WO2016013045A1 - Engine system and saddle-type vehicle - Google Patents

Engine system and saddle-type vehicle Download PDF

Info

Publication number
WO2016013045A1
WO2016013045A1 PCT/JP2014/003881 JP2014003881W WO2016013045A1 WO 2016013045 A1 WO2016013045 A1 WO 2016013045A1 JP 2014003881 W JP2014003881 W JP 2014003881W WO 2016013045 A1 WO2016013045 A1 WO 2016013045A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
crankshaft
angle
ignition
range
Prior art date
Application number
PCT/JP2014/003881
Other languages
French (fr)
Japanese (ja)
Inventor
裕生 山口
貴裕 増田
誠吾 高橋
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to EP14885070.4A priority Critical patent/EP3173605A4/en
Priority to PCT/JP2014/003881 priority patent/WO2016013045A1/en
Priority to TW104122407A priority patent/TW201608114A/en
Publication of WO2016013045A1 publication Critical patent/WO2016013045A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D2013/0292Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation in the start-up phase, e.g. for warming-up cold engine or catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/06Reverse rotation of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • F02N2019/007Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation using inertial reverse rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/20Control related aspects of engine starting characterised by the control method
    • F02N2300/2011Control involving a delay; Control involving a waiting period before engine stop or engine start

Definitions

  • the present invention relates to an engine system and a saddle-ride type vehicle equipped with the same.
  • the air-fuel mixture is introduced into the combustion chamber while the crankshaft is rotated in the reverse direction when the engine is started.
  • the air-fuel mixture in the combustion chamber is ignited in a state where the air-fuel mixture in the combustion chamber is compressed by the rotation of the crankshaft in the reverse direction.
  • the crankshaft is rotationally driven in the forward direction by the combustion energy of the air-fuel mixture, and the torque in the forward direction of the crankshaft is increased.
  • crankshaft is rotated in the forward direction or the reverse direction so that the crank angle becomes a predetermined angle.
  • the crankshaft can be rotated in the reverse direction from a certain position when the engine is started.
  • An object of the present invention is to provide an engine system and a saddle-ride type vehicle capable of appropriately adjusting a crank angle before starting the engine.
  • An engine system includes an engine unit including an engine and a rotation drive unit, and a control unit that controls the engine unit, and the engine is disposed in an intake passage for guiding air to a combustion chamber.
  • a fuel injection device arranged to inject fuel, an ignition device configured to ignite an air-fuel mixture in a combustion chamber, an intake valve that opens and closes an intake port, and an exhaust valve that opens and closes an exhaust port are driven.
  • the rotary drive unit is configured to rotationally drive the crankshaft in the forward direction or the reverse direction, and the control unit rotates the crankshaft in the forward direction before starting the engine.
  • the engine unit is controlled so that a reverse rotation start operation is performed in which the crankshaft is rotated in the reverse direction when the engine is started.
  • the rotation drive unit drives the crankshaft so that the crank angle reaches a predetermined reverse rotation start range in the forward rotation alignment operation, and the crank angle is predetermined from the reverse rotation start range in the reverse rotation start operation.
  • the crankshaft is driven to reach a predetermined starting ignition range beyond the predetermined starting intake range, and the valve drive unit is configured to rotate the intake port when the crank angle is within the starting intake range in the reverse rotation starting operation.
  • the fuel injection device drives the intake valve so that the air-fuel mixture is introduced into the combustion chamber from the intake passage through the intake port when the crank angle is in the start intake range in the reverse rotation start operation.
  • the ignition device is ignited when the crank angle is within the starting ignition range in the reverse rotation starting operation, and the control unit ignites the ignition device during the forward rotation alignment operation. To stop.
  • the engine unit performs a normal rotation alignment operation before starting the engine.
  • the crankshaft In the forward rotation alignment operation, the crankshaft is rotated in the forward direction so that the crank angle reaches the reverse rotation start range.
  • the crank angle can be appropriately adjusted to the reverse rotation start range.
  • the engine unit performs reverse rotation starting operation when starting the engine.
  • the crankshaft since the crankshaft is rotated in the reverse direction from the state where the crank angle is in the reverse rotation start range, the crank angle surely passes through the start intake air range.
  • the air-fuel mixture can be appropriately introduced into the combustion chamber, and the combustion of the air-fuel mixture can be appropriately caused in the combustion chamber.
  • the torque in the positive direction of the crankshaft is increased, and the crank angle can easily exceed the angle corresponding to the first compression top dead center.
  • the control unit may prohibit the fuel injection by the fuel injection device during the forward rotation alignment operation.
  • the engine system may further include a main switch operated by the driver, and the control unit may control the engine unit so that the forward rotation alignment operation is performed when the main switch is turned on.
  • the forward rotation alignment operation is appropriately performed before starting the engine.
  • the engine system may further include a starter switch operated by the driver, and the control unit may control the engine unit so that the forward rotation alignment operation is performed when the starter switch is turned on.
  • the forward rotation alignment operation is appropriately performed before starting the engine.
  • control unit is configured so that the operations of the fuel injection device and the ignition device are stopped and the forward rotation alignment operation is performed after the rotation of the crankshaft is stopped.
  • the engine unit may be controlled such that the reverse rotation starting operation is performed when a predetermined idling stop cancellation condition is satisfied by controlling the unit.
  • the engine is automatically stopped and restarted, and the forward rotation alignment operation is appropriately performed before the engine is restarted.
  • the control unit does not prohibit ignition by the ignition device when the crankshaft rotates in the forward direction without being driven by the rotation driving unit.
  • the ignition by the ignition device may be prohibited when the crankshaft is rotated in the forward direction by being driven by the rotation drive unit.
  • the crankshaft When the crankshaft is rotated in the positive direction by a starting operation such as pushing or kicking, the crankshaft is not driven by the rotation drive unit. On the other hand, when the crankshaft is rotated in the forward direction in the forward rotation starting operation, the crankshaft is driven by the rotation drive unit. Therefore, the presence or absence of ignition by the ignition device can be appropriately controlled based on the presence or absence of driving of the crankshaft by the rotation drive unit. Therefore, without requiring a complicated configuration and complicated control, the mixture is properly mixed when a start operation such as pushing or kick start occurs while preventing the combustion of the air-fuel mixture during the forward rotation alignment operation. The engine can be started by burning the air.
  • the engine system further includes a kick starter that is operated by a driver's foot to rotate the crankshaft in the forward direction, and the control unit is configured to move the crankshaft in the forward direction by operating the kick starter by the driver. When rotating, the ignition by the ignition device may not be prohibited.
  • a saddle-ride type vehicle includes a main body portion having drive wheels and the engine system that generates power for rotating the drive wheels.
  • crank angle can be appropriately adjusted to the reverse rotation start range before the engine is started.
  • the crank angle can be appropriately adjusted before the engine is started.
  • FIG. 1 is a schematic side view showing a schematic configuration of a motorcycle according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining the configuration of the engine system.
  • FIG. 3 is a diagram for explaining the normal operation of the engine unit.
  • FIG. 4 is a diagram for explaining the forward rotation alignment operation and the reverse rotation start operation of the engine unit.
  • FIG. 5 is a flowchart of the mode update process.
  • FIG. 6 is a flowchart for explaining the engine start process.
  • FIG. 7 is a flowchart for explaining the engine start process.
  • FIG. 8 is a flowchart for explaining the engine start process.
  • FIG. 9 is a flowchart for explaining the engine start process.
  • FIG. 1 is a schematic side view showing a schematic configuration of a motorcycle according to an embodiment of the present invention.
  • a front fork 2 is provided at the front portion of the vehicle body 1 so as to be swingable in the left-right direction.
  • a handle 4 is attached to the upper end of the front fork 2, and a front wheel 3 is rotatably attached to the lower end of the front fork 2.
  • the seat 5 is provided at the substantially upper center of the vehicle body 1. Below the seat 5, an ECU (Engine Control Unit) 6 and an engine unit EU are provided.
  • the engine unit EU includes, for example, a single cylinder engine 10.
  • the engine unit EU is provided with a kick pedal KP for starting the engine 10.
  • the engine system 200 is configured by the ECU 6, the engine unit EU, and the kick pedal KP.
  • a rear wheel 7 is rotatably attached to the lower rear end of the vehicle body 1. The rear wheel 7 is rotationally driven by the power generated by the engine 10.
  • FIG. 2 is a schematic diagram for explaining the configuration of the engine system 200.
  • the engine unit EU includes an engine 10 and a starter / generator 14.
  • the engine 10 includes a piston 11, a connecting rod 12, a crankshaft 13, an intake valve 15, an exhaust valve 16, a valve drive unit 17, a spark plug 18 and an injector 19.
  • the piston 11 is provided so as to be able to reciprocate in the cylinder 31 and is connected to the crankshaft 13 via a connecting rod 12.
  • the reciprocating motion of the piston 11 is converted into the rotational motion of the crankshaft 13.
  • a starter / generator 14 is provided on the crankshaft 13.
  • the starter / generator 14 is a generator having a function of a starter motor, and rotates the crankshaft 13 in the forward direction and the reverse direction and generates electric power by the rotation of the crankshaft 13.
  • the forward direction is the direction of rotation of the crankshaft 13 during normal operation of the engine 10, and the reverse direction is the opposite direction.
  • the starter / generator 14 directly transmits torque to the crankshaft 13 without using a reduction gear.
  • the kick pedal KP is connected to the crankshaft 13.
  • the crankshaft 13 is rotated forward.
  • kick start starting the engine 10 by operating the kick pedal KP.
  • a combustion chamber 31 a is formed on the piston 11.
  • the combustion chamber 31 a communicates with the intake passage 22 through the intake port 21 and communicates with the exhaust passage 24 through the exhaust port 23.
  • An intake valve 15 is provided to open and close the intake port 21, and an exhaust valve 16 is provided to open and close the exhaust port 23.
  • the intake valve 15 and the exhaust valve 16 are driven by a valve drive unit 17.
  • the intake passage 22 is provided with a throttle valve TV for adjusting the flow rate of air flowing from the outside.
  • the spark plug 18 is configured to ignite the air-fuel mixture in the combustion chamber 31a.
  • the injector 19 is configured to inject fuel into the intake passage 22.
  • ECU6 contains CPU (central processing unit) and memory, for example.
  • a microcomputer may be used instead of the CPU and the memory.
  • a main switch 40, a starter switch 41, an intake pressure sensor 42, a crank angle sensor 43, and a current sensor 44 are electrically connected to the ECU 6.
  • the main switch 40 is provided, for example, below the handle 4 in FIG. 1, and the starter switch 41 is provided, for example, in the handle 4 in FIG.
  • the main switch 40 and the starter switch 41 are operated by the driver.
  • the intake pressure sensor 42 detects the pressure in the intake passage 22.
  • the crank angle sensor 43 detects the rotational position of the crankshaft 13 (hereinafter referred to as the crank angle).
  • the current sensor 44 detects a current (hereinafter referred to as a motor current) flowing through the starter / generator 14.
  • the operation of the main switch 40 and the starter switch 41 is given to the ECU 6 as operation signals, and the detection results by the intake pressure sensor 42, the crank angle sensor 43 and the current sensor 44 are given to the ECU 6 as detection signals.
  • the ECU 6 controls the starter / generator 14, the spark plug 18, and the injector 19 based on the given operation signal and detection signal.
  • the engine 10 is started when the starter switch 41 is turned on after the main switch 40 of FIG. 2 is turned on, and the engine 10 is stopped when the main switch 40 is turned off.
  • the engine 10 can also be started by a starting operation such as pushing or kicking.
  • the engine 10 may be automatically stopped when a predetermined idle stop condition is satisfied, and then the engine 10 may be automatically restarted when a predetermined idle stop cancellation condition is satisfied.
  • the idle stop condition includes, for example, a condition relating to at least one of a throttle opening (opening of the throttle valve TV), a vehicle speed, and a rotational speed of the engine 10.
  • the idling stop release condition is, for example, that the throttle opening is larger than 0 when the accelerator grip is operated.
  • an idle stop state a state where the engine 10 is automatically stopped when the idle stop condition is satisfied.
  • the engine unit EU performs a forward rotation alignment operation before the engine 10 is started, and performs a reverse rotation start operation when the engine 10 is started. However, when the engine 10 is started by pushing or kicking, the engine unit EU does not perform the reverse rotation starting operation. Thereafter, the engine unit EU performs a normal operation.
  • FIG. 3 is a diagram for explaining a normal operation of the engine unit EU.
  • FIG. 4 is a diagram for explaining the forward rotation alignment operation and the reverse rotation start operation of the engine unit EU.
  • the top dead center through which the piston 11 passes during the transition from the compression stroke to the expansion stroke is referred to as the compression top dead center
  • the top dead center through which the piston 11 passes during the transition from the exhaust stroke to the intake stroke Called dead point.
  • the bottom dead center through which the piston 11 passes during the transition from the intake stroke to the compression stroke is called the intake bottom dead center
  • the bottom dead center through which the piston 11 passes during the transition from the expansion stroke to the exhaust stroke is called the expansion bottom dead center.
  • the rotation angle in the range of two rotations (720 degrees) of the crankshaft 13 is represented by one circle. Two rotations of the crankshaft 13 correspond to one cycle of the engine 10.
  • the crank angle sensor 43 in FIG. 2 detects the rotational position of the crankshaft 13 in the range of one rotation (360 degrees).
  • the ECU 6 determines whether the rotational position detected by the crank angle sensor 43 based on the pressure in the intake passage 22 detected by the intake pressure sensor 42 is one of the two rotations of the crankshaft 13 corresponding to one cycle of the engine 10. It is determined whether it corresponds to the rotation of. Thereby, the ECU 6 can acquire the rotational position of the crankshaft 13 in the range of two rotations (720 degrees).
  • the angle A0 is a crank angle when the piston 11 (FIG. 2) is located at the exhaust top dead center
  • the angle A2 is a crank angle when the piston 11 is located at the compression top dead center
  • the angle A1 is a crank angle when the piston 11 is located at the intake bottom dead center
  • the angle A3 is a crank angle when the piston 11 is located at the expansion bottom dead center.
  • Arrow R1 represents the direction of change of the crank angle when the crankshaft 13 is rotating forward
  • arrow R2 represents the direction of change of the crank angle when the crankshaft 13 is rotated reversely.
  • Arrows P1 to P4 indicate the moving direction of the piston 11 when the crankshaft 13 rotates forward
  • arrows P5 to P8 indicate the moving direction of the piston 11 when the crankshaft 13 rotates reversely.
  • angle A11 fuel is injected into the intake passage 22 (FIG. 2) by the injector 19 (FIG. 2).
  • the angle A11 is located on the more advanced side than the angle A0.
  • the intake port 21 (FIG. 2) is opened by the intake valve 15 (FIG. 2).
  • the angle A12 is positioned more retarded than the angle A11 and more advanced than the angle A0, and the angle A13 is positioned more retarded than the angle A1.
  • the range from the angle A12 to the angle A13 is an example of the normal intake range.
  • the air-fuel mixture containing air and fuel is introduced into the combustion chamber 31a (FIG. 2) through the intake port 21.
  • the air-fuel mixture in the combustion chamber 31a (FIG. 2) is ignited by the spark plug 18 (FIG. 2).
  • the angle A14 is located on the more advanced side than the angle A2.
  • an explosion combustion of the air-fuel mixture
  • the exhaust port 23 (FIG. 2) is opened by the exhaust valve 16 (FIG. 2) in the range from the angle A15 to the angle A16.
  • the angle A15 is located on the more advanced side than the angle A3, and the angle A16 is located on the more retarded side than the angle A0.
  • the range from the angle A15 to the angle A16 is an example of the normal exhaust range.
  • the gas after combustion is discharged
  • the forward rotation alignment operation and reverse rotation start operation of the engine unit EU will be described with reference to FIG.
  • the crank angle is adjusted to the reverse rotation start range by forward rotation of the crankshaft 13 (FIG. 2).
  • the reverse rotation start range is, for example, in the range from angle A0 to angle A2 in the forward direction, and preferably in the range from angle A13 to angle A2.
  • the reverse rotation start range is a range from the angle A30a to the angle A30b.
  • the range from the angle A30a to the angle A30b is included in the range from the angle A13 to the angle A2.
  • the intake port 21 is opened in the range from the angle A13 to the angle A12 and the exhaust port 23 is opened in the range from the angle A16 to A15, as in the forward rotation.
  • the present invention is not limited to this.
  • the intake port 21 may not be opened in the range from the angle A13 to the angle A12, and the exhaust port 23 may not be opened in the range from the angle A16 to the angle A15.
  • angle A23 fuel is injected into the intake passage 22 (FIG. 2) by the injector 19 (FIG. 2).
  • the angle A23 is located on the more advanced side than the angle A0.
  • the intake port 21 (FIG. 2) is opened by the intake valve 15 (FIG. 2).
  • the range from the angle A21 to the angle A22 is an example of the starting intake air range.
  • the angles A21 and A22 are in the range from the angle A0 to the angle A3.
  • the angle A31a is located on the more advanced side than the angle A31, and the angle A31 is located on the more advanced side than the angle A2.
  • the angle A31 is an example of the starting ignition range.
  • the air-fuel mixture in the combustion chamber 31a is ignited by the spark plug 18 after the reverse rotation of the crankshaft 13 is stopped. Thereby, the crankshaft 13 can be reliably driven in the forward direction. If it is possible to drive the crankshaft 13 in the forward direction by adjusting the ignition timing, etc., the air-fuel mixture in the combustion chamber 31a is stopped by the spark plug 18 before the reverse rotation of the crankshaft 13 is stopped. May be ignited.
  • the air-fuel mixture is guided to the combustion chamber 31a while the crankshaft 13 is reversely rotated by the starter / generator 14, and then the piston 11 is brought to the compression top dead center.
  • the air-fuel mixture in the combustion chamber 31a is ignited.
  • the piston 11 is driven so that the crankshaft 13 rotates in the forward direction, and sufficient torque in the forward direction is obtained.
  • the crank angle exceeds the angle A2 corresponding to the first compression top dead center.
  • valve drive unit 17 in FIG. 2 When the valve drive unit 17 in FIG. 2 is a camshaft, the valve drive unit 17 rotates in conjunction with the rotation of the crankshaft 13. When the valve drive unit 17 lifts the intake valve 15, a biasing force of a valve spring (not shown) is applied as a reaction force from the intake valve 15 to the valve drive unit 17. Similarly, when the valve drive unit 17 lifts the exhaust valve 16, a biasing force of a valve spring (not shown) is applied as a reaction force from the exhaust valve 16 to the valve drive unit 17.
  • the air-fuel mixture is not combusted in the combustion chamber 31a, so that the rotational force of the crankshaft 13 and the valve drive unit 17 gradually decreases.
  • the reaction force from the intake valve 15 or the exhaust valve 16 may stop the rotation of the valve drive unit 17 and the crankshaft 13 may stop rotating accordingly.
  • the crankshaft 13 is reversely rotated by the reverse rotation starting operation. At that time, if the reverse rotation start operation is started from a state where the crank angle is in the range from the angle A0 to the angle A31 in the reverse direction, the engine 10 cannot be started properly.
  • crank angle does not easily reach the angle A31. If reverse rotation of the crankshaft 13 is started from a crank angle close to the angle A31, the rotation speed of the crankshaft 13 does not increase, and the crank angle may not reach the angle A31.
  • the crank angle is adjusted to the reverse rotation start range (in this example, the range from the angle A30a to the angle A30b) by the forward rotation alignment operation before the reverse rotation start operation.
  • the rotational speed of the crankshaft 13 is sufficiently increased when the crank angle reaches the angle A21. Therefore, the air-fuel mixture is sufficiently introduced into the combustion chamber 31a in the range from the angle A21 to the angle A22.
  • the crank angle reliably reaches the angle A31. Therefore, the air-fuel mixture can be properly burned in the combustion chamber 31a at the angle A31. Thereby, sufficient driving force for rotating the crankshaft 13 in the forward direction is obtained. As a result, the engine 10 can be properly started.
  • the ECU 6 controls the spark plug 18 and the injector 19 in one of the permission mode and the prohibit mode.
  • the permission mode fuel is injected by the injector 19 when the crank angle is the angle A11 in FIG. 3, and the air-fuel mixture is ignited by the spark plug 18 when the crank angle is the angle A14 in FIG.
  • the prohibit mode fuel injection by the injector 19 and ignition by the spark plug 18 are prohibited. Thereby, the fuel injection by the injector 19 and the ignition by the spark plug 18 are not performed regardless of the crank angle.
  • FIG. 5 is a flowchart of the mode update process.
  • the mode update process is continuously performed at a constant cycle while the main switch 40 is on.
  • the ECU 6 determines whether or not the crankshaft 13 is rotating forward based on the detection result by the crank angle sensor 43 (FIG. 2) (step S1). When the crankshaft 13 is not rotated forward, the ECU 6 ends the mode update process without updating the control mode. When the crankshaft 13 is rotating forward, the ECU 6 determines whether or not the engine unit EU is operating normally (step S2).
  • the ECU 6 updates the control mode to the permission mode (step S3) and ends the mode update process. Accordingly, as described above, the fuel is injected by the injector 19 at the angle A11 (FIG. 3) while the crankshaft 13 is rotated forward, and the air-fuel mixture in the combustion chamber 31a is injected by the spark plug 18 at the angle A14 (FIG. 3). Is ignited.
  • the ECU 6 determines whether or not the starter / generator 14 is driving the crankshaft 13 based on the detection result by the current sensor 44 (step S4).
  • the starter / generator 14 is driving the crankshaft 13
  • the engine unit EU is in the forward rotation alignment operation.
  • the ECU 6 updates the control mode to the prohibit mode (step S5) and ends the mode update process. As a result, fuel injection by the injector 19 and ignition by the spark plug 18 are prohibited.
  • the starter / generator 14 when the starter / generator 14 is not driving the crankshaft 13, there is a high possibility that the crankshaft 13 is normally rotated by a starting operation such as pushing or kicking.
  • the ECU 6 updates the control mode to the permission mode (step S3) and ends the mode update process.
  • the engine 10 is started by a starting operation such as pushing or kicking.
  • Engine start process ECU6 performs an engine start process based on the control program previously memorize
  • 6 to 9 are flowcharts for explaining the engine start process.
  • the engine start process is performed when the main switch 40 or the starter switch 41 in FIG. 2 is turned on or when the engine 10 shifts to the idle stop state.
  • FIGS. 6 to 8 are flowcharts of a first example of the engine start process.
  • the ECU 6 determines whether or not the current crank angle is stored in the memory (step S11).
  • the current crank angle is stored in the memory when the engine 10 was stopped last time, for example. For example, immediately after the main switch 40 is turned on, the current crank angle is not stored. In the idle stop state, the current crank angle is stored.
  • the ECU 6 controls the starter / generator 14 so that the crankshaft 13 rotates in the forward direction (step S12).
  • the torque of the starter / generator 14 is determined based on the detection signal from the current sensor 44 (FIG. 2) so that the crank angle does not reach the angle A2 (FIGS. 3 and 4) corresponding to the compression top dead center. Is adjusted.
  • the control mode of the spark plug 18 and the injector 19 is maintained in the prohibit mode during the forward rotation alignment operation. Therefore, at the time of forward rotation of the crankshaft 13 at step S12 and step S16 described later, fuel injection by the injector 19 and ignition by the spark plug 18 are prohibited.
  • step S13 the ECU 6 determines whether or not a specified time has elapsed since the rotation of the crankshaft 13 was started in step S12 (step S13).
  • the ECU 6 controls the starter / generator 14 so that the rotation of the crankshaft 13 in the positive direction is continued.
  • step S14 the ECU 6 controls the starter / generator 14 so that the rotation of the crankshaft 13 is stopped (step S14). Thereby, the crank angle is adjusted to the reverse rotation start range.
  • step S12 the crank angle may be detected when the crankshaft 13 is rotated in the forward direction, and the crank angle may be adjusted to the reverse rotation start range based on the detected value.
  • step S15 the ECU 6 determines whether or not the current crank angle is in the reverse rotation start range. If the current crank angle is not in the reverse rotation start range, the ECU 6 controls the starter / generator 14 so that the crankshaft 13 rotates in the forward direction (step S16). In this case, the torque of the starter / generator 14 is determined based on the detection signal from the current sensor 44 (FIG. 2) so that the crank angle does not reach the angle A2 (FIGS. 3 and 4) corresponding to the compression top dead center. Is adjusted.
  • the ECU 6 determines whether or not the current crank angle has reached the reverse rotation start range based on detection signals from the intake pressure sensor 42 and the crank angle sensor 43 (step S17). If the current crank angle has not reached the reverse rotation start range, the ECU 6 controls the starter / generator 14 so that the forward rotation of the crankshaft 13 is continued (step S16). When the current crank angle reaches the reverse rotation start range, the ECU 6 controls the starter / generator 14 so that the rotation of the crankshaft 13 is stopped (step S14). Thereby, the crank angle is adjusted to the reverse rotation start range.
  • crank angle is adjusted with higher accuracy than in the processes in steps S12 and S13, and the power consumption by the starter / generator 14 is suppressed.
  • step S21 in FIG. 7 After the crank angle is adjusted to the reverse rotation start range by forward rotation of the crankshaft 13, the process of step S21 in FIG. 7 is performed. In step S15, when the current crank angle is in the reverse rotation start range, the process of step S21 of FIG. 7 is performed as it is.
  • step S21 the ECU 6 determines whether or not a predetermined starting condition for the engine 10 is satisfied.
  • the starting condition of the engine 10 is, for example, that the starter switch 41 (FIG. 2) is turned on or that the idle stop cancellation condition is satisfied.
  • step S21 when the engine start process is started by turning on the starter switch 41, the process of step S21 may not be performed. In that case, the forward rotation alignment operation and the reverse rotation start operation are continuously performed.
  • the ECU 6 performs a timeout setting for the engine start process (step S22). Specifically, the elapsed time is measured from that point. When the elapsed time reaches a predetermined end time, the engine start process is forcibly ended (step S38 described later).
  • the ECU 6 controls the starter / generator 14 so that the crankshaft 13 is rotated in the reverse direction (step S23).
  • the ECU 6 determines whether or not the current crank angle has reached the angle A23 in FIG. 4 based on detection signals from the intake pressure sensor 42 (FIG. 2) and the crank angle sensor 43 (FIG. 2). (Step S24).
  • the ECU 6 repeats the process of step S24 until the current crank angle reaches the angle A23.
  • the ECU 6 controls the injector 19 so that fuel injection into the intake passage 22 (FIG. 2) is started (step S25).
  • a pulse signal is given from the crank angle sensor 43 to the ECU 6, and the ECU 6 may control the injector 19 so that fuel is injected in response to the pulse signal. .
  • the ECU 6 determines whether or not a predetermined injection time has elapsed since the start of fuel injection in step S10 (step S26).
  • the ECU 6 controls the injector 19 so that fuel injection is continued until a predetermined injection time has elapsed.
  • the ECU 6 controls the injector 19 so that the fuel injection is stopped (step S27).
  • the ECU 6 determines whether or not the motor current has reached a predetermined threshold value based on the detection signal from the current sensor 44 (step S31).
  • the motor current increases as the crank angle approaches the angle A2 in FIG.
  • the crank angle reaches the angle A31 in FIG. 4
  • the motor current reaches the threshold value.
  • step S32 When the current flowing through the starter / generator 14 reaches a predetermined threshold value, the ECU 6 controls the starter / generator 14 so that the reverse rotation of the crankshaft 13 is stopped (step S32). Then, energization to the ignition coil is started (step S33). Next, the ECU 6 determines whether or not a predetermined energization time has elapsed since the energization was started in step S33 (step S34). The ECU 6 continues energization to the ignition coil until a predetermined energization time elapses. When a predetermined energization time has elapsed, the ECU 6 stops energizing the ignition coil (step S35).
  • step S36 the ECU 6 controls the starter / generator 14 so that the crankshaft 13 rotates in the forward direction (step S36).
  • the driving of the crankshaft 13 by the starter / generator 14 is stopped after a predetermined time elapses from the process of step S36, for example.
  • step S31 if the motor current has not reached the threshold value, the ECU 6 determines whether or not a predetermined end time has elapsed from the timeout setting in step S22 of FIG. 7 (step S37). Due to an abnormality in the engine unit EU, a predetermined end time may elapse from the timeout setting without the current flowing through the starter / generator 14 reaching the threshold value.
  • the abnormality of the engine unit EU includes a malfunction of the starter / generator 14 or a malfunction of the valve drive unit 17. If the end time has not elapsed, the ECU 6 returns to the process of step S21.
  • the ECU 6 controls the starter / generator 14 so that the reverse rotation of the crankshaft 13 is stopped (step S38), and informs the driver that an abnormality has occurred in the engine unit EU.
  • a warning is given (step S39). Specifically, for example, a warning lamp (not shown) is turned on. Thereby, ECU6 complete
  • FIG. 9 is a flowchart of a second example of the engine start process.
  • the ECU 6 may perform steps S41 to S51 in FIG. 9 instead of steps S31 to S39 in FIG.
  • the ECU 6 determines the crankshaft 13 in advance after the reverse rotation of the crankshaft 13 is started in step S23 of FIG. 7 based on the detection signal from the crank angle sensor 43 (FIG. 2). It is determined whether or not the rotation angle has been reversed (step S41).
  • the reverse rotation angle corresponds to, for example, an angle from the angle A30a to the angle A31 in FIG.
  • the ECU 6 determines that the crankshaft 13 has rotated the reverse rotation angle. judge.
  • the ECU 6 controls the starter / generator 14 so that the reverse rotation of the crankshaft 13 is stopped (step S42), and starts energizing the ignition coil (step S42). Step S43).
  • step S44 the ECU 6 determines whether or not the crankshaft 13 has rotated a predetermined energization angle (step S44).
  • the energization angle corresponds to the angle at which the crankshaft 13 rotates during the energization time in step S24 of FIG. For example, after energization is started, when a specified number of pulses corresponding to the energization angle is given as a detection signal from the crank angle sensor 43, the ECU 6 determines that the crankshaft 13 has rotated the energization angle.
  • step S45 the ECU 6 stops energizing the ignition coil (step S45) and controls the starter / generator 14 so that the crankshaft 13 rotates in the forward direction (step S46). Then, the engine start process is terminated.
  • step S47 the ECU 6 determines whether or not a first end time predetermined from the timeout setting in step S7 has elapsed. If the first end time has not elapsed, the ECU 6 returns to the process of step S41. When the first end time elapses, the ECU 6 controls the starter / generator 14 so that the reverse rotation of the crankshaft 13 is stopped (step S48), and that an abnormality has occurred in the engine unit EU. The driver is warned (step S51), and the engine start process is terminated.
  • step S44 determines whether or not a second end time determined in advance from the timeout setting in step S22 in FIG. S49). The second end time is set longer than the first end time. If the second end time has not elapsed, the ECU 6 returns to the process of step S44. When the second end time has elapsed, the ECU 6 stops energizing the ignition coil (step S50), warns the driver that an abnormality has occurred in the engine unit EU (step S51), and performs engine start processing. finish.
  • the reverse rotation of the crankshaft 13 is stopped based on the detection signal from the crank angle sensor 43 (steps S41 and S42). Further, energization to the ignition coil is stopped based on the detection signal from the crank angle sensor 43 (steps S44 and S45). Thereby, reverse rotation of the crankshaft 13 and energization to the ignition coil can be stopped at an appropriate timing.
  • step S43 after the energization of the ignition coil is started in step S43, when the second end time has elapsed in step S39, the energization of the ignition coil is stopped in step S50. This prevents energization of the ignition coil from continuing for a long time.
  • the engine unit EU performs a reverse rotation start operation.
  • the crank angle surely passes through the starting intake air range. Therefore, the air-fuel mixture can be appropriately introduced into the combustion chamber 31a, and combustion of the air-fuel mixture can be appropriately caused in the combustion chamber 31a. Thereby, the torque in the positive direction of the crankshaft 13 is increased, and the crank angle can easily exceed the angle A2 corresponding to the first compression top dead center.
  • the fuel injection and ignition by the injector 19 are performed before the engine 10 is started. Ignition by the plug 18 is not prohibited.
  • the engine 10 can be started by appropriately burning the air-fuel mixture.
  • the fuel injection and ignition prohibition are controlled based on the operation of the starter / generator 14, the combustion of the air-fuel mixture during the forward rotation alignment operation is not required without requiring a complicated configuration and complicated control. Is prevented.
  • the above embodiment is an example in which the present invention is applied to the motorcycle 100 having the kick pedal KP, but the present invention may be applied to the motorcycle 100 having no kick pedal KP.
  • the present invention may be applied not only to motorcycles but also to other saddle riding type vehicles such as an automatic tricycle or an ATV (All Terrain Vehicle).
  • the engine unit EU is an example of an engine unit
  • the engine 10 is an example of an engine
  • the starter / generator 14 is an example of a rotational drive unit
  • the ECU 6 is an example of a control unit
  • an injector 19 is an example of a fuel injection device
  • an ignition plug 18 is an example of an ignition device
  • a valve drive unit 17 is an example of a valve drive unit
  • an intake valve 15 is an example of an intake valve
  • an exhaust valve 16 is an exhaust gas.
  • the main switch 40 is an example of a main switch
  • the starter switch 41 is an example of a starter switch
  • the kick pedal KP is an example of a kick starter.
  • the motorcycle 100 is an example of a saddle-ride type vehicle
  • the rear wheel 7 is an example of a driving wheel
  • the vehicle body 1 is an example of a main body.
  • the present invention can be effectively used for various engine systems and saddle riding type vehicles.

Abstract

A forward-rotation positioning operation in which a crankshaft is rotated in the forward direction is performed before starting an engine, and a reverse-rotation starting operation in which the crankshaft is rotated in the reverse direction is performed when starting the engine. In the forward-rotation positioning operation, a rotation drive unit drives the crankshaft such that the crank angle reaches a predetermined reverse-rotation start range. In the reverse-rotation starting operation: the rotation drive unit drives the crankshaft such that the crank angle transitions from the reverse-rotation start range, passes through a predetermined starting air-intake range, and reaches a predetermined starting ignition range; a fuel injection device injects fuel when the crank angle is in the starting air-intake range, such that a fuel-air mixture passes through an air-intake port from an air-intake passage and is introduced into a combustion chamber; and an ignition device performs ignition when the crank angle is in the starting ignition range. Ignition by the ignition device is prohibited during the forward-rotation positioning operation.

Description

エンジンシステムおよび鞍乗り型車両Engine system and saddle riding type vehicle
 本発明は、エンジンシステムおよびそれを備えた鞍乗り型車両に関する。 The present invention relates to an engine system and a saddle-ride type vehicle equipped with the same.
 自動二輪車等の鞍乗り型車両において、エンジンの始動動作の際には、クランク角が最初の圧縮上死点に対応する角度を超えるために大きなトルクが必要となる。そこで、エンジンの始動性を高めるため、クランク軸を逆方向に回転させる技術がある。 In saddle riding type vehicles such as motorcycles, when the engine is started, a large torque is required because the crank angle exceeds the angle corresponding to the first compression top dead center. Therefore, there is a technique for rotating the crankshaft in the reverse direction in order to improve the startability of the engine.
 特許文献1に記載されるエンジンシステムにおいては、エンジンの始動時に、クランク軸が逆方向に回転されつつ燃焼室内に混合気が導入される。クランク軸の逆方向の回転によって燃焼室内の混合気が圧縮される状態で、燃焼室内の混合気に点火される。混合気の燃焼のエネルギーにより、クランク軸が正方向に回転駆動され、クランク軸の正方向へのトルクが高められる。 In the engine system described in Patent Document 1, the air-fuel mixture is introduced into the combustion chamber while the crankshaft is rotated in the reverse direction when the engine is started. The air-fuel mixture in the combustion chamber is ignited in a state where the air-fuel mixture in the combustion chamber is compressed by the rotation of the crankshaft in the reverse direction. The crankshaft is rotationally driven in the forward direction by the combustion energy of the air-fuel mixture, and the torque in the forward direction of the crankshaft is increased.
 また、エンジンの始動前には、クランク角が予め定められた角度になるようにクランク軸が正方向または逆方向に回転される。これにより、エンジンの始動時に、クランク軸を一定の位置から逆方向に回転させることができる。
特開2014-77405号公報
Further, before the engine is started, the crankshaft is rotated in the forward direction or the reverse direction so that the crank angle becomes a predetermined angle. As a result, the crankshaft can be rotated in the reverse direction from a certain position when the engine is started.
JP 2014-77405 A
 発明者らは、エンジンの始動前に上記のようなクランク軸の位置合わせが行われた場合、その位置合わせ動作中にクランク角センサの出力に応答してエンジンが意図しない動作を行い、クランク角を適切に調整することができないという課題を見出した。 When the crankshaft is aligned as described above before starting the engine, the inventors perform an unintended operation in response to the output of the crank angle sensor during the alignment operation. I found a problem that I cannot adjust properly.
 本発明の目的は、エンジンの始動前にクランク角を適切に調整することが可能なエンジンシステムおよび鞍乗り型車両を提供することである。 An object of the present invention is to provide an engine system and a saddle-ride type vehicle capable of appropriately adjusting a crank angle before starting the engine.
 (1)本発明の一局面に従うエンジンシステムは、エンジンおよび回転駆動部を含むエンジンユニットと、エンジンユニットを制御する制御部とを備え、エンジンは、燃焼室に空気を導くための吸気通路内に燃料を噴射するように配置された燃料噴射装置と、燃焼室内の混合気に点火するように構成された点火装置と、吸気口を開閉する吸気バルブおよび排気口を開閉する排気バルブをそれぞれ駆動するように構成されたバルブ駆動部とを含み、回転駆動部は、クランク軸を正方向または逆方向に回転駆動するように構成され、制御部は、エンジンの始動前にクランク軸が正方向に回転される正回転位置合わせ動作が行われ、エンジンの始動時にクランク軸が逆方向に回転される逆回転始動動作が行われるようにエンジンユニットを制御し、回転駆動部は、正回転位置合わせ動作において、クランク角が予め定められた逆回転開始範囲に到るようにクランク軸を駆動し、逆回転始動動作において、クランク角が逆回転開始範囲から予め定められた始動吸気範囲を超えて予め定められた始動点火範囲に到るようにクランク軸を駆動し、バルブ駆動部は、逆回転始動動作において、クランク角が始動吸気範囲にあるときに吸気口が開かれるように吸気バルブを駆動し、燃料噴射装置は、逆回転始動動作において、クランク角が始動吸気範囲にあるときに吸気通路から吸気口を通して燃焼室に混合気が導入されるように燃料を噴射し、点火装置は、逆回転始動動作において、クランク角が始動点火範囲にあるときに点火し、制御部は、正回転位置合わせ動作時に、点火装置による点火を禁止する。 (1) An engine system according to an aspect of the present invention includes an engine unit including an engine and a rotation drive unit, and a control unit that controls the engine unit, and the engine is disposed in an intake passage for guiding air to a combustion chamber. A fuel injection device arranged to inject fuel, an ignition device configured to ignite an air-fuel mixture in a combustion chamber, an intake valve that opens and closes an intake port, and an exhaust valve that opens and closes an exhaust port are driven. The rotary drive unit is configured to rotationally drive the crankshaft in the forward direction or the reverse direction, and the control unit rotates the crankshaft in the forward direction before starting the engine. The engine unit is controlled so that a reverse rotation start operation is performed in which the crankshaft is rotated in the reverse direction when the engine is started. The rotation drive unit drives the crankshaft so that the crank angle reaches a predetermined reverse rotation start range in the forward rotation alignment operation, and the crank angle is predetermined from the reverse rotation start range in the reverse rotation start operation. The crankshaft is driven to reach a predetermined starting ignition range beyond the predetermined starting intake range, and the valve drive unit is configured to rotate the intake port when the crank angle is within the starting intake range in the reverse rotation starting operation. The fuel injection device drives the intake valve so that the air-fuel mixture is introduced into the combustion chamber from the intake passage through the intake port when the crank angle is in the start intake range in the reverse rotation start operation. The ignition device is ignited when the crank angle is within the starting ignition range in the reverse rotation starting operation, and the control unit ignites the ignition device during the forward rotation alignment operation. To stop.
 このエンジンシステムにおいては、エンジンの始動前にエンジンユニットが正回転位置合わせ動作を行う。正回転位置合わせ動作では、クランク角が逆回転開始範囲に到るようにクランク軸が正方向に回転される。この場合、点火装置による点火が禁止されるので、クランク角センサの出力に応答して、エンジンで意図しない混合気の燃焼が生じることが防止される。それにより、クランク角を逆回転開始範囲に適切に調整することができる。 In this engine system, the engine unit performs a normal rotation alignment operation before starting the engine. In the forward rotation alignment operation, the crankshaft is rotated in the forward direction so that the crank angle reaches the reverse rotation start range. In this case, since ignition by the ignition device is prohibited, unintended combustion of the air-fuel mixture in the engine is prevented in response to the output of the crank angle sensor. Thereby, the crank angle can be appropriately adjusted to the reverse rotation start range.
 その後、エンジンの始動時にエンジンユニットが逆回転始動動作を行う。この場合、クランク角が逆回転開始範囲にある状態からクランク軸が逆方向に回転されるので、クランク角が確実に始動吸気範囲を経由する。そのため、燃焼室内に混合気を適切に導入し、燃焼室で混合気の燃焼を適切に生じさせることができる。それにより、クランク軸の正方向のトルクが高まり、クランク角が最初の圧縮上死点に対応する角度を容易に超えることができる。 After that, the engine unit performs reverse rotation starting operation when starting the engine. In this case, since the crankshaft is rotated in the reverse direction from the state where the crank angle is in the reverse rotation start range, the crank angle surely passes through the start intake air range. For this reason, the air-fuel mixture can be appropriately introduced into the combustion chamber, and the combustion of the air-fuel mixture can be appropriately caused in the combustion chamber. Thereby, the torque in the positive direction of the crankshaft is increased, and the crank angle can easily exceed the angle corresponding to the first compression top dead center.
 (2)制御部は、正回転位置合わせ動作時に、燃料噴射装置による燃料の噴射を禁止してもよい。 (2) The control unit may prohibit the fuel injection by the fuel injection device during the forward rotation alignment operation.
 この場合、正回転位置合わせ動作時に混合気の燃焼が生じることが防止されるとともに、未燃の混合気が燃焼室から排出されることによる触媒への悪影響が防止される。 In this case, combustion of the air-fuel mixture is prevented during the forward rotation alignment operation, and adverse effects on the catalyst due to exhaust of the unburned air-fuel mixture from the combustion chamber are prevented.
 (3)エンジンシステムは、運転者により操作されるメインスイッチをさらに備え、制御部は、メインスイッチがオンされたときに正回転位置合わせ動作が行われるようにエンジンユニットを制御してもよい。 (3) The engine system may further include a main switch operated by the driver, and the control unit may control the engine unit so that the forward rotation alignment operation is performed when the main switch is turned on.
 この場合、エンジンの始動前に適切に正回転位置合わせ動作が行われる。 In this case, the forward rotation alignment operation is appropriately performed before starting the engine.
 (4)エンジンシステムは、運転者により操作されるスタータスイッチをさらに備え、制御部は、スタータスイッチがオンされたときに正回転位置合わせ動作が行われるようにエンジンユニットを制御してもよい。 (4) The engine system may further include a starter switch operated by the driver, and the control unit may control the engine unit so that the forward rotation alignment operation is performed when the starter switch is turned on.
 この場合、エンジンの始動前に適切に正回転位置合わせ動作が行われる。 In this case, the forward rotation alignment operation is appropriately performed before starting the engine.
 (5)制御部は、予め定められたアイドリングストップ条件が満たされた場合に、燃料噴射装置および点火装置の動作が停止されかつクランク軸の回転停止後に正回転位置合わせ動作が行われるようにエンジンユニットを制御し、予め定められたアイドリングストップ解除条件が満たされた場合に、逆回転始動動作が行われるようにエンジンユニットを制御してもよい。 (5) When the predetermined idling stop condition is satisfied, the control unit is configured so that the operations of the fuel injection device and the ignition device are stopped and the forward rotation alignment operation is performed after the rotation of the crankshaft is stopped. The engine unit may be controlled such that the reverse rotation starting operation is performed when a predetermined idling stop cancellation condition is satisfied by controlling the unit.
 この場合、自動的にエンジンが停止および再始動されるとともに、エンジンの再始動前に適切に正回転位置合わせ動作が行われる。 In this case, the engine is automatically stopped and restarted, and the forward rotation alignment operation is appropriately performed before the engine is restarted.
 (6)制御部は、エンジンの始動前において、回転駆動部によりクランク軸が駆動されることなくクランク軸が正方向に回転する場合に、点火装置による点火を禁止せず、エンジンの始動前において、回転駆動部によりクランク軸が駆動されることによりクランク軸が正方向に回転する場合に、点火装置による点火を禁止してもよい。 (6) Before starting the engine, the control unit does not prohibit ignition by the ignition device when the crankshaft rotates in the forward direction without being driven by the rotation driving unit. The ignition by the ignition device may be prohibited when the crankshaft is rotated in the forward direction by being driven by the rotation drive unit.
 押し掛けまたはキック始動等の始動操作によってクランク軸が正方向に回転される場合、回転駆動部によりクランク軸が駆動されない。一方、正回転始動動作においてクランク軸が正方向に回転される場合、回転駆動部によりクランク軸が駆動される。そのため、回転駆動部によるクランク軸の駆動の有無に基づいて、点火装置による点火の有無を適切に制御することができる。したがって、複雑な構成および複雑な制御を必要とせずに、正回転位置合わせ動作時に混合気の燃焼が生じることを防止しつつ、押し掛けまたはキック始動等の始動操作が発生した場合には適切に混合気を燃焼させてエンジンを始動させることができる。 When the crankshaft is rotated in the positive direction by a starting operation such as pushing or kicking, the crankshaft is not driven by the rotation drive unit. On the other hand, when the crankshaft is rotated in the forward direction in the forward rotation starting operation, the crankshaft is driven by the rotation drive unit. Therefore, the presence or absence of ignition by the ignition device can be appropriately controlled based on the presence or absence of driving of the crankshaft by the rotation drive unit. Therefore, without requiring a complicated configuration and complicated control, the mixture is properly mixed when a start operation such as pushing or kick start occurs while preventing the combustion of the air-fuel mixture during the forward rotation alignment operation. The engine can be started by burning the air.
 (7)エンジンシステムは、クランク軸を正方向に回転させるために運転者が足で操作するキック始動部をさらに備え、制御部は、運転者によるキック始動部の操作によりクランク軸が正方向に回転される場合に、点火装置による点火を禁止しなくてもよい。 (7) The engine system further includes a kick starter that is operated by a driver's foot to rotate the crankshaft in the forward direction, and the control unit is configured to move the crankshaft in the forward direction by operating the kick starter by the driver. When rotating, the ignition by the ignition device may not be prohibited.
 この場合、正回転位置合わせ動作時に混合気の燃焼が生じることを防止しつつ、キック始動部の操作時に適切に混合気を燃焼させてエンジンを始動させることができる。 In this case, it is possible to start the engine by appropriately burning the air-fuel mixture during operation of the kick start unit while preventing the air-fuel mixture from burning during the forward rotation alignment operation.
 (8)本発明の他の局面に従う鞍乗り型車両は、駆動輪を有する本体部と、駆動輪を回転させるための動力を発生する上記のエンジンシステムとを備える。 (8) A saddle-ride type vehicle according to another aspect of the present invention includes a main body portion having drive wheels and the engine system that generates power for rotating the drive wheels.
 この鞍乗り型車両においては、上記のエンジンシステムが用いられるので、エンジンの始動前にクランク角を逆回転開始範囲に適切に調整することができる。 In this saddle-ride type vehicle, since the engine system is used, the crank angle can be appropriately adjusted to the reverse rotation start range before the engine is started.
 本発明によれば、エンジンの始動前にクランク角を適切に調整することができる。 According to the present invention, the crank angle can be appropriately adjusted before the engine is started.
図1は本発明の一実施の形態に係る自動二輪車の概略構成を示す模式的側面図である。FIG. 1 is a schematic side view showing a schematic configuration of a motorcycle according to an embodiment of the present invention. 図2はエンジンシステムの構成について説明するための模式図である。FIG. 2 is a schematic diagram for explaining the configuration of the engine system. 図3はエンジンユニットの通常動作について説明するための図である。FIG. 3 is a diagram for explaining the normal operation of the engine unit. 図4はエンジンユニットの正回転位置合わせ動作および逆回転始動動作について説明するための図である。FIG. 4 is a diagram for explaining the forward rotation alignment operation and the reverse rotation start operation of the engine unit. 図5はモード更新処理のフローチャートである。FIG. 5 is a flowchart of the mode update process. 図6はエンジン始動処理について説明するためのフローチャートである。FIG. 6 is a flowchart for explaining the engine start process. 図7はエンジン始動処理について説明するためのフローチャートである。FIG. 7 is a flowchart for explaining the engine start process. 図8はエンジン始動処理について説明するためのフローチャートである。FIG. 8 is a flowchart for explaining the engine start process. 図9はエンジン始動処理について説明するためのフローチャートである。FIG. 9 is a flowchart for explaining the engine start process.
 以下、本発明の実施の形態に係る鞍乗り型車両の一例として、自動二輪車について図面を用いて説明する。 Hereinafter, a motorcycle will be described as an example of a saddle-ride type vehicle according to an embodiment of the present invention with reference to the drawings.
 (1)自動二輪車
 図1は、本発明の一実施の形態に係る自動二輪車の概略構成を示す模式的側面図である。図1の自動二輪車100においては、車体1の前部にフロントフォーク2が左右方向に揺動可能に設けられる。フロントフォーク2の上端にハンドル4が取り付けられ、フロントフォーク2の下端に前輪3が回転可能に取り付けられる。
(1) Motorcycle FIG. 1 is a schematic side view showing a schematic configuration of a motorcycle according to an embodiment of the present invention. In the motorcycle 100 of FIG. 1, a front fork 2 is provided at the front portion of the vehicle body 1 so as to be swingable in the left-right direction. A handle 4 is attached to the upper end of the front fork 2, and a front wheel 3 is rotatably attached to the lower end of the front fork 2.
 車体1の略中央上部にシート5が設けられる。シート5の下方にECU(Engine Control Unit;エンジン制御装置)6およびエンジンユニットEUが設けられる。エンジンユニットEUは、例えば単気筒のエンジン10を含む。また、エンジンユニットEUには、エンジン10を始動させるためのキックペダルKPが設けられる。ECU6、エンジンユニットEUおよびキックペダルKPによりエンジンシステム200が構成される。車体1の後端下部には後輪7が回転可能に取り付けられる。エンジン10により発生される動力により後輪7が回転駆動される。 The seat 5 is provided at the substantially upper center of the vehicle body 1. Below the seat 5, an ECU (Engine Control Unit) 6 and an engine unit EU are provided. The engine unit EU includes, for example, a single cylinder engine 10. The engine unit EU is provided with a kick pedal KP for starting the engine 10. The engine system 200 is configured by the ECU 6, the engine unit EU, and the kick pedal KP. A rear wheel 7 is rotatably attached to the lower rear end of the vehicle body 1. The rear wheel 7 is rotationally driven by the power generated by the engine 10.
 (2)エンジンシステム
 図2は、エンジンシステム200の構成について説明するための模式図である。図2に示すように、エンジンユニットEUは、エンジン10および始動兼発電機14を含む。エンジン10は、ピストン11、コンロッド12、クランク軸13、吸気バルブ15、排気バルブ16、バルブ駆動部17、点火プラグ18およびインジェクタ19を備える。
(2) Engine System FIG. 2 is a schematic diagram for explaining the configuration of the engine system 200. As shown in FIG. 2, the engine unit EU includes an engine 10 and a starter / generator 14. The engine 10 includes a piston 11, a connecting rod 12, a crankshaft 13, an intake valve 15, an exhaust valve 16, a valve drive unit 17, a spark plug 18 and an injector 19.
 ピストン11はシリンダ31内で往復動可能に設けられ、コンロッド12を介してクランク軸13に接続される。ピストン11の往復運動がクランク軸13の回転運動に変換される。クランク軸13に始動兼発電機14が設けられる。始動兼発電機14は、スタータモータの機能を有する発電機であり、クランク軸13を正方向および逆方向に回転駆動しかつクランク軸13の回転により電力を発生する。正方向は、エンジン10の通常動作時におけるクランク軸13の回転方向であり、逆方向は、その逆の方向である。始動兼発電機14は、減速機を介することなく直接的にクランク軸13にトルクを伝達する。クランク軸13の正方向の回転が後輪7に伝達されることにより、後輪7が回転駆動される。 The piston 11 is provided so as to be able to reciprocate in the cylinder 31 and is connected to the crankshaft 13 via a connecting rod 12. The reciprocating motion of the piston 11 is converted into the rotational motion of the crankshaft 13. A starter / generator 14 is provided on the crankshaft 13. The starter / generator 14 is a generator having a function of a starter motor, and rotates the crankshaft 13 in the forward direction and the reverse direction and generates electric power by the rotation of the crankshaft 13. The forward direction is the direction of rotation of the crankshaft 13 during normal operation of the engine 10, and the reverse direction is the opposite direction. The starter / generator 14 directly transmits torque to the crankshaft 13 without using a reduction gear. When the rotation of the crankshaft 13 in the positive direction is transmitted to the rear wheel 7, the rear wheel 7 is rotationally driven.
 キックペダルKPは、クランク軸13に接続される。運転者が足でキックペダルKPを操作することにより、クランク軸13が正回転される。以下、キックペダルKPの操作によるエンジン10の始動をキック始動と呼ぶ。 The kick pedal KP is connected to the crankshaft 13. When the driver operates the kick pedal KP with his / her foot, the crankshaft 13 is rotated forward. Hereinafter, starting the engine 10 by operating the kick pedal KP is referred to as kick start.
 ピストン11上に燃焼室31aが形成される。燃焼室31aは、吸気口21を介して吸気通路22に連通し、排気口23を介して排気通路24に連通する。吸気口21を開閉するように吸気バルブ15が設けられ、排気口23を開閉するように排気バルブ16が設けられる。吸気バルブ15および排気バルブ16は、バルブ駆動部17により駆動される。吸気通路22には、外部から流入する空気の流量を調整するためのスロットルバルブTVが設けられる。点火プラグ18は、燃焼室31a内の混合気に点火するように構成される。インジェクタ19は、吸気通路22に燃料を噴射するように構成される。 A combustion chamber 31 a is formed on the piston 11. The combustion chamber 31 a communicates with the intake passage 22 through the intake port 21 and communicates with the exhaust passage 24 through the exhaust port 23. An intake valve 15 is provided to open and close the intake port 21, and an exhaust valve 16 is provided to open and close the exhaust port 23. The intake valve 15 and the exhaust valve 16 are driven by a valve drive unit 17. The intake passage 22 is provided with a throttle valve TV for adjusting the flow rate of air flowing from the outside. The spark plug 18 is configured to ignite the air-fuel mixture in the combustion chamber 31a. The injector 19 is configured to inject fuel into the intake passage 22.
 ECU6は、例えばCPU(中央演算処理装置)およびメモリを含む。CPUおよびメモリの代わりに、マイクロコンピュータが用いられてもよい。ECU6には、メインスイッチ40、スタータスイッチ41、吸気圧力センサ42、クランク角センサ43および電流センサ44が電気的に接続される。メインスイッチ40は、例えば図1のハンドル4の下方に設けられ、スタータスイッチ41は、例えば図1のハンドル4に設けられる。メインスイッチ40およびスタータスイッチ41は、運転者により操作される。吸気圧力センサ42は、吸気通路22内の圧力を検出する。クランク角センサ43は、クランク軸13の回転位置(以下、クランク角と呼ぶ)を検出する。電流センサ44は、始動兼発電機14に流れる電流(以下、モータ電流と呼ぶ)を検出する。 ECU6 contains CPU (central processing unit) and memory, for example. A microcomputer may be used instead of the CPU and the memory. A main switch 40, a starter switch 41, an intake pressure sensor 42, a crank angle sensor 43, and a current sensor 44 are electrically connected to the ECU 6. The main switch 40 is provided, for example, below the handle 4 in FIG. 1, and the starter switch 41 is provided, for example, in the handle 4 in FIG. The main switch 40 and the starter switch 41 are operated by the driver. The intake pressure sensor 42 detects the pressure in the intake passage 22. The crank angle sensor 43 detects the rotational position of the crankshaft 13 (hereinafter referred to as the crank angle). The current sensor 44 detects a current (hereinafter referred to as a motor current) flowing through the starter / generator 14.
 メインスイッチ40およびスタータスイッチ41の操作が操作信号としてECU6に与えられ、吸気圧力センサ42、クランク角センサ43および電流センサ44による検出結果が検出信号としてECU6に与えられる。ECU6は、与えられた操作信号および検出信号に基づいて、始動兼発電機14、点火プラグ18およびインジェクタ19を制御する。 The operation of the main switch 40 and the starter switch 41 is given to the ECU 6 as operation signals, and the detection results by the intake pressure sensor 42, the crank angle sensor 43 and the current sensor 44 are given to the ECU 6 as detection signals. The ECU 6 controls the starter / generator 14, the spark plug 18, and the injector 19 based on the given operation signal and detection signal.
 (3)エンジンの動作
 例えば、図2のメインスイッチ40がオンされた後にスタータスイッチ41がオンされることによりエンジン10が始動され、メインスイッチ40がオフされることによりエンジン10が停止される。また、押し掛けもしくはキック始動等の始動操作によってエンジン10を始動させることもできる。
(3) Engine Operation For example, the engine 10 is started when the starter switch 41 is turned on after the main switch 40 of FIG. 2 is turned on, and the engine 10 is stopped when the main switch 40 is turned off. The engine 10 can also be started by a starting operation such as pushing or kicking.
 また、予め定められたアイドルストップ条件が満たされることによりエンジン10が自動的に停止され、その後に予め定められたアイドルストップ解除条件が満たされることによりエンジン10が自動的に再始動されてもよい。アイドルストップ条件は、例えば、スロットル開度(スロットルバルブTVの開度)、車速およびエンジン10の回転速度のうち少なくとも1つに関する条件を含む。アイドルストップ解除条件は、例えば、アクセルグリップが操作されてスロットル開度が0より大きくなることである。以下、アイドルストップ条件が満たされることによってエンジン10が自動的に停止された状態をアイドルストップ状態と呼ぶ。 Further, the engine 10 may be automatically stopped when a predetermined idle stop condition is satisfied, and then the engine 10 may be automatically restarted when a predetermined idle stop cancellation condition is satisfied. . The idle stop condition includes, for example, a condition relating to at least one of a throttle opening (opening of the throttle valve TV), a vehicle speed, and a rotational speed of the engine 10. The idling stop release condition is, for example, that the throttle opening is larger than 0 when the accelerator grip is operated. Hereinafter, a state where the engine 10 is automatically stopped when the idle stop condition is satisfied is referred to as an idle stop state.
 エンジンユニットEUは、エンジン10の始動前に正回転位置合わせ動作を行い、エンジン10の始動時に逆回転始動動作を行う。ただし、押し掛けまたはキック始動等によりエンジン10が始動される場合、エンジンユニットEUは、逆回転始動動作を行わない。その後、エンジンユニットEUは、通常動作を行う。図3は、エンジンユニットEUの通常動作について説明するための図である。図4は、エンジンユニットEUの正回転位置合わせ動作および逆回転始動動作について説明するための図である。 The engine unit EU performs a forward rotation alignment operation before the engine 10 is started, and performs a reverse rotation start operation when the engine 10 is started. However, when the engine 10 is started by pushing or kicking, the engine unit EU does not perform the reverse rotation starting operation. Thereafter, the engine unit EU performs a normal operation. FIG. 3 is a diagram for explaining a normal operation of the engine unit EU. FIG. 4 is a diagram for explaining the forward rotation alignment operation and the reverse rotation start operation of the engine unit EU.
 以下の説明では、圧縮行程から膨張行程への移行時にピストン11が経由する上死点を圧縮上死点と呼び、排気行程から吸気行程への移行時にピストン11が経由する上死点を排気上死点と呼ぶ。吸気行程から圧縮行程への移行時にピストン11が経由する下死点を吸気下死点と呼び、膨張行程から排気行程への移行時にピストン11が経由する下死点を膨張下死点と呼ぶ。 In the following description, the top dead center through which the piston 11 passes during the transition from the compression stroke to the expansion stroke is referred to as the compression top dead center, and the top dead center through which the piston 11 passes during the transition from the exhaust stroke to the intake stroke. Called dead point. The bottom dead center through which the piston 11 passes during the transition from the intake stroke to the compression stroke is called the intake bottom dead center, and the bottom dead center through which the piston 11 passes during the transition from the expansion stroke to the exhaust stroke is called the expansion bottom dead center.
 図3および図4においては、クランク軸13の2回転(720度)の範囲における回転角度が1つの円で表される。クランク軸13の2回転は、エンジン10の1サイクルに相当する。図2のクランク角センサ43は、クランク軸13の1回転(360度)の範囲における回転位置を検出する。ECU6は、吸気圧力センサ42により検出された吸気通路22内の圧力に基づいて、クランク角センサ43により検出された回転位置が、エンジン10の1サイクルに相当するクランク軸13の2回転のうちいずれの回転に対応するかを判定する。それにより、ECU6は、クランク軸13の2回転(720度)の範囲における回転位置を取得することができる。 3 and 4, the rotation angle in the range of two rotations (720 degrees) of the crankshaft 13 is represented by one circle. Two rotations of the crankshaft 13 correspond to one cycle of the engine 10. The crank angle sensor 43 in FIG. 2 detects the rotational position of the crankshaft 13 in the range of one rotation (360 degrees). The ECU 6 determines whether the rotational position detected by the crank angle sensor 43 based on the pressure in the intake passage 22 detected by the intake pressure sensor 42 is one of the two rotations of the crankshaft 13 corresponding to one cycle of the engine 10. It is determined whether it corresponds to the rotation of. Thereby, the ECU 6 can acquire the rotational position of the crankshaft 13 in the range of two rotations (720 degrees).
 図3および図4において、角度A0は、ピストン11(図2)が排気上死点に位置するときのクランク角であり、角度A2は、ピストン11が圧縮上死点に位置するときのクランク角であり、角度A1は、ピストン11が吸気下死点に位置するときのクランク角であり、角度A3は、ピストン11が膨張下死点に位置するときのクランク角である。矢印R1は、クランク軸13の正回転時におけるクランク角の変化の方向を表し、矢印R2は、クランク軸13の逆回転時におけるクランク角の変化の方向を表す。矢印P1~P4は、クランク軸13の正回転時におけるピストン11の移動方向を表し、矢印P5~P8は、クランク軸13の逆回転時におけるピストン11の移動方向を表す。 3 and 4, the angle A0 is a crank angle when the piston 11 (FIG. 2) is located at the exhaust top dead center, and the angle A2 is a crank angle when the piston 11 is located at the compression top dead center. The angle A1 is a crank angle when the piston 11 is located at the intake bottom dead center, and the angle A3 is a crank angle when the piston 11 is located at the expansion bottom dead center. Arrow R1 represents the direction of change of the crank angle when the crankshaft 13 is rotating forward, and arrow R2 represents the direction of change of the crank angle when the crankshaft 13 is rotated reversely. Arrows P1 to P4 indicate the moving direction of the piston 11 when the crankshaft 13 rotates forward, and arrows P5 to P8 indicate the moving direction of the piston 11 when the crankshaft 13 rotates reversely.
 (3-1)通常動作
 図3を参照しながらエンジンユニットEUの通常動作について説明する。通常動作では、クランク軸13(図2)が正方向に回転する。そのため、クランク角が矢印R1の方向に変化する。この場合、矢印P1~P4で示されるように、角度A0から角度A1までの範囲でピストン11(図2)が下降し、角度A1から角度A2までの範囲でピストン11が上昇し、角度A2から角度A3までの範囲でピストン11が下降し、角度A3から角度A0までの範囲でピストン11が上昇する。
(3-1) Normal Operation The normal operation of the engine unit EU will be described with reference to FIG. In normal operation, the crankshaft 13 (FIG. 2) rotates in the positive direction. Therefore, the crank angle changes in the direction of arrow R1. In this case, as indicated by arrows P1 to P4, the piston 11 (FIG. 2) descends in the range from the angle A0 to the angle A1, the piston 11 rises in the range from the angle A1 to the angle A2, and from the angle A2 The piston 11 descends in the range up to the angle A3, and the piston 11 rises in the range from the angle A3 to the angle A0.
 角度A11において、インジェクタ19(図2)により吸気通路22(図2)に燃料が噴射される。正方向において、角度A11は角度A0よりも進角側に位置する。続いて、角度A12から角度A13までの範囲において、吸気バルブ15(図2)により吸気口21(図2)が開かれる。正方向において、角度A12は角度A11よりも遅角側でかつ角度A0よりも進角側に位置し、角度A13は角度A1よりも遅角側に位置する。角度A12から角度A13までの範囲が通常吸気範囲の例である。これにより、空気および燃料を含む混合気が吸気口21を通して燃焼室31a(図2)内に導入される。 At angle A11, fuel is injected into the intake passage 22 (FIG. 2) by the injector 19 (FIG. 2). In the positive direction, the angle A11 is located on the more advanced side than the angle A0. Subsequently, in the range from the angle A12 to the angle A13, the intake port 21 (FIG. 2) is opened by the intake valve 15 (FIG. 2). In the positive direction, the angle A12 is positioned more retarded than the angle A11 and more advanced than the angle A0, and the angle A13 is positioned more retarded than the angle A1. The range from the angle A12 to the angle A13 is an example of the normal intake range. Thereby, the air-fuel mixture containing air and fuel is introduced into the combustion chamber 31a (FIG. 2) through the intake port 21.
 次に、角度A14において、点火プラグ18(図2)により燃焼室31a(図2)内の混合気に点火される。正方向において、角度A14は角度A2よりも進角側に位置する。混合気に点火されることにより、燃焼室31a内で爆発(混合気の燃焼)が生じる。混合気の燃焼のエネルギーがピストン11の駆動力となる。その後、角度A15から角度A16までの範囲において、排気バルブ16(図2)により排気口23(図2)が開かれる。正方向において、角度A15は角度A3よりも進角側に位置し、角度A16は角度A0よりも遅角側に位置する。角度A15から角度A16までの範囲が通常排気範囲の例である。これにより、燃焼室31aから排気口23を通して燃焼後の気体が排出される。 Next, at the angle A14, the air-fuel mixture in the combustion chamber 31a (FIG. 2) is ignited by the spark plug 18 (FIG. 2). In the positive direction, the angle A14 is located on the more advanced side than the angle A2. By igniting the air-fuel mixture, an explosion (combustion of the air-fuel mixture) occurs in the combustion chamber 31a. The combustion energy of the air-fuel mixture becomes the driving force for the piston 11. Thereafter, the exhaust port 23 (FIG. 2) is opened by the exhaust valve 16 (FIG. 2) in the range from the angle A15 to the angle A16. In the positive direction, the angle A15 is located on the more advanced side than the angle A3, and the angle A16 is located on the more retarded side than the angle A0. The range from the angle A15 to the angle A16 is an example of the normal exhaust range. Thereby, the gas after combustion is discharged | emitted through the exhaust port 23 from the combustion chamber 31a.
 (3-2)正回転位置合わせ動作および逆回転始動動作
 図4を参照しながらエンジンユニットEUの正回転位置合わせ動作および逆回転始動動作について説明する。正回転位置合わせ動作では、クランク軸13(図2)が正回転されることにより、クランク角が逆回転開始範囲に調整される。逆回転開始範囲は、正方向において例えば角度A0から角度A2までの範囲にあり、角度A13から角度A2までの範囲にあることが好ましい。本例において、逆回転開始範囲は、角度A30aから角度A30bまでの範囲である。角度A30aから角度A30bまでの範囲は、角度A13から角度A2までの範囲に含まれる。なお、クランク角が逆回転開始範囲にある状態でエンジン10が停止されている場合には、正回転位置合わせ動作は行われない。
(3-2) Forward rotation alignment operation and reverse rotation start operation The forward rotation alignment operation and reverse rotation start operation of the engine unit EU will be described with reference to FIG. In the forward rotation alignment operation, the crank angle is adjusted to the reverse rotation start range by forward rotation of the crankshaft 13 (FIG. 2). The reverse rotation start range is, for example, in the range from angle A0 to angle A2 in the forward direction, and preferably in the range from angle A13 to angle A2. In this example, the reverse rotation start range is a range from the angle A30a to the angle A30b. The range from the angle A30a to the angle A30b is included in the range from the angle A13 to the angle A2. When the engine 10 is stopped with the crank angle being in the reverse rotation start range, the forward rotation alignment operation is not performed.
 正回転位置合わせ動作時には、インジェクタ19による燃料の噴射および点火プラグ18による点火が禁止される。それにより、クランク角が図3の角度A11に達しても、インジェクタ19により燃料が噴射されず、クランク角が図3の角度A14に達しても、点火プラグ18による点火は行われない。そのため、正回転位置合わせ動作時に、燃焼室31a内で混合気が燃焼されることはない。 During the forward rotation alignment operation, fuel injection by the injector 19 and ignition by the spark plug 18 are prohibited. Thus, even when the crank angle reaches the angle A11 in FIG. 3, the fuel is not injected by the injector 19, and even when the crank angle reaches the angle A14 in FIG. 3, ignition by the spark plug 18 is not performed. Therefore, the air-fuel mixture is not burned in the combustion chamber 31a during the forward rotation alignment operation.
 逆回転始動動作では、クランク角が逆回転開始範囲にある状態からクランク軸13が逆方向に回転される。それにより、クランク角が矢印R2の方向に変化する。この場合、矢印P5~P8で示されるように、角度A2から角度A1までの範囲でピストン11が下降し、角度A1から角度A0までの範囲でピストン11が上昇し、角度A0から角度A3までの範囲でピストン11が下降し、角度A3から角度A2までの範囲でピストン11が上昇する。クランク軸13の逆回転時におけるピストン11の移動方向は、クランク軸13の正回転時におけるピストン11の移動方向と逆になる。 In the reverse rotation start operation, the crankshaft 13 is rotated in the reverse direction from the state where the crank angle is in the reverse rotation start range. As a result, the crank angle changes in the direction of arrow R2. In this case, as indicated by arrows P5 to P8, the piston 11 descends in the range from the angle A2 to the angle A1, the piston 11 rises in the range from the angle A1 to the angle A0, and from the angle A0 to the angle A3. The piston 11 descends in the range, and the piston 11 rises in the range from the angle A3 to the angle A2. The moving direction of the piston 11 when the crankshaft 13 rotates in the reverse direction is opposite to the moving direction of the piston 11 when the crankshaft 13 rotates in the forward direction.
 本例では、クランク軸13の逆回転時においても、正回転時と同様に、角度A13から角度A12までの範囲で吸気口21が開かれ、かつ角度A16からA15までの範囲で排気口23が開かれるが、本発明は、これに限らない。クランク軸13の逆回転時には、角度A13から角度A12までの範囲で吸気口21が開かれなくてもよく、また、角度A16から角度A15までの範囲で排気口23が開かれなくてもよい。 In this example, during reverse rotation of the crankshaft 13, the intake port 21 is opened in the range from the angle A13 to the angle A12 and the exhaust port 23 is opened in the range from the angle A16 to A15, as in the forward rotation. Although opened, the present invention is not limited to this. During reverse rotation of the crankshaft 13, the intake port 21 may not be opened in the range from the angle A13 to the angle A12, and the exhaust port 23 may not be opened in the range from the angle A16 to the angle A15.
 角度A23において、インジェクタ19(図2)により吸気通路22(図2)に燃料が噴射される。逆方向において、角度A23は、角度A0より進角側に位置する。また、角度A21から角度A22までの範囲において、吸気バルブ15(図2)により吸気口21(図2)が開かれる。角度A21から角度A22までの範囲は、始動吸気範囲の例である。逆方向において、角度A21,A22は、角度A0から角度A3までの範囲にある。角度A1から角度A0までの範囲では、ピストン11が上昇するので、角度A13から角度A12までの範囲で吸気口21が開かれても、燃焼室31aに空気および燃料がほとんど導入されない。一方、角度A0から角度A3までの範囲では、ピストン11が下降するので、角度A21から角度A22までの範囲で吸気口21が開かれることにより、吸気通路22から空気および燃料を含む混合気が吸気口21を通して燃焼室31a内に導入される。 At angle A23, fuel is injected into the intake passage 22 (FIG. 2) by the injector 19 (FIG. 2). In the reverse direction, the angle A23 is located on the more advanced side than the angle A0. Further, in the range from the angle A21 to the angle A22, the intake port 21 (FIG. 2) is opened by the intake valve 15 (FIG. 2). The range from the angle A21 to the angle A22 is an example of the starting intake air range. In the reverse direction, the angles A21 and A22 are in the range from the angle A0 to the angle A3. Since the piston 11 rises in the range from the angle A1 to the angle A0, even if the intake port 21 is opened in the range from the angle A13 to the angle A12, air and fuel are hardly introduced into the combustion chamber 31a. On the other hand, since the piston 11 descends in the range from the angle A0 to the angle A3, the intake port 21 is opened in the range from the angle A21 to the angle A22, so that the air-fuel mixture containing air and fuel is taken in from the intake passage 22. It is introduced into the combustion chamber 31a through the port 21.
 続いて、角度A31aにおいて、点火プラグ18(図2)に接続される点火コイルへの通電が開始され、角度A31において、点火プラグ18(図2)により燃焼室31a内の混合気に点火される。逆方向において、角度A31aは角度A31より進角側に位置し、角度A31は角度A2より進角側に位置する。角度A31は、始動点火範囲の例である。 Subsequently, energization of the ignition coil connected to the ignition plug 18 (FIG. 2) is started at the angle A31a, and the air-fuel mixture in the combustion chamber 31a is ignited by the ignition plug 18 (FIG. 2) at the angle A31. . In the reverse direction, the angle A31a is located on the more advanced side than the angle A31, and the angle A31 is located on the more advanced side than the angle A2. The angle A31 is an example of the starting ignition range.
 また、角度A31において、クランク軸13の回転方向が逆方向から正方向に切り替えられる。この場合、混合気の燃焼によりクランク軸13の正方向のトルクが高められる。その後、エンジン10が図3の通常動作に移行する。 Further, at the angle A31, the rotation direction of the crankshaft 13 is switched from the reverse direction to the forward direction. In this case, the torque in the positive direction of the crankshaft 13 is increased by the combustion of the air-fuel mixture. Thereafter, the engine 10 shifts to the normal operation of FIG.
 本実施の形態では、クランク軸13の逆回転が停止された後に、点火プラグ18により燃焼室31a内の混合気に点火される。これにより、クランク軸13を確実に正方向に駆動することができる。点火のタイミング等を調整することにより、クランク軸13を正方向に駆動することが可能であれば、クランク軸13の逆回転が停止される前に、点火プラグ18により燃焼室31a内の混合気に点火されてもよい。 In the present embodiment, the air-fuel mixture in the combustion chamber 31a is ignited by the spark plug 18 after the reverse rotation of the crankshaft 13 is stopped. Thereby, the crankshaft 13 can be reliably driven in the forward direction. If it is possible to drive the crankshaft 13 in the forward direction by adjusting the ignition timing, etc., the air-fuel mixture in the combustion chamber 31a is stopped by the spark plug 18 before the reverse rotation of the crankshaft 13 is stopped. May be ignited.
 このように、本実施の形態では、エンジン10の始動時に、始動兼発電機14によりクランク軸13が逆回転されつつ燃焼室31aに混合気が導かれ、その後、ピストン11が圧縮上死点に近づいた状態で、燃焼室31a内の混合気に点火される。それにより、クランク軸13が正方向に回転するようにピストン11が駆動され、正方向への十分なトルクが得られる。その結果、クランク角が最初の圧縮上死点に対応する角度A2を超える。 As described above, in the present embodiment, when the engine 10 is started, the air-fuel mixture is guided to the combustion chamber 31a while the crankshaft 13 is reversely rotated by the starter / generator 14, and then the piston 11 is brought to the compression top dead center. In the approached state, the air-fuel mixture in the combustion chamber 31a is ignited. Thereby, the piston 11 is driven so that the crankshaft 13 rotates in the forward direction, and sufficient torque in the forward direction is obtained. As a result, the crank angle exceeds the angle A2 corresponding to the first compression top dead center.
 (3-3)クランク角の調整
 エンジン10の停止時において、以下の理由により、クランク角が角度A0から角度A2までの範囲にある状態で、クランク軸13の回転が停止することがある。
(3-3) Adjustment of Crank Angle When the engine 10 is stopped, the rotation of the crankshaft 13 may stop in a state where the crank angle is in the range from the angle A0 to the angle A2 for the following reason.
 図2のバルブ駆動部17がカムシャフトからなる場合、バルブ駆動部17はクランク軸13の回転に連動して回転する。バルブ駆動部17が吸気バルブ15をリフトさせる場合、図示しないバルブスプリングの付勢力が、吸気バルブ15からバルブ駆動部17に反力として加わる。同様に、バルブ駆動部17が排気バルブ16をリフトさせる場合、図示しないバルブスプリングの付勢力が、排気バルブ16からバルブ駆動部17に反力として加わる。 When the valve drive unit 17 in FIG. 2 is a camshaft, the valve drive unit 17 rotates in conjunction with the rotation of the crankshaft 13. When the valve drive unit 17 lifts the intake valve 15, a biasing force of a valve spring (not shown) is applied as a reaction force from the intake valve 15 to the valve drive unit 17. Similarly, when the valve drive unit 17 lifts the exhaust valve 16, a biasing force of a valve spring (not shown) is applied as a reaction force from the exhaust valve 16 to the valve drive unit 17.
 エンジン10の停止時には、燃焼室31a内で混合気の燃焼が行われないので、クランク軸13およびバルブ駆動部17の回転力が徐々に低下する。その場合、吸気バルブ15または排気バルブ16からの反力によってバルブ駆動部17の回転が停止し、それに伴いクランク軸13の回転が停止することがある。 When the engine 10 is stopped, the air-fuel mixture is not combusted in the combustion chamber 31a, so that the rotational force of the crankshaft 13 and the valve drive unit 17 gradually decreases. In this case, the reaction force from the intake valve 15 or the exhaust valve 16 may stop the rotation of the valve drive unit 17 and the crankshaft 13 may stop rotating accordingly.
 クランク角が角度A15近傍にあるときには、排気バルブ16からの反力がバルブ駆動部17に加わる。それにより、クランク角が角度A15近傍にあるときに、クランク軸13の回転が停止しやすい。また、クランク角が角度A0近傍にあるときには、吸気バルブ15からの反力および排気バルブ16からの反力がそれぞれバルブ駆動部17に加わる。それにより、クランク角が角度A0近傍にあるときにもクランク軸13の回転が停止しやすい。 When the crank angle is in the vicinity of the angle A15, the reaction force from the exhaust valve 16 is applied to the valve drive unit 17. Thereby, when the crank angle is in the vicinity of the angle A15, the rotation of the crankshaft 13 tends to stop. Further, when the crank angle is in the vicinity of the angle A0, a reaction force from the intake valve 15 and a reaction force from the exhaust valve 16 are applied to the valve drive unit 17, respectively. Thereby, the rotation of the crankshaft 13 is easily stopped even when the crank angle is in the vicinity of the angle A0.
 上記のように、エンジン10の始動時には逆回転始動動作によりクランク軸13が逆回転される。その際に、逆方向においてクランク角が角度A0から角度A31までの範囲にある状態から逆回転始動動作が開始されると、エンジン10の始動を適正に行うことができない。 As described above, when the engine 10 is started, the crankshaft 13 is reversely rotated by the reverse rotation starting operation. At that time, if the reverse rotation start operation is started from a state where the crank angle is in the range from the angle A0 to the angle A31 in the reverse direction, the engine 10 cannot be started properly.
 具体的には、クランク角が角度A15から角度A31までの範囲にある状態からクランク軸13の逆回転が開始されると、クランク角が角度A21から角度A22までの範囲を経由することなく角度A31に達する。この場合、燃焼室31aに混合気が導入されない。そのため、角度A31において、燃焼室31a内で混合気の燃焼が生じず、クランク軸13を正方向に回転させるための駆動力が得られない。 Specifically, when the reverse rotation of the crankshaft 13 is started from a state where the crank angle is in the range from the angle A15 to the angle A31, the crank angle is not passed through the range from the angle A21 to the angle A22. To reach. In this case, the air-fuel mixture is not introduced into the combustion chamber 31a. Therefore, at the angle A31, combustion of the air-fuel mixture does not occur in the combustion chamber 31a, and a driving force for rotating the crankshaft 13 in the forward direction cannot be obtained.
 また、クランク角が角度A31に近づくほど、燃焼室31a内の圧力は高くなる。そのため、クランク軸13が一定以上の回転速度を有さない場合、クランク角が角度A31に到達しにくい。角度A31に近いクランク角からクランク軸13の逆回転が開始されると、クランク軸13の回転速度が上昇せず、クランク角が角度A31に到達しない可能性がある。 Also, the closer the crank angle is to the angle A31, the higher the pressure in the combustion chamber 31a. Therefore, when the crankshaft 13 does not have a rotation speed higher than a certain level, the crank angle does not easily reach the angle A31. If reverse rotation of the crankshaft 13 is started from a crank angle close to the angle A31, the rotation speed of the crankshaft 13 does not increase, and the crank angle may not reach the angle A31.
 クランク角が角度A0から角度A21までの範囲にある状態からクランク軸13の逆回転が開始されると、クランク軸13の回転速度が低いままクランク角が角度A21から角度A22までの範囲で変化する。この場合、角度A21から角度A22までの範囲において、燃焼室31a内に混合気が導かれにくい。そのため、角度A31において、燃焼室31a内の混合気に点火されても、クランク軸13を正方向に回転させるための十分な駆動力が得られない。また、上記同様に、クランク軸13の回転速度が十分に上昇せず、クランク角が角度A31に到達しない可能性もある。 When the reverse rotation of the crankshaft 13 is started from a state where the crank angle is in the range from the angle A0 to the angle A21, the crank angle changes in the range from the angle A21 to the angle A22 while the rotation speed of the crankshaft 13 is low. . In this case, the air-fuel mixture is difficult to be introduced into the combustion chamber 31a in the range from the angle A21 to the angle A22. Therefore, even if the air-fuel mixture in the combustion chamber 31a is ignited at the angle A31, a sufficient driving force for rotating the crankshaft 13 in the forward direction cannot be obtained. Similarly to the above, there is a possibility that the rotational speed of the crankshaft 13 does not sufficiently increase and the crank angle does not reach the angle A31.
 そこで、本実施の形態では、逆回転始動動作の前に、正回転位置合わせ動作によってクランク角が逆回転開始範囲(本例では、角度A30aから角度A30bまでの範囲)に調整される。クランク角が逆回転開始範囲にある状態からクランク軸13の逆回転が開始されることにより、クランク角が角度A21に達する時点でクランク軸13の回転速度が十分に上昇している。そのため、角度A21から角度A22までの範囲において、燃焼室31a内に混合気が十分に導入される。また、クランク軸13の回転速度が十分に上昇するので、クランク角が角度A31に確実に到達する。したがって、角度A31において、燃焼室31a内で適正に混合気の燃焼を生じさせることができる。それにより、クランク軸13を正方向に回転させるための十分な駆動力が得られる。その結果、エンジン10の始動を適正に行うことができる。 Therefore, in this embodiment, the crank angle is adjusted to the reverse rotation start range (in this example, the range from the angle A30a to the angle A30b) by the forward rotation alignment operation before the reverse rotation start operation. By starting reverse rotation of the crankshaft 13 from a state where the crank angle is in the reverse rotation start range, the rotational speed of the crankshaft 13 is sufficiently increased when the crank angle reaches the angle A21. Therefore, the air-fuel mixture is sufficiently introduced into the combustion chamber 31a in the range from the angle A21 to the angle A22. Further, since the rotation speed of the crankshaft 13 is sufficiently increased, the crank angle reliably reaches the angle A31. Therefore, the air-fuel mixture can be properly burned in the combustion chamber 31a at the angle A31. Thereby, sufficient driving force for rotating the crankshaft 13 in the forward direction is obtained. As a result, the engine 10 can be properly started.
 (4)燃料噴射および点火の制御
 クランク軸13の正回転時には、ECU6が、許可モードおよび禁止モードのうちいずれかの制御モードで点火プラグ18およびインジェクタ19を制御する。許可モードでは、クランク角が図3の角度A11であるときにインジェクタ19により燃料が噴射され、クランク角が図3の角度A14であるときに点火プラグ18により混合気に点火される。一方、禁止モードでは、インジェクタ19による燃料噴射および点火プラグ18による点火が禁止される。それにより、クランク角がいずれの角度であっても、インジェクタ19による燃料噴射および点火プラグ18による点火が行わない。
(4) Control of fuel injection and ignition During forward rotation of the crankshaft 13, the ECU 6 controls the spark plug 18 and the injector 19 in one of the permission mode and the prohibit mode. In the permission mode, fuel is injected by the injector 19 when the crank angle is the angle A11 in FIG. 3, and the air-fuel mixture is ignited by the spark plug 18 when the crank angle is the angle A14 in FIG. On the other hand, in the prohibit mode, fuel injection by the injector 19 and ignition by the spark plug 18 are prohibited. Thereby, the fuel injection by the injector 19 and the ignition by the spark plug 18 are not performed regardless of the crank angle.
 ECU6は、予めメモリに記憶された制御プログラムに基づいて、モード更新処理を行う。これにより、ECU6の制御モードが適宜更新される。図5は、モード更新処理のフローチャートである。モード更新処理は、メインスイッチ40がオンされている期間に、一定の周期で継続的に行われる。 ECU6 performs a mode update process based on a control program stored in advance in the memory. Thereby, the control mode of ECU6 is updated suitably. FIG. 5 is a flowchart of the mode update process. The mode update process is continuously performed at a constant cycle while the main switch 40 is on.
 図5に示すように、ECU6は、クランク角センサ43(図2)による検出結果に基づいて、クランク軸13が正回転されているか否かを判定する(ステップS1)。クランク軸13が正回転されていない場合、ECU6は、制御モードを更新することなく、モード更新処理を終了する。クランク軸13が正回転されている場合、ECU6は、エンジンユニットEUが通常動作中であるか否かを判定する(ステップS2)。 As shown in FIG. 5, the ECU 6 determines whether or not the crankshaft 13 is rotating forward based on the detection result by the crank angle sensor 43 (FIG. 2) (step S1). When the crankshaft 13 is not rotated forward, the ECU 6 ends the mode update process without updating the control mode. When the crankshaft 13 is rotating forward, the ECU 6 determines whether or not the engine unit EU is operating normally (step S2).
 エンジンユニットEUが通常動作中である場合、ECU6は、制御モードを許可モードに更新し(ステップS3)、モード更新処理を終了する。それにより、上記のように、クランク軸13が正回転されつつ、角度A11(図3)でインジェクタ19により燃料が噴射され、角度A14(図3)で点火プラグ18により燃焼室31a内の混合気に点火される。 If the engine unit EU is in normal operation, the ECU 6 updates the control mode to the permission mode (step S3) and ends the mode update process. Accordingly, as described above, the fuel is injected by the injector 19 at the angle A11 (FIG. 3) while the crankshaft 13 is rotated forward, and the air-fuel mixture in the combustion chamber 31a is injected by the spark plug 18 at the angle A14 (FIG. 3). Is ignited.
 一方、エンジンユニットEUが通常動作中でない場合、ECU6は、電流センサ44による検出結果に基づいて、始動兼発電機14がクランク軸13を駆動しているか否かを判定する(ステップS4)。始動兼発電機14がクランク軸13を駆動している場合、エンジンユニットEUが正回転位置合わせ動作中である。この場合、ECU6は、制御モードを禁止モードに更新し(ステップS5)、モード更新処理を終了する。これにより、インジェクタ19による燃料噴射および点火プラグ18による点火が禁止される。 On the other hand, if the engine unit EU is not in normal operation, the ECU 6 determines whether or not the starter / generator 14 is driving the crankshaft 13 based on the detection result by the current sensor 44 (step S4). When the starter / generator 14 is driving the crankshaft 13, the engine unit EU is in the forward rotation alignment operation. In this case, the ECU 6 updates the control mode to the prohibit mode (step S5) and ends the mode update process. As a result, fuel injection by the injector 19 and ignition by the spark plug 18 are prohibited.
 一方、始動兼発電機14がクランク軸13を駆動していない場合、押し掛けまたはキック始動等の始動操作によりクランク軸13が正回転されている可能性が高い。この場合、ECU6は、制御モードを許可モードに更新し(ステップS3)、モード更新処理を終了する。これにより、押し掛けまたはキック始動等の始動操作によってエンジン10が始動される。 On the other hand, when the starter / generator 14 is not driving the crankshaft 13, there is a high possibility that the crankshaft 13 is normally rotated by a starting operation such as pushing or kicking. In this case, the ECU 6 updates the control mode to the permission mode (step S3) and ends the mode update process. Thus, the engine 10 is started by a starting operation such as pushing or kicking.
 このようにして、通常動作によるクランク軸13の正回転時、または押し掛けもしくはキック始動等によるクランク軸13の正回転時には、クランク角の変化に基づいてインジェクタ19による燃料噴射および点火プラグ18による点火が行われる。一方、正回転位置合わせ動作によるクランク軸13の正回転時には、インジェクタ19による燃料噴射および点火プラグ18による点火が禁止される。 In this way, during normal rotation of the crankshaft 13 by normal operation, or during normal rotation of the crankshaft 13 by pushing or kick starting or the like, fuel injection by the injector 19 and ignition by the spark plug 18 are performed based on changes in the crank angle. Done. On the other hand, during forward rotation of the crankshaft 13 by forward rotation alignment operation, fuel injection by the injector 19 and ignition by the spark plug 18 are prohibited.
 (5)エンジン始動処理
 ECU6は、予めメモリに記憶された制御プログラムに基づいて、エンジン始動処理を行う。図6~図9は、エンジン始動処理について説明するためのフローチャートである。エンジン始動処理は、図2のメインスイッチ40もしくはスタータスイッチ41がオンされる、またはエンジン10がアイドルストップ状態に移行した場合に行われる。
(5) Engine start process ECU6 performs an engine start process based on the control program previously memorize | stored in memory. 6 to 9 are flowcharts for explaining the engine start process. The engine start process is performed when the main switch 40 or the starter switch 41 in FIG. 2 is turned on or when the engine 10 shifts to the idle stop state.
 (5-1)第1の例
 図6~図8は、エンジン始動処理の第1の例のフローチャートである。第1の例では、まず、ECU6は、現在のクランク角がメモリに記憶されているか否かを判定する(ステップS11)。現在のクランク角は、例えば、前回のエンジン10の停止時にメモリに記憶される。例えば、メインスイッチ40がオンされた直後には、現在のクランク角が記憶されておらず、アイドルストップ状態では、現在のクランク角が記憶されている。
(5-1) First Example FIGS. 6 to 8 are flowcharts of a first example of the engine start process. In the first example, first, the ECU 6 determines whether or not the current crank angle is stored in the memory (step S11). The current crank angle is stored in the memory when the engine 10 was stopped last time, for example. For example, immediately after the main switch 40 is turned on, the current crank angle is not stored. In the idle stop state, the current crank angle is stored.
 現在のクランク角が記憶されていない場合、ECU6は、クランク軸13が正方向に回転するように始動兼発電機14を制御する(ステップS12)。この場合、クランク角が圧縮上死点に対応する角度A2(図3および図4)に達しないように、電流センサ44(図2)からの検出信号に基づいて、始動兼発電機14のトルクが調整される。 If the current crank angle is not stored, the ECU 6 controls the starter / generator 14 so that the crankshaft 13 rotates in the forward direction (step S12). In this case, the torque of the starter / generator 14 is determined based on the detection signal from the current sensor 44 (FIG. 2) so that the crank angle does not reach the angle A2 (FIGS. 3 and 4) corresponding to the compression top dead center. Is adjusted.
 上記のように、正回転位置合わせ動作時には、点火プラグ18およびインジェクタ19の制御モードが禁止モードに維持される。そのため、ステップS12および後述のステップS16におけるクランク軸13の正回転時には、インジェクタ19による燃料噴射および点火プラグ18による点火が禁止される。 As described above, the control mode of the spark plug 18 and the injector 19 is maintained in the prohibit mode during the forward rotation alignment operation. Therefore, at the time of forward rotation of the crankshaft 13 at step S12 and step S16 described later, fuel injection by the injector 19 and ignition by the spark plug 18 are prohibited.
 次に、ECU6は、ステップS12でクランク軸13の回転が開始されてから規定時間が経過したか否かを判定する(ステップS13)。規定時間が経過していない場合、ECU6は、クランク軸13の正方向の回転が継続されるように始動兼発電機14を制御する。規定時間が経過すると、ECU6は、クランク軸13の回転が停止されるように始動兼発電機14を制御する(ステップS14)。これにより、クランク角が逆回転開始範囲に調整される。 Next, the ECU 6 determines whether or not a specified time has elapsed since the rotation of the crankshaft 13 was started in step S12 (step S13). When the specified time has not elapsed, the ECU 6 controls the starter / generator 14 so that the rotation of the crankshaft 13 in the positive direction is continued. When the specified time elapses, the ECU 6 controls the starter / generator 14 so that the rotation of the crankshaft 13 is stopped (step S14). Thereby, the crank angle is adjusted to the reverse rotation start range.
 なお、ステップS12において、クランク軸13が正方向に回転される際にクランク角が検出され、その検出値に基づいてクランク角が逆回転開始範囲に調整されてもよい。 In step S12, the crank angle may be detected when the crankshaft 13 is rotated in the forward direction, and the crank angle may be adjusted to the reverse rotation start range based on the detected value.
 一方、ステップS11において、現在のクランク角が記憶されている場合、ECU6は、現在のクランク角が逆回転開始範囲にあるか否かを判定する(ステップS15)。現在のクランク角が逆回転開始範囲にない場合、ECU6は、クランク軸13が正方向に回転するように始動兼発電機14を制御する(ステップS16)。この場合、クランク角が圧縮上死点に対応する角度A2(図3および図4)に達しないように、電流センサ44(図2)からの検出信号に基づいて、始動兼発電機14のトルクが調整される。 On the other hand, if the current crank angle is stored in step S11, the ECU 6 determines whether or not the current crank angle is in the reverse rotation start range (step S15). If the current crank angle is not in the reverse rotation start range, the ECU 6 controls the starter / generator 14 so that the crankshaft 13 rotates in the forward direction (step S16). In this case, the torque of the starter / generator 14 is determined based on the detection signal from the current sensor 44 (FIG. 2) so that the crank angle does not reach the angle A2 (FIGS. 3 and 4) corresponding to the compression top dead center. Is adjusted.
 次に、ECU6は、吸気圧力センサ42およびクランク角センサ43からの検出信号に基づいて、現在のクランク角が逆回転開始範囲に達したか否かを判定する(ステップS17)。現在のクランク角が逆回転開始範囲に達していない場合、ECU6は、クランク軸13の正方向の回転が継続されるように始動兼発電機14を制御する(ステップS16)。現在のクランク角が逆回転開始範囲に達した場合、ECU6は、クランク軸13の回転が停止されるように始動兼発電機14を制御する(ステップS14)。これにより、クランク角が逆回転開始範囲に調整される。 Next, the ECU 6 determines whether or not the current crank angle has reached the reverse rotation start range based on detection signals from the intake pressure sensor 42 and the crank angle sensor 43 (step S17). If the current crank angle has not reached the reverse rotation start range, the ECU 6 controls the starter / generator 14 so that the forward rotation of the crankshaft 13 is continued (step S16). When the current crank angle reaches the reverse rotation start range, the ECU 6 controls the starter / generator 14 so that the rotation of the crankshaft 13 is stopped (step S14). Thereby, the crank angle is adjusted to the reverse rotation start range.
 ステップS16,S17の処理では、上記のステップS12,S13の処理に比べて、クランク角の調整が精度良く行われるとともに、始動兼発電機14による消費電力が抑制される。 In the processes in steps S16 and S17, the crank angle is adjusted with higher accuracy than in the processes in steps S12 and S13, and the power consumption by the starter / generator 14 is suppressed.
 クランク軸13が正回転されることによってクランク角が逆回転開始範囲に調整された後、図7のステップS21の処理が行われる。また、ステップS15において、現在のクランク角が逆回転開始範囲にある場合、そのまま図7のステップS21の処理が行われる。 7 After the crank angle is adjusted to the reverse rotation start range by forward rotation of the crankshaft 13, the process of step S21 in FIG. 7 is performed. In step S15, when the current crank angle is in the reverse rotation start range, the process of step S21 of FIG. 7 is performed as it is.
 図7に示すように、ステップS21において、ECU6は、予め定められたエンジン10の始動条件が成立したか否かを判定する。エンジン10の始動条件は、例えば、スタータスイッチ41(図2)がオンされること、またはアイドルストップ解除条件が満たされることである。 As shown in FIG. 7, in step S21, the ECU 6 determines whether or not a predetermined starting condition for the engine 10 is satisfied. The starting condition of the engine 10 is, for example, that the starter switch 41 (FIG. 2) is turned on or that the idle stop cancellation condition is satisfied.
 なお、スタータスイッチ41がオンされることによってエンジン始動処理が開始される場合、ステップS21の処理が行われなくてもよい。その場合、正回転位置合わせ動作および逆回転始動動作が連続的に行われる。 In addition, when the engine start process is started by turning on the starter switch 41, the process of step S21 may not be performed. In that case, the forward rotation alignment operation and the reverse rotation start operation are continuously performed.
 エンジン10の始動条件が成立した場合、ECU6は、エンジン始動処理のタイムアウト設定を行う(ステップS22)。具体的には、その時点から経過時間が計測される。経過時間が予め定められた終了時間に達すると、エンジン始動処理が強制的に終了される(後述のステップS38)。 If the start condition of the engine 10 is satisfied, the ECU 6 performs a timeout setting for the engine start process (step S22). Specifically, the elapsed time is measured from that point. When the elapsed time reaches a predetermined end time, the engine start process is forcibly ended (step S38 described later).
 次に、ECU6は、クランク軸13が逆方向に回転されるように始動兼発電機14を制御する(ステップS23)。次に、ECU6は、吸気圧力センサ42(図2)およびクランク角センサ43(図2)からの検出信号に基づいて、現在のクランク角が図4の角度A23に達したか否かを判定する(ステップS24)。現在のクランク角が角度A23に達するまで、ECU6は、ステップS24の処理を繰り返す。現在のクランク角が角度A23に達すると、ECU6は、吸気通路22(図2)への燃料の噴射が開始されるように、インジェクタ19を制御する(ステップS25)。この場合、クランク角が角度A23に達したときにクランク角センサ43からECU6にパルス信号が与えられ、そのパルス信号に応答して燃料が噴射されるようにECU6がインジェクタ19を制御してもよい。 Next, the ECU 6 controls the starter / generator 14 so that the crankshaft 13 is rotated in the reverse direction (step S23). Next, the ECU 6 determines whether or not the current crank angle has reached the angle A23 in FIG. 4 based on detection signals from the intake pressure sensor 42 (FIG. 2) and the crank angle sensor 43 (FIG. 2). (Step S24). The ECU 6 repeats the process of step S24 until the current crank angle reaches the angle A23. When the current crank angle reaches the angle A23, the ECU 6 controls the injector 19 so that fuel injection into the intake passage 22 (FIG. 2) is started (step S25). In this case, when the crank angle reaches the angle A23, a pulse signal is given from the crank angle sensor 43 to the ECU 6, and the ECU 6 may control the injector 19 so that fuel is injected in response to the pulse signal. .
 次に、ECU6は、ステップS10で燃料の噴射が開始されてから予め定められた噴射時間が経過したか否かを判定する(ステップS26)。予め定められた噴射時間が経過するまで、ECU6は、燃料の噴射が継続されるようにインジェクタ19を制御する。予め定められた噴射時間が経過すると、ECU6は、燃料の噴射が停止されるように、インジェクタ19を制御する(ステップS27)。 Next, the ECU 6 determines whether or not a predetermined injection time has elapsed since the start of fuel injection in step S10 (step S26). The ECU 6 controls the injector 19 so that fuel injection is continued until a predetermined injection time has elapsed. When the predetermined injection time has elapsed, the ECU 6 controls the injector 19 so that the fuel injection is stopped (step S27).
 次に、図8に示すように、ECU6は、電流センサ44からの検出信号に基づいて、モータ電流が予め定められたしきい値に達したか否かを判定する(ステップS31)。この場合、クランク角が図4の角度A2に近づくほど、モータ電流が大きくなる。本例では、クランク角が図4の角度A31に達したときに、モータ電流がしきい値に達する。 Next, as shown in FIG. 8, the ECU 6 determines whether or not the motor current has reached a predetermined threshold value based on the detection signal from the current sensor 44 (step S31). In this case, the motor current increases as the crank angle approaches the angle A2 in FIG. In this example, when the crank angle reaches the angle A31 in FIG. 4, the motor current reaches the threshold value.
 始動兼発電機14に流れる電流が予め定められたしきい値に達した場合、ECU6は、クランク軸13の逆方向の回転が停止されるように始動兼発電機14を制御し(ステップS32)、点火コイルへの通電を開始する(ステップS33)。次に、ECU6は、ステップS33で通電が開始されてから予め定められた通電時間が経過したか否かを判定する(ステップS34)。予め定められた通電時間が経過するまで、ECU6は、点火コイルへの通電を継続する。予め定められた通電時間が経過すると、ECU6は、点火コイルへの通電を停止する(ステップS35)。これにより、点火プラグ18により燃焼室31a内の混合気に点火される。また、ECU6は、クランク軸13が正方向に回転するように、始動兼発電機14を制御する(ステップS36)。これにより、ECU6はエンジン始動処理を終了し、エンジンユニットEUが、図3の通常動作に移行する。なお、始動兼発電機14によるクランク軸13の駆動は、例えばステップS36の処理から一定時間が経過した後に停止される。 When the current flowing through the starter / generator 14 reaches a predetermined threshold value, the ECU 6 controls the starter / generator 14 so that the reverse rotation of the crankshaft 13 is stopped (step S32). Then, energization to the ignition coil is started (step S33). Next, the ECU 6 determines whether or not a predetermined energization time has elapsed since the energization was started in step S33 (step S34). The ECU 6 continues energization to the ignition coil until a predetermined energization time elapses. When a predetermined energization time has elapsed, the ECU 6 stops energizing the ignition coil (step S35). Thereby, the air-fuel mixture in the combustion chamber 31a is ignited by the spark plug 18. Further, the ECU 6 controls the starter / generator 14 so that the crankshaft 13 rotates in the forward direction (step S36). Thereby, ECU6 complete | finishes an engine starting process, and engine unit EU transfers to the normal operation | movement of FIG. Note that the driving of the crankshaft 13 by the starter / generator 14 is stopped after a predetermined time elapses from the process of step S36, for example.
 ステップS31において、モータ電流がしきい値に達していない場合、ECU6は、図7のステップS22のタイムアウト設定から予め定められた終了時間が経過したか否かを判定する(ステップS37)。エンジンユニットEUの異常により、始動兼発電機14に流れる電流がしきい値に達することなく、タイムアウト設定から予め定められた終了時間が経過することがある。エンジンユニットEUの異常としては、始動兼発電機14の動作不良またはバルブ駆動部17の動作不良等がある。終了時間が経過していない場合、ECU6は、ステップS21の処理に戻る。終了時間が経過すると、ECU6は、クランク軸13の逆方向の回転が停止されるように始動兼発電機14を制御するとともに(ステップS38)、エンジンユニットEUに異常が生じたことを運転者に警告する(ステップS39)。具体的には、例えば図示しない警告ランプが点灯される。これにより、ECU6は、エンジン始動処理を終了する。 In step S31, if the motor current has not reached the threshold value, the ECU 6 determines whether or not a predetermined end time has elapsed from the timeout setting in step S22 of FIG. 7 (step S37). Due to an abnormality in the engine unit EU, a predetermined end time may elapse from the timeout setting without the current flowing through the starter / generator 14 reaching the threshold value. The abnormality of the engine unit EU includes a malfunction of the starter / generator 14 or a malfunction of the valve drive unit 17. If the end time has not elapsed, the ECU 6 returns to the process of step S21. When the end time has elapsed, the ECU 6 controls the starter / generator 14 so that the reverse rotation of the crankshaft 13 is stopped (step S38), and informs the driver that an abnormality has occurred in the engine unit EU. A warning is given (step S39). Specifically, for example, a warning lamp (not shown) is turned on. Thereby, ECU6 complete | finishes an engine starting process.
 (5-2)第2の例
 図9は、エンジン始動処理の第2の例のフローチャートである。ECU6は、図8のステップS31~S39の処理の代わりに、図9のステップS41~S51の処理を行ってもよい。
(5-2) Second Example FIG. 9 is a flowchart of a second example of the engine start process. The ECU 6 may perform steps S41 to S51 in FIG. 9 instead of steps S31 to S39 in FIG.
 図9の例では、ECU6は、クランク角センサ43(図2)からの検出信号に基づいて、図7のステップS23でクランク軸13の逆回転が開始された後、クランク軸13が予め定められた逆回転角度回転したか否かを判定する(ステップS41)。逆回転角度は、例えば図4の角度A30aから角度A31までの角度に相当する。例えば、クランク軸13の逆回転が開始された後、クランク角センサ43から検出信号として逆回転角度に対応する規定数のパルスが与えられると、ECU6は、クランク軸13が逆回転角度回転したと判定する。 In the example of FIG. 9, the ECU 6 determines the crankshaft 13 in advance after the reverse rotation of the crankshaft 13 is started in step S23 of FIG. 7 based on the detection signal from the crank angle sensor 43 (FIG. 2). It is determined whether or not the rotation angle has been reversed (step S41). The reverse rotation angle corresponds to, for example, an angle from the angle A30a to the angle A31 in FIG. For example, after a reverse rotation of the crankshaft 13 is started, if a prescribed number of pulses corresponding to the reverse rotation angle is given as a detection signal from the crank angle sensor 43, the ECU 6 determines that the crankshaft 13 has rotated the reverse rotation angle. judge.
 クランク軸13が逆回転角度回転した場合、ECU6は、クランク軸13の逆方向の回転が停止されるように始動兼発電機14を制御し(ステップS42)、点火コイルへの通電を開始する(ステップS43)。 When the crankshaft 13 rotates at the reverse rotation angle, the ECU 6 controls the starter / generator 14 so that the reverse rotation of the crankshaft 13 is stopped (step S42), and starts energizing the ignition coil (step S42). Step S43).
 次に、ECU6は、ステップS43で通電が開始された後、クランク軸13が予め定められた通電角度回転したか否かを判定する(ステップS44)。通電角度は、図8のステップS24の通電時間においてクランク軸13が回転する角度に相当する。例えば、通電が開始された後、クランク角センサ43から検出信号として通電角度に対応する規定数のパルスが与えられると、ECU6は、クランク軸13が通電角度回転したと判定する。 Next, after the energization is started in step S43, the ECU 6 determines whether or not the crankshaft 13 has rotated a predetermined energization angle (step S44). The energization angle corresponds to the angle at which the crankshaft 13 rotates during the energization time in step S24 of FIG. For example, after energization is started, when a specified number of pulses corresponding to the energization angle is given as a detection signal from the crank angle sensor 43, the ECU 6 determines that the crankshaft 13 has rotated the energization angle.
 クランク軸13が通電角度回転した場合、ECU6は、点火コイルへの通電を停止するとともに(ステップS45)、クランク軸13が正方向に回転するように始動兼発電機14を制御し(ステップS46)、エンジン始動処理を終了する。 When the crankshaft 13 rotates at the energization angle, the ECU 6 stops energizing the ignition coil (step S45) and controls the starter / generator 14 so that the crankshaft 13 rotates in the forward direction (step S46). Then, the engine start process is terminated.
 一方、ステップS31において、クランク軸13が逆回転角度回転していない場合、ECU6は、ステップS7のタイムアウト設定から予め定められた第1の終了時間が経過したか否かを判定する(ステップS47)。第1の終了時間が経過していない場合、ECU6は、ステップS41の処理に戻る。第1の終了時間が経過すると、ECU6は、クランク軸13の逆方向の回転が停止されるように始動兼発電機14を制御するとともに(ステップS48)、エンジンユニットEUに異常が生じたことを運転者に警告し(ステップS51)、エンジン始動処理を終了する。 On the other hand, when the crankshaft 13 is not rotating at the reverse rotation angle in step S31, the ECU 6 determines whether or not a first end time predetermined from the timeout setting in step S7 has elapsed (step S47). . If the first end time has not elapsed, the ECU 6 returns to the process of step S41. When the first end time elapses, the ECU 6 controls the starter / generator 14 so that the reverse rotation of the crankshaft 13 is stopped (step S48), and that an abnormality has occurred in the engine unit EU. The driver is warned (step S51), and the engine start process is terminated.
 また、ステップS44において、クランク軸13が通電角度回転していない場合、ECU6は、図7のステップS22のタイムアウト設定から予め定められた第2の終了時間が経過したか否かを判定する(ステップS49)。第2の終了時間は、上記の第1の終了時間よりも長く設定される。第2の終了時間が経過していない場合、ECU6は、ステップS44の処理に戻る。第2の終了時間が経過すると、ECU6は、点火コイルへの通電を停止するとともに(ステップS50)、エンジンユニットEUに異常が生じたことを運転者に警告し(ステップS51)、エンジン始動処理を終了する。 If the crankshaft 13 is not rotated at the energization angle in step S44, the ECU 6 determines whether or not a second end time determined in advance from the timeout setting in step S22 in FIG. S49). The second end time is set longer than the first end time. If the second end time has not elapsed, the ECU 6 returns to the process of step S44. When the second end time has elapsed, the ECU 6 stops energizing the ignition coil (step S50), warns the driver that an abnormality has occurred in the engine unit EU (step S51), and performs engine start processing. finish.
 このように、第2の例では、クランク角センサ43からの検出信号に基づいて、クランク軸13の逆回転が停止される(ステップS41,S42)。また、クランク角センサ43からの検出信号に基づいて、点火コイルへの通電が停止される(ステップS44,S45)。これにより、適切なタイミングでクランク軸13の逆回転および点火コイルへの通電を停止することができる。 Thus, in the second example, the reverse rotation of the crankshaft 13 is stopped based on the detection signal from the crank angle sensor 43 (steps S41 and S42). Further, energization to the ignition coil is stopped based on the detection signal from the crank angle sensor 43 (steps S44 and S45). Thereby, reverse rotation of the crankshaft 13 and energization to the ignition coil can be stopped at an appropriate timing.
 また、ステップS43で点火コイルへの通電が開始された後、ステップS39で第2の終了時間が経過した場合、ステップS50で点火コイルへの通電が停止される。これにより、点火コイルへの通電が長時間にわたって継続されることが防止される。 Also, after the energization of the ignition coil is started in step S43, when the second end time has elapsed in step S39, the energization of the ignition coil is stopped in step S50. This prevents energization of the ignition coil from continuing for a long time.
 (6)効果
 本実施の形態に係るエンジンシステム200においては、正回転位置合わせ動作時に、インジェクタ19による燃料の噴射および点火プラグ18による点火が禁止される。それにより、クランク角センサ43からの検出信号(例えば、パルス信号)に応答して、エンジン10で意図しない混合気の燃焼が生じることが防止される。それにより、エンジン10の始動前に、クランク角を逆回転開始範囲に適切に調整することができる。
(6) Effect In engine system 200 according to the present embodiment, fuel injection by injector 19 and ignition by spark plug 18 are prohibited during the forward rotation alignment operation. Thereby, in response to a detection signal (for example, a pulse signal) from the crank angle sensor 43, unintended combustion of the air-fuel mixture in the engine 10 is prevented. Accordingly, the crank angle can be appropriately adjusted to the reverse rotation start range before the engine 10 is started.
 その後、エンジン10の始動時にエンジンユニットEUが逆回転始動動作を行う。この場合、クランク角が確実に始動吸気範囲を経由する。そのため、燃焼室31a内に混合気を適切に導入し、燃焼室31aで混合気の燃焼を適切に生じさせることができる。それにより、クランク軸13の正方向のトルクが高まり、クランク角が最初の圧縮上死点に対応する角度A2を容易に超えることができる。 Thereafter, when the engine 10 is started, the engine unit EU performs a reverse rotation start operation. In this case, the crank angle surely passes through the starting intake air range. Therefore, the air-fuel mixture can be appropriately introduced into the combustion chamber 31a, and combustion of the air-fuel mixture can be appropriately caused in the combustion chamber 31a. Thereby, the torque in the positive direction of the crankshaft 13 is increased, and the crank angle can easily exceed the angle A2 corresponding to the first compression top dead center.
 また、本実施の形態では、エンジン10の始動前において、始動兼発電機14によりクランク軸13が駆動されることなくクランク軸13が正方向に回転される場合に、インジェクタ19による燃料噴射および点火プラグ18による点火が禁止されない。それにより、押し掛けまたはキック始動等によってクランク軸13が正方向に回転される場合、適切に混合気を燃焼させてエンジン10を始動させることができる。また、始動兼発電機14の動作に基づいて燃料噴射および点火の禁止の有無が制御されるので、複雑な構成および複雑な制御を必要とせずに、正回転位置合わせ動作時における混合気の燃焼が防止される。 In the present embodiment, before the engine 10 is started, when the crankshaft 13 is rotated in the forward direction without being driven by the starter / generator 14, the fuel injection and ignition by the injector 19 are performed. Ignition by the plug 18 is not prohibited. As a result, when the crankshaft 13 is rotated in the forward direction by pushing or kicking, the engine 10 can be started by appropriately burning the air-fuel mixture. Further, since the fuel injection and ignition prohibition are controlled based on the operation of the starter / generator 14, the combustion of the air-fuel mixture during the forward rotation alignment operation is not required without requiring a complicated configuration and complicated control. Is prevented.
 (7)他の実施の形態
 (7-1)
 上記実施の形態では、正回転位置合わせ動作時に、インジェクタ19による燃料の噴射および点火プラグ18による点火の両方が禁止されるが、本発明はこれに限らない。点火プラグ18による点火が禁止されることにより、燃焼室31a内で混合気が燃焼されることは防止される。そのため、正回転位置合わせ動作時に、インジェクタ19による燃料の噴射は禁止されなくてもよい。ただし、逆回転始動動作において燃焼室31a内の空燃比を適切に調整するため、および未燃の混合気が燃焼室31aから排気通路24を通して外部に排出されることを防止するため、点火プラグ18による点火とともにインジェクタ19による燃料の噴射も禁止されることが好ましい。
(7) Other embodiments (7-1)
In the above embodiment, both the fuel injection by the injector 19 and the ignition by the spark plug 18 are prohibited during the forward rotation alignment operation, but the present invention is not limited to this. By prohibiting ignition by the spark plug 18, the air-fuel mixture is prevented from being burned in the combustion chamber 31a. Therefore, the fuel injection by the injector 19 does not have to be prohibited during the forward rotation alignment operation. However, in order to appropriately adjust the air-fuel ratio in the combustion chamber 31a in the reverse rotation start operation and to prevent the unburned air-fuel mixture from being discharged from the combustion chamber 31a to the outside through the exhaust passage 24, the spark plug 18 It is preferable that fuel injection by the injector 19 is also prohibited together with ignition by
 (7-2)
 上記実施の形態は、キックペダルKPを有する自動二輪車100に本発明が適用された例であるが、キックペダルKPを有さない自動二輪車100に本発明が適用されてもよい。また、自動二輪車に限らず、自動三輪車もしくはATV(All Terrain Vehicle;不整地走行車両)等の他の鞍乗り型車両に本発明が適用されてもよい。
(7-2)
The above embodiment is an example in which the present invention is applied to the motorcycle 100 having the kick pedal KP, but the present invention may be applied to the motorcycle 100 having no kick pedal KP. In addition, the present invention may be applied not only to motorcycles but also to other saddle riding type vehicles such as an automatic tricycle or an ATV (All Terrain Vehicle).
 (8)請求項の各構成要素と実施の形態の各要素との対応
 以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明するが、本発明は下記の例に限定されない。
(8) Correspondence between each constituent element of claim and each element of the embodiment Hereinafter, an example of correspondence between each constituent element of the claim and each element of the embodiment will be described. It is not limited to.
 上記実施の形態では、エンジンユニットEUがエンジンユニットの例であり、エンジン10がエンジンの例であり、始動兼発電機14が回転駆動部の例であり、ECU6が制御部の例であり、インジェクタ19が燃料噴射装置の例であり、点火プラグ18が点火装置の例であり、バルブ駆動部17がバルブ駆動部の例であり、吸気バルブ15が吸気バルブの例であり、排気バルブ16が排気バルブの例であり、メインスイッチ40がメインスイッチの例であり、スタータスイッチ41がスタータスイッチの例であり、キックペダルKPがキック始動部の例である。また、自動二輪車100が鞍乗り型車両の例であり、後輪7が駆動輪の例であり、車体1が本体部の例である。 In the above embodiment, the engine unit EU is an example of an engine unit, the engine 10 is an example of an engine, the starter / generator 14 is an example of a rotational drive unit, the ECU 6 is an example of a control unit, and an injector 19 is an example of a fuel injection device, an ignition plug 18 is an example of an ignition device, a valve drive unit 17 is an example of a valve drive unit, an intake valve 15 is an example of an intake valve, and an exhaust valve 16 is an exhaust gas. It is an example of a valve, the main switch 40 is an example of a main switch, the starter switch 41 is an example of a starter switch, and the kick pedal KP is an example of a kick starter. The motorcycle 100 is an example of a saddle-ride type vehicle, the rear wheel 7 is an example of a driving wheel, and the vehicle body 1 is an example of a main body.
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。 As the constituent elements of the claims, various other elements having configurations or functions described in the claims can be used.
 本発明は、種々のエンジンシステムおよび鞍乗り型車両に有効に利用可能である。 The present invention can be effectively used for various engine systems and saddle riding type vehicles.

Claims (8)

  1. エンジンおよび回転駆動部を含むエンジンユニットと、
     前記エンジンユニットを制御する制御部とを備え、
     前記エンジンは、
     燃焼室に空気を導くための吸気通路内に燃料を噴射するように配置された燃料噴射装置と、
     前記燃焼室内の混合気に点火するように構成された点火装置と、
     吸気口を開閉する吸気バルブおよび排気口を開閉する排気バルブをそれぞれ駆動するように構成されたバルブ駆動部とを含み、
     前記回転駆動部は、前記クランク軸を正方向または逆方向に回転駆動するように構成され、
     前記制御部は、前記エンジンの始動前に前記クランク軸が正方向に回転される正回転位置合わせ動作が行われ、前記エンジンの始動時に前記クランク軸が逆方向に回転される逆回転始動動作が行われるように前記エンジンユニットを制御し、
     前記回転駆動部は、前記正回転位置合わせ動作において、クランク角が予め定められた逆回転開始範囲に到るように前記クランク軸を駆動し、前記逆回転始動動作において、クランク角が前記逆回転開始範囲から予め定められた始動吸気範囲を超えて予め定められた始動点火範囲に到るように前記クランク軸を駆動し、
     前記バルブ駆動部は、前記逆回転始動動作において、クランク角が前記始動吸気範囲にあるときに前記吸気口が開かれるように前記吸気バルブを駆動し、
     前記燃料噴射装置は、前記逆回転始動動作において、クランク角が前記始動吸気範囲にあるときに前記吸気通路から前記吸気口を通して前記燃焼室に混合気が導入されるように燃料を噴射し、
     前記点火装置は、前記逆回転始動動作において、クランク角が前記始動点火範囲にあるときに点火し、
     前記制御部は、前記正回転位置合わせ動作時に、前記点火装置による点火を禁止する、エンジンシステム。
    An engine unit including an engine and a rotational drive unit;
    A control unit for controlling the engine unit,
    The engine is
    A fuel injection device arranged to inject fuel into an intake passage for directing air to the combustion chamber;
    An ignition device configured to ignite an air-fuel mixture in the combustion chamber;
    An intake valve that opens and closes the intake port and an exhaust valve that drives the exhaust valve that opens and closes the exhaust port, and
    The rotational drive unit is configured to rotationally drive the crankshaft in a forward direction or a reverse direction,
    The controller performs a forward rotation alignment operation in which the crankshaft is rotated in the forward direction before starting the engine, and a reverse rotation start operation in which the crankshaft is rotated in the reverse direction when the engine is started. Control the engine unit to be performed,
    The rotation drive unit drives the crankshaft so that the crank angle reaches a predetermined reverse rotation start range in the forward rotation alignment operation, and the crank angle rotates in the reverse rotation start operation. Driving the crankshaft to reach a predetermined start ignition range beyond a predetermined start intake range from a start range;
    The valve drive unit drives the intake valve so that the intake port is opened when a crank angle is in the start intake range in the reverse rotation start operation,
    In the reverse rotation start operation, the fuel injection device injects fuel so that an air-fuel mixture is introduced from the intake passage through the intake port into the combustion chamber when a crank angle is in the start intake range.
    The ignition device ignites when the crank angle is in the start ignition range in the reverse rotation start operation,
    The control unit is an engine system that prohibits ignition by the ignition device during the forward rotation alignment operation.
  2. 前記制御部は、前記正回転位置合わせ動作時に、前記燃料噴射装置による燃料の噴射を禁止する、請求項1記載のエンジンシステム。 The engine system according to claim 1, wherein the control unit prohibits fuel injection by the fuel injection device during the forward rotation alignment operation.
  3. 運転者により操作されるメインスイッチをさらに備え、
     前記制御部は、前記メインスイッチがオンされたときに前記正回転位置合わせ動作が行われるように前記エンジンユニットを制御する、請求項1または2記載のエンジンシステム。
    It further includes a main switch operated by the driver,
    The engine system according to claim 1, wherein the control unit controls the engine unit so that the forward rotation alignment operation is performed when the main switch is turned on.
  4. 運転者により操作されるスタータスイッチをさらに備え、
     前記制御部は、前記スタータスイッチがオンされたときに前記正回転位置合わせ動作が行われるように前記エンジンユニットを制御する、請求項1または2記載のエンジンシステム。
    Further provided with a starter switch operated by the driver,
    The engine system according to claim 1, wherein the control unit controls the engine unit so that the forward rotation alignment operation is performed when the starter switch is turned on.
  5. 前記制御部は、予め定められたアイドリングストップ条件が満たされた場合に、前記燃料噴射装置および前記点火装置の動作が停止されかつ前記クランク軸の回転停止後に前記正回転位置合わせ動作が行われるように前記エンジンユニットを制御し、予め定められたアイドリングストップ解除条件が満たされた場合に、前記逆回転始動動作が行われるように前記エンジンユニットを制御する、請求項1~4のいずれか一項に記載のエンジンシステム。 The control unit is configured to stop the operations of the fuel injection device and the ignition device and perform the forward rotation alignment operation after the crankshaft rotation is stopped when a predetermined idling stop condition is satisfied. 5. The engine unit is controlled to control the engine unit so that the reverse rotation start operation is performed when a predetermined idling stop release condition is satisfied. The engine system described in.
  6. 前記制御部は、前記エンジンの始動前において、前記回転駆動部により前記クランク軸が駆動されることなく前記クランク軸が正方向に回転する場合に、前記点火装置による点火を禁止せず、前記エンジンの始動前において、前記回転駆動部により前記クランク軸が駆動されることにより前記クランク軸が正方向に回転する場合に、前記点火装置による点火を禁止する、請求項1~5のいずれか一項に記載のエンジンシステム。 The control unit does not prohibit ignition by the ignition device when the crankshaft rotates in the forward direction without being driven by the rotation driving unit before the engine is started. The ignition by the ignition device is prohibited when the crankshaft is rotated in the forward direction by being driven by the rotary drive unit before starting the engine. The engine system described in.
  7. 前記クランク軸を正方向に回転させるために運転者が足で操作するキック始動部をさらに備え、
     前記制御部は、運転者による前記キック始動部の操作により前記クランク軸が正方向に回転される場合に、前記点火装置による点火を禁止しない、請求項1~6のいずれかに記載のエンジンシステム。
    A kick starter that is operated by a driver's foot to rotate the crankshaft in a positive direction;
    The engine system according to any one of claims 1 to 6, wherein the control unit does not prohibit ignition by the ignition device when the crankshaft is rotated in a positive direction by an operation of the kick start unit by a driver. .
  8. 駆動輪を有する本体部と、
     前記駆動輪を回転させるための動力を発生する請求項1~7のいずれか一項に記載のエンジンシステムとを備えた、鞍乗り型車両。
    A main body having a drive wheel;
    A straddle-type vehicle comprising: the engine system according to any one of claims 1 to 7 that generates power for rotating the drive wheels.
PCT/JP2014/003881 2014-07-23 2014-07-23 Engine system and saddle-type vehicle WO2016013045A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14885070.4A EP3173605A4 (en) 2014-07-23 2014-07-23 Engine system and saddle-type vehicle
PCT/JP2014/003881 WO2016013045A1 (en) 2014-07-23 2014-07-23 Engine system and saddle-type vehicle
TW104122407A TW201608114A (en) 2014-07-23 2015-07-09 Engine system and straddle-type vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/003881 WO2016013045A1 (en) 2014-07-23 2014-07-23 Engine system and saddle-type vehicle

Publications (1)

Publication Number Publication Date
WO2016013045A1 true WO2016013045A1 (en) 2016-01-28

Family

ID=55162604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003881 WO2016013045A1 (en) 2014-07-23 2014-07-23 Engine system and saddle-type vehicle

Country Status (3)

Country Link
EP (1) EP3173605A4 (en)
TW (1) TW201608114A (en)
WO (1) WO2016013045A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3175109A1 (en) * 2014-08-01 2017-06-07 PIAGGIO & C. S.p.A. Process for starting an internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176709A (en) * 2002-09-30 2004-06-24 Toyota Motor Corp Start control device for internal combustion engine
JP2004339952A (en) * 2003-05-13 2004-12-02 Toyota Motor Corp Starting system of internal combustion engine
JP2005315231A (en) * 2004-04-30 2005-11-10 Mazda Motor Corp Engine starter
JP2014077405A (en) 2012-10-11 2014-05-01 Yamaha Motor Co Ltd Engine system and saddle riding vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3690596B2 (en) * 2001-12-05 2005-08-31 本田技研工業株式会社 Engine start control device
US20070204827A1 (en) * 2006-03-02 2007-09-06 Kokusan Denki Co., Ltd. Engine starting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176709A (en) * 2002-09-30 2004-06-24 Toyota Motor Corp Start control device for internal combustion engine
JP2004339952A (en) * 2003-05-13 2004-12-02 Toyota Motor Corp Starting system of internal combustion engine
JP2005315231A (en) * 2004-04-30 2005-11-10 Mazda Motor Corp Engine starter
JP2014077405A (en) 2012-10-11 2014-05-01 Yamaha Motor Co Ltd Engine system and saddle riding vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3173605A4

Also Published As

Publication number Publication date
TW201608114A (en) 2016-03-01
EP3173605A4 (en) 2018-02-14
EP3173605A1 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
EP2719883B1 (en) Engine System
EP2375040B1 (en) Engine control unit
EP2881565A1 (en) Engine system and saddle-straddling type motor vehicle
TWI553218B (en) Engine system and saddle-straddling type motor vehicle
WO2016013046A1 (en) Engine system and saddle-type vehicle
TWI596274B (en) Engine system and straddled vehicle
WO2016013045A1 (en) Engine system and saddle-type vehicle
JP2009030502A (en) Control device of engine for vehicle
JP4367646B2 (en) Engine starter
WO2016013044A1 (en) Engine system and saddle-type vehicle
WO2016152010A1 (en) Engine system and saddle-type vehicle
WO2016051629A1 (en) Engine system and vehicle
JP2008215299A (en) Automatic stop starting system of vehicular engine with manual transmission
JP2016176444A (en) Engine system and saddle-riding type vehicle
JP2008121587A (en) Engine control device
CN106812614B (en) engine system and straddle-type vehicle
WO2016203686A1 (en) Engine system and saddle ride-type vehicle
TW201638462A (en) Engine system and straddled vehicle
WO2015001714A1 (en) Engine system and saddle-straddling type motor vehicle
JP6794307B2 (en) Vehicle engine control device
JP2007120457A (en) Engine device, and vehicle provided therewith
JP2008121586A (en) Engine control device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: IDP00201505248

Country of ref document: ID

REEP Request for entry into the european phase

Ref document number: 2014885070

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014885070

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP