と、リンス液ノズル35にリンス液を供給するリンス液配管36と、リンス液配管36からリンス液ノズル35へのリンス液の供給および供給停止を切り替えるリンス液バルブ37とを含む。リンス液ノズル35は、リンス液ノズル35の吐出口が静止された状態でリンス液を吐出する固定ノズルである。リンス液供給ユニット8は、リンス液ノズル35を移動させることにより、基板Wの上面に対するリンス液の着液位置を移動させるリンス液ノズル移動ユニットを備えていてもよい。 The rinsing liquid supply unit 8 includes a rinsing liquid nozzle 35 that discharges the rinsing liquid toward the substrate W held by the spin chuck 5, a rinsing liquid pipe 36 that supplies the rinsing liquid to the rinsing liquid nozzle 35, and a rinsing liquid pipe. And a rinsing liquid valve 37 for switching supply and stop of the rinsing liquid from 36 to the rinsing liquid nozzle 35. The rinse liquid nozzle 35 is a fixed nozzle that discharges the rinse liquid in a state where the discharge port of the rinse liquid nozzle 35 is stationary. The rinsing liquid supply unit 8 may include a rinsing liquid nozzle moving unit that moves the rinsing liquid landing position relative to the upper surface of the substrate W by moving the rinsing liquid nozzle 35.
 リンス液バルブ37が開かれると、リンス液配管36からリンス液ノズル35に供給されたリンス液が、リンス液ノズル35から基板Wの上面中央部に向けて吐出される。リンス液は、たとえば、常温(約23℃)の純水(脱イオン水:Deionized Water)である。純水の温度は、常温に限らず、常温よりも高い温度(たとえば、70~90℃)であってもよい。つまり、リンス液は、温水(常温よりも高温の純水)であってもよい。また、リンス液は、純水に限らず、炭酸水、電解イオン水、水素水、オゾン水および希釈濃度(たとえば、10~100ppm程度)の塩酸水のいずれかであってもよい。 When the rinse liquid valve 37 is opened, the rinse liquid supplied from the rinse liquid pipe 36 to the rinse liquid nozzle 35 is discharged from the rinse liquid nozzle 35 toward the center of the upper surface of the substrate W. The rinse liquid is, for example, pure water (deionized water) at room temperature (about 23 ° C.). The temperature of pure water is not limited to room temperature, and may be higher than room temperature (for example, 70 to 90 ° C.). That is, the rinse liquid may be warm water (pure water having a temperature higher than normal temperature). The rinse liquid is not limited to pure water, but may be any of carbonated water, electrolytic ion water, hydrogen water, ozone water, and hydrochloric acid water having a diluted concentration (for example, about 10 to 100 ppm).
 SPM供給ユニット6は、SPM等を基板Wの上面に向けて選択的に吐出するSPMノズル14と、SPMノズル14が先端部に取り付けられた第1のノズルアーム15と、第1のノズルアーム15を移動させることにより、SPMノズル14を移動させる第1のノズル移動ユニット16とを含む。 The SPM supply unit 6 includes an SPM nozzle 14 that selectively discharges SPM and the like toward the upper surface of the substrate W, a first nozzle arm 15 having the SPM nozzle 14 attached to the tip, and a first nozzle arm 15. And a first nozzle moving unit 16 that moves the SPM nozzle 14.
 SPMノズル14は、たとえば、連続流の状態でSPM等を選択的に吐出するストレートノズルであり、たとえば基板Wの上面に垂直な方向に処理液を吐出する垂直姿勢で第1のノズルアーム15に取り付けられている。第1のノズルアーム15は、水平方向に延びており、スピンチャック5の周囲で鉛直方向に延びる第1の揺動軸線(図示しない)まわりに旋回可能に設けられている。 The SPM nozzle 14 is, for example, a straight nozzle that selectively discharges SPM or the like in a continuous flow state. For example, the SPM nozzle 14 is applied to the first nozzle arm 15 in a vertical posture that discharges the processing liquid in a direction perpendicular to the upper surface of the substrate W. It is attached. The first nozzle arm 15 extends in the horizontal direction and is provided to be rotatable around a first swing axis (not shown) extending in the vertical direction around the spin chuck 5.
 なお、SPMノズル14は、吐出口よりも内方(回転軸線A1側)の位置にSPM等が着液するように基板Wの上面に対して傾いた吐出方向にSPM等が吐出される内向き姿勢で第1のノズルアーム15に保持されていてもよいし、吐出口よりも外方(回転軸線A1とは反対側)の位置にSPM等が着液するように基板Wの上面に対して傾いた吐出方向にSPM等を吐出する外向き姿勢で第1のノズルアーム15に保持されていてもよい。 The SPM nozzle 14 is an inward direction in which SPM or the like is discharged in a discharge direction inclined with respect to the upper surface of the substrate W so that the SPM or the like is deposited inward (rotation axis A1 side) from the discharge port. It may be held by the first nozzle arm 15 in a posture, or with respect to the upper surface of the substrate W so that SPM or the like is deposited outside the discharge port (on the opposite side to the rotation axis A1). You may hold | maintain at the 1st nozzle arm 15 in the outward attitude | position which discharges SPM etc. in the inclined discharge direction.
 第1のノズル移動ユニット16は、第1の揺動軸線まわりに第1のノズルアーム15を旋回させることにより、平面視で基板Wの上面中央部を通る軌跡に沿ってSPMノズル14を水平に移動させる。第1のノズル移動ユニット16は、SPMノズル14から吐出されたSPM等が基板Wの上面に着液する処理位置と、SPMノズル14が平面視でスピンチャック5の周囲に位置するホーム位置との間で、SPMノズル14を水平に移動させる。処理位置は、SPMノズル14から吐出されたSPM等が基板Wの上面中央部に着液する中央位置と、SPMノズル14から吐出されたSPM等が基板Wの上面周縁部に着液する周縁位置とを含む。 The first nozzle moving unit 16 rotates the first nozzle arm 15 around the first swing axis, thereby causing the SPM nozzle 14 to move horizontally along a trajectory passing through the center of the upper surface of the substrate W in plan view. Move. The first nozzle moving unit 16 includes a processing position where the SPM discharged from the SPM nozzle 14 is deposited on the upper surface of the substrate W and a home position where the SPM nozzle 14 is positioned around the spin chuck 5 in plan view. In the meantime, the SPM nozzle 14 is moved horizontally. The processing position includes a central position where the SPM discharged from the SPM nozzle 14 lands on the center of the upper surface of the substrate W, and a peripheral position where the SPM discharged from the SPM nozzle 14 lands on the periphery of the upper surface of the substrate W. Including.
 SPM供給ユニット6は、SPMノズル14に接続され、硫酸供給源からHSOが供給される硫酸配管17と、SPMノズル14に接続され、過酸化水素水とフッ酸との混合液または過酸化水素水が供給される混合液配管27とをさらに含む。混合液配管27の上流端は、混合部30に接続され、混合液配管27の下流端は、SPMノズル14に接続される。 The SPM supply unit 6 is connected to the SPM nozzle 14 and is connected to the sulfuric acid pipe 17 to which H 2 SO 4 is supplied from the sulfuric acid supply source. The SPM supply unit 6 is connected to the SPM nozzle 14 and is mixed with hydrogen peroxide and hydrofluoric acid. And a mixed liquid pipe 27 to which hydrogen oxide water is supplied. The upstream end of the mixed liquid pipe 27 is connected to the mixing unit 30, and the downstream end of the mixed liquid pipe 27 is connected to the SPM nozzle 14.
 混合部30は、HSOと混合される前にHおよびHFを混合する混合ユニットの一例である。混合部30は、過酸化水素供給源からHが供給される過酸化水素水配管18と、フッ酸供給源からHFが供給されるフッ酸配管28とに接続される。 The mixing unit 30 is an example of a mixing unit that mixes H 2 O 2 and HF before being mixed with H 2 SO 4 . The mixing unit 30 is connected to a hydrogen peroxide water pipe 18 to which H 2 O 2 is supplied from a hydrogen peroxide supply source, and a hydrofluoric acid pipe 28 to which HF is supplied from a hydrofluoric acid supply source.
 硫酸供給源から供給されるHSOと、過酸化水素供給源から供給されるHと、フッ酸供給源から供給されるHFは、いずれも水溶液である。HSOの濃度は、たとえば90~98%であり、Hの濃度は、たとえば30~50%であり、HFの濃度は、たとえば47~51%である。 H 2 SO 4 supplied from the sulfuric acid supply source, H 2 O 2 supplied from the hydrogen peroxide supply source, and HF supplied from the hydrofluoric acid supply source are all aqueous solutions. The concentration of H 2 SO 4 is, for example, 90 to 98%, the concentration of H 2 O 2 is, for example, 30 to 50%, and the concentration of HF is, for example, 47 to 51%.
 硫酸配管17には、硫酸配管17を開閉する硫酸バルブ19と、HSOの流量を変更する硫酸流量調整バルブ20と、HSOを加熱するヒータ21とが、SPMノズル14側からこの順に介装されている。図示はしないが、硫酸流量調整バルブ20は、弁座が内部に設けられたバルブボディと、弁座を開閉する弁体と、開位置と閉位置との間で弁体を移動させるアクチュエータとを含む。他のバルブについても同様である。各バルブのアクチュエータは、制御装置3によって制御される。 The sulfuric pipe 17, a sulfate valve 19 for opening and closing the sulfuric pipe 17, the sulfuric acid flow rate adjusting valve 20 to change the flow rate of H 2 SO 4, a heater 21 for heating the H 2 SO 4 is from SPM nozzle 14 side They are inserted in this order. Although not shown, the sulfuric acid flow rate adjusting valve 20 includes a valve body in which a valve seat is provided, a valve body that opens and closes the valve seat, and an actuator that moves the valve body between an open position and a closed position. Including. The same applies to the other valves. The actuator of each valve is controlled by the control device 3.
 ヒータ21は、HSOを常温よりも高い温度(70~100℃の範囲内の一定温度。たとえば90℃)に維持する。HSOを加熱するヒータ21は、図2に示すようなワンパス方式のヒータであってもよいし、ヒータを含む循環経路でHSOを循環させることによりHSOを加熱する循環方式のヒータであってもよい。ワンパス方式は、加熱される液体がヒータを一度だけ通過する方式であり、循環方式は、加熱される液体がヒータを複数回通過する方式である。 The heater 21 maintains H 2 SO 4 at a temperature higher than room temperature (a constant temperature within a range of 70 to 100 ° C., for example, 90 ° C.). Heater 21 for heating the H 2 SO 4 may be a heater of one-pass system as shown in FIG. 2, for heating the H 2 SO 4 by circulating H 2 SO 4 in a circulating path including a heater A circulating heater may be used. The one-pass method is a method in which the heated liquid passes through the heater only once, and the circulation method is a method in which the heated liquid passes through the heater a plurality of times.
 過酸化水素水配管18には、過酸化水素水配管18を開閉する過酸化水素水バルブ22と、Hの流量を変更する過酸化水素水流量調整バルブ23とが、混合部30側からこの順に介装されている。混合部30には、温度調整されていない常温(約23℃)のHが、過酸化水素水配管18を通して供給される。 The hydrogen peroxide solution pipe 18 includes a hydrogen peroxide solution valve 22 that opens and closes the hydrogen peroxide solution pipe 18 and a hydrogen peroxide solution flow rate adjustment valve 23 that changes the flow rate of H 2 O 2. Are installed in this order. The mixing unit 30 is supplied with normal temperature (about 23 ° C.) H 2 O 2 whose temperature is not adjusted through the hydrogen peroxide pipe 18.
 フッ酸配管28には、混合部30にHFを供給するマイクロポンプ31が介装されている。マイクロポンプ31は、液体を下流に送る機能と、液体の流れを遮断する機能とを有している。マイクロポンプ31が駆動されると、温度調整されていない常温(約23℃)のHFが、フッ酸配管28を通して混合部30に供給される。マイクロポンプ31から混合部30に送られるHFの流量は、制御装置3によって制御される。マイクロポンプ31は、HFが混合部30に供給される供給状態と混合部30へのHFの供給が停止される供給停止状態とに切り替わるフッ酸切替ユニットの一例である。フッ酸切替ユニットは、フッ酸配管28を開閉するフッ酸バルブ32(図6参照)であってもよい。 In the hydrofluoric acid pipe 28, a micropump 31 for supplying HF to the mixing unit 30 is interposed. The micropump 31 has a function of sending the liquid downstream and a function of blocking the flow of the liquid. When the micropump 31 is driven, HF at room temperature (about 23 ° C.) whose temperature is not adjusted is supplied to the mixing unit 30 through the hydrofluoric acid pipe 28. The flow rate of HF sent from the micropump 31 to the mixing unit 30 is controlled by the control device 3. The micropump 31 is an example of a hydrofluoric acid switching unit that switches between a supply state in which HF is supplied to the mixing unit 30 and a supply stop state in which the supply of HF to the mixing unit 30 is stopped. The hydrofluoric acid switching unit may be a hydrofluoric acid valve 32 (see FIG. 6) that opens and closes the hydrofluoric acid pipe 28.
 混合部30は略円筒状の部材であり、HおよびHFは混合部30の内部で撹拌混合される。混合部30は、過酸化水素水バルブ22およびフッ酸切替ユニットの機能を有するミキシングバルブであってもよい。この場合、過酸化水素水バルブ22およびフッ酸切替ユニットを省略してもよい。 The mixing unit 30 is a substantially cylindrical member, and H 2 O 2 and HF are stirred and mixed inside the mixing unit 30. The mixing unit 30 may be a mixing valve having the functions of the hydrogen peroxide solution valve 22 and the hydrofluoric acid switching unit. In this case, the hydrogen peroxide valve 22 and the hydrofluoric acid switching unit may be omitted.
 混合部30に流入するHおよびHFの流量は、過酸化水素水流量調整バルブ23およびマイクロポンプ31によって調整される。Hの流量が300ml/min.の場合、HFの流量は、たとえば90μl/min.である。この例のように流量が互いに異なる場合でも、HおよびHFは、混合部30内で撹拌されることにより均一に混合される。 The flow rates of H 2 O 2 and HF flowing into the mixing unit 30 are adjusted by the hydrogen peroxide flow rate adjusting valve 23 and the micropump 31. The flow rate of H 2 O 2 is 300 ml / min. In this case, the flow rate of HF is, for example, 90 μl / min. It is. Even when the flow rates are different from each other as in this example, H 2 O 2 and HF are uniformly mixed by being stirred in the mixing unit 30.
 SPMノズル14は、たとえば略円筒状のケーシングを有している。このケーシングの内部には、混合室が形成されている。硫酸配管17は、SPMノズル14のケーシングの側壁に配置された硫酸導入口に接続されている。混合液配管27は、SPMノズル14のケーシングの側壁に配置された混合液導入口に接続されている。混合液導入口は、硫酸導入口よりも上方に配置されている。 The SPM nozzle 14 has, for example, a substantially cylindrical casing. A mixing chamber is formed inside the casing. The sulfuric acid pipe 17 is connected to a sulfuric acid introduction port arranged on the side wall of the casing of the SPM nozzle 14. The mixed liquid pipe 27 is connected to a mixed liquid inlet disposed on the side wall of the casing of the SPM nozzle 14. The liquid mixture inlet is disposed above the sulfuric acid inlet.
 硫酸バルブ19(図2参照)および過酸化水素水バルブ22(図2参照)が開かれた状態でマイクロポンプ31が駆動されると、硫酸配管17からのHSOが、SPMノズル14の硫酸導入口から混合室へと供給されるとともに、混合液配管27からのHおよびHFが、SPMノズル14の混合液導入口から混合室へと供給される。 When the micropump 31 is driven in a state where the sulfuric acid valve 19 (see FIG. 2) and the hydrogen peroxide water valve 22 (see FIG. 2) are opened, H 2 SO 4 from the sulfuric acid pipe 17 is supplied to the SPM nozzle 14. While being supplied from the sulfuric acid inlet to the mixing chamber, H 2 O 2 and HF from the mixed liquid pipe 27 are supplied from the mixed liquid inlet of the SPM nozzle 14 to the mixing chamber.
 SPMノズル14の混合室に流入したHSO、H、およびHFは、混合室で十分に撹拌混合される。この混合によって、HSOとHとが均一に混ざり合い、HSOとHとの反応によってHSOおよびHの混合液(SPM)が生成される。これにより、HFを含むSPM、つまり、HF混合SPMが生成される。 H 2 SO 4 , H 2 O 2 , and HF that have flowed into the mixing chamber of the SPM nozzle 14 are sufficiently stirred and mixed in the mixing chamber. This mixture, H 2 SO 4 and H 2 O 2 and is mingled evenly, a mixed solution of H 2 SO 4 and H 2 O 2 by reaction of H 2 SO 4 and H 2 O 2 (SPM) is generated Is done. Thereby, SPM containing HF, that is, HF mixed SPM is generated.
 SPMは、酸化力が強いペルオキソ一硫酸(Peroxymonosulfuric acid;HSO)を含み、混合前のHSOおよびHの温度よりも高い温度(100℃以上。たとえば、160℃)まで加熱される。SPMノズル14の混合室において生成された高温のHF混合SPMは、ケーシングの先端(下端)に開口した吐出口から吐出される。 SPM contains peroxymonosulfuric acid (H 2 SO 5 ) having a strong oxidizing power, and is higher than the temperature of H 2 SO 4 and H 2 O 2 before mixing (100 ° C. or higher, for example, 160 ° C.). Until heated. The high-temperature HF mixed SPM generated in the mixing chamber of the SPM nozzle 14 is discharged from a discharge port opened at the front end (lower end) of the casing.
 ここで、HF混合SPMを生成する順序について考察する。 Here, the order of generating the HF mixed SPM will be considered.
 SPM(HSOおよびHの混合液)を先に生成し、その後、ごく少量のHFをSPMに混入した場合、HFは、高温(100℃以上)のSPMに接触した瞬間に蒸発してしまう。そのため、HFが均一に分散したHF混合SPMが生成されない。しかし、前述のように、あらかじめHFとHとを十分に混合しておくことにより、ごく微量のHF成分が均一に分散したHF混合SPMを生成することが可能となる。 When SPM (mixture of H 2 SO 4 and H 2 O 2 ) is generated first, and then a very small amount of HF is mixed into the SPM, the HF comes into contact with the SPM at a high temperature (100 ° C. or higher). It will evaporate. Therefore, the HF mixed SPM in which HF is uniformly dispersed is not generated. However, as described above, it is possible to generate an HF mixed SPM in which a very small amount of HF component is uniformly dispersed by sufficiently mixing HF and H 2 O 2 in advance.
 図3は、制御装置3を示すブロック図である。図4は、処理ユニット2によって行われるレジスト除去処理の一例を示すフローチャートである。 FIG. 3 is a block diagram showing the control device 3. FIG. 4 is a flowchart showing an example of the resist removal process performed by the processing unit 2.
 図3に示すように、制御装置3は、たとえばマイクロコンピュータなどによって構成されている。制御装置3は、予め定められたプログラムに従って、スピンモータ13、ノズル移動ユニット16、ヒータ21等の動作を制御する。また、制御装置3は、硫酸バルブ19、過酸化水素水バルブ22、マイクロポンプ31、リンス液バルブ37等の開閉を制御するとともに、流量調整バルブ20,23,33のアクチュエータを制御して、当該流量調整バルブ20,23の開度を制御する。 As shown in FIG. 3, the control device 3 is constituted by, for example, a microcomputer. The control device 3 controls the operations of the spin motor 13, the nozzle moving unit 16, the heater 21 and the like according to a predetermined program. The control device 3 controls the opening and closing of the sulfuric acid valve 19, the hydrogen peroxide water valve 22, the micropump 31, the rinse liquid valve 37 and the like, and controls the actuators of the flow rate adjusting valves 20, 23, 33 to The opening degree of the flow regulating valves 20 and 23 is controlled.
 制御装置3は、プログラム等の情報を記憶する記憶部3bと、記憶部3bに記憶された情報にしたがって基板処理装置1を制御する演算部3aとを含む。基板Wの処理手順および処理工程を示すレシピは、記憶部3bに記憶されている。制御装置3は、記憶部3bに記憶されているレシピに基づいて基板処理装置1を制御することにより、以下に説明する各工程を基板処理装置1に実行させるようにプログラムされている。 The control device 3 includes a storage unit 3b that stores information such as a program and an arithmetic unit 3a that controls the substrate processing apparatus 1 according to the information stored in the storage unit 3b. A recipe indicating the processing procedure and processing steps of the substrate W is stored in the storage unit 3b. The control device 3 is programmed to cause the substrate processing apparatus 1 to execute each process described below by controlling the substrate processing apparatus 1 based on the recipe stored in the storage unit 3b.
 以下では、図2および図4を参照しつつレジスト除去処理の一例について説明する。処理の対象となる基板Wは、高ドーズでイオン注入処理が行われた基板である。この基板Wは、レジストをアッシングするための処理を受けていないものとする。 Hereinafter, an example of the resist removal process will be described with reference to FIGS. 2 and 4. The substrate W to be processed is a substrate that has been subjected to ion implantation at a high dose. It is assumed that this substrate W has not undergone a process for ashing the resist.
 処理ユニット2によって基板Wにレジスト除去処理が施されるときには、基板Wをチャンバ4内に搬入する搬入工程が行われる(ステップS1)。具体的には、制御装置3は、全てのノズル等がスピンチャック5の上方から退避している状態で、基板Wを保持している基板搬送ロボットCR(図1参照)のハンドをチャンバ4の内部に進入させることにより、基板Wをその表面が上方に向けられた状態でスピンチャック5の上に置く。その後、制御装置3は、スピンモータ13によって基板Wの回転を開始させる(ステップS2)。基板Wの回転速度は、予め定める処理回転速度(100~500rpmの範囲内。たとえば約300rpm)まで上昇させられ、その処理回転速度に維持される。 When the processing unit 2 performs a resist removal process on the substrate W, a loading process for loading the substrate W into the chamber 4 is performed (step S1). Specifically, the control device 3 moves the hand of the substrate transport robot CR (see FIG. 1) holding the substrate W in the chamber 4 in a state where all the nozzles and the like are retracted from above the spin chuck 5. By entering the inside, the substrate W is placed on the spin chuck 5 with the surface thereof directed upward. Thereafter, the control device 3 starts the rotation of the substrate W by the spin motor 13 (step S2). The rotational speed of the substrate W is increased to a predetermined processing rotational speed (in the range of 100 to 500 rpm, for example, about 300 rpm), and is maintained at the processing rotational speed.
 基板Wの回転速度が処理回転速度に達すると、次いで、制御装置3は、SPMを基板Wに供給するSPM処理工程(ステップS3)を行う。具体的には、制御装置3は、第1のノズル移動ユニット16を制御することにより、SPMノズル14をホーム位置から処理位置に移動させる。これにより、SPMノズル14が基板Wの上方に配置される。 When the rotational speed of the substrate W reaches the processing rotational speed, the control device 3 then performs an SPM processing step (step S3) for supplying SPM to the substrate W. Specifically, the control device 3 moves the SPM nozzle 14 from the home position to the processing position by controlling the first nozzle moving unit 16. Thereby, the SPM nozzle 14 is disposed above the substrate W.
 SPMノズル14が基板Wの上方に配置された後、制御装置3は、硫酸バルブ19、過酸化水素水バルブ22を開き、さらにマイクロポンプ31を駆動させる。これにより、過酸化水素水配管18を流通するHと、フッ酸配管28を流通するHFとが混合部30に流入し、混合液(HF混合H)が生成される(混合工程)。さらに混合部30を通過した混合液と、硫酸配管17の内部を流通するHSOとがSPMノズル14に供給され、SPMノズル14の混合室においてHSOとHとHFとが混合され、高温(たとえば、160℃)のHF混合SPMが生成される(生成工程)。そのHF混合SPMが、SPMノズル14の吐出口から吐出され、基板Wの上面に着液する(供給工程)。制御装置3は、第1のノズル移動ユニット16を制御することにより、この状態で基板Wの上面に対するHF混合SPMの着液位置を中央部と周縁部との間で移動させる。 After the SPM nozzle 14 is disposed above the substrate W, the control device 3 opens the sulfuric acid valve 19 and the hydrogen peroxide water valve 22 and further drives the micropump 31. Thus, the H 2 O 2 flowing hydrogen peroxide water pipe 18, and the HF flowing through the hydrofluoric acid pipe 28 flows into the mixing portion 30, a mixed solution (HF mixture H 2 O 2) is generated ( Mixing step). Further, the mixed solution that has passed through the mixing unit 30 and H 2 SO 4 that flows through the sulfuric acid pipe 17 are supplied to the SPM nozzle 14, and H 2 SO 4 , H 2 O 2, and HF are mixed in the mixing chamber of the SPM nozzle 14. And HF mixed SPM at a high temperature (for example, 160 ° C.) is generated (generation process). The HF mixed SPM is discharged from the discharge port of the SPM nozzle 14 and is deposited on the upper surface of the substrate W (supply process). The control device 3 controls the first nozzle moving unit 16 to move the liquid deposition position of the HF mixed SPM with respect to the upper surface of the substrate W in this state between the central portion and the peripheral portion.
 SPMノズル14から吐出されたHF混合SPMは、処理回転速度(たとえば300rpm)で回転している基板Wの上面に着液した後、遠心力によって基板Wの上面に沿って外方に流れる。そのため、HF混合SPMが基板Wの上面全域に供給され、基板Wの上面全域を覆うHF混合SPMの液膜が基板W上に形成される。 The HF mixed SPM discharged from the SPM nozzle 14 lands on the upper surface of the substrate W rotating at a processing rotation speed (for example, 300 rpm), and then flows outward along the upper surface of the substrate W by centrifugal force. Therefore, the HF mixed SPM is supplied to the entire upper surface of the substrate W, and a liquid film of the HF mixed SPM that covers the entire upper surface of the substrate W is formed on the substrate W.
 これにより、表面に硬化層を有するレジストであっても、効果的に除去することが可能となる。レジスト表面の硬化層は、炭素を主成分とする有機物がイオン注入により硬化したものである。レジストが効果的に除去される理由は、HFには14族元素酸化物(SiO等)を溶解する働きがあり、HF混合SPMに含まれるHFがレジスト表面の有機酸化物を効果的に除去したためであると考えられる。 Thereby, even a resist having a hardened layer on the surface can be effectively removed. The cured layer on the resist surface is obtained by curing an organic substance mainly composed of carbon by ion implantation. The reason why the resist is effectively removed is that HF has a function of dissolving a group 14 element oxide (such as SiO 2 ), and HF contained in the HF mixed SPM effectively removes the organic oxide on the resist surface. This is probably because
 また、レジストの非硬化層に浸透したHFが、レジストと基板Wの表面との境界において、基板Wの表面を構成するSiやSiOを僅かながらエッチングし、これによって、レジストの剥離性能が向上することも考えられる。 In addition, HF that has penetrated into the non-hardened layer of the resist slightly etches Si and SiO 2 constituting the surface of the substrate W at the boundary between the resist and the surface of the substrate W, thereby improving the resist peeling performance. It is also possible to do.
 さらに、制御装置3は、基板Wが回転している状態で、基板Wの上面に対するHF混合SPMの着液位置を中央部と周縁部との間で移動させるので、HF混合SPMの着液位置が、基板Wの上面全域を通過し、基板Wの上面全域が走査される。そのため、SPMノズル14から吐出されたHF混合SPMが、基板Wの上面全域に供給され、基板Wの上面全域が均一に処理される。 Furthermore, since the control device 3 moves the liquid deposition position of the HF mixed SPM with respect to the upper surface of the substrate W between the central portion and the peripheral edge while the substrate W is rotating, the liquid deposition position of the HF mixed SPM is Passes through the entire upper surface of the substrate W, and the entire upper surface of the substrate W is scanned. Therefore, the HF mixed SPM discharged from the SPM nozzle 14 is supplied to the entire upper surface of the substrate W, and the entire upper surface of the substrate W is processed uniformly.
 HF混合SPMの吐出開始から予め定めるHF混合SPM処理時間が経過すると、SPM処理工程(ステップS3)が終了する。SPM処理工程(ステップS3)の終了に引き続いて、Hを基板Wに供給する過酸化水素水供給工程(ステップS4)が行われる。 When a predetermined HF mixing SPM processing time has elapsed from the start of discharging the HF mixing SPM, the SPM processing step (step S3) ends. Subsequent to the end of the SPM processing step (step S3), a hydrogen peroxide solution supplying step (step S4) for supplying H 2 O 2 to the substrate W is performed.
 具体的には、制御装置3は、第1のノズル移動ユニット16を制御することにより、基板Wの上面中央部の上方にSPMノズル14を配置し、その後、過酸化水素水バルブ22を開いた状態に維持しつつ硫酸バルブ19を閉じる。それと同時に、制御装置3は、マイクロポンプ31を停止させる。これにより、Hだけが過酸化水素水配管18および混合液配管27の内部を流通してSPMノズル14に供給される。SPMノズル14に供給された過酸化水素水は、SPMノズル14の内部を通ってSPMノズル14の吐出口から吐出される。そのHが、処理回転速度で回転している基板Wの上面中央部に着液する。すなわち、SPMノズル14から吐出される処理液が、HF混合SPMからHに切り換わる。 Specifically, the control device 3 controls the first nozzle moving unit 16 to dispose the SPM nozzle 14 above the center of the upper surface of the substrate W, and then opens the hydrogen peroxide solution valve 22. The sulfuric acid valve 19 is closed while maintaining the state. At the same time, the control device 3 stops the micropump 31. As a result, only H 2 O 2 flows through the hydrogen peroxide solution pipe 18 and the mixed solution pipe 27 and is supplied to the SPM nozzle 14. The hydrogen peroxide solution supplied to the SPM nozzle 14 passes through the inside of the SPM nozzle 14 and is discharged from the discharge port of the SPM nozzle 14. The H 2 O 2 is deposited on the center of the upper surface of the substrate W rotating at the processing rotation speed. That is, the processing liquid discharged from the SPM nozzle 14 is switched from the HF mixed SPM to H 2 O 2 .
 基板Wの上面中央部に着液したHは、基板Wの周縁部に向かって基板W上を外方に流れる。基板W上のSPMがHに置換され、やがて、基板Wの上面全域が、Hの液膜によって覆われる。 The H 2 O 2 deposited on the center of the upper surface of the substrate W flows outward on the substrate W toward the peripheral edge of the substrate W. The SPM on the substrate W is replaced with H 2 O 2 , and eventually, the entire upper surface of the substrate W is covered with a liquid film of H 2 O 2 .
 過酸化水素水の吐出開始から予め定める過酸化水素水供給時間が経過すると、制御装置3は、過酸化水素水バルブ22を閉じて、SPMノズル14からのHの吐出を停止させる。また、制御装置3は、第1のノズル移動ユニット16を制御することにより、SPMノズル14を処理位置からホーム位置に移動させる。これにより、SPMノズル14が基板Wの上方から退避する。 When a predetermined hydrogen peroxide supply time elapses from the start of the discharge of the hydrogen peroxide solution, the control device 3 closes the hydrogen peroxide solution valve 22 and stops the discharge of H 2 O 2 from the SPM nozzle 14. Further, the control device 3 controls the first nozzle moving unit 16 to move the SPM nozzle 14 from the processing position to the home position. As a result, the SPM nozzle 14 is retracted from above the substrate W.
 次いで、リンス液を基板Wに供給するリンス液供給工程(ステップS5)が行われる。具体的には、制御装置3は、リンス液バルブ37を開いて、基板Wの上面中央部に向けてリンス液ノズル35からリンス液を吐出させる。リンス液ノズル35から吐出されたリンス液は、Hによって覆われている基板Wの上面中央部に着液する。基板Wの上面中央部に着液したリンス液は、基板Wの周縁部に向かって基板W上を外方に流れる。これにより、基板W上のHが、リンス液によって外方に押し流され、基板Wの周囲に排出される。そのため、基板W上のHの液膜が、基板Wの上面全域を覆うリンス液の液膜に置換される。これにより、基板Wの上面の全域においてHが洗い流される。そして、リンス液バルブ37が開かれてからリンス液供給時間が経過すると、制御装置3は、リンス液バルブ37を閉じて、リンス液ノズル35からのリンス液の吐出を停止させる。 Next, a rinsing liquid supply step (step S5) for supplying the rinsing liquid to the substrate W is performed. Specifically, the control device 3 opens the rinse liquid valve 37 and discharges the rinse liquid from the rinse liquid nozzle 35 toward the center of the upper surface of the substrate W. The rinse liquid discharged from the rinse liquid nozzle 35 is deposited on the center of the upper surface of the substrate W covered with H 2 O 2 . The rinse liquid deposited on the center of the upper surface of the substrate W flows outward on the substrate W toward the peripheral edge of the substrate W. As a result, H 2 O 2 on the substrate W is pushed outward by the rinse liquid and discharged around the substrate W. Therefore, the liquid film of H 2 O 2 on the substrate W is replaced with the liquid film of the rinsing liquid that covers the entire upper surface of the substrate W. As a result, H 2 O 2 is washed away in the entire upper surface of the substrate W. When the rinsing liquid supply time elapses after the rinsing liquid valve 37 is opened, the control device 3 closes the rinsing liquid valve 37 and stops the discharge of the rinsing liquid from the rinsing liquid nozzle 35.
 次いで、基板Wを乾燥させる乾燥工程(ステップS6)が行われる。具体的には、制御装置3は、スピンモータ13を制御することにより、乾燥回転速度(たとえば数千rpm)まで基板Wを加速させ、乾燥回転速度で基板Wを回転させる。これにより、大きな遠心力が基板W上の液体に加わり、基板Wに付着している液体が基板Wの周囲に振り切られる。このようにして、基板Wから液体が除去され、基板Wが乾燥する。そして、基板Wの高速回転が開始されてから所定時間が経過すると、制御装置3は、スピンモータ13を制御することにより、スピンチャック5による基板Wの回転を停止させる(ステップS7)。 Next, a drying process (step S6) for drying the substrate W is performed. Specifically, the control device 3 controls the spin motor 13 to accelerate the substrate W to a drying rotation speed (for example, several thousand rpm) and rotate the substrate W at the drying rotation speed. Thereby, a large centrifugal force is applied to the liquid on the substrate W, and the liquid adhering to the substrate W is shaken off around the substrate W. In this way, the liquid is removed from the substrate W, and the substrate W is dried. When a predetermined time elapses after the high-speed rotation of the substrate W is started, the control device 3 controls the spin motor 13 to stop the rotation of the substrate W by the spin chuck 5 (step S7).
 次に、チャンバ4内から基板Wを搬出する搬出工程が行われる(ステップS8)。具体的には、制御装置3は、全てのノズル等がスピンチャック5の上方から退避している状態で、基板搬送ロボットCRのハンドをチャンバ4の内部に進入させる。そして、制御装置3は、基板搬送ロボットCRのハンドにスピンチャック5上の基板Wを保持させる。その後、制御装置3は、基板搬送ロボットCRのハンドをチャンバ4内から退避させる。これにより、処理済みの基板Wがチャンバ4から搬出される。 Next, an unloading process for unloading the substrate W from the chamber 4 is performed (step S8). Specifically, the control device 3 causes the hand of the substrate transport robot CR to enter the chamber 4 in a state where all the nozzles and the like are retracted from above the spin chuck 5. Then, the control device 3 holds the substrate W on the spin chuck 5 by the hand of the substrate transport robot CR. Thereafter, the control device 3 retracts the hand of the substrate transport robot CR from the chamber 4. Thereby, the processed substrate W is unloaded from the chamber 4.
 なお、図4の処理例では、SPM処理工程(ステップS3)の後に過酸化水素水供給工程(ステップS4)を実行するとしたが、過酸化水素水供給工程(ステップS4)は省略することもできる。 In the processing example of FIG. 4, the hydrogen peroxide solution supply step (step S4) is executed after the SPM treatment step (step S3), but the hydrogen peroxide solution supply step (step S4) can be omitted. .
 また、図4の処理例では、SPM処理工程(ステップS3)において、基板WをSPM処理速度(たとえば約300rpm)で回転させる場合について説明したが、SPM処理工程(ステップS3)の少なくとも一部の期間において、基板Wをパドル状態としてもよい。パドル状態とは、基板Wの上面が液膜で覆われており、かつ、基板が回転方向に静止しているまたは低回転速度(50rpm以下)で回転している状態を意味する。パドル状態では、基板W上からのSPMの排出が抑制されて基板Wの上面にSPMの液膜が保持される。基板Wがパドル状態のとき、基板Wに対するSPMの供給(SPMの吐出)を停止してもよい。 In the processing example of FIG. 4, the case where the substrate W is rotated at the SPM processing speed (for example, about 300 rpm) in the SPM processing step (step S3) has been described. However, at least a part of the SPM processing step (step S3) is described. In the period, the substrate W may be in a paddle state. The paddle state means a state in which the upper surface of the substrate W is covered with a liquid film and the substrate is stationary in the rotation direction or rotating at a low rotation speed (50 rpm or less). In the paddle state, the discharge of SPM from the substrate W is suppressed, and the SPM liquid film is held on the upper surface of the substrate W. When the substrate W is in the paddle state, the supply of SPM (discharge of SPM) to the substrate W may be stopped.
 次に、レジスト除去試験について説明する。 Next, the resist removal test will be described.
 図5は、レジスト除去試験の条件および結果を示す図である。このレジスト除去試験は、SPM中のHFの濃度とレジスト除去性能との関係を確認するためのものである。 FIG. 5 is a diagram showing conditions and results of a resist removal test. This resist removal test is for confirming the relationship between the concentration of HF in the SPM and the resist removal performance.
 この試験で用いられた試料は、KrF(フッ化クリプトン)エキシマレーザ用レジストのパターンが表面全域に隙間なく形成され、このレジストパターンをマスクとしてAs(ヒ素)がドーズ量1×1016atoms/cm、ドーズエネルギー40kevで表面にイオン注入された、直径300mmのシリコンウエハWである。 In the sample used in this test, a resist pattern for KrF (krypton fluoride) excimer laser was formed on the entire surface without gaps, and As (arsenic) was dosed at 1 × 10 16 atoms / cm using this resist pattern as a mask. 2. A silicon wafer W having a diameter of 300 mm and ion-implanted into the surface with a dose energy of 40 kev.
 この試料に基板処理装置1を用いて、次に述べる実施例および比較例のレジスト除去処理を行った。そして、レジスト除去処理後のレジストの残りの有無および、レジスト以外へのダメージの程度を、電子顕微鏡を用いて観察した。なお、ステップS3のSPM処理工程で用いられるSPMにおける、HSOとHとの混合比(流量比)は2:1とし、ステップS3のSPM処理工程の処理時間を1分とした。この時、HFの濃度を0(比較例)~10000ppm(データ3)まで変化させた。HFを添加する場合、Hの流量は、HFとHとの混合液の流量を意味する。 Using this substrate, the substrate processing apparatus 1 was used to carry out resist removal processing of Examples and Comparative Examples described below. Then, the presence or absence of the remaining resist after the resist removal treatment and the degree of damage to other than the resist were observed using an electron microscope. The mixing ratio (flow rate ratio) of H 2 SO 4 and H 2 O 2 in the SPM used in the SPM processing step of Step S3 is 2: 1, and the processing time of the SPM processing step of Step S3 is 1 minute. did. At this time, the concentration of HF was changed from 0 (comparative example) to 10000 ppm (data 3). When adding HF, flow rate of H 2 O 2 means the flow rate of the mixed solution of HF and H 2 O 2.
 <実施例>
 HFの濃度が違うHF混合SPMによって同様の処理を行った。この時のHF混合SPM中のHF濃度は以下の通りである。
<Example>
The same treatment was performed with HF mixed SPM having different HF concentrations. The HF concentration in the HF mixed SPM at this time is as follows.
 データ1(100ppm)
 データ2(1000ppm)
 データ3(10000ppm)
 <比較例>
 前述の実施例において、HFが含まれないSPMで同様の処理を行った。
Data 1 (100 ppm)
Data 2 (1000ppm)
Data 3 (10000 ppm)
<Comparative example>
In the above-described embodiment, the same processing was performed using an SPM that does not contain HF.
 このレジスト除去試験の結果を図5に示す。図5では、レジスト残りがなく、かつ、基板表面へのダメージが無い場合を「○」、少量のレジスト残りが生じている場合を「△1」、レジストの剥離は出来ているが、基板表面にダメージがある場合を「△2」、多量のレジスト残りが生じている場合、もしくはレジストが全く剥離されていない場合を「×」として示す。 The results of this resist removal test are shown in FIG. In FIG. 5, “○” indicates that there is no resist residue and no damage to the substrate surface, and “Δ1” indicates that a small amount of resist residue is generated. The case where there is damage is indicated by “Δ2”, the case where a large amount of resist remains, or the case where the resist is not peeled off at all, is indicated by “X”.
 図5に示すように、実施例では、HF濃度の上昇に応じて、レジスト剥離性能が向上している。しかし、パターン形状によっては、HF濃度が1000ppmの場合であっても、基板表面へのダメージ、つまり、基板表面のエッチングが確認された。また、HF濃度が10000ppmでは、すべてのパターン形状において基板表面へのダメージが確認された。一方、比較例では、高ドーズのイオン注入が行われたシリコンウエハWに対して、レジスト剥離はほとんど見られなかった。 As shown in FIG. 5, in the example, the resist stripping performance is improved as the HF concentration increases. However, depending on the pattern shape, damage to the substrate surface, that is, etching of the substrate surface was confirmed even when the HF concentration was 1000 ppm. Further, when the HF concentration was 10,000 ppm, damage to the substrate surface was confirmed in all pattern shapes. On the other hand, in the comparative example, almost no resist peeling was observed with respect to the silicon wafer W on which high-dose ion implantation was performed.
 以上のように、SPMにHFを混合させることにより、レジスト剥離性能を向上させることができることがわかる。 As described above, it can be seen that the resist stripping performance can be improved by mixing HF with SPM.
 以上、この発明の一実施形態について説明したが、本発明は他の形態で実施することもできる。 Although one embodiment of the present invention has been described above, the present invention can be implemented in other forms.
 前述の実施形態では、SPM供給ユニット6は混合部30によって混合された混合液をSPMノズル14に案内する混合液配管27を備えていたが、これに限るものではない。図6は他の実施形態に係るSPM供給ユニット6aを示す図である。なお、図6では図2と共通の機器には共通の番号を付し、その説明を省略する。 In the above-described embodiment, the SPM supply unit 6 includes the mixed solution pipe 27 that guides the mixed solution mixed by the mixing unit 30 to the SPM nozzle 14, but is not limited thereto. FIG. 6 is a diagram showing an SPM supply unit 6a according to another embodiment. In FIG. 6, the same devices as those in FIG.
 図6に示すSPM供給ユニット6aの混合液配管27は、混合部30に変えて、混合タンク130に接続される。混合液ポンプ131は、混合液配管27に介装されている。混合タンク130には、過酸化水素供給源からHが供給される過酸化水素水配管18と、フッ酸供給源からHFが供給されるフッ酸配管28とが接続される。 A mixed liquid pipe 27 of the SPM supply unit 6 a shown in FIG. 6 is connected to the mixing tank 130 instead of the mixing unit 30. The mixed liquid pump 131 is interposed in the mixed liquid pipe 27. Connected to the mixing tank 130 are a hydrogen peroxide pipe 18 to which H 2 O 2 is supplied from a hydrogen peroxide supply source and a hydrofluoric acid pipe 28 to which HF is supplied from a hydrofluoric acid supply source.
 フッ酸配管28には、フッ酸配管28を開閉するフッ酸バルブ32と、HFの流量を変更するフッ酸流量調整バルブ33とが、混合タンク130側からこの順に介装されている。混合タンク130には、温度調整されていない常温(約23℃)のHFが、フッ酸配管28を通して供給される。 The hydrofluoric acid pipe 28 is provided with a hydrofluoric acid valve 32 for opening and closing the hydrofluoric acid pipe 28 and a hydrofluoric acid flow rate adjusting valve 33 for changing the flow rate of HF in this order from the mixing tank 130 side. The mixing tank 130 is supplied with HF at room temperature (about 23 ° C.) whose temperature is not adjusted through the hydrofluoric acid pipe 28.
 制御装置3は、SPM処理工程(ステップS3)に先立って、混合タンク130にて混合液(HF混合H)を調合する調合工程を実行する。具体的には、制御装置3は、過酸化水素水バルブ22を開くことにより、所定濃度のHを混合タンク130に30L供給する。その後、制御装置3は、フッ酸バルブ32を開くことにより、所定濃度のHFを混合タンク130に10ml~100ml供給する。混合タンク130へのHFの供給は、Hの供給開始前または後に開始されてもよいし、Hの供給と同時に開始されてもよい。 Prior to the SPM processing step (step S3), the control device 3 executes a blending step of blending the mixed solution (HF mixed H 2 O 2 ) in the mixing tank 130. Specifically, the control device 3 supplies 30 L of a predetermined concentration of H 2 O 2 to the mixing tank 130 by opening the hydrogen peroxide solution valve 22. Thereafter, the control device 3 opens the hydrofluoric acid valve 32 to supply 10 ml to 100 ml of HF having a predetermined concentration to the mixing tank 130. The supply of HF to the mixing tank 130 may be started before or after the supply of H 2 O 2 is started, or may be started simultaneously with the supply of H 2 O 2 .
 HおよびHFは、混合タンク130内で混合される。SPM供給ユニット6aは、混合タンク130内のHおよびHFを撹拌する撹拌ユニットをさらに備えていてもよい。撹拌ユニットは、たとえば、混合タンク130内の混合液中に配置された気体吐出口132aから窒素ガスなどの気体を吐出することにより、混合液中に気泡を発生させるバブリングユニット132である。撹拌ユニットが設けられている場合、混合タンク130内のHおよびHFは、より均一に混合される。 H 2 O 2 and HF are mixed in the mixing tank 130. The SPM supply unit 6 a may further include a stirring unit that stirs the H 2 O 2 and HF in the mixing tank 130. The stirring unit is, for example, a bubbling unit 132 that generates bubbles in the liquid mixture by discharging a gas such as nitrogen gas from a gas discharge port 132a disposed in the liquid mixture in the mixing tank 130. When a stirring unit is provided, H 2 O 2 and HF in the mixing tank 130 are mixed more uniformly.
 混合タンク130内でHと混合されるHFは、通常よりも低濃度(たとえば、フッ化水素:水=1:100等)であってもよい。この場合、HF混合Hに含まれるフッ化水素の量を高精度で制御できる。 The concentration of HF mixed with H 2 O 2 in the mixing tank 130 may be lower than usual (for example, hydrogen fluoride: water = 1: 100). In this case, the amount of hydrogen fluoride contained in the HF mixed H 2 O 2 can be controlled with high accuracy.
 混合タンク130で生成されたHF混合Hは、混合液ポンプ131によってSPMノズル14に供給される。同様に、HSOは、硫酸配管17からSPMノズル14に供給される。SPMノズル14の混合室に流入したHSO、H、およびHFは、混合室で十分に撹拌混合され、これによって、HF混合SPMが生成される。その後、HF混合SPMは、SPMノズル14から吐出され、基板W上に供給される。この実施形態に係るSPM供給ユニット6aでは、前述の実施形態よりもHF濃度の薄いH/HF混合液を生成することが可能となる。その理由は、配管やバルブ内でHおよびHFを混合する場合に比べて、HおよびHFの割合を自由に変更できるからである。 The HF mixed H 2 O 2 generated in the mixing tank 130 is supplied to the SPM nozzle 14 by the mixed liquid pump 131. Similarly, H 2 SO 4 is supplied from the sulfuric acid pipe 17 to the SPM nozzle 14. The H 2 SO 4 , H 2 O 2 , and HF that have flowed into the mixing chamber of the SPM nozzle 14 are sufficiently stirred and mixed in the mixing chamber, thereby generating an HF mixed SPM. Thereafter, the HF mixed SPM is discharged from the SPM nozzle 14 and supplied onto the substrate W. In the SPM supply unit 6a according to this embodiment, it is possible to generate a H 2 O 2 / HF mixed liquid having a HF concentration lower than that in the above-described embodiment. The reason is that the ratio of H 2 O 2 and HF can be freely changed as compared with the case where H 2 O 2 and HF are mixed in a pipe or a valve.
 また、前述の実施形態および他の実施形態では、HSO、H、およびHFが一つのSPMノズル14に供給されたが、これに限るものではない。図7は、他の実施形態に係るSPM供給ユニット6bを示す図である。 In the above-described embodiment and other embodiments, H 2 SO 4 , H 2 O 2 , and HF are supplied to one SPM nozzle 14. However, the present invention is not limited to this. FIG. 7 is a diagram showing an SPM supply unit 6b according to another embodiment.
 SPM供給ユニット6bは、硫酸ノズル14a、およびH/HFノズル14bを備える。硫酸ノズル14aは、基板Wに向けてHSOを吐出する。H/HFノズル14bは、混合部30から供給されたH/HF混合液を基板Wに向けて吐出する。H/HFノズル14bは、混合タンク130から供給されたH/HF混合液を基板Wに向けて吐出してもよい。 The SPM supply unit 6b includes a sulfuric acid nozzle 14a and an H 2 O 2 / HF nozzle 14b. The sulfuric acid nozzle 14 a discharges H 2 SO 4 toward the substrate W. The H 2 O 2 / HF nozzle 14 b discharges the H 2 O 2 / HF mixed solution supplied from the mixing unit 30 toward the substrate W. The H 2 O 2 / HF nozzle 14 b may discharge the H 2 O 2 / HF mixed solution supplied from the mixing tank 130 toward the substrate W.
 硫酸ノズル14aからの硫酸と、H/HFノズル14bからのH/HF混合液とが、回転する基板Wに供給され、これによって、HSO、H、およびHFが基板W上で撹拌混合される。これにより、HF混合SPMが生成される。換言すれば、硫酸ノズル14aおよびH/HFノズル14bを含むHF混合SPM生成ユニットは、基板W上でHF混合SPMを生成する。この実施形態に係るSPM供給ユニット6bでは、前述の実施形態と比較して、より基板Wに近い領域でHF混合SPMが生成される。そのため、SPMの化学的活性度を高い状態に維持したまま、基板Wを処理することが可能となる。 The sulfuric acid from the sulfuric acid nozzle 14a and the H 2 O 2 / HF mixed solution from the H 2 O 2 / HF nozzle 14b are supplied to the rotating substrate W, whereby H 2 SO 4 , H 2 O 2 , And HF are stirred and mixed on the substrate W. Thereby, HF mixing SPM is produced | generated. In other words, the HF mixed SPM generating unit including the sulfuric acid nozzle 14 a and the H 2 O 2 / HF nozzle 14 b generates the HF mixed SPM on the substrate W. In the SPM supply unit 6b according to this embodiment, the HF mixed SPM is generated in a region closer to the substrate W than in the above-described embodiment. Therefore, it becomes possible to process the substrate W while maintaining the chemical activity of the SPM at a high level.
 また、前述の各実施形態では、基板処理装置1が、円板状の基板Wを処理する装置である場合について説明したが、基板処理装置1は、液晶表示装置用基板などの多角形の基板Wを処理する装置であってもよい。 In each of the above-described embodiments, the case where the substrate processing apparatus 1 is an apparatus that processes the disk-shaped substrate W has been described. However, the substrate processing apparatus 1 is a polygonal substrate such as a substrate for a liquid crystal display device. An apparatus for processing W may be used.
 この出願は、2015年3月24日に日本国特許庁に提出された特願2015-61287号と、2015年12月17日に日本国特許庁に提出された特願2015-246629号とに対応しており、この出願の全開示はここに引用により組み込まれるものとする。 This application was filed in Japanese Patent Application No. 2015-61287 filed with the Japan Patent Office on March 24, 2015, and Japanese Patent Application No. 2015-246629 filed with the Japan Patent Office on December 17, 2015. And the entire disclosure of this application is hereby incorporated by reference.
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の精神および範囲は添付の請求の範囲によってのみ限定される。 Although the embodiments of the present invention have been described in detail, these are merely specific examples used to clarify the technical contents of the present invention, and the present invention is construed to be limited to these specific examples. The spirit and scope of the present invention should not be limited only by the appended claims.
  1  基板処理装置
  3  制御装置
  5  スピンチャック(基板保持ユニット)
  6  SPM供給ユニット
 14  SPMノズル(HF混合SPM生成ユニット)
14a  硫酸ノズル(HF混合SPM生成ユニット)
14b  H/HFノズル(HF混合SPM生成ユニット)
 30  混合部(混合ユニット)
130  混合タンク(混合ユニット)
132  バブリングユニット(撹拌ユニット)
132a 気体吐出口
  W  基板
1 substrate processing device 3 control device 5 spin chuck (substrate holding unit)
6 SPM supply unit 14 SPM nozzle (HF mixed SPM generation unit)
14a Sulfuric acid nozzle (HF mixed SPM generation unit)
14b H 2 O 2 / HF nozzle (HF mixed SPM generating unit)
30 mixing section (mixing unit)
130 Mixing tank (mixing unit)
132 Bubbling unit (stirring unit)
132a Gas outlet W Substrate

Claims (9)

  1.  基板の表面からレジストを除去する基板処理方法であって、
     過酸化水素水とフッ酸とを混合し、過酸化水素水およびフッ酸の混合液を生成する混合工程と、
     前記混合工程の後に、前記過酸化水素水およびフッ酸の混合液と硫酸とを混合し、硫酸、過酸化水素水、およびフッ酸の混合液であるHF混合SPMを生成する生成工程と、
     前記HF混合SPMを前記基板の表面に供給する供給工程と、を含む、基板処理方法。
    A substrate processing method for removing a resist from a surface of a substrate,
    A mixing step of mixing hydrogen peroxide water and hydrofluoric acid to produce a mixture of hydrogen peroxide water and hydrofluoric acid;
    After the mixing step, the hydrogen peroxide solution and hydrofluoric acid mixed solution and sulfuric acid are mixed with each other to generate sulfuric acid, hydrogen peroxide solution, and hydrofluoric acid mixed solution SPM,
    And a supply step of supplying the HF mixed SPM to the surface of the substrate.
  2.  前記混合工程で混合される過酸化水素水およびフッ酸は、いずれも常温である、請求項1に記載の基板処理方法。 The substrate processing method according to claim 1, wherein the hydrogen peroxide solution and hydrofluoric acid mixed in the mixing step are both at room temperature.
  3.  前記生成工程は、前記基板から離れた位置で前記過酸化水素水およびフッ酸の混合液と硫酸とを混合する工程である、請求項1または2に記載の基板処理方法。 3. The substrate processing method according to claim 1, wherein the generating step is a step of mixing the hydrogen peroxide solution and hydrofluoric acid mixed solution and sulfuric acid at a position away from the substrate.
  4.  前記生成工程は、前記基板の表面で前記過酸化水素水およびフッ酸の混合液と硫酸とを混合する工程である、請求項1または2に記載の基板処理方法。 3. The substrate processing method according to claim 1, wherein the generating step is a step of mixing the hydrogen peroxide solution and hydrofluoric acid mixed solution and sulfuric acid on the surface of the substrate.
  5.  表面がレジストで覆われている基板を保持する基板保持ユニットと、
     前記基板保持ユニットに保持されている基板の表面に、硫酸、過酸化水素水、およびフッ酸の混合液であるHF混合SPMを供給するSPM供給ユニットと、を備え、
     前記SPM供給ユニットは、
     過酸化水素水とフッ酸とを混合し、過酸化水素水およびフッ酸の混合液を生成する混合ユニットと、
     前記混合ユニットが過酸化水素水とフッ酸とを混合した後に、前記過酸化水素水およびフッ酸の混合液と硫酸とを混合し、HF混合SPMを生成するHF混合SPM生成ユニットと、を含む、基板処理装置。
    A substrate holding unit for holding a substrate whose surface is covered with a resist;
    An SPM supply unit for supplying HF mixed SPM, which is a mixed solution of sulfuric acid, hydrogen peroxide solution, and hydrofluoric acid, to the surface of the substrate held by the substrate holding unit;
    The SPM supply unit is
    A mixing unit that mixes hydrogen peroxide and hydrofluoric acid to produce a mixture of hydrogen peroxide and hydrofluoric acid;
    An HF mixed SPM generating unit that mixes the hydrogen peroxide solution and hydrofluoric acid and then mixes the hydrogen peroxide solution and hydrofluoric acid with sulfuric acid to generate an HF mixed SPM. Substrate processing equipment.
  6.  前記混合ユニットは、過酸化水素水およびフッ酸が個別に供給され、前記HF混合SPM生成ユニットに供給される前記過酸化水素水およびフッ酸の混合液を貯留する混合タンクを含む、請求項5に記載の基板処理装置。 The mixing unit includes a mixing tank that is supplied with hydrogen peroxide solution and hydrofluoric acid separately and stores the mixed solution of the hydrogen peroxide solution and hydrofluoric acid supplied to the HF mixed SPM generating unit. 2. The substrate processing apparatus according to 1.
  7.  前記混合ユニットは、前記混合タンク内の前記混合液を撹拌する撹拌ユニットをさらに含む、請求項6に記載の基板処理装置。 The substrate processing apparatus according to claim 6, wherein the mixing unit further includes an agitation unit for agitating the mixed liquid in the mixing tank.
  8.  前記撹拌ユニットは、前記混合タンクに貯留されている前記混合液中に配置された気体吐出口から気体を吐出することにより、前記混合液中に気泡を発生させるバブリングユニットを含む、請求項7に記載の基板処理装置。 The agitation unit includes a bubbling unit that generates bubbles in the mixed liquid by discharging gas from a gas discharge port arranged in the mixed liquid stored in the mixing tank. The substrate processing apparatus as described.
  9.  前記混合ユニットは、過酸化水素水と、前記過酸化水素水よりも少量のフッ酸とを混合し、
     前記HF混合SPM生成ユニットは、硫酸と、前記硫酸よりも少量の前記混合液とを混合する、請求項5~8のいずれか一項に記載の基板処理装置。
    The mixing unit mixes a hydrogen peroxide solution and a smaller amount of hydrofluoric acid than the hydrogen peroxide solution,
    The substrate processing apparatus according to any one of claims 5 to 8, wherein the HF mixed SPM generating unit mixes sulfuric acid with a smaller amount of the mixed liquid than the sulfuric acid.
PCT/JP2016/055646 2015-03-24 2016-02-25 Substrate processing method and substrate processing device WO2016152371A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177026290A KR101988848B1 (en) 2015-03-24 2016-02-25 Substrate processing method and substrate processing device
US15/559,076 US10668497B2 (en) 2015-03-24 2016-02-25 Substrate processing method and substrate processing device
CN201680017231.0A CN107430987B (en) 2015-03-24 2016-02-25 Substrate processing method and substrate processing apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015061287 2015-03-24
JP2015-061287 2015-03-24
JP2015-246629 2015-12-17
JP2015246629A JP6493839B2 (en) 2015-03-24 2015-12-17 Substrate processing method and substrate processing apparatus

Publications (1)

Publication Number Publication Date
WO2016152371A1 true WO2016152371A1 (en) 2016-09-29

Family

ID=56978849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055646 WO2016152371A1 (en) 2015-03-24 2016-02-25 Substrate processing method and substrate processing device

Country Status (1)

Country Link
WO (1) WO2016152371A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112631089A (en) * 2019-09-24 2021-04-09 株式会社斯库林集团 Substrate processing method and substrate processing apparatus
WO2023127217A1 (en) * 2021-12-27 2023-07-06 株式会社Screenホールディングス Substrate treatment method and substrate treatment apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250400A (en) * 1995-03-14 1996-09-27 Mitsubishi Electric Corp Removing method for silicone resin
JP2002313771A (en) * 2001-02-07 2002-10-25 Matsushita Electric Ind Co Ltd Manufacturing method for semiconductor device
JP2002343762A (en) * 2001-04-17 2002-11-29 Internatl Business Mach Corp <Ibm> Wet washing apparatus and method therefor
JP2011068937A (en) * 2009-09-25 2011-04-07 Toshiba Corp Cleaning liquid, cleaning method, cleaning system and method for manufacturing microstructure
JP2013175592A (en) * 2012-02-24 2013-09-05 Tokyo Electron Ltd Liquid processing device, liquid processing method, and storage medium storing computer program for performing liquid processing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250400A (en) * 1995-03-14 1996-09-27 Mitsubishi Electric Corp Removing method for silicone resin
JP2002313771A (en) * 2001-02-07 2002-10-25 Matsushita Electric Ind Co Ltd Manufacturing method for semiconductor device
JP2002343762A (en) * 2001-04-17 2002-11-29 Internatl Business Mach Corp <Ibm> Wet washing apparatus and method therefor
JP2011068937A (en) * 2009-09-25 2011-04-07 Toshiba Corp Cleaning liquid, cleaning method, cleaning system and method for manufacturing microstructure
JP2013175592A (en) * 2012-02-24 2013-09-05 Tokyo Electron Ltd Liquid processing device, liquid processing method, and storage medium storing computer program for performing liquid processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112631089A (en) * 2019-09-24 2021-04-09 株式会社斯库林集团 Substrate processing method and substrate processing apparatus
WO2023127217A1 (en) * 2021-12-27 2023-07-06 株式会社Screenホールディングス Substrate treatment method and substrate treatment apparatus

Similar Documents

Publication Publication Date Title
JP6493839B2 (en) Substrate processing method and substrate processing apparatus
JP4672487B2 (en) Resist removing method and resist removing apparatus
KR101833684B1 (en) Substrate processing method and substrate processing apparatus
CN110364431B (en) Substrate processing method and substrate processing apparatus
JP4986566B2 (en) Substrate processing method and substrate processing apparatus
US11764055B2 (en) Substrate processing method and substrate processing device
JP6438649B2 (en) Substrate processing method and substrate processing apparatus
US10790134B2 (en) Substrate processing method
CN110364453B (en) Substrate processing method and substrate processing apparatus
US20180204743A1 (en) Substrate treatment method and substrate treatment device
JP2009267167A (en) Substrate-treating device
JP4963994B2 (en) Substrate processing apparatus and substrate processing method
JP2005268307A (en) Method and apparatus of resist peeling
JP2017175166A (en) Substrate processing method and substrate processing device
JP2015109335A (en) Substrate processing apparatus and substrate processing method
WO2016152371A1 (en) Substrate processing method and substrate processing device
JP4908879B2 (en) Substrate processing method and substrate processing apparatus
JP2007234812A (en) Substrate processing method and substrate processing device
JP6560373B2 (en) Substrate processing method and substrate processing apparatus
JP7094147B2 (en) Board processing method and board processing equipment
WO2024062759A1 (en) Substrate processing apparatus and substrate processing method
JP2005347639A (en) Substrate processing method and substrate processing equipment
WO2024075808A1 (en) Substrate treatment device
JP2024055115A (en) Substrate Processing Equipment
JP2019169647A (en) Substrate processing method and substrate processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177026290

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15559076

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768274

Country of ref document: EP

Kind code of ref document: A1