WO2016152029A1 - Engine system and saddle-type vehicle - Google Patents

Engine system and saddle-type vehicle Download PDF

Info

Publication number
WO2016152029A1
WO2016152029A1 PCT/JP2016/001032 JP2016001032W WO2016152029A1 WO 2016152029 A1 WO2016152029 A1 WO 2016152029A1 JP 2016001032 W JP2016001032 W JP 2016001032W WO 2016152029 A1 WO2016152029 A1 WO 2016152029A1
Authority
WO
WIPO (PCT)
Prior art keywords
crankshaft
engine
angle
torque
engine system
Prior art date
Application number
PCT/JP2016/001032
Other languages
French (fr)
Japanese (ja)
Inventor
裕生 山口
貴裕 増田
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Publication of WO2016152029A1 publication Critical patent/WO2016152029A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/10Safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N3/00Other muscle-operated starting apparatus
    • F02N3/04Other muscle-operated starting apparatus having foot-actuated levers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means

Definitions

  • the present invention relates to an engine system and a saddle-ride type vehicle equipped with the same.
  • a saddle-ride type vehicle such as a motorcycle equipped with an engine may be provided with a mechanism for starting the engine manually.
  • Patent Document 1 describes a kick starter provided in a motorcycle.
  • the kick starter includes a kick pedal for applying torque to the crankshaft of the engine.
  • An occupant of the saddle riding type vehicle can start the engine by depressing the kick pedal.
  • JP 2012-67700 A JP 2012-67700 A
  • a torque that should be applied to the crankshaft when starting the engine can be reduced by providing a decompression mechanism (decompression mechanism) in the valve drive unit that opens the valve of the engine to reduce the pressure in the cylinder.
  • a decompression mechanism decompression mechanism
  • the occupant can start the engine even when the kick pedal is depressed with a weaker force.
  • a decompression mechanism is provided in the valve drive unit, the valve drive unit becomes complicated.
  • An object of the present invention is to provide an engine system and a saddle-ride type vehicle that can easily start an engine by human power with a simple configuration.
  • An engine system includes an engine, a manual starter that is manually operated by a user to start the engine, and a control unit configured to control the engine. , Configured to drive a crankshaft rotatably provided in the forward or reverse direction, a fuel injection device disposed in the intake passage, an intake valve that opens and closes the intake port, and an exhaust valve that opens and closes the exhaust port A manual valve drive unit and an ignition device configured to ignite an air-fuel mixture in the combustion chamber.
  • the manual start unit includes an input unit to which a user's human power is applied when starting the engine, and an input unit.
  • a power transmission unit that transmits the generated human power to the crankshaft as a torque for rotating the crankshaft in the reverse direction.
  • control unit drives the intake valve so that the fuel injected by is guided to the combustion chamber from the intake passage through the intake port at a first time point in the period in which the crankshaft is rotated in the reverse direction.
  • the air-fuel mixture is compressed in the combustion chamber due to the reverse rotation of the crankshaft, and the air-fuel mixture becomes the air-fuel mixture at the second time when the piston does not reach the compression top dead center.
  • the ignition device is controlled to ignite, and the power transmission unit interrupts transmission of torque from the crankshaft to the input unit or rotates torque from the crankshaft to the input unit when the crankshaft rotates in the positive direction. Attenuate.
  • the user's human power is applied to the input part of the manual starting part when starting the engine.
  • Human power applied to the input unit is transmitted as torque to the crankshaft by the power transmission unit of the manual starter.
  • the crankshaft rotates in the reverse direction.
  • the intake valve is driven by the valve drive unit so that the fuel injected by the fuel injection device is guided from the intake passage through the intake port into the combustion chamber at a first time point during which the crankshaft is rotated in the reverse direction. .
  • the fuel is introduced into the combustion chamber at the first time point, at a second time point when the air-fuel mixture is compressed in the combustion chamber due to the reverse rotation of the crankshaft and the piston does not reach the compression top dead center.
  • the mixture is ignited by the ignition device.
  • the piston is driven so that the crankshaft rotates in the positive direction by the energy of combustion generated in the combustion chamber.
  • sufficient torque in the positive direction is obtained, and the crank angle can easily exceed the angle corresponding to the first compression top dead center. Therefore, the engine can be started stably.
  • Torque from the crankshaft to the input unit during rotation of the crankshaft in the positive direction is interrupted or attenuated by the power transmission unit. Therefore, after the engine is started, the rotation of the input unit due to the crankshaft torque can be prevented.
  • the engine can be easily started with weaker human power without providing a decompression mechanism (decompression mechanism) in the valve drive unit. Therefore, the configuration of the engine system can be simplified. As a result, the engine can be easily started manually with a simple configuration.
  • the control unit may prohibit ignition of the air-fuel mixture of the ignition device when the rotational speed in the reverse direction of the crankshaft exceeds a predetermined threshold at the second time point.
  • the engine when the reverse rotation speed of the crankshaft exceeds the threshold value, the mixture is not ignited at the second time point for the first time, and the second and subsequent rotation speeds are below the threshold value.
  • the air-fuel mixture is ignited at the second time point. Therefore, even when a very large human power is applied to the manual starter, the engine can be appropriately started with a simple configuration.
  • the power transmission unit may include a reverse input suppression function that transmits torque from the input unit to the crankshaft but limits torque transmitted from the crankshaft to the input unit.
  • the torque from the crankshaft to the input section when the crankshaft rotates in the positive direction can be cut off or attenuated with a simple configuration.
  • the manual starting unit may include a kick starting unit, and the input unit may include a kick pedal.
  • the user can easily start the engine by depressing the kick pedal of the kick starting portion.
  • the engine system further includes a motor that is provided on the crankshaft and is configured to be capable of rotationally driving the crankshaft in the forward direction, and the control unit causes the motor to move the crankshaft in the forward direction after the second time point. It may be driven.
  • the motor may rotate the crankshaft in the reverse direction.
  • the user when sufficient electric power remains in the engine system, the user can start the engine system more easily when a predetermined start condition is satisfied.
  • the user when sufficient electric power does not remain in the engine system, the user can easily start the engine by applying human power to the input unit of the manual starting unit.
  • the motor may include a rotating electric machine that can generate electric power by rotating the crankshaft after the engine is started.
  • a saddle-ride type vehicle includes a main body having drive wheels and an engine system according to one aspect of the present invention that generates power for rotating the drive wheels.
  • the user's human power is applied to the input part of the manual starting part when the engine is started. Human power applied to the input unit is transmitted as torque to the crankshaft by the power transmission unit of the manual starter. As a result, the crankshaft rotates in the reverse direction.
  • the intake valve is driven by the valve drive unit so that the fuel injected by the fuel injection device is guided from the intake passage through the intake port into the combustion chamber at a first time point during which the crankshaft is rotated in the reverse direction. .
  • the fuel is introduced into the combustion chamber at the first time point, at a second time point when the air-fuel mixture is compressed in the combustion chamber due to the reverse rotation of the crankshaft and the piston does not reach the compression top dead center.
  • the mixture is ignited by the ignition device.
  • the piston is driven so that the crankshaft rotates in the positive direction by the energy of combustion generated in the combustion chamber.
  • sufficient torque in the positive direction is obtained, and the crank angle can easily exceed the angle corresponding to the first compression top dead center. Therefore, the engine can be started stably.
  • Torque from the crankshaft to the input unit during rotation of the crankshaft in the positive direction is interrupted or attenuated by the power transmission unit. Therefore, after the engine is started, the rotation of the input unit due to the crankshaft torque can be prevented.
  • the engine can be easily started with weaker human power without providing a decompression mechanism (decompression mechanism) in the valve drive unit. Therefore, the configuration of the engine system can be simplified. As a result, the engine can be easily started manually with a simple configuration.
  • the engine can be easily started manually with a simple configuration.
  • FIG. 1 is a schematic side view showing a schematic configuration of a motorcycle according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining the configuration of the engine system.
  • FIG. 3 is a partially enlarged sectional view of the engine unit.
  • FIG. 4 is an enlarged cross-sectional view for explaining the details of the power transmission unit.
  • FIG. 5 is an enlarged cross-sectional view for explaining details of the power transmission unit.
  • FIG. 6 is a schematic diagram for explaining the operation of the power transmission unit.
  • FIG. 7 is a schematic diagram for explaining the operation of the power transmission unit.
  • FIG. 8 is a diagram for explaining the normal operation of the engine unit.
  • FIG. 9 is a diagram for explaining the reverse rotation start operation of the engine unit.
  • FIG. 10 is a diagram for explaining engine starting in the reverse rotation starting operation.
  • FIG. 11 is a flowchart of the engine start process.
  • FIG. 1 is a schematic side view showing a schematic configuration of a motorcycle according to an embodiment of the present invention.
  • a front fork 2 is provided at the front portion of the vehicle body 1 so as to be swingable in the left-right direction.
  • a handle 4 is attached to the upper end of the front fork 2, and a front wheel 3 is rotatably attached to the lower end of the front fork 2.
  • the seat 5 is provided at the substantially upper center of the vehicle body 1. Below the seat 5, an ECU (Engine Control Unit) 6 and an engine unit EU are provided.
  • the engine unit EU includes, for example, a single cylinder engine 10.
  • the engine system 200 is configured by the ECU 6 and the engine unit EU.
  • a rear wheel 7 is rotatably attached to the lower rear end of the vehicle body 1. The rear wheel 7 is rotationally driven by the power generated by the engine 10.
  • FIG. 2 is a schematic diagram for explaining the configuration of the engine system 200.
  • the engine unit EU includes an engine 10, a rotating electrical machine 14, and a manual starter 500.
  • the engine 10 includes a piston 11, a connecting rod (connecting rod) 12, a crankshaft 13, an intake valve 15, an exhaust valve 16, a valve drive unit 17, a spark plug 18, and an injector 19.
  • the piston 11 is provided so as to be able to reciprocate in the cylinder 31 and is connected to the crankshaft 13 via a connecting rod 12.
  • the reciprocating motion of the piston 11 is converted into the rotational motion of the crankshaft 13.
  • the rotation direction of the crankshaft 13 during normal operation of the engine 10 is referred to as a forward direction
  • the direction opposite to the forward direction is referred to as a reverse direction.
  • Rotating electric machine 14 is provided on the crankshaft 13.
  • the rotating electrical machine 14 is a generator having a function of a starter motor, and rotates the crankshaft 13 in the forward direction and the reverse direction and generates electric power by the rotation of the crankshaft 13.
  • the rotating electrical machine 14 transmits torque directly to the crankshaft 13 without using a reduction gear.
  • manual starter 500 is provided on the crankshaft 13.
  • manual starter 500 is a kick starter and is kicked by the occupant when engine 10 is started. In this case, the occupant can easily start the engine 10 by depressing the kick pedal of the manual starter 500.
  • the manual starter 500 transmits the human power during the kick operation by the occupant as torque to the crankshaft 13 to drive the crankshaft 13 to rotate in the reverse direction. Details of the manual starter 500 will be described later.
  • the forward rotation of the crankshaft 13 is transmitted to the rear wheel 7, so that the rear wheel 7 is rotationally driven.
  • a combustion chamber 31 a is formed on the piston 11.
  • the combustion chamber 31 a communicates with the intake passage 22 through the intake port 21 and communicates with the exhaust passage 24 through the exhaust port 23.
  • An intake valve 15 is provided to open and close the intake port 21, and an exhaust valve 16 is provided to open and close the exhaust port 23.
  • the intake valve 15 and the exhaust valve 16 are driven by a valve drive unit 17.
  • the intake passage 22 is provided with a throttle valve TV for adjusting the flow rate of air flowing from the outside.
  • the spark plug 18 is configured to ignite the air-fuel mixture in the combustion chamber 31a.
  • the injector 19 is configured to inject fuel into the intake passage 22.
  • ECU6 contains CPU (central processing unit) and memory, for example.
  • a microcomputer may be used instead of the CPU and the memory.
  • a main switch 40, a starter switch 41, an intake pressure sensor 42, a crank angle sensor 43, a current sensor 44 and a temperature sensor 45 are electrically connected to the ECU 6.
  • the main switch 40 is provided, for example, below the handle 4 in FIG. 1, and the starter switch 41 is provided, for example, in the handle 4 in FIG.
  • the main switch 40 and the starter switch 41 are operated by a passenger.
  • the intake pressure sensor 42 detects the pressure in the intake passage 22.
  • the crank angle sensor 43 detects the rotational position of the crankshaft 13 (hereinafter referred to as the crank angle).
  • the current sensor 44 detects a current flowing through the rotating electrical machine 14 (hereinafter referred to as a motor current).
  • the temperature sensor 45 detects, for example, the water temperature or oil temperature in the engine 10 or the machine temperature as a value corresponding to the temperature of the engine 10 (hereinafter referred to as engine temperature).
  • the operation of the main switch 40 and the starter switch 41 is given to the ECU 6 as operation signals, and the detection results by the intake pressure sensor 42, the crank angle sensor 43, the current sensor 44 and the temperature sensor 45 are given to the ECU 6 as detection signals.
  • the ECU 6 controls the rotating electrical machine 14, the spark plug 18, and the injector 19 based on the given operation signal and detection signal.
  • FIG. 3 is a partially enlarged sectional view of the engine unit EU.
  • the manual starting unit 500 includes an input unit 510, an arm unit 520, a shaft unit 530, a drive gear 540, a driven gear 550, and a power transmission unit 560.
  • the input unit 510 is a kick pedal.
  • the shaft portion 530 extends in parallel with the rotation center line RC of the crankshaft 13 and is fixed to the casing 210 of the engine unit EU so as to be rotatable. One end portion of the shaft portion 530 protrudes outward of the casing 210.
  • the input unit 510 and one end of the shaft unit 530 are connected by an arm unit 520.
  • Drive gear 540 is provided at the other end of shaft portion 530.
  • the drive gear 540 is engaged with the driven gear 550 while being urged in one direction by an urging member (not shown).
  • the driven gear 550 has a cylindrical portion 551.
  • the crankshaft 13 is inserted into the cylindrical portion 551. Between the inner peripheral surface of the cylindrical portion 551 and the outer peripheral surface of the crankshaft 13, a power transmission portion 560 and a bearing B1 are disposed.
  • the power transmission unit 560 transmits torque from the input unit 510 to the crankshaft 13, but includes a reverse input suppression function that limits the torque transmitted from the crankshaft 13 to the input unit 510.
  • the power transmission unit 560 is, for example, a clutch mechanism.
  • the power transmission unit 560 is a two-way clutch, but the present invention is not limited to this.
  • the power transmission unit 560 may be a clutch mechanism having a torque diode, a torque limiter, or another damper mechanism.
  • the passenger kicks the input unit 510.
  • the human power of the kick operation by the occupant is transmitted to the shaft portion 530 through the arm portion 520 as torque for rotating the shaft portion 530.
  • the drive gear 540 rotates against a biasing force of a biasing member (not shown).
  • the torque of drive gear 540 is transmitted to driven gear 550.
  • the driven gear 550 rotates around the rotation center line RC of the crankshaft 13.
  • FIGS. 4 and 5 are enlarged cross-sectional views for explaining details of the power transmission unit 560.
  • the radial direction of the crankshaft 13 centered on the rotation center line RC is referred to as an axial radial direction
  • the circumferential direction of the crankshaft 13 centered on the rotation centerline RC is referred to as an axial circumferential direction
  • a direction away from the rotation center line RC in the axial radial direction is referred to as a radially outward direction.
  • the power transmission unit 560 includes a fixed plate 561, a roller holding unit 562, an urging member 563, and a plurality of (eight in the example of FIG. 5) rollers 564.
  • FIG. 4 shows only one of the plurality of rollers 564.
  • the fixed plate 561 has a pressing part 561a and a protruding part 561b.
  • the pressing portion 561a has an annular shape and is provided on the outer side in the radial direction of the crankshaft 13.
  • the protruding portion 561b is provided so as to protrude radially outward from the outer peripheral portion of the pressing portion 561a and bend at a right angle.
  • the tip of the protruding portion 561b is fixed to a plate fixing portion 211 provided in the casing 210.
  • the roller holding part 562 has a cylindrical part 562a, a flange part 562b, and a sliding part 562c.
  • the cylindrical portion 562a is provided so as to surround a part of the outer peripheral surface of the crankshaft 13.
  • a cylindrical sliding bearing SB is fixed to the inner peripheral surface of the cylindrical portion 562a.
  • An oil supply path OS is formed in the portion of the crankshaft 13 where the sliding bearing SB overlaps. Lubricating oil is supplied between the inner peripheral surface of the sliding bearing SB and the outer peripheral surface of the crankshaft 13 through the oil supply path OS.
  • a part of the cylindrical portion 562a is disposed inside the cylindrical portion 551 of the driven gear 550.
  • a bearing B2 is disposed between the cylindrical portion 562a and the cylindrical portion 551 of the driven gear 550.
  • the roller holding part 562 and the driven gear 550 are relatively rotatable in the axial circumferential direction via the bearing B2.
  • the flange portion 562b is provided outside the cylindrical portion 551 of the driven gear 550 so as to protrude radially outward from one end portion of the cylindrical portion 562a.
  • the sliding portion 562c is provided so as to protrude radially outward from the outer peripheral surface of the cylindrical portion 562a with a certain distance from the flange portion 52a.
  • the pressing part 561a of the fixed plate 561 is disposed so as to come into contact with the sliding part 562c. Further, an urging member 563 is disposed between the pressing portion 561a and the flange portion 562b.
  • the biasing member 563 is, for example, a wave spring. The pressing portion 561a is urged by the urging member 563 so as to be pressed against the sliding portion 562c.
  • the cross section of the inner peripheral surface of the cylindrical portion 551 of the driven gear 550 is polygonal.
  • the inner peripheral surface of the cylindrical portion 551 is composed of a plurality of flat surfaces (hereinafter referred to as cam surfaces) CF.
  • cam surfaces a plurality of flat surfaces
  • the cross section of the inner peripheral surface of the cylindrical portion 551 is a regular octagonal shape, and the inner peripheral surface of the cylindrical portion 551 is configured by eight cam surfaces CF.
  • a plurality of notches CT are formed at equal angular intervals in the axial direction in the cylindrical portion 562a of the roller holding portion 562.
  • each notch CT is disposed between the inner peripheral surface of the cylindrical portion 551 of the driven gear 550 and the outer peripheral surface of the crankshaft 13, a roller 564 having a substantially columnar shape is disposed in each notch CT.
  • the width of each notch CT in the axial circumferential direction is slightly larger than the diameter DA of the cross section of the roller 564.
  • the maximum distance D1 between the outer peripheral surface of the crankshaft 13 and the inner peripheral surface of the cylindrical portion 551 is larger than the diameter DA of the cross section of the roller 564.
  • the maximum distance D1 is a distance in the axial diameter direction between the end of each cam surface CF and the outer peripheral surface of the crankshaft 13.
  • the minimum distance D2 between the outer peripheral surface of the crankshaft 13 and the inner peripheral surface of the cylindrical portion 551 is smaller than the diameter of the cross section of the roller 564.
  • the minimum distance D ⁇ b> 2 is a distance in the axial diameter direction between the center portion of each cam surface CF and the outer peripheral surface of the crankshaft 13.
  • each roller 564 does not pass between the center portion of each cam surface CF and the outer peripheral surface of the crankshaft 13, and the movement range in the axial direction of each roller 564 with respect to the cylindrical portion 551 is limited. Accordingly, each roller 564 moves in the axial direction in conjunction with the rotation of the cylindrical portion 551 in the axial direction.
  • FIGS. 6 and 7 are schematic diagrams for explaining the action of the power transmission unit 560. 6 and 7 show one roller 564 and a cylindrical portion 551, a roller holding portion 562, and a part of the crankshaft 13. The other rollers 564 operate in the same manner as the rollers 564 of FIGS.
  • the rotational speed of the driven gear 550 and the rotational speed of the crankshaft 13 when it is assumed that torque is not transmitted between the driven gear 550 and the crankshaft 13 are referred to as an input rotational speed and an output rotational speed, respectively.
  • each roller 564 moves in the reverse direction DR2 while being in contact with the cam surface CF of the driven gear 550 and the outer peripheral surface of the crankshaft 13. In this case, each roller 564 pushes the roller holding portion 562, and the roller holding portion 562 rotates in the reverse direction DR2.
  • the pressing portion 561a (FIG. 4) of the fixed plate 561 is pressed against the sliding portion 562c (FIG. 4) of the roller holding portion 562 by the biasing member 563 (FIG. 4). For this reason, when the roller holding portion 562 rotates, friction is generated between the pressing portion 561a and the sliding portion 562c. The friction force acts as a rotation resistance of the roller holding portion 562. Accordingly, a drag force in the positive direction DR1 acts on the roller 564 from the roller holding portion 562, and the roller 564 is held in a state of being pressed against the cam surface CF and the outer peripheral surface of the crankshaft 13. In this case, the crankshaft 13 is prohibited from rotating in the positive direction DR1 with respect to the driven gear 550. On the other hand, the rotation of the crankshaft 13 in the reverse direction DR2 with respect to the driven gear 550 is not prohibited.
  • the crankshaft 13 rotates by a predetermined angle, the rotation direction of the crankshaft 13 is switched from the reverse direction DR2 to the forward direction DR1. Even in this case, since the power transmission unit 560 is in a disconnected state, the torque of the crankshaft 13 is not transmitted to the driven gear 550. Therefore, the crankshaft 13 rotates in the positive direction DR1 in a state where torque transmission from the crankshaft 13 to the input unit 510 (FIG. 3) is interrupted.
  • the engine 10 is started by turning on the starter switch 41 in FIG. 2 or kicking the input unit 510 with the main switch 40 in FIG. 2 turned on. . Further, the engine 10 is stopped by turning off the main switch 40 of FIG. Further, the engine 10 may be automatically stopped when a predetermined idle stop condition is satisfied, and then the engine 10 may be automatically restarted when a predetermined idle stop cancellation condition is satisfied. .
  • the idle stop condition includes, for example, a condition related to at least one of a throttle opening (opening of the throttle valve TV), a vehicle speed, and a rotation speed of the engine 10.
  • the idling stop release condition is, for example, that the throttle opening is larger than 0 when the accelerator grip is operated.
  • an idle stop state a state where the engine 10 is automatically stopped when the idle stop condition is satisfied.
  • the engine unit EU performs a reverse rotation starting operation when the engine 10 is started. Thereafter, the engine unit EU performs a normal operation.
  • FIG. 8 is a diagram for explaining a normal operation of the engine unit EU.
  • FIG. 9 is a diagram for explaining the reverse rotation start operation of the engine unit EU.
  • the top dead center through which the piston 11 passes during the transition from the compression stroke to the expansion stroke is referred to as the compression top dead center
  • the top dead center through which the piston 11 passes during the transition from the exhaust stroke to the intake stroke Called dead point.
  • the bottom dead center through which the piston 11 passes during the transition from the intake stroke to the compression stroke is called the intake bottom dead center
  • the bottom dead center through which the piston 11 passes during the transition from the expansion stroke to the exhaust stroke is called the expansion bottom dead center.
  • the rotation angle in the range of two rotations (720 degrees) of the crankshaft 13 is represented by one circle. Two rotations of the crankshaft 13 correspond to one cycle of the engine 10.
  • the crank angle sensor 43 in FIG. 2 detects the rotational position of the crankshaft 13 in the range of one rotation (360 degrees).
  • the ECU 6 determines whether the rotational position detected by the crank angle sensor 43 based on the pressure in the intake passage 22 detected by the intake pressure sensor 42 is one of the two rotations of the crankshaft 13 corresponding to one cycle of the engine 10. It is determined whether it corresponds to the rotation of. Thereby, the ECU 6 can acquire the rotational position of the crankshaft 13 in the range of two rotations (720 degrees).
  • the angle A0 is a crank angle when the piston 11 (FIG. 2) is located at the exhaust top dead center
  • the angle A2 is a crank angle when the piston 11 is located at the compression top dead center.
  • the angle A1 is a crank angle when the piston 11 is located at the intake bottom dead center
  • the angle A3 is a crank angle when the piston 11 is located at the expansion bottom dead center.
  • crankshaft 13 in the forward direction rotation of the crankshaft 13 in the forward direction
  • reverse rotation rotation of the crankshaft 13 in the reverse direction
  • Arrow R1 indicates the direction of change in the crank angle when the crankshaft 13 rotates forward
  • arrow R2 indicates the direction of change in the crank angle when the crankshaft 13 rotates reversely
  • Arrows P1 to P4 indicate the moving direction of the piston 11 when the crankshaft 13 rotates forward
  • arrows P5 to P8 indicate the moving direction of the piston 11 when the crankshaft 13 rotates reversely.
  • angle A11 fuel is injected into the intake passage 22 (FIG. 2) by the injector 19 (FIG. 2).
  • the angle A11 is located on the more advanced side than the angle A0.
  • the intake port 21 (FIG. 2) is opened by the intake valve 15 (FIG. 2).
  • the angle A12 is positioned more retarded than the angle A11 and more advanced than the angle A0, and the angle A13 is positioned more retarded than the angle A1.
  • the range from the angle A12 to the angle A13 is an example of the normal intake range.
  • the air-fuel mixture containing air and fuel is introduced into the combustion chamber 31a (FIG. 2) through the intake port 21.
  • the air-fuel mixture in the combustion chamber 31a (FIG. 2) is ignited by the spark plug 18 (FIG. 2).
  • the angle A14 is located on the more advanced side than the angle A2.
  • the exhaust port 23 (FIG. 2) is opened by the exhaust valve 16 (FIG. 2) in the range from the angle A15 to the angle A16.
  • the angle A15 is located on the more advanced side than the angle A3, and the angle A16 is located on the more retarded side than the angle A0.
  • the range from the angle A15 to the angle A16 is an example of the normal exhaust range.
  • FIGS. 10A and 10B are diagrams for explaining the start of the engine 10 in the reverse rotation start operation. 10A and 10B, the horizontal axis indicates the crank angle, and the vertical axis indicates the rotational load of the crankshaft 13.
  • the reverse rotation starting operation of the engine unit EU will be described with reference to FIGS. 9 and 10 (a) and 10 (b).
  • the crank angle is adjusted to a predetermined reverse rotation start range.
  • the reverse rotation start range is, for example, in the range from angle A0 to angle A2 in the positive direction, and preferably in the range from angle A13 to angle A2.
  • the reverse rotation start range is an angle A30.
  • the angle A30 is in the range from the angle A13 to the angle A2.
  • the occupant performs a kick operation of the input unit 510 in FIG. 3 or an operation for satisfying a predetermined start condition while the crank angle is in the reverse rotation start range.
  • the crankshaft 13 is rotated in the reverse direction by the rotating electrical machine 14 or the manual starter 500 in FIG. 2, and the crank angle changes in the direction of the arrow R2 in FIG.
  • the piston 11 is lowered in the range from the angle A2 to the angle A1.
  • the piston 11 rises in the range from the angle A1 to the angle A0.
  • the piston 11 is lowered in the range from the angle A0 to the angle A3.
  • the piston 11 rises in the range from the angle A3 to the angle A2.
  • the moving direction of the piston 11 when the crankshaft 13 rotates in the reverse direction is opposite to the moving direction of the piston 11 when the crankshaft 13 rotates in the forward direction.
  • the rotational load on the crankshaft 13 is maximized at an angle A2 corresponding to the compression top dead center. Further, between the angle A1 and the angle A0, the rotational load on the crankshaft 13 increases due to the drive of the intake valve 15. Further, between the angle A0 and the angle A3, the rotational load on the crankshaft 13 increases due to the drive of the exhaust valve 16.
  • the intake port 21 is opened in the range from the angle A13 to the angle A12 in FIG. 9 and exhausted in the range from the angle A16 to A15 as in the forward rotation. Mouth 23 is opened.
  • the intake port 21 may not be opened in the range from the angle A13 to the angle A12, and the exhaust port 23 may not be opened in the range from the angle A16 to the angle A15. .
  • the angle A23 is located on the more advanced side than the angle A0. Further, in the range from the angle A21 to the angle A22, the intake port 21 (FIG. 2) is opened by the intake valve 15 (FIG. 2).
  • the range from the angle A21 to the angle A22 is an example of the starting intake air range. In the reverse direction, the angles A21 and A22 are in the range from the angle A0 to the angle A3.
  • the piston 11 rises, so even if the intake port 21 is opened in the range from the angle A13 to the angle A12, air and fuel are hardly introduced into the combustion chamber 31a.
  • the intake port 21 is opened in the range from the angle A21 to the angle A22, so that the air-fuel mixture containing air and fuel is taken in from the intake passage 22. It is introduced into the combustion chamber 31a through the port 21.
  • the rotational speed in the reverse direction of the crankshaft 13 is equal to or less than a predetermined threshold value at the angle A31a
  • energization to the ignition coil connected to the ignition plug 18 (FIG. 2) is started.
  • the angle A31 by stopping energization to the ignition coil, the air-fuel mixture in the combustion chamber 31a is ignited by the spark plug 18 (FIG. 2).
  • the angle A31a is located on the more advanced side than the angle A31, and the angle A31 is located on the more advanced side than the angle A2.
  • the angle A31 is an example of the starting ignition range.
  • the piston 11 (FIG. 2) performs the first compression top dead in the reverse rotation with the crankshaft 13 rotating in the reverse direction. The point will be passed. In this case, the piston 11 is driven so that the crankshaft 13 rotates in the reverse direction by the energy of combustion generated in the combustion chamber 31a, and the piston 11 is not driven so that the crankshaft 13 rotates in the forward direction. Therefore, the engine 10 cannot be started properly. Therefore, when the reverse rotation speed of the crankshaft 13 exceeds the threshold value, energization of the ignition coil is prohibited and ignition of the air-fuel mixture is not performed.
  • the crankshaft 13 is further reversely rotated by 720 degrees or more, and the ignition coil is turned on at an angle A31a after the second time when the rotational speed of the crankshaft 13 is below the threshold value. Is started, and the current supply to the ignition coil is stopped at the angle A31, whereby the mixture in the combustion chamber 31a is ignited by the ignition plug 18 (FIG. 2).
  • the engine 10 can be appropriately started with a simple configuration.
  • the air-fuel mixture is guided to the combustion chamber 31a while the crankshaft 13 is reversely rotated by the manual starter 500 or the rotating electrical machine 14. Thereafter, the air-fuel mixture in the combustion chamber 31a is ignited with the piston 11 approaching the compression top dead center. Thereby, the piston 11 is driven so that the crankshaft 13 rotates forward.
  • the air-fuel mixture in the combustion chamber 31a is ignited by the spark plug 18, but the crankshaft 13 can be driven in the forward direction. If there is, the stop of the reverse rotation of the crankshaft 13 and the ignition by the spark plug 18 may not be simultaneous.
  • Engine start process ECU6 performs an engine start process based on the control program previously memorize
  • FIG. 11 is a flowchart of the engine start process. The engine start process is performed, for example, when the main switch 40 (FIG. 2) is turned on or when the engine 10 shifts to an idle stop state.
  • the ECU 6 determines whether or not a predetermined start condition is satisfied (step S1).
  • the start condition is, for example, that the starter switch 41 (FIG. 2) is turned on.
  • the start condition is that the idle stop release condition is satisfied.
  • step S2 Even if the start condition is not satisfied, the occupant can start the engine 10 by kicking the input unit 510 of FIG. Therefore, when the start condition is not satisfied in step S1, the ECU 6 proceeds to the process of step S3. On the other hand, when the starting condition is satisfied in step S1, the ECU 6 controls the rotating electrical machine 14 so that the crankshaft 13 is rotated in the reverse direction (step S2).
  • crank angle is not in the reverse rotation start range (angle A30) at the start of the engine start process, the crank angle is adjusted to the reverse rotation start range before the crankshaft 13 is reversely rotated.
  • step S3 determines whether or not the crankshaft 13 has rotated in the reverse direction.
  • the fact that the crankshaft 13 is not rotating reversely means that the starting condition is not satisfied in step S1, or that the kick operation of the input unit 510 is not performed. Therefore, if the crankshaft 13 is not rotating in reverse in step S3, the ECU 6 returns to the process in step S1.
  • ECU 6 repeats the processes of steps S1 to S3 until the starting condition is satisfied in step S1 or the input unit 510 is kicked.
  • step S4 determines whether or not the fuel injection condition is satisfied.
  • the fuel injection condition is that the crank angle obtained from the detection results of the intake pressure sensor 42 (FIG. 2) and the crank angle sensor 43 (FIG. 2) reaches the angle A23 in FIG. If the fuel injection condition is not satisfied, the ECU 6 repeats the process of step S4.
  • step S4 the ECU 6 controls the injector 19 (FIG. 2) so that the fuel is injected into the intake passage 22 (FIG. 2) (step S5).
  • the ECU 6 may control the injector 19 in response to a pulse signal from the crank angle sensor 43.
  • the ECU 6 determines whether or not the ignition condition is satisfied (step S6).
  • the ignition condition is that the crank angle obtained from the detection results of the intake pressure sensor 42 (FIG. 2) and the crank angle sensor 43 (FIG. 2) reaches the angle A31a in FIG. If the ignition condition is not satisfied, the ECU 6 repeats the process of step S6.
  • step S6 determines whether or not the rotational speed of the crankshaft 13 is equal to or less than a threshold value (step S7). If the rotational speed of the crankshaft 13 exceeds the threshold value in step S7, the ECU 6 returns to the process in step S6. The ECU 6 repeats the processes of steps S6 and S7 until the rotational speed of the crankshaft 13 becomes equal to or less than the threshold value.
  • step S8 If the rotational speed of the crankshaft 13 is equal to or lower than the threshold value in step S7, the ECU 6 performs ignition by energizing the ignition coil (step S8). In this case, the ECU 6 may control the ignition coil in response to the pulse signal from the crank angle sensor 43. Thereafter, the ECU 6 controls the rotating electrical machine 14 so that the crankshaft 13 is rotated in the forward direction (step S9). As a result, the engine start process ends.
  • the occupant when sufficient electric power remains in the engine system 200, the occupant can start the engine system 200 more easily when a predetermined start condition is satisfied. it can. On the other hand, when sufficient electric power does not remain in the engine system 200, the occupant can easily start the engine 10 by applying human power to the input unit 510 of the manual starting unit 500.
  • the user's human power is applied to the input unit 510 of the manual starter 500 when the engine 10 is started.
  • the human power applied to the input unit 510 is transmitted as torque to the crankshaft 13 by the power transmission unit 560 of the manual start unit 500. Thereby, the crankshaft 13 rotates in the reverse direction.
  • the fuel injected by the injector 19 is guided from the intake passage 22 through the intake port 21 into the combustion chamber 31a. Thereafter, when the air-fuel mixture is compressed in the combustion chamber 31a due to the reverse rotation of the crankshaft 13 and the piston 11 does not reach the compression top dead center, the air-fuel mixture is ignited by the spark plug 18.
  • the piston 11 is driven by the energy of combustion generated in the combustion chamber 31a so that the crankshaft 13 rotates in the forward direction.
  • sufficient torque in the positive direction is obtained, and the crank angle can easily exceed the angle corresponding to the first compression top dead center. Therefore, the engine 10 can be started stably.
  • Torque from the crankshaft 13 to the input unit 510 when the crankshaft 13 rotates in the positive direction is interrupted or attenuated by the power transmission unit 560. Therefore, after the engine 10 is started, the rotation of the input unit 510 due to the torque of the crankshaft 13 can be prevented.
  • the engine 10 can be easily started with weaker human power without providing a decompression mechanism (decompression mechanism) in the valve drive unit 17. Therefore, the configuration of engine system 200 can be simplified. As a result, the engine 10 can be easily started manually with a simple configuration.
  • the manual starter 500 is a kick starter having a kick pedal, but the present invention is not limited to this.
  • the manual starter 500 may be a recoil starter. In this case, the user can start the recoil starter by pulling the starter rope as an input unit and rotating the crankshaft.
  • Manual starter 500 may be another type of starter that can start the engine manually.
  • the engine system 200 includes the rotating electrical machine 14, but the present invention is not limited to this.
  • the engine system 200 may include a starter motor and a generator separately in place of the rotating electrical machine 14, or may include one of a starter motor and a generator. Alternatively, the engine system 200 may not include any of the rotating electrical machine 14, the starter motor, and the generator.
  • the above embodiment is an example in which the present invention is applied to a motorcycle.
  • the present invention is not limited to this, and other saddle-type vehicles such as a motorcycle or an ATV (All Terrain Vehicle) are used.
  • the present invention may be applied.
  • the engine 10 is an example of an engine
  • the manual starter 500 is an example of a manual starter and a kick starter
  • the ECU 6 is an example of a controller
  • the crankshaft 13 is an example of a crankshaft.
  • the intake passage 22 is an example of an intake passage
  • the injector 19 is an example of a fuel injection device
  • the intake port 21 is an example of an intake port
  • the intake valve 15 is an example of an intake valve
  • the exhaust port 23 is an exhaust port.
  • the exhaust valve 16 is an example of an exhaust valve.
  • the valve drive unit 17 is an example of a valve drive unit
  • the spark plug 18 is an example of an ignition device
  • the input unit 510 is an example of an input unit and a kick pedal
  • the power transmission unit 560 is an example of a power transmission unit.
  • Piston 11 is an example of a piston.
  • the engine system 200 is an example of an engine system
  • the rotating electrical machine 14 is an example of a motor and a rotating electrical machine
  • the rear wheel 7 is an example of a driving wheel
  • the vehicle body 1 is an example of a main body
  • the motorcycle 100 is a vehicle. It is an example of a riding type vehicle.
  • the present invention can be effectively used for various engine systems and saddle riding type vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Provided is an engine system in which when starting an engine, the human force of a user is applied to an input section of a manual start unit. A crankshaft rotates in a reverse direction as a result of human force being transmitted as torque to the crankshaft from a force transmission section of the manual start unit. Fuel that is injected by an injector is guided into a combustion chamber from an intake passage via an intake port as a result of an intake valve being driven during a period in which the crankshaft rotates in the reverse direction. An air-fuel mixture is subsequently ignited by a spark plug at a point in time at which a piston has not reached a compression top dead center and the air-fuel mixture is in a compressed state within the combustion chamber as a result of reverse rotation of the crankshaft. Torque from the crankshaft to the input section during forward rotation of the crankshaft is either blocked by the force transmission section or attenuated.

Description

エンジンシステムおよび鞍乗り型車両Engine system and saddle riding type vehicle
 本発明は、エンジンシステムおよびそれを備えた鞍乗り型車両に関する。 The present invention relates to an engine system and a saddle-ride type vehicle equipped with the same.
 エンジンを備えた自動二輪車等の鞍乗り型車両には、人力でエンジンを始動させるための機構が設けられることがある。特許文献1には、自動二輪車に設けられるキック始動装置が記載されている。キック始動装置は、エンジンのクランク軸にトルクを与えるためのキックペダルを含む。鞍乗り型車両の乗員は、キックペダルを踏み込むことにより、エンジンを始動させることができる。
特開2012-67700号公報
A saddle-ride type vehicle such as a motorcycle equipped with an engine may be provided with a mechanism for starting the engine manually. Patent Document 1 describes a kick starter provided in a motorcycle. The kick starter includes a kick pedal for applying torque to the crankshaft of the engine. An occupant of the saddle riding type vehicle can start the engine by depressing the kick pedal.
JP 2012-67700 A
 特許文献1に記載されたキック始動装置において、エンジンを始動させる際には、クランク角が最初の圧縮上死点に対応する角度を超えるためにクランク軸に大きなトルクが与えられることが必要となる。そのため、乗員には、キックペダルを非常に強い力で踏み込むことが要求される。しかしながら、乗員によっては、クランク角が最初の圧縮上死点に対応する角度を超えるほどの強い力でキックペダルを踏み込むことは困難である。 In the kick starter described in Patent Document 1, when starting the engine, the crank angle exceeds an angle corresponding to the first compression top dead center, and thus it is necessary to apply a large torque to the crankshaft. . Therefore, the occupant is required to step on the kick pedal with a very strong force. However, it is difficult for some occupants to step on the kick pedal with such a strong force that the crank angle exceeds the angle corresponding to the first compression top dead center.
 そこで、エンジンのバルブを開放してシリンダ内の圧力を減少させるデコンプレッション機構(デコンプ機構)をバルブ駆動部に設けることにより、エンジンを始動させる際にクランク軸に加えられるべきトルクを低減することが可能である。この構成によれば、乗員は、より弱い力でキックペダルを踏み込んだ場合でもエンジンを始動させることができる。しかしながら、バルブ駆動部にデコンプ機構を設けるとバルブ駆動部が複雑化する。 Therefore, a torque that should be applied to the crankshaft when starting the engine can be reduced by providing a decompression mechanism (decompression mechanism) in the valve drive unit that opens the valve of the engine to reduce the pressure in the cylinder. Is possible. According to this configuration, the occupant can start the engine even when the kick pedal is depressed with a weaker force. However, if a decompression mechanism is provided in the valve drive unit, the valve drive unit becomes complicated.
 本発明の目的は、単純な構成により人力でエンジンを容易に始動させることが可能なエンジンシステムおよび鞍乗り型車両を提供することである。 An object of the present invention is to provide an engine system and a saddle-ride type vehicle that can easily start an engine by human power with a simple configuration.
 (1)本発明の一局面に従うエンジンシステムは、エンジンと、エンジンを始動させるため使用者によりマニュアル操作されるマニュアル始動部と、エンジンを制御するように構成された制御部とを備え、エンジンは、正方向または逆方向に回転可能に設けられたクランク軸と、吸気通路に配置された燃料噴射装置と、吸気口を開閉する吸気バルブおよび排気口を開閉する排気バルブをそれぞれ駆動するように構成されたバルブ駆動部と、燃焼室内の混合気に点火するように構成された点火装置とを含み、マニュアル始動部は、エンジンの始動時に使用者の人力が加えられる入力部と、入力部に加えられた人力をクランク軸を逆方向に回転させるためのトルクとしてクランク軸に伝達する動力伝達部とを含み、バルブ駆動部は、燃料噴射装置により噴射された燃料が、クランク軸が逆方向に回転される期間における第1の時点で、吸気通路から吸気口を通して燃焼室内に導かれるように吸気バルブを駆動し、制御部は、第1の時点で燃焼室内に燃料が導かれた後、クランク軸の逆方向の回転により燃焼室内で混合気が圧縮された状態にありかつピストンが圧縮上死点に達しない第2の時点で混合気に点火させるように点火装置を制御し、動力伝達部は、クランク軸の正方向の回転時において、クランク軸から入力部へのトルクの伝達を遮断するか、またはクランク軸から入力部へのトルクを減衰させる。 (1) An engine system according to one aspect of the present invention includes an engine, a manual starter that is manually operated by a user to start the engine, and a control unit configured to control the engine. , Configured to drive a crankshaft rotatably provided in the forward or reverse direction, a fuel injection device disposed in the intake passage, an intake valve that opens and closes the intake port, and an exhaust valve that opens and closes the exhaust port A manual valve drive unit and an ignition device configured to ignite an air-fuel mixture in the combustion chamber. The manual start unit includes an input unit to which a user's human power is applied when starting the engine, and an input unit. A power transmission unit that transmits the generated human power to the crankshaft as a torque for rotating the crankshaft in the reverse direction. And the control unit drives the intake valve so that the fuel injected by is guided to the combustion chamber from the intake passage through the intake port at a first time point in the period in which the crankshaft is rotated in the reverse direction. After the fuel is introduced into the combustion chamber at the time, the air-fuel mixture is compressed in the combustion chamber due to the reverse rotation of the crankshaft, and the air-fuel mixture becomes the air-fuel mixture at the second time when the piston does not reach the compression top dead center. The ignition device is controlled to ignite, and the power transmission unit interrupts transmission of torque from the crankshaft to the input unit or rotates torque from the crankshaft to the input unit when the crankshaft rotates in the positive direction. Attenuate.
 このエンジンシステムにおいては、エンジンの始動時に、使用者の人力がマニュアル始動部の入力部に加えられる。入力部に加えられた人力は、トルクとしてマニュアル始動部の動力伝達部によりクランク軸に伝達される。これにより、クランク軸が逆方向に回転する。 In this engine system, the user's human power is applied to the input part of the manual starting part when starting the engine. Human power applied to the input unit is transmitted as torque to the crankshaft by the power transmission unit of the manual starter. As a result, the crankshaft rotates in the reverse direction.
 クランク軸が逆方向に回転される期間における第1の時点で、燃料噴射装置により噴射された燃料が吸気通路から吸気口を通して燃焼室内に導かれるように、吸気バルブがバルブ駆動部により駆動される。第1の時点で燃焼室内に燃料が導かれた後、クランク軸の逆方向の回転により燃焼室内で混合気が圧縮された状態にありかつピストンが圧縮上死点に達しない第2の時点で点火装置により混合気に点火される。 The intake valve is driven by the valve drive unit so that the fuel injected by the fuel injection device is guided from the intake passage through the intake port into the combustion chamber at a first time point during which the crankshaft is rotated in the reverse direction. . After the fuel is introduced into the combustion chamber at the first time point, at a second time point when the air-fuel mixture is compressed in the combustion chamber due to the reverse rotation of the crankshaft and the piston does not reach the compression top dead center. The mixture is ignited by the ignition device.
 この場合、燃焼室内で生じる燃焼のエネルギーにより、クランク軸が正方向に回転するようにピストンが駆動される。それにより、正方向への十分なトルクが得られ、クランク角が最初の圧縮上死点に対応する角度を容易に超えることができる。したがって、エンジンを安定に始動させることができる。クランク軸の正方向の回転時におけるクランク軸から入力部へのトルクは、動力伝達部により遮断されるか、減衰される。そのため、エンジンの始動後、クランク軸のトルクによる入力部の回転を防止することができる。 In this case, the piston is driven so that the crankshaft rotates in the positive direction by the energy of combustion generated in the combustion chamber. Thereby, sufficient torque in the positive direction is obtained, and the crank angle can easily exceed the angle corresponding to the first compression top dead center. Therefore, the engine can be started stably. Torque from the crankshaft to the input unit during rotation of the crankshaft in the positive direction is interrupted or attenuated by the power transmission unit. Therefore, after the engine is started, the rotation of the input unit due to the crankshaft torque can be prevented.
 上記の構成によれば、バルブ駆動部にデコンプレッション機構(デコンプ機構)を設けることなく、より弱い人力でエンジンを容易に始動させることができる。そのため、エンジンシステムの構成を単純にすることができる。その結果、単純な構成により人力でエンジンを容易に始動させることができる。 According to the above configuration, the engine can be easily started with weaker human power without providing a decompression mechanism (decompression mechanism) in the valve drive unit. Therefore, the configuration of the engine system can be simplified. As a result, the engine can be easily started manually with a simple configuration.
 (2)制御部は、第2の時点において、クランク軸の逆方向の回転速度が予め定められたしきい値を超えるときには、点火装置の混合気への点火を禁止してもよい。 (2) The control unit may prohibit ignition of the air-fuel mixture of the ignition device when the rotational speed in the reverse direction of the crankshaft exceeds a predetermined threshold at the second time point.
 クランク軸が逆回転で圧縮上死点を通過するほど大きな人力がマニュアル始動部の入力部に加えられた場合には、クランク軸の逆方向の回転速度が予め定められたしきい値を超えることがある。この場合、燃焼室で生じる燃焼のエネルギーによりクランク軸が逆方向に回転するようにピストンが駆動され、そのため、エンジンを適切に始動させることができない。 When the crankshaft rotates in reverse and passes through the compression top dead center, when the human power is applied to the input of the manual starter, the reverse rotation speed of the crankshaft exceeds a predetermined threshold. There is. In this case, the piston is driven so that the crankshaft rotates in the reverse direction due to the combustion energy generated in the combustion chamber, and therefore the engine cannot be started properly.
 上記の構成によれば、クランク軸の逆方向の回転速度がしきい値を超えるときには、1回目の第2の時点では混合気へ点火されず、2回目以降の回転速度がしきい値を下回った第2の時点で混合気へ点火される。そのため、非常に大きな人力がマニュアル始動部に加えられる場合でも、単純な構成でエンジンを適切に始動させることができる。 According to the above configuration, when the reverse rotation speed of the crankshaft exceeds the threshold value, the mixture is not ignited at the second time point for the first time, and the second and subsequent rotation speeds are below the threshold value. The air-fuel mixture is ignited at the second time point. Therefore, even when a very large human power is applied to the manual starter, the engine can be appropriately started with a simple configuration.
 (3)動力伝達部は、入力部からクランク軸へのトルクは伝達されるが、クランク軸から入力部へ伝達されるトルクは制限される逆入力抑制機能を含んでもよい。 (3) The power transmission unit may include a reverse input suppression function that transmits torque from the input unit to the crankshaft but limits torque transmitted from the crankshaft to the input unit.
 この場合、クランク軸の正方向の回転時におけるクランク軸から入力部へのトルクを単純な構成で遮断するか、または減衰させることができる。 In this case, the torque from the crankshaft to the input section when the crankshaft rotates in the positive direction can be cut off or attenuated with a simple configuration.
 (4)マニュアル始動部はキック始動部を含み、入力部はキックペダルを含んでもよい。 (4) The manual starting unit may include a kick starting unit, and the input unit may include a kick pedal.
 この場合、使用者はキック始動部のキックペダルを踏み込むことにより、エンジンを容易に始動させることができる。 In this case, the user can easily start the engine by depressing the kick pedal of the kick starting portion.
 (5)エンジンシステムは、クランク軸に設けられ、クランク軸を正方向に回転駆動可能に構成されたモータをさらに備え、制御部は、第2の時点の後、モータによりクランク軸を正方向に駆動させてもよい。 (5) The engine system further includes a motor that is provided on the crankshaft and is configured to be capable of rotationally driving the crankshaft in the forward direction, and the control unit causes the motor to move the crankshaft in the forward direction after the second time point. It may be driven.
 この場合、モータにより第2の時点の後に正方向へのより大きなトルクが得られる。それにより、クランク角が最初の圧縮上死点に対応する角度をより容易に超えることができる。その結果、エンジンをより容易に始動させることができる。 In this case, a greater torque in the positive direction is obtained after the second time point by the motor. Thereby, the crank angle can more easily exceed the angle corresponding to the first compression top dead center. As a result, the engine can be started more easily.
 (6)制御部が予め定められた始動条件が満たされたことを検出した場合、モータがクランク軸を逆方向に回転させてもよい。 (6) When the control unit detects that a predetermined start condition is satisfied, the motor may rotate the crankshaft in the reverse direction.
 この構成によれば、エンジンシステムに十分な電力が残存している場合には、使用者は予め定められた始動条件が満たされることによりエンジンシステムをより容易に始動させることができる。一方で、エンジンシステムに十分な電力が残存していない場合には、使用者はマニュアル始動部の入力部に人力を加えることによりエンジンを容易に始動させることができる。 According to this configuration, when sufficient electric power remains in the engine system, the user can start the engine system more easily when a predetermined start condition is satisfied. On the other hand, when sufficient electric power does not remain in the engine system, the user can easily start the engine by applying human power to the input unit of the manual starting unit.
 (7)モータは、エンジンの始動後のクランク軸の回転により電力を発生可能な回転電機を含んでもよい。 (7) The motor may include a rotating electric machine that can generate electric power by rotating the crankshaft after the engine is started.
 この場合、エンジンの始動後のクランク軸の回転により電力が発生される。そのため、エンジンの始動時にモータを回転させるための電力を容易に供給することができる。 In this case, electric power is generated by the rotation of the crankshaft after the engine is started. Therefore, it is possible to easily supply electric power for rotating the motor when the engine is started.
 (8)本発明の他の局面に従う鞍乗り型車両は、駆動輪を有する本体部と、駆動輪を回転させるための動力を発生する本発明の一局面に従うエンジンシステムとを備える。 (8) A saddle-ride type vehicle according to another aspect of the present invention includes a main body having drive wheels and an engine system according to one aspect of the present invention that generates power for rotating the drive wheels.
 この鞍乗り型車両においては、上記のエンジンシステムから発生する動力により駆動輪が回転する。これにより、本体部が移動する。 In this saddle-ride type vehicle, driving wheels are rotated by the power generated from the engine system. Thereby, a main-body part moves.
 エンジンシステムにおいては、エンジンの始動時に、使用者の人力がマニュアル始動部の入力部に加えられる。入力部に加えられた人力は、トルクとしてマニュアル始動部の動力伝達部によりクランク軸に伝達される。これにより、クランク軸が逆方向に回転する。 In the engine system, the user's human power is applied to the input part of the manual starting part when the engine is started. Human power applied to the input unit is transmitted as torque to the crankshaft by the power transmission unit of the manual starter. As a result, the crankshaft rotates in the reverse direction.
 クランク軸が逆方向に回転される期間における第1の時点で、燃料噴射装置により噴射された燃料が吸気通路から吸気口を通して燃焼室内に導かれるように、吸気バルブがバルブ駆動部により駆動される。第1の時点で燃焼室内に燃料が導かれた後、クランク軸の逆方向の回転により燃焼室内で混合気が圧縮された状態にありかつピストンが圧縮上死点に達しない第2の時点で点火装置により混合気に点火される。 The intake valve is driven by the valve drive unit so that the fuel injected by the fuel injection device is guided from the intake passage through the intake port into the combustion chamber at a first time point during which the crankshaft is rotated in the reverse direction. . After the fuel is introduced into the combustion chamber at the first time point, at a second time point when the air-fuel mixture is compressed in the combustion chamber due to the reverse rotation of the crankshaft and the piston does not reach the compression top dead center. The mixture is ignited by the ignition device.
 この場合、燃焼室内で生じる燃焼のエネルギーにより、クランク軸が正方向に回転するようにピストンが駆動される。それにより、正方向への十分なトルクが得られ、クランク角が最初の圧縮上死点に対応する角度を容易に超えることができる。したがって、エンジンを安定に始動させることができる。クランク軸の正方向の回転時におけるクランク軸から入力部へのトルクは、動力伝達部により遮断されるか、減衰される。そのため、エンジンの始動後、クランク軸のトルクによる入力部の回転を防止することができる。 In this case, the piston is driven so that the crankshaft rotates in the positive direction by the energy of combustion generated in the combustion chamber. Thereby, sufficient torque in the positive direction is obtained, and the crank angle can easily exceed the angle corresponding to the first compression top dead center. Therefore, the engine can be started stably. Torque from the crankshaft to the input unit during rotation of the crankshaft in the positive direction is interrupted or attenuated by the power transmission unit. Therefore, after the engine is started, the rotation of the input unit due to the crankshaft torque can be prevented.
 上記の構成によれば、バルブ駆動部にデコンプレッション機構(デコンプ機構)を設けることなく、より弱い人力でエンジンを容易に始動させることができる。そのため、エンジンシステムの構成を単純にすることができる。その結果、単純な構成により人力でエンジンを容易に始動させることができる。 According to the above configuration, the engine can be easily started with weaker human power without providing a decompression mechanism (decompression mechanism) in the valve drive unit. Therefore, the configuration of the engine system can be simplified. As a result, the engine can be easily started manually with a simple configuration.
 本発明によれば、単純な構成により人力で容易にエンジンを始動させることが可能になる。 According to the present invention, the engine can be easily started manually with a simple configuration.
図1は本発明の一実施の形態に係る自動二輪車の概略構成を示す模式的側面図である。FIG. 1 is a schematic side view showing a schematic configuration of a motorcycle according to an embodiment of the present invention. 図2はエンジンシステムの構成について説明するための模式図である。FIG. 2 is a schematic diagram for explaining the configuration of the engine system. 図3はエンジンユニットの部分拡大断面図である。FIG. 3 is a partially enlarged sectional view of the engine unit. 図4は動力伝達部の詳細について説明するための拡大断面図である。FIG. 4 is an enlarged cross-sectional view for explaining the details of the power transmission unit. 図5は動力伝達部の詳細について説明するための拡大断面図である。FIG. 5 is an enlarged cross-sectional view for explaining details of the power transmission unit. 図6は動力伝達部の作用について説明するための模式図である。FIG. 6 is a schematic diagram for explaining the operation of the power transmission unit. 図7は動力伝達部の作用について説明するための模式図である。FIG. 7 is a schematic diagram for explaining the operation of the power transmission unit. 図8はエンジンユニットの通常動作について説明するための図である。FIG. 8 is a diagram for explaining the normal operation of the engine unit. 図9はエンジンユニットの逆回転始動動作について説明するための図である。FIG. 9 is a diagram for explaining the reverse rotation start operation of the engine unit. 図10は逆回転始動動作におけるエンジンの始動を説明するための図である。FIG. 10 is a diagram for explaining engine starting in the reverse rotation starting operation. 図11はエンジン始動処理のフローチャートである。FIG. 11 is a flowchart of the engine start process.
 以下、本発明の実施の形態に係る鞍乗り型車両の一例として、自動二輪車について図面を用いて説明する。 Hereinafter, a motorcycle will be described as an example of a saddle-ride type vehicle according to an embodiment of the present invention with reference to the drawings.
 (1)自動二輪車
 図1は、本発明の一実施の形態に係る自動二輪車の概略構成を示す模式的側面図である。図1の自動二輪車100においては、車体1の前部にフロントフォーク2が左右方向に揺動可能に設けられる。フロントフォーク2の上端にハンドル4が取り付けられ、フロントフォーク2の下端に前輪3が回転可能に取り付けられる。
(1) Motorcycle FIG. 1 is a schematic side view showing a schematic configuration of a motorcycle according to an embodiment of the present invention. In the motorcycle 100 of FIG. 1, a front fork 2 is provided at the front portion of the vehicle body 1 so as to be swingable in the left-right direction. A handle 4 is attached to the upper end of the front fork 2, and a front wheel 3 is rotatably attached to the lower end of the front fork 2.
 車体1の略中央上部にシート5が設けられる。シート5の下方にECU(Engine Control Unit;エンジン制御装置)6およびエンジンユニットEUが設けられる。エンジンユニットEUは、例えば単気筒のエンジン10を含む。ECU6およびエンジンユニットEUによりエンジンシステム200が構成される。車体1の後端下部には後輪7が回転可能に取り付けられる。エンジン10により発生される動力により後輪7が回転駆動される。 The seat 5 is provided at the substantially upper center of the vehicle body 1. Below the seat 5, an ECU (Engine Control Unit) 6 and an engine unit EU are provided. The engine unit EU includes, for example, a single cylinder engine 10. The engine system 200 is configured by the ECU 6 and the engine unit EU. A rear wheel 7 is rotatably attached to the lower rear end of the vehicle body 1. The rear wheel 7 is rotationally driven by the power generated by the engine 10.
 (2)エンジンシステム
 図2は、エンジンシステム200の構成について説明するための模式図である。図2に示すように、エンジンユニットEUは、エンジン10、回転電機14およびマニュアル始動部500を含む。エンジン10は、ピストン11、コンロッド(コネクティングロッド)12、クランク軸13、吸気バルブ15、排気バルブ16、バルブ駆動部17、点火プラグ18およびインジェクタ19を備える。
(2) Engine System FIG. 2 is a schematic diagram for explaining the configuration of the engine system 200. As shown in FIG. 2, the engine unit EU includes an engine 10, a rotating electrical machine 14, and a manual starter 500. The engine 10 includes a piston 11, a connecting rod (connecting rod) 12, a crankshaft 13, an intake valve 15, an exhaust valve 16, a valve drive unit 17, a spark plug 18, and an injector 19.
 ピストン11はシリンダ31内で往復動可能に設けられ、コンロッド12を介してクランク軸13に接続される。ピストン11の往復運動がクランク軸13の回転運動に変換される。以下、エンジン10の通常動作時におけるクランク軸13の回転方向を正方向と呼び、正方向の逆の方向を逆方向と呼ぶ。 The piston 11 is provided so as to be able to reciprocate in the cylinder 31 and is connected to the crankshaft 13 via a connecting rod 12. The reciprocating motion of the piston 11 is converted into the rotational motion of the crankshaft 13. Hereinafter, the rotation direction of the crankshaft 13 during normal operation of the engine 10 is referred to as a forward direction, and the direction opposite to the forward direction is referred to as a reverse direction.
 クランク軸13に回転電機14が設けられる。回転電機14は、スタータモータの機能を有する発電機であり、クランク軸13を正方向および逆方向に回転駆動しかつクランク軸13の回転により電力を発生する。回転電機14は、減速機を介することなく直接的にクランク軸13にトルクを伝達する。 Rotating electric machine 14 is provided on the crankshaft 13. The rotating electrical machine 14 is a generator having a function of a starter motor, and rotates the crankshaft 13 in the forward direction and the reverse direction and generates electric power by the rotation of the crankshaft 13. The rotating electrical machine 14 transmits torque directly to the crankshaft 13 without using a reduction gear.
 また、クランク軸13にマニュアル始動部500が設けられる。本実施の形態においては、マニュアル始動部500はキック始動部であり、エンジン10の始動時に乗員によりキック操作される。この場合、乗員はマニュアル始動部500のキックペダルを踏み込むことにより、エンジン10を容易に始動させることができる。 Also, a manual starter 500 is provided on the crankshaft 13. In the present embodiment, manual starter 500 is a kick starter and is kicked by the occupant when engine 10 is started. In this case, the occupant can easily start the engine 10 by depressing the kick pedal of the manual starter 500.
 マニュアル始動部500は、乗員によるキック操作時の人力をトルクとしてクランク軸13に伝達し、クランク軸13を逆方向に回転駆動する。マニュアル始動部500の詳細については後述する。エンジン10の通常動作時には、クランク軸13の正方向の回転が後輪7に伝達されることにより後輪7が回転駆動される。 The manual starter 500 transmits the human power during the kick operation by the occupant as torque to the crankshaft 13 to drive the crankshaft 13 to rotate in the reverse direction. Details of the manual starter 500 will be described later. During normal operation of the engine 10, the forward rotation of the crankshaft 13 is transmitted to the rear wheel 7, so that the rear wheel 7 is rotationally driven.
 ピストン11上に燃焼室31aが形成される。燃焼室31aは、吸気口21を介して吸気通路22に連通し、排気口23を介して排気通路24に連通する。吸気口21を開閉するように吸気バルブ15が設けられ、排気口23を開閉するように排気バルブ16が設けられる。吸気バルブ15および排気バルブ16は、バルブ駆動部17により駆動される。吸気通路22には、外部から流入する空気の流量を調整するためのスロットルバルブTVが設けられる。点火プラグ18は、燃焼室31a内の混合気に点火するように構成される。インジェクタ19は、吸気通路22に燃料を噴射するように構成される。 A combustion chamber 31 a is formed on the piston 11. The combustion chamber 31 a communicates with the intake passage 22 through the intake port 21 and communicates with the exhaust passage 24 through the exhaust port 23. An intake valve 15 is provided to open and close the intake port 21, and an exhaust valve 16 is provided to open and close the exhaust port 23. The intake valve 15 and the exhaust valve 16 are driven by a valve drive unit 17. The intake passage 22 is provided with a throttle valve TV for adjusting the flow rate of air flowing from the outside. The spark plug 18 is configured to ignite the air-fuel mixture in the combustion chamber 31a. The injector 19 is configured to inject fuel into the intake passage 22.
 ECU6は、例えばCPU(中央演算処理装置)およびメモリを含む。CPUおよびメモリの代わりに、マイクロコンピュータが用いられてもよい。ECU6には、メインスイッチ40、スタータスイッチ41、吸気圧力センサ42、クランク角センサ43、電流センサ44および温度センサ45が電気的に接続される。メインスイッチ40は、例えば図1のハンドル4の下方に設けられ、スタータスイッチ41は、例えば図1のハンドル4に設けられる。メインスイッチ40およびスタータスイッチ41は、乗員により操作される。吸気圧力センサ42は、吸気通路22内の圧力を検出する。クランク角センサ43は、クランク軸13の回転位置(以下、クランク角と呼ぶ。)を検出する。電流センサ44は、回転電機14に流れる電流(以下、モータ電流と呼ぶ。)を検出する。温度センサ45は、エンジン10の温度に対応する値(以下、エンジン温度と呼ぶ。)として、例えば、エンジン10内の水温もしくは油温、または機温を検出する。 ECU6 contains CPU (central processing unit) and memory, for example. A microcomputer may be used instead of the CPU and the memory. A main switch 40, a starter switch 41, an intake pressure sensor 42, a crank angle sensor 43, a current sensor 44 and a temperature sensor 45 are electrically connected to the ECU 6. The main switch 40 is provided, for example, below the handle 4 in FIG. 1, and the starter switch 41 is provided, for example, in the handle 4 in FIG. The main switch 40 and the starter switch 41 are operated by a passenger. The intake pressure sensor 42 detects the pressure in the intake passage 22. The crank angle sensor 43 detects the rotational position of the crankshaft 13 (hereinafter referred to as the crank angle). The current sensor 44 detects a current flowing through the rotating electrical machine 14 (hereinafter referred to as a motor current). The temperature sensor 45 detects, for example, the water temperature or oil temperature in the engine 10 or the machine temperature as a value corresponding to the temperature of the engine 10 (hereinafter referred to as engine temperature).
 メインスイッチ40およびスタータスイッチ41の操作が操作信号としてECU6に与えられ、吸気圧力センサ42、クランク角センサ43、電流センサ44および温度センサ45による検出結果が検出信号としてECU6に与えられる。ECU6は、与えられた操作信号および検出信号に基づいて、回転電機14、点火プラグ18およびインジェクタ19を制御する。 The operation of the main switch 40 and the starter switch 41 is given to the ECU 6 as operation signals, and the detection results by the intake pressure sensor 42, the crank angle sensor 43, the current sensor 44 and the temperature sensor 45 are given to the ECU 6 as detection signals. The ECU 6 controls the rotating electrical machine 14, the spark plug 18, and the injector 19 based on the given operation signal and detection signal.
 (3)マニュアル始動部
 図3は、エンジンユニットEUの部分拡大断面図である。図3に示すように、マニュアル始動部500は、入力部510、アーム部520、シャフト部530、ドライブギヤ540、ドリブンギヤ550および動力伝達部560を含む。本例においては、入力部510はキックペダルである。シャフト部530は、クランク軸13の回転中心線RCと平行に延びかつ回転可能にエンジンユニットEUのケーシング210に固定される。シャフト部530の一端部は、ケーシング210の外方に突出する。
(3) Manual starter FIG. 3 is a partially enlarged sectional view of the engine unit EU. As shown in FIG. 3, the manual starting unit 500 includes an input unit 510, an arm unit 520, a shaft unit 530, a drive gear 540, a driven gear 550, and a power transmission unit 560. In this example, the input unit 510 is a kick pedal. The shaft portion 530 extends in parallel with the rotation center line RC of the crankshaft 13 and is fixed to the casing 210 of the engine unit EU so as to be rotatable. One end portion of the shaft portion 530 protrudes outward of the casing 210.
 入力部510とシャフト部530の一端部とは、アーム部520により接続される。ドライブギヤ540は、シャフト部530の他端部に設けられる。ドライブギヤ540は、図示しない付勢部材により一方向に付勢された状態でドリブンギヤ550に噛み合わされる。ドリブンギヤ550は、円筒部551を有する。円筒部551内にクランク軸13が挿入される。円筒部551の内周面とクランク軸13の外周面との間に、動力伝達部560が配置されるとともに、軸受けB1が配置される。 The input unit 510 and one end of the shaft unit 530 are connected by an arm unit 520. Drive gear 540 is provided at the other end of shaft portion 530. The drive gear 540 is engaged with the driven gear 550 while being urged in one direction by an urging member (not shown). The driven gear 550 has a cylindrical portion 551. The crankshaft 13 is inserted into the cylindrical portion 551. Between the inner peripheral surface of the cylindrical portion 551 and the outer peripheral surface of the crankshaft 13, a power transmission portion 560 and a bearing B1 are disposed.
 動力伝達部560は、入力部510からクランク軸13へトルクを伝達するが、クランク軸13から入力部510へ伝達されるトルクを制限する逆入力抑制機能を含む。動力伝達部560は、例えばクラッチ機構である。本例においては、動力伝達部560はツーウェイクラッチであるが、本発明はこれに限定されない。動力伝達部560は、トルクダイオード、トルクリミッタまたは他のダンパ機構を有するクラッチ機構であってもよい。 The power transmission unit 560 transmits torque from the input unit 510 to the crankshaft 13, but includes a reverse input suppression function that limits the torque transmitted from the crankshaft 13 to the input unit 510. The power transmission unit 560 is, for example, a clutch mechanism. In this example, the power transmission unit 560 is a two-way clutch, but the present invention is not limited to this. The power transmission unit 560 may be a clutch mechanism having a torque diode, a torque limiter, or another damper mechanism.
 エンジン10の始動時に、乗員は入力部510をキック操作する。乗員によるキック操作の人力は、シャフト部530を回転させるトルクとしてアーム部520を通してシャフト部530に伝達される。この場合、ドライブギヤ540は、図示しない付勢部材の付勢力に抗して回転する。ドライブギヤ540のトルクは、ドリブンギヤ550に伝達される。それにより、クランク軸13の回転中心線RCを中心にドリブンギヤ550が回転する。 When the engine 10 is started, the passenger kicks the input unit 510. The human power of the kick operation by the occupant is transmitted to the shaft portion 530 through the arm portion 520 as torque for rotating the shaft portion 530. In this case, the drive gear 540 rotates against a biasing force of a biasing member (not shown). The torque of drive gear 540 is transmitted to driven gear 550. As a result, the driven gear 550 rotates around the rotation center line RC of the crankshaft 13.
 エンジン10の始動時には、ドリブンギヤ550のトルクは、動力伝達部560によりクランク軸13に伝達される。これにより、回転中心線RCを中心にクランク軸13が逆方向に回転する。一方、エンジン10の通常動作時には、正方向に回転するクランク軸13からドリブンギヤ550へのトルクの伝達は、動力伝達部560により遮断されるか、または減衰される。以下、動力伝達部560の詳細について説明する。 When the engine 10 is started, the torque of the driven gear 550 is transmitted to the crankshaft 13 by the power transmission unit 560. As a result, the crankshaft 13 rotates in the reverse direction around the rotation center line RC. On the other hand, during normal operation of engine 10, torque transmission from crankshaft 13 rotating in the forward direction to driven gear 550 is interrupted or attenuated by power transmission unit 560. Hereinafter, the details of the power transmission unit 560 will be described.
 (4)動力伝達部の詳細
 図4および図5は、動力伝達部560の詳細について説明するための拡大断面図である。以下の説明において、回転中心線RCを中心とするクランク軸13の径方向を軸径方向と呼び、回転中心線RCを中心とするクランク軸13の周方向を軸周方向と呼ぶ。また、軸径方向において回転中心線RCから遠ざかる方向を径方向外方と呼ぶ。図4に示すように、動力伝達部560は、固定プレート561、ローラ保持部562、付勢部材563および複数(図5の例では8個)のローラ564を含む。なお、図4には、複数のローラ564のうち1つのみが示される。
(4) Details of Power Transmission Unit FIGS. 4 and 5 are enlarged cross-sectional views for explaining details of the power transmission unit 560. In the following description, the radial direction of the crankshaft 13 centered on the rotation center line RC is referred to as an axial radial direction, and the circumferential direction of the crankshaft 13 centered on the rotation centerline RC is referred to as an axial circumferential direction. A direction away from the rotation center line RC in the axial radial direction is referred to as a radially outward direction. As shown in FIG. 4, the power transmission unit 560 includes a fixed plate 561, a roller holding unit 562, an urging member 563, and a plurality of (eight in the example of FIG. 5) rollers 564. FIG. 4 shows only one of the plurality of rollers 564.
 固定プレート561は、押圧部561aおよび突出部561bを有する。押圧部561aは円環形状を有し、クランク軸13の径方向外方に設けられる。突出部561bは、押圧部561aの外周部から径方向外方に突出し、かつ直角に折れ曲がるように設けられる。突出部561bの先端部は、ケーシング210に設けられたプレート固定部211に固定される。 The fixed plate 561 has a pressing part 561a and a protruding part 561b. The pressing portion 561a has an annular shape and is provided on the outer side in the radial direction of the crankshaft 13. The protruding portion 561b is provided so as to protrude radially outward from the outer peripheral portion of the pressing portion 561a and bend at a right angle. The tip of the protruding portion 561b is fixed to a plate fixing portion 211 provided in the casing 210.
 ローラ保持部562は、円筒部562a、フランジ部562bおよび摺動部562cを有する。円筒部562aは、クランク軸13の外周面の一部を囲むように設けられる。円筒部562aの内周面に、円筒状の滑り軸受けSBが固定される。滑り軸受けSBが重なるクランク軸13の部分にはオイル供給路OSが形成される。オイル供給路OSを通して、滑り軸受けSBの内周面とクランク軸13の外周面との間に潤滑用のオイルが供給される。滑り軸受けSBにより、ローラ保持部562とクランク軸13との間における滑り性が確保される。 The roller holding part 562 has a cylindrical part 562a, a flange part 562b, and a sliding part 562c. The cylindrical portion 562a is provided so as to surround a part of the outer peripheral surface of the crankshaft 13. A cylindrical sliding bearing SB is fixed to the inner peripheral surface of the cylindrical portion 562a. An oil supply path OS is formed in the portion of the crankshaft 13 where the sliding bearing SB overlaps. Lubricating oil is supplied between the inner peripheral surface of the sliding bearing SB and the outer peripheral surface of the crankshaft 13 through the oil supply path OS. By the sliding bearing SB, the slipping property between the roller holding portion 562 and the crankshaft 13 is ensured.
 円筒部562aの一部は、ドリブンギヤ550の円筒部551の内側に配置される。円筒部562aとドリブンギヤ550の円筒部551との間には軸受けB2が配置される。ローラ保持部562およびドリブンギヤ550は、軸受けB2を介して、軸周方向に相対的に回転可能である。 A part of the cylindrical portion 562a is disposed inside the cylindrical portion 551 of the driven gear 550. A bearing B2 is disposed between the cylindrical portion 562a and the cylindrical portion 551 of the driven gear 550. The roller holding part 562 and the driven gear 550 are relatively rotatable in the axial circumferential direction via the bearing B2.
 フランジ部562bは、ドリブンギヤ550の円筒部551の外側において、円筒部562aの一端部から径方向外方に突出するように設けられる。摺動部562cは、フランジ部52aと一定の距離を隔てて、円筒部562aの外周面から径方向外方に突出するように設けられる。 The flange portion 562b is provided outside the cylindrical portion 551 of the driven gear 550 so as to protrude radially outward from one end portion of the cylindrical portion 562a. The sliding portion 562c is provided so as to protrude radially outward from the outer peripheral surface of the cylindrical portion 562a with a certain distance from the flange portion 52a.
 フランジ部562bと摺動部562cとの間において、摺動部562cと接触するように固定プレート561の押圧部561aが配置される。また、押圧部561aとフランジ部562bとの間に、付勢部材563が配置される。付勢部材563は、例えば波ばねである。押圧部561aは、摺動部562cに押し当てられるように付勢部材563により付勢される。 Between the flange part 562b and the sliding part 562c, the pressing part 561a of the fixed plate 561 is disposed so as to come into contact with the sliding part 562c. Further, an urging member 563 is disposed between the pressing portion 561a and the flange portion 562b. The biasing member 563 is, for example, a wave spring. The pressing portion 561a is urged by the urging member 563 so as to be pressed against the sliding portion 562c.
 図5に示すように、ドリブンギヤ550の円筒部551の内周面の断面は多角形状である。円筒部551の内周面は、複数の平面(以下、カム面と呼ぶ。)CFにより構成される。本例では、円筒部551の内周面の断面が正八角形状であり、8つのカム面CFにより円筒部551の内周面が構成される。円筒部551内において、ローラ保持部562の円筒部562aには、軸周方向において等角度間隔で複数の切り欠きCTが形成される。 As shown in FIG. 5, the cross section of the inner peripheral surface of the cylindrical portion 551 of the driven gear 550 is polygonal. The inner peripheral surface of the cylindrical portion 551 is composed of a plurality of flat surfaces (hereinafter referred to as cam surfaces) CF. In this example, the cross section of the inner peripheral surface of the cylindrical portion 551 is a regular octagonal shape, and the inner peripheral surface of the cylindrical portion 551 is configured by eight cam surfaces CF. In the cylindrical portion 551, a plurality of notches CT are formed at equal angular intervals in the axial direction in the cylindrical portion 562a of the roller holding portion 562.
 ドリブンギヤ550の円筒部551の内周面と、クランク軸13の外周面との間において、各切り欠きCT内には、略円柱形状を有するローラ564が配置される。軸周方向における各切り欠きCTの幅は、ローラ564の断面の直径DAよりわずかに大きい。 Between the inner peripheral surface of the cylindrical portion 551 of the driven gear 550 and the outer peripheral surface of the crankshaft 13, a roller 564 having a substantially columnar shape is disposed in each notch CT. The width of each notch CT in the axial circumferential direction is slightly larger than the diameter DA of the cross section of the roller 564.
 軸径方向において、クランク軸13の外周面と円筒部551の内周面との間の最大距離D1は、ローラ564の断面の直径DAよりも大きい。最大距離D1は、各カム面CFの端部とクランク軸13の外周面との間の軸径方向の距離である。一方、軸径方向において、クランク軸13の外周面と円筒部551の内周面との間の最小距離D2は、ローラ564の断面の直径よりも小さい。最小距離D2は、各カム面CFの中心部とクランク軸13の外周面との間の軸径方向の距離である。 In the axial direction, the maximum distance D1 between the outer peripheral surface of the crankshaft 13 and the inner peripheral surface of the cylindrical portion 551 is larger than the diameter DA of the cross section of the roller 564. The maximum distance D1 is a distance in the axial diameter direction between the end of each cam surface CF and the outer peripheral surface of the crankshaft 13. On the other hand, in the axial direction, the minimum distance D2 between the outer peripheral surface of the crankshaft 13 and the inner peripheral surface of the cylindrical portion 551 is smaller than the diameter of the cross section of the roller 564. The minimum distance D <b> 2 is a distance in the axial diameter direction between the center portion of each cam surface CF and the outer peripheral surface of the crankshaft 13.
 これにより、各カム面CFの中心部とクランク軸13の外周面との間をローラ564が通過することはなく、円筒部551に対する各ローラ564の軸周方向の移動範囲が制限される。それにより、円筒部551の軸周方向の回転に連動して各ローラ564は軸周方向に移動する。 Thus, the roller 564 does not pass between the center portion of each cam surface CF and the outer peripheral surface of the crankshaft 13, and the movement range in the axial direction of each roller 564 with respect to the cylindrical portion 551 is limited. Accordingly, each roller 564 moves in the axial direction in conjunction with the rotation of the cylindrical portion 551 in the axial direction.
 (5)クラッチ機構の作用
 図6および図7は、動力伝達部560の作用について説明するための模式図である。図6および図7には、1つのローラ564が示されるとともに、円筒部551、ローラ保持部562およびクランク軸13の一部が示される。他のローラ564も図6および図7のローラ564と同様に作用する。以下の説明において、ドリブンギヤ550とクランク軸13との間でトルクが伝達されないと仮定される場合のドリブンギヤ550の回転速度およびクランク軸13の回転速度をそれぞれ入力回転速度および出力回転速度と呼ぶ。
(5) Action of Clutch Mechanism FIGS. 6 and 7 are schematic diagrams for explaining the action of the power transmission unit 560. 6 and 7 show one roller 564 and a cylindrical portion 551, a roller holding portion 562, and a part of the crankshaft 13. The other rollers 564 operate in the same manner as the rollers 564 of FIGS. In the following description, the rotational speed of the driven gear 550 and the rotational speed of the crankshaft 13 when it is assumed that torque is not transmitted between the driven gear 550 and the crankshaft 13 are referred to as an input rotational speed and an output rotational speed, respectively.
 図1のエンジン10の始動前においては、図6(a)に示すように、各ローラ564はクランク軸13から離間している。そのため、動力伝達部560は切断状態である。エンジン10の始動時には、乗員が図3の入力部510をキック操作することにより、図6(b)に示すように、ドリブンギヤ550が逆方向DR2に回転される。それにより、各ローラ564がドリブンギヤ550のカム面CFおよびクランク軸13の外周面に当接しつつ逆方向DR2に移動する。この場合、各ローラ564がローラ保持部562を押動し、ローラ保持部562が逆方向DR2に回転する。 1 before starting the engine 10, as shown in FIG. 6A, the rollers 564 are separated from the crankshaft 13. Therefore, power transmission unit 560 is in a disconnected state. When the engine 10 is started, the occupant kicks the input unit 510 shown in FIG. 3 to rotate the driven gear 550 in the reverse direction DR2 as shown in FIG. 6B. Accordingly, each roller 564 moves in the reverse direction DR2 while being in contact with the cam surface CF of the driven gear 550 and the outer peripheral surface of the crankshaft 13. In this case, each roller 564 pushes the roller holding portion 562, and the roller holding portion 562 rotates in the reverse direction DR2.
 上記のように、固定プレート561の押圧部561a(図4)は、付勢部材563(図4)によってローラ保持部562の摺動部562c(図4)に押し当てられる。そのため、ローラ保持部562が回転すると、押圧部561aと摺動部562cとの間で摩擦が生じる。その摩擦力は、ローラ保持部562の回転抵抗として働く。それにより、ローラ保持部562からローラ564に正方向DR1への抗力が働き、ローラ564がカム面CFおよびクランク軸13の外周面に押し当てられた状態に保持される。この場合、クランク軸13がドリブンギヤ550に対して正方向DR1に回転することが禁止される。一方、クランク軸13がドリブンギヤ550に対して逆方向DR2に回転することは禁止されない。 As described above, the pressing portion 561a (FIG. 4) of the fixed plate 561 is pressed against the sliding portion 562c (FIG. 4) of the roller holding portion 562 by the biasing member 563 (FIG. 4). For this reason, when the roller holding portion 562 rotates, friction is generated between the pressing portion 561a and the sliding portion 562c. The friction force acts as a rotation resistance of the roller holding portion 562. Accordingly, a drag force in the positive direction DR1 acts on the roller 564 from the roller holding portion 562, and the roller 564 is held in a state of being pressed against the cam surface CF and the outer peripheral surface of the crankshaft 13. In this case, the crankshaft 13 is prohibited from rotating in the positive direction DR1 with respect to the driven gear 550. On the other hand, the rotation of the crankshaft 13 in the reverse direction DR2 with respect to the driven gear 550 is not prohibited.
 図6(c)に示すように、クランク軸13の逆方向DR2の出力回転速度がドリブンギヤ550の逆方向DR2の入力回転速度よりも低い場合、動力伝達部560が接続状態となる。この場合、ドリブンギヤ550の逆方向DR2のトルクがクランク軸13に伝達され、クランク軸13がドリブンギヤ550と一体的に逆方向DR2に回転する。 As shown in FIG. 6C, when the output rotational speed in the reverse direction DR2 of the crankshaft 13 is lower than the input rotational speed in the reverse direction DR2 of the driven gear 550, the power transmission unit 560 is connected. In this case, the torque in the reverse direction DR2 of the driven gear 550 is transmitted to the crankshaft 13, and the crankshaft 13 rotates integrally with the driven gear 550 in the reverse direction DR2.
 図7(a)に示すように、惰性によりクランク軸13の逆方向DR2の出力回転速度がドリブンギヤ550の逆方向DR2の入力回転速度よりも高くなると、動力伝達部560が空転状態となる。この場合、ドリブンギヤ550とクランク軸13との間でトルクが伝達されず、ドリブンギヤ550が逆方向DR2に回転しつつクランク軸13がドリブンギヤ550よりも高い回転速度で逆方向DR2に回転する。 As shown in FIG. 7A, when the output rotational speed in the reverse direction DR2 of the crankshaft 13 becomes higher than the input rotational speed in the reverse direction DR2 of the driven gear 550 due to inertia, the power transmission unit 560 is in an idling state. In this case, torque is not transmitted between the driven gear 550 and the crankshaft 13, and the crankshaft 13 rotates in the reverse direction DR2 at a higher rotational speed than the driven gear 550 while the driven gear 550 rotates in the reverse direction DR2.
 乗員によるキック操作の後、慣性による回転が停止すると、図7(b)に示すように、ドリブンギヤ550の回転が停止するとともに、ローラ564およびローラ保持部562の回転も停止する。この場合、ローラ保持部562によるローラ564の保持が解除される。それにより、動力伝達部560が切断状態となり、ドリブンギヤ550による回転抵抗を受けることなくクランク軸13が逆方向DR2に回転する。 After the kick operation by the occupant, when the rotation due to the inertia stops, as shown in FIG. 7B, the rotation of the driven gear 550 stops and the rotation of the roller 564 and the roller holding portion 562 also stops. In this case, the holding of the roller 564 by the roller holding unit 562 is released. As a result, the power transmission unit 560 is disconnected, and the crankshaft 13 rotates in the reverse direction DR2 without being subjected to rotational resistance by the driven gear 550.
 後述するように、クランク軸13が所定角度回転した後、クランク軸13の回転方向が逆方向DR2から正方向DR1に切り替えられる。この場合でも、動力伝達部560は切断状態であるため、クランク軸13のトルクはドリブンギヤ550に伝達しない。そのため、クランク軸13から入力部510(図3)へのトルクの伝達が遮断された状態で、クランク軸13が正方向DR1に回転する。 As will be described later, after the crankshaft 13 rotates by a predetermined angle, the rotation direction of the crankshaft 13 is switched from the reverse direction DR2 to the forward direction DR1. Even in this case, since the power transmission unit 560 is in a disconnected state, the torque of the crankshaft 13 is not transmitted to the driven gear 550. Therefore, the crankshaft 13 rotates in the positive direction DR1 in a state where torque transmission from the crankshaft 13 to the input unit 510 (FIG. 3) is interrupted.
 (6)エンジンの動作
 例えば、図2のメインスイッチ40がオンされた状態で、図2のスタータスイッチ41がオンされるか、または入力部510がキック操作されることによりエンジン10が始動される。また、図2のメインスイッチ40がオフされることにより、エンジン10が停止される。さらに、予め定められたアイドルストップ条件が満たされることによりエンジン10が自動的に停止され、その後に予め定められたアイドルストップ解除条件が満たされることによりエンジン10が自動的に再始動されてもよい。
(6) Engine Operation For example, the engine 10 is started by turning on the starter switch 41 in FIG. 2 or kicking the input unit 510 with the main switch 40 in FIG. 2 turned on. . Further, the engine 10 is stopped by turning off the main switch 40 of FIG. Further, the engine 10 may be automatically stopped when a predetermined idle stop condition is satisfied, and then the engine 10 may be automatically restarted when a predetermined idle stop cancellation condition is satisfied. .
 アイドルストップ条件は、例えば、スロットル開度(スロットルバルブTVの開度)、車速およびエンジン10の回転速度のうち少なくとも1つに関する条件を含む。アイドルストップ解除条件は、例えば、アクセルグリップが操作されてスロットル開度が0より大きくなることである。以下、アイドルストップ条件が満たされることによってエンジン10が自動的に停止された状態をアイドルストップ状態と呼ぶ。 The idle stop condition includes, for example, a condition related to at least one of a throttle opening (opening of the throttle valve TV), a vehicle speed, and a rotation speed of the engine 10. The idling stop release condition is, for example, that the throttle opening is larger than 0 when the accelerator grip is operated. Hereinafter, a state where the engine 10 is automatically stopped when the idle stop condition is satisfied is referred to as an idle stop state.
 エンジンユニットEUは、エンジン10の始動時に逆回転始動動作を行なう。その後、エンジンユニットEUは、通常動作を行なう。図8は、エンジンユニットEUの通常動作について説明するための図である。図9は、エンジンユニットEUの逆回転始動動作について説明するための図である。 The engine unit EU performs a reverse rotation starting operation when the engine 10 is started. Thereafter, the engine unit EU performs a normal operation. FIG. 8 is a diagram for explaining a normal operation of the engine unit EU. FIG. 9 is a diagram for explaining the reverse rotation start operation of the engine unit EU.
 以下の説明では、圧縮行程から膨張行程への移行時にピストン11が経由する上死点を圧縮上死点と呼び、排気行程から吸気行程への移行時にピストン11が経由する上死点を排気上死点と呼ぶ。吸気行程から圧縮行程への移行時にピストン11が経由する下死点を吸気下死点と呼び、膨張行程から排気行程への移行時にピストン11が経由する下死点を膨張下死点と呼ぶ。 In the following description, the top dead center through which the piston 11 passes during the transition from the compression stroke to the expansion stroke is referred to as the compression top dead center, and the top dead center through which the piston 11 passes during the transition from the exhaust stroke to the intake stroke. Called dead point. The bottom dead center through which the piston 11 passes during the transition from the intake stroke to the compression stroke is called the intake bottom dead center, and the bottom dead center through which the piston 11 passes during the transition from the expansion stroke to the exhaust stroke is called the expansion bottom dead center.
 図8および図9においては、クランク軸13の2回転(720度)の範囲における回転角度が1つの円で表される。クランク軸13の2回転は、エンジン10の1サイクルに相当する。図2のクランク角センサ43は、クランク軸13の1回転(360度)の範囲における回転位置を検出する。ECU6は、吸気圧力センサ42により検出された吸気通路22内の圧力に基づいて、クランク角センサ43により検出された回転位置が、エンジン10の1サイクルに相当するクランク軸13の2回転のうちいずれの回転に対応するかを判定する。それにより、ECU6は、クランク軸13の2回転(720度)の範囲における回転位置を取得することができる。 8 and 9, the rotation angle in the range of two rotations (720 degrees) of the crankshaft 13 is represented by one circle. Two rotations of the crankshaft 13 correspond to one cycle of the engine 10. The crank angle sensor 43 in FIG. 2 detects the rotational position of the crankshaft 13 in the range of one rotation (360 degrees). The ECU 6 determines whether the rotational position detected by the crank angle sensor 43 based on the pressure in the intake passage 22 detected by the intake pressure sensor 42 is one of the two rotations of the crankshaft 13 corresponding to one cycle of the engine 10. It is determined whether it corresponds to the rotation of. Thereby, the ECU 6 can acquire the rotational position of the crankshaft 13 in the range of two rotations (720 degrees).
 図8および図9において、角度A0はピストン11(図2)が排気上死点に位置するときのクランク角であり、角度A2はピストン11が圧縮上死点に位置するときのクランク角である。角度A1はピストン11が吸気下死点に位置するときのクランク角であり、角度A3はピストン11が膨張下死点に位置するときのクランク角である。 8 and 9, the angle A0 is a crank angle when the piston 11 (FIG. 2) is located at the exhaust top dead center, and the angle A2 is a crank angle when the piston 11 is located at the compression top dead center. . The angle A1 is a crank angle when the piston 11 is located at the intake bottom dead center, and the angle A3 is a crank angle when the piston 11 is located at the expansion bottom dead center.
 以下、クランク軸13の正方向への回転を正回転と呼び、クランク軸13の逆方向への回転を逆回転と呼ぶ。矢印R1はクランク軸13の正回転時におけるクランク角の変化の方向を表し、矢印R2はクランク軸13の逆回転時におけるクランク角の変化の方向を表す。矢印P1~P4はクランク軸13の正回転時におけるピストン11の移動方向を表し、矢印P5~P8はクランク軸13の逆回転時におけるピストン11の移動方向を表す。 Hereinafter, rotation of the crankshaft 13 in the forward direction is referred to as forward rotation, and rotation of the crankshaft 13 in the reverse direction is referred to as reverse rotation. Arrow R1 indicates the direction of change in the crank angle when the crankshaft 13 rotates forward, and arrow R2 indicates the direction of change in the crank angle when the crankshaft 13 rotates reversely. Arrows P1 to P4 indicate the moving direction of the piston 11 when the crankshaft 13 rotates forward, and arrows P5 to P8 indicate the moving direction of the piston 11 when the crankshaft 13 rotates reversely.
 (a)通常動作
 図8を参照しながらエンジンユニットEUの通常動作について説明する。通常動作では、クランク軸13(図2)が正回転する。そのため、クランク角が矢印R1の方向に変化する。この場合、矢印P1で示されるように、角度A0から角度A1までの範囲でピストン11(図2)が下降する。次に、矢印P2で示されるように、角度A1から角度A2までの範囲でピストン11が上昇する。続いて、矢印P3で示されるように、角度A2から角度A3までの範囲でピストン11が下降する。その後、矢印P4で示されるように、角度A3から角度A0までの範囲でピストン11が上昇する。
(A) Normal Operation The normal operation of the engine unit EU will be described with reference to FIG. In normal operation, the crankshaft 13 (FIG. 2) rotates forward. Therefore, the crank angle changes in the direction of arrow R1. In this case, as indicated by the arrow P1, the piston 11 (FIG. 2) descends in the range from the angle A0 to the angle A1. Next, as indicated by the arrow P2, the piston 11 rises in the range from the angle A1 to the angle A2. Subsequently, as indicated by the arrow P3, the piston 11 is lowered in the range from the angle A2 to the angle A3. Thereafter, as indicated by the arrow P4, the piston 11 rises in the range from the angle A3 to the angle A0.
 角度A11において、インジェクタ19(図2)により吸気通路22(図2)に燃料が噴射される。正方向において、角度A11は角度A0よりも進角側に位置する。続いて、角度A12から角度A13までの範囲において、吸気バルブ15(図2)により吸気口21(図2)が開かれる。正方向において、角度A12は角度A11よりも遅角側でかつ角度A0よりも進角側に位置し、角度A13は角度A1よりも遅角側に位置する。角度A12から角度A13までの範囲が通常吸気範囲の例である。これにより、空気および燃料を含む混合気が吸気口21を通して燃焼室31a(図2)内に導入される。 At angle A11, fuel is injected into the intake passage 22 (FIG. 2) by the injector 19 (FIG. 2). In the positive direction, the angle A11 is located on the more advanced side than the angle A0. Subsequently, in the range from the angle A12 to the angle A13, the intake port 21 (FIG. 2) is opened by the intake valve 15 (FIG. 2). In the positive direction, the angle A12 is positioned more retarded than the angle A11 and more advanced than the angle A0, and the angle A13 is positioned more retarded than the angle A1. The range from the angle A12 to the angle A13 is an example of the normal intake range. Thereby, the air-fuel mixture containing air and fuel is introduced into the combustion chamber 31a (FIG. 2) through the intake port 21.
 次に、角度A14において、点火プラグ18(図2)により燃焼室31a(図2)内の混合気に点火される。正方向において、角度A14は角度A2よりも進角側に位置する。混合気に点火されることにより、燃焼室31a内で燃焼が生じる。混合気の燃焼のエネルギーがピストン11の駆動力となる。その後、角度A15から角度A16までの範囲において、排気バルブ16(図2)により排気口23(図2)が開かれる。正方向において、角度A15は角度A3よりも進角側に位置し、角度A16は角度A0よりも遅角側に位置する。角度A15から角度A16までの範囲が通常排気範囲の例である。これにより、燃焼室31aから排気口23を通して燃焼後の気体が排出される。 Next, at the angle A14, the air-fuel mixture in the combustion chamber 31a (FIG. 2) is ignited by the spark plug 18 (FIG. 2). In the positive direction, the angle A14 is located on the more advanced side than the angle A2. By igniting the air-fuel mixture, combustion occurs in the combustion chamber 31a. The combustion energy of the air-fuel mixture becomes the driving force for the piston 11. Thereafter, the exhaust port 23 (FIG. 2) is opened by the exhaust valve 16 (FIG. 2) in the range from the angle A15 to the angle A16. In the positive direction, the angle A15 is located on the more advanced side than the angle A3, and the angle A16 is located on the more retarded side than the angle A0. The range from the angle A15 to the angle A16 is an example of the normal exhaust range. Thereby, the gas after combustion is discharged | emitted through the exhaust port 23 from the combustion chamber 31a.
 (b)逆回転始動動作
 図10(a),(b)は、逆回転始動動作におけるエンジン10の始動を説明するための図である。図10(a),(b)において、横軸はクランク角を示し、縦軸はクランク軸13の回転負荷を示す。図9および図10(a),(b)を参照しながらエンジンユニットEUの逆回転始動動作について説明する。
(B) Reverse rotation start operation FIGS. 10A and 10B are diagrams for explaining the start of the engine 10 in the reverse rotation start operation. 10A and 10B, the horizontal axis indicates the crank angle, and the vertical axis indicates the rotational load of the crankshaft 13. The reverse rotation starting operation of the engine unit EU will be described with reference to FIGS. 9 and 10 (a) and 10 (b).
 本例では、逆回転始動動作が行われる前に、クランク角が予め定められた逆転開始範囲に調整される。逆転開始範囲は、正方向において例えば角度A0から角度A2までの範囲にあり、角度A13から角度A2までの範囲にあることが好ましい。図9において、逆転開始範囲は、角度A30である。角度A30は、角度A13から角度A2までの範囲にある。 In this example, before the reverse rotation start operation is performed, the crank angle is adjusted to a predetermined reverse rotation start range. The reverse rotation start range is, for example, in the range from angle A0 to angle A2 in the positive direction, and preferably in the range from angle A13 to angle A2. In FIG. 9, the reverse rotation start range is an angle A30. The angle A30 is in the range from the angle A13 to the angle A2.
 逆回転始動動作では、クランク角が逆回転開始範囲にある状態で、乗員により図3の入力部510のキック操作または予め定められた始動条件を満たすための操作が行なわれる。それにより、図2の回転電機14またはマニュアル始動部500によりクランク軸13が逆方向に回転され、クランク角が図9の矢印R2の方向に変化する。 In the reverse rotation start operation, the occupant performs a kick operation of the input unit 510 in FIG. 3 or an operation for satisfying a predetermined start condition while the crank angle is in the reverse rotation start range. Thereby, the crankshaft 13 is rotated in the reverse direction by the rotating electrical machine 14 or the manual starter 500 in FIG. 2, and the crank angle changes in the direction of the arrow R2 in FIG.
 この場合、矢印P6で示されるように、角度A2から角度A1までの範囲でピストン11が下降する。次に、矢印P5で示されるように、角度A1から角度A0までの範囲でピストン11が上昇する。続いて、矢印P8で示されるように、角度A0から角度A3までの範囲でピストン11が下降する。その後、矢印P7で示されるように、角度A3から角度A2までの範囲でピストン11が上昇する。クランク軸13の逆回転時におけるピストン11の移動方向は、クランク軸13の正回転時におけるピストン11の移動方向と逆になる。 In this case, as indicated by the arrow P6, the piston 11 is lowered in the range from the angle A2 to the angle A1. Next, as indicated by the arrow P5, the piston 11 rises in the range from the angle A1 to the angle A0. Subsequently, as indicated by an arrow P8, the piston 11 is lowered in the range from the angle A0 to the angle A3. Thereafter, as indicated by an arrow P7, the piston 11 rises in the range from the angle A3 to the angle A2. The moving direction of the piston 11 when the crankshaft 13 rotates in the reverse direction is opposite to the moving direction of the piston 11 when the crankshaft 13 rotates in the forward direction.
 図10(a),(b)に示すように、クランク角が圧縮上死点に対応する角度A2において、クランク軸13の回転負荷が最大になる。また、角度A1と角度A0との間において、吸気バルブ15の駆動のために、クランク軸13の回転負荷が大きくなる。また、角度A0と角度A3との間において、排気バルブ16の駆動のために、クランク軸13の回転負荷が大きくなる。 As shown in FIGS. 10A and 10B, the rotational load on the crankshaft 13 is maximized at an angle A2 corresponding to the compression top dead center. Further, between the angle A1 and the angle A0, the rotational load on the crankshaft 13 increases due to the drive of the intake valve 15. Further, between the angle A0 and the angle A3, the rotational load on the crankshaft 13 increases due to the drive of the exhaust valve 16.
 本例では、クランク軸13の逆回転時においても、正回転時と同様に、図9の角度A13から角度A12までの範囲で吸気口21が開かれ、かつ角度A16からA15までの範囲で排気口23が開かれる。しかしながら、クランク軸13の逆回転時には、角度A13から角度A12までの範囲で吸気口21が開かれなくてもよいし、角度A16から角度A15までの範囲で排気口23が開かれなくてもよい。 In this example, even when the crankshaft 13 rotates in the reverse direction, the intake port 21 is opened in the range from the angle A13 to the angle A12 in FIG. 9 and exhausted in the range from the angle A16 to A15 as in the forward rotation. Mouth 23 is opened. However, at the time of reverse rotation of the crankshaft 13, the intake port 21 may not be opened in the range from the angle A13 to the angle A12, and the exhaust port 23 may not be opened in the range from the angle A16 to the angle A15. .
 図9に示すように、角度A23において、インジェクタ19(図2)により吸気通路22(図2)に燃料が噴射される。逆方向において、角度A23は、角度A0より進角側に位置する。また、角度A21から角度A22までの範囲において、吸気バルブ15(図2)により吸気口21(図2)が開かれる。角度A21から角度A22までの範囲は、始動吸気範囲の例である。逆方向において、角度A21,A22は、角度A0から角度A3までの範囲にある。 As shown in FIG. 9, at an angle A23, fuel is injected into the intake passage 22 (FIG. 2) by the injector 19 (FIG. 2). In the reverse direction, the angle A23 is located on the more advanced side than the angle A0. Further, in the range from the angle A21 to the angle A22, the intake port 21 (FIG. 2) is opened by the intake valve 15 (FIG. 2). The range from the angle A21 to the angle A22 is an example of the starting intake air range. In the reverse direction, the angles A21 and A22 are in the range from the angle A0 to the angle A3.
 角度A1から角度A0までの範囲では、ピストン11が上昇するので、角度A13から角度A12までの範囲で吸気口21が開かれても、燃焼室31aに空気および燃料がほとんど導入されない。一方、角度A0から角度A3までの範囲では、ピストン11が下降するので、角度A21から角度A22までの範囲で吸気口21が開かれることにより、吸気通路22から空気および燃料を含む混合気が吸気口21を通して燃焼室31a内に導入される。 In the range from the angle A1 to the angle A0, the piston 11 rises, so even if the intake port 21 is opened in the range from the angle A13 to the angle A12, air and fuel are hardly introduced into the combustion chamber 31a. On the other hand, since the piston 11 descends in the range from the angle A0 to the angle A3, the intake port 21 is opened in the range from the angle A21 to the angle A22, so that the air-fuel mixture containing air and fuel is taken in from the intake passage 22. It is introduced into the combustion chamber 31a through the port 21.
 続いて、角度A31aにおいて、クランク軸13の逆方向の回転速度が予め定められたしきい値以下である場合には、点火プラグ18(図2)に接続される点火コイルへの通電が開始される。その後、角度A31において、点火コイルへの通電を停止することで、点火プラグ18(図2)により燃焼室31a内の混合気に点火される。逆方向において、角度A31aは角度A31より進角側に位置し、角度A31は角度A2より進角側に位置する。角度A31は、始動点火範囲の例である。 Subsequently, when the rotational speed in the reverse direction of the crankshaft 13 is equal to or less than a predetermined threshold value at the angle A31a, energization to the ignition coil connected to the ignition plug 18 (FIG. 2) is started. The After that, at the angle A31, by stopping energization to the ignition coil, the air-fuel mixture in the combustion chamber 31a is ignited by the spark plug 18 (FIG. 2). In the reverse direction, the angle A31a is located on the more advanced side than the angle A31, and the angle A31 is located on the more advanced side than the angle A2. The angle A31 is an example of the starting ignition range.
 このようにして、燃焼による正方向へのトルクが得られる。それにより、クランク角が正回転での最初の圧縮上死点に対応する角度をより容易に超えることができる。その結果、エンジン10をより容易に始動させることができる。その後、エンジン10が図8の通常動作に移行する。 In this way, torque in the positive direction due to combustion is obtained. Accordingly, the crank angle can more easily exceed the angle corresponding to the first compression top dead center in the forward rotation. As a result, the engine 10 can be started more easily. Thereafter, the engine 10 shifts to the normal operation of FIG.
 一方、角度A31aにおいて、クランク軸13の逆方向の回転速度がしきい値を超える場合には、クランク軸13が逆回転した状態でピストン11(図2)が逆回転での最初の圧縮上死点を通過することとなる。この場合、燃焼室31aで生じる燃焼のエネルギーによりクランク軸13が逆方向に回転するようにピストン11が駆動され、クランク軸13が正方向に回転するようにピストン11が駆動されない。そのため、エンジン10を適切に始動させることができない。そこで、クランク軸13の逆方向の回転速度がしきい値を超える場合には、点火コイルへの通電は禁止され、混合気への点火は行なわれない。 On the other hand, when the rotational speed of the crankshaft 13 in the reverse direction exceeds the threshold value at the angle A31a, the piston 11 (FIG. 2) performs the first compression top dead in the reverse rotation with the crankshaft 13 rotating in the reverse direction. The point will be passed. In this case, the piston 11 is driven so that the crankshaft 13 rotates in the reverse direction by the energy of combustion generated in the combustion chamber 31a, and the piston 11 is not driven so that the crankshaft 13 rotates in the forward direction. Therefore, the engine 10 cannot be started properly. Therefore, when the reverse rotation speed of the crankshaft 13 exceeds the threshold value, energization of the ignition coil is prohibited and ignition of the air-fuel mixture is not performed.
 この場合、図10(b)に示すように、クランク軸13がさらに720度以上逆回転し、クランク軸13の逆方向の回転速度がしきい値を下回った2回目以降の角度A31aにおいて点火コイルへの通電が開始され、角度A31において点火コイルへの通電が停止されることで、点火プラグ18(図2)により燃焼室31a内の混合気への点火が行なわれる。これにより、非常に大きな人力がマニュアル始動部500に加えられる場合でも、単純な構成でエンジン10を適切に始動させることができる。 In this case, as shown in FIG. 10 (b), the crankshaft 13 is further reversely rotated by 720 degrees or more, and the ignition coil is turned on at an angle A31a after the second time when the rotational speed of the crankshaft 13 is below the threshold value. Is started, and the current supply to the ignition coil is stopped at the angle A31, whereby the mixture in the combustion chamber 31a is ignited by the ignition plug 18 (FIG. 2). Thereby, even when a very large human power is applied to the manual starter 500, the engine 10 can be appropriately started with a simple configuration.
 このように、本実施の形態では、エンジン10の始動時に、マニュアル始動部500または回転電機14によりクランク軸13が逆回転されつつ燃焼室31aに混合気が導かれる。その後、ピストン11が圧縮上死点に近づいた状態で、燃焼室31a内の混合気に点火される。それにより、クランク軸13が正回転するようにピストン11が駆動される。 Thus, in the present embodiment, when the engine 10 is started, the air-fuel mixture is guided to the combustion chamber 31a while the crankshaft 13 is reversely rotated by the manual starter 500 or the rotating electrical machine 14. Thereafter, the air-fuel mixture in the combustion chamber 31a is ignited with the piston 11 approaching the compression top dead center. Thereby, the piston 11 is driven so that the crankshaft 13 rotates forward.
 本実施の形態では、クランク軸13の逆回転が停止されるのと同時に、点火プラグ18により燃焼室31a内の混合気に点火されるが、クランク軸13を正方向に駆動することが可能であれば、クランク軸13の逆回転の停止と、点火プラグ18による点火とが同時でなくてもよい。 In the present embodiment, at the same time as the reverse rotation of the crankshaft 13 is stopped, the air-fuel mixture in the combustion chamber 31a is ignited by the spark plug 18, but the crankshaft 13 can be driven in the forward direction. If there is, the stop of the reverse rotation of the crankshaft 13 and the ignition by the spark plug 18 may not be simultaneous.
 (7)エンジン始動処理
 ECU6は、予めメモリに記憶された制御プログラムに基づいて、エンジン始動処理を行なう。図11は、エンジン始動処理のフローチャートである。エンジン始動処理は、例えば、メインスイッチ40(図2)がオンされるか、またはエンジン10がアイドルストップ状態に移行した場合に行われる。
(7) Engine start process ECU6 performs an engine start process based on the control program previously memorize | stored in memory. FIG. 11 is a flowchart of the engine start process. The engine start process is performed, for example, when the main switch 40 (FIG. 2) is turned on or when the engine 10 shifts to an idle stop state.
 図11に示すように、ECU6は、予め定められた始動条件が満たされたか否かを判定する(ステップS1)。エンジンユニットEUがアイドルストップ状態でない場合、始動条件は、例えば、スタータスイッチ41(図2)がオンされることである。エンジンユニットEUがアイドルストップ状態である場合、始動条件は、アイドルストップ解除条件が満たされることである。 As shown in FIG. 11, the ECU 6 determines whether or not a predetermined start condition is satisfied (step S1). When the engine unit EU is not in the idle stop state, the start condition is, for example, that the starter switch 41 (FIG. 2) is turned on. When the engine unit EU is in the idle stop state, the start condition is that the idle stop release condition is satisfied.
 始動条件が満たされていない場合でも、乗員は、図3の入力部510をキック操作することによりエンジン10の始動を開始させることができる。そのため、ステップS1において始動条件が満たされていない場合、ECU6はステップS3の処理に進む。一方、ステップS1において始動条件が満たされた場合、ECU6は、クランク軸13が逆回転されるように回転電機14を制御する(ステップS2)。 Even if the start condition is not satisfied, the occupant can start the engine 10 by kicking the input unit 510 of FIG. Therefore, when the start condition is not satisfied in step S1, the ECU 6 proceeds to the process of step S3. On the other hand, when the starting condition is satisfied in step S1, the ECU 6 controls the rotating electrical machine 14 so that the crankshaft 13 is rotated in the reverse direction (step S2).
 なお、エンジン始動処理の開始時に、クランク角が逆回転開始範囲(角度A30)にない場合、クランク軸13が逆回転される前に、クランク角が逆回転開始範囲に調整される。 When the crank angle is not in the reverse rotation start range (angle A30) at the start of the engine start process, the crank angle is adjusted to the reverse rotation start range before the crankshaft 13 is reversely rotated.
 次に、ECU6は、クランク軸13が逆回転したか否かを判定する(ステップS3)。クランク軸13が逆回転していないことは、ステップS1において始動条件が満たされていないか、または入力部510のキック操作が行なわれていないことを意味する。そのため、ステップS3においてクランク軸13が逆回転していない場合には、ECU6はステップS1の処理に戻る。これにより、ステップS1において始動条件が満たされるか、または入力部510のキック操作が行なわれるまで、ECU6はステップS1~S3の処理を繰り返す。 Next, the ECU 6 determines whether or not the crankshaft 13 has rotated in the reverse direction (step S3). The fact that the crankshaft 13 is not rotating reversely means that the starting condition is not satisfied in step S1, or that the kick operation of the input unit 510 is not performed. Therefore, if the crankshaft 13 is not rotating in reverse in step S3, the ECU 6 returns to the process in step S1. Thus, ECU 6 repeats the processes of steps S1 to S3 until the starting condition is satisfied in step S1 or the input unit 510 is kicked.
 ステップS3においてクランク軸13が逆回転した場合には、ECU6は、燃料噴射条件が満たされたか否かを判定する(ステップS4)。例えば、燃料噴射条件は、吸気圧力センサ42(図2)およびクランク角センサ43(図2)の検出結果から得られるクランク角が、図9の角度A23に達することである。燃料噴射条件が満たされていない場合、ECU6は、ステップS4の処理を繰り返す。 When the crankshaft 13 rotates in the reverse direction in step S3, the ECU 6 determines whether or not the fuel injection condition is satisfied (step S4). For example, the fuel injection condition is that the crank angle obtained from the detection results of the intake pressure sensor 42 (FIG. 2) and the crank angle sensor 43 (FIG. 2) reaches the angle A23 in FIG. If the fuel injection condition is not satisfied, the ECU 6 repeats the process of step S4.
 ステップS4において燃料噴射条件が満たされた場合、ECU6は、吸気通路22(図2)に燃料が噴射されるように、インジェクタ19(図2)を制御する(ステップS5)。この場合、クランク角センサ43からのパルス信号に応答してECU6がインジェクタ19を制御してもよい。 When the fuel injection condition is satisfied in step S4, the ECU 6 controls the injector 19 (FIG. 2) so that the fuel is injected into the intake passage 22 (FIG. 2) (step S5). In this case, the ECU 6 may control the injector 19 in response to a pulse signal from the crank angle sensor 43.
 次に、ECU6は、点火条件が満たされたか否かを判定する(ステップS6)。例えば、点火条件は、吸気圧力センサ42(図2)およびクランク角センサ43(図2)の検出結果から得られるクランク角が、図9の角度A31aに達することである。点火条件が満たされていない場合、ECU6は、ステップS6の処理を繰り返す。 Next, the ECU 6 determines whether or not the ignition condition is satisfied (step S6). For example, the ignition condition is that the crank angle obtained from the detection results of the intake pressure sensor 42 (FIG. 2) and the crank angle sensor 43 (FIG. 2) reaches the angle A31a in FIG. If the ignition condition is not satisfied, the ECU 6 repeats the process of step S6.
 ステップS6において点火条件が満たされた場合、ECU6は、クランク軸13の回転速度がしきい値以下であるか否かを判定する(ステップS7)。ステップS7においてクランク軸13の回転速度がしきい値を超える場合、ECU6はステップS6の処理に戻る。クランク軸13の回転速度がしきい値以下になるまで、ECU6はステップS6,S7の処理を繰り返す。 When the ignition condition is satisfied in step S6, the ECU 6 determines whether or not the rotational speed of the crankshaft 13 is equal to or less than a threshold value (step S7). If the rotational speed of the crankshaft 13 exceeds the threshold value in step S7, the ECU 6 returns to the process in step S6. The ECU 6 repeats the processes of steps S6 and S7 until the rotational speed of the crankshaft 13 becomes equal to or less than the threshold value.
 ステップS7においてクランク軸13の回転速度がしきい値以下である場合、ECU6は、点火コイルへ通電することにより点火を行なう(ステップS8)。この場合、ECU6は、クランク角センサ43からのパルス信号に応答して点火コイルを制御してもよい。その後、ECU6は、クランク軸13が正方向に回転されるように回転電機14を制御する(ステップS9)。これにより、エンジン始動処理が終了する。 If the rotational speed of the crankshaft 13 is equal to or lower than the threshold value in step S7, the ECU 6 performs ignition by energizing the ignition coil (step S8). In this case, the ECU 6 may control the ignition coil in response to the pulse signal from the crank angle sensor 43. Thereafter, the ECU 6 controls the rotating electrical machine 14 so that the crankshaft 13 is rotated in the forward direction (step S9). As a result, the engine start process ends.
 図11のエンジン始動処理によれば、エンジンシステム200に十分な電力が残存している場合には、乗員は予め定められた始動条件が満たされることによりエンジンシステム200をより容易に始動させることができる。一方で、エンジンシステム200に十分な電力が残存していない場合には、乗員はマニュアル始動部500の入力部510に人力を加えることによりエンジン10を容易に始動させることができる。 According to the engine start process of FIG. 11, when sufficient electric power remains in the engine system 200, the occupant can start the engine system 200 more easily when a predetermined start condition is satisfied. it can. On the other hand, when sufficient electric power does not remain in the engine system 200, the occupant can easily start the engine 10 by applying human power to the input unit 510 of the manual starting unit 500.
 (8)効果
 本実施の形態に係るエンジンシステム200においては、エンジン10の始動時に、使用者の人力がマニュアル始動部500の入力部510に加えられる。入力部510に加えられた人力は、トルクとしてマニュアル始動部500の動力伝達部560によりクランク軸13に伝達される。これにより、クランク軸13が逆方向に回転する。
(8) Effect In the engine system 200 according to the present embodiment, the user's human power is applied to the input unit 510 of the manual starter 500 when the engine 10 is started. The human power applied to the input unit 510 is transmitted as torque to the crankshaft 13 by the power transmission unit 560 of the manual start unit 500. Thereby, the crankshaft 13 rotates in the reverse direction.
 クランク軸13が逆方向に回転される期間において、インジェクタ19により噴射された燃料が吸気通路22から吸気口21を通して燃焼室31a内に導かれる。その後、クランク軸13の逆方向の回転により燃焼室31a内で混合気が圧縮された状態にありかつピストン11が圧縮上死点に達しない時点で点火プラグ18により混合気に点火される。 During the period in which the crankshaft 13 is rotated in the reverse direction, the fuel injected by the injector 19 is guided from the intake passage 22 through the intake port 21 into the combustion chamber 31a. Thereafter, when the air-fuel mixture is compressed in the combustion chamber 31a due to the reverse rotation of the crankshaft 13 and the piston 11 does not reach the compression top dead center, the air-fuel mixture is ignited by the spark plug 18.
 この場合、燃焼室31a内で生じる燃焼のエネルギーにより、クランク軸13が正方向に回転するようにピストン11が駆動される。それにより、正方向への十分なトルクが得られ、クランク角が最初の圧縮上死点に対応する角度を容易に超えることができる。したがって、エンジン10を安定に始動させることができる。クランク軸13の正方向の回転時におけるクランク軸13から入力部510へのトルクは、動力伝達部560により遮断されるか、減衰される。そのため、エンジン10の始動後、クランク軸13のトルクによる入力部510の回転を防止することができる。 In this case, the piston 11 is driven by the energy of combustion generated in the combustion chamber 31a so that the crankshaft 13 rotates in the forward direction. Thereby, sufficient torque in the positive direction is obtained, and the crank angle can easily exceed the angle corresponding to the first compression top dead center. Therefore, the engine 10 can be started stably. Torque from the crankshaft 13 to the input unit 510 when the crankshaft 13 rotates in the positive direction is interrupted or attenuated by the power transmission unit 560. Therefore, after the engine 10 is started, the rotation of the input unit 510 due to the torque of the crankshaft 13 can be prevented.
 上記の構成によれば、バルブ駆動部17にデコンプレッション機構(デコンプ機構)を設けることなく、より弱い人力でエンジン10を容易に始動させることができる。そのため、エンジンシステム200の構成を単純にすることができる。その結果、単純な構成により人力でエンジン10を容易に始動させることができる。 According to the above configuration, the engine 10 can be easily started with weaker human power without providing a decompression mechanism (decompression mechanism) in the valve drive unit 17. Therefore, the configuration of engine system 200 can be simplified. As a result, the engine 10 can be easily started manually with a simple configuration.
 (9)他の実施の形態
 (a)上記実施の形態において、マニュアル始動部500はキックペダルを有するキック始動部であるが、本発明はこれに限定されない。マニュアル始動部500は、リコイルスタータであってもよい。この場合、使用者は、入力部であるスタータロープを引いてクランク軸を回転させることにより、リコイルスタータを始動させることができる。マニュアル始動部500は、人力でエンジンを始動可能な他の種類の始動部であってもよい。
(9) Other Embodiments (a) In the above embodiment, the manual starter 500 is a kick starter having a kick pedal, but the present invention is not limited to this. The manual starter 500 may be a recoil starter. In this case, the user can start the recoil starter by pulling the starter rope as an input unit and rotating the crankshaft. Manual starter 500 may be another type of starter that can start the engine manually.
 (b)上記実施の形態において、エンジンシステム200は回転電機14を含むが、本発明はこれに限定されない。エンジンシステム200は、回転電機14に代えてスタータモータおよび発電機を別個に含んでもよいし、スタータモータおよび発電機の一方を含んでもよい。あるいは、エンジンシステム200は、回転電機14、スタータモータおよび発電機のいずれも含まなくてもよい。 (B) In the above embodiment, the engine system 200 includes the rotating electrical machine 14, but the present invention is not limited to this. The engine system 200 may include a starter motor and a generator separately in place of the rotating electrical machine 14, or may include one of a starter motor and a generator. Alternatively, the engine system 200 may not include any of the rotating electrical machine 14, the starter motor, and the generator.
 (c)上記実施の形態は、本発明を自動二輪車に適用した例であるが、これに限らず、自動三輪車もしくはATV(All Terrain Vehicle;不整地走行車両)等の他の鞍乗り型車両に本発明を適用してもよい。 (C) The above embodiment is an example in which the present invention is applied to a motorcycle. However, the present invention is not limited to this, and other saddle-type vehicles such as a motorcycle or an ATV (All Terrain Vehicle) are used. The present invention may be applied.
 (10)請求項の各構成要素と実施の形態の各部との対応関係
 以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明するが、本発明は下記の例に限定されない。
(10) Correspondence between each component of claim and each part of embodiment The following describes an example of a correspondence between each component of the claim and each element of the embodiment. It is not limited to.
 上記実施の形態では、エンジン10がエンジンの例であり、マニュアル始動部500がマニュアル始動部およびキック始動部の例であり、ECU6が制御部の例であり、クランク軸13がクランク軸の例である。吸気通路22が吸気通路の例であり、インジェクタ19が燃料噴射装置の例であり、吸気口21が吸気口の例であり、吸気バルブ15が吸気バルブの例であり、排気口23が排気口の例であり、排気バルブ16が排気バルブの例である。 In the above embodiment, the engine 10 is an example of an engine, the manual starter 500 is an example of a manual starter and a kick starter, the ECU 6 is an example of a controller, and the crankshaft 13 is an example of a crankshaft. is there. The intake passage 22 is an example of an intake passage, the injector 19 is an example of a fuel injection device, the intake port 21 is an example of an intake port, the intake valve 15 is an example of an intake valve, and the exhaust port 23 is an exhaust port. The exhaust valve 16 is an example of an exhaust valve.
 バルブ駆動部17がバルブ駆動部の例であり、点火プラグ18が点火装置の例であり、入力部510が入力部およびキックペダルの例であり、動力伝達部560が動力伝達部の例であり、ピストン11がピストンの例である。エンジンシステム200がエンジンシステムの例であり、回転電機14がモータおよび回転電機の例であり、後輪7が駆動輪の例であり、車体1が本体部の例であり、自動二輪車100が鞍乗り型車両の例である。 The valve drive unit 17 is an example of a valve drive unit, the spark plug 18 is an example of an ignition device, the input unit 510 is an example of an input unit and a kick pedal, and the power transmission unit 560 is an example of a power transmission unit. Piston 11 is an example of a piston. The engine system 200 is an example of an engine system, the rotating electrical machine 14 is an example of a motor and a rotating electrical machine, the rear wheel 7 is an example of a driving wheel, the vehicle body 1 is an example of a main body, and the motorcycle 100 is a vehicle. It is an example of a riding type vehicle.
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。 As the constituent elements of the claims, various other elements having configurations or functions described in the claims can be used.
 本発明は、種々のエンジンシステムおよび鞍乗り型車両に有効に利用することができる。 The present invention can be effectively used for various engine systems and saddle riding type vehicles.

Claims (8)

  1. エンジンと、
     前記エンジンを始動させるため使用者によりマニュアル操作されるマニュアル始動部と、
     前記エンジンを制御するように構成された制御部とを備え、
     前記エンジンは、
     正方向または逆方向に回転可能に設けられたクランク軸と、
     吸気通路に配置された燃料噴射装置と、
     吸気口を開閉する吸気バルブおよび排気口を開閉する排気バルブをそれぞれ駆動するように構成されたバルブ駆動部と、
     燃焼室内の混合気に点火するように構成された点火装置とを含み、
     前記マニュアル始動部は、
     前記エンジンの始動時に使用者の人力が加えられる入力部と、
     前記入力部に加えられた人力を前記クランク軸を前記逆方向に回転させるためのトルクとして前記クランク軸に伝達する動力伝達部とを含み、
     前記バルブ駆動部は、前記燃料噴射装置により噴射された燃料が、前記クランク軸が前記逆方向に回転される期間における第1の時点で、前記吸気通路から前記吸気口を通して前記燃焼室内に導かれるように前記吸気バルブを駆動し、
     前記制御部は、前記第1の時点で前記燃焼室内に燃料が導かれた後、前記クランク軸の前記逆方向の回転により前記燃焼室内で混合気が圧縮された状態にありかつピストンが圧縮上死点に達しない第2の時点で混合気に点火させるように前記点火装置を制御し、
     前記動力伝達部は、前記クランク軸の前記正方向の回転時において、前記クランク軸から前記入力部へのトルクの伝達を遮断するか、または前記クランク軸から前記入力部へのトルクを減衰させる、エンジンシステム。
    An engine,
    A manual starter manually operated by a user to start the engine;
    A control unit configured to control the engine,
    The engine is
    A crankshaft provided rotatably in the forward or reverse direction;
    A fuel injection device disposed in the intake passage;
    A valve drive unit configured to drive an intake valve that opens and closes the intake port and an exhaust valve that opens and closes the exhaust port; and
    An igniter configured to ignite the air-fuel mixture in the combustion chamber,
    The manual starter is
    An input unit to which a user's human power is applied when starting the engine;
    A power transmission unit that transmits human force applied to the input unit to the crankshaft as torque for rotating the crankshaft in the reverse direction;
    The valve drive unit guides the fuel injected by the fuel injection device into the combustion chamber from the intake passage through the intake port at a first time point in a period in which the crankshaft is rotated in the reverse direction. Drive the intake valve so that
    After the fuel is introduced into the combustion chamber at the first time point, the control unit is in a state where the air-fuel mixture is compressed in the combustion chamber by the rotation of the crankshaft in the reverse direction and the piston is compressed. Controlling the igniter to ignite the air-fuel mixture at a second time when the dead center is not reached,
    The power transmission unit interrupts transmission of torque from the crankshaft to the input unit or attenuates torque from the crankshaft to the input unit during rotation of the crankshaft in the positive direction; Engine system.
  2. 前記制御部は、前記第2の時点において、前記クランク軸の前記逆方向の回転速度が予め定められたしきい値を超えるときには、前記点火装置の混合気への点火を禁止する、請求項1記載のエンジンシステム。 The control unit prohibits ignition of the air-fuel mixture of the ignition device when the reverse rotation speed of the crankshaft exceeds a predetermined threshold at the second time point. The engine system described.
  3. 前記動力伝達部は、前記入力部からクランク軸へのトルクは伝達されるが、前記クランク軸から前記入力部へ伝達されるトルクは制限される逆入力抑制機能を含む、請求項1または2記載のエンジンシステム。 The said power transmission part contains the reverse input suppression function in which the torque transmitted from the said input part to a crankshaft is transmitted, but the torque transmitted from the said crankshaft to the said input part is restrict | limited. Engine system.
  4. 前記マニュアル始動部はキック始動部を含み、
     前記入力部はキックペダルを含む、請求項1~3のいずれか一項に記載のエンジンシステム。
    The manual starter includes a kick starter,
    The engine system according to any one of claims 1 to 3, wherein the input unit includes a kick pedal.
  5. 前記クランク軸に設けられ、前記クランク軸を正方向に回転駆動可能に構成されたモータをさらに備え、
     前記制御部は、前記第2の時点の後、前記モータにより前記クランク軸を前記正方向に駆動させる、請求項1~4のいずれか一項に記載のエンジンシステム。
    A motor provided on the crankshaft and configured to be able to rotate the crankshaft in a positive direction;
    The engine system according to any one of claims 1 to 4, wherein the control unit drives the crankshaft in the forward direction by the motor after the second time point.
  6. 前記制御部が予め定められた始動条件が満たされたことを検出した場合、前記モータが前記クランク軸を前記逆方向に回転させる、請求項5記載のエンジンシステム。 The engine system according to claim 5, wherein the motor rotates the crankshaft in the reverse direction when the control unit detects that a predetermined start condition is satisfied.
  7. 前記モータは、前記エンジンの始動後の前記クランク軸の回転により電力を発生可能な回転電機を含む、請求項5または6記載のエンジンシステム。 The engine system according to claim 5 or 6, wherein the motor includes a rotating electrical machine capable of generating electric power by rotation of the crankshaft after the engine is started.
  8. 駆動輪を有する本体部と、
     前記駆動輪を回転させるための動力を発生する請求項1~7のいずれか一項に記載のエンジンシステムとを備える、鞍乗り型車両。
    A main body having a drive wheel;
    A straddle-type vehicle comprising: the engine system according to any one of claims 1 to 7 that generates power for rotating the drive wheels.
PCT/JP2016/001032 2015-03-23 2016-02-26 Engine system and saddle-type vehicle WO2016152029A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015059559 2015-03-23
JP2015-059559 2015-03-23

Publications (1)

Publication Number Publication Date
WO2016152029A1 true WO2016152029A1 (en) 2016-09-29

Family

ID=56978296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001032 WO2016152029A1 (en) 2015-03-23 2016-02-26 Engine system and saddle-type vehicle

Country Status (2)

Country Link
TW (1) TW201638462A (en)
WO (1) WO2016152029A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021181572A1 (en) * 2020-03-11 2021-09-16 本田技研工業株式会社 Method for controlling engine control device and saddle type vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104683U (en) * 1986-12-25 1988-07-06
JPS6429267U (en) * 1987-08-13 1989-02-21
JP2014077405A (en) * 2012-10-11 2014-05-01 Yamaha Motor Co Ltd Engine system and saddle riding vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104683U (en) * 1986-12-25 1988-07-06
JPS6429267U (en) * 1987-08-13 1989-02-21
JP2014077405A (en) * 2012-10-11 2014-05-01 Yamaha Motor Co Ltd Engine system and saddle riding vehicle

Also Published As

Publication number Publication date
TW201638462A (en) 2016-11-01

Similar Documents

Publication Publication Date Title
EP2719883B1 (en) Engine System
US20090071437A1 (en) Straddle type vehicle
JP2015108322A (en) Engine system and saddle-riding type vehicle
TW201439427A (en) Saddle type vehicle
WO2016152029A1 (en) Engine system and saddle-type vehicle
TWI553218B (en) Engine system and saddle-straddling type motor vehicle
TWI544140B (en) Engine system and straddle-type vehicle
TWI596274B (en) Engine system and straddled vehicle
JP5826414B1 (en) Engine system and saddle riding type vehicle
WO2016152010A1 (en) Engine system and saddle-type vehicle
TWI535586B (en) Engine control device and vehicle including the same
WO2016013045A1 (en) Engine system and saddle-type vehicle
TWI589772B (en) Engine system and vehicle
WO2016013044A1 (en) Engine system and saddle-type vehicle
JP6072668B2 (en) Transmission system
JP5905426B2 (en) vehicle
EP3173615B1 (en) Starting system and motorcycle
JP6097465B2 (en) Saddle riding vehicle
JP6249861B2 (en) One way clutch
JP6516644B2 (en) vehicle
JP2016176444A (en) Engine system and saddle-riding type vehicle
TW201413103A (en) Engine system and vehicle including the same
WO2014174717A1 (en) Engine system and vehicle equipped with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16767941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16767941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP