WO2016051629A1 - Engine system and vehicle - Google Patents

Engine system and vehicle Download PDF

Info

Publication number
WO2016051629A1
WO2016051629A1 PCT/JP2015/003330 JP2015003330W WO2016051629A1 WO 2016051629 A1 WO2016051629 A1 WO 2016051629A1 JP 2015003330 W JP2015003330 W JP 2015003330W WO 2016051629 A1 WO2016051629 A1 WO 2016051629A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
cylinder
angle
crank angle
crankshaft
Prior art date
Application number
PCT/JP2015/003330
Other languages
French (fr)
Japanese (ja)
Inventor
貴裕 増田
坂井 浩二
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to EP15846146.7A priority Critical patent/EP3203056A4/en
Priority to TW104128526A priority patent/TWI610021B/en
Publication of WO2016051629A1 publication Critical patent/WO2016051629A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/08Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for decompression, e.g. during starting; for changing compression ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/02Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for reversing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/08Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for decompression, e.g. during starting; for changing compression ratio
    • F01L13/085Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for decompression, e.g. during starting; for changing compression ratio the valve-gear having an auxiliary cam protruding from the main cam profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D2013/0292Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation in the start-up phase, e.g. for warming-up cold engine or catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/06Reverse rotation of engine

Definitions

  • the present invention relates to an engine system and a vehicle including the same.
  • the engine In the idle stop control, the engine is stopped and restarted automatically. In this case, since the engine stop time is relatively short, the air-fuel mixture introduced into the cylinder when the engine is stopped is highly likely to remain in the cylinder even when the engine is restarted. On the other hand, when the engine stop time becomes longer, the air-fuel mixture in the cylinder disappears naturally. For this reason, the above operation cannot be realized at the time of cold start or the like.
  • An object of the present invention is to provide an engine system and a vehicle that can appropriately start the engine.
  • An engine system has an engine start operation including an engine having a plurality of cylinders, a rotation drive unit that rotates the crankshaft of the engine in the forward direction and the reverse direction, and at least a reverse rotation start operation.
  • the air-fuel mixture is introduced into the first cylinder, and the air-fuel mixture is combusted in the first cylinder, whereby the crankshaft is driven in the forward direction.
  • the engine is installed in at least one of the first and second cylinders.
  • the pressure reducing mechanism includes a pressure reducing mechanism that reduces the pressure, and the pressure reducing mechanism suppresses an increase in rotational resistance of the crankshaft caused by an increase in pressure in at least one of the cylinders in the engine starting operation. Cormorant to reduce the pressure in at least one cylinder.
  • the engine is started by an engine start operation including at least a reverse rotation start operation.
  • the reverse rotation starting operation the air-fuel mixture is introduced into the first cylinder among the plurality of cylinders while the crankshaft is reversely rotated, and the air-fuel mixture is combusted in the first cylinder, so that the crankshaft is driven in the forward direction. Is done.
  • the air-fuel mixture in the first cylinder is prevented from being lost or diluted, and at the time of ignition.
  • the air-fuel ratio of the air-fuel mixture in can be adjusted appropriately.
  • the pressure in the at least one of the first and second cylinders is reduced by the pressure reducing mechanism, so that the rotation resistance of the crankshaft caused by the increase in the pressure in at least one of the cylinders. Increase is suppressed.
  • the engine starting operation is smoothly performed without hindering the rotation of the crankshaft. Therefore, the torque in the forward direction of the crankshaft can be sufficiently increased by the reverse rotation starting operation. As a result, the engine can be started properly.
  • the pressure reducing mechanism may reduce the pressure in at least one of the cylinders in the reverse rotation starting operation.
  • the engine further includes an opening / closing mechanism that opens and closes the intake port and the exhaust port of each of the first and second cylinders, and the intake stroke, compression stroke, expansion stroke, and exhaust stroke of the first cylinder during normal operation.
  • an intake range a first compression range, a first expansion range, and a first exhaust range
  • the intake stroke and compression stroke of the second cylinder during normal operation are defined.
  • the ranges of the crank angle corresponding to the expansion stroke and the exhaust stroke are defined as a second intake range, a second compression range, a second expansion range, and a second exhaust range, respectively.
  • the first expansion range includes the start ignition range, and the rotational drive unit reverses the crankshaft so that the crank angle exceeds the start intake range and reaches the start ignition range in the reverse rotation start operation.
  • the mechanism opens the intake port of the first cylinder when the crank angle is in the start intake range, and the fuel injection device corresponding to the first cylinder has the crank angle in the reverse rotation start operation.
  • the ignition device corresponding to the first cylinder is reversely injected by injecting fuel into the intake passage that guides air to the first cylinder so that the air-fuel mixture is introduced into the first cylinder when in the starting intake air range.
  • the air-fuel mixture in the first cylinder is ignited when the crank angle is in the start ignition range
  • the second expansion range includes a start pressure reduction range
  • the pressure reduction mechanism is in the reverse rotation start operation.
  • the pressure in the second cylinder may be reduced when the crank angle is in the start pressure reduction range.
  • the crankshaft in the reverse rotation start operation, is reversely rotated so that the crank angle reaches the start ignition range via the start intake range.
  • the intake port of the first cylinder is opened, and the air-fuel mixture is introduced into the first cylinder.
  • the air-fuel mixture in the first cylinder is ignited.
  • the crankshaft is driven in the positive direction by the combustion energy of the air-fuel mixture.
  • the pressure in the second cylinder does not hinder the reverse rotation of the crankshaft, it is possible to appropriately introduce the air-fuel mixture into the first cylinder and compress the air-fuel mixture in the first cylinder. Thereby, the air-fuel mixture can be appropriately combusted in the first cylinder, and the torque in the positive direction of the crankshaft can be sufficiently increased. As a result, the engine can be started properly.
  • At least one of the first compression range and the first intake range includes a reverse rotation start range, and the engine start operation is performed by rotating the crankshaft in the forward direction before the reverse rotation start operation. May further include a forward rotation alignment operation for adjusting to the reverse rotation start range.
  • the second compression range includes an alignment decompression range, and the decompression mechanism reduces the pressure in the second cylinder when the crank angle is in the alignment decompression range in the forward rotation alignment operation. Also good.
  • the difference between the crank angle when the piston reaches compression top dead center in the first cylinder and the crank angle when the piston reaches compression top dead center in the second cylinder may be 360 degrees. .
  • the combustion of the air-fuel mixture in the first cylinder and the combustion of the air-fuel mixture in the second cylinder are performed at equal intervals. Even in such an engine, the air-fuel mixture can be appropriately combusted in the first cylinder during the reverse rotation start operation. Thereby, the engine can be started appropriately.
  • the fuel injection device corresponding to the second cylinder supplies air to the second cylinder after the crank angle exceeds the start intake range and before the start ignition range. Fuel may be injected into the intake passage that leads.
  • crank angle when the piston reaches the compression top dead center in the first cylinder and the crank angle when the piston reaches the compression top dead center in the second cylinder is an angle other than 360 degrees. May be.
  • the combustion of the air-fuel mixture in the first cylinder and the combustion of the air-fuel mixture in the second cylinder are performed at unequal intervals. Even in such an engine, the air-fuel mixture can be appropriately combusted in the first cylinder during the reverse rotation start operation. Thereby, the engine can be started appropriately.
  • the engine start operation further includes a forward rotation alignment operation for adjusting the crank angle to the reverse rotation start range by rotating the crankshaft in the forward direction before the reverse rotation start operation.
  • a forward rotation alignment operation for adjusting the crank angle to the reverse rotation start range by rotating the crankshaft in the forward direction before the reverse rotation start operation.
  • the pressure in at least one of the first and second cylinders may be reduced.
  • the air-fuel mixture can be appropriately introduced into the first cylinder in the reverse rotation start operation, and the mixture is sufficiently Can be compressed. Thereby, the air-fuel mixture can be appropriately combusted in the first cylinder.
  • the engine further includes an opening / closing mechanism that opens and closes an intake port and an exhaust port of each of the first and second cylinders, and an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke of the first cylinder during normal operation.
  • an intake range a first compression range, a first expansion range, and a first exhaust range
  • the intake stroke and compression stroke of the second cylinder during normal operation are defined.
  • the ranges of crank angles corresponding to the expansion stroke and the exhaust stroke are defined as a second intake range, a second compression range, a second expansion range, and a second exhaust range, respectively.
  • the first exhaust range includes the start intake range
  • the first expansion range includes the start ignition range
  • the rotation drive unit starts the reverse rotation of the crank angle in the forward rotation alignment operation. I'm reaching the range In the reverse rotation start operation, the crankshaft is reversely rotated so that the crank angle exceeds the start intake range from the reverse rotation start range to the start ignition range, and the open / close mechanism starts reverse rotation.
  • the intake port of the first cylinder is opened, and the fuel injection device corresponding to the first cylinder is in the reverse rotation start operation when the crank angle is in the start intake range.
  • the air-fuel mixture in the first cylinder is ignited when the angle is in the starting ignition range, the first compression range includes an alignment decompression range, and the decompression mechanism has a crank angle position in the forward rotation alignment operation.
  • the pressure in the first cylinder may be lowered when in.
  • crank angle after the crank angle is adjusted to the reverse rotation start range by the normal rotation alignment operation, the crank angle reaches the start ignition range from the reverse rotation start range via the start intake range by the reverse rotation start operation.
  • the crankshaft is reversely rotated.
  • the reverse rotation speed of the crankshaft is increased before the crank angle reaches the start intake range in the reverse rotation start operation.
  • the air-fuel mixture is appropriately introduced into the first cylinder in the start intake range, and the crank angle easily reaches the start ignition range.
  • the air-fuel mixture can be appropriately burned in the first cylinder, and the torque in the positive direction of the crankshaft can be sufficiently increased. As a result, the engine can be started properly.
  • At least a part of the first intake range is in the second compression range, and the crank angle passes through an angle corresponding to the compression top dead center of the first and second cylinders in the reverse rotation start operation.
  • the starting ignition range may be reached without doing so.
  • the crank angle does not pass through the angle corresponding to the compression top dead center of the first and second cylinders, so that the crank pressure can be reduced without reducing the pressure in the first and second cylinders.
  • the shaft can easily reach the starting ignition range. Accordingly, the forward rotation alignment operation and the reverse rotation start operation can be appropriately performed with a simple configuration.
  • the plurality of cylinders may further include a third cylinder, and the pressure reducing mechanism may reduce the pressure in the second and third cylinders in the reverse rotation operation.
  • the engine start operation includes a forward rotation alignment operation that adjusts the crank angle to a predetermined reverse rotation start range by rotating the crankshaft in the forward direction before the reverse rotation start operation.
  • the pressures in the second and third cylinders may be reduced.
  • the air-fuel mixture can be appropriately introduced into the first cylinder in the reverse rotation start operation, and the crank angle can be easily set.
  • the starting ignition range can be reached. Thereby, the air-fuel mixture can be appropriately combusted in the first cylinder.
  • the decompression mechanism includes a communication path that communicates the second cylinder and the third cylinder, and a communication path opening / closing mechanism that switches the communication path between a communication state and a closed state.
  • the pressure in the second and third cylinders may be reduced by bringing the passage into a communicating state.
  • the communication path has a first opening that opens in the second cylinder and a second opening that opens in the third cylinder, and the communication path opening and closing mechanism opens and closes the first opening.
  • the communication drive unit includes the first and second valves.
  • the communication path can be appropriately switched between the communication state and the closed state with a simple configuration.
  • a vehicle according to another aspect of the present invention includes a main body having driving wheels and the engine system that generates power for rotating the driving wheels.
  • the decompression mechanism may be configured to reduce the pressure in the second cylinder in the start decompression range when the crank angle rotates at a rotational speed lower than a predetermined value.
  • the pressure in the second cylinder can be reduced during the reverse rotation start operation.
  • the pressure reducing mechanism may be configured to reduce the pressure in the first or second cylinder in the alignment pressure reducing range when the crankshaft rotates at a rotational speed lower than a predetermined value.
  • the pressure in the first or second cylinder can be reduced with a simple configuration during the forward rotation alignment operation.
  • the engine can be started appropriately.
  • FIG. 1 is a schematic side view showing a schematic configuration of a motorcycle according to an embodiment of the present invention.
  • FIG. 2 is a schematic side view for explaining the configuration of the engine system according to the first embodiment.
  • FIG. 3 is a schematic side view for explaining the configuration of the engine system according to the first embodiment.
  • FIG. 4 is a diagram for explaining the operation of the engine during normal operation in the first embodiment.
  • FIG. 5 is a diagram for explaining the operation of the engine during normal operation in the first embodiment.
  • FIG. 6 is a diagram for explaining the forward rotation alignment operation of the engine unit in the first embodiment.
  • FIG. 7 is a diagram for explaining the reverse rotation start operation of the engine unit in the first embodiment.
  • FIG. 8 is a diagram showing the relationship between the rotational load of the crankshaft and the crank angle in the first embodiment.
  • FIG. 9 is a flowchart for explaining an example of the engine start process in the first embodiment.
  • FIG. 10 is a flowchart for explaining an example of the engine start process in the first embodiment.
  • FIG. 11 is a diagram for explaining another example of the reverse rotation starting operation in the first embodiment.
  • FIG. 12 is a diagram for explaining another example of the reverse rotation starting operation in the first embodiment.
  • FIG. 13 is a schematic side view for explaining the configuration of the engine system according to the second embodiment.
  • FIG. 14 is a diagram for explaining the operation of the engine during normal operation in the second embodiment.
  • FIG. 15 is a view for explaining the forward rotation alignment operation of the engine unit in the second embodiment.
  • FIG. 16 is a view for explaining the forward rotation alignment operation of the engine unit in the second embodiment.
  • FIG. 17 is a diagram for explaining the reverse rotation start operation of the engine unit in the second embodiment.
  • FIG. 18 is a diagram for explaining the reverse rotation start operation of the engine unit in the second embodiment.
  • FIG. 19 is a diagram showing the relationship between the rotational load of the crankshaft and the crank angle in the second embodiment.
  • FIG. 20 is a flowchart of the engine start process in the second embodiment.
  • FIG. 21 is a schematic diagram illustrating an example of a valve drive unit according to the second embodiment.
  • FIG. 22 is a perspective view showing a decompression mechanism according to the second embodiment.
  • FIG. 23 is a schematic cross-sectional view for explaining the operating state of the decompression mechanism in the second embodiment.
  • FIG. 24 is a schematic cross-sectional view for explaining the inoperative state of the decompression mechanism in the second embodiment.
  • FIG. 25 is a diagram for explaining the configuration of the engine unit according to the third embodiment.
  • FIG. 26 is a diagram for explaining the normal operation of the engine according to the third embodiment.
  • FIG. 27 is a diagram for explaining the normal operation of the engine according to the third embodiment.
  • FIG. 28 is a diagram for explaining the normal operation of the engine according to the third embodiment.
  • FIG. 29 is a diagram showing the relationship between the rotational load of the crankshaft and the crank angle in the third embodiment.
  • FIG. 30 is a view for explaining the forward rotation alignment operation in the third embodiment.
  • FIG. 31 is a diagram for explaining the reverse rotation starting operation in the third embodiment.
  • FIG. 32 is a diagram showing a specific example of the decompression mechanism in the third embodiment.
  • FIG. 33 is a diagram for explaining the operation in the second and third cylinders in the third embodiment.
  • FIG. 34 is a schematic diagram for explaining the flow of gas during the forward rotation alignment operation in the third embodiment.
  • FIG. 35 is a diagram for explaining the operation in the second and third cylinders in the third embodiment.
  • FIG. 36 is a schematic diagram for explaining the gas flow during the reverse rotation starting operation in the third embodiment.
  • FIG. 37 is a diagram showing the relationship between the crankshaft rotational load and the crank angle during the forward rotation alignment operation and the reverse rotation start operation in the third embodiment.
  • FIG. 38 is a flowchart for explaining a cold start process in the third embodiment.
  • FIG. 39 is a flowchart for explaining a cold start process in the third embodiment.
  • FIG. 40 is a flowchart for explaining reverse rotation start processing in the third embodiment.
  • FIG. 1 is a schematic side view showing a schematic configuration of a motorcycle according to an embodiment of the present invention.
  • the motorcycle 100 in FIG. 1 is an example of a vehicle.
  • a front fork 2 is provided at the front portion of the vehicle body 1 so as to be swingable in the left-right direction.
  • a handle 4 is attached to the upper end of the front fork 2, and a front wheel 3 is rotatably attached to the lower end of the front fork 2.
  • the seat 5 is provided at the substantially upper center of the vehicle body 1. Below the seat 5, an ECU (Engine Control Unit) 6 and an engine unit EU are provided.
  • the engine system 200 is configured by the ECU 6 and the engine unit EU.
  • a rear wheel 7 is rotatably attached to the lower rear end of the vehicle body 1. The rear wheel 7 is rotationally driven by the power generated by the engine unit EU.
  • FIGS. 2 and 3 are schematic side views for explaining the configuration of the engine system 200 according to the first embodiment of the present invention.
  • the engine unit EU includes an engine 10 and a starter / generator 14.
  • the engine 10 is a two-cylinder four-cycle engine and includes a first cylinder 31A and a second cylinder 31B.
  • a piston 11 is provided in each of the first and second cylinders 31A and 31B.
  • Each piston 11 is connected to a crankshaft 13 via a connecting rod (connecting rod) 12. The reciprocating motion of each piston 11 is converted into the rotational motion of the crankshaft 13.
  • the starter / generator 14 is provided on the crankshaft 13.
  • the starter / generator 14 is a generator having a function of a starter motor, and rotates the crankshaft 13 in the forward direction and the reverse direction and generates electric power by the rotation of the crankshaft 13.
  • the forward direction is the direction of rotation of the crankshaft 13 during normal operation of the engine 10, and the reverse direction is the opposite direction.
  • the starter / generator 14 directly transmits torque to the crankshaft 13 without using a reduction gear.
  • the rotation of the crankshaft 13 in the positive direction (forward rotation) is transmitted to the rear wheel 7 so that the rear wheel 7 is rotationally driven.
  • a starter motor and a generator may be provided separately.
  • FIG. 3 shows only the first cylinder 31A among the first and second cylinders 31A and 31B.
  • the configuration of the second cylinder 31B and its peripheral portion is the same as the configuration of the first cylinder 31A and its peripheral portion.
  • the engine 10 includes an intake valve 15, an exhaust valve 16, a spark plug 18, an injector 19, and a valve drive unit 17.
  • the intake valve 15, the exhaust valve 16, the spark plug 18, and the injector 19 are provided so as to correspond to each of the first and second cylinders 31A and 31B, and the valve drive unit 17 includes the first and second cylinders 31A. , 31B.
  • a combustion chamber 31a is formed above the piston 11 in each of the first and second cylinders 31A and 31B.
  • the combustion chamber 31 a communicates with the intake passage 22 through the intake port 21 and communicates with the exhaust passage 24 through the exhaust port 23.
  • the intake valve 15 opens and closes the intake port 21, and the exhaust valve 16 opens and closes the exhaust port 23.
  • the intake valve 15 and the exhaust valve 16 are driven by the valve drive unit 17.
  • the intake passage 22 is provided with a throttle valve TV for adjusting the flow rate of air flowing from the outside.
  • the spark plug 18 is configured to ignite the air-fuel mixture in the combustion chamber 31a.
  • the injector 19 is configured to inject fuel into the intake passage 22.
  • the engine 10 includes a decompression mechanism DE for reducing the pressure in the first cylinder 31A.
  • the decompression mechanism DE for example, lowers the pressure in the first cylinder 31A by lifting the exhaust valve 16 corresponding to the first cylinder 31A.
  • ECU6 contains CPU (central processing unit) and memory, for example.
  • a microcomputer may be used instead of the CPU and the memory.
  • a main switch 40, a starter switch 41, an intake pressure sensor 42, a crank angle sensor 43, and a current sensor 44 are electrically connected to the ECU 6.
  • the main switch 40 is provided, for example, below the handle 4 in FIG. 1, and the starter switch 41 is provided, for example, in the handle 4 in FIG.
  • the main switch 40 and the starter switch 41 are operated by the driver.
  • the intake pressure sensor 42 detects the pressure in the intake passage 22.
  • the crank angle sensor 43 detects the rotational position of the crankshaft 13 (hereinafter referred to as the crank angle).
  • the current sensor 44 detects a current (hereinafter referred to as a motor current) flowing through the starter / generator 14.
  • the operation of the main switch 40 and the starter switch 41 is given to the ECU 6 as operation signals, and the detection results by the intake pressure sensor 42, the crank angle sensor 43 and the current sensor 44 are given to the ECU 6 as detection signals.
  • the ECU 6 controls the starter / generator 14, the spark plug 18, and the injector 19 based on the given operation signal and detection signal.
  • the engine 10 is started when the starter switch 41 of FIG. 3 is turned on, and the engine 10 is stopped when the main switch 40 of FIG. 3 is turned off. Further, the engine 10 may be automatically stopped when a predetermined idle stop condition is satisfied, and then the engine 10 may be automatically restarted when a predetermined idle stop cancellation condition is satisfied.
  • the idle stop condition includes, for example, a condition relating to at least one of a throttle opening (opening of the throttle valve TV), a vehicle speed, and a rotational speed of the engine 10.
  • the idling stop release condition is, for example, that the throttle opening is larger than 0 when the accelerator grip is operated.
  • an idle stop state a state where the engine 10 is automatically stopped when the idle stop condition is satisfied.
  • the engine start operation includes a forward rotation alignment operation and a reverse rotation start operation which will be described later.
  • the intake stroke, the compression stroke, the expansion stroke, and the exhaust stroke are periodically repeated in each of the first and second cylinders 31A and 31B.
  • the top dead center through which the piston 11 passes during the transition from the compression stroke to the expansion stroke is referred to as the compression top dead center
  • the top dead center through which the piston 11 passes during the transition from the exhaust stroke to the intake stroke Called dead point
  • the bottom dead center through which the piston 11 passes during the transition from the intake stroke to the compression stroke is called the intake bottom dead center
  • the bottom dead center through which the piston 11 passes during the transition from the expansion stroke to the exhaust stroke is called the expansion bottom dead center.
  • crank angle ranges corresponding to the intake stroke, compression stroke, expansion stroke, and exhaust stroke of the first cylinder 31A during normal operation are defined as the first intake range, the first compression range, the first expansion range, and This is called the first exhaust range.
  • crank angle ranges corresponding to the intake stroke, compression stroke, expansion stroke, and exhaust stroke of the second cylinder 31B during normal operation are defined as the second intake range, second compression range, second expansion range, and This is called the second exhaust range.
  • the crank angle is expressed in a range of 720 degrees (two rotations of the crankshaft 13).
  • the crank angle sensor 43 in FIG. 3 detects the rotational position of the crankshaft 13 in the range of one rotation (360 degrees).
  • the ECU 6 determines whether the rotational position detected by the crank angle sensor 43 based on the pressure in the intake passage 22 detected by the intake pressure sensor 42 is one of the two rotations of the crankshaft 13 corresponding to one cycle of the engine 10. It is determined whether it corresponds to the rotation of. Thereby, the ECU 6 can acquire the rotational position of the crankshaft 13 in the range of two rotations (720 degrees).
  • FIGS. 4 and 5 are diagrams for explaining the normal operation of the engine 10.
  • FIG. 4 shows the relationship between the operation in the first cylinder 31A and the crank angle
  • FIG. 5 shows the relationship between the operation in the second cylinder 31B and the crank angle. 4 and 5 and a plurality of drawings to be described later, a range of 720 degrees of the crank angle is represented by one circle.
  • the piston 11 when the crank angle is the angle A1, the piston 11 is positioned at the compression top dead center, and when the crank angle is the angle A2, the piston 11 is expanded and dead.
  • the piston 11 is located at the exhaust top dead center when the crank angle is the angle A3, and the piston 11 is located at the intake bottom dead center when the crank angle is the angle A4.
  • crankshaft 13 (FIG. 2) is rotated forward.
  • the crank angle changes in the direction of the arrow R1.
  • the piston 11 (FIG. 2) is lowered in the range from the angle A1 to the angle A2, and the piston 11 is raised in the range from the angle A2 to the angle A3.
  • the piston 11 descends in the range from the angle A3 to the angle A4, and the piston 11 rises in the range from the angle A4 to the angle A1.
  • the range from angle A3 to angle A4 corresponds to the first intake range
  • the range from angle A4 to angle A1 corresponds to the first compression range
  • the range from angle A1 to angle A2 is the first expansion range
  • the range from the angle A2 to the angle A3 corresponds to the first exhaust range.
  • the intake port 21 (FIG. 3) is opened by the intake valve 15 (FIG. 3) in the range from the angle A11 to the angle A12, and the exhaust port 23 (FIG. 3) is opened by the exhaust valve 16 (FIG. 3) in the range from the angle A13 to the angle A14. 3) is opened.
  • the angle A11 is in the first exhaust range and is positioned at a constant angle advance side with respect to the angle A3 in the positive direction
  • the angle A12 is in the first compression range and is a constant angle later than the angle A4 in the positive direction. Located on the corner side.
  • the angle A13 is in the first expansion range and is positioned at a certain angle advance side with respect to the angle A2 in the positive direction, and the angle A14 is in the first intake range and is a certain angle later than the angle A3 in the positive direction. Located on the corner side.
  • the fuel is injected into the intake passage 22 (FIG. 3) by the injector 19 (FIG. 3) at the angle A15, and ignited by the spark plug 18 (FIG. 3) at the angle A16.
  • the angle A15 is in the first exhaust range and is located on the more advanced side than the angle A11 in the positive direction.
  • the angle A16 is in the first compression range and is positioned at a certain angle advance side from the angle A1 in the positive direction.
  • the air-fuel mixture containing fuel injected at the angle A15 is introduced into the combustion chamber 31a through the intake port 21 in the range from the angle A11 to A12.
  • the air-fuel mixture is compressed in the combustion chamber 31a and ignited by the spark plug 18 at an angle A16.
  • the air-fuel mixture is combusted in the combustion chamber 31a, the piston 11 is driven by the combustion energy, and the crankshaft 13 is driven in the forward direction.
  • the burned gas is discharged from the combustion chamber 31a through the exhaust port 23 in the range from the angle A13 to the angle A14.
  • the piston 11 rises in the range from the angle A1 to the angle A2, and the piston 11 descends in the range from the angle A2 to the angle A3.
  • the piston 11 is raised, and the piston 11 is lowered in the range from the angle A4 to the angle A1.
  • the range from angle A2 to angle A3 corresponds to the second intake range
  • the range from angle A3 to angle A4 corresponds to the second compression range
  • the range from angle A4 to angle A1 is the second expansion range
  • the range from the angle A1 to the angle A2 corresponds to the second exhaust range.
  • the intake port 21 (FIG. 3) is opened by the intake valve 15 (FIG. 3) in the range from the angle A21 to the angle A22, and the exhaust port 23 is opened by the exhaust valve 16 (FIG. 3) in the range from the angle A23 to the angle A24. It is.
  • the angle A21 is in the second exhaust range and is positioned at a certain angle advance side from the angle A2 in the positive direction, and the angle A22 is in the second compression range and is a certain angle later than the angle A3 in the positive direction. Located on the corner side.
  • the angle A23 is in the second expansion range and is positioned at a certain angle advance side from the angle A1 in the positive direction, and the angle A24 is in the second intake range and is a certain angle later than the angle A2 in the positive direction. Located on the corner side.
  • the fuel is injected into the intake passage 22 (FIG. 3) by the injector 19 (FIG. 3) at the angle A25, and ignited by the spark plug 18 (FIG. 3) at the angle A26.
  • the angle A25 is in the second exhaust range and is located on the more advanced side than the angle A21 in the positive direction.
  • the angle A26 is in the second compression range and is positioned at a constant angle advance side from the angle A4 in the positive direction.
  • the air-fuel mixture containing fuel injected at the angle A25 is introduced into the combustion chamber 31a through the intake port 21 in the range from the angle A21 to A22.
  • the air-fuel mixture is compressed in the combustion chamber 31a and ignited by the spark plug 18 at an angle A26.
  • the air-fuel mixture is combusted in the combustion chamber 31a, the piston 11 is driven by the combustion energy, and the crankshaft 13 is driven in the forward direction.
  • the burned gas is discharged from the combustion chamber 31a through the exhaust port 23 in the range from the angle A23 to the angle A24.
  • the difference between the crank angle when the piston 11 reaches the compression top dead center in the first cylinder 31A and the crank angle when the piston 11 reaches the compression top dead center in the second cylinder 31B is 180 degrees. is there. Therefore, during normal operation, the air-fuel mixture is burned at unequal intervals in the first and second cylinders 31A and 31B. Specifically, the ignition operation is performed in the second cylinder 31B after the crankshaft 13 has rotated 180 degrees after the ignition operation has been performed in the first cylinder 31A, and again after the crankshaft 13 has rotated 540 degrees. An ignition operation is performed in the first cylinder 31A.
  • FIG. 6 is a view for explaining the forward rotation alignment operation of the engine unit EU.
  • FIG. 7 is a diagram for explaining the reverse rotation start operation of the engine unit EU.
  • FIG. 6 and 7 show the relationship between the operation of the first cylinder 31A and the crank angle.
  • the main operations related to the forward rotation alignment operation and the reverse rotation start operation are performed by the first cylinder 31A. Therefore, the operation in the first cylinder 31A will be mainly described.
  • the crankshaft 13 is rotated forward by the starter / generator 14 (FIG. 3), so that the crank angle is adjusted to the angle A30.
  • the angle A30 is an example of the reverse rotation start range and is in the first intake range. It is preferable that the angle A30 is located on the more retarded side than the angle A14 in the positive direction.
  • the reverse rotation start range may be a specific angle range instead of a specific angle.
  • the crank angle is retarded from the angle A4 corresponding to the compression top dead center of the second cylinder 31B in the positive direction and corresponds to the compression top dead center of the first cylinder 31A.
  • the angle is on the more advanced side than the angle A1 (eg, angle A30a in FIG. 6). In this case, in the forward rotation alignment operation, the crank angle needs to exceed the angle A1 corresponding to the compression top dead center of the first cylinder 31A.
  • the crankshaft 13 is rotated forward while the pressure in the first cylinder 31A is reduced by the decompression mechanism DE.
  • the pressure in the first cylinder 31A is reduced by the decompression mechanism DE in the range from the angle AD1 to the angle AD2.
  • the range from the angle AD1 to the angle AD2 is an example of the alignment decompression range, and is in the first compression range.
  • the intake port 21 (FIG. 3) is opened by the intake valve 15 (FIG. 3). Fuel is injected into the intake passage 22 (FIG. 3) by the injector 19 (FIG. 3) at an angle A33, and ignited by the spark plug 18 at an angle A34. Further, at the angle A34, the rotation direction of the crankshaft 13 is switched from the reverse direction to the forward direction.
  • the range from the angle A31 to the angle A32 is an example of the start intake range and is in the first exhaust range.
  • the angle A31 is preferably positioned on the more retarded side than the angle A11 in the reverse direction.
  • the angle A33 may be in the first exhaust range or in the first intake range.
  • the angle A33 is preferably located on the more advanced side than the angle A31 in the reverse direction.
  • Angle A34 is an example of the starting ignition range and is in the first expansion range.
  • the angle A34 is at a certain angle advance side from the angle A1 in the reverse direction.
  • the angles A31 and A32 are in the range (first exhaust range) from the angle A3 to the angle A2. As described above, the piston 11 descends in the range from the angle A3 to the angle A2. Therefore, when the intake port 21 is opened in the range from the angle A31 to the angle A32, the air-fuel mixture containing air and fuel is introduced from the intake passage 22 into the combustion chamber 31a through the intake port 21. Thereafter, the air-fuel mixture introduced into the combustion chamber 31a is ignited at an angle A34. As a result, the crankshaft 13 is driven in the positive direction by the combustion energy of the air-fuel mixture, and the torque in the positive direction of the crankshaft 13 is increased.
  • the engine 10 shifts to the normal operation shown in FIGS. Specifically, fuel is injected into the intake passage 22 by the injector 19 corresponding to the second cylinder 31B at an angle A25 (FIG. 5) immediately after the rotation direction of the crankshaft 13 is switched, from the angle A21 to the angle A22. In this range, the air-fuel mixture is introduced into the second cylinder 31B. Thereafter, the air-fuel mixture in the second cylinder 31B is ignited by the spark plug 18 corresponding to the second cylinder 31B at the angle A26.
  • the air-fuel mixture is introduced into the first cylinder 31A while the crankshaft 13 is reversely rotated by the starter / generator 14. Thereafter, in the first cylinder 31A, the air-fuel mixture in the combustion chamber 31a is ignited with the piston 11 approaching the compression top dead center (the crank angle approaches the angle A1), and the rotation direction of the crankshaft 13 Is switched in the positive direction. In this case, the torque in the positive direction of the crankshaft 13 is increased by the combustion energy. Thereby, the crank angle can easily exceed the angles A1 and A4 corresponding to the compression top dead centers of the first and second cylinders 31A and 31B, and the engine 10 is stably started.
  • the intake port 21 when the crankshaft 13 rotates in the reverse direction, the intake port 21 may be opened in the same crank angle range as in the normal rotation (range from the angle A12 to the angle A11 in FIG. 7). Or it may not be opened.
  • the piston 11 rises in the range from the angle A4 to the angle A3. Therefore, even if the intake port 21 is opened, air and fuel are hardly introduced into the combustion chamber 31a. Therefore, there is almost no influence on the reverse rotation starting operation.
  • the exhaust port 23 when the crankshaft 13 rotates in the reverse direction, the exhaust port 23 may or may not be opened in the same crank angle range (the range from the angle A14 to the angle A13 in FIG. 7) as in the normal rotation. Good.
  • FIG. 8 is a diagram showing the relationship between the rotation load of the crankshaft 13 and the crank angle.
  • the horizontal axis indicates the crank angle
  • the vertical axis indicates the rotational load of the crankshaft 13.
  • the rotational load caused by the first cylinder 31A is represented by a solid line
  • the rotational load caused by the second cylinder 31B is represented by a one-dot chain line.
  • the sum of the rotational load caused by the first cylinder 31 ⁇ / b> A and the rotational load caused by the second cylinder 31 ⁇ / b> B acts on the crankshaft 13.
  • the rotational load becomes the largest at the angle A1 corresponding to the compression top dead center. Further, with respect to the second cylinder 31B, the rotational load becomes the largest at an angle A4 corresponding to the compression top dead center.
  • valve drive unit 17 of FIG. 3 is formed of a camshaft
  • a reaction force applied to the valve drive unit 17 when driving the intake valve 15 and the exhaust valve 16 becomes a rotational load of the valve drive unit 17. Since the valve drive unit 17 is rotated by the crankshaft 13, the rotational load of the valve drive unit 17 becomes the rotational load of the crankshaft 13.
  • the rotational load on the crankshaft 13 increases in order to drive the intake valve 15 (FIG. 3) in the range from the angle A3 to the angle A4, and from the angle A2 to the angle A3.
  • the rotational load on the crankshaft 13 increases.
  • the rotational load on the crankshaft 13 increases in order to drive the intake valve 15 in the range from the angle A2 to the angle A3, and the exhaust valve 16 is driven in the range from the angle A1 to the angle A2. Therefore, the rotational load on the crankshaft 13 increases.
  • the rotation of the crankshaft 13 tends to stop when the rotational load is large. Thereby, the rotation of the crankshaft 13 tends to stop mainly when the crank angle approaches the angles A1 and A4 corresponding to the compression top dead center. Further, the rotation of the crankshaft 13 may be stopped by a load for driving the intake valve 15 or the exhaust valve 16.
  • the rotation of the crankshaft 13 may stop in a state where the crank angle is on the retard side with respect to the angle A33 and on the advance side with respect to the angle A34 in the reverse direction. If the reverse rotation start operation is started from this state, the crank angle does not pass through the angle A33, so that fuel is not injected and the air-fuel mixture is not introduced into the first cylinder 31A. In the reverse rotation starting operation, in order to inject fuel and introduce the air-fuel mixture into the first cylinder 31A, it is necessary to reversely rotate the crankshaft 13 so that the crank angle passes through the range from the angle A33 to the angle A32. There is.
  • the reverse rotation starting operation in order to effectively introduce the air-fuel mixture into the first cylinder 31A, it is preferable that the rotational speed of the crankshaft 13 is increased before the crank angle reaches the angle A31. Furthermore, it is preferable that the rotational speed of the crankshaft 13 is sufficiently increased in order to ensure that the crank angle reaches the angle A34. Therefore, in the reverse direction, it is preferable that the reverse rotation start operation is performed from a state in which the crank angle is sufficiently advanced from the angle A33.
  • crankshaft 13 stops in a state where the crank angle is in the retarded direction with respect to the angle A1 and in the advanced direction with respect to the angle A4 in the reverse direction (for example, the state at the angle A30a in FIGS. 6 and 8).
  • the reverse rotation start operation is started from this state, a large rotational load is applied to the crankshaft 13 as the crank angle approaches the angle A4 corresponding to the compression top dead center of the second cylinder 31B. Therefore, reverse rotation of the crankshaft 13 is hindered.
  • the crank angle is adjusted to the angle A30 by the forward rotation alignment operation.
  • the angle A30 is sufficiently advanced than the angle A33 in the reverse direction. Therefore, when the reverse rotation of the crankshaft 13 is started from a state where the crank angle is at the angle A30, the crankshaft passes through the range from the angle A33 to the angle A32 and the crank angle reaches the angle A31.
  • the rotational speed of 13 is sufficiently increased. Therefore, the air-fuel mixture is sufficiently introduced into the combustion chamber 31a in the range from the angle A31 to the angle A32, and the crank angle easily reaches the angle A34.
  • the angle A30 is on the retard side with respect to the angle A4 in the reverse direction, the reverse rotation of the crankshaft 13 is not hindered during the reverse rotation start operation. Therefore, the air-fuel mixture can be combusted appropriately, and the torque in the positive direction of the crankshaft 13 can be sufficiently increased.
  • the decompression mechanism DE causes the first cylinder 31A.
  • the crankshaft 13 is rotated forward while the internal pressure is reduced. Thereby, the normal rotation of the crankshaft 13 is not hindered, and the crank angle can be easily adjusted to the angle A30.
  • the decompression mechanism DE may be configured to be switched between an operating state and a non-operating state by a centrifugal governor. For example, when the rotational speed of the crankshaft 13 is lower than a certain threshold value, the decompression mechanism DE is activated, and the exhaust valve 16 is lifted in the first compression range. Further, when the rotational speed of the crankshaft 13 exceeds a certain threshold value, the decompression mechanism DE is deactivated and the exhaust valve 16 is not lifted. In this case, with a simple configuration, the pressure in the first cylinder 31A can be reduced during the forward rotation alignment operation.
  • the decompression mechanism DE is configured so as not to lower the pressure in the first cylinder 31A in a range (first expansion range) on the advance side from the angle A1 in the reverse direction. In this case, during the above-described reverse rotation starting operation, when the crank angle approaches the angle A1, the pressure in the first cylinder 31A is not reduced by the decompression mechanism DE. Thereby, a decrease in energy obtained by combustion of the air-fuel mixture is prevented.
  • the decompression mechanism DE reduces the pressure in the first cylinder 31A within a certain angular range only when the rotational speed of the crankshaft 13 is lower than a certain threshold value and only when the crankshaft 13 is rotating forward. It may be configured as follows. Also in this case, the pressure in the first cylinder 31A is prevented from being lowered during the reverse rotation starting operation.
  • the rotation of the crankshaft 13 may stop in a state where the crank angle is at or near the reverse rotation start range. In that case, the forward rotation alignment operation may not be performed.
  • Engine start process ECU6 performs an engine start process based on the control program previously memorize
  • 9 and 10 are flowcharts for explaining an example of the engine start process.
  • the engine start process is performed when the main switch 40 or the starter switch 41 in FIG. 3 is turned on or when the engine 10 shifts to the idle stop state.
  • the ECU 6 determines whether or not the current crank angle is stored in the memory (step S11). For example, immediately after the main switch 40 is turned on, the current crank angle is not stored. In the idle stop state, the current crank angle is stored.
  • the ECU 6 controls the starter / generator 14 so that the crankshaft 13 rotates forward (step S12).
  • the starter / generator is based on the detection signal from the current sensor 44 (FIG. 3) so that the crank angle does not reach the angle A4 (FIG. 8) corresponding to the compression top dead center of the second cylinder 31B. 14 torque is adjusted.
  • step S12 when the crank angle passes through the angle A1 corresponding to the compression top dead center of the first cylinder 31A, the decompression mechanism DE is prevented so that the forward rotation of the crankshaft 13 is not hindered as described above. As a result, the pressure in the first cylinder 31A is reduced.
  • step S13 the ECU 6 determines whether or not a specified time has elapsed since the rotation of the crankshaft 13 was started in step S12 (step S13). If the specified time has not elapsed, the ECU 6 controls the starter / generator 14 so that the rotation of the crankshaft 13 in the positive direction is continued (step S12). When the specified time elapses, the ECU 6 controls the starter / generator 14 so that the rotation of the crankshaft 13 is stopped (step S14). As a result, the crank angle is adjusted to the reverse rotation start range (angle A30 in FIG. 6).
  • step S12 the crank angle may be detected when the crankshaft 13 is rotated forward, and the crank angle may be adjusted to the reverse rotation start range based on the detected value.
  • step S15 the ECU 6 determines whether or not the current crank angle is in the reverse rotation start range.
  • the ECU 6 controls the starter / generator 14 so that the crankshaft 13 is rotated forward (step S16).
  • the starter / generator is based on the detection signal from the current sensor 44 (FIG. 3) so that the crank angle does not reach the angle A4 (FIG. 8) corresponding to the compression top dead center of the second cylinder 31B. 14 torque is adjusted.
  • step S16 when the crank angle passes through the angle A1 corresponding to the compression top dead center of the first cylinder 31A, the forward rotation of the crankshaft 13 is not hindered.
  • the pressure in the first cylinder 31A is reduced by the decompression mechanism DE.
  • the ECU 6 determines whether or not the current crank angle has reached the reverse rotation start range based on detection signals from the intake pressure sensor 42 and the crank angle sensor 43 (step S17). If the current crank angle has not reached the reverse rotation start range, the ECU 6 controls the starter / generator 14 so that the forward rotation of the crankshaft 13 is continued (step S16). When the current crank angle reaches the reverse rotation start range, the ECU 6 controls the starter / generator 14 so that the rotation of the crankshaft 13 is stopped (step S14). Thereby, the crank angle is adjusted to the reverse rotation start range.
  • crank angle is adjusted with higher accuracy than in the processes in steps S12 and S13, and the power consumption by the starter / generator 14 is suppressed.
  • step S15 when the current crank angle is in the reverse rotation start range, the process of step S21 in FIG. 10 is performed as it is.
  • step S21 the ECU 6 determines whether or not a predetermined starting condition for the engine 10 is satisfied.
  • the starting condition of the engine 10 is, for example, that the starter switch 41 (FIG. 3) is turned on or that the idle stop cancellation condition is satisfied.
  • the ECU 6 controls the starter / generator 14 so that the crankshaft 13 is rotated in the reverse direction (step S22).
  • the ECU 6 determines whether or not the current crank angle has reached the angle A33 in FIG. 7 based on detection signals from the intake pressure sensor 42 (FIG. 3) and the crank angle sensor 43 (FIG. 3). (Step S23). The ECU 6 repeats the process of step S23 until the current crank angle reaches the angle A33.
  • the ECU 6 controls the injector 19 corresponding to the first cylinder 31A so that fuel is injected into the intake passage 22 (FIG. 3) (step S24).
  • a pulse signal is given from the crank angle sensor 43 to the ECU 6, and the ECU 6 may control the injector 19 so that fuel is injected in response to the pulse signal. .
  • the ECU 6 determines whether or not the motor current has reached a predetermined threshold value based on the detection signal from the current sensor 44 (step S25).
  • the motor current increases as the crank angle approaches the angle A1 in FIG.
  • the crank angle reaches the angle A34 in FIG. 7
  • the motor current reaches the threshold value. If the motor current has not reached the threshold value, the ECU 6 repeats the process of step S25.
  • step S26 When the motor current reaches a predetermined threshold value, the ECU 6 controls the starter / generator 14 so that the reverse rotation of the crankshaft 13 is stopped (step S26), and corresponds to the first cylinder 31A.
  • the air-fuel mixture in the combustion chamber 31a is ignited by the spark plug 18 that performs (step S27). Further, the ECU 6 controls the starter / generator 14 so that the crankshaft 13 is rotated forward (step S28). Thereby, ECU6 complete
  • crank angle A34 it is determined whether or not the crank angle has reached the starting ignition range (angle A34) based on the motor current, but the present invention is not limited to this. For example, it may be determined whether or not the crank angle has reached the start ignition range based on the current crank angle detected by the intake pressure sensor 42 (FIG. 3) and the crank angle sensor 43 (FIG. 3).
  • step S22 After the crankshaft 13 has started to reversely rotate in step S22, if a predetermined time has passed without the crank angle reaching the starting ignition range, an abnormality of the engine unit EU has occurred.
  • the reverse rotation starting operation may be stopped.
  • the abnormality of the engine unit EU includes a malfunction of the starter / generator 14 or a malfunction of the valve drive unit 17.
  • the air-fuel mixture is guided into the first cylinder 31A while the crankshaft 13 is rotated in reverse by the reverse rotation start operation, and the piston 11 is compressed top dead center.
  • the air-fuel mixture is ignited while approaching The crankshaft 13 is driven in the positive direction by the combustion energy of the air-fuel mixture.
  • the air-fuel ratio at the time of ignition can be adjusted appropriately.
  • the crank angle is adjusted to the reverse rotation start range (angle A30) by the forward rotation alignment operation.
  • the air-fuel mixture can be appropriately introduced into the first cylinder 31A in the reverse rotation start operation, and the crank angle can easily reach the start ignition range (angle A34).
  • the air-fuel mixture can be appropriately combusted in the first cylinder 31A, and the positive torque of the crankshaft 13 can be sufficiently increased. As a result, the engine 10 can be started appropriately.
  • the crank angle in the reverse rotation start operation, does not pass through the angles A1 and A4 corresponding to the compression top dead centers of the first and second cylinders 31A and 31B.
  • the crank angle can easily reach the starting ignition range (angle A34) without reducing the pressure in the cylinders 31A and 31B. Accordingly, the forward rotation alignment operation and the reverse rotation start operation can be appropriately performed with a simple configuration.
  • FIGS. 11 and 12 are diagrams for explaining another example of the reverse rotation starting operation.
  • the reverse rotation starting operation is performed from the state where the crank angle is at the angle A70 in the first compression range.
  • the piston 11 rises in the range from the angle A1 to the angle A4, and from the angle A4 to the angle A3.
  • the piston 11 is lowered in the range of A, the piston 11 is raised in the range from the angle A3 to the angle A2, and the piston 11 is lowered in the range from the angle A2 to the angle A1.
  • the crank angle needs to exceed the angle A4 corresponding to the compression top dead center of the second cylinder 31B. Therefore, the crankshaft 13 is rotated in reverse while the pressure in the second cylinder 31B is reduced by the decompression mechanism DE.
  • the pressure in the second cylinder 31B is reduced by the decompression mechanism DE in the range from the angle AD7 to the angle AD8.
  • the range from the angle AD7 to the angle AD8 is an example of the starting decompression range and is in the second expansion range.
  • the angle A70 is sufficiently advanced from the angle A31 in FIG. 11 in the reverse direction. Therefore, when the reverse rotation of the crankshaft 13 is started from the state where the crank angle is at the angle A70, the crank angle passes through the range from the angle A33 to the angle A32 in FIG. 11 and the crank angle reaches the angle A31. At that time, the rotational speed of the crankshaft 13 is sufficiently increased. Therefore, the air-fuel mixture is sufficiently introduced into the combustion chamber 31a in the range from the angle A31 to the angle A32, and the crank angle easily reaches the angle A34.
  • the air-fuel mixture is introduced into the first cylinder 31A while the crankshaft 13 is reversely rotated by the starter / generator 14. Thereafter, in the first cylinder 31A, the air-fuel mixture in the combustion chamber 31a is ignited with the piston 11 approaching the compression top dead center, and the rotation direction of the crankshaft 13 is switched to the positive direction. In this case, the torque in the positive direction of the crankshaft 13 is increased by the combustion energy. Thereby, the crank angle can easily exceed the angles A1 and A4 corresponding to the compression top dead centers of the first and second cylinders 31A and 31B, and the engine 10 is started appropriately.
  • crank angle may be adjusted to the angle A30 in FIG. 6 by rotating the crankshaft 13 in the reverse direction.
  • the crank angle exceeds the angle A4 corresponding to the compression top dead center of the second cylinder 31B because the decompression mechanism DE reduces the pressure in the second cylinder 31B while the crankshaft 13 is rotated in the reverse direction. .
  • the crank angle can be adjusted to the angle A30. Therefore, similarly to the example of FIG. 6, the reverse rotation starting operation can be started from the state where the crank angle is at the angle A30.
  • FIG. 13 is a schematic side view for explaining the configuration of the engine system 200 according to the second embodiment.
  • the difference is 360 degrees. Therefore, in the vertical direction (reciprocating direction of the piston 11), the position of the piston 11 in the first cylinder 31A and the position of the piston 11 in the second cylinder 31B coincide.
  • FIG. 14 is a diagram for explaining the normal operation of the engine 10.
  • FIG. 14 (a) shows the relationship between the operation in the first cylinder 31A and the crank angle
  • FIG. 14 (b) shows the relationship between the operation in the second cylinder 31B and the crank angle. It is.
  • the relationship between the operation of the first cylinder 31A and the crank angle during the normal operation is the same as the example of FIG. 4 of the first embodiment.
  • the piston 11 in the second cylinder 31B, the piston 11 is located at the exhaust top dead center when the crank angle is the angle A1, and the piston 11 is moved when the crank angle is the angle A2.
  • the crank angle is an angle A3
  • the piston 11 is positioned at the compression top dead center when the crank angle is the angle A3, and when the crank angle is the angle A4, the piston 11 is positioned at the expansion bottom dead center.
  • the piston 11 (FIG. 2) is lowered in the range from the angle A1 to the angle A2, and the piston 11 is raised in the range from the angle A2 to the angle A3. To the angle A4, the piston 11 descends, and the piston 11 rises in the range from the angle A4 to the angle A1.
  • the range from angle A1 to angle A2 corresponds to the second intake range
  • the range from angle A2 to angle A3 corresponds to the second compression range
  • the range from angle A3 to angle A4 is the second expansion range
  • the range from the angle A4 to the angle A1 corresponds to the second exhaust range.
  • the intake port 21 (FIG. 3) is opened by the intake valve 15 (FIG. 3) in the range from the angle A41 to the angle A42, and the exhaust port 23 (FIG. 3) is opened by the exhaust valve 16 (FIG. 3) in the range from the angle A43 to the angle A44. 3) is opened.
  • the angle A41 is in the second exhaust range and is positioned at a certain angle advance side from the angle A1 in the positive direction
  • the angle A42 is in the second compression range and is a certain angle later than the angle A2 in the positive direction Located on the corner side.
  • the angle A43 is in the second expansion range and is positioned at a constant angle advance side from the angle A4 in the positive direction, and the angle A44 is in the second intake range and is a constant angle delay from the angle A1 in the positive direction. Located on the corner side.
  • the fuel is injected into the intake passage 22 (FIG. 3) by the injector 19 (FIG. 3) at an angle A45, and ignited by the spark plug 18 (FIG. 3) at an angle A46.
  • the angle A45 is in the second exhaust range and is located on the more advanced side than the angle A41 in the positive direction.
  • the angle A46 is in the second compression range and is positioned at a constant angle advance side from the angle A3 in the positive direction.
  • the air-fuel mixture containing the fuel injected at the angle A45 is introduced into the combustion chamber 31a through the intake port 21 in the range from the angle A41 to A42.
  • the air-fuel mixture is compressed in the combustion chamber 31a and ignited by the spark plug 18 at an angle A46.
  • the air-fuel mixture is combusted in the combustion chamber 31a, the piston 11 is driven by the combustion energy, and the crankshaft 13 is driven in the forward direction. Thereafter, the burned gas is discharged from the combustion chamber 31a through the exhaust port 23 in the range from the angle A43 to the angle A44.
  • the difference from the crank angle is 360 degrees. Therefore, during normal operation, the air-fuel mixture is combusted at equal intervals in the first and second cylinders 31A and 31B.
  • the ignition operation is performed in the second cylinder 31B after the crankshaft 13 has rotated 360 degrees after the ignition operation has been performed in the first cylinder 31A, and again after the crankshaft 13 has rotated 360 degrees.
  • An ignition operation is performed in the first cylinder 31A.
  • FIGS. 15 and 16 are diagrams for explaining the forward rotation alignment operation of the engine unit EU.
  • 17 and 18 are diagrams for explaining the reverse rotation starting operation of the engine unit EU.
  • 15 and 17 show the relationship between the operation in the first cylinder 31A and the crank angle.
  • 16 and 18 show the relationship between the operation in the second cylinder 31B and the crank angle.
  • the crankshaft 13 is rotated forward by the starter / generator 14 (FIG. 3), so that the crank angle is adjusted to the angle A50.
  • the angle A50 is an example of the reverse rotation start range and is in the first compression range.
  • the reverse rotation start range may be a specific angle range instead of a specific angle.
  • the reverse rotation start range may be in the first intake range, or may be a certain angle range from an angle in the first intake range to an angle in the first compression range.
  • the crank angle is retarded from the angle A1 corresponding to the compression top dead center of the first cylinder 31A in the positive direction and corresponds to the compression top dead center of the second cylinder 31B.
  • the angle is on the more advanced side than the angle A3 (for example, the angle A50a in FIG. 15). In this case, in the forward rotation alignment operation, the crank angle needs to exceed an angle A3 corresponding to the compression top dead center of the second cylinder 31B.
  • the decompression mechanism DE of FIG. 3 is configured to reduce the pressure in the second cylinder 31B.
  • the decompression mechanism DE reduces the pressure in the second cylinder 31B by, for example, lifting the exhaust valve 16 corresponding to the second cylinder 31B.
  • the crankshaft 13 When the crank angle needs to exceed the angle A3 in the forward rotation alignment operation, the crankshaft 13 is rotated forward while the pressure in the second cylinder 31B is reduced by the decompression mechanism DE.
  • the pressure in the second cylinder 31B is reduced by the decompression mechanism DE in the range from the angle AD3 to the angle AD4 while the crankshaft 13 is rotated forward.
  • the range from the angle AD3 to AD4 is an example of the alignment decompression range and is in the second compression range.
  • crankshaft 13 in the reverse rotation start operation, is reversely rotated from a state where the crank angle is in the reverse rotation start range (angle A50).
  • angle A50 the crank angle is in the reverse rotation start range
  • the piston 11 rises in the range from the angle A4 to the angle A3, and the piston 11 falls in the range from the angle A3 to the angle A2.
  • the piston 11 is raised in the range from the angle A2 to the angle A1, and the piston 11 is lowered in the range from the angle A1 to the angle A4.
  • the intake port 21 (FIG. 3) is opened by the intake valve 15 (FIG. 3) in the range from the angle A31 to the angle A32 in FIG.
  • Fuel is injected into the intake passage 22 (FIG. 3) by the injector 19 (FIG. 3). Further, at the angle A34, the spark plug 18 is ignited and the rotation direction of the crankshaft 13 is switched from the reverse direction to the forward direction. Thereby, the air-fuel mixture is combusted in the first cylinder 31A, and the crankshaft 13 is driven in the positive direction by the combustion energy of the air-fuel mixture.
  • the crank angle needs to exceed the angle A3 corresponding to the compression top dead center of the second cylinder 31B. Therefore, the crankshaft 13 is rotated in reverse while the pressure in the second cylinder 31B is reduced by the decompression mechanism DE.
  • the pressure in the second cylinder 31B is reduced by the decompression mechanism DE in the range from the angle AD5 to the angle AD6 while the crankshaft 13 is rotated in the reverse direction.
  • the range from the angle AD5 to the angle AD6 is an example of the starting decompression range, and is in the second expansion range.
  • the angle A50 is sufficiently advanced from the angle A31 (FIG. 17) in the reverse direction. Therefore, when the reverse rotation of the crankshaft 13 is started from the state where the crank angle is at the angle A50, the crank angle passes through the range from the angle A33 to the angle A32 and the crank angle reaches the angle A31. The rotational speed of the shaft 13 is sufficiently increased. Therefore, the air-fuel mixture is sufficiently introduced into the combustion chamber 31a in the range from the angle A31 to the angle A32, and the crank angle easily reaches the angle A34.
  • the rotation direction of the crankshaft 13 is switched from the reverse direction to the forward direction.
  • the second cylinder 31B is in the intake stroke. Therefore, the air-fuel mixture containing the fuel injected at the angle A47 is introduced into the second cylinder 31B immediately after the rotation direction of the crankshaft 13 is switched to the positive direction at the angle A34. Thereby, the air-fuel mixture can be burned in the second cylinder 31B in the first expansion stroke after the rotation direction of the crankshaft 13 is switched to the positive direction. Therefore, the engine 10 can quickly shift to the normal operation of FIG.
  • the air-fuel mixture is introduced into the first cylinder 31A while the crankshaft 13 is reversely rotated by the starter / generator 14. Thereafter, in the first cylinder 31A, the air-fuel mixture in the combustion chamber 31a is ignited with the piston 11 approaching the compression top dead center, and the rotation direction of the crankshaft 13 is switched to the positive direction. In this case, the torque in the positive direction of the crankshaft 13 is increased by the combustion energy. Thereby, the crank angle can easily exceed the angles A1 and A3 corresponding to the compression top dead centers of the first and second cylinders 31A and 31B, and the engine 10 is stably started.
  • FIG. 19 is a diagram showing the relationship between the rotation load of the crankshaft 13 and the crank angle. The difference between the example of FIG. 19 and the example of FIG. 8 will be described.
  • the rotational load becomes the largest at an angle A3 corresponding to the compression top dead center.
  • the valve drive unit 17 of FIG. 3 is formed of a camshaft
  • the rotational load on the crankshaft 13 is increased in order to drive the intake valve 15 in the range from the angle A1 to the angle A2 with respect to the second cylinder 31B. Since the exhaust valve 16 is driven in the range from the angle A4 to the angle A1, the rotational load on the crankshaft 13 increases.
  • the reverse rotation start operation is performed from a state where the crank angle is sufficiently advanced from the angle A33 in the reverse direction. Therefore, the crank angle is adjusted to the angle A50 by the forward rotation alignment operation before the reverse rotation start operation.
  • the angle A50 is sufficiently advanced than the angle A33 in the reverse direction. Therefore, when the reverse rotation of the crankshaft 13 is started from the state where the crank angle is at the angle A50, the crankshaft passes through the range from the angle A33 to the angle A32 and the crank angle reaches the angle A31.
  • the rotational speed of 13 is sufficiently increased. Therefore, the air-fuel mixture is sufficiently introduced into the combustion chamber 31a in the range from the angle A31 to the angle A32, and the crank angle easily reaches the angle A34.
  • crank angle needs to exceed the angle A3 corresponding to the compression top dead center of the second cylinder 31B in the forward rotation alignment operation
  • the pressure in the second cylinder 31B is reduced by the decompression mechanism DE.
  • the crankshaft 13 is rotated forward while being rotated. Thereby, the normal rotation of the crankshaft 13 is not hindered, and the crank angle can be easily adjusted to the angle A50.
  • the decompression mechanism DE may be configured to be switched between an operating state and a non-operating state by a centrifugal governor. For example, when the rotational speed of the crankshaft 13 is lower than a certain threshold value, the decompression mechanism DE is activated, and the exhaust valve 16 is lifted in the second compression range. Further, when the rotational speed of the crankshaft 13 exceeds a certain threshold value, the decompression mechanism DE is deactivated and the exhaust valve 16 is not lifted. In this case, with a simple configuration, the pressure in the second cylinder 31B can be reduced during the forward rotation alignment operation.
  • the rotation of the crankshaft 13 may stop in a state where the crank angle is at or near the reverse rotation start range. In that case, the forward rotation alignment operation may not be performed.
  • FIG. 20 is a flowchart illustrating a part of the engine start process according to the second embodiment.
  • crank angle is adjusted to the reverse rotation start range by performing the processing of steps S11 to S17 in FIG.
  • steps S12 and S16 in FIG. 9 when the crank angle passes through the angle A3 corresponding to the compression top dead center of the second cylinder 31B, the decompression mechanism DE is prevented so that the forward rotation of the crankshaft 13 is not hindered. As a result, the pressure in the second cylinder 31B is reduced.
  • step S21 in FIG. 20 is performed.
  • the example of FIG. 20 is different from the example of FIG. 10 in that the processes of steps S31 and S32 are performed after the process of step S24 and before the process of step S25.
  • step S31 the ECU 6 determines whether or not the current crank angle has reached the angle A47 in FIG. 18 based on detection signals from the intake pressure sensor 42 (FIG. 3) and the crank angle sensor 43 (FIG. 3). To do. The ECU 6 repeats the process of step S31 until the current crank angle reaches the angle A47.
  • the ECU 6 controls the injector 19 corresponding to the second cylinder 31B so that the fuel is injected into the intake passage 22 (FIG. 3) (step S32).
  • a pulse signal is given from the crank angle sensor 43 to the ECU 6, and the ECU 6 may control the injector 19 so that fuel is injected in response to the pulse signal. .
  • the air-fuel mixture is introduced into the second cylinder 31B immediately after the rotation direction of the crankshaft 13 is switched to the positive direction at the angle A34. Therefore, the engine 10 can quickly shift to normal operation.
  • FIG. 21 is a schematic diagram illustrating an example of the valve driving unit 17.
  • 21 includes an intake camshaft 171 and an exhaust camshaft 172.
  • Each of the intake camshaft 171 and the exhaust camshaft 172 rotates in conjunction with the crankshaft 13.
  • the intake camshaft 171 includes a plurality of intake cams 173 that drive the intake valves 15 of the first and second cylinders 31A and 31B, respectively.
  • the exhaust camshaft 172 includes a plurality of exhaust cams 174 that respectively drive the exhaust valves 16 of the first and second cylinders 31A and 31B.
  • FIG. 21 shows only one intake cam 173 and one exhaust cam 174.
  • the exhaust cam 174 is provided with a decompression mechanism DE.
  • FIG. 22 is a perspective view of the decompression mechanism DE. In FIG. 22, a part of the exhaust cam 174 is transparently represented.
  • the exhaust cam 174 in FIG. 22 drives the exhaust valve 16 (FIG. 21) corresponding to the second cylinder 31B.
  • the exhaust cam 174 of FIG. 22 includes a cam member CA and a decompression mechanism DE.
  • the cam member CA lifts the exhaust valve 16 corresponding to the second cylinder 31B in the range from the angle A43 to A44 in FIG.
  • the decompression mechanism DE includes a rotating member 61, decompression pins 62 and 63, a connecting member 64, a decompression weight 65, and a stopper pin 66.
  • the rotating member 61 and the decompression pins 62 and 63 are accommodated inside the cam member CA.
  • the rotating member 61 has a substantially cylindrical shape, and is provided to be rotatable with respect to the cam member CA around a straight line parallel to the rotation center line of the exhaust cam 174.
  • Each of the decompression pins 62 and 63 is provided so as to contact the outer peripheral surface of the rotating member 61.
  • the connecting member 64, the decompression weight 65, and the stopper pin 66 are provided on one surface of the cam member CA.
  • One end of the connecting member 64 is fixed to the rotating member 61.
  • a protruding pin 64 a is provided at the other end of the connecting member 64.
  • the decompression weight 65 has a substantially U shape. One end of the decompression weight 65 is attached to the cam member CA via the swing shaft 65a. The decompression weight 65 can swing around the swing shaft 65a with respect to the cam member CA. An oblong through hole 65 b is provided at the other end of the decompression weight 65. The protruding pin 64a of the connecting member 64 is inserted into the through hole 65b.
  • the connecting member 64 swings in conjunction with the rotation, and the rotating member 61 rotates with respect to the cam member CA.
  • a stopper pin 66 is provided between the connecting member 64 and the decompression weight 65. The swing range of the connecting member 64 and the decompression weight 65 is limited by the stopper pin 66.
  • the rotational speed of the exhaust camshaft 172 in FIG. 21 depends on the rotational speed of the crankshaft 13.
  • the decompression mechanism DE is switched between an operating state and a non-operating state depending on the rotational speed of the exhaust camshaft 172, that is, the rotational speed of the crankshaft 13.
  • the decompression mechanism DE is maintained in an operating state, and when the rotational speed of the crankshaft 13 is equal to or greater than a certain threshold value, the decompression mechanism DE is in an inoperative state. Maintained.
  • FIG. 23 is a schematic cross-sectional view for explaining the operating state of the decompression mechanism DE.
  • FIG. 24 is a schematic cross-sectional view for explaining the inoperative state of the decompression mechanism DE. 23 and 24, the cross section of the cam member CA is represented by a dot pattern. Further, the decompression weight 65 and the stopper pin 66 are represented by dotted lines.
  • the cam member CA is formed with a housing hole CAa for housing the rotating member 61 and housing holes CAb and CAc for housing the decompression pins 62 and 63, respectively.
  • One end of each of the accommodation holes CAb and CAc is opened on the outer peripheral surface of the cam member CA, and the other end thereof is opened on each inner peripheral surface of the accommodation hole CAa.
  • One end of the accommodation hole CAb and one end of the accommodation hole CAc are provided at different positions in the rotation direction of the cam member CA.
  • a flange-shaped contact portion 62 a is provided at one end of the decompression pin 62, and a flange-shaped contact portion 63 a is provided at one end of the decompression pin 63.
  • An enlarged portion CAB capable of accommodating the contact portion 62a is provided at the other end of the accommodation hole CAb, and an enlarged portion CAC capable of accommodating the contact portion 63a is provided at the other end of the accommodation hole CAc.
  • a spring SP1 is disposed in the enlarged portion CAB, and a spring SP2 is disposed in the enlarged portion CAC.
  • the contact portion 62a of the decompression pin 62 is pressed against the outer peripheral surface of the rotating member 61 by the spring SP1, and the contact portion 63a of the decompression pin 63 is pressed against the outer peripheral surface of the rotating member 61 by the spring SP2.
  • the outer peripheral surface of the rotating member 61 has curved surface portions 61a and 61b and flat surface portions 61c and 61d.
  • the curved surface portions 61 a and 61 b are respectively included in cylindrical surfaces centering on the rotation center line of the rotating member 61.
  • the flat surface portion 61c is provided so as to connect one side of the curved surface portion 61a and one side of the curved surface portion 61b
  • the flat surface portion 61d is provided so as to connect the other side of the curved surface portion 61a and the other side of the curved surface portion 61b.
  • the connecting member 64 is biased in one direction DR1 by a biasing member (not shown).
  • the decompression mechanism DE When the rotational speed of the crankshaft 13 is lower than a certain threshold value, the decompression mechanism DE is maintained in the operating state of FIG. As shown in FIG. 23, in the operating state, the decompression weight 65 abuts against the stopper pin 66 by the urging force acting on the connecting member 64. In this case, the contact portion 62 a of the decompression pin 62 contacts the curved surface portion 61 a of the rotating member 61, and the contact portion 63 a of the decompression pin 63 contacts the curved surface portion 61 b of the rotating member 61. Accordingly, the distal end portion of the decompression pin 62 projects from the outer peripheral surface of the cam member CA, and the distal end portion of the decompression pin 63 projects from the outer peripheral surface of the cam member CA.
  • the decompression pin 62 lifts the exhaust valve 16 (FIG. 21) corresponding to the second cylinder 31B when the crank angle is in the range from the angle AD3 to the angle AD4 in FIG.
  • the pressure in the second cylinder 31B can be reduced. Therefore, the crank angle can easily exceed the angle A3.
  • the decompression pin 63 lifts the exhaust valve 16 (FIG. 21) corresponding to the second cylinder 31B when the crank angle is in the range from the angle AD5 to the angle AD6 in FIG. Thereby, in the reverse rotation starting operation, when the crank angle approaches the angle A3 corresponding to the compression top dead center of the second cylinder 31B, the pressure in the second cylinder 31B can be reduced. Therefore, the crank angle can easily exceed the angle A3.
  • the decompression mechanism DE When the rotational speed of the crankshaft 13 is equal to or higher than a certain threshold value, the decompression mechanism DE is maintained in the inoperative state of FIG. As shown in FIG. 24, in a non-operating state, the decompression weight 65 moves away from the rotation center line of the exhaust cam 174 by centrifugal force. Thereby, the connecting member 64 contacts the stopper pin 66. In this case, the contact portion 62 a of the decompression pin 62 contacts the flat surface portion 61 c of the rotating member 61, and the contact portion 63 a of the decompression pin 63 contacts the flat surface portion 61 d of the rotating member 61.
  • tip part of the decompression pin 62 is accommodated in the accommodation hole CAa, and the front-end
  • the decompression mechanism DE is maintained in the operating state, and the exhaust valves 16 corresponding to the second cylinder 31B are within a certain crank angle range by the decompression pins 62 and 63. Is lifted.
  • the decompression mechanism DE is maintained in an inoperative state, and the exhaust valve 16 is not lifted by the decompression pins 62 and 63.
  • a decompression mechanism DE is provided in the exhaust cam 174 that drives the exhaust valve 16 corresponding to the first cylinder 31A.
  • a decompression pin for lifting the exhaust valve 16 in the range of the angle AD1 to the angle AD2 in FIG. 6 is provided.
  • the decompression mechanism DE is activated during the forward rotation alignment operation, and when the crank angle approaches the angle A1 corresponding to the compression top dead center of the first cylinder 31A, the decompression mechanism DE The pressure in one cylinder 31A is reduced. Further, during the reverse rotation starting operation, the pressure in the first and second cylinders 31A and 31B is not reduced by the decompression mechanism DE. During normal operation, the decompression mechanism DE is deactivated, and the decompression mechanism DE does not reduce the pressure in the first and second cylinders 31A and 31B. Therefore, in the first embodiment, it is possible to appropriately perform the forward rotation start operation and the reverse rotation start operation while simplifying the configuration of the decompression mechanism DE as compared with the second embodiment.
  • the engine 10 is started by the reverse rotation starting operation as in the first embodiment.
  • the air-fuel ratio at the time of ignition can be adjusted appropriately.
  • the crank angle is in the starting pressure reduction range (range from the angle AD5 to the angle AD6)
  • the pressure in the second cylinder 31B is reduced by the decompression mechanism DE.
  • an increase in pressure in the second cylinder 31B is suppressed. Therefore, an increase in the rotational resistance of the crankshaft 13 is suppressed, and the reverse rotation of the crankshaft 13 is not hindered.
  • the introduction of the air-fuel mixture into the first cylinder 31A and the compression of the air-fuel mixture in the first cylinder 31A can be performed appropriately. . Thereby, the air-fuel mixture can be appropriately burned in the first cylinder 31A, and the positive torque of the crankshaft 13 can be sufficiently increased. As a result, the engine 10 can be started appropriately.
  • the crank angle is adjusted to the reverse rotation start range (angle A50) by the forward rotation alignment operation.
  • the air-fuel mixture can be appropriately introduced into the first cylinder 31A in the reverse rotation start operation, and the crank angle can easily reach the start ignition range (angle A34).
  • the crank angle when the piston 11 reaches the compression top dead center in the first cylinder 31A and the piston 11 reaches the compression top dead center in the second cylinder 31B. Is 180 degrees, and in the second embodiment, the difference is 360 degrees.
  • the present invention is not limited to this.
  • the difference between the crank angle when the piston 11 reaches the compression top dead center in the first cylinder 31A and the crank angle when the piston 11 reaches the compression top dead center in the second cylinder 31B is 270 degrees.
  • the pressure in the first cylinder 31A may be reduced by the decompression mechanism DE in the forward rotation alignment operation.
  • the pressure in the second cylinder 31B may be reduced by the decompression mechanism DE in the forward rotation alignment operation and the reverse rotation start operation.
  • FIG. 25 is a diagram for describing a configuration of an engine unit EU used in the third embodiment.
  • the engine unit EU in FIG. 25 includes an engine 10A instead of the engine 10 in FIG.
  • Engine 10A is a three-cylinder four-cycle engine, and includes first, second, and third cylinders 31P, 31Q, and 31R.
  • a piston 11 is provided in each of the first, second, and third cylinders 31P, 31Q, and 31R, and a combustion chamber 31a is provided above the piston 11.
  • Each piston 11 is connected to a crankshaft 13 via a connecting rod 12.
  • An intake port 21 and an exhaust port 23 are provided in each of the first, second, and third cylinders 31P, 31Q, and 31R. Each intake port 21 is opened and closed by the intake valve 15, and each exhaust port 23 is opened and closed by the exhaust valve 16.
  • An intake camshaft 171 and an exhaust camshaft 172 are respectively provided in common to the first, second and third cylinders 31P, 31Q, 31R.
  • the intake camshaft 171 includes a plurality of intake cams 173, and the exhaust camshaft 172 includes a plurality of exhaust cams 174.
  • Each intake cam 173 and each exhaust cam 174 drive the intake valve 15 and the exhaust valve 16, respectively.
  • the spark plug 18 and the injector 19 in FIG. 3 are provided so as to correspond to each of the first, second, and third cylinders 31P, 31Q, 31R.
  • a decompression mechanism DEa is provided between the second cylinder 31Q and the third cylinder 31R.
  • the decompression mechanism DEa suppresses an increase in pressure in the second and third cylinders 31Q and 31R. Details of the decompression mechanism DEa will be described later.
  • FIGS. 26 to 27 are diagrams for explaining the normal operation of the engine 10A.
  • FIG. 26 shows the relationship between the operation in the first cylinder 31P and the crank angle
  • FIG. 27 shows the relationship between the operation in the second cylinder 32Q and the crank angle
  • FIG. The relationship between the operation in the third cylinder 32R and the crank angle is shown.
  • the relationship between the operation in the first cylinder 31P and the crank angle during normal operation is the relationship between the operation in the first cylinder 31A and the crank angle in the first embodiment.
  • the piston 11 is located at the compression top dead center when the crank angle is the angle A1, and the piston 11 is located at the expansion bottom dead center when the crank angle is the angle A2.
  • the piston 11 is located at the exhaust top dead center, and when the crank angle is the angle A4, the piston 11 is located at the intake bottom dead center.
  • the piston 11 (FIG.
  • the intake port 21 (FIG. 25) is opened by the intake valve 15 (FIG. 25) in the range from the angle A11 to the angle A12, and the exhaust port 23 (FIG. 25) is opened by the exhaust valve 16 (FIG. 25) in the range from the angle A13 to the angle A14. 25) is opened. Further, fuel is injected into the intake passage 22 (FIG. 3) by the injector 19 (FIG. 3) at an angle A15, and ignited by the spark plug 18 (FIG. 3) at an angle A16.
  • the piston 11 when the crank angle is the angle A101, the piston 11 is positioned at the compression top dead center, and when the crank angle is the angle A102, the piston 11 is expanded and dead.
  • the piston 11 is located at the exhaust top dead center when the crank angle is the angle A103, and the piston 11 is located at the intake bottom dead center when the crank angle is the angle A104.
  • the piston 11 descends in the range from the angle A101 to the angle A102, the piston 11 rises in the range from the angle A102 to the angle A103, the piston 11 descends in the range from the angle A103 to the angle A104, and the angle A104 to the angle A101.
  • the piston 11 rises in the range up to.
  • the angles A101 to A104 in FIG. 27 are respectively delayed by 240 degrees from the angles A1 to A4 in FIG.
  • the intake port 21 (FIG. 25) is opened by the intake valve 15 (FIG. 25) in the range from the angle A111 to the angle A112, and the exhaust port 23 (FIG. 25) is opened by the exhaust valve 16 (FIG. 25) in the range from the angle A113 to the angle A114. 25) is opened. Further, fuel is injected into the intake passage 22 (FIG. 3) by the injector 19 (FIG. 3) at an angle A115, and ignited by the spark plug 18 (FIG. 3) at an angle A116.
  • the piston 11 when the crank angle is the angle A201, the piston 11 is positioned at the compression top dead center, and when the crank angle is the angle A202, the piston 11 is expanded and dead.
  • the piston 11 is located at the exhaust top dead center when the crank angle is the angle A203, and the piston 11 is located at the intake bottom dead center when the crank angle is the angle A204.
  • the piston 11 is lowered in the range from the angle A201 to the angle A202, the piston 11 is raised in the range from the angle A202 to the angle A203, the piston 11 is lowered in the range from the angle A203 to the angle A204, and from the angle A204 to the angle A201.
  • the piston 11 rises in the range up to.
  • the angles A201 to A204 in FIG. 28 are respectively delayed by 240 degrees from the angles A101 to A104 in FIG.
  • the intake port 21 (FIG. 25) is opened by the intake valve 15 (FIG. 25) in the range from the angle A211 to the angle A212, and the exhaust port 23 (FIG. 25) is opened by the exhaust valve 16 (FIG. 25) in the range from the angle A213 to the angle A214. 25) is opened. Further, fuel is injected into the intake passage 22 (FIG. 3) by the injector 19 (FIG. 3) at the angle A215, and ignited by the spark plug 18 (FIG. 3) at the angle A216.
  • the angles A211 to A216 in FIG. 27 are different from the angles A11 to A16 in FIG. 26 by 480 degrees, respectively.
  • FIG. 29 is a diagram showing the relationship between the rotational load of the crankshaft 13 and the crank angle.
  • the horizontal axis indicates the crank angle
  • the vertical axis indicates the rotational load of the crankshaft 13.
  • FIG. 29A shows the rotational load caused by the first cylinder 31P
  • FIG. 29B shows the rotational load caused by the second cylinder 31Q
  • FIG. Indicates the rotational load caused by the third cylinder 31R.
  • FIG. 29 (d) shows the total rotational load caused by the first, second, and third cylinders 31P, 31Q, 31R.
  • the first, second, and third cylinders 31P, 31Q, and 31R are rotated at angles A1, A101, and A201 corresponding to the compression top dead centers, respectively. Is the largest.
  • the angle A101 differs from the angle A1 by 240 degrees
  • the angle A201 differs from the angle A101 by 240 degrees.
  • the rotational load of the crankshaft 13 increases every time the crank angle changes by 240 degrees.
  • FIG. 30 is a diagram for explaining the forward rotation alignment operation of the engine unit EU
  • FIG. 31 illustrates the reverse rotation start operation of the engine unit EU.
  • FIG. 30 and 31 show the relationship between the operation and the crank angle in the first cylinder 31P.
  • the crankshaft 13 is rotated forward to adjust the crank angle to an angle A300.
  • Angle A300 is an example of the reverse rotation start range.
  • the angle A300 is positioned more retarded than the angle A4 and more advanced than the angle A1 in the positive direction.
  • the forward rotation starting operation may not be performed.
  • the crankshaft 13 is reversely rotated from a state where the crank angle is in the reverse rotation start range (angle A300).
  • the intake port 21 (FIG. 25) is opened by the intake valve 15 (FIG. 25) in the range from the angle A31 to the angle A32, and the injector at the angle A33. 19 (FIG. 3) injects fuel into the intake passage 22 (FIG. 3).
  • the spark plug 18 is ignited and the rotation direction of the crankshaft 13 is switched from the reverse direction to the forward direction.
  • the air-fuel mixture is combusted in the first cylinder 31A, and the crankshaft 13 is driven in the positive direction by the combustion energy of the air-fuel mixture.
  • crank angle is between the angle A101 and the angle A201 in FIG. 29 when the engine 10 is stopped, the crank angle exceeds the angle A201 corresponding to the compression top dead center of the third cylinder 31R during the forward rotation alignment operation. There is a need. If the crank angle is between the angle A1 and the angle A101 in FIG. 29 when the engine 10 is stopped, the crank angle corresponds to the compression top dead center of the second cylinder 31Q during the forward rotation alignment operation. It is necessary to exceed both the angle A201 corresponding to the compression top dead center of the third cylinder 31R.
  • FIG. 32 is a diagram illustrating a specific example of the decompression mechanism DEa.
  • the 32 includes a communication path 210, auxiliary valves 212a and 212b, valve springs 213a and 213b, and an auxiliary valve drive unit 220.
  • the communication path 210 is provided so as to communicate the combustion chamber 31a of the second cylinder 31Q with the combustion chamber 31a of the third cylinder 31R.
  • the second cylinder 31Q is provided with an opening 211a at one end of the communication passage 210, and an auxiliary valve 212a is disposed so as to open and close the opening 211a.
  • the third cylinder 31R is provided with an opening 211b at the other end of the communication path 210, and an auxiliary valve 212b is disposed so as to open and close the opening 211b.
  • the auxiliary valve 212a is urged in a direction to close the opening 211a by a valve spring 213a.
  • the auxiliary valve 212b is biased in a direction to close the opening 211b by a valve spring 213b.
  • the auxiliary valves 212a and 212b are connected to each other by a connecting member 215.
  • the auxiliary valve drive unit 220 is a solenoid actuator, for example, and switches the communication path 210 between a communication state and a closed state by driving the auxiliary valves 212a and 212b integrally.
  • the communication state means a state in which the openings 211a and 211b are opened by the auxiliary valves 212a and 212b
  • the closed state means a state in which the openings 211a and 211b are respectively closed by the auxiliary valves 212a and 212b.
  • the communication path 210 is maintained in the communication state by the auxiliary valve drive unit 220 during the forward rotation alignment operation and the reverse rotation start operation.
  • FIG. 33 is a diagram for explaining the operation of the second and third cylinders 31Q and 31P when the crankshaft 13 is rotating forward.
  • FIG. 34 is a schematic diagram for explaining the flow of gas during the forward rotation alignment operation.
  • the horizontal axis represents the crank angle.
  • FIG. 33A shows the opening / closing timing of the intake port 21 and the exhaust port 23 and the moving direction of the piston 11 in the second cylinder 31Q
  • FIG. 33B shows the third cylinder 31R. The opening / closing timing of the intake port 21 and the exhaust port 23 and the moving direction of the piston 11 are shown.
  • the piston 11 descends in the third cylinder 31R with the intake port 21 opened.
  • the gas in the second cylinder 31Q passes through the communication path 210 while the gas flows into the third cylinder 31R through the intake port 21 of the third cylinder 31R. It flows to the third cylinder 31R. Therefore, gas is not compressed in the second cylinder 31Q, and an increase in pressure in the second cylinder 31Q is suppressed.
  • the piston 11 rises in the second cylinder 31Q with the exhaust port 23 being opened.
  • the gas in the third cylinder 31R flows to the second cylinder 31Q through the communication path 210 and the gas in the second cylinder 31Q flows out through the exhaust port 23. . Therefore, gas is not compressed in the third cylinder 31R, and an increase in pressure in the third cylinder 31R is suppressed.
  • FIG. 35 is a diagram for explaining the operation of the second and third cylinders 31Q and 31P when the crankshaft 13 rotates in the reverse direction.
  • FIG. 36 is a schematic diagram for explaining the flow of gas during the reverse rotation starting operation.
  • the horizontal axis represents the crank angle.
  • FIG. 35A shows the opening / closing timing of the intake port 21 and the exhaust port 23 and the moving direction of the piston 11 in the second cylinder 31Q
  • FIG. 35B shows the third cylinder 31R. The opening / closing timing of the intake port 21 and the exhaust port 23 and the moving direction of the piston 11 are shown.
  • the piston 11 descends with the exhaust port 23 opened in the second cylinder 31Q.
  • the gas in the third cylinder 31R passes through the communication path 210 while the gas flows into the second cylinder 31Q through the exhaust port 23 of the second cylinder 31Q. It flows to the second cylinder 31Q. Therefore, gas is not compressed in the third cylinder 31R, and an increase in pressure in the third cylinder 31R is suppressed.
  • the piston 11 rises in the third cylinder 31R with the intake port 21 opened.
  • the gas in the second cylinder 31Q flows to the third cylinder 31R through the communication path 210, and the gas in the third cylinder 31R flows out through the intake port 21. . Therefore, gas is not compressed in the second cylinder 31Q, and an increase in pressure in the second cylinder 31Q is suppressed.
  • FIG. 37 is a diagram showing the relationship between the rotational load of the crankshaft 13 and the crank angle during the forward rotation alignment operation and the reverse rotation start operation.
  • the rotational loads caused by the first, second and third cylinders 31P, 31Q and 31R are shown in FIGS. 37 (a) to 37 (c), respectively, and the sum of these is shown in FIG. d).
  • FIG. 37 (b) shows that even if the crank angle approaches the angle A101 corresponding to the compression top dead center of the second cylinder 31Q, the rotational resistance due to the second cylinder 31Q increases.
  • Engine start process ECU6 performs an engine start process based on the control program previously memorize
  • the engine start process includes a cold start process, an idle stop process, and a reverse rotation start process.
  • FIG. 38 is a flowchart for explaining the cold start process.
  • FIG. 39 is a flowchart for explaining the idle stop process.
  • FIG. 40 is a flowchart for explaining the reverse rotation starting process.
  • the ECU 6 starts the cold start process in FIG. In this case, the current crank angle is not stored in the ECU 6.
  • the ECU 6 controls the auxiliary valve drive unit 220 so that the communication path 210 is in a communication state (step S101).
  • the ECU 6 controls the starter / generator 14 so that the crankshaft 13 rotates forward (step S102).
  • the starter / generator 14 is based on the detection signal from the current sensor 44 (FIG. 3) so that the crank angle does not reach the angle A1 (FIG. 30) corresponding to the compression top dead center of the first cylinder 31P. Torque is adjusted.
  • the ECU 6 determines whether or not a specified time has elapsed since the forward rotation of the crankshaft 13 was started in step S102 (step S103).
  • the ECU 6 controls the starter / generator 14 so that the forward rotation of the crankshaft 13 is stopped (step S104).
  • the crank angle is adjusted to the reverse rotation start range (angle A300 in FIG. 30).
  • the ECU 6 controls the auxiliary valve drive unit 220 so that the communication path 210 is closed (step S105), and ends the cold start process.
  • the ECU 6 starts the idle stop process of FIG. First, the ECU 6 injects fuel from each injector 19 (FIG. 3) and each spark plug 18 (FIG. 3) so that combustion is stopped in each of the first, second and third cylinders 31P, 31Q, 31R. ) Is stopped (step S111).
  • step S112 the ECU 6 determines whether or not the rotational speed of the crankshaft 13 is equal to or less than a specified value based on the detection signal from the crank angle sensor 43 in FIG. 3 (step S112).
  • This prescribed value is a value that is sufficiently lower than the rotational speed of the crankshaft 13 during idling.
  • the ECU 6 determines that the rotational speed of the crankshaft 13 is less than the prescribed value. Until it becomes, the process of step S112 is repeated.
  • the ECU 6 controls the auxiliary valve drive unit 220 so that the communication path 210 is in a communication state (step S113).
  • the ECU 6 controls the auxiliary valve drive unit 220 so that the communication path 210 is in a communication state (step S113).
  • an increase in pressure in the second and third cylinders 31Q and 31R is suppressed, so that the crankshaft 31 when the crank angle approaches the angle A1 corresponding to the compression top dead center of the first cylinder 31P.
  • the rotation of the is easy to stop. Thereby, the rotation of the crankshaft 13 is easily stopped in a state where the crank angle is at or near the reverse rotation start range.
  • step S114 the ECU 6 determines whether or not the rotation of the crankshaft 13 has stopped based on the detection signal from the crank angle sensor 43 (step S114). If the rotation of the crankshaft 13 has not stopped, the ECU 6 repeats the process of step S114 until the rotation of the crankshaft 13 stops.
  • step S115 the ECU 6 determines whether or not the current crank angle is in the reverse rotation start range. If the current crank angle is not within the reverse rotation start range, the ECU 6 controls the starter / generator 14 so that the crankshaft 13 rotates forward (step S116). As in step S102 of FIG. 38, since the communication path 210 is maintained in the communication state, an increase in pressure in the second and third cylinders 31Q and 31R is suppressed. Thereby, the forward rotation of the crankshaft 13 is not hindered.
  • step S117 determines whether or not the crank angle has reached the reverse rotation start range based on the detection signal from the crank angle sensor 43 (step S117).
  • the ECU 6 repeats the process of step S117 until the crank angle reaches the reverse rotation start range.
  • the ECU 6 controls the starter / generator 14 so that the forward rotation of the crankshaft 13 is stopped (step S118).
  • step S119 the ECU 6 controls the auxiliary valve drive unit 220 so that the communication path 210 is closed (step S119), and ends the idle stop process.
  • the ECU 6 controls the auxiliary valve drive unit 220 so that the communication path 210 is closed without performing the forward rotation alignment operation. (Step S119), the idle stop process is terminated.
  • the ECU 6 first controls the auxiliary valve drive unit 220 so that the communication path 210 is in a communication state (step S121).
  • the ECU 6 controls the starter / generator 14 so that the crankshaft 13 rotates in the reverse direction (step S122).
  • step S121 since the communication path 210 is maintained in the communication state, an increase in pressure in the second and third cylinders 31Q and 31R is suppressed. Thereby, reverse rotation of the crankshaft 13 is not hindered.
  • the ECU 6 determines whether or not the crank angle has reached the angle A33 in FIG. 31 based on the detection signal from the crank angle sensor 43 (step S123). The ECU 6 repeats the process of step S123 until the crank angle reaches the angle A33. When the crank angle reaches the angle A33, the ECU 6 controls the injector 19 corresponding to the first cylinder 31P so that the fuel is injected into the intake passage 22 (step S124). Next, the ECU 6 determines whether or not the motor current has reached a predetermined threshold value based on the detection signal from the current sensor 44 (step S125). If the motor current has not reached the threshold value, the ECU 6 repeats the process of step S125 until the motor current reaches the threshold value.
  • the ECU 6 controls the starter / generator 14 so that the reverse rotation of the crankshaft 13 is stopped (step S126). Further, the ECU 6 controls the spark plug 18 corresponding to the first cylinder 31P so that the air-fuel mixture in the first cylinder 31P is ignited (step S127). Note that the crankshaft 13 may be driven to rotate in the forward direction by the starter / generator 14 at the time of ignition in step S127 or immediately after ignition.
  • the ECU 6 determines whether the rotational speed of the crankshaft 13 has reached a predetermined initial explosion determination value before a predetermined time has elapsed since ignition in step S127. It is determined whether or not (step S128).
  • the air-fuel mixture is properly combusted in the first cylinder 31P by ignition in step S127, before the crank angle reaches the angle A2 corresponding to the first compression top dead center of the first cylinder 31P.
  • the rotational speed of the crankshaft 13 reaches the initial explosion determination value.
  • step S128 when the rotational speed of the crankshaft 13 reaches the initial explosion determination value within a predetermined time, the ECU 6 controls the auxiliary valve drive unit 220 so that the communication path 210 is closed (step S129). The reverse rotation start process is terminated.
  • step S1208 when the rotation speed of the crankshaft 13 does not reach the initial explosion determination value within a predetermined time, the ECU 6 determines whether the crankshaft 13 is stopped or reversely rotated (step S130). When the crankshaft 13 is not stopped or reversely rotated, the forward rotation of the crankshaft 13 is continued, so the ECU 6 repeats the process of step S130 until the crankshaft 13 stops rotating or reversely rotates.
  • the ECU 6 determines whether or not the reverse rotation starting operation has been repeated a specified number of times (step S131). If the reverse rotation starting operation has not been repeated the specified number of times, the ECU 6 returns to step S122. If the reverse rotation starting operation is repeated a specified number of times, there is a possibility that an abnormality has occurred in the engine system 200. Examples of the abnormality in the engine system 200 include an abnormal operation of the engine unit EU or failure of various sensors. Therefore, the ECU 6 issues a warning (step S132). Specifically, a warning lamp or the like informs the driver that there is a possibility that the engine system 200 is abnormal. Thereafter, the ECU 6 controls the auxiliary valve drive unit 220 so that the communication path 210 is closed (step S129), and ends the reverse rotation starting process.
  • the decompression mechanism DEa suppresses an increase in pressure in second and third cylinders 31Q and 31R during the forward rotation alignment operation and the reverse rotation start operation. Is done. As a result, an increase in rotational resistance of the crankshaft 13 due to an increase in pressure in the second and third cylinders 31Q and 31R is suppressed. Therefore, the forward rotation alignment operation and the reverse rotation start operation are smoothly performed without hindering the rotation of the crankshaft 13. Therefore, the air-fuel mixture can be appropriately combusted in the first cylinder 31P, and the engine 10 can be appropriately started. Further, since the torque required for the starter / generator 14 is reduced, the starter / generator 14 and a battery (not shown) can be reduced in size.
  • the second cylinder 31Q and the third cylinder 31R communicate with each other through the communication path 210, thereby suppressing an increase in pressure in the second and third cylinders 31Q and 31R.
  • the second cylinder 31Q and the third cylinder 31R communicate with each other through the communication path 210, thereby suppressing an increase in pressure in the second and third cylinders 31Q and 31R.
  • the auxiliary valves 212a and 212b are integrally driven to open and close the openings 211a and 211b of the communication path 210.
  • the communication path 210 can be appropriately switched between the communication state and the closed state with a simple configuration.
  • the communication path 210 is maintained in the communication state during the forward rotation alignment operation and the reverse rotation start operation, but the present invention is not limited to this.
  • the communication path 210 may be in a communication state only during a certain period.
  • the communication path 210 may be in a communication state only during a period in which the intake port 21 and the exhaust port 23 are closed and the piston 11 is raised in each of the second and third cylinders 31Q and 31R.
  • the second cylinder 31Q and the third cylinder 31R communicate with each other through the communication path 210, thereby suppressing an increase in pressure in the second and third cylinders 31Q and 31R.
  • the present invention is not limited to this.
  • the pressure in the second cylinder 31Q is reduced
  • the exhaust valve 16 corresponding to the third cylinder 31R is lifted, the third The pressure in the cylinder 31R may be reduced.
  • a decompression mechanism having the same configuration as in FIGS. 22 to 24 may be provided to correspond to each of the second and third cylinders 31Q and 31R.
  • the first to third embodiments described above are examples in which the present invention is applied to a two-cylinder engine and a three-cylinder engine.
  • the present invention is applied to a multi-cylinder engine having four or more cylinders. May be.
  • the reverse rotation start operation the air-fuel mixture is combusted in one cylinder
  • the engine start operation including the reverse rotation start operation the rotation resistance of the crankshaft caused by the pressure increase in one or the other cylinder
  • the pressure in one or the other cylinder is reduced so that the increase is suppressed. Thereby, the engine can be started appropriately.
  • the above embodiment is an example in which the present invention is applied to a motorcycle.
  • the present invention is not limited to this, and other saddle-type vehicles such as an automobile tricycle or an ATV (All Terrain Vehicle) or an automobile
  • the present invention may be applied to other vehicles such as a wheeled vehicle.
  • the engine system 200 is an example of an engine system
  • the engine unit EU is an example of an engine unit
  • the engine 10 is an example of an engine
  • the first cylinders 31A and 31P are first cylinders.
  • the second cylinders 31B and 31Q are examples of the second cylinder
  • the third cylinder 31R is an example of the third cylinder
  • the starter / generator 14 is an example of the rotation drive unit.
  • the ECU 6 is an example of a control unit
  • the valve drive unit 17 is an example of an opening / closing mechanism
  • the decompression mechanisms DE and DEa are examples of a pressure reducing mechanism
  • the injector 19 is an example of a fuel injection device
  • the spark plug 18 is ignited. It is an example of an apparatus.
  • the communication path 210 is an example of a communication path
  • the auxiliary valves 212a and 212b and the auxiliary valve drive unit 220 are examples of a communication path opening / closing mechanism
  • the opening 211a is an example of a first opening
  • the opening 211b is a first opening.
  • the auxiliary valve 212 a is an example of the first valve
  • the auxiliary valve 212 b is an example of the second valve
  • the auxiliary valve driving unit 220 is an example of the communication driving unit.
  • the motorcycle 100 is an example of a vehicle
  • the rear wheel 7 is an example of a driving wheel
  • the vehicle body 1 is an example of a main body.
  • the present invention is applicable to various engine systems and vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Provided is an engine system in which an ECU controls an engine and a starter/generator so that an engine start operation that includes at least a reverse rotation start operation is carried out. During the reverse rotation start operation, a crankshaft is rotated in a reverse direction while an air-fuel mixture is introduced into a first cylinder, and the crankshaft is driven in the forward direction by combustion of the air-fuel mixture within the first cylinder. A decompression mechanism reduces the pressure within the first cylinder or within another cylinder so that increases in the rotational resistance of the crankshaft caused by an increase in the pressure within the first cylinder or within another cylinder are minimized during the engine start operation.

Description

エンジンシステムおよび車両Engine system and vehicle
 本発明は、エンジンシステムおよびそれを備えた車両に関する。 The present invention relates to an engine system and a vehicle including the same.
 エンジンの始動性を高めるため、エンジンの始動時にクランク軸を逆方向に回転させかつ気筒内で混合気を燃焼させる技術がある。特許文献1に記載されるエンジン始動制御装置においては、アイドルストップ制御でのエンジンの停止時に、特定の気筒内に混合気が導入され、その気筒が膨張行程にある状態でクランク軸が停止される。その後、エンジンの再始動時に、上記特定の気筒内のピストンが膨張行程の初期位置またはその近傍に戻るようにクランク軸が逆回転され、その気筒内の混合気に点火される。
特開2005-180380号公報
In order to improve the startability of the engine, there is a technique for rotating the crankshaft in the reverse direction when starting the engine and burning the air-fuel mixture in the cylinder. In the engine start control device described in Patent Document 1, an air-fuel mixture is introduced into a specific cylinder when the engine is stopped in the idle stop control, and the crankshaft is stopped while the cylinder is in an expansion stroke. . Thereafter, when the engine is restarted, the crankshaft is reversely rotated so that the piston in the specific cylinder returns to the initial position of the expansion stroke or the vicinity thereof, and the air-fuel mixture in the cylinder is ignited.
JP 2005-180380 A
 アイドルストップ制御では、エンジンの停止および再始動が自動的に行われる。この場合、エンジンの停止時間が比較的短いため、エンジンの停止時に気筒内に導入された混合気が、エンジンの再始動時にも気筒内に残存する可能性は高い。一方、エンジンの停止時間が長くなると、気筒内の混合気は自然に消失する。そのため、冷間始動時等において、上記動作を実現することはできない。 In the idle stop control, the engine is stopped and restarted automatically. In this case, since the engine stop time is relatively short, the air-fuel mixture introduced into the cylinder when the engine is stopped is highly likely to remain in the cylinder even when the engine is restarted. On the other hand, when the engine stop time becomes longer, the air-fuel mixture in the cylinder disappears naturally. For this reason, the above operation cannot be realized at the time of cold start or the like.
 また、エンジンの停止時間が短い場合であっても、その間に気筒内の混合気が希釈される。そのため、点火時における気筒内の空燃比を適正に調整することが困難である。 Also, even if the engine stop time is short, the air-fuel mixture in the cylinder is diluted during that time. Therefore, it is difficult to properly adjust the air-fuel ratio in the cylinder at the time of ignition.
 これらにより、上記文献に記載される技術では、エンジンの始動を適切に行うことができない場合がある。 For these reasons, the technology described in the above document may not be able to start the engine properly.
 本発明の目的は、エンジンの始動を適切に行うことが可能なエンジンシステムおよび車両を提供することである。 An object of the present invention is to provide an engine system and a vehicle that can appropriately start the engine.
 (1)本発明の一局面に従うエンジンシステムは、複数の気筒を有するエンジンと、エンジンのクランク軸を正方向および逆方向に回転させる回転駆動部と、少なくとも逆回転始動動作を含むエンジン始動動作が行われるようにエンジンおよび回転駆動部を制御する制御部とを備え、複数の気筒は、第1および第2の気筒を含み、逆回転始動動作では、クランク軸が逆方向に回転されつつ第1の気筒に混合気が導入され、第1の気筒内で混合気が燃焼されることによりクランク軸が正方向に駆動され、エンジンは、第1および第2の気筒のうち少なくとも一方の気筒内の圧力を低下させる減圧機構を含み、減圧機構は、エンジン始動動作において、少なくとも一方の気筒内の圧力の上昇に起因するクランク軸の回転抵抗の増大が抑制されるように少なくとも一方の気筒内の圧力を低下させる。 (1) An engine system according to one aspect of the present invention has an engine start operation including an engine having a plurality of cylinders, a rotation drive unit that rotates the crankshaft of the engine in the forward direction and the reverse direction, and at least a reverse rotation start operation. A plurality of cylinders including first and second cylinders, and in the reverse rotation start operation, the first rotation is performed while the crankshaft is rotated in the reverse direction. The air-fuel mixture is introduced into the first cylinder, and the air-fuel mixture is combusted in the first cylinder, whereby the crankshaft is driven in the forward direction. The engine is installed in at least one of the first and second cylinders. The pressure reducing mechanism includes a pressure reducing mechanism that reduces the pressure, and the pressure reducing mechanism suppresses an increase in rotational resistance of the crankshaft caused by an increase in pressure in at least one of the cylinders in the engine starting operation. Cormorant to reduce the pressure in at least one cylinder.
 このエンジンシステムにおいては、少なくとも逆回転始動動作を含むエンジン始動動作によりエンジンが始動される。逆回転始動動作では、クランク軸が逆回転されつつ複数の気筒のうち第1の気筒に混合気が導入され、第1の気筒内で混合気が燃焼されることによりクランク軸が正方向に駆動される。この場合、第1の気筒に混合気が導入されてからその混合気に点火されるまでの時間が短いので、第1の気筒内の混合気が消失または希釈されることが防止され、点火時における混合気の空燃比を適切に調整することができる。 In this engine system, the engine is started by an engine start operation including at least a reverse rotation start operation. In the reverse rotation starting operation, the air-fuel mixture is introduced into the first cylinder among the plurality of cylinders while the crankshaft is reversely rotated, and the air-fuel mixture is combusted in the first cylinder, so that the crankshaft is driven in the forward direction. Is done. In this case, since the time from when the air-fuel mixture is introduced into the first cylinder until the air-fuel mixture is ignited is short, the air-fuel mixture in the first cylinder is prevented from being lost or diluted, and at the time of ignition. The air-fuel ratio of the air-fuel mixture in can be adjusted appropriately.
 エンジン始動動作においては、減圧機構によって第1および第2の気筒のうち少なくとも一方の気筒内の圧力が低下されることにより、その少なくとも一方の気筒内の圧力の上昇に起因するクランク軸の回転抵抗の増大が抑制される。これにより、クランク軸の回転が妨げられることなくエンジン始動動作が円滑に行われる。したがって、逆回転始動動作によってクランク軸の正方向のトルクを十分に高めることができる。その結果、エンジンを適切に始動させることができる。 In the engine starting operation, the pressure in the at least one of the first and second cylinders is reduced by the pressure reducing mechanism, so that the rotation resistance of the crankshaft caused by the increase in the pressure in at least one of the cylinders. Increase is suppressed. Thereby, the engine starting operation is smoothly performed without hindering the rotation of the crankshaft. Therefore, the torque in the forward direction of the crankshaft can be sufficiently increased by the reverse rotation starting operation. As a result, the engine can be started properly.
 (2)減圧機構は、逆回転始動動作において、少なくとも一方の気筒内の圧力を低下させてもよい。 (2) The pressure reducing mechanism may reduce the pressure in at least one of the cylinders in the reverse rotation starting operation.
 この場合、逆回転始動動作において、上記少なくとも一方の気筒内の圧力の上昇に起因するクランク軸の回転抵抗の増大が抑制されるので、クランク軸の逆回転が妨げられない。それにより、逆回転始動動作を適切に行うことができる。 In this case, in the reverse rotation starting operation, an increase in the rotational resistance of the crankshaft due to the increase in the pressure in the at least one cylinder is suppressed, so that the reverse rotation of the crankshaft is not hindered. Thereby, reverse rotation starting operation can be performed appropriately.
 (3)エンジンは、第1および第2の気筒の各々の吸気口および排気口を開閉する開閉機構をさらに含み、通常運転時における第1の気筒の吸気行程、圧縮行程、膨張行程および排気行程にそれぞれ対応するクランク角の範囲が第1の吸気範囲、第1の圧縮範囲、第1の膨張範囲および第1の排気範囲と定義され、通常運転時における第2の気筒の吸気行程、圧縮行程、膨張行程および排気行程にそれぞれ対応するクランク角の範囲が第2の吸気範囲、第2の圧縮範囲、第2の膨張範囲および第2の排気範囲と定義され、第1の排気範囲は、始動吸気範囲を含み、第1の膨張範囲は、始動点火範囲を含み、回転駆動部は、逆回転始動動作において、クランク角が始動吸気範囲を超えて始動点火範囲に到るようにクランク軸を逆回転させ、開閉機構は、逆回転始動動作において、クランク角が始動吸気範囲にあるときに第1の気筒の吸気口を開き、第1の気筒に対応する燃料噴射装置は、逆回転始動動作において、クランク角が始動吸気範囲にあるときに第1の気筒内に混合気が導入されるように、第1の気筒に空気を導く吸気通路に燃料を噴射し、第1の気筒に対応する点火装置は、逆回転始動動作において、クランク角が始動点火範囲にあるときに第1の気筒内の混合気に点火し、第2の膨張範囲は、始動減圧範囲を含み、減圧機構は、逆回転始動動作において、クランク角が始動減圧範囲にあるときに第2の気筒内の圧力を低下させてもよい。 (3) The engine further includes an opening / closing mechanism that opens and closes the intake port and the exhaust port of each of the first and second cylinders, and the intake stroke, compression stroke, expansion stroke, and exhaust stroke of the first cylinder during normal operation. Are defined as a first intake range, a first compression range, a first expansion range, and a first exhaust range, and the intake stroke and compression stroke of the second cylinder during normal operation are defined. The ranges of the crank angle corresponding to the expansion stroke and the exhaust stroke are defined as a second intake range, a second compression range, a second expansion range, and a second exhaust range, respectively. The first expansion range includes the start ignition range, and the rotational drive unit reverses the crankshaft so that the crank angle exceeds the start intake range and reaches the start ignition range in the reverse rotation start operation. Rotate and open In the reverse rotation start operation, the mechanism opens the intake port of the first cylinder when the crank angle is in the start intake range, and the fuel injection device corresponding to the first cylinder has the crank angle in the reverse rotation start operation. The ignition device corresponding to the first cylinder is reversely injected by injecting fuel into the intake passage that guides air to the first cylinder so that the air-fuel mixture is introduced into the first cylinder when in the starting intake air range. In the rotation start operation, the air-fuel mixture in the first cylinder is ignited when the crank angle is in the start ignition range, the second expansion range includes a start pressure reduction range, and the pressure reduction mechanism is in the reverse rotation start operation. The pressure in the second cylinder may be reduced when the crank angle is in the start pressure reduction range.
 この場合、逆回転始動動作では、クランク角が始動吸気範囲を経由して始動点火範囲に到るようにクランク軸が逆回転される。クランク角が始動吸気範囲にあるときに第1の気筒の吸気口が開かれ、第1の気筒に混合気が導入される。その後、クランク角が始動点火範囲にあるときに、第1の気筒内の混合気に点火される。混合気の燃焼のエネルギーによってクランク軸が正方向に駆動される。 In this case, in the reverse rotation start operation, the crankshaft is reversely rotated so that the crank angle reaches the start ignition range via the start intake range. When the crank angle is in the start intake range, the intake port of the first cylinder is opened, and the air-fuel mixture is introduced into the first cylinder. Thereafter, when the crank angle is within the starting ignition range, the air-fuel mixture in the first cylinder is ignited. The crankshaft is driven in the positive direction by the combustion energy of the air-fuel mixture.
 クランク角が始動減圧範囲にあるときには、減圧機構により第2の気筒内の圧力が低下される。それにより、クランク角が、第2の気筒の圧縮上死点に対応する角度に近づいても、第2の気筒内の圧力の上昇が抑制される。そのため、クランク軸の回転抵抗の増大が抑制されるので、クランク軸の逆回転が妨げられない。 When the crank angle is within the start pressure reduction range, the pressure in the second cylinder is reduced by the pressure reduction mechanism. Thereby, even if the crank angle approaches an angle corresponding to the compression top dead center of the second cylinder, an increase in the pressure in the second cylinder is suppressed. For this reason, an increase in the rotational resistance of the crankshaft is suppressed, so that the reverse rotation of the crankshaft is not hindered.
 第2の気筒内の圧力がクランク軸の逆回転の妨げとならないので、第1の気筒への混合気の導入および第1の気筒における混合気の圧縮を適切に行うことができる。それにより、第1の気筒内で混合気を適切に燃焼させることができ、クランク軸の正方向のトルクを十分に高めることができる。その結果、エンジンを適切に始動させることができる。 Since the pressure in the second cylinder does not hinder the reverse rotation of the crankshaft, it is possible to appropriately introduce the air-fuel mixture into the first cylinder and compress the air-fuel mixture in the first cylinder. Thereby, the air-fuel mixture can be appropriately combusted in the first cylinder, and the torque in the positive direction of the crankshaft can be sufficiently increased. As a result, the engine can be started properly.
 (4)第1の圧縮範囲および第1の吸気範囲の少なくとも一方は、逆回転開始範囲を含み、エンジン始動動作は、逆回転始動動作の前にクランク軸を正方向に回転させることによりクランク角を逆回転開始範囲に調整する正回転位置合わせ動作をさらに含んでもよい。 (4) At least one of the first compression range and the first intake range includes a reverse rotation start range, and the engine start operation is performed by rotating the crankshaft in the forward direction before the reverse rotation start operation. May further include a forward rotation alignment operation for adjusting to the reverse rotation start range.
 この場合、逆回転始動動作の前にクランク角が逆回転開始範囲に調整されるので、逆回転始動動作においてクランク角が始動吸気範囲に達する前にクランク軸の逆回転の速度が高められる。そのため、始動吸気範囲において混合気が第1の気筒に適切に導入され、かつクランク角が容易に始動点火範囲に達する。これにより、第1の気筒内で混合気を適切に燃焼させることができる。 In this case, since the crank angle is adjusted to the reverse rotation start range before the reverse rotation start operation, the reverse rotation speed of the crankshaft is increased before the crank angle reaches the start intake range in the reverse rotation start operation. Therefore, the air-fuel mixture is appropriately introduced into the first cylinder in the start intake range, and the crank angle easily reaches the start ignition range. Thereby, the air-fuel mixture can be appropriately combusted in the first cylinder.
 (5)第2の圧縮範囲は、位置合わせ減圧範囲を含み、減圧機構は、正回転位置合わせ動作において、クランク角が位置合わせ減圧範囲にあるときに第2の気筒内の圧力を低下させてもよい。 (5) The second compression range includes an alignment decompression range, and the decompression mechanism reduces the pressure in the second cylinder when the crank angle is in the alignment decompression range in the forward rotation alignment operation. Also good.
 この場合、クランク角が第2の気筒の圧縮上死点に対応する角度に近づいても、第2の気筒内の圧力の上昇が抑制される。そのため、クランク軸の回転抵抗の増大が抑制されるので、クランク軸の正回転が妨げられない。それにより、クランク角を逆回転開始範囲に容易に調整することができる。 In this case, even if the crank angle approaches the angle corresponding to the compression top dead center of the second cylinder, the pressure increase in the second cylinder is suppressed. For this reason, an increase in the rotational resistance of the crankshaft is suppressed, so that normal rotation of the crankshaft is not hindered. Thereby, the crank angle can be easily adjusted to the reverse rotation start range.
 (6)第1の気筒においてピストンが圧縮上死点に達するときのクランク角と、第2の気筒においてピストンが圧縮上死点に達するときのクランク角との差が360度であってもよい。 (6) The difference between the crank angle when the piston reaches compression top dead center in the first cylinder and the crank angle when the piston reaches compression top dead center in the second cylinder may be 360 degrees. .
 この場合、エンジンの通常運転時に、第1の気筒内での混合気の燃焼および第2の気筒内での混合気の燃焼が等間隔で行われる。このようなエンジンにおいても、逆回転始動動作時に、第1の気筒内で混合気を適切に燃焼させることができる。それにより、エンジンを適切に始動させることができる。 In this case, during normal operation of the engine, the combustion of the air-fuel mixture in the first cylinder and the combustion of the air-fuel mixture in the second cylinder are performed at equal intervals. Even in such an engine, the air-fuel mixture can be appropriately combusted in the first cylinder during the reverse rotation start operation. Thereby, the engine can be started appropriately.
 (7)第2の気筒に対応する燃料噴射装置は、逆回転始動動作において、クランク角が始動吸気範囲を超えた後であって始動点火範囲に到る前に、第2の気筒に空気を導く吸気通路に燃料を噴射してもよい。 (7) In the reverse rotation start operation, the fuel injection device corresponding to the second cylinder supplies air to the second cylinder after the crank angle exceeds the start intake range and before the start ignition range. Fuel may be injected into the intake passage that leads.
 この場合、クランク角が始動点火範囲に達し、クランク軸の正回転が開始されるときに、第2の気筒は吸気行程にある。そのため、クランク角が始動点火範囲に到る前に、第2の気筒に空気を導く吸気通路に燃料が噴射されることにより、クランク軸の正回転が開始された直後に、第2の気筒に混合気が導入される。それにより、第2の気筒の最初の膨張行程において、第2の気筒内で混合気を燃焼させることができる。したがって、エンジンを迅速に始動させることができる。 In this case, when the crank angle reaches the start ignition range and the forward rotation of the crankshaft is started, the second cylinder is in the intake stroke. Therefore, before the crank angle reaches the starting ignition range, fuel is injected into the intake passage that guides air to the second cylinder, and immediately after the crankshaft starts to rotate forward, the second cylinder A mixture is introduced. Thereby, the air-fuel mixture can be combusted in the second cylinder in the first expansion stroke of the second cylinder. Therefore, the engine can be started quickly.
 (8)第1の気筒においてピストンが圧縮上死点に達するときのクランク角と、第2の気筒においてピストンが圧縮上死点に達するときのクランク角との差が360度以外の角度であってもよい。 (8) The difference between the crank angle when the piston reaches the compression top dead center in the first cylinder and the crank angle when the piston reaches the compression top dead center in the second cylinder is an angle other than 360 degrees. May be.
 この場合、エンジンの通常運転時に、第1の気筒内での混合気の燃焼および第2の気筒内での混合気の燃焼が不等間隔で行われる。このようなエンジンにおいても、逆回転始動動作時に、第1の気筒内で混合気を適切に燃焼させることができる。それにより、エンジンを適切に始動させることができる。 In this case, during normal operation of the engine, the combustion of the air-fuel mixture in the first cylinder and the combustion of the air-fuel mixture in the second cylinder are performed at unequal intervals. Even in such an engine, the air-fuel mixture can be appropriately combusted in the first cylinder during the reverse rotation start operation. Thereby, the engine can be started appropriately.
 (9)エンジン始動動作は、逆回転始動動作の前にクランク軸を正方向に回転させることによりクランク角を逆回転開始範囲に調整する正回転位置合わせ動作をさらに含み、減圧機構は、正回転位置合わせ動作において、第1および第2の気筒のうち少なくとも一方の気筒内の圧力を低下させてもよい。 (9) The engine start operation further includes a forward rotation alignment operation for adjusting the crank angle to the reverse rotation start range by rotating the crankshaft in the forward direction before the reverse rotation start operation. In the alignment operation, the pressure in at least one of the first and second cylinders may be reduced.
 この場合、逆回転始動動作の前にクランク角が逆回転開始範囲に調整されるので、逆回転始動動作において第1の気筒に混合気を適切に導入させることができ、その混合気を十分に圧縮することができる。これにより、第1の気筒内で混合気を適切に燃焼させることができる。 In this case, since the crank angle is adjusted to the reverse rotation start range before the reverse rotation start operation, the air-fuel mixture can be appropriately introduced into the first cylinder in the reverse rotation start operation, and the mixture is sufficiently Can be compressed. Thereby, the air-fuel mixture can be appropriately combusted in the first cylinder.
 また、正回転位置合わせ動作において、第1および第2の気筒のうち少なくとも一方の気筒内の圧力の上昇に起因するクランク軸の回転抵抗の増大が抑制されるので、クランク軸の正回転が妨げられない。これにより、正回転位置合わせ動作を適切に行うことができる。 Further, in the forward rotation alignment operation, an increase in the rotational resistance of the crankshaft due to an increase in the pressure in at least one of the first and second cylinders is suppressed, so that the forward rotation of the crankshaft is hindered. I can't. Thereby, the forward rotation alignment operation can be appropriately performed.
 (10)エンジンは、第1および第2の気筒の各々の吸気口および排気口を開閉する開閉機構をさらに含み、通常運転時における第1の気筒の吸気行程、圧縮行程、膨張行程および排気行程にそれぞれ対応するクランク角の範囲が第1の吸気範囲、第1の圧縮範囲、第1の膨張範囲および第1の排気範囲と定義され、通常運転時における第2の気筒の吸気行程、圧縮行程、膨張行程および排気行程にそれぞれ対応するクランク角の範囲が第2の吸気範囲、第2の圧縮範囲、第2の膨張範囲および第2の排気範囲と定義され、第1の吸気範囲は、逆回転開始範囲を含み、第1の排気範囲は、始動吸気範囲を含み、第1の膨張範囲は、始動点火範囲を含み、回転駆動部は、正回転位置合わせ動作において、クランク角が逆回転開始範囲に到るようにクランク軸を正回転させ、逆回転始動動作において、クランク角が逆回転開始範囲から始動吸気範囲を超えて始動点火範囲に到るようにクランク軸を逆回転させ、開閉機構は、逆回転始動動作において、クランク角が始動吸気範囲にあるときに第1の気筒の吸気口を開き、第1の気筒に対応する燃料噴射装置は、逆回転始動動作において、クランク角が始動吸気範囲にあるときに第1の気筒内に混合気が導入されるように、第1の気筒に空気を導く吸気通路に燃料を噴射し、第1の気筒に対応する点火装置は、逆回転始動動作において、クランク角が始動点火範囲にあるときに第1の気筒内の混合気に点火し、第1の圧縮範囲は、位置合わせ減圧範囲を含み、減圧機構は、正回転位置合わせ動作において、クランク角が位置合わせ減圧範囲にあるときに第1の気筒内の圧力を低下させてもよい。 (10) The engine further includes an opening / closing mechanism that opens and closes an intake port and an exhaust port of each of the first and second cylinders, and an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke of the first cylinder during normal operation. Are defined as a first intake range, a first compression range, a first expansion range, and a first exhaust range, and the intake stroke and compression stroke of the second cylinder during normal operation are defined. The ranges of crank angles corresponding to the expansion stroke and the exhaust stroke are defined as a second intake range, a second compression range, a second expansion range, and a second exhaust range, respectively. The first exhaust range includes the start intake range, the first expansion range includes the start ignition range, and the rotation drive unit starts the reverse rotation of the crank angle in the forward rotation alignment operation. I'm reaching the range In the reverse rotation start operation, the crankshaft is reversely rotated so that the crank angle exceeds the start intake range from the reverse rotation start range to the start ignition range, and the open / close mechanism starts reverse rotation. In operation, when the crank angle is in the start intake range, the intake port of the first cylinder is opened, and the fuel injection device corresponding to the first cylinder is in the reverse rotation start operation when the crank angle is in the start intake range. So that the air-fuel mixture is introduced into the first cylinder, the fuel is injected into the intake passage that guides air to the first cylinder, and the ignition device corresponding to the first cylinder The air-fuel mixture in the first cylinder is ignited when the angle is in the starting ignition range, the first compression range includes an alignment decompression range, and the decompression mechanism has a crank angle position in the forward rotation alignment operation. Combined decompression range The pressure in the first cylinder may be lowered when in.
 この場合、正回転位置合わせ動作によりクランク角が逆回転開始範囲に調整された後、逆回転始動動作によりクランク角が逆回転開始範囲から始動吸気範囲を経由して始動点火範囲に到るようにクランク軸が逆回転される。 In this case, after the crank angle is adjusted to the reverse rotation start range by the normal rotation alignment operation, the crank angle reaches the start ignition range from the reverse rotation start range via the start intake range by the reverse rotation start operation. The crankshaft is reversely rotated.
 逆回転始動動作においては、クランク角が始動吸気範囲にあるときに第1の気筒の吸気口が開かれ、第1の気筒に混合気が導入される。その後、クランク角が始動点火範囲にあるときに、第1の気筒内の混合気に点火され、その燃焼のエネルギーによってクランク軸が正方向に駆動される。 In the reverse rotation start operation, when the crank angle is in the start intake range, the intake port of the first cylinder is opened, and the air-fuel mixture is introduced into the first cylinder. Thereafter, when the crank angle is within the starting ignition range, the air-fuel mixture in the first cylinder is ignited, and the crankshaft is driven in the positive direction by the energy of the combustion.
 逆回転始動動作の前に正回転位置合わせ動作が行われるので、逆回転始動動作においてクランク角が始動吸気範囲に達する前にクランク軸の逆回転の速度が高められる。それにより、始動吸気範囲において混合気が第1の気筒に適切に導入され、かつクランク角が容易に始動点火範囲に達する。 Since the forward rotation alignment operation is performed before the reverse rotation start operation, the reverse rotation speed of the crankshaft is increased before the crank angle reaches the start intake range in the reverse rotation start operation. As a result, the air-fuel mixture is appropriately introduced into the first cylinder in the start intake range, and the crank angle easily reaches the start ignition range.
 これらにより、第1の気筒内で混合気を適切に燃焼させることができ、クランク軸の正方向のトルクを十分に高めることができる。その結果、エンジンを適切に始動させることができる。 Thus, the air-fuel mixture can be appropriately burned in the first cylinder, and the torque in the positive direction of the crankshaft can be sufficiently increased. As a result, the engine can be started properly.
 また、正回転位置合わせ動作においては、クランク角が位置合わせ減圧範囲にあるときに、減圧機構により第1の気筒内の圧力が低下される。この場合、クランク角が、第1の気筒の圧縮上死点に対応する角度に近づいても、第1の気筒内の圧力の上昇が抑制される。そのため、クランク軸の回転抵抗の増大が抑制されるので、クランク軸の正回転が妨げられない。それにより、クランク角を逆回転開始範囲に容易に調整することができる。 In the forward rotation alignment operation, when the crank angle is in the alignment pressure reduction range, the pressure in the first cylinder is reduced by the pressure reduction mechanism. In this case, even if the crank angle approaches an angle corresponding to the compression top dead center of the first cylinder, an increase in pressure in the first cylinder is suppressed. For this reason, an increase in the rotational resistance of the crankshaft is suppressed, so that normal rotation of the crankshaft is not hindered. Thereby, the crank angle can be easily adjusted to the reverse rotation start range.
 (11)第1の吸気範囲の少なくとも一部は、第2の圧縮範囲内にあり、逆回転始動動作において、クランク角が第1および第2の気筒の圧縮上死点に対応する角度を経由することなく始動点火範囲に到ってもよい。 (11) At least a part of the first intake range is in the second compression range, and the crank angle passes through an angle corresponding to the compression top dead center of the first and second cylinders in the reverse rotation start operation. The starting ignition range may be reached without doing so.
 この場合、逆回転始動動作において、クランク角が第1および第2の気筒の圧縮上死点に対応する角度を経由しないので、第1および第2の気筒内の圧力を低下させることなく、クランク軸を容易に始動点火範囲に到達させることができる。これにより、簡単な構成で、正回転位置合わせ動作および逆回転始動動作を適切に行うことができる。 In this case, in the reverse rotation starting operation, the crank angle does not pass through the angle corresponding to the compression top dead center of the first and second cylinders, so that the crank pressure can be reduced without reducing the pressure in the first and second cylinders. The shaft can easily reach the starting ignition range. Accordingly, the forward rotation alignment operation and the reverse rotation start operation can be appropriately performed with a simple configuration.
 (12)複数の気筒は第3の気筒をさらに含み、減圧機構は、逆回転動作において、第2および第3の気筒内の圧力を低下させてもよい。 (12) The plurality of cylinders may further include a third cylinder, and the pressure reducing mechanism may reduce the pressure in the second and third cylinders in the reverse rotation operation.
 この場合、逆回転始動動作において、第2または第3の気筒内の圧力の上昇に起因するクランク軸の回転抵抗の増大が抑制され、クランク軸の逆回転が妨げられない。これにより、3気筒以上の多気筒エンジンにおいて、逆回転始動動作を適切に行うことができ、エンジンを適切に始動させることができる。 In this case, in the reverse rotation starting operation, an increase in the rotational resistance of the crankshaft due to the increase in pressure in the second or third cylinder is suppressed, and the reverse rotation of the crankshaft is not hindered. Thereby, in the multi-cylinder engine having three or more cylinders, the reverse rotation starting operation can be appropriately performed, and the engine can be appropriately started.
 (13) エンジン始動動作は、逆回転始動動作の前にクランク軸を正方向に回転させることによりクランク角を予め定められた逆回転開始範囲に調整する正回転位置合わせ動作を含み、減圧機構は、正回転位置合わせ動作において、第2および第3の気筒内の圧力を低下させてもよい。 (13) The engine start operation includes a forward rotation alignment operation that adjusts the crank angle to a predetermined reverse rotation start range by rotating the crankshaft in the forward direction before the reverse rotation start operation. In the forward rotation alignment operation, the pressures in the second and third cylinders may be reduced.
 この場合、逆回転始動動作の前にクランク角が逆回転開始範囲に調整されるので、逆回転始動動作において第1の気筒に混合気を適切に導入させることができ、かつクランク角を容易に始動点火範囲に到達させることができる。これにより、第1の気筒内で混合気を適切に燃焼させることができる。 In this case, since the crank angle is adjusted to the reverse rotation start range before the reverse rotation start operation, the air-fuel mixture can be appropriately introduced into the first cylinder in the reverse rotation start operation, and the crank angle can be easily set. The starting ignition range can be reached. Thereby, the air-fuel mixture can be appropriately combusted in the first cylinder.
 また、正回転位置合わせ動作において、第2または第3の気筒内の圧力の上昇に起因するクランク軸の回転抵抗の増大が抑制されるので、クランク軸の正回転が妨げられない。これにより、3気筒以上の多気筒エンジンにおいて、正回転位置合わせ動作を適切に行うことができる。 Also, in the forward rotation alignment operation, an increase in the rotational resistance of the crankshaft due to an increase in pressure in the second or third cylinder is suppressed, so that the forward rotation of the crankshaft is not hindered. Thereby, in the multi-cylinder engine having three or more cylinders, the forward rotation alignment operation can be appropriately performed.
 (14)減圧機構は、第2の気筒と第3の気筒とを連通させる連通路と、連通路を連通状態と閉止状態とに切り替える連通路開閉機構とを含み、連通路開閉機構は、連通路を連通状態にすることにより、第2および第3の気筒内の圧力を低下させてもよい。 (14) The decompression mechanism includes a communication path that communicates the second cylinder and the third cylinder, and a communication path opening / closing mechanism that switches the communication path between a communication state and a closed state. The pressure in the second and third cylinders may be reduced by bringing the passage into a communicating state.
 この場合、簡単な構成でかつ簡単な制御で、第2または第3の気筒内の圧力の上昇に起因するクランク軸の回転抵抗の増大を抑制することができる。 In this case, an increase in the rotational resistance of the crankshaft due to an increase in pressure in the second or third cylinder can be suppressed with a simple configuration and simple control.
 (15)連通路は、第2の気筒において開口する第1の開口および第3の気筒において開口する第2の開口を有し、連通路開閉機構は、第1の開口を開閉する第1のバルブと、第2の開口を開閉する第2のバルブと、第1および第2のバルブを一体的に駆動する連通用駆動部とを含み、連通用駆動部は、第1および第2のバルブにより第1および第2の開口を開くことにより第2および第3の気筒内の圧力を低下させてもよい。 (15) The communication path has a first opening that opens in the second cylinder and a second opening that opens in the third cylinder, and the communication path opening and closing mechanism opens and closes the first opening. A valve, a second valve that opens and closes the second opening, and a communication drive unit that integrally drives the first and second valves. The communication drive unit includes the first and second valves. Thus, the pressures in the second and third cylinders may be lowered by opening the first and second openings.
 この場合、簡単な構成で適切に連通路を連通状態と閉止状態とに切り替えることができる。 In this case, the communication path can be appropriately switched between the communication state and the closed state with a simple configuration.
 (16)本発明の他の局面に従う車両は、駆動輪を有する本体部と、駆動輪を回転させるための動力を発生する上記のエンジンシステムとを備える。 (16) A vehicle according to another aspect of the present invention includes a main body having driving wheels and the engine system that generates power for rotating the driving wheels.
 この車両においては、上記のエンジンシステムが用いられるので、エンジンを適切に始動させることができる。 Since this engine system is used in this vehicle, the engine can be started appropriately.
 (17)減圧機構は、予め定められた値より低い回転速度でクランク角が回転するときに始動減圧範囲において第2の気筒内の圧力を低下させるように構成されてもよい。 (17) The decompression mechanism may be configured to reduce the pressure in the second cylinder in the start decompression range when the crank angle rotates at a rotational speed lower than a predetermined value.
 この場合、簡単な構成で、逆回転始動動作時に第2の気筒内の圧力を低下させることができる。 In this case, with a simple configuration, the pressure in the second cylinder can be reduced during the reverse rotation start operation.
 (18)減圧機構は、予め定められた値より低い回転速度でクランク軸が回転するときに位置合わせ減圧範囲において第1または第2の気筒内の圧力を低下させるように構成されてもよい。 (18) The pressure reducing mechanism may be configured to reduce the pressure in the first or second cylinder in the alignment pressure reducing range when the crankshaft rotates at a rotational speed lower than a predetermined value.
 この場合、簡単な構成で、正回転位置合わせ動作時に第1または第2の気筒内の圧力を低下させることができる。 In this case, the pressure in the first or second cylinder can be reduced with a simple configuration during the forward rotation alignment operation.
 本発明によれば、エンジンを適切に始動させることができる。 According to the present invention, the engine can be started appropriately.
図1は本発明の一実施の形態に係る自動二輪車の概略構成を示す模式的側面図である。FIG. 1 is a schematic side view showing a schematic configuration of a motorcycle according to an embodiment of the present invention. 図2は第1の実施の形態に係るエンジンシステムの構成について説明するための模式的側面図である。FIG. 2 is a schematic side view for explaining the configuration of the engine system according to the first embodiment. 図3は第1の実施の形態に係るエンジンシステムの構成について説明するための模式的側面図である。FIG. 3 is a schematic side view for explaining the configuration of the engine system according to the first embodiment. 図4は第1の実施の形態における通常運転時のエンジンの動作について説明するための図である。FIG. 4 is a diagram for explaining the operation of the engine during normal operation in the first embodiment. 図5は第1の実施の形態における通常運転時のエンジンの動作について説明するための図である。FIG. 5 is a diagram for explaining the operation of the engine during normal operation in the first embodiment. 図6は第1の実施の形態におけるエンジンユニットの正回転位置合わせ動作について説明するための図である。FIG. 6 is a diagram for explaining the forward rotation alignment operation of the engine unit in the first embodiment. 図7は第1の実施の形態におけるエンジンユニットの逆回転始動動作について説明するための図である。FIG. 7 is a diagram for explaining the reverse rotation start operation of the engine unit in the first embodiment. 図8は第1の実施の形態におけるクランク軸の回転負荷とクランク角との関係を示す図である。FIG. 8 is a diagram showing the relationship between the rotational load of the crankshaft and the crank angle in the first embodiment. 図9は第1の実施の形態におけるエンジン始動処理の一例について説明するためのフローチャートである。FIG. 9 is a flowchart for explaining an example of the engine start process in the first embodiment. 図10は第1の実施の形態におけるエンジン始動処理の一例について説明するためのフローチャートである。FIG. 10 is a flowchart for explaining an example of the engine start process in the first embodiment. 図11は第1の実施の形態における逆回転始動動作の他の例について説明するための図である。FIG. 11 is a diagram for explaining another example of the reverse rotation starting operation in the first embodiment. 図12は第1の実施の形態における逆回転始動動作の他の例について説明するための図である。FIG. 12 is a diagram for explaining another example of the reverse rotation starting operation in the first embodiment. 図13は第2の実施の形態に係るエンジンシステムの構成について説明するための模式的側面図である。FIG. 13 is a schematic side view for explaining the configuration of the engine system according to the second embodiment. 図14は第2の実施の形態における通常運転時のエンジンの動作について説明するための図である。FIG. 14 is a diagram for explaining the operation of the engine during normal operation in the second embodiment. 図15は第2の実施の形態におけるエンジンユニットの正回転位置合わせ動作について説明するための図である。FIG. 15 is a view for explaining the forward rotation alignment operation of the engine unit in the second embodiment. 図16は第2の実施の形態におけるエンジンユニットの正回転位置合わせ動作について説明するための図である。FIG. 16 is a view for explaining the forward rotation alignment operation of the engine unit in the second embodiment. 図17は第2の実施の形態におけるエンジンユニットの逆回転始動動作について説明するための図である。FIG. 17 is a diagram for explaining the reverse rotation start operation of the engine unit in the second embodiment. 図18は第2の実施の形態におけるエンジンユニットの逆回転始動動作について説明するための図である。FIG. 18 is a diagram for explaining the reverse rotation start operation of the engine unit in the second embodiment. 図19は第2の実施の形態におけるクランク軸の回転負荷とクランク角との関係を示す図である。FIG. 19 is a diagram showing the relationship between the rotational load of the crankshaft and the crank angle in the second embodiment. 図20は第2の実施の形態におけるエンジン始動処理のフローチャートである。FIG. 20 is a flowchart of the engine start process in the second embodiment. 図21は第2の実施の形態におけるバルブ駆動部の一例を示す模式図である。FIG. 21 is a schematic diagram illustrating an example of a valve drive unit according to the second embodiment. 図22は第2の実施の形態におけるデコンプ機構を示す斜視図である。FIG. 22 is a perspective view showing a decompression mechanism according to the second embodiment. 図23は第2の実施の形態におけるデコンプ機構の作動状態について説明するための模式的断面図である。FIG. 23 is a schematic cross-sectional view for explaining the operating state of the decompression mechanism in the second embodiment. 図24は第2の実施の形態におけるデコンプ機構の非作動状態について説明するための模式的断面図である。FIG. 24 is a schematic cross-sectional view for explaining the inoperative state of the decompression mechanism in the second embodiment. 図25は第3の実施の形態におけるエンジンユニットの構成について説明するための図である。FIG. 25 is a diagram for explaining the configuration of the engine unit according to the third embodiment. 図26は第3の実施の形態におけるエンジンの通常運転について説明するための図である。FIG. 26 is a diagram for explaining the normal operation of the engine according to the third embodiment. 図27は第3の実施の形態におけるエンジンの通常運転について説明するための図である。FIG. 27 is a diagram for explaining the normal operation of the engine according to the third embodiment. 図28は第3の実施の形態におけるエンジンの通常運転について説明するための図である。FIG. 28 is a diagram for explaining the normal operation of the engine according to the third embodiment. 図29は第3の実施の形態におけるクランク軸の回転負荷とクランク角との関係を示す図である。FIG. 29 is a diagram showing the relationship between the rotational load of the crankshaft and the crank angle in the third embodiment. 図30は第3の実施の形態における正回転位置合わせ動作について説明するための図である。FIG. 30 is a view for explaining the forward rotation alignment operation in the third embodiment. 図31は第3の実施の形態における逆回転始動動作について説明するための図である。FIG. 31 is a diagram for explaining the reverse rotation starting operation in the third embodiment. 図32は第3の実施の形態におけるデコンプ機構の具体例を示す図である。FIG. 32 is a diagram showing a specific example of the decompression mechanism in the third embodiment. 図33は第3の実施の形態における第2および第3のシリンダでの動作について説明するための図である。FIG. 33 is a diagram for explaining the operation in the second and third cylinders in the third embodiment. 図34は第3の実施の形態における正回転位置合わせ動作時の気体の流動について説明するための模式図である。FIG. 34 is a schematic diagram for explaining the flow of gas during the forward rotation alignment operation in the third embodiment. 図35は第3の実施の形態における第2および第3のシリンダでの動作について説明するための図である。FIG. 35 is a diagram for explaining the operation in the second and third cylinders in the third embodiment. 図36は第3の実施の形態における逆回転始動動作時の気体の流動について説明するための模式図である。FIG. 36 is a schematic diagram for explaining the gas flow during the reverse rotation starting operation in the third embodiment. 図37は第3の実施の形態における正回転位置合わせ動作時および逆回転始動動作時のクランク軸の回転負荷とクランク角との関係を示す図である。FIG. 37 is a diagram showing the relationship between the crankshaft rotational load and the crank angle during the forward rotation alignment operation and the reverse rotation start operation in the third embodiment. 図38は第3の実施の形態における冷機始動処理について説明するためのフローチャートである。FIG. 38 is a flowchart for explaining a cold start process in the third embodiment. 図39は第3の実施の形態における冷機始動処理について説明するためのフローチャートである。FIG. 39 is a flowchart for explaining a cold start process in the third embodiment. 図40は第3の実施の形態における逆回転始動処理について説明するためのフローチャートである。FIG. 40 is a flowchart for explaining reverse rotation start processing in the third embodiment.
 以下、本発明の実施の形態に係るエンジンシステムおよび車両について図面を用いて説明する。 Hereinafter, an engine system and a vehicle according to an embodiment of the present invention will be described with reference to the drawings.
 [A]車両
 図1は、本発明の一実施の形態に係る自動二輪車の概略構成を示す模式的側面図である。図1の自動二輪車100は、車両の一例である。図1の自動二輪車100においては、車体1の前部にフロントフォーク2が左右方向に揺動可能に設けられる。フロントフォーク2の上端にハンドル4が取り付けられ、フロントフォーク2の下端に前輪3が回転可能に取り付けられる。
[A] Vehicle FIG. 1 is a schematic side view showing a schematic configuration of a motorcycle according to an embodiment of the present invention. The motorcycle 100 in FIG. 1 is an example of a vehicle. In the motorcycle 100 of FIG. 1, a front fork 2 is provided at the front portion of the vehicle body 1 so as to be swingable in the left-right direction. A handle 4 is attached to the upper end of the front fork 2, and a front wheel 3 is rotatably attached to the lower end of the front fork 2.
 車体1の略中央上部にシート5が設けられる。シート5の下方にECU(Engine Control Unit;エンジン制御装置)6およびエンジンユニットEUが設けられる。ECU6およびエンジンユニットEUによりエンジンシステム200が構成される。車体1の後端下部には後輪7が回転可能に取り付けられる。エンジンユニットEUによって発生される動力により後輪7が回転駆動される。 The seat 5 is provided at the substantially upper center of the vehicle body 1. Below the seat 5, an ECU (Engine Control Unit) 6 and an engine unit EU are provided. The engine system 200 is configured by the ECU 6 and the engine unit EU. A rear wheel 7 is rotatably attached to the lower rear end of the vehicle body 1. The rear wheel 7 is rotationally driven by the power generated by the engine unit EU.
 [B]エンジンシステム(第1の実施の形態)
 (1)構成
 図2および図3は、本発明の第1の実施の形態に係るエンジンシステム200の構成について説明するための模式的側面図である。図2に示すように、エンジンユニットEUは、エンジン10および始動兼発電機14を含む。エンジン10は2気筒4サイクルエンジンであり、第1のシリンダ31Aおよび第2のシリンダ31Bを含む。第1および第2のシリンダ31A,31Bの各々にピストン11が設けられる。各ピストン11はコンロッド(コネクティングロッド)12を介してクランク軸13に接続される。各ピストン11の往復運動がクランク軸13の回転運動に変換される。
[B] Engine system (first embodiment)
(1) Configuration FIGS. 2 and 3 are schematic side views for explaining the configuration of the engine system 200 according to the first embodiment of the present invention. As shown in FIG. 2, the engine unit EU includes an engine 10 and a starter / generator 14. The engine 10 is a two-cylinder four-cycle engine and includes a first cylinder 31A and a second cylinder 31B. A piston 11 is provided in each of the first and second cylinders 31A and 31B. Each piston 11 is connected to a crankshaft 13 via a connecting rod (connecting rod) 12. The reciprocating motion of each piston 11 is converted into the rotational motion of the crankshaft 13.
 クランク軸13に始動兼発電機14が設けられる。始動兼発電機14は、スタータモータの機能を有する発電機であり、クランク軸13を正方向および逆方向に回転駆動しかつクランク軸13の回転により電力を発生する。正方向は、エンジン10の通常運転時におけるクランク軸13の回転方向であり、逆方向はその逆の方向である。始動兼発電機14は、減速機を介することなく直接的にクランク軸13にトルクを伝達する。クランク軸13の正方向の回転(正回転)が後輪7に伝達されることにより、後輪7が回転駆動される。始動兼発電機14の代わりに、スタータモータおよび発電機が個別に設けられてもよい。 The starter / generator 14 is provided on the crankshaft 13. The starter / generator 14 is a generator having a function of a starter motor, and rotates the crankshaft 13 in the forward direction and the reverse direction and generates electric power by the rotation of the crankshaft 13. The forward direction is the direction of rotation of the crankshaft 13 during normal operation of the engine 10, and the reverse direction is the opposite direction. The starter / generator 14 directly transmits torque to the crankshaft 13 without using a reduction gear. The rotation of the crankshaft 13 in the positive direction (forward rotation) is transmitted to the rear wheel 7 so that the rear wheel 7 is rotationally driven. Instead of the starter / generator 14, a starter motor and a generator may be provided separately.
 図3には、第1および第2のシリンダ31A,31Bのうち第1のシリンダ31Aのみが示される。第2のシリンダ31Bおよびその周辺部分の構成は、第1のシリンダ31Aおよびその周辺部分の構成と同様である。 FIG. 3 shows only the first cylinder 31A among the first and second cylinders 31A and 31B. The configuration of the second cylinder 31B and its peripheral portion is the same as the configuration of the first cylinder 31A and its peripheral portion.
 図3に示すように、エンジン10は、吸気バルブ15、排気バルブ16、点火プラグ18、インジェクタ19およびバルブ駆動部17を含む。吸気バルブ15、排気バルブ16、点火プラグ18およびインジェクタ19は、第1および第2のシリンダ31A,31Bの各々に対応するように設けられ、バルブ駆動部17は、第1および第2のシリンダ31A,31Bに共通に設けられる。 As shown in FIG. 3, the engine 10 includes an intake valve 15, an exhaust valve 16, a spark plug 18, an injector 19, and a valve drive unit 17. The intake valve 15, the exhaust valve 16, the spark plug 18, and the injector 19 are provided so as to correspond to each of the first and second cylinders 31A and 31B, and the valve drive unit 17 includes the first and second cylinders 31A. , 31B.
 第1および第2のシリンダ31A,31Bの各々において、ピストン11の上方に燃焼室31aが形成される。燃焼室31aは、吸気口21を介して吸気通路22に連通し、排気口23を介して排気通路24に連通する。吸気バルブ15により吸気口21が開閉され、排気バルブ16により排気口23が開閉される。バルブ駆動部17により吸気バルブ15および排気バルブ16が駆動される。吸気通路22には、外部から流入する空気の流量を調整するためのスロットルバルブTVが設けられる。点火プラグ18は、燃焼室31a内の混合気に点火するように構成される。インジェクタ19は、吸気通路22に燃料を噴射するように構成される。 A combustion chamber 31a is formed above the piston 11 in each of the first and second cylinders 31A and 31B. The combustion chamber 31 a communicates with the intake passage 22 through the intake port 21 and communicates with the exhaust passage 24 through the exhaust port 23. The intake valve 15 opens and closes the intake port 21, and the exhaust valve 16 opens and closes the exhaust port 23. The intake valve 15 and the exhaust valve 16 are driven by the valve drive unit 17. The intake passage 22 is provided with a throttle valve TV for adjusting the flow rate of air flowing from the outside. The spark plug 18 is configured to ignite the air-fuel mixture in the combustion chamber 31a. The injector 19 is configured to inject fuel into the intake passage 22.
 エンジン10は、第1のシリンダ31A内の圧力を低下させるためのデコンプ(decompression)機構DEを含む。デコンプ機構DEは、例えば、第1のシリンダ31Aに対応する排気バルブ16をリフトさせることにより、第1のシリンダ31A内の圧力を低下させる。 The engine 10 includes a decompression mechanism DE for reducing the pressure in the first cylinder 31A. The decompression mechanism DE, for example, lowers the pressure in the first cylinder 31A by lifting the exhaust valve 16 corresponding to the first cylinder 31A.
 ECU6は、例えばCPU(中央演算処理装置)およびメモリを含む。CPUおよびメモリの代わりに、マイクロコンピュータが用いられてもよい。ECU6には、メインスイッチ40、スタータスイッチ41、吸気圧力センサ42、クランク角センサ43および電流センサ44が電気的に接続される。メインスイッチ40は、例えば図1のハンドル4の下方に設けられ、スタータスイッチ41は、例えば図1のハンドル4に設けられる。メインスイッチ40およびスタータスイッチ41は、運転者により操作される。吸気圧力センサ42は、吸気通路22内の圧力を検出する。クランク角センサ43は、クランク軸13の回転位置(以下、クランク角と呼ぶ)を検出する。電流センサ44は、始動兼発電機14に流れる電流(以下、モータ電流と呼ぶ)を検出する。 ECU6 contains CPU (central processing unit) and memory, for example. A microcomputer may be used instead of the CPU and the memory. A main switch 40, a starter switch 41, an intake pressure sensor 42, a crank angle sensor 43, and a current sensor 44 are electrically connected to the ECU 6. The main switch 40 is provided, for example, below the handle 4 in FIG. 1, and the starter switch 41 is provided, for example, in the handle 4 in FIG. The main switch 40 and the starter switch 41 are operated by the driver. The intake pressure sensor 42 detects the pressure in the intake passage 22. The crank angle sensor 43 detects the rotational position of the crankshaft 13 (hereinafter referred to as the crank angle). The current sensor 44 detects a current (hereinafter referred to as a motor current) flowing through the starter / generator 14.
 メインスイッチ40およびスタータスイッチ41の操作が操作信号としてECU6に与えられ、吸気圧力センサ42、クランク角センサ43および電流センサ44による検出結果が検出信号としてECU6に与えられる。ECU6は、与えられた操作信号および検出信号に基づいて、始動兼発電機14、点火プラグ18およびインジェクタ19を制御する。 The operation of the main switch 40 and the starter switch 41 is given to the ECU 6 as operation signals, and the detection results by the intake pressure sensor 42, the crank angle sensor 43 and the current sensor 44 are given to the ECU 6 as detection signals. The ECU 6 controls the starter / generator 14, the spark plug 18, and the injector 19 based on the given operation signal and detection signal.
 (2)エンジンシステムの動作
 例えば、図3のスタータスイッチ41がオンされることによりエンジン10が始動され、図3のメインスイッチ40がオフされることによりエンジン10が停止される。また、予め定められたアイドルストップ条件が満たされることによりエンジン10が自動的に停止され、その後に予め定められたアイドルストップ解除条件が満たされることによりエンジン10が自動的に再始動されてもよい。アイドルストップ条件は、例えば、スロットル開度(スロットルバルブTVの開度)、車速およびエンジン10の回転速度のうち少なくとも1つに関する条件を含む。アイドルストップ解除条件は、例えば、アクセルグリップが操作されてスロットル開度が0より大きくなることである。以下、アイドルストップ条件が満たされることによってエンジン10が自動的に停止された状態をアイドルストップ状態と呼ぶ。
(2) Operation of Engine System For example, the engine 10 is started when the starter switch 41 of FIG. 3 is turned on, and the engine 10 is stopped when the main switch 40 of FIG. 3 is turned off. Further, the engine 10 may be automatically stopped when a predetermined idle stop condition is satisfied, and then the engine 10 may be automatically restarted when a predetermined idle stop cancellation condition is satisfied. . The idle stop condition includes, for example, a condition relating to at least one of a throttle opening (opening of the throttle valve TV), a vehicle speed, and a rotational speed of the engine 10. The idling stop release condition is, for example, that the throttle opening is larger than 0 when the accelerator grip is operated. Hereinafter, a state where the engine 10 is automatically stopped when the idle stop condition is satisfied is referred to as an idle stop state.
 本実施の形態では、エンジン始動動作によってエンジン10が始動された後、エンジン10が通常運転に移行する。エンジン始動動作は、後述の正回転位置合わせ動作および逆回転始動動作を含む。通常運転では、第1および第2のシリンダ31A,31Bの各々で吸気行程、圧縮行程、膨張行程および排気行程が周期的に繰り返される。 In this embodiment, after the engine 10 is started by the engine start operation, the engine 10 shifts to normal operation. The engine start operation includes a forward rotation alignment operation and a reverse rotation start operation which will be described later. In the normal operation, the intake stroke, the compression stroke, the expansion stroke, and the exhaust stroke are periodically repeated in each of the first and second cylinders 31A and 31B.
 以下の説明では、圧縮行程から膨張行程への移行時にピストン11が経由する上死点を圧縮上死点と呼び、排気行程から吸気行程への移行時にピストン11が経由する上死点を排気上死点と呼ぶ。また、吸気行程から圧縮行程への移行時にピストン11が経由する下死点を吸気下死点と呼び、膨張行程から排気行程への移行時にピストン11が経由する下死点を膨張下死点と呼ぶ。 In the following description, the top dead center through which the piston 11 passes during the transition from the compression stroke to the expansion stroke is referred to as the compression top dead center, and the top dead center through which the piston 11 passes during the transition from the exhaust stroke to the intake stroke. Called dead point. Also, the bottom dead center through which the piston 11 passes during the transition from the intake stroke to the compression stroke is called the intake bottom dead center, and the bottom dead center through which the piston 11 passes during the transition from the expansion stroke to the exhaust stroke is called the expansion bottom dead center. Call.
 また、通常運転時における第1のシリンダ31Aの吸気行程、圧縮行程、膨張行程および排気行程にそれぞれ対応するクランク角の範囲を第1の吸気範囲、第1の圧縮範囲、第1の膨張範囲および第1の排気範囲と呼ぶ。また、通常運転時における第2のシリンダ31Bの吸気行程、圧縮行程、膨張行程および排気行程にそれぞれ対応するクランク角の範囲を第2の吸気範囲、第2の圧縮範囲、第2の膨張範囲および第2の排気範囲と呼ぶ。 The crank angle ranges corresponding to the intake stroke, compression stroke, expansion stroke, and exhaust stroke of the first cylinder 31A during normal operation are defined as the first intake range, the first compression range, the first expansion range, and This is called the first exhaust range. In addition, the crank angle ranges corresponding to the intake stroke, compression stroke, expansion stroke, and exhaust stroke of the second cylinder 31B during normal operation are defined as the second intake range, second compression range, second expansion range, and This is called the second exhaust range.
 クランク角は、720度(クランク軸13の2回転)の範囲で表される。図3のクランク角センサ43は、クランク軸13の1回転(360度)の範囲における回転位置を検出する。ECU6は、吸気圧力センサ42により検出された吸気通路22内の圧力に基づいて、クランク角センサ43により検出された回転位置が、エンジン10の1サイクルに相当するクランク軸13の2回転のうちいずれの回転に対応するかを判定する。それにより、ECU6は、クランク軸13の2回転(720度)の範囲における回転位置を取得することができる。 The crank angle is expressed in a range of 720 degrees (two rotations of the crankshaft 13). The crank angle sensor 43 in FIG. 3 detects the rotational position of the crankshaft 13 in the range of one rotation (360 degrees). The ECU 6 determines whether the rotational position detected by the crank angle sensor 43 based on the pressure in the intake passage 22 detected by the intake pressure sensor 42 is one of the two rotations of the crankshaft 13 corresponding to one cycle of the engine 10. It is determined whether it corresponds to the rotation of. Thereby, the ECU 6 can acquire the rotational position of the crankshaft 13 in the range of two rotations (720 degrees).
 (2-1)通常運転
 図4および図5は、エンジン10の通常運転について説明するための図である。図4には、第1のシリンダ31Aでの動作とクランク角との関係が示され、図5には、第2のシリンダ31Bでの動作とクランク角との関係が示される。図4および図5ならびに後述の複数の図においては、クランク角の720度の範囲が1つの円で表される。
(2-1) Normal Operation FIGS. 4 and 5 are diagrams for explaining the normal operation of the engine 10. FIG. 4 shows the relationship between the operation in the first cylinder 31A and the crank angle, and FIG. 5 shows the relationship between the operation in the second cylinder 31B and the crank angle. 4 and 5 and a plurality of drawings to be described later, a range of 720 degrees of the crank angle is represented by one circle.
 図4に示すように、第1のシリンダ31Aにおいては、クランク角が角度A1であるときにピストン11が圧縮上死点に位置し、クランク角が角度A2であるときにピストン11が膨張下死点に位置し、クランク角が角度A3であるときにピストン11が排気上死点に位置し、クランク角が角度A4であるときにピストン11が吸気下死点に位置する。 As shown in FIG. 4, in the first cylinder 31A, when the crank angle is the angle A1, the piston 11 is positioned at the compression top dead center, and when the crank angle is the angle A2, the piston 11 is expanded and dead. The piston 11 is located at the exhaust top dead center when the crank angle is the angle A3, and the piston 11 is located at the intake bottom dead center when the crank angle is the angle A4.
 通常運転時には、クランク軸13(図2)が正回転される。クランク軸13の正回転時には、クランク角が矢印R1の方向に変化する。第1のシリンダ31Aにおいては、矢印P11~P14で示されるように、角度A1から角度A2までの範囲でピストン11(図2)が下降し、角度A2から角度A3までの範囲でピストン11が上昇し、角度A3から角度A4までの範囲でピストン11が下降し、角度A4から角度A1までの範囲でピストン11が上昇する。 During normal operation, the crankshaft 13 (FIG. 2) is rotated forward. During the forward rotation of the crankshaft 13, the crank angle changes in the direction of the arrow R1. In the first cylinder 31A, as indicated by arrows P11 to P14, the piston 11 (FIG. 2) is lowered in the range from the angle A1 to the angle A2, and the piston 11 is raised in the range from the angle A2 to the angle A3. Then, the piston 11 descends in the range from the angle A3 to the angle A4, and the piston 11 rises in the range from the angle A4 to the angle A1.
 角度A3から角度A4までの範囲が第1の吸気範囲に相当し、角度A4から角度A1までの範囲が第1の圧縮範囲に相当し、角度A1から角度A2までの範囲が第1の膨張範囲に相当し、角度A2から角度A3までの範囲が第1の排気範囲に相当する。 The range from angle A3 to angle A4 corresponds to the first intake range, the range from angle A4 to angle A1 corresponds to the first compression range, and the range from angle A1 to angle A2 is the first expansion range. The range from the angle A2 to the angle A3 corresponds to the first exhaust range.
 角度A11から角度A12までの範囲で吸気バルブ15(図3)により吸気口21(図3)が開かれ、角度A13から角度A14までの範囲で排気バルブ16(図3)により排気口23(図3)が開かれる。角度A11は、第1の排気範囲にあってかつ正方向において角度A3より一定角度進角側に位置し、角度A12は、第1の圧縮範囲にあってかつ正方向において角度A4より一定角度遅角側に位置する。角度A13は、第1の膨張範囲にあってかつ正方向において角度A2より一定角度進角側に位置し、角度A14は、第1の吸気範囲にあってかつ正方向において角度A3より一定角度遅角側に位置する。 The intake port 21 (FIG. 3) is opened by the intake valve 15 (FIG. 3) in the range from the angle A11 to the angle A12, and the exhaust port 23 (FIG. 3) is opened by the exhaust valve 16 (FIG. 3) in the range from the angle A13 to the angle A14. 3) is opened. The angle A11 is in the first exhaust range and is positioned at a constant angle advance side with respect to the angle A3 in the positive direction, and the angle A12 is in the first compression range and is a constant angle later than the angle A4 in the positive direction. Located on the corner side. The angle A13 is in the first expansion range and is positioned at a certain angle advance side with respect to the angle A2 in the positive direction, and the angle A14 is in the first intake range and is a certain angle later than the angle A3 in the positive direction. Located on the corner side.
 角度A15でインジェクタ19(図3)により吸気通路22(図3)に燃料が噴射され、角度A16で点火プラグ18(図3)により点火される。角度A15は第1の排気範囲にあってかつ正方向において角度A11より進角側に位置する。角度A16は、第1の圧縮範囲にあってかつ正方向において角度A1より一定角度進角側に位置する。 The fuel is injected into the intake passage 22 (FIG. 3) by the injector 19 (FIG. 3) at the angle A15, and ignited by the spark plug 18 (FIG. 3) at the angle A16. The angle A15 is in the first exhaust range and is located on the more advanced side than the angle A11 in the positive direction. The angle A16 is in the first compression range and is positioned at a certain angle advance side from the angle A1 in the positive direction.
 この場合、角度A15で噴射された燃料を含む混合気が、角度A11からA12までの範囲で吸気口21を通して燃焼室31aに導入される。燃焼室31a内で混合気が圧縮され、角度A16で点火プラグ18により点火される。これにより、燃焼室31a内で混合気が燃焼され、その燃焼のエネルギーでピストン11が駆動され、クランク軸13が正方向に駆動される。その後、角度A13から角度A14までの範囲で燃焼室31aから排気口23を通して燃焼後の気体が排出される。 In this case, the air-fuel mixture containing fuel injected at the angle A15 is introduced into the combustion chamber 31a through the intake port 21 in the range from the angle A11 to A12. The air-fuel mixture is compressed in the combustion chamber 31a and ignited by the spark plug 18 at an angle A16. As a result, the air-fuel mixture is combusted in the combustion chamber 31a, the piston 11 is driven by the combustion energy, and the crankshaft 13 is driven in the forward direction. Thereafter, the burned gas is discharged from the combustion chamber 31a through the exhaust port 23 in the range from the angle A13 to the angle A14.
 図5に示すように、第2のシリンダ31Bにおいては、クランク角が角度A1であるときにピストン11が膨張下死点に位置し、クランク角が角度A2であるときにピストン11が排気上死点に位置し、クランク角が角度A3であるときにピストン11が吸気下死点に位置し、クランク角が角度A4であるときにピストン11が圧縮上死点に位置する。 As shown in FIG. 5, in the second cylinder 31B, when the crank angle is the angle A1, the piston 11 is located at the expansion bottom dead center, and when the crank angle is the angle A2, the piston 11 is exhausted top dead. When the crank angle is an angle A3, the piston 11 is positioned at the intake bottom dead center, and when the crank angle is the angle A4, the piston 11 is positioned at the compression top dead center.
 通常運転時には、矢印P21~P24で示されるように、角度A1から角度A2までの範囲でピストン11(図2)が上昇し、角度A2から角度A3までの範囲でピストン11が下降し、角度A3から角度A4までの範囲でピストン11が上昇し、角度A4から角度A1までの範囲でピストン11が下降する。 During normal operation, as indicated by arrows P21 to P24, the piston 11 (FIG. 2) rises in the range from the angle A1 to the angle A2, and the piston 11 descends in the range from the angle A2 to the angle A3. To the angle A4, the piston 11 is raised, and the piston 11 is lowered in the range from the angle A4 to the angle A1.
 角度A2から角度A3までの範囲が第2の吸気範囲に相当し、角度A3から角度A4までの範囲が第2の圧縮範囲に相当し、角度A4から角度A1までの範囲が第2の膨張範囲に相当し、角度A1から角度A2までの範囲が第2の排気範囲に相当する。 The range from angle A2 to angle A3 corresponds to the second intake range, the range from angle A3 to angle A4 corresponds to the second compression range, and the range from angle A4 to angle A1 is the second expansion range. The range from the angle A1 to the angle A2 corresponds to the second exhaust range.
 角度A21から角度A22までの範囲で吸気バルブ15(図3)により吸気口21(図3)が開かれ、角度A23から角度A24までの範囲で排気バルブ16(図3)により排気口23が開かれる。角度A21は、第2の排気範囲にあってかつ正方向において角度A2より一定角度進角側に位置し、角度A22は、第2の圧縮範囲にあってかつ正方向において角度A3より一定角度遅角側に位置する。角度A23は、第2の膨張範囲にあってかつ正方向において角度A1より一定角度進角側に位置し、角度A24は、第2の吸気範囲にあってかつ正方向において角度A2より一定角度遅角側に位置する。 The intake port 21 (FIG. 3) is opened by the intake valve 15 (FIG. 3) in the range from the angle A21 to the angle A22, and the exhaust port 23 is opened by the exhaust valve 16 (FIG. 3) in the range from the angle A23 to the angle A24. It is. The angle A21 is in the second exhaust range and is positioned at a certain angle advance side from the angle A2 in the positive direction, and the angle A22 is in the second compression range and is a certain angle later than the angle A3 in the positive direction. Located on the corner side. The angle A23 is in the second expansion range and is positioned at a certain angle advance side from the angle A1 in the positive direction, and the angle A24 is in the second intake range and is a certain angle later than the angle A2 in the positive direction. Located on the corner side.
 角度A25でインジェクタ19(図3)により吸気通路22(図3)に燃料が噴射され、角度A26で点火プラグ18(図3)により点火される。角度A25は第2の排気範囲にあってかつ正方向において角度A21より進角側に位置する。角度A26は、第2の圧縮範囲にあってかつ正方向において角度A4より一定角度進角側に位置する。 The fuel is injected into the intake passage 22 (FIG. 3) by the injector 19 (FIG. 3) at the angle A25, and ignited by the spark plug 18 (FIG. 3) at the angle A26. The angle A25 is in the second exhaust range and is located on the more advanced side than the angle A21 in the positive direction. The angle A26 is in the second compression range and is positioned at a constant angle advance side from the angle A4 in the positive direction.
 この場合、角度A25で噴射された燃料を含む混合気が、角度A21からA22までの範囲で吸気口21を通して燃焼室31aに導入される。燃焼室31a内で混合気が圧縮され、角度A26で点火プラグ18により点火される。これにより、燃焼室31a内で混合気が燃焼され、その燃焼のエネルギーでピストン11が駆動され、クランク軸13が正方向に駆動される。その後、角度A23から角度A24までの範囲で燃焼室31aから排気口23を通して燃焼後の気体が排出される。 In this case, the air-fuel mixture containing fuel injected at the angle A25 is introduced into the combustion chamber 31a through the intake port 21 in the range from the angle A21 to A22. The air-fuel mixture is compressed in the combustion chamber 31a and ignited by the spark plug 18 at an angle A26. As a result, the air-fuel mixture is combusted in the combustion chamber 31a, the piston 11 is driven by the combustion energy, and the crankshaft 13 is driven in the forward direction. Thereafter, the burned gas is discharged from the combustion chamber 31a through the exhaust port 23 in the range from the angle A23 to the angle A24.
 本例では、第1のシリンダ31Aにおいてピストン11が圧縮上死点に達するときのクランク角と第2のシリンダ31Bにおいてピストン11が圧縮上死点に達するときのクランク角との差が180度である。そのため、通常運転時には、第1および第2のシリンダ31A,31Bにおいて不等間隔で混合気が燃焼される。具体的には、第1のシリンダ31Aで点火動作が行われてからクランク軸13が180度回転した後に第2のシリンダ31Bで点火動作が行われ、さらにクランク軸13が540度回転した後に再び第1のシリンダ31Aで点火動作が行われる。 In this example, the difference between the crank angle when the piston 11 reaches the compression top dead center in the first cylinder 31A and the crank angle when the piston 11 reaches the compression top dead center in the second cylinder 31B is 180 degrees. is there. Therefore, during normal operation, the air-fuel mixture is burned at unequal intervals in the first and second cylinders 31A and 31B. Specifically, the ignition operation is performed in the second cylinder 31B after the crankshaft 13 has rotated 180 degrees after the ignition operation has been performed in the first cylinder 31A, and again after the crankshaft 13 has rotated 540 degrees. An ignition operation is performed in the first cylinder 31A.
 (2-2)正回転位置合わせ動作および逆回転始動動作
 エンジンユニットEUは、エンジン10の始動前に正回転位置合わせ動作を行い、エンジン10の始動時に逆回転始動動作を行う。図6は、エンジンユニットEUの正回転位置合わせ動作について説明するための図である。図7は、エンジンユニットEUの逆回転始動動作について説明するための図である。
(2-2) Forward rotation alignment operation and reverse rotation start operation The engine unit EU performs a forward rotation alignment operation before the engine 10 is started, and performs a reverse rotation start operation when the engine 10 is started. FIG. 6 is a view for explaining the forward rotation alignment operation of the engine unit EU. FIG. 7 is a diagram for explaining the reverse rotation start operation of the engine unit EU.
 図6および図7には、第1のシリンダ31Aにおける動作とクランク角との関係が示される。本例では、正回転位置合わせ動作および逆回転始動動作に関する主な動作が第1のシリンダ31Aで行われる。そのため、主として第1のシリンダ31Aでの動作について説明する。 6 and 7 show the relationship between the operation of the first cylinder 31A and the crank angle. In this example, the main operations related to the forward rotation alignment operation and the reverse rotation start operation are performed by the first cylinder 31A. Therefore, the operation in the first cylinder 31A will be mainly described.
 図6に示すように、正回転位置合わせ動作では、始動兼発電機14(図3)によってクランク軸13が正回転されることにより、クランク角が角度A30に調整される。角度A30は、逆回転開始範囲の例であり、第1の吸気範囲にある。角度A30は、正方向において角度A14より遅角側に位置することが好ましい。逆回転開始範囲は、特定の角度ではなく、特定の角度範囲であってもよい。 As shown in FIG. 6, in the forward rotation alignment operation, the crankshaft 13 is rotated forward by the starter / generator 14 (FIG. 3), so that the crank angle is adjusted to the angle A30. The angle A30 is an example of the reverse rotation start range and is in the first intake range. It is preferable that the angle A30 is located on the more retarded side than the angle A14 in the positive direction. The reverse rotation start range may be a specific angle range instead of a specific angle.
 正回転位置合わせ動作の開始時に、クランク角が、正方向において第2のシリンダ31Bの圧縮上死点に対応する角度A4より遅角側であって第1のシリンダ31Aの圧縮上死点に対応する角度A1より進角側の角度(例えば、図6の角度A30a)にある場合がある。この場合、正回転位置合わせ動作において、クランク角が第1のシリンダ31Aの圧縮上死点に対応する角度A1を超える必要がある。 At the start of the forward rotation alignment operation, the crank angle is retarded from the angle A4 corresponding to the compression top dead center of the second cylinder 31B in the positive direction and corresponds to the compression top dead center of the first cylinder 31A. In some cases, the angle is on the more advanced side than the angle A1 (eg, angle A30a in FIG. 6). In this case, in the forward rotation alignment operation, the crank angle needs to exceed the angle A1 corresponding to the compression top dead center of the first cylinder 31A.
 そこで、正回転位置合わせ動作において、クランク角が角度A1を超える必要がある場合には、デコンプ機構DEにより第1のシリンダ31A内の圧力が低下されつつクランク軸13が正回転される。図6の例では、角度AD1から角度AD2までの範囲でデコンプ機構DEにより第1のシリンダ31A内の圧力が低下される。角度AD1から角度AD2までの範囲は、位置合わせ減圧範囲の例であり、第1の圧縮範囲にある。 Therefore, in the forward rotation alignment operation, when the crank angle needs to exceed the angle A1, the crankshaft 13 is rotated forward while the pressure in the first cylinder 31A is reduced by the decompression mechanism DE. In the example of FIG. 6, the pressure in the first cylinder 31A is reduced by the decompression mechanism DE in the range from the angle AD1 to the angle AD2. The range from the angle AD1 to the angle AD2 is an example of the alignment decompression range, and is in the first compression range.
 これにより、クランク角が角度A1に近づいても、第1のシリンダ31A内の圧力の上昇が抑制される。したがって、クランク角の正回転が妨げられず、クランク角を角度A30に容易に調整することができる。正回転位置合わせ動作とデコンプ機構DEとの関係については後述する。 Thereby, even if the crank angle approaches the angle A1, an increase in the pressure in the first cylinder 31A is suppressed. Therefore, the forward rotation of the crank angle is not hindered, and the crank angle can be easily adjusted to the angle A30. The relationship between the forward rotation alignment operation and the decompression mechanism DE will be described later.
 図7に示すように、逆回転始動動作では、クランク角が逆回転開始範囲(角度A30)にある状態からクランク軸13が逆回転される。それにより、クランク角が矢印R2の方向に変化する。クランク軸13の逆回転時には、矢印P31~P34で示されるように、角度A4から角度A3までの範囲でピストン11が上昇し、角度A3から角度A2までの範囲でピストン11が下降し、角度A2から角度A1までの範囲でピストン11が上昇し、角度A1から角度A4までの範囲でピストン11が下降する。クランク軸13の逆回転時におけるピストン11の移動方向は、クランク軸13の正回転時におけるピストン11の移動方向と逆になる。 7, in the reverse rotation start operation, the crankshaft 13 is reversely rotated from a state where the crank angle is in the reverse rotation start range (angle A30). As a result, the crank angle changes in the direction of arrow R2. During reverse rotation of the crankshaft 13, as indicated by arrows P31 to P34, the piston 11 rises in the range from the angle A4 to the angle A3, and the piston 11 descends in the range from the angle A3 to the angle A2, and the angle A2 The piston 11 rises in the range from the angle A1 to the angle A1, and the piston 11 falls in the range from the angle A1 to the angle A4. The moving direction of the piston 11 when the crankshaft 13 rotates in the reverse direction is opposite to the moving direction of the piston 11 when the crankshaft 13 rotates in the forward direction.
 角度A31から角度A32までの範囲で吸気バルブ15(図3)により吸気口21(図3)が開かれる。角度A33でインジェクタ19(図3)により吸気通路22(図3)に燃料が噴射され、角度A34で点火プラグ18により点火される。また、角度A34において、クランク軸13の回転方向が逆方向から正方向に切り替えられる。 In the range from the angle A31 to the angle A32, the intake port 21 (FIG. 3) is opened by the intake valve 15 (FIG. 3). Fuel is injected into the intake passage 22 (FIG. 3) by the injector 19 (FIG. 3) at an angle A33, and ignited by the spark plug 18 at an angle A34. Further, at the angle A34, the rotation direction of the crankshaft 13 is switched from the reverse direction to the forward direction.
 角度A31から角度A32までの範囲は、始動吸気範囲の例であり、第1の排気範囲にある。角度A31は、逆方向において角度A11より遅角側に位置することが好ましい。角度A33は、第1の排気範囲にあってもよく、第1の吸気範囲にあってもよい。角度A33は、逆方向において角度A31より進角側に位置することが好ましい。角度A34は、始動点火範囲の例であり、第1の膨張範囲にある。角度A34は、逆方向において角度A1より一定角度進角側にある。 The range from the angle A31 to the angle A32 is an example of the start intake range and is in the first exhaust range. The angle A31 is preferably positioned on the more retarded side than the angle A11 in the reverse direction. The angle A33 may be in the first exhaust range or in the first intake range. The angle A33 is preferably located on the more advanced side than the angle A31 in the reverse direction. Angle A34 is an example of the starting ignition range and is in the first expansion range. The angle A34 is at a certain angle advance side from the angle A1 in the reverse direction.
 角度A31,A32は、角度A3から角度A2までの範囲(第1の排気範囲)にある。上記のように、角度A3から角度A2までの範囲では、ピストン11が下降する。そのため、角度A31から角度A32までの範囲で吸気口21が開かれることにより、吸気通路22から空気および燃料を含む混合気が吸気口21を通して燃焼室31a内に導入される。その後、角度A34において、燃焼室31aに導入された混合気に点火される。これにより、混合気の燃焼のエネルギーによりクランク軸13が正方向に駆動され、クランク軸13の正方向のトルクが高められる。 The angles A31 and A32 are in the range (first exhaust range) from the angle A3 to the angle A2. As described above, the piston 11 descends in the range from the angle A3 to the angle A2. Therefore, when the intake port 21 is opened in the range from the angle A31 to the angle A32, the air-fuel mixture containing air and fuel is introduced from the intake passage 22 into the combustion chamber 31a through the intake port 21. Thereafter, the air-fuel mixture introduced into the combustion chamber 31a is ignited at an angle A34. As a result, the crankshaft 13 is driven in the positive direction by the combustion energy of the air-fuel mixture, and the torque in the positive direction of the crankshaft 13 is increased.
 その後、エンジン10が図4および図5の通常運転に移行する。具体的には、クランク軸13の回転方向が切り替えられた直後の角度A25(図5)で第2のシリンダ31Bに対応するインジェクタ19により吸気通路22に燃料が噴射され、角度A21から角度A22までの範囲で第2のシリンダ31B内に混合気が導入される。その後、角度A26で第2のシリンダ31Bに対応する点火プラグ18により第2のシリンダ31B内の混合気に点火される。 Thereafter, the engine 10 shifts to the normal operation shown in FIGS. Specifically, fuel is injected into the intake passage 22 by the injector 19 corresponding to the second cylinder 31B at an angle A25 (FIG. 5) immediately after the rotation direction of the crankshaft 13 is switched, from the angle A21 to the angle A22. In this range, the air-fuel mixture is introduced into the second cylinder 31B. Thereafter, the air-fuel mixture in the second cylinder 31B is ignited by the spark plug 18 corresponding to the second cylinder 31B at the angle A26.
 このように、本実施の形態では、エンジン10の始動時に、始動兼発電機14によりクランク軸13が逆回転されつつ第1のシリンダ31A内に混合気が導かれる。その後、第1のシリンダ31Aにおいて、ピストン11が圧縮上死点に近づいた状態(クランク角が角度A1に近づいた状態)で、燃焼室31a内の混合気に点火され、クランク軸13の回転方向が正方向に切り替えられる。この場合、燃焼のエネルギーにより、クランク軸13の正方向のトルクが高められる。それにより、クランク角が第1および第2のシリンダ31A,31Bの圧縮上死点に対応する角度A1,A4を容易に超えることができ、エンジン10が安定的に始動される。 Thus, in the present embodiment, when the engine 10 is started, the air-fuel mixture is introduced into the first cylinder 31A while the crankshaft 13 is reversely rotated by the starter / generator 14. Thereafter, in the first cylinder 31A, the air-fuel mixture in the combustion chamber 31a is ignited with the piston 11 approaching the compression top dead center (the crank angle approaches the angle A1), and the rotation direction of the crankshaft 13 Is switched in the positive direction. In this case, the torque in the positive direction of the crankshaft 13 is increased by the combustion energy. Thereby, the crank angle can easily exceed the angles A1 and A4 corresponding to the compression top dead centers of the first and second cylinders 31A and 31B, and the engine 10 is stably started.
 なお、第1のシリンダ31Aにおいて、クランク軸13の逆回転時に、吸気口21が正回転時と同じクランク角の範囲(図7の角度A12から角度A11までの範囲)で開かれてもよく、または開かれなくてもよい。クランク軸13の逆回転時には、角度A4から角度A3までの範囲でピストン11が上昇するので、吸気口21が開かれても、燃焼室31aに空気および燃料はほとんど導入されない。そのため、逆回転始動動作にほとんど影響はない。また、クランク軸13の逆回転時において、排気口23が正回転時と同じクランク角の範囲(図7の角度A14から角度A13までの範囲)で開かれてもよく、または開かれなくてもよい。クランク軸13の正回転時および逆回転時において同じクランク角の範囲で吸気口21および排気口23が開かれることにより、バルブ駆動部17の構成の簡略化が可能となる。 In the first cylinder 31A, when the crankshaft 13 rotates in the reverse direction, the intake port 21 may be opened in the same crank angle range as in the normal rotation (range from the angle A12 to the angle A11 in FIG. 7). Or it may not be opened. At the time of reverse rotation of the crankshaft 13, the piston 11 rises in the range from the angle A4 to the angle A3. Therefore, even if the intake port 21 is opened, air and fuel are hardly introduced into the combustion chamber 31a. Therefore, there is almost no influence on the reverse rotation starting operation. Further, when the crankshaft 13 rotates in the reverse direction, the exhaust port 23 may or may not be opened in the same crank angle range (the range from the angle A14 to the angle A13 in FIG. 7) as in the normal rotation. Good. By opening the intake port 21 and the exhaust port 23 in the same crank angle range during forward rotation and reverse rotation of the crankshaft 13, the configuration of the valve drive unit 17 can be simplified.
 (3)クランク軸の回転負荷
 図8は、クランク軸13の回転負荷とクランク角との関係を示す図である。図8において、横軸はクランク角を示し、縦軸はクランク軸13の回転負荷を示す。第1のシリンダ31Aに起因する回転負荷が実線で表され、第2のシリンダ31Bに起因する回転負荷が一点鎖線で表される。第1のシリンダ31Aに起因する回転負荷と第2のシリンダ31Bに起因する回転負荷との合計がクランク軸13に作用する。
(3) Crankshaft Rotation Load FIG. 8 is a diagram showing the relationship between the rotation load of the crankshaft 13 and the crank angle. In FIG. 8, the horizontal axis indicates the crank angle, and the vertical axis indicates the rotational load of the crankshaft 13. The rotational load caused by the first cylinder 31A is represented by a solid line, and the rotational load caused by the second cylinder 31B is represented by a one-dot chain line. The sum of the rotational load caused by the first cylinder 31 </ b> A and the rotational load caused by the second cylinder 31 </ b> B acts on the crankshaft 13.
 第1のシリンダ31Aに関して、圧縮上死点に対応する角度A1で回転負荷が最も大きくなる。また、第2のシリンダ31Bに関して、圧縮上死点に対応する角度A4で回転負荷が最も大きくなる。 Regarding the first cylinder 31A, the rotational load becomes the largest at the angle A1 corresponding to the compression top dead center. Further, with respect to the second cylinder 31B, the rotational load becomes the largest at an angle A4 corresponding to the compression top dead center.
 また、図3のバルブ駆動部17がカム軸からなる場合、吸気バルブ15および排気バルブ16を駆動する際にバルブ駆動部17に加わる反力が、バルブ駆動部17の回転負荷となる。バルブ駆動部17はクランク軸13によって回転されるので、バルブ駆動部17の回転負荷は、クランク軸13の回転負荷となる。 Further, when the valve drive unit 17 of FIG. 3 is formed of a camshaft, a reaction force applied to the valve drive unit 17 when driving the intake valve 15 and the exhaust valve 16 becomes a rotational load of the valve drive unit 17. Since the valve drive unit 17 is rotated by the crankshaft 13, the rotational load of the valve drive unit 17 becomes the rotational load of the crankshaft 13.
 図8の例では、第1のシリンダ31Aに関して、角度A3から角度A4までの範囲で吸気バルブ15(図3)を駆動するためにクランク軸13の回転負荷が大きくなり、角度A2から角度A3までの範囲で排気バルブ16(図3)を駆動するためにクランク軸13の回転負荷が大きくなる。また、第2のシリンダ31Bに関して、角度A2から角度A3までの範囲で吸気バルブ15を駆動するためにクランク軸13の回転負荷が大きくなり、角度A1から角度A2までの範囲で排気バルブ16を駆動するためにクランク軸13の回転負荷が大きくなる。 In the example of FIG. 8, with respect to the first cylinder 31A, the rotational load on the crankshaft 13 increases in order to drive the intake valve 15 (FIG. 3) in the range from the angle A3 to the angle A4, and from the angle A2 to the angle A3. In order to drive the exhaust valve 16 (FIG. 3) in this range, the rotational load on the crankshaft 13 increases. Further, with respect to the second cylinder 31B, the rotational load on the crankshaft 13 increases in order to drive the intake valve 15 in the range from the angle A2 to the angle A3, and the exhaust valve 16 is driven in the range from the angle A1 to the angle A2. Therefore, the rotational load on the crankshaft 13 increases.
 エンジン10が停止される際には、回転負荷が大きいときにクランク軸13の回転が停止しやすい。それにより、主として、クランク角が圧縮上死点に対応する角度A1,A4に近づいたときにクランク軸13の回転が停止しやすい。また、吸気バルブ15または排気バルブ16を駆動するための負荷によってクランク軸13の回転が停止する場合もある。 When the engine 10 is stopped, the rotation of the crankshaft 13 tends to stop when the rotational load is large. Thereby, the rotation of the crankshaft 13 tends to stop mainly when the crank angle approaches the angles A1 and A4 corresponding to the compression top dead center. Further, the rotation of the crankshaft 13 may be stopped by a load for driving the intake valve 15 or the exhaust valve 16.
 例えば、クランク角が逆方向において角度A33より遅角側であって角度A34より進角側にある状態でクランク軸13の回転が停止することがある。仮に、その状態から逆回転始動動作が開始されると、クランク角が角度A33を経由しないため、燃料が噴射されず、第1のシリンダ31A内に混合気が導入されない。逆回転始動動作において、燃料を噴射させかつ混合気を第1のシリンダ31Aに導入するためには、クランク角が角度A33から角度A32までの範囲を経由するようにクランク軸13を逆回転させる必要がある。 For example, the rotation of the crankshaft 13 may stop in a state where the crank angle is on the retard side with respect to the angle A33 and on the advance side with respect to the angle A34 in the reverse direction. If the reverse rotation start operation is started from this state, the crank angle does not pass through the angle A33, so that fuel is not injected and the air-fuel mixture is not introduced into the first cylinder 31A. In the reverse rotation starting operation, in order to inject fuel and introduce the air-fuel mixture into the first cylinder 31A, it is necessary to reversely rotate the crankshaft 13 so that the crank angle passes through the range from the angle A33 to the angle A32. There is.
 また、逆回転始動動作において、第1のシリンダ31A内に混合気を効果的に導くために、クランク角が角度A31に達するまでにクランク軸13の回転速度が高められることが好ましい。さらに、クランク角を角度A34まで確実に到達させるためにも、クランク軸13の回転速度が十分に高められることが好ましい。そのため、逆方向において、クランク角が角度A33より十分に進角側にある状態から逆回転始動動作が行われることが好ましい。 Also, in the reverse rotation starting operation, in order to effectively introduce the air-fuel mixture into the first cylinder 31A, it is preferable that the rotational speed of the crankshaft 13 is increased before the crank angle reaches the angle A31. Furthermore, it is preferable that the rotational speed of the crankshaft 13 is sufficiently increased in order to ensure that the crank angle reaches the angle A34. Therefore, in the reverse direction, it is preferable that the reverse rotation start operation is performed from a state in which the crank angle is sufficiently advanced from the angle A33.
 一方、クランク角が逆方向において角度A1より遅角側であって角度A4より進角側にある状態(例えば、図6および図8の角度A30aにある状態)でクランク軸13の回転が停止することもある。仮に、その状態から逆回転始動動作が開始されると、クランク角が第2のシリンダ31Bの圧縮上死点に対応する角度A4に近づくにつれて、大きな回転負荷がクランク軸13に加わる。そのため、クランク軸13の逆回転が妨げられる。 On the other hand, rotation of the crankshaft 13 stops in a state where the crank angle is in the retarded direction with respect to the angle A1 and in the advanced direction with respect to the angle A4 in the reverse direction (for example, the state at the angle A30a in FIGS. 6 and 8). Sometimes. If the reverse rotation start operation is started from this state, a large rotational load is applied to the crankshaft 13 as the crank angle approaches the angle A4 corresponding to the compression top dead center of the second cylinder 31B. Therefore, reverse rotation of the crankshaft 13 is hindered.
 そこで、逆回転始動動作の前に、正回転位置合わせ動作によってクランク角が角度A30に調整される。角度A30は逆方向において角度A33より十分に進角側にある。そのため、クランク角が角度A30にある状態からクランク軸13の逆回転が開始されると、クランク角が角度A33から角度A32までの範囲を経由し、かつクランク角が角度A31に達する時点でクランク軸13の回転速度が十分に上昇する。そのため、角度A31から角度A32までの範囲で燃焼室31a内に混合気が十分に導入され、かつクランク角が角度A34に容易に達する。 Therefore, before the reverse rotation start operation, the crank angle is adjusted to the angle A30 by the forward rotation alignment operation. The angle A30 is sufficiently advanced than the angle A33 in the reverse direction. Therefore, when the reverse rotation of the crankshaft 13 is started from a state where the crank angle is at the angle A30, the crankshaft passes through the range from the angle A33 to the angle A32 and the crank angle reaches the angle A31. The rotational speed of 13 is sufficiently increased. Therefore, the air-fuel mixture is sufficiently introduced into the combustion chamber 31a in the range from the angle A31 to the angle A32, and the crank angle easily reaches the angle A34.
 また、逆方向において角度A30は角度A4より遅角側にあるので、逆回転始動動作の途中でクランク軸13の逆回転が妨げられることもない。したがって、適切に混合気を燃焼させることができ、クランク軸13の正方向のトルクを十分に高めることができる。 Further, since the angle A30 is on the retard side with respect to the angle A4 in the reverse direction, the reverse rotation of the crankshaft 13 is not hindered during the reverse rotation start operation. Therefore, the air-fuel mixture can be combusted appropriately, and the torque in the positive direction of the crankshaft 13 can be sufficiently increased.
 また、上記のように、正回転位置合わせ動作において、クランク角が第1のシリンダ31Aの圧縮上死点に対応する角度A1を超える必要がある場合には、デコンプ機構DEにより第1のシリンダ31A内の圧力が低下されつつクランク軸13が正回転される。これにより、クランク軸13の正回転が妨げられず、クランク角を角度A30に容易に調整することができる。 Further, as described above, in the forward rotation alignment operation, when the crank angle needs to exceed the angle A1 corresponding to the compression top dead center of the first cylinder 31A, the decompression mechanism DE causes the first cylinder 31A. The crankshaft 13 is rotated forward while the internal pressure is reduced. Thereby, the normal rotation of the crankshaft 13 is not hindered, and the crank angle can be easily adjusted to the angle A30.
 デコンプ機構DEは、遠心ガバナによって作動状態と非作動状態とに切り替わるように構成されてもよい。例えば、クランク軸13の回転速度が一定のしきい値よりも低い場合には、デコンプ機構DEが作動状態となり、第1の圧縮範囲において、排気バルブ16をリフトさせる。また、クランク軸13の回転速度が一定のしきい値以上になると、デコンプ機構DEが非作動状態となり、排気バルブ16をリフトさせない。この場合、簡単な構成で、正回転位置合わせ動作時に第1のシリンダ31A内の圧力を低下させることができる。 The decompression mechanism DE may be configured to be switched between an operating state and a non-operating state by a centrifugal governor. For example, when the rotational speed of the crankshaft 13 is lower than a certain threshold value, the decompression mechanism DE is activated, and the exhaust valve 16 is lifted in the first compression range. Further, when the rotational speed of the crankshaft 13 exceeds a certain threshold value, the decompression mechanism DE is deactivated and the exhaust valve 16 is not lifted. In this case, with a simple configuration, the pressure in the first cylinder 31A can be reduced during the forward rotation alignment operation.
 また、デコンプ機構DEは、逆方向において角度A1より進角側の範囲(第1の膨張範囲)で第1のシリンダ31A内の圧力を低下させないように構成されることが好ましい。この場合、上記の逆回転始動動作時において、クランク角が角度A1に近づいたときに、デコンプ機構DEによって第1のシリンダ31A内の圧力が低下されることがない。それにより、混合気の燃焼によって得られるエネルギーの低下が防止される。 Further, it is preferable that the decompression mechanism DE is configured so as not to lower the pressure in the first cylinder 31A in a range (first expansion range) on the advance side from the angle A1 in the reverse direction. In this case, during the above-described reverse rotation starting operation, when the crank angle approaches the angle A1, the pressure in the first cylinder 31A is not reduced by the decompression mechanism DE. Thereby, a decrease in energy obtained by combustion of the air-fuel mixture is prevented.
 また、デコンプ機構DEは、クランク軸13の回転速度が一定のしきい値より低い場合であってかつクランク軸13の正回転時にのみ一定の角度範囲で第1のシリンダ31A内の圧力を低下させるように構成されてもよい。この場合も、逆回転始動動作時において、第1のシリンダ31A内の圧力が低下されることが防止される。 Further, the decompression mechanism DE reduces the pressure in the first cylinder 31A within a certain angular range only when the rotational speed of the crankshaft 13 is lower than a certain threshold value and only when the crankshaft 13 is rotating forward. It may be configured as follows. Also in this case, the pressure in the first cylinder 31A is prevented from being lowered during the reverse rotation starting operation.
 なお、エンジン10が停止される際に、クランク角が逆回転開始範囲またはその近くにある状態でクランク軸13の回転が停止することがある。その場合、正回転位置合わせ動作が行われなくてもよい。 It should be noted that when the engine 10 is stopped, the rotation of the crankshaft 13 may stop in a state where the crank angle is at or near the reverse rotation start range. In that case, the forward rotation alignment operation may not be performed.
 (4)エンジン始動処理
 ECU6は、予めメモリに記憶された制御プログラムに基づいて、エンジン始動処理を行う。図9および図10は、エンジン始動処理の一例について説明するためのフローチャートである。エンジン始動処理は、図3のメインスイッチ40もしくはスタータスイッチ41がオンされるか、またはエンジン10がアイドルストップ状態に移行した場合に行われる。
(4) Engine start process ECU6 performs an engine start process based on the control program previously memorize | stored in memory. 9 and 10 are flowcharts for explaining an example of the engine start process. The engine start process is performed when the main switch 40 or the starter switch 41 in FIG. 3 is turned on or when the engine 10 shifts to the idle stop state.
 図9に示すように、まず、ECU6は、現在のクランク角がメモリに記憶されているか否かを判定する(ステップS11)。例えば、メインスイッチ40がオンされた直後には、現在のクランク角が記憶されておらず、アイドルストップ状態では、現在のクランク角が記憶されている。 As shown in FIG. 9, first, the ECU 6 determines whether or not the current crank angle is stored in the memory (step S11). For example, immediately after the main switch 40 is turned on, the current crank angle is not stored. In the idle stop state, the current crank angle is stored.
 現在のクランク角が記憶されていない場合、ECU6は、クランク軸13が正回転するように始動兼発電機14を制御する(ステップS12)。この場合、クランク角が第2のシリンダ31Bの圧縮上死点に対応する角度A4(図8)に達しないように、電流センサ44(図3)からの検出信号に基づいて、始動兼発電機14のトルクが調整される。 If the current crank angle is not stored, the ECU 6 controls the starter / generator 14 so that the crankshaft 13 rotates forward (step S12). In this case, the starter / generator is based on the detection signal from the current sensor 44 (FIG. 3) so that the crank angle does not reach the angle A4 (FIG. 8) corresponding to the compression top dead center of the second cylinder 31B. 14 torque is adjusted.
 ステップS12において、クランク角が第1のシリンダ31Aの圧縮上死点に対応する角度A1を経由する場合には、上記のように、クランク軸13の正回転が妨げられないように、デコンプ機構DEにより第1のシリンダ31A内の圧力が低下される。 In step S12, when the crank angle passes through the angle A1 corresponding to the compression top dead center of the first cylinder 31A, the decompression mechanism DE is prevented so that the forward rotation of the crankshaft 13 is not hindered as described above. As a result, the pressure in the first cylinder 31A is reduced.
 次に、ECU6は、ステップS12でクランク軸13の回転が開始されてから規定時間が経過したか否かを判定する(ステップS13)。規定時間が経過していない場合、ECU6は、クランク軸13の正方向の回転が継続されるように始動兼発電機14を制御する(ステップS12)。規定時間が経過すると、ECU6は、クランク軸13の回転が停止されるように始動兼発電機14を制御する(ステップS14)。これにより、クランク角が逆回転開始範囲(図6の角度A30)に調整される。 Next, the ECU 6 determines whether or not a specified time has elapsed since the rotation of the crankshaft 13 was started in step S12 (step S13). If the specified time has not elapsed, the ECU 6 controls the starter / generator 14 so that the rotation of the crankshaft 13 in the positive direction is continued (step S12). When the specified time elapses, the ECU 6 controls the starter / generator 14 so that the rotation of the crankshaft 13 is stopped (step S14). As a result, the crank angle is adjusted to the reverse rotation start range (angle A30 in FIG. 6).
 なお、ステップS12において、クランク軸13が正回転される際にクランク角が検出され、その検出値に基づいてクランク角が逆回転開始範囲に調整されてもよい。 In step S12, the crank angle may be detected when the crankshaft 13 is rotated forward, and the crank angle may be adjusted to the reverse rotation start range based on the detected value.
 一方、ステップS11において、現在のクランク角が記憶されている場合、ECU6は、現在のクランク角が逆回転開始範囲にあるか否かを判定する(ステップS15)。現在のクランク角が逆回転開始範囲にない場合、ECU6は、クランク軸13が正回転されるように始動兼発電機14を制御する(ステップS16)。この場合、クランク角が第2のシリンダ31Bの圧縮上死点に対応する角度A4(図8)に達しないように、電流センサ44(図3)からの検出信号に基づいて、始動兼発電機14のトルクが調整される。 On the other hand, if the current crank angle is stored in step S11, the ECU 6 determines whether or not the current crank angle is in the reverse rotation start range (step S15). When the current crank angle is not in the reverse rotation start range, the ECU 6 controls the starter / generator 14 so that the crankshaft 13 is rotated forward (step S16). In this case, the starter / generator is based on the detection signal from the current sensor 44 (FIG. 3) so that the crank angle does not reach the angle A4 (FIG. 8) corresponding to the compression top dead center of the second cylinder 31B. 14 torque is adjusted.
 上記のステップS12と同様に、ステップS16において、クランク角が第1のシリンダ31Aの圧縮上死点に対応する角度A1を経由する場合には、クランク軸13の正回転が妨げられないように、デコンプ機構DEにより第1のシリンダ31A内の圧力が低下される。 As in step S12 above, in step S16, when the crank angle passes through the angle A1 corresponding to the compression top dead center of the first cylinder 31A, the forward rotation of the crankshaft 13 is not hindered. The pressure in the first cylinder 31A is reduced by the decompression mechanism DE.
 次に、ECU6は、吸気圧力センサ42およびクランク角センサ43からの検出信号に基づいて、現在のクランク角が逆回転開始範囲に達したか否かを判定する(ステップS17)。現在のクランク角が逆回転開始範囲に達していない場合、ECU6は、クランク軸13の正方向の回転が継続されるように始動兼発電機14を制御する(ステップS16)。現在のクランク角が逆回転開始範囲に達した場合、ECU6は、クランク軸13の回転が停止されるように始動兼発電機14を制御する(ステップS14)。これにより、クランク角が逆回転開始範囲に調整される。 Next, the ECU 6 determines whether or not the current crank angle has reached the reverse rotation start range based on detection signals from the intake pressure sensor 42 and the crank angle sensor 43 (step S17). If the current crank angle has not reached the reverse rotation start range, the ECU 6 controls the starter / generator 14 so that the forward rotation of the crankshaft 13 is continued (step S16). When the current crank angle reaches the reverse rotation start range, the ECU 6 controls the starter / generator 14 so that the rotation of the crankshaft 13 is stopped (step S14). Thereby, the crank angle is adjusted to the reverse rotation start range.
 ステップS16,S17の処理では、上記のステップS12,S13の処理に比べて、クランク角の調整が精度良く行われるとともに、始動兼発電機14による消費電力が抑制される。 In the processes in steps S16 and S17, the crank angle is adjusted with higher accuracy than in the processes in steps S12 and S13, and the power consumption by the starter / generator 14 is suppressed.
 クランク軸13が正回転されることによってクランク角が逆回転開始範囲に調整された後、図10のステップS21の処理が行われる。また、ステップS15において、現在のクランク角が逆回転開始範囲にある場合、そのまま図10のステップS21の処理が行われる。 After the crankshaft 13 is rotated forward, the crank angle is adjusted to the reverse rotation start range, and then the process of step S21 in FIG. 10 is performed. In step S15, when the current crank angle is in the reverse rotation start range, the process of step S21 in FIG. 10 is performed as it is.
 図10に示すように、ステップS21において、ECU6は、予め定められたエンジン10の始動条件が成立したか否かを判定する。エンジン10の始動条件は、例えば、スタータスイッチ41(図3)がオンされること、またはアイドルストップ解除条件が満たされることである。 As shown in FIG. 10, in step S21, the ECU 6 determines whether or not a predetermined starting condition for the engine 10 is satisfied. The starting condition of the engine 10 is, for example, that the starter switch 41 (FIG. 3) is turned on or that the idle stop cancellation condition is satisfied.
 エンジン10の始動条件が成立した場合、ECU6は、クランク軸13が逆回転されるように始動兼発電機14を制御する(ステップS22)。次に、ECU6は、吸気圧力センサ42(図3)およびクランク角センサ43(図3)からの検出信号に基づいて、現在のクランク角が図7の角度A33に達したか否かを判定する(ステップS23)。現在のクランク角が角度A33に達するまで、ECU6は、ステップS23の処理を繰り返す。 When the start condition of the engine 10 is satisfied, the ECU 6 controls the starter / generator 14 so that the crankshaft 13 is rotated in the reverse direction (step S22). Next, the ECU 6 determines whether or not the current crank angle has reached the angle A33 in FIG. 7 based on detection signals from the intake pressure sensor 42 (FIG. 3) and the crank angle sensor 43 (FIG. 3). (Step S23). The ECU 6 repeats the process of step S23 until the current crank angle reaches the angle A33.
 現在のクランク角が角度A33に達すると、ECU6は、吸気通路22(図3)に燃料が噴射されるように、第1のシリンダ31Aに対応するインジェクタ19を制御する(ステップS24)。この場合、クランク角が角度A33に達したときにクランク角センサ43からECU6にパルス信号が与えられ、そのパルス信号に応答して燃料が噴射されるようにECU6がインジェクタ19を制御してもよい。 When the current crank angle reaches the angle A33, the ECU 6 controls the injector 19 corresponding to the first cylinder 31A so that fuel is injected into the intake passage 22 (FIG. 3) (step S24). In this case, when the crank angle reaches the angle A33, a pulse signal is given from the crank angle sensor 43 to the ECU 6, and the ECU 6 may control the injector 19 so that fuel is injected in response to the pulse signal. .
 次に、ECU6は、電流センサ44からの検出信号に基づいて、モータ電流が予め定められたしきい値に達したか否かを判定する(ステップS25)。この場合、クランク角が図7の角度A1に近づくほど、モータ電流が大きくなる。本例では、クランク角が図7の角度A34に達したときに、モータ電流がしきい値に達する。モータ電流がしきい値に達していない場合、ECU6は、ステップS25の処理を繰り返す。 Next, the ECU 6 determines whether or not the motor current has reached a predetermined threshold value based on the detection signal from the current sensor 44 (step S25). In this case, the motor current increases as the crank angle approaches the angle A1 in FIG. In this example, when the crank angle reaches the angle A34 in FIG. 7, the motor current reaches the threshold value. If the motor current has not reached the threshold value, the ECU 6 repeats the process of step S25.
 モータ電流が予め定められたしきい値に達した場合、ECU6は、クランク軸13の逆回転が停止されるように始動兼発電機14を制御し(ステップS26)、第1のシリンダ31Aに対応する点火プラグ18により燃焼室31a内の混合気に点火する(ステップS27)。また、ECU6は、クランク軸13が正回転されるように、始動兼発電機14を制御する(ステップS28)。これにより、ECU6はエンジン始動処理を終了し、エンジン10が通常運転に移行する。なお、始動兼発電機14によるクランク軸13の駆動は、例えばステップS28の処理から一定時間が経過した後に停止される。 When the motor current reaches a predetermined threshold value, the ECU 6 controls the starter / generator 14 so that the reverse rotation of the crankshaft 13 is stopped (step S26), and corresponds to the first cylinder 31A. The air-fuel mixture in the combustion chamber 31a is ignited by the spark plug 18 that performs (step S27). Further, the ECU 6 controls the starter / generator 14 so that the crankshaft 13 is rotated forward (step S28). Thereby, ECU6 complete | finishes an engine starting process, and the engine 10 transfers to normal driving | operation. Note that the driving of the crankshaft 13 by the starter / generator 14 is stopped after a predetermined time elapses from the processing of step S28, for example.
 本例では、モータ電流に基づいて、クランク角が始動点火範囲(角度A34)に達したか否かが判定されるが、本発明はこれに限らない。例えば、吸気圧力センサ42(図3)およびクランク角センサ43(図3)により検出される現在のクランク角に基づいて、クランク角が始動点火範囲に達したか否かが判定されてもよい。 In this example, it is determined whether or not the crank angle has reached the starting ignition range (angle A34) based on the motor current, but the present invention is not limited to this. For example, it may be determined whether or not the crank angle has reached the start ignition range based on the current crank angle detected by the intake pressure sensor 42 (FIG. 3) and the crank angle sensor 43 (FIG. 3).
 また、ステップS22でクランク軸13の逆回転が開始された後、クランク角が始動点火範囲に達することなく、予め定められた時間が経過した場合には、エンジンユニットEUの異常が発生したとして、逆回転始動動作が停止されてもよい。エンジンユニットEUの異常としては、始動兼発電機14の動作不良またはバルブ駆動部17の動作不良等がある。 Further, after the crankshaft 13 has started to reversely rotate in step S22, if a predetermined time has passed without the crank angle reaching the starting ignition range, an abnormality of the engine unit EU has occurred. The reverse rotation starting operation may be stopped. The abnormality of the engine unit EU includes a malfunction of the starter / generator 14 or a malfunction of the valve drive unit 17.
 (5)効果
 本実施の形態に係るエンジンシステム200においては、逆回転始動動作により、クランク軸13が逆回転されつつ第1のシリンダ31A内に混合気が導かれ、ピストン11が圧縮上死点に近づいた状態で混合気に点火される。混合気の燃焼のエネルギーによってクランク軸13が正方向に駆動される。この場合、第1のシリンダ31Aに混合気が導入されてからその混合気に点火されるまでの時間が短いので、点火時の空燃比を適切に調整することができる。
(5) Effect In the engine system 200 according to the present embodiment, the air-fuel mixture is guided into the first cylinder 31A while the crankshaft 13 is rotated in reverse by the reverse rotation start operation, and the piston 11 is compressed top dead center. The air-fuel mixture is ignited while approaching The crankshaft 13 is driven in the positive direction by the combustion energy of the air-fuel mixture. In this case, since the time from when the air-fuel mixture is introduced into the first cylinder 31A until the air-fuel mixture is ignited is short, the air-fuel ratio at the time of ignition can be adjusted appropriately.
 また、逆回転始動動作の前に、正回転位置合わせ動作によってクランク角が逆回転開始範囲(角度A30)に調整される。それにより、逆回転始動動作において第1のシリンダ31Aに混合気を適切に導入することができ、かつクランク角を容易に始動点火範囲(角度A34)に到達させることができる。 Also, before the reverse rotation start operation, the crank angle is adjusted to the reverse rotation start range (angle A30) by the forward rotation alignment operation. Thereby, the air-fuel mixture can be appropriately introduced into the first cylinder 31A in the reverse rotation start operation, and the crank angle can easily reach the start ignition range (angle A34).
 これらにより、第1のシリンダ31A内で混合気を適切に燃焼させることができ、クランク軸13の正方向のトルクを十分に高めることできる。その結果、エンジン10を適切に始動させることができる。 Thus, the air-fuel mixture can be appropriately combusted in the first cylinder 31A, and the positive torque of the crankshaft 13 can be sufficiently increased. As a result, the engine 10 can be started appropriately.
 また、正回転位置合わせ動作においては、クランク角が位置合わせ減圧範囲(角度AD1から角度AD2までの範囲)にあるときに、デコンプ機構DEにより第1のシリンダ31A内の圧力が低下される。この場合、クランク角が、第1のシリンダ31Aの圧縮上死点に対応する角度A1に近づいても、第1のシリンダ31A内の圧力の上昇が抑制される。そのため、クランク軸13の回転抵抗の増大が抑制され、クランク軸13の正回転が妨げられない。それにより、クランク角を逆回転開始範囲に容易に調整することができる。 In the forward rotation alignment operation, when the crank angle is within the alignment pressure reduction range (range from angle AD1 to angle AD2), the pressure in the first cylinder 31A is reduced by the decompression mechanism DE. In this case, even if the crank angle approaches the angle A1 corresponding to the compression top dead center of the first cylinder 31A, an increase in pressure in the first cylinder 31A is suppressed. Therefore, an increase in the rotational resistance of the crankshaft 13 is suppressed, and the normal rotation of the crankshaft 13 is not hindered. Thereby, the crank angle can be easily adjusted to the reverse rotation start range.
 また、本実施の形態では、逆回転始動動作において、クランク角が第1および第2のシリンダ31A,31Bの圧縮上死点に対応する角度A1,A4を経由しないので、第1および第2のシリンダ31A,31B内の圧力を低下させることなく、クランク角を容易に始動点火範囲(角度A34)に到達させることができる。それにより、簡単な構成で、正回転位置合わせ動作および逆回転始動動作を適切に行うことができる。 In the present embodiment, in the reverse rotation start operation, the crank angle does not pass through the angles A1 and A4 corresponding to the compression top dead centers of the first and second cylinders 31A and 31B. The crank angle can easily reach the starting ignition range (angle A34) without reducing the pressure in the cylinders 31A and 31B. Accordingly, the forward rotation alignment operation and the reverse rotation start operation can be appropriately performed with a simple configuration.
 (6)逆回転始動動作の他の例
 クランク角が第1の圧縮範囲にある状態でエンジン10が停止している場合に、正回転位置合わせ動作が行われることなく、逆回転始動動作が行われてもよい。図11および図12は、逆回転始動動作の他の例について説明するための図である。図11および図12の例では、クランク角が第1の圧縮範囲内の角度A70にある状態から逆回転始動動作が行われる。図12の矢印P71~P74で示されるように、第2のシリンダ31Bにおいては、クランク軸13の逆回転時に、角度A1から角度A4までの範囲でピストン11が上昇し、角度A4から角度A3までの範囲でピストン11が下降し、角度A3から角度A2までの範囲でピストン11が上昇し、角度A2から角度A1までの範囲でピストン11が下降する。
(6) Another example of reverse rotation start operation When the engine 10 is stopped with the crank angle being in the first compression range, the reverse rotation start operation is performed without performing the normal rotation alignment operation. It may be broken. 11 and 12 are diagrams for explaining another example of the reverse rotation starting operation. In the example of FIGS. 11 and 12, the reverse rotation starting operation is performed from the state where the crank angle is at the angle A70 in the first compression range. As indicated by arrows P71 to P74 in FIG. 12, in the second cylinder 31B, when the crankshaft 13 rotates in the reverse direction, the piston 11 rises in the range from the angle A1 to the angle A4, and from the angle A4 to the angle A3. The piston 11 is lowered in the range of A, the piston 11 is raised in the range from the angle A3 to the angle A2, and the piston 11 is lowered in the range from the angle A2 to the angle A1.
 この場合、クランク角が第2のシリンダ31Bの圧縮上死点に対応する角度A4を超える必要がある。そこで、デコンプ機構DEにより第2のシリンダ31B内の圧力が低下されつつクランク軸13が逆回転される。図12の例では、角度AD7から角度AD8までの範囲でデコンプ機構DEにより第2のシリンダ31B内の圧力が低下される。角度AD7から角度AD8までの範囲は、始動減圧範囲の例であり、第2の膨張範囲にある。これにより、クランク角が角度A4に近づいても、第2のシリンダ31B内の圧力の上昇が抑制される。したがって、クランク軸13の逆回転が妨げられない。 In this case, the crank angle needs to exceed the angle A4 corresponding to the compression top dead center of the second cylinder 31B. Therefore, the crankshaft 13 is rotated in reverse while the pressure in the second cylinder 31B is reduced by the decompression mechanism DE. In the example of FIG. 12, the pressure in the second cylinder 31B is reduced by the decompression mechanism DE in the range from the angle AD7 to the angle AD8. The range from the angle AD7 to the angle AD8 is an example of the starting decompression range and is in the second expansion range. Thereby, even if a crank angle approaches angle A4, the raise of the pressure in the 2nd cylinder 31B is suppressed. Therefore, the reverse rotation of the crankshaft 13 is not hindered.
 角度A70は逆方向において図11の角度A31より十分に進角側にある。そのため、クランク角が角度A70にある状態からクランク軸13の逆回転が開始されることにより、クランク角が図11の角度A33から角度A32までの範囲を経由し、かつクランク角が角度A31に達する時点でクランク軸13の回転速度が十分に上昇する。そのため、角度A31から角度A32までの範囲で燃焼室31a内に混合気が十分に導入され、かつクランク角が角度A34に容易に達する。 The angle A70 is sufficiently advanced from the angle A31 in FIG. 11 in the reverse direction. Therefore, when the reverse rotation of the crankshaft 13 is started from the state where the crank angle is at the angle A70, the crank angle passes through the range from the angle A33 to the angle A32 in FIG. 11 and the crank angle reaches the angle A31. At that time, the rotational speed of the crankshaft 13 is sufficiently increased. Therefore, the air-fuel mixture is sufficiently introduced into the combustion chamber 31a in the range from the angle A31 to the angle A32, and the crank angle easily reaches the angle A34.
 このように、本実施の形態においても、エンジン10の始動時に、始動兼発電機14によりクランク軸13が逆回転されつつ第1のシリンダ31A内に混合気が導かれる。その後、第1のシリンダ31Aにおいて、ピストン11が圧縮上死点に近づいた状態で、燃焼室31a内の混合気に点火され、クランク軸13の回転方向が正方向に切り替えられる。この場合、燃焼のエネルギーにより、クランク軸13の正方向のトルクが高められる。それにより、クランク角が第1および第2のシリンダ31A,31Bの圧縮上死点に対応する角度A1,A4を容易に超えることができ、エンジン10が適切に始動される。 As described above, also in the present embodiment, when the engine 10 is started, the air-fuel mixture is introduced into the first cylinder 31A while the crankshaft 13 is reversely rotated by the starter / generator 14. Thereafter, in the first cylinder 31A, the air-fuel mixture in the combustion chamber 31a is ignited with the piston 11 approaching the compression top dead center, and the rotation direction of the crankshaft 13 is switched to the positive direction. In this case, the torque in the positive direction of the crankshaft 13 is increased by the combustion energy. Thereby, the crank angle can easily exceed the angles A1 and A4 corresponding to the compression top dead centers of the first and second cylinders 31A and 31B, and the engine 10 is started appropriately.
 なお、図11および図12の例のように、クランク角が第1の圧縮範囲(第2の膨張範囲)にある状態でエンジン10が停止している場合、エンジン10の始動前(逆回転始動動作の前)に、クランク軸13が逆回転されることによりクランク角が図6の角度A30に調整されてもよい。この場合、クランク軸13が逆回転されつつデコンプ機構DEにより第2のシリンダ31B内の圧力が低下されることにより、クランク角が第2のシリンダ31Bの圧縮上死点に対応する角度A4を超える。それにより、クランク角を角度A30に調整することができる。したがって、図6の例と同様に、クランク角が角度A30にある状態から逆回転始動動作を開始することができる。 11 and 12, when the engine 10 is stopped in a state where the crank angle is in the first compression range (second expansion range), the engine 10 is not started (reverse rotation start). Before the operation), the crank angle may be adjusted to the angle A30 in FIG. 6 by rotating the crankshaft 13 in the reverse direction. In this case, the crank angle exceeds the angle A4 corresponding to the compression top dead center of the second cylinder 31B because the decompression mechanism DE reduces the pressure in the second cylinder 31B while the crankshaft 13 is rotated in the reverse direction. . Thereby, the crank angle can be adjusted to the angle A30. Therefore, similarly to the example of FIG. 6, the reverse rotation starting operation can be started from the state where the crank angle is at the angle A30.
 [C]エンジンシステム(第2の実施の形態)
 本発明の第2の実施の形態に係るエンジンシステムについて、上記第1の実施の形態と異なる点を説明する。図13は、第2の実施の形態に係るエンジンシステム200の構成について説明するための模式的側面図である。図13のエンジンシステム200においては、第1のシリンダ31Aでピストン11が圧縮上死点に達するときのクランク角と、第2のシリンダ31Bでピストン11が圧縮上死点に達するときのクランク角との差が360度である。そのため、上下方向(ピストン11の往復方向)において、第1のシリンダ31A内でのピストン11の位置と第2のシリンダ31B内でのピストン11の位置とが一致する。
[C] Engine system (second embodiment)
The engine system according to the second embodiment of the present invention will be described while referring to differences from the first embodiment. FIG. 13 is a schematic side view for explaining the configuration of the engine system 200 according to the second embodiment. In the engine system 200 of FIG. 13, the crank angle when the piston 11 reaches the compression top dead center in the first cylinder 31A, and the crank angle when the piston 11 reaches the compression top dead center in the second cylinder 31B. The difference is 360 degrees. Therefore, in the vertical direction (reciprocating direction of the piston 11), the position of the piston 11 in the first cylinder 31A and the position of the piston 11 in the second cylinder 31B coincide.
 (1)通常運転
 図14は、エンジン10の通常運転について説明するための図である。図14(a)には、第1のシリンダ31Aでの動作とクランク角との関係が示され、図14(b)には、第2のシリンダ31Bでの動作とクランク角との関係が示される。
(1) Normal Operation FIG. 14 is a diagram for explaining the normal operation of the engine 10. FIG. 14 (a) shows the relationship between the operation in the first cylinder 31A and the crank angle, and FIG. 14 (b) shows the relationship between the operation in the second cylinder 31B and the crank angle. It is.
 図14(a)に示すように、通常運転時における第1のシリンダ31Aでの動作とクランク角との関係は、第1の実施の形態の図4の例と同じである。図14(b)に示すように、第2のシリンダ31Bにおいては、クランク角が角度A1であるときにピストン11が排気上死点に位置し、クランク角が角度A2であるときにピストン11が吸気下死点に位置し、クランク角が角度A3であるときにピストン11が圧縮上死点に位置し、クランク角が角度A4であるときにピストン11が膨張下死点に位置する。 As shown in FIG. 14A, the relationship between the operation of the first cylinder 31A and the crank angle during the normal operation is the same as the example of FIG. 4 of the first embodiment. As shown in FIG. 14B, in the second cylinder 31B, the piston 11 is located at the exhaust top dead center when the crank angle is the angle A1, and the piston 11 is moved when the crank angle is the angle A2. When the crank angle is an angle A3, the piston 11 is positioned at the compression top dead center when the crank angle is the angle A3, and when the crank angle is the angle A4, the piston 11 is positioned at the expansion bottom dead center.
 通常運転時には、矢印P41~P44で示されるように、角度A1から角度A2までの範囲でピストン11(図2)が下降し、角度A2から角度A3までの範囲でピストン11が上昇し、角度A3から角度A4までの範囲でピストン11が下降し、角度A4から角度A1までの範囲でピストン11が上昇する。 During normal operation, as indicated by arrows P41 to P44, the piston 11 (FIG. 2) is lowered in the range from the angle A1 to the angle A2, and the piston 11 is raised in the range from the angle A2 to the angle A3. To the angle A4, the piston 11 descends, and the piston 11 rises in the range from the angle A4 to the angle A1.
 角度A1から角度A2までの範囲が第2の吸気範囲に相当し、角度A2から角度A3までの範囲が第2の圧縮範囲に相当し、角度A3から角度A4までの範囲が第2の膨張範囲に相当し、角度A4から角度A1までの範囲が第2の排気範囲に相当する。 The range from angle A1 to angle A2 corresponds to the second intake range, the range from angle A2 to angle A3 corresponds to the second compression range, and the range from angle A3 to angle A4 is the second expansion range. The range from the angle A4 to the angle A1 corresponds to the second exhaust range.
 角度A41から角度A42までの範囲で吸気バルブ15(図3)により吸気口21(図3)が開かれ、角度A43から角度A44までの範囲で排気バルブ16(図3)により排気口23(図3)が開かれる。角度A41は、第2の排気範囲にあってかつ正方向において角度A1より一定角度進角側に位置し、角度A42は、第2の圧縮範囲にあってかつ正方向において角度A2より一定角度遅角側に位置する。角度A43は、第2の膨張範囲にあってかつ正方向において角度A4より一定角度進角側に位置し、角度A44は、第2の吸気範囲にあってかつ正方向において角度A1より一定角度遅角側に位置する。 The intake port 21 (FIG. 3) is opened by the intake valve 15 (FIG. 3) in the range from the angle A41 to the angle A42, and the exhaust port 23 (FIG. 3) is opened by the exhaust valve 16 (FIG. 3) in the range from the angle A43 to the angle A44. 3) is opened. The angle A41 is in the second exhaust range and is positioned at a certain angle advance side from the angle A1 in the positive direction, and the angle A42 is in the second compression range and is a certain angle later than the angle A2 in the positive direction Located on the corner side. The angle A43 is in the second expansion range and is positioned at a constant angle advance side from the angle A4 in the positive direction, and the angle A44 is in the second intake range and is a constant angle delay from the angle A1 in the positive direction. Located on the corner side.
 角度A45でインジェクタ19(図3)により吸気通路22(図3)に燃料が噴射され、角度A46で点火プラグ18(図3)により点火される。角度A45は第2の排気範囲にあってかつ正方向において角度A41より進角側に位置する。角度A46は、第2の圧縮範囲にあってかつ正方向において角度A3より一定角度進角側に位置する。 The fuel is injected into the intake passage 22 (FIG. 3) by the injector 19 (FIG. 3) at an angle A45, and ignited by the spark plug 18 (FIG. 3) at an angle A46. The angle A45 is in the second exhaust range and is located on the more advanced side than the angle A41 in the positive direction. The angle A46 is in the second compression range and is positioned at a constant angle advance side from the angle A3 in the positive direction.
 この場合、角度A45で噴射された燃料を含む混合気が、角度A41からA42までの範囲で吸気口21を通して燃焼室31aに導入される。燃焼室31a内で混合気が圧縮され、角度A46で点火プラグ18により点火される。これにより、燃焼室31a内で混合気が燃焼され、その燃焼のエネルギーでピストン11が駆動され、クランク軸13が正方向に駆動される。その後、角度A43から角度A44までの範囲で燃焼室31aから排気口23を通して燃焼後の気体が排出される。 In this case, the air-fuel mixture containing the fuel injected at the angle A45 is introduced into the combustion chamber 31a through the intake port 21 in the range from the angle A41 to A42. The air-fuel mixture is compressed in the combustion chamber 31a and ignited by the spark plug 18 at an angle A46. As a result, the air-fuel mixture is combusted in the combustion chamber 31a, the piston 11 is driven by the combustion energy, and the crankshaft 13 is driven in the forward direction. Thereafter, the burned gas is discharged from the combustion chamber 31a through the exhaust port 23 in the range from the angle A43 to the angle A44.
 このように、第2の実施の形態では、第1のシリンダ31Aでピストン11が圧縮上死点に達するときのクランク角と、第2のシリンダ31Bでピストン11が圧縮上死点に達するときのクランク角との差が360度である。そのため、通常運転時には、第1および第2のシリンダ31A,31Bにおいて等間隔で混合気が燃焼される。具体的には、第1のシリンダ31Aで点火動作が行われてからクランク軸13が360度回転した後に第2のシリンダ31Bで点火動作が行われ、さらにクランク軸13が360度回転した後に再び第1のシリンダ31Aで点火動作が行われる。 As described above, in the second embodiment, the crank angle when the piston 11 reaches the compression top dead center in the first cylinder 31A and the piston angle when the piston 11 reaches the compression top dead center in the second cylinder 31B. The difference from the crank angle is 360 degrees. Therefore, during normal operation, the air-fuel mixture is combusted at equal intervals in the first and second cylinders 31A and 31B. Specifically, the ignition operation is performed in the second cylinder 31B after the crankshaft 13 has rotated 360 degrees after the ignition operation has been performed in the first cylinder 31A, and again after the crankshaft 13 has rotated 360 degrees. An ignition operation is performed in the first cylinder 31A.
 (2)正回転位置合わせ動作および逆回転始動動作
 図15および図16は、エンジンユニットEUの正回転位置合わせ動作について説明するための図である。図17および図18は、エンジンユニットEUの逆回転始動動作について説明するための図である。図15および図17には、第1のシリンダ31Aでの動作とクランク角との関係が示される。図16および図18には、第2のシリンダ31Bでの動作とクランク角との関係が示される。
(2) Forward rotation alignment operation and reverse rotation start operation FIGS. 15 and 16 are diagrams for explaining the forward rotation alignment operation of the engine unit EU. 17 and 18 are diagrams for explaining the reverse rotation starting operation of the engine unit EU. 15 and 17 show the relationship between the operation in the first cylinder 31A and the crank angle. 16 and 18 show the relationship between the operation in the second cylinder 31B and the crank angle.
 図15に示すように、正回転位置合わせ動作では、始動兼発電機14(図3)によってクランク軸13が正回転されることにより、クランク角が角度A50に調整される。角度A50は、逆回転開始範囲の例であり、第1の圧縮範囲にある。逆回転開始範囲は、特定の角度ではなく、特定の角度範囲であってもよい。逆回転開始範囲は、第1の吸気範囲にあってもよく、または第1の吸気範囲内の角度から第1の圧縮範囲内の角度までの一定の角度範囲であってもよい。 As shown in FIG. 15, in the forward rotation alignment operation, the crankshaft 13 is rotated forward by the starter / generator 14 (FIG. 3), so that the crank angle is adjusted to the angle A50. The angle A50 is an example of the reverse rotation start range and is in the first compression range. The reverse rotation start range may be a specific angle range instead of a specific angle. The reverse rotation start range may be in the first intake range, or may be a certain angle range from an angle in the first intake range to an angle in the first compression range.
 正回転位置合わせ動作の開始時に、クランク角が、正方向において第1のシリンダ31Aの圧縮上死点に対応する角度A1より遅角側であって第2のシリンダ31Bの圧縮上死点に対応する角度A3より進角側の角度(例えば、図15の角度A50a)にある場合がある。この場合、正回転位置合わせ動作において、クランク角が第2のシリンダ31Bの圧縮上死点に対応する角度A3を超える必要がある。 At the start of the forward rotation alignment operation, the crank angle is retarded from the angle A1 corresponding to the compression top dead center of the first cylinder 31A in the positive direction and corresponds to the compression top dead center of the second cylinder 31B. In some cases, the angle is on the more advanced side than the angle A3 (for example, the angle A50a in FIG. 15). In this case, in the forward rotation alignment operation, the crank angle needs to exceed an angle A3 corresponding to the compression top dead center of the second cylinder 31B.
 そこで、第2の実施の形態では、図3のデコンプ機構DEが、第2のシリンダ31B内の圧力を低下させるように構成される。デコンプ機構DEは、例えば、第2のシリンダ31Bに対応する排気バルブ16をリフトさせることにより、第2のシリンダ31B内の圧力を低下させる。 Therefore, in the second embodiment, the decompression mechanism DE of FIG. 3 is configured to reduce the pressure in the second cylinder 31B. The decompression mechanism DE reduces the pressure in the second cylinder 31B by, for example, lifting the exhaust valve 16 corresponding to the second cylinder 31B.
 正回転位置合わせ動作において、クランク角が角度A3を超える必要がある場合には、デコンプ機構DEにより第2のシリンダ31B内の圧力が低下されつつクランク軸13が正回転される。図16の例では、クランク軸13が正回転されつつ角度AD3から角度AD4までの範囲でデコンプ機構DEにより第2のシリンダ31B内の圧力が低下される。角度AD3からAD4までの範囲は、位置合わせ減圧範囲の例であり、第2の圧縮範囲にある。 When the crank angle needs to exceed the angle A3 in the forward rotation alignment operation, the crankshaft 13 is rotated forward while the pressure in the second cylinder 31B is reduced by the decompression mechanism DE. In the example of FIG. 16, the pressure in the second cylinder 31B is reduced by the decompression mechanism DE in the range from the angle AD3 to the angle AD4 while the crankshaft 13 is rotated forward. The range from the angle AD3 to AD4 is an example of the alignment decompression range and is in the second compression range.
 これにより、クランク角が角度A3に近づいても、第2のシリンダ31B内の圧力の上昇が抑制される。したがって、クランク軸13の正回転が妨げられず、クランク角を角度A50に容易に調整することができる。 Thereby, even if the crank angle approaches the angle A3, an increase in pressure in the second cylinder 31B is suppressed. Therefore, the forward rotation of the crankshaft 13 is not hindered, and the crank angle can be easily adjusted to the angle A50.
 図17および図18に示すように、逆回転始動動作では、クランク角が逆回転開始範囲(角度A50)にある状態からクランク軸13が逆回転される。図18の矢印P51~P54で示されるように、第2のシリンダ31Bにおいては、角度A4から角度A3までの範囲でピストン11が上昇し、角度A3から角度A2までの範囲でピストン11が下降し、角度A2から角度A1までの範囲でピストン11が上昇し、角度A1から角度A4までの範囲でピストン11が下降する。 17 and 18, in the reverse rotation start operation, the crankshaft 13 is reversely rotated from a state where the crank angle is in the reverse rotation start range (angle A50). As indicated by arrows P51 to P54 in FIG. 18, in the second cylinder 31B, the piston 11 rises in the range from the angle A4 to the angle A3, and the piston 11 falls in the range from the angle A3 to the angle A2. The piston 11 is raised in the range from the angle A2 to the angle A1, and the piston 11 is lowered in the range from the angle A1 to the angle A4.
 第1のシリンダ31Aにおいては、上記実施の形態と同様に、図17の角度A31から角度A32までの範囲で吸気バルブ15(図3)により吸気口21(図3)が開かれ、角度A33でインジェクタ19(図3)により吸気通路22(図3)に燃料が噴射される。また、角度A34において、点火プラグ18により点火されるとともに、クランク軸13の回転方向が逆方向から正方向に切り替えられる。これにより、第1のシリンダ31A内で混合気が燃焼され、混合気の燃焼のエネルギーによってクランク軸13が正方向に駆動される。 In the first cylinder 31A, the intake port 21 (FIG. 3) is opened by the intake valve 15 (FIG. 3) in the range from the angle A31 to the angle A32 in FIG. Fuel is injected into the intake passage 22 (FIG. 3) by the injector 19 (FIG. 3). Further, at the angle A34, the spark plug 18 is ignited and the rotation direction of the crankshaft 13 is switched from the reverse direction to the forward direction. Thereby, the air-fuel mixture is combusted in the first cylinder 31A, and the crankshaft 13 is driven in the positive direction by the combustion energy of the air-fuel mixture.
 逆回転始動動作においては、クランク角が第2のシリンダ31Bの圧縮上死点に対応する角度A3を超える必要がある。そこで、デコンプ機構DEにより第2のシリンダ31B内の圧力が低下されつつクランク軸13が逆回転される。図18の例では、クランク軸13が逆回転されつつ角度AD5から角度AD6までの範囲でデコンプ機構DEにより第2のシリンダ31B内の圧力が低下される。角度AD5から角度AD6までの範囲は、始動減圧範囲の例であり、第2の膨張範囲にある。これにより、クランク角が角度A3に近づいても、第2のシリンダ31B内の圧力の上昇が抑制される。したがって、クランク軸13の逆回転が妨げられない。 In the reverse rotation starting operation, the crank angle needs to exceed the angle A3 corresponding to the compression top dead center of the second cylinder 31B. Therefore, the crankshaft 13 is rotated in reverse while the pressure in the second cylinder 31B is reduced by the decompression mechanism DE. In the example of FIG. 18, the pressure in the second cylinder 31B is reduced by the decompression mechanism DE in the range from the angle AD5 to the angle AD6 while the crankshaft 13 is rotated in the reverse direction. The range from the angle AD5 to the angle AD6 is an example of the starting decompression range, and is in the second expansion range. Thereby, even if a crank angle approaches angle A3, the raise of the pressure in the 2nd cylinder 31B is suppressed. Therefore, the reverse rotation of the crankshaft 13 is not hindered.
 角度A50は逆方向において角度A31(図17)より十分に進角側にある。そのため、クランク角が角度A50にある状態からクランク軸13の逆回転が開始されることにより、クランク角が角度A33から角度A32までの範囲を経由し、かつクランク角が角度A31に達する時点でクランク軸13の回転速度が十分に上昇する。そのため、角度A31から角度A32までの範囲で燃焼室31a内に混合気が十分に導入され、かつクランク角が角度A34に容易に達する。 The angle A50 is sufficiently advanced from the angle A31 (FIG. 17) in the reverse direction. Therefore, when the reverse rotation of the crankshaft 13 is started from the state where the crank angle is at the angle A50, the crank angle passes through the range from the angle A33 to the angle A32 and the crank angle reaches the angle A31. The rotational speed of the shaft 13 is sufficiently increased. Therefore, the air-fuel mixture is sufficiently introduced into the combustion chamber 31a in the range from the angle A31 to the angle A32, and the crank angle easily reaches the angle A34.
 また、図18に示すように、逆回転始動動作において、クランク角が角度A47に達したときに、第2のシリンダ31Bに対応するインジェクタ19(図3)により吸気通路22に燃料が噴射される。角度A47は、第2の吸気範囲にあってかつ逆方向において角度A34より進角側に位置する。 As shown in FIG. 18, in the reverse rotation starting operation, when the crank angle reaches the angle A47, fuel is injected into the intake passage 22 by the injector 19 (FIG. 3) corresponding to the second cylinder 31B. . The angle A47 is in the second intake range and is positioned on the more advanced side than the angle A34 in the reverse direction.
 角度A34において、クランク軸13の回転方向が逆方向から正方向に切り替えられる。このとき、第2のシリンダ31Bは、吸気行程にある。そのため、角度A47で噴射された燃料を含む混合気が、角度A34でクランク軸13の回転方向が正方向に切り替えられた直後に、第2のシリンダ31B内に導入される。それにより、クランク軸13の回転方向が正方向に切り替えられた後の最初の膨張行程において、第2のシリンダ31B内で混合気を燃焼させることができる。したがって、エンジン10が図14の通常運転に迅速に移行することができる。 At angle A34, the rotation direction of the crankshaft 13 is switched from the reverse direction to the forward direction. At this time, the second cylinder 31B is in the intake stroke. Therefore, the air-fuel mixture containing the fuel injected at the angle A47 is introduced into the second cylinder 31B immediately after the rotation direction of the crankshaft 13 is switched to the positive direction at the angle A34. Thereby, the air-fuel mixture can be burned in the second cylinder 31B in the first expansion stroke after the rotation direction of the crankshaft 13 is switched to the positive direction. Therefore, the engine 10 can quickly shift to the normal operation of FIG.
 このように、本実施の形態においても、エンジン10の始動時に、始動兼発電機14によりクランク軸13が逆回転されつつ第1のシリンダ31A内に混合気が導かれる。その後、第1のシリンダ31Aにおいて、ピストン11が圧縮上死点に近づいた状態で、燃焼室31a内の混合気に点火され、クランク軸13の回転方向が正方向に切り替えられる。この場合、燃焼のエネルギーにより、クランク軸13の正方向のトルクが高められる。それにより、クランク角が第1および第2のシリンダ31A,31Bの圧縮上死点に対応する角度A1,A3を容易に超えることができ、エンジン10が安定的に始動される。 As described above, also in the present embodiment, when the engine 10 is started, the air-fuel mixture is introduced into the first cylinder 31A while the crankshaft 13 is reversely rotated by the starter / generator 14. Thereafter, in the first cylinder 31A, the air-fuel mixture in the combustion chamber 31a is ignited with the piston 11 approaching the compression top dead center, and the rotation direction of the crankshaft 13 is switched to the positive direction. In this case, the torque in the positive direction of the crankshaft 13 is increased by the combustion energy. Thereby, the crank angle can easily exceed the angles A1 and A3 corresponding to the compression top dead centers of the first and second cylinders 31A and 31B, and the engine 10 is stably started.
 (3)クランク軸の回転負荷
 図19は、クランク軸13の回転負荷とクランク角との関係を示す図である。図19の例について、図8の例と異なる点を説明する。図19の例では、第2のシリンダ31Bに関して、圧縮上死点に対応する角度A3で回転負荷が最も大きくなる。また、図3のバルブ駆動部17がカム軸からなる場合、第2のシリンダ31Bに関して、角度A1から角度A2までの範囲で吸気バルブ15を駆動するためにクランク軸13の回転負荷が大きくなり、角度A4から角度A1までの範囲で排気バルブ16を駆動するためにクランク軸13の回転負荷が大きくなる。
(3) Crankshaft Rotation Load FIG. 19 is a diagram showing the relationship between the rotation load of the crankshaft 13 and the crank angle. The difference between the example of FIG. 19 and the example of FIG. 8 will be described. In the example of FIG. 19, with respect to the second cylinder 31B, the rotational load becomes the largest at an angle A3 corresponding to the compression top dead center. Further, when the valve drive unit 17 of FIG. 3 is formed of a camshaft, the rotational load on the crankshaft 13 is increased in order to drive the intake valve 15 in the range from the angle A1 to the angle A2 with respect to the second cylinder 31B. Since the exhaust valve 16 is driven in the range from the angle A4 to the angle A1, the rotational load on the crankshaft 13 increases.
 エンジン10が停止される際には、回転負荷が大きいときにクランク軸13の回転が停止しやすい。それにより、主として、クランク角が圧縮上死点に対応する角度A1,A3に近づいたときにクランク軸13の回転が停止しやすい。 When the engine 10 is stopped, the rotation of the crankshaft 13 tends to stop when the rotational load is large. Thereby, the rotation of the crankshaft 13 tends to stop mainly when the crank angle approaches the angles A1 and A3 corresponding to the compression top dead center.
 第1の実施の形態と同様に、逆方向において、クランク角が角度A33より十分に進角側にある状態から逆回転始動動作が行われることが好ましい。そこで、逆回転始動動作の前に、正回転位置合わせ動作によってクランク角が角度A50に調整される。角度A50は逆方向において角度A33より十分に進角側にある。そのため、クランク角が角度A50にある状態からクランク軸13の逆回転が開始されると、クランク角が角度A33から角度A32までの範囲を経由し、かつクランク角が角度A31に達する時点でクランク軸13の回転速度が十分に上昇する。そのため、角度A31から角度A32までの範囲で燃焼室31a内に混合気が十分に導入され、かつクランク角が角度A34に容易に達する。 Similarly to the first embodiment, it is preferable that the reverse rotation start operation is performed from a state where the crank angle is sufficiently advanced from the angle A33 in the reverse direction. Therefore, the crank angle is adjusted to the angle A50 by the forward rotation alignment operation before the reverse rotation start operation. The angle A50 is sufficiently advanced than the angle A33 in the reverse direction. Therefore, when the reverse rotation of the crankshaft 13 is started from the state where the crank angle is at the angle A50, the crankshaft passes through the range from the angle A33 to the angle A32 and the crank angle reaches the angle A31. The rotational speed of 13 is sufficiently increased. Therefore, the air-fuel mixture is sufficiently introduced into the combustion chamber 31a in the range from the angle A31 to the angle A32, and the crank angle easily reaches the angle A34.
 また、正回転位置合わせ動作において、クランク角が第2のシリンダ31Bの圧縮上死点に対応する角度A3を超える必要がある場合には、デコンプ機構DEにより第2のシリンダ31B内の圧力が低下されつつクランク軸13が正回転される。これにより、クランク軸13の正回転が妨げられず、クランク角を角度A50に容易に調整することができる。 Further, when the crank angle needs to exceed the angle A3 corresponding to the compression top dead center of the second cylinder 31B in the forward rotation alignment operation, the pressure in the second cylinder 31B is reduced by the decompression mechanism DE. The crankshaft 13 is rotated forward while being rotated. Thereby, the normal rotation of the crankshaft 13 is not hindered, and the crank angle can be easily adjusted to the angle A50.
 第1の実施の形態と同様に、デコンプ機構DEは、遠心ガバナによって作動状態と非作動状態とに切り替わるように構成されてもよい。例えば、クランク軸13の回転速度が一定のしきい値よりも低い場合には、デコンプ機構DEが作動状態となり、第2の圧縮範囲において、排気バルブ16をリフトさせる。また、クランク軸13の回転速度が一定のしきい値以上になると、デコンプ機構DEが非作動状態となり、排気バルブ16をリフトさせない。この場合、簡単な構成で、正回転位置合わせ動作時に第2のシリンダ31B内の圧力を低下させることができる。 As in the first embodiment, the decompression mechanism DE may be configured to be switched between an operating state and a non-operating state by a centrifugal governor. For example, when the rotational speed of the crankshaft 13 is lower than a certain threshold value, the decompression mechanism DE is activated, and the exhaust valve 16 is lifted in the second compression range. Further, when the rotational speed of the crankshaft 13 exceeds a certain threshold value, the decompression mechanism DE is deactivated and the exhaust valve 16 is not lifted. In this case, with a simple configuration, the pressure in the second cylinder 31B can be reduced during the forward rotation alignment operation.
 なお、エンジン10が停止される際に、クランク角が逆回転開始範囲またはその近くにある状態でクランク軸13の回転が停止することがある。その場合、正回転位置合わせ動作が行われなくてもよい。 It should be noted that when the engine 10 is stopped, the rotation of the crankshaft 13 may stop in a state where the crank angle is at or near the reverse rotation start range. In that case, the forward rotation alignment operation may not be performed.
 (4)エンジン始動処理
 第2の実施の形態におけるエンジン始動処理について、第1の実施の形態の図9および図10の例と異なる点を説明する。図20は、第2の実施の形態におけるエンジン始動処理の一部のフローチャートである。
(4) Engine start process The engine start process according to the second embodiment will be described while referring to differences from the example of FIGS. 9 and 10 of the first embodiment. FIG. 20 is a flowchart illustrating a part of the engine start process according to the second embodiment.
 まず、図9のステップS11~S17の処理が行われることにより、クランク角が逆回転開始範囲に調整される。図9のステップS12,S16において、クランク角が第2のシリンダ31Bの圧縮上死点に対応する角度A3を経由する場合には、クランク軸13の正回転が妨げられないように、デコンプ機構DEにより第2のシリンダ31B内の圧力が低下される。 First, the crank angle is adjusted to the reverse rotation start range by performing the processing of steps S11 to S17 in FIG. In steps S12 and S16 in FIG. 9, when the crank angle passes through the angle A3 corresponding to the compression top dead center of the second cylinder 31B, the decompression mechanism DE is prevented so that the forward rotation of the crankshaft 13 is not hindered. As a result, the pressure in the second cylinder 31B is reduced.
 続いて、図20のステップS21の処理が行われる。図20の例が図10の例と異なるのは、ステップS24の処理の後であってステップS25の処理の前にステップS31,S32の処理が行われる点である。 Subsequently, the process of step S21 in FIG. 20 is performed. The example of FIG. 20 is different from the example of FIG. 10 in that the processes of steps S31 and S32 are performed after the process of step S24 and before the process of step S25.
 ステップS31において、ECU6は、吸気圧力センサ42(図3)およびクランク角センサ43(図3)からの検出信号に基づいて、現在のクランク角が図18の角度A47に達したか否かを判定する。現在のクランク角が角度A47に達するまで、ECU6は、ステップS31の処理を繰り返す。 In step S31, the ECU 6 determines whether or not the current crank angle has reached the angle A47 in FIG. 18 based on detection signals from the intake pressure sensor 42 (FIG. 3) and the crank angle sensor 43 (FIG. 3). To do. The ECU 6 repeats the process of step S31 until the current crank angle reaches the angle A47.
 現在のクランク角が角度A47に達すると、ECU6は、吸気通路22(図3)に燃料が噴射されるように、第2のシリンダ31Bに対応するインジェクタ19を制御する(ステップS32)。この場合、クランク角が角度A47に達したときにクランク角センサ43からECU6にパルス信号が与えられ、そのパルス信号に応答して燃料が噴射されるようにECU6がインジェクタ19を制御してもよい。 When the current crank angle reaches the angle A47, the ECU 6 controls the injector 19 corresponding to the second cylinder 31B so that the fuel is injected into the intake passage 22 (FIG. 3) (step S32). In this case, when the crank angle reaches the angle A47, a pulse signal is given from the crank angle sensor 43 to the ECU 6, and the ECU 6 may control the injector 19 so that fuel is injected in response to the pulse signal. .
 これにより、上記のように、角度A34でクランク軸13の回転方向が正方向に切り替えられた直後に、第2のシリンダ31B内に混合気が導入される。したがって、エンジン10が通常運転に迅速に移行することができる。 Thus, as described above, the air-fuel mixture is introduced into the second cylinder 31B immediately after the rotation direction of the crankshaft 13 is switched to the positive direction at the angle A34. Therefore, the engine 10 can quickly shift to normal operation.
 (5)デコンプ機構の具体例
 第2の実施の形態におけるデコンプ機構DEの具体例について説明する。図21は、バルブ駆動部17の一例を示す模式図である。図21のバルブ駆動部17は、吸気用カム軸171および排気用カム軸172を含む。吸気用カム軸171および排気用カム軸172の各々は、クランク軸13に連動して回転する。吸気用カム軸171は、第1および第2のシリンダ31A,31Bの吸気バルブ15をそれぞれ駆動する複数の吸気カム173を含む。排気用カム軸172は、第1および第2のシリンダ31A,31Bの排気バルブ16をそれぞれ駆動する複数の排気カム174を含む。図21には、一の吸気カム173および一の排気カム174のみが示される。
(5) Specific Example of Decompression Mechanism A specific example of the decompression mechanism DE in the second embodiment will be described. FIG. 21 is a schematic diagram illustrating an example of the valve driving unit 17. 21 includes an intake camshaft 171 and an exhaust camshaft 172. Each of the intake camshaft 171 and the exhaust camshaft 172 rotates in conjunction with the crankshaft 13. The intake camshaft 171 includes a plurality of intake cams 173 that drive the intake valves 15 of the first and second cylinders 31A and 31B, respectively. The exhaust camshaft 172 includes a plurality of exhaust cams 174 that respectively drive the exhaust valves 16 of the first and second cylinders 31A and 31B. FIG. 21 shows only one intake cam 173 and one exhaust cam 174.
 本例では、排気カム174にデコンプ機構DEが設けられる。図22は、デコンプ機構DEの斜視図である。図22においては、排気カム174の一部が透過的に表される。 In this example, the exhaust cam 174 is provided with a decompression mechanism DE. FIG. 22 is a perspective view of the decompression mechanism DE. In FIG. 22, a part of the exhaust cam 174 is transparently represented.
 図22の排気カム174は、第2のシリンダ31Bに対応する排気バルブ16(図21)を駆動する。図22の排気カム174は、カム部材CAおよびデコンプ機構DEを含む。カム部材CAは、図14(b)の角度A43からA44までの範囲で第2のシリンダ31Bに対応する排気バルブ16をリフトさせる。 The exhaust cam 174 in FIG. 22 drives the exhaust valve 16 (FIG. 21) corresponding to the second cylinder 31B. The exhaust cam 174 of FIG. 22 includes a cam member CA and a decompression mechanism DE. The cam member CA lifts the exhaust valve 16 corresponding to the second cylinder 31B in the range from the angle A43 to A44 in FIG.
 デコンプ機構DEは、回転部材61、デコンプピン62,63、連結部材64、デコンプウェイト65およびストッパピン66を含む。回転部材61およびデコンプピン62,63は、カム部材CAの内部に収容される。回転部材61は略円柱形状を有し、排気カム174の回転中心線に平行な直線を中心としてカム部材CAに対して回転可能に設けられる。デコンプピン62,63の各々は、回転部材61の外周面に当接するように設けられる。 The decompression mechanism DE includes a rotating member 61, decompression pins 62 and 63, a connecting member 64, a decompression weight 65, and a stopper pin 66. The rotating member 61 and the decompression pins 62 and 63 are accommodated inside the cam member CA. The rotating member 61 has a substantially cylindrical shape, and is provided to be rotatable with respect to the cam member CA around a straight line parallel to the rotation center line of the exhaust cam 174. Each of the decompression pins 62 and 63 is provided so as to contact the outer peripheral surface of the rotating member 61.
 連結部材64、デコンプウェイト65およびストッパピン66は、カム部材CAの一面上に設けられる。連結部材64の一端部は回転部材61に固定される。連結部材64の他端部には、突出ピン64aが設けられる。 The connecting member 64, the decompression weight 65, and the stopper pin 66 are provided on one surface of the cam member CA. One end of the connecting member 64 is fixed to the rotating member 61. A protruding pin 64 a is provided at the other end of the connecting member 64.
 デコンプウェイト65は、略U字形状を有する。デコンプウェイト65の一端部は、揺動軸65aを介してカム部材CAに取り付けられる。デコンプウェイト65は、カム部材CAに対して揺動軸65aを中心に揺動可能である。デコンプウェイト65の他端部に長円形の貫通孔65bが設けられる。貫通孔65b内に、連結部材64の突出ピン64aが挿入される。 The decompression weight 65 has a substantially U shape. One end of the decompression weight 65 is attached to the cam member CA via the swing shaft 65a. The decompression weight 65 can swing around the swing shaft 65a with respect to the cam member CA. An oblong through hole 65 b is provided at the other end of the decompression weight 65. The protruding pin 64a of the connecting member 64 is inserted into the through hole 65b.
 デコンプウェイト65がカム部材CAに対して揺動することにより、連結部材64が連動して揺動するとともに、回転部材61がカム部材CAに対して回転する。連結部材64とデコンプウェイト65との間にストッパピン66が設けられる。ストッパピン66により連結部材64およびデコンプウェイト65の揺動範囲が制限される。 When the decompression weight 65 swings with respect to the cam member CA, the connecting member 64 swings in conjunction with the rotation, and the rotating member 61 rotates with respect to the cam member CA. A stopper pin 66 is provided between the connecting member 64 and the decompression weight 65. The swing range of the connecting member 64 and the decompression weight 65 is limited by the stopper pin 66.
 図21の排気用カム軸172の回転速度は、クランク軸13の回転速度に依存する。デコンプ機構DEは、排気用カム軸172の回転速度、すなわちクランク軸13の回転速度に依存して作動状態と非作動状態とに切り替えられる。クランク軸13の回転速度が一定のしきい値より低い場合、デコンプ機構DEが作動状態に維持され、クランク軸13の回転速度が一定のしきい値以上である場合、デコンプ機構DEが非作動状態に維持される。 21. The rotational speed of the exhaust camshaft 172 in FIG. 21 depends on the rotational speed of the crankshaft 13. The decompression mechanism DE is switched between an operating state and a non-operating state depending on the rotational speed of the exhaust camshaft 172, that is, the rotational speed of the crankshaft 13. When the rotational speed of the crankshaft 13 is lower than a certain threshold value, the decompression mechanism DE is maintained in an operating state, and when the rotational speed of the crankshaft 13 is equal to or greater than a certain threshold value, the decompression mechanism DE is in an inoperative state. Maintained.
 デコンプ機構DEの動作について説明する。図23は、デコンプ機構DEの作動状態について説明するための模式的断面図である。図24は、デコンプ機構DEの非作動状態について説明するための模式的断面図である。図23および図24においては、カム部材CAの断面がドットパターンで表される。また、デコンプウェイト65およびストッパピン66が点線で表される。 The operation of the decompression mechanism DE will be described. FIG. 23 is a schematic cross-sectional view for explaining the operating state of the decompression mechanism DE. FIG. 24 is a schematic cross-sectional view for explaining the inoperative state of the decompression mechanism DE. 23 and 24, the cross section of the cam member CA is represented by a dot pattern. Further, the decompression weight 65 and the stopper pin 66 are represented by dotted lines.
 図23および図24に示すように、カム部材CAには、回転部材61が収容される収容孔CAa、およびデコンプピン62,63がそれぞれ収容される収容孔CAb,CAcが形成される。収容孔CAb,CAcの一端は、カム部材CAの外周面上でそれぞれ開口し、これらの他端は、収容孔CAaの内周面でそれぞれ開口する。収容孔CAbの一端および収容孔CAcの一端は、カム部材CAの回転方向において異なる位置に設けられる。 As shown in FIGS. 23 and 24, the cam member CA is formed with a housing hole CAa for housing the rotating member 61 and housing holes CAb and CAc for housing the decompression pins 62 and 63, respectively. One end of each of the accommodation holes CAb and CAc is opened on the outer peripheral surface of the cam member CA, and the other end thereof is opened on each inner peripheral surface of the accommodation hole CAa. One end of the accommodation hole CAb and one end of the accommodation hole CAc are provided at different positions in the rotation direction of the cam member CA.
 デコンプピン62の一端部にはフランジ状の当接部62aが設けられ、デコンプピン63の一端部にはフランジ状の当接部63aが設けられる。収容孔CAbの他端部には、当接部62aを収容可能な拡大部CABが設けられ、収容孔CAcの他端部には、当接部63aを収容可能な拡大部CACが設けられる。拡大部CABには、ばねSP1が配置され、拡大部CACには、ばねSP2が配置される。ばねSP1により、デコンプピン62の当接部62aが回転部材61の外周面に押し当てられ、ばねSP2により、デコンプピン63の当接部63aが回転部材61の外周面に押し当てられる。 A flange-shaped contact portion 62 a is provided at one end of the decompression pin 62, and a flange-shaped contact portion 63 a is provided at one end of the decompression pin 63. An enlarged portion CAB capable of accommodating the contact portion 62a is provided at the other end of the accommodation hole CAb, and an enlarged portion CAC capable of accommodating the contact portion 63a is provided at the other end of the accommodation hole CAc. A spring SP1 is disposed in the enlarged portion CAB, and a spring SP2 is disposed in the enlarged portion CAC. The contact portion 62a of the decompression pin 62 is pressed against the outer peripheral surface of the rotating member 61 by the spring SP1, and the contact portion 63a of the decompression pin 63 is pressed against the outer peripheral surface of the rotating member 61 by the spring SP2.
 回転部材61の外周面は、曲面部61a,61bおよび平面部61c,61dを有する。曲面部61a,61bは、回転部材61の回転中心線を中心とする円柱面にそれぞれ含まれる。平面部61cは、曲面部61aの一辺と曲面部61bの一辺とをつなぐように設けられ、平面部61dは、曲面部61aの他辺と曲面部61bの他辺とをつなぐように設けられる。連結部材64は、図示しない付勢部材によって一方向DR1に付勢される。 The outer peripheral surface of the rotating member 61 has curved surface portions 61a and 61b and flat surface portions 61c and 61d. The curved surface portions 61 a and 61 b are respectively included in cylindrical surfaces centering on the rotation center line of the rotating member 61. The flat surface portion 61c is provided so as to connect one side of the curved surface portion 61a and one side of the curved surface portion 61b, and the flat surface portion 61d is provided so as to connect the other side of the curved surface portion 61a and the other side of the curved surface portion 61b. The connecting member 64 is biased in one direction DR1 by a biasing member (not shown).
 クランク軸13の回転速度が一定のしきい値より低い場合、デコンプ機構DEが図23の作動状態に維持される。図23に示すように、作動状態では、連結部材64に働く付勢力によってデコンプウェイト65がストッパピン66に当接する。この場合、デコンプピン62の当接部62aが回転部材61の曲面部61aに当接し、デコンプピン63の当接部63aが回転部材61の曲面部61bに当接する。これにより、デコンプピン62の先端部がカム部材CAの外周面から突出するとともに、デコンプピン63の先端部がカム部材CAの外周面から突出する。 When the rotational speed of the crankshaft 13 is lower than a certain threshold value, the decompression mechanism DE is maintained in the operating state of FIG. As shown in FIG. 23, in the operating state, the decompression weight 65 abuts against the stopper pin 66 by the urging force acting on the connecting member 64. In this case, the contact portion 62 a of the decompression pin 62 contacts the curved surface portion 61 a of the rotating member 61, and the contact portion 63 a of the decompression pin 63 contacts the curved surface portion 61 b of the rotating member 61. Accordingly, the distal end portion of the decompression pin 62 projects from the outer peripheral surface of the cam member CA, and the distal end portion of the decompression pin 63 projects from the outer peripheral surface of the cam member CA.
 デコンプピン62は、クランク角が図16の角度AD3から角度AD4までの範囲にあるときに、第2のシリンダ31Bに対応する排気バルブ16(図21)をリフトさせる。これにより、正回転位置合わせ動作において、クランク角が第2のシリンダ31Bの圧縮上死点に対応する角度A3に近づいたときに、第2のシリンダ31Bの内の圧力を低下させることができる。したがって、クランク角が角度A3を容易に超えることができる。 The decompression pin 62 lifts the exhaust valve 16 (FIG. 21) corresponding to the second cylinder 31B when the crank angle is in the range from the angle AD3 to the angle AD4 in FIG. Thus, in the forward rotation alignment operation, when the crank angle approaches the angle A3 corresponding to the compression top dead center of the second cylinder 31B, the pressure in the second cylinder 31B can be reduced. Therefore, the crank angle can easily exceed the angle A3.
 デコンプピン63は、クランク角が図18の角度AD5から角度AD6までの範囲にあるときに、第2のシリンダ31Bに対応する排気バルブ16(図21)をリフトさせる。これにより、逆回転始動動作において、クランク角が第2のシリンダ31Bの圧縮上死点に対応する角度A3に近づいたときに、第2のシリンダ31Bの内の圧力を低下させることができる。したがって、クランク角が角度A3を容易に超えることができる。 The decompression pin 63 lifts the exhaust valve 16 (FIG. 21) corresponding to the second cylinder 31B when the crank angle is in the range from the angle AD5 to the angle AD6 in FIG. Thereby, in the reverse rotation starting operation, when the crank angle approaches the angle A3 corresponding to the compression top dead center of the second cylinder 31B, the pressure in the second cylinder 31B can be reduced. Therefore, the crank angle can easily exceed the angle A3.
 クランク軸13の回転速度が一定のしきい値以上である場合、デコンプ機構DEが図24の非作動状態に維持される。図24に示すように、非作動状態では、デコンプウェイト65が、遠心力によって排気カム174の回転中心線から遠ざかる。それにより、連結部材64がストッパピン66に当接する。この場合、デコンプピン62の当接部62aが回転部材61の平面部61cに当接し、デコンプピン63の当接部63aが回転部材61の平面部61dに当接する。これにより、デコンプピン62の先端部が収容孔CAa内に収容されかつデコンプピン63の先端部が収容孔CAb内に収容される。したがって、通常運転時に、デコンプピン62,63は、排気バルブ16(図21)をリフトさせない。 When the rotational speed of the crankshaft 13 is equal to or higher than a certain threshold value, the decompression mechanism DE is maintained in the inoperative state of FIG. As shown in FIG. 24, in a non-operating state, the decompression weight 65 moves away from the rotation center line of the exhaust cam 174 by centrifugal force. Thereby, the connecting member 64 contacts the stopper pin 66. In this case, the contact portion 62 a of the decompression pin 62 contacts the flat surface portion 61 c of the rotating member 61, and the contact portion 63 a of the decompression pin 63 contacts the flat surface portion 61 d of the rotating member 61. Thereby, the front-end | tip part of the decompression pin 62 is accommodated in the accommodation hole CAa, and the front-end | tip part of the decompression pin 63 is accommodated in the accommodation hole CAb. Therefore, during normal operation, the decompression pins 62 and 63 do not lift the exhaust valve 16 (FIG. 21).
 このように、正回転位置合わせ動作時および逆回転始動動作時には、デコンプ機構DEが作動状態に維持され、デコンプピン62,63により一定のクランク角の範囲で第2のシリンダ31Bに対応する排気バルブ16がリフトされる。一方、通常運転時には、デコンプ機構DEが非作動状態に維持され、デコンプピン62,63によって排気バルブ16がリフトされることはない。 As described above, during the forward rotation alignment operation and the reverse rotation start operation, the decompression mechanism DE is maintained in the operating state, and the exhaust valves 16 corresponding to the second cylinder 31B are within a certain crank angle range by the decompression pins 62 and 63. Is lifted. On the other hand, during normal operation, the decompression mechanism DE is maintained in an inoperative state, and the exhaust valve 16 is not lifted by the decompression pins 62 and 63.
 なお、図22~図24のデコンプ機構DEと同様の構成を上記第1の実施の形態のデコンプ機構DEにも適用することができる。この場合、第1のシリンダ31Aに対応する排気バルブ16を駆動する排気カム174に、デコンプ機構DEが設けられる。また、デコンプピン62,63の代わりに、図6の角度AD1から角度AD2の範囲で排気バルブ16をリフトさせるデコンプピンが設けられる。 Note that the same configuration as that of the decompression mechanism DE of FIGS. 22 to 24 can be applied to the decompression mechanism DE of the first embodiment. In this case, a decompression mechanism DE is provided in the exhaust cam 174 that drives the exhaust valve 16 corresponding to the first cylinder 31A. Further, instead of the decompression pins 62 and 63, a decompression pin for lifting the exhaust valve 16 in the range of the angle AD1 to the angle AD2 in FIG. 6 is provided.
 このような構成により、正回転位置合わせ動作時には、デコンプ機構DEが作動状態となり、クランク角が第1のシリンダ31Aの圧縮上死点に対応する角度A1に近づいたときに、デコンプ機構DEによって第1のシリンダ31A内の圧力が低下される。また、逆回転始動動作時には、デコンプ機構DEによって第1のおよび第2のシリンダ31A,31B内の圧力が低下されることはない。通常運転時には、デコンプ機構DEが非作動状態となり、デコンプ機構DEによって第1および第2のシリンダ31A,31B内の圧力が低下されることはない。したがって、第1の実施の形態では、第2の実施の形態に比べてデコンプ機構DEの構成を簡略化しつつ、正回転始動動作および逆回転始動動作を適切に行うことができる。 With such a configuration, the decompression mechanism DE is activated during the forward rotation alignment operation, and when the crank angle approaches the angle A1 corresponding to the compression top dead center of the first cylinder 31A, the decompression mechanism DE The pressure in one cylinder 31A is reduced. Further, during the reverse rotation starting operation, the pressure in the first and second cylinders 31A and 31B is not reduced by the decompression mechanism DE. During normal operation, the decompression mechanism DE is deactivated, and the decompression mechanism DE does not reduce the pressure in the first and second cylinders 31A and 31B. Therefore, in the first embodiment, it is possible to appropriately perform the forward rotation start operation and the reverse rotation start operation while simplifying the configuration of the decompression mechanism DE as compared with the second embodiment.
 (6)効果
 本実施の形態に係るエンジンシステム200においても、第1の実施の形態と同様に、逆回転始動動作によってエンジン10が始動される。それにより、点火時の空燃比を適切に調整することができる。また、クランク角が始動減圧範囲(角度AD5から角度AD6までの範囲)にあるときに、デコンプ機構DEにより第2のシリンダ31B内の圧力が低下される。この場合、クランク角が、第2のシリンダ31Bの圧縮上死点に対応する角度A3に近づいても、第2のシリンダ31B内の圧力の上昇が抑制される。そのため、クランク軸13の回転抵抗の増大が抑制され、クランク軸13の逆回転が妨げられない。
(6) Effect Also in the engine system 200 according to the present embodiment, the engine 10 is started by the reverse rotation starting operation as in the first embodiment. Thereby, the air-fuel ratio at the time of ignition can be adjusted appropriately. Further, when the crank angle is in the starting pressure reduction range (range from the angle AD5 to the angle AD6), the pressure in the second cylinder 31B is reduced by the decompression mechanism DE. In this case, even if the crank angle approaches the angle A3 corresponding to the compression top dead center of the second cylinder 31B, an increase in pressure in the second cylinder 31B is suppressed. Therefore, an increase in the rotational resistance of the crankshaft 13 is suppressed, and the reverse rotation of the crankshaft 13 is not hindered.
 第2のシリンダ31B内の圧力がクランク軸13の逆回転の妨げとならないので、第1のシリンダ31Aへの混合気の導入および第1のシリンダ31Aにおける混合気の圧縮を適切に行うことができる。それにより、第1のシリンダ31A内で混合気を適切に燃焼させることができ、クランク軸13の正方向のトルクを十分に高めることができる。その結果、エンジン10を適切に始動させることができる。 Since the pressure in the second cylinder 31B does not hinder the reverse rotation of the crankshaft 13, the introduction of the air-fuel mixture into the first cylinder 31A and the compression of the air-fuel mixture in the first cylinder 31A can be performed appropriately. . Thereby, the air-fuel mixture can be appropriately burned in the first cylinder 31A, and the positive torque of the crankshaft 13 can be sufficiently increased. As a result, the engine 10 can be started appropriately.
 また、逆回転始動動作の前に、正回転位置合わせ動作によってクランク角が逆回転開始範囲(角度A50)に調整される。それにより、逆回転始動動作において第1のシリンダ31Aに混合気を適切に導入することができ、かつクランク角を容易に始動点火範囲(角度A34)に到達させることができる。 Also, before the reverse rotation start operation, the crank angle is adjusted to the reverse rotation start range (angle A50) by the forward rotation alignment operation. Thereby, the air-fuel mixture can be appropriately introduced into the first cylinder 31A in the reverse rotation start operation, and the crank angle can easily reach the start ignition range (angle A34).
 また、正回転位置合わせ動作において、クランク角が位置合わせ減圧範囲(角度AD3から角度AD4までの範囲)にあるときに、デコンプ機構DEにより第2のシリンダ31B内の圧力が低下される。これにより、クランク軸13の回転抵抗の増大が抑制され、クランク軸13の正回転が妨げられない。それにより、クランク角を逆回転開始範囲に容易に調整することができる。 In the forward rotation alignment operation, when the crank angle is within the alignment pressure reduction range (range from angle AD3 to angle AD4), the pressure in the second cylinder 31B is reduced by the decompression mechanism DE. Thereby, an increase in the rotational resistance of the crankshaft 13 is suppressed, and the normal rotation of the crankshaft 13 is not hindered. Thereby, the crank angle can be easily adjusted to the reverse rotation start range.
 (7)変形例
 上記第1の実施の形態では、第1のシリンダ31Aにおいてピストン11が圧縮上死点に達するときのクランク角と第2のシリンダ31Bにおいてピストン11が圧縮上死点に達するときのクランク角との差が180度であり、上記第2の実施の形態では、その差が360度であるが、本発明はこれらに限らない。
(7) Modification In the first embodiment, the crank angle when the piston 11 reaches the compression top dead center in the first cylinder 31A and the piston 11 reaches the compression top dead center in the second cylinder 31B. Is 180 degrees, and in the second embodiment, the difference is 360 degrees. However, the present invention is not limited to this.
 例えば、第1のシリンダ31Aにおいてピストン11が圧縮上死点に達するときのクランク角と第2のシリンダ31Bにおいてピストン11が圧縮上死点に達するときのクランク角との差が270度であってもよい。この場合、第1の実施の形態と同様に、正回転位置合わせ動作においてデコンプ機構DEにより第1のシリンダ31A内の圧力が低下されてもよい。または、第2の実施の形態と同様に、正回転位置合わせ動作および逆回転始動動作においてデコンプ機構DEにより第2のシリンダ31B内の圧力が低下されてもよい。 For example, the difference between the crank angle when the piston 11 reaches the compression top dead center in the first cylinder 31A and the crank angle when the piston 11 reaches the compression top dead center in the second cylinder 31B is 270 degrees. Also good. In this case, similarly to the first embodiment, the pressure in the first cylinder 31A may be reduced by the decompression mechanism DE in the forward rotation alignment operation. Alternatively, as in the second embodiment, the pressure in the second cylinder 31B may be reduced by the decompression mechanism DE in the forward rotation alignment operation and the reverse rotation start operation.
 [D]エンジンシステム(第3の実施の形態)
 本発明の第3の実施の形態に係るエンジンシステムについて、上記第1の実施の形態と異なる点を説明する。
[D] Engine system (third embodiment)
A difference of the engine system according to the third embodiment of the present invention from the first embodiment will be described.
 (1)構成
 図25は、第3の実施の形態に用いられるエンジンユニットEUの構成について説明するための図である。図25のエンジンユニットEUは、図2のエンジン10の代わりにエンジン10Aを含む。エンジン10Aは、3気筒4サイクルエンジンであり、第1、第2および第3のシリンダ31P,31Q,31Rを含む。第1、第2および第3のシリンダ31P,31Q,31Rの各々にピストン11が設けられ、ピストン11の上方に燃焼室31aが設けられる。各ピストン11はコンロッド12を介してクランク軸13に接続される。
(1) Configuration FIG. 25 is a diagram for describing a configuration of an engine unit EU used in the third embodiment. The engine unit EU in FIG. 25 includes an engine 10A instead of the engine 10 in FIG. Engine 10A is a three-cylinder four-cycle engine, and includes first, second, and third cylinders 31P, 31Q, and 31R. A piston 11 is provided in each of the first, second, and third cylinders 31P, 31Q, and 31R, and a combustion chamber 31a is provided above the piston 11. Each piston 11 is connected to a crankshaft 13 via a connecting rod 12.
 第1、第2および第3のシリンダ31P,31Q,31Rの各々には、吸気口21および排気口23が設けられる。各吸気口21が吸気バルブ15により開閉され、各排気口23が排気バルブ16により開閉される。第1、第2および第3のシリンダ31P,31Q,31Rに共通に吸気用カム軸171および排気用カム軸172がそれぞれ設けられる。吸気用カム軸171は、複数の吸気カム173を含み、排気用カム軸172は、複数の排気カム174を含む。各吸気カム173および各排気カム174は、吸気バルブ15および排気バルブ16をそれぞれ駆動する。図3の点火プラグ18およびインジェクタ19は、第1、第2および第3のシリンダ31P,31Q,31Rの各々に対応するように設けられる。 An intake port 21 and an exhaust port 23 are provided in each of the first, second, and third cylinders 31P, 31Q, and 31R. Each intake port 21 is opened and closed by the intake valve 15, and each exhaust port 23 is opened and closed by the exhaust valve 16. An intake camshaft 171 and an exhaust camshaft 172 are respectively provided in common to the first, second and third cylinders 31P, 31Q, 31R. The intake camshaft 171 includes a plurality of intake cams 173, and the exhaust camshaft 172 includes a plurality of exhaust cams 174. Each intake cam 173 and each exhaust cam 174 drive the intake valve 15 and the exhaust valve 16, respectively. The spark plug 18 and the injector 19 in FIG. 3 are provided so as to correspond to each of the first, second, and third cylinders 31P, 31Q, 31R.
 第2のシリンダ31Qと第3のシリンダ31Rとの間に、デコンプ機構DEaが設けられる。デコンプ機構DEaにより、第2および第3のシリンダ31Q,31R内の圧力の上昇が抑制される。デコンプ機構DEaの詳細については後述する。 A decompression mechanism DEa is provided between the second cylinder 31Q and the third cylinder 31R. The decompression mechanism DEa suppresses an increase in pressure in the second and third cylinders 31Q and 31R. Details of the decompression mechanism DEa will be described later.
 (2)通常運転
 図26~図27は、エンジン10Aの通常運転について説明するための図である。図26には、第1のシリンダ31Pでの動作とクランク角との関係が示され、図27には、第2のシリンダ32Qでの動作とクランク角との関係が示され、図28には、第3のシリンダ32Rでの動作とクランク角との関係が示される。
(2) Normal Operation FIGS. 26 to 27 are diagrams for explaining the normal operation of the engine 10A. FIG. 26 shows the relationship between the operation in the first cylinder 31P and the crank angle, FIG. 27 shows the relationship between the operation in the second cylinder 32Q and the crank angle, and FIG. The relationship between the operation in the third cylinder 32R and the crank angle is shown.
 図26に示すように、通常運転時における第1のシリンダ31Pでの動作とクランク角との関係は、上記第1の実施の形態における第1のシリンダ31Aでの動作とクランク角との関係と同じである。具体的には、図26に示すように、クランク角が角度A1であるときにピストン11が圧縮上死点に位置し、クランク角が角度A2であるときにピストン11が膨張下死点に位置し、クランク角が角度A3であるときにピストン11が排気上死点に位置し、クランク角が角度A4であるときにピストン11が吸気下死点に位置する。角度A1から角度A2までの範囲でピストン11(図25)が下降し、角度A2から角度A3までの範囲でピストン11が上昇し、角度A3から角度A4までの範囲でピストン11が下降し、角度A4から角度A1までの範囲でピストン11が上昇する。 As shown in FIG. 26, the relationship between the operation in the first cylinder 31P and the crank angle during normal operation is the relationship between the operation in the first cylinder 31A and the crank angle in the first embodiment. The same. Specifically, as shown in FIG. 26, the piston 11 is located at the compression top dead center when the crank angle is the angle A1, and the piston 11 is located at the expansion bottom dead center when the crank angle is the angle A2. When the crank angle is the angle A3, the piston 11 is located at the exhaust top dead center, and when the crank angle is the angle A4, the piston 11 is located at the intake bottom dead center. The piston 11 (FIG. 25) is lowered in the range from the angle A1 to the angle A2, the piston 11 is raised in the range from the angle A2 to the angle A3, and the piston 11 is lowered in the range from the angle A3 to the angle A4. The piston 11 rises in the range from A4 to the angle A1.
 角度A11から角度A12までの範囲で吸気バルブ15(図25)により吸気口21(図25)が開かれ、角度A13から角度A14までの範囲で排気バルブ16(図25)により排気口23(図25)が開かれる。また、角度A15でインジェクタ19(図3)により吸気通路22(図3)に燃料が噴射され、角度A16で点火プラグ18(図3)により点火される。 The intake port 21 (FIG. 25) is opened by the intake valve 15 (FIG. 25) in the range from the angle A11 to the angle A12, and the exhaust port 23 (FIG. 25) is opened by the exhaust valve 16 (FIG. 25) in the range from the angle A13 to the angle A14. 25) is opened. Further, fuel is injected into the intake passage 22 (FIG. 3) by the injector 19 (FIG. 3) at an angle A15, and ignited by the spark plug 18 (FIG. 3) at an angle A16.
 図27に示すように、第2のシリンダ31Qにおいては、クランク角が角度A101であるときにピストン11が圧縮上死点に位置し、クランク角が角度A102であるときにピストン11が膨張下死点に位置し、クランク角が角度A103であるときにピストン11が排気上死点に位置し、クランク角が角度A104であるときにピストン11が吸気下死点に位置する。角度A101から角度A102までの範囲でピストン11が下降し、角度A102から角度A103までの範囲でピストン11が上昇し、角度A103から角度A104までの範囲でピストン11が下降し、角度A104から角度A101までの範囲でピストン11が上昇する。正方向において、図27の角度A101~A104は、図26の角度A1~A4よりそれぞれ240度遅角している。 As shown in FIG. 27, in the second cylinder 31Q, when the crank angle is the angle A101, the piston 11 is positioned at the compression top dead center, and when the crank angle is the angle A102, the piston 11 is expanded and dead. The piston 11 is located at the exhaust top dead center when the crank angle is the angle A103, and the piston 11 is located at the intake bottom dead center when the crank angle is the angle A104. The piston 11 descends in the range from the angle A101 to the angle A102, the piston 11 rises in the range from the angle A102 to the angle A103, the piston 11 descends in the range from the angle A103 to the angle A104, and the angle A104 to the angle A101. The piston 11 rises in the range up to. In the positive direction, the angles A101 to A104 in FIG. 27 are respectively delayed by 240 degrees from the angles A1 to A4 in FIG.
 角度A111から角度A112までの範囲で吸気バルブ15(図25)により吸気口21(図25)が開かれ、角度A113から角度A114までの範囲で排気バルブ16(図25)により排気口23(図25)が開かれる。また、角度A115でインジェクタ19(図3)により吸気通路22(図3)に燃料が噴射され、角度A116で点火プラグ18(図3)により点火される。 The intake port 21 (FIG. 25) is opened by the intake valve 15 (FIG. 25) in the range from the angle A111 to the angle A112, and the exhaust port 23 (FIG. 25) is opened by the exhaust valve 16 (FIG. 25) in the range from the angle A113 to the angle A114. 25) is opened. Further, fuel is injected into the intake passage 22 (FIG. 3) by the injector 19 (FIG. 3) at an angle A115, and ignited by the spark plug 18 (FIG. 3) at an angle A116.
 図28に示すように、第3のシリンダ31Rにおいては、クランク角が角度A201であるときにピストン11が圧縮上死点に位置し、クランク角が角度A202であるときにピストン11が膨張下死点に位置し、クランク角が角度A203であるときにピストン11が排気上死点に位置し、クランク角が角度A204であるときにピストン11が吸気下死点に位置する。角度A201から角度A202までの範囲でピストン11が下降し、角度A202から角度A203までの範囲でピストン11が上昇し、角度A203から角度A204までの範囲でピストン11が下降し、角度A204から角度A201までの範囲でピストン11が上昇する。正方向において、図28の角度A201~A204は、図27の角度A101~A104よりそれぞれ240度遅角している。 As shown in FIG. 28, in the third cylinder 31R, when the crank angle is the angle A201, the piston 11 is positioned at the compression top dead center, and when the crank angle is the angle A202, the piston 11 is expanded and dead. The piston 11 is located at the exhaust top dead center when the crank angle is the angle A203, and the piston 11 is located at the intake bottom dead center when the crank angle is the angle A204. The piston 11 is lowered in the range from the angle A201 to the angle A202, the piston 11 is raised in the range from the angle A202 to the angle A203, the piston 11 is lowered in the range from the angle A203 to the angle A204, and from the angle A204 to the angle A201. The piston 11 rises in the range up to. In the positive direction, the angles A201 to A204 in FIG. 28 are respectively delayed by 240 degrees from the angles A101 to A104 in FIG.
 角度A211から角度A212までの範囲で吸気バルブ15(図25)により吸気口21(図25)が開かれ、角度A213から角度A214までの範囲で排気バルブ16(図25)により排気口23(図25)が開かれる。また、角度A215でインジェクタ19(図3)により吸気通路22(図3)に燃料が噴射され、角度A216で点火プラグ18(図3)により点火される。図27の角度A211~A216は、図26の角度A11~A16とそれぞれ480度異なる。 The intake port 21 (FIG. 25) is opened by the intake valve 15 (FIG. 25) in the range from the angle A211 to the angle A212, and the exhaust port 23 (FIG. 25) is opened by the exhaust valve 16 (FIG. 25) in the range from the angle A213 to the angle A214. 25) is opened. Further, fuel is injected into the intake passage 22 (FIG. 3) by the injector 19 (FIG. 3) at the angle A215, and ignited by the spark plug 18 (FIG. 3) at the angle A216. The angles A211 to A216 in FIG. 27 are different from the angles A11 to A16 in FIG. 26 by 480 degrees, respectively.
 図29は、クランク軸13の回転負荷とクランク角との関係を示す図である。図29において、横軸はクランク角を示し、縦軸はクランク軸13の回転負荷を示す。図29(a)には、第1のシリンダ31Pに起因する回転負荷が示され、図29(b)には、第2のシリンダ31Qに起因する回転負荷が示され、図29(c)には、第3のシリンダ31Rに起因する回転負荷が示される。図29(d)には、第1、第2および第3のシリンダ31P,31Q,31Rに起因する回転負荷の合計が示される。 FIG. 29 is a diagram showing the relationship between the rotational load of the crankshaft 13 and the crank angle. In FIG. 29, the horizontal axis indicates the crank angle, and the vertical axis indicates the rotational load of the crankshaft 13. FIG. 29A shows the rotational load caused by the first cylinder 31P, FIG. 29B shows the rotational load caused by the second cylinder 31Q, and FIG. Indicates the rotational load caused by the third cylinder 31R. FIG. 29 (d) shows the total rotational load caused by the first, second, and third cylinders 31P, 31Q, 31R.
 図29(a)~図29(c)に示すように、第1、第2および第3のシリンダ31P,31Q,31Rに関して、それぞれ圧縮上死点に対応する角度A1,A101,A201で回転負荷が最も大きくなる。上記のように、正方向において、角度A101は角度A1と240度異なり、角度A201は角度A101と240度異なる。それにより、図29(d)に示すように、クランク角が240度変化する毎にクランク軸13の回転負荷が大きくなる。 As shown in FIGS. 29 (a) to 29 (c), the first, second, and third cylinders 31P, 31Q, and 31R are rotated at angles A1, A101, and A201 corresponding to the compression top dead centers, respectively. Is the largest. As described above, in the positive direction, the angle A101 differs from the angle A1 by 240 degrees, and the angle A201 differs from the angle A101 by 240 degrees. Thereby, as shown in FIG. 29 (d), the rotational load of the crankshaft 13 increases every time the crank angle changes by 240 degrees.
 上記のように、エンジン10が停止される際には、回転負荷が大きいときにクランク軸13の回転が停止しやすい。したがって、本例では、クランク角が角度A1に近づいたとき、クランク角が角度A101に近づいたとき、またはクランク角が角度A201に近づいたときに、クランク軸13の回転が停止しやすい。 As described above, when the engine 10 is stopped, the rotation of the crankshaft 13 is likely to stop when the rotational load is large. Therefore, in this example, when the crank angle approaches the angle A1, when the crank angle approaches the angle A101, or when the crank angle approaches the angle A201, the rotation of the crankshaft 13 tends to stop.
 (3)正回転位置合わせ動作および逆回転始動動作
 図30は、エンジンユニットEUの正回転位置合わせ動作について説明するための図であり、図31は、エンジンユニットEUの逆回転始動動作について説明するための図である。図30および図31には、第1のシリンダ31Pにおける動作とクランク角との関係が示される。
(3) Forward rotation alignment operation and reverse rotation start operation FIG. 30 is a diagram for explaining the forward rotation alignment operation of the engine unit EU, and FIG. 31 illustrates the reverse rotation start operation of the engine unit EU. FIG. 30 and 31 show the relationship between the operation and the crank angle in the first cylinder 31P.
 正回転始動動作では、図30に示すように、クランク軸13が正回転されることにより、クランク角が角度A300に調整される。角度A300は逆回転開始範囲の例である。角度A300は、正方向において、角度A4よりも遅角側であって角度A1よりも進角側に位置する。クランク角が角度A300の近くにある状態でエンジン10が停止している場合には、正回転始動動作は行われなくてもよい。 In the forward rotation starting operation, as shown in FIG. 30, the crankshaft 13 is rotated forward to adjust the crank angle to an angle A300. Angle A300 is an example of the reverse rotation start range. The angle A300 is positioned more retarded than the angle A4 and more advanced than the angle A1 in the positive direction. When the engine 10 is stopped with the crank angle being close to the angle A300, the forward rotation starting operation may not be performed.
 逆回転始動動作では、図31に示すように、クランク角が逆回転開始範囲(角度A300)にある状態からクランク軸13が逆回転される。第1のシリンダ31Pにおいては、第1の実施の形態と同様に、角度A31から角度A32までの範囲で吸気バルブ15(図25)により吸気口21(図25)が開かれ、角度A33でインジェクタ19(図3)により吸気通路22(図3)に燃料が噴射される。また、角度A34において、点火プラグ18により点火されるとともに、クランク軸13の回転方向が逆方向から正方向に切り替えられる。これにより、第1のシリンダ31A内で混合気が燃焼され、混合気の燃焼のエネルギーによってクランク軸13が正方向に駆動される。 In the reverse rotation start operation, as shown in FIG. 31, the crankshaft 13 is reversely rotated from a state where the crank angle is in the reverse rotation start range (angle A300). In the first cylinder 31P, as in the first embodiment, the intake port 21 (FIG. 25) is opened by the intake valve 15 (FIG. 25) in the range from the angle A31 to the angle A32, and the injector at the angle A33. 19 (FIG. 3) injects fuel into the intake passage 22 (FIG. 3). Further, at the angle A34, the spark plug 18 is ignited and the rotation direction of the crankshaft 13 is switched from the reverse direction to the forward direction. Thereby, the air-fuel mixture is combusted in the first cylinder 31A, and the crankshaft 13 is driven in the positive direction by the combustion energy of the air-fuel mixture.
 エンジン10の停止時にクランク角が図29の角度A101と角度A201との間にある場合、正回転位置合わせ動作時に、クランク角が第3のシリンダ31Rの圧縮上死点に対応する角度A201を超える必要がある。また、エンジン10の停止時にクランク角が図29の角度A1と角度A101との間にある場合、正回転位置合わせ動作時に、クランク角が第2のシリンダ31Qの圧縮上死点に対応する角度A101および第3のシリンダ31Rの圧縮上死点に対応する角度A201の両方を超える必要がある。また、逆回転始動動作時には、クランク角が第3のシリンダ31Rの圧縮上死点に対応する角度A201および第2のシリンダ31Qの圧縮上死点に対応する角度A101の両方を超える必要がある。そこで、正回転位置合わせ動作時および逆回転始動動作時には、デコンプ機構DEa(図25)により第2および第3のシリンダ31Q,31R内の圧力が低下される。図32は、デコンプ機構DEaの具体例を示す図である。 If the crank angle is between the angle A101 and the angle A201 in FIG. 29 when the engine 10 is stopped, the crank angle exceeds the angle A201 corresponding to the compression top dead center of the third cylinder 31R during the forward rotation alignment operation. There is a need. If the crank angle is between the angle A1 and the angle A101 in FIG. 29 when the engine 10 is stopped, the crank angle corresponds to the compression top dead center of the second cylinder 31Q during the forward rotation alignment operation. It is necessary to exceed both the angle A201 corresponding to the compression top dead center of the third cylinder 31R. Further, during the reverse rotation start operation, the crank angle needs to exceed both the angle A201 corresponding to the compression top dead center of the third cylinder 31R and the angle A101 corresponding to the compression top dead center of the second cylinder 31Q. Therefore, during the forward rotation alignment operation and the reverse rotation start operation, the pressure in the second and third cylinders 31Q and 31R is reduced by the decompression mechanism DEa (FIG. 25). FIG. 32 is a diagram illustrating a specific example of the decompression mechanism DEa.
 図32のデコンプ機構DEaは、連通路210、補助バルブ212a,212b、バルブスプリング213a,213bおよび補助バルブ駆動部220を含む。連通路210は、第2のシリンダ31Qの燃焼室31aと第3のシリンダ31Rの燃焼室31aとを連通させるように設けられる。第2のシリンダ31Qには、連通路210の一端の開口211aが設けられ、その開口211aを開閉するように、補助バルブ212aが配置される。第3のシリンダ31Rには、連通路210の他端の開口211bが設けられ、その開口211bを開閉するように、補助バルブ212bが配置される。 32 includes a communication path 210, auxiliary valves 212a and 212b, valve springs 213a and 213b, and an auxiliary valve drive unit 220. The decompression mechanism DEa shown in FIG. The communication path 210 is provided so as to communicate the combustion chamber 31a of the second cylinder 31Q with the combustion chamber 31a of the third cylinder 31R. The second cylinder 31Q is provided with an opening 211a at one end of the communication passage 210, and an auxiliary valve 212a is disposed so as to open and close the opening 211a. The third cylinder 31R is provided with an opening 211b at the other end of the communication path 210, and an auxiliary valve 212b is disposed so as to open and close the opening 211b.
 補助バルブ212aは、バルブスプリング213aにより開口211aを閉じる方向に付勢される。補助バルブ212bは、バルブスプリング213bにより開口211bを閉じる方向に付勢される。補助バルブ212a,212bは、連結部材215によって互いに連結される。補助バルブ駆動部220は、例えばソレノイドアクチュエータであり、補助バルブ212a,212bを一体的に駆動することにより連通路210を連通状態と閉止状態とに切り替える。連通状態とは、補助バルブ212a,212bにより開口211a,211bがそれぞれ開かれた状態を意味し、閉止状態とは、補助バルブ212a,212bにより開口211a,211bがそれぞれ閉じられた状態を意味する。本実施の形態では、正回転位置合わせ動作中および逆回転始動動作中に、補助バルブ駆動部220によって連通路210が連通状態に維持される。 The auxiliary valve 212a is urged in a direction to close the opening 211a by a valve spring 213a. The auxiliary valve 212b is biased in a direction to close the opening 211b by a valve spring 213b. The auxiliary valves 212a and 212b are connected to each other by a connecting member 215. The auxiliary valve drive unit 220 is a solenoid actuator, for example, and switches the communication path 210 between a communication state and a closed state by driving the auxiliary valves 212a and 212b integrally. The communication state means a state in which the openings 211a and 211b are opened by the auxiliary valves 212a and 212b, and the closed state means a state in which the openings 211a and 211b are respectively closed by the auxiliary valves 212a and 212b. In the present embodiment, the communication path 210 is maintained in the communication state by the auxiliary valve drive unit 220 during the forward rotation alignment operation and the reverse rotation start operation.
 正回転位置合わせ動作時における第2および第3のシリンダ31Q,31R内の圧力の変化について説明する。図33は、クランク軸13の正回転時における第2および第3のシリンダ31Q,31Pでの動作について説明するための図である。図34は、正回転位置合わせ動作時における気体の流動について説明するための模式図である。図33において、横軸はクランク角を表す。また、図33(a)には、第2のシリンダ31Qにおける吸気口21および排気口23の開閉のタイミングおよびピストン11の移動方向が示され、図33(b)には、第3のシリンダ31Rにおける吸気口21および排気口23の開閉のタイミングおよびピストン11の移動方向が示される。 A change in pressure in the second and third cylinders 31Q and 31R during the forward rotation alignment operation will be described. FIG. 33 is a diagram for explaining the operation of the second and third cylinders 31Q and 31P when the crankshaft 13 is rotating forward. FIG. 34 is a schematic diagram for explaining the flow of gas during the forward rotation alignment operation. In FIG. 33, the horizontal axis represents the crank angle. FIG. 33A shows the opening / closing timing of the intake port 21 and the exhaust port 23 and the moving direction of the piston 11 in the second cylinder 31Q, and FIG. 33B shows the third cylinder 31R. The opening / closing timing of the intake port 21 and the exhaust port 23 and the moving direction of the piston 11 are shown.
 図33(a)に示すように、第2のシリンダ31Qにおいては、クランク角が角度A112から角度A101までの範囲にあるときに、吸気口21および排気口23がいずれも閉じられた状態でピストン11が上昇する。そのため、連通路210が閉止状態であると、第2のシリンダ31Q内の圧力が上昇する。一方、図33(b)に示すように、第3のシリンダ31Rにおいては、クランク角が角度A112から角度A101までの範囲にあるときに、吸気口21および排気口23の少なくとも一方が開かれている。この場合、連通路210が連通状態であると、第2のシリンダ31Q内の気体が図32の連通路210を通して第3のシリンダ31Rに流動することにより、第2のシリンダ31Q内の圧力の上昇が抑制される。 As shown in FIG. 33 (a), in the second cylinder 31Q, when the crank angle is in the range from the angle A112 to the angle A101, the piston 21 is in a state where both the intake port 21 and the exhaust port 23 are closed. 11 goes up. Therefore, when the communication path 210 is closed, the pressure in the second cylinder 31Q increases. On the other hand, as shown in FIG. 33B, in the third cylinder 31R, when the crank angle is in the range from the angle A112 to the angle A101, at least one of the intake port 21 and the exhaust port 23 is opened. Yes. In this case, if the communication path 210 is in a communication state, the gas in the second cylinder 31Q flows to the third cylinder 31R through the communication path 210 in FIG. 32, and thus the pressure in the second cylinder 31Q increases. Is suppressed.
 例えば、クランク角が角度A214から角度A101までの範囲にあるときには、第3のシリンダ31Rにおいて、吸気口21が開かれた状態でピストン11が下降する。この場合、図34(a)に示すように、第3のシリンダ31Rの吸気口21を通して第3のシリンダ31R内に気体が流入しつつ、第2のシリンダ31Q内の気体が、連通路210を通して第3のシリンダ31Rに流動する。そのため、第2のシリンダ31Q内で気体が圧縮されることがなく、第2のシリンダ31Q内の圧力の上昇が抑制される。 For example, when the crank angle is in the range from the angle A214 to the angle A101, the piston 11 descends in the third cylinder 31R with the intake port 21 opened. In this case, as shown in FIG. 34A, the gas in the second cylinder 31Q passes through the communication path 210 while the gas flows into the third cylinder 31R through the intake port 21 of the third cylinder 31R. It flows to the third cylinder 31R. Therefore, gas is not compressed in the second cylinder 31Q, and an increase in pressure in the second cylinder 31Q is suppressed.
 また、図33(b)に示すように、第3のシリンダ31Rにおいては、クランク角が角度A212から角度A201までの範囲にあるときに、吸気口21および排気口23がいずれも閉じられた状態でピストン11が上昇する。そのため、連通路210が閉止状態であると、第3のシリンダ31R内の圧力が上昇する。一方、図33(a)に示すように、第2のシリンダ31Qにおいては、クランク角が角度A212から角度A113までの範囲にあるときに、吸気口21および排気口23がいずれも閉じられた状態で、ピストン11が下降する。この場合、連通路210が連通状態であると、図34(b)に示すように、第3のシリンダ31R内の気体が連通路210を通して第2のシリンダ31Qに流動する。それにより、第3のシリンダ31R内で気体が圧縮されることがなく、第3のシリンダ31R内の圧力の上昇が抑制される。 Further, as shown in FIG. 33 (b), in the third cylinder 31R, when the crank angle is in the range from the angle A212 to the angle A201, both the intake port 21 and the exhaust port 23 are closed. As a result, the piston 11 rises. Therefore, when the communication path 210 is closed, the pressure in the third cylinder 31R increases. On the other hand, as shown in FIG. 33A, in the second cylinder 31Q, when the crank angle is in the range from the angle A212 to the angle A113, both the intake port 21 and the exhaust port 23 are closed. Then, the piston 11 descends. In this case, when the communication path 210 is in the communication state, the gas in the third cylinder 31R flows to the second cylinder 31Q through the communication path 210 as shown in FIG. Thereby, the gas is not compressed in the third cylinder 31R, and the increase in the pressure in the third cylinder 31R is suppressed.
 また、図33(a)に示すように、クランク角が角度A113から角度A201までの範囲にあるときには、第2のシリンダ31Qの排気口23が開かれる。そのため、連通路210が連通状態であると、第3のシリンダ31R内の気体が連通路210を通して第2のシリンダ31Qに流動することにより、第3のシリンダ31R内の圧力の上昇が抑制される。 Further, as shown in FIG. 33 (a), when the crank angle is in the range from the angle A113 to the angle A201, the exhaust port 23 of the second cylinder 31Q is opened. Therefore, when the communication path 210 is in the communication state, the gas in the third cylinder 31R flows to the second cylinder 31Q through the communication path 210, thereby suppressing an increase in pressure in the third cylinder 31R. .
 例えば、クランク角が角度A102から角度A201までの範囲にあるときには、第2のシリンダ31Qにおいて、排気口23が開かれた状態でピストン11が上昇する。この場合、図34(c)に示すように、第3のシリンダ31R内の気体が連通路210を通して第2のシリンダ31Qに流動しつつ第2のシリンダ31Q内の気体が排気口23を通して流出する。そのため、第3のシリンダ31R内で気体が圧縮されることがなく、第3のシリンダ31R内の圧力の上昇が抑制される。 For example, when the crank angle is in the range from the angle A102 to the angle A201, the piston 11 rises in the second cylinder 31Q with the exhaust port 23 being opened. In this case, as shown in FIG. 34C, the gas in the third cylinder 31R flows to the second cylinder 31Q through the communication path 210 and the gas in the second cylinder 31Q flows out through the exhaust port 23. . Therefore, gas is not compressed in the third cylinder 31R, and an increase in pressure in the third cylinder 31R is suppressed.
 逆回転始動動作時における第2および第3のシリンダ31Q,31R内の圧力の変化について説明する。図35は、クランク軸13の逆回転時における第2および第3のシリンダ31Q,31Pでの動作について説明するための図である。図36は、逆回転始動動作時における気体の流動について説明するための模式図である。図35において、横軸はクランク角を表す。また、図35(a)には、第2のシリンダ31Qにおける吸気口21および排気口23の開閉のタイミングおよびピストン11の移動方向が示され、図35(b)には、第3のシリンダ31Rにおける吸気口21および排気口23の開閉のタイミングおよびピストン11の移動方向が示される。 A change in pressure in the second and third cylinders 31Q and 31R during the reverse rotation starting operation will be described. FIG. 35 is a diagram for explaining the operation of the second and third cylinders 31Q and 31P when the crankshaft 13 rotates in the reverse direction. FIG. 36 is a schematic diagram for explaining the flow of gas during the reverse rotation starting operation. In FIG. 35, the horizontal axis represents the crank angle. FIG. 35A shows the opening / closing timing of the intake port 21 and the exhaust port 23 and the moving direction of the piston 11 in the second cylinder 31Q, and FIG. 35B shows the third cylinder 31R. The opening / closing timing of the intake port 21 and the exhaust port 23 and the moving direction of the piston 11 are shown.
 図35(b)に示すように、第3のシリンダ31Rにおいては、クランク角が角度A213から角度A201までの範囲にあるときに、吸気口21および排気口23がいずれも閉じられた状態でピストン11が上昇する。そのため、連通路210が閉止状態であると、第3のシリンダ31R内の圧力が上昇する。一方、図35(a)に示すように、第2のシリンダ31Qにおいては、クランク角が角度A213から角度A201までの範囲にあるときに、吸気口21および排気口23の少なくとも一方が開かれている。この場合、連通路210が連通状態であると、第3のシリンダ31R内の気体が連通路210を通して第2のシリンダ31Qに流動することにより、第3のシリンダ31R内の圧力の上昇が抑制される。 As shown in FIG. 35B, in the third cylinder 31R, when the crank angle is in the range from the angle A213 to the angle A201, the piston 21 is in a state where both the intake port 21 and the exhaust port 23 are closed. 11 goes up. Therefore, when the communication path 210 is closed, the pressure in the third cylinder 31R increases. On the other hand, as shown in FIG. 35 (a), in the second cylinder 31Q, when the crank angle is in the range from the angle A213 to the angle A201, at least one of the intake port 21 and the exhaust port 23 is opened. Yes. In this case, if the communication path 210 is in a communication state, the gas in the third cylinder 31R flows to the second cylinder 31Q through the communication path 210, thereby suppressing an increase in pressure in the third cylinder 31R. The
 例えば、クランク角が角度A111から角度A201までの範囲にあるときには、第2のシリンダ31Qにおいて、排気口23が開かれた状態でピストン11が下降する。この場合、図36(a)に示すように、第2のシリンダ31Qの排気口23を通して第2のシリンダ31Q内に気体が流入しつつ、第3のシリンダ31R内の気体が、連通路210を通して第2のシリンダ31Qに流動する。そのため、第3のシリンダ31R内で気体が圧縮されることがなく、第3のシリンダ31R内の圧力の上昇が抑制される。 For example, when the crank angle is in the range from the angle A111 to the angle A201, the piston 11 descends with the exhaust port 23 opened in the second cylinder 31Q. In this case, as shown in FIG. 36A, the gas in the third cylinder 31R passes through the communication path 210 while the gas flows into the second cylinder 31Q through the exhaust port 23 of the second cylinder 31Q. It flows to the second cylinder 31Q. Therefore, gas is not compressed in the third cylinder 31R, and an increase in pressure in the third cylinder 31R is suppressed.
 また、図35(a)に示すように、第2のシリンダ31Qにおいては、クランク角が角度A113から角度A101までの範囲にあるときに、吸気口21および排気口23がいずれも閉じられた状態でピストン11が上昇する。そのため、連通路210が閉止状態であると、第2のシリンダ31Q内の圧力が上昇する。一方、図35(b)に示すように、第3のシリンダ31Rにおいては、クランク角が角度A113から角度A212までの範囲にあるときに、吸気口21および排気口23がいずれも閉じられた状態で、ピストン11が下降する。この場合、連通路210が連通状態であると、図36(b)に示すように、第2のシリンダ31Q内の気体が連通路210を通して第3のシリンダ31Rに流動する。それにより、第2のシリンダ31Q内で気体が圧縮されることがなく、第2のシリンダ31Q内の圧力の上昇が抑制される。 Further, as shown in FIG. 35 (a), in the second cylinder 31Q, when the crank angle is in the range from the angle A113 to the angle A101, both the intake port 21 and the exhaust port 23 are closed. As a result, the piston 11 rises. Therefore, when the communication path 210 is closed, the pressure in the second cylinder 31Q increases. On the other hand, as shown in FIG. 35B, in the third cylinder 31R, when the crank angle is in the range from the angle A113 to the angle A212, both the intake port 21 and the exhaust port 23 are closed. Then, the piston 11 descends. In this case, when the communication path 210 is in the communication state, the gas in the second cylinder 31Q flows to the third cylinder 31R through the communication path 210 as shown in FIG. Thereby, the gas is not compressed in the second cylinder 31Q, and an increase in pressure in the second cylinder 31Q is suppressed.
 また、図35(b)に示すように、クランク角が角度A212から角度A101までの範囲にあるときには、第3のシリンダ31Rの吸気口21が開かれる。そのため、連通路210が連通状態であると、第2のシリンダ31Q内の気体が連通路210を通して第3のシリンダ31Rに流動することにより、第2のシリンダ31Q内の圧力の上昇が抑制される。 Further, as shown in FIG. 35B, when the crank angle is in the range from the angle A212 to the angle A101, the intake port 21 of the third cylinder 31R is opened. Therefore, when the communication path 210 is in a communication state, the gas in the second cylinder 31Q flows to the third cylinder 31R through the communication path 210, thereby suppressing an increase in pressure in the second cylinder 31Q. .
 例えば、クランク角が角度A204から角度A101までの範囲にあるときには、第3のシリンダ31Rにおいて、吸気口21が開かれた状態でピストン11が上昇する。この場合、図36(c)に示すように、第2のシリンダ31Q内の気体が連通路210を通して第3のシリンダ31Rに流動しつつ第3のシリンダ31R内の気体が吸気口21を通して流出する。そのため、第2のシリンダ31Q内で気体が圧縮されることがなく、第2のシリンダ31Q内の圧力の上昇が抑制される。 For example, when the crank angle is in the range from the angle A204 to the angle A101, the piston 11 rises in the third cylinder 31R with the intake port 21 opened. In this case, as shown in FIG. 36C, the gas in the second cylinder 31Q flows to the third cylinder 31R through the communication path 210, and the gas in the third cylinder 31R flows out through the intake port 21. . Therefore, gas is not compressed in the second cylinder 31Q, and an increase in pressure in the second cylinder 31Q is suppressed.
 図37は、正回転位置合わせ動作時および逆回転始動動作時におけるクランク軸13の回転負荷とクランク角との関係を示す図である。図29と同様に、第1、第2および第3のシリンダ31P,31Q,31Rに起因する回転負荷が図37(a)~図37(c)にそれぞれ示され、これらの合計が図37(d)に示される。上記のように、正回転位置合わせ動作時および逆回転始動動作時には、第2および第3のシリンダ31Q,31R内の圧力の上昇が抑制される。具体的には、図37(b)に示すように、クランク角が第2のシリンダ31Qの圧縮上死点に対応する角度A101に近づいても、第2のシリンダ31Qに起因する回転抵抗の増大が抑制される。また、図37(c)に示すように、クランク角が第3のシリンダ31Rの圧縮上死点に対応するA201に近づいても、第3のシリンダ31Rに起因する回転抵抗の増大が抑制される。これにより、図37(d)に示すように、クランク軸13の回転負荷は、第1のシリンダ31Pの圧縮上死点に対応する角度A1付近でのみ大きくなり、それ以外の角度範囲では、クランク軸13の正回転および逆回転が妨げられない。したがって、図30の正回転位置合わせ動作および図31の逆回転始動動作を適切に行うことができる。 FIG. 37 is a diagram showing the relationship between the rotational load of the crankshaft 13 and the crank angle during the forward rotation alignment operation and the reverse rotation start operation. Similarly to FIG. 29, the rotational loads caused by the first, second and third cylinders 31P, 31Q and 31R are shown in FIGS. 37 (a) to 37 (c), respectively, and the sum of these is shown in FIG. d). As described above, during the forward rotation alignment operation and the reverse rotation start operation, an increase in pressure in the second and third cylinders 31Q and 31R is suppressed. Specifically, as shown in FIG. 37 (b), even if the crank angle approaches the angle A101 corresponding to the compression top dead center of the second cylinder 31Q, the rotational resistance due to the second cylinder 31Q increases. Is suppressed. Further, as shown in FIG. 37 (c), even when the crank angle approaches A201 corresponding to the compression top dead center of the third cylinder 31R, an increase in rotational resistance due to the third cylinder 31R is suppressed. . As a result, as shown in FIG. 37 (d), the rotational load of the crankshaft 13 increases only in the vicinity of the angle A1 corresponding to the compression top dead center of the first cylinder 31P. The forward rotation and reverse rotation of the shaft 13 are not hindered. Therefore, the forward rotation alignment operation of FIG. 30 and the reverse rotation start operation of FIG. 31 can be appropriately performed.
 (4)エンジン始動処理
 ECU6は、予めメモリに記憶された制御プログラムに基づいて、エンジン始動処理を行う。本例において、エンジン始動処理は、冷機始動処理、アイドルストップ処理および逆回転始動処理を含む。図38は、冷機始動処理について説明するためのフローチャートである。図39は、アイドルストップ処理について説明するためのフローチャートである。図40は、逆回転始動処理について説明するためのフローチャートである。
(4) Engine start process ECU6 performs an engine start process based on the control program previously memorize | stored in memory. In this example, the engine start process includes a cold start process, an idle stop process, and a reverse rotation start process. FIG. 38 is a flowchart for explaining the cold start process. FIG. 39 is a flowchart for explaining the idle stop process. FIG. 40 is a flowchart for explaining the reverse rotation starting process.
 図3のメインスイッチ40がオンされると、ECU6は、図38の冷機始動処理を開始する。この場合、現在のクランク角がECU6に記憶されていない。まず、ECU6は、連通路210が連通状態となるように補助バルブ駆動部220を制御する(ステップS101)。次に、ECU6は、クランク軸13が正回転するように始動兼発電機14を制御する(ステップS102)。この場合、連通路210が連通状態に維持されているので、第2および第3のシリンダ31Q,31R内の圧力の上昇が抑制される。それにより、クランク軸13の正回転が妨げられない。また、クランク角が第1のシリンダ31Pの圧縮上死点に対応する角度A1(図30)に達しないように、電流センサ44(図3)からの検出信号に基づいて、始動兼発電機14のトルクが調整される。 When the main switch 40 in FIG. 3 is turned on, the ECU 6 starts the cold start process in FIG. In this case, the current crank angle is not stored in the ECU 6. First, the ECU 6 controls the auxiliary valve drive unit 220 so that the communication path 210 is in a communication state (step S101). Next, the ECU 6 controls the starter / generator 14 so that the crankshaft 13 rotates forward (step S102). In this case, since the communication path 210 is maintained in the communication state, an increase in pressure in the second and third cylinders 31Q and 31R is suppressed. Thereby, the forward rotation of the crankshaft 13 is not hindered. Further, the starter / generator 14 is based on the detection signal from the current sensor 44 (FIG. 3) so that the crank angle does not reach the angle A1 (FIG. 30) corresponding to the compression top dead center of the first cylinder 31P. Torque is adjusted.
 次に、ECU6は、ステップS102でクランク軸13の正回転が開始されてから規定時間が経過したか否かを判定する(ステップS103)。規定時間が経過すると、ECU6は、クランク軸13の正回転が停止されるように始動兼発電機14を制御する(ステップS104)。これにより、クランク角が逆回転開始範囲(図30の角度A300)に調整される。その後、ECU6は、連通路210が閉止状態となるように補助バルブ駆動部220を制御し(ステップS105)、冷機始動処理を終了する。 Next, the ECU 6 determines whether or not a specified time has elapsed since the forward rotation of the crankshaft 13 was started in step S102 (step S103). When the specified time has elapsed, the ECU 6 controls the starter / generator 14 so that the forward rotation of the crankshaft 13 is stopped (step S104). As a result, the crank angle is adjusted to the reverse rotation start range (angle A300 in FIG. 30). Thereafter, the ECU 6 controls the auxiliary valve drive unit 220 so that the communication path 210 is closed (step S105), and ends the cold start process.
 一方、上記のアイドルストップ条件が満たされると、ECU6は、図39のアイドルストップ処理を開始する。まず、ECU6は、第1、第2および第3のシリンダ31P,31Q,31Rの各々で燃焼が停止されるように、各インジェクタ19(図3)による燃料の噴射および各点火プラグ18(図3)による点火を停止する(ステップS111)。 On the other hand, when the above-described idle stop condition is satisfied, the ECU 6 starts the idle stop process of FIG. First, the ECU 6 injects fuel from each injector 19 (FIG. 3) and each spark plug 18 (FIG. 3) so that combustion is stopped in each of the first, second and third cylinders 31P, 31Q, 31R. ) Is stopped (step S111).
 次に、ECU6は、図3のクランク角センサ43からの検出信号に基づいて、クランク軸13の回転速度が規定値以下であるか否かを判定する(ステップS112)。この規定値は、アイドリング時におけるクランク軸13の回転速度よりも十分に低い値である、クランク軸13の回転速度が規定値より大きい場合、ECU6は、クランク軸13の回転速度が規定値以下となるまで、ステップS112の処理を繰り返す。 Next, the ECU 6 determines whether or not the rotational speed of the crankshaft 13 is equal to or less than a specified value based on the detection signal from the crank angle sensor 43 in FIG. 3 (step S112). This prescribed value is a value that is sufficiently lower than the rotational speed of the crankshaft 13 during idling. When the rotational speed of the crankshaft 13 is greater than the prescribed value, the ECU 6 determines that the rotational speed of the crankshaft 13 is less than the prescribed value. Until it becomes, the process of step S112 is repeated.
 クランク軸13の回転速度が規定値以下になると、ECU6は、連通路210が連通状態となるように補助バルブ駆動部220を制御する(ステップS113)。この場合、第2および第3のシリンダ31Q,31R内の圧力の上昇が抑制されるので、クランク角が第1のシリンダ31Pの圧縮上死点に対応する角度A1に近づいたときにクランク軸31の回転が停止しやすい。それにより、クランク角が逆回転開始範囲またはその近くにある状態でクランク軸13の回転が停止しやすくなる。 When the rotational speed of the crankshaft 13 becomes equal to or less than the specified value, the ECU 6 controls the auxiliary valve drive unit 220 so that the communication path 210 is in a communication state (step S113). In this case, an increase in pressure in the second and third cylinders 31Q and 31R is suppressed, so that the crankshaft 31 when the crank angle approaches the angle A1 corresponding to the compression top dead center of the first cylinder 31P. The rotation of the is easy to stop. Thereby, the rotation of the crankshaft 13 is easily stopped in a state where the crank angle is at or near the reverse rotation start range.
 次に、ECU6は、クランク角センサ43からの検出信号に基づいて、クランク軸13の回転が停止したか否かを判定する(ステップS114)。クランク軸13の回転が停止していない場合、ECU6は、クランク軸13の回転が停止するまでステップS114の処理を繰り返す。 Next, the ECU 6 determines whether or not the rotation of the crankshaft 13 has stopped based on the detection signal from the crank angle sensor 43 (step S114). If the rotation of the crankshaft 13 has not stopped, the ECU 6 repeats the process of step S114 until the rotation of the crankshaft 13 stops.
 クランク軸13の回転が停止すると、ECU6は、現在のクランク角が逆回転開始範囲にあるか否かを判定する(ステップS115)。現在のクランク角が逆回転開始範囲にない場合、ECU6は、クランク軸13が正回転するように始動兼発電機14を制御する(ステップS116)。図38のステップS102と同様に、連通路210が連通状態に維持されているので、第2および第3のシリンダ31Q,31R内の圧力の上昇が抑制される。それにより、クランク軸13の正回転が妨げられない。 When the rotation of the crankshaft 13 stops, the ECU 6 determines whether or not the current crank angle is in the reverse rotation start range (step S115). If the current crank angle is not within the reverse rotation start range, the ECU 6 controls the starter / generator 14 so that the crankshaft 13 rotates forward (step S116). As in step S102 of FIG. 38, since the communication path 210 is maintained in the communication state, an increase in pressure in the second and third cylinders 31Q and 31R is suppressed. Thereby, the forward rotation of the crankshaft 13 is not hindered.
 次に、ECU6は、クランク角センサ43からの検出信号に基づいて、クランク角が逆回転開始範囲に到ったか否かを判定する(ステップS117)。クランク角が逆回転開始範囲に到るまで、ECU6は、ステップS117の処理を繰り返す。クランク角が逆回転開始範囲に到ると、ECU6は、クランク軸13の正回転が停止されるように始動兼発電機14を制御する(ステップS118)。その後、ECU6は、連通路210が閉止状態となるように補助バルブ駆動部220を制御し(ステップS119)、アイドルストップ処理を終了する。一方、ステップS115において、現在のクランク角が逆回転開始範囲にある場合、ECU6は、正回転位置合わせ動作を行うことなく、連通路210が閉止状態となるように補助バルブ駆動部220を制御し(ステップS119)、アイドルストップ処理を終了する。 Next, the ECU 6 determines whether or not the crank angle has reached the reverse rotation start range based on the detection signal from the crank angle sensor 43 (step S117). The ECU 6 repeats the process of step S117 until the crank angle reaches the reverse rotation start range. When the crank angle reaches the reverse rotation start range, the ECU 6 controls the starter / generator 14 so that the forward rotation of the crankshaft 13 is stopped (step S118). Thereafter, the ECU 6 controls the auxiliary valve drive unit 220 so that the communication path 210 is closed (step S119), and ends the idle stop process. On the other hand, when the current crank angle is in the reverse rotation start range in step S115, the ECU 6 controls the auxiliary valve drive unit 220 so that the communication path 210 is closed without performing the forward rotation alignment operation. (Step S119), the idle stop process is terminated.
 冷機始動処理の終了後、図3のスタータスイッチ41がオンされると、ECU6は、図40の逆回転始動処理を開始する。また、アイドルストップ処理の終了後、上記のアイドルストップ解除条件が満たされると、ECU6は、図40の逆回転始動処理を開始する。 When the starter switch 41 in FIG. 3 is turned on after the cold-start process is completed, the ECU 6 starts the reverse rotation start process in FIG. Further, after the idle stop process ends, when the above-described idle stop release condition is satisfied, the ECU 6 starts the reverse rotation start process of FIG.
 図40の逆回転始動処理では、ECU6は、まず、連通路210が連通状態となるように補助バルブ駆動部220を制御する(ステップS121)。次に、ECU6は、クランク軸13が逆回転するように始動兼発電機14を制御する(ステップS122)。この場合、連通路210が連通状態に維持されているので、第2および第3のシリンダ31Q,31R内の圧力の上昇が抑制される。それにより、クランク軸13の逆回転が妨げられない。 In the reverse rotation starting process of FIG. 40, the ECU 6 first controls the auxiliary valve drive unit 220 so that the communication path 210 is in a communication state (step S121). Next, the ECU 6 controls the starter / generator 14 so that the crankshaft 13 rotates in the reverse direction (step S122). In this case, since the communication path 210 is maintained in the communication state, an increase in pressure in the second and third cylinders 31Q and 31R is suppressed. Thereby, reverse rotation of the crankshaft 13 is not hindered.
 次に、ECU6は、クランク角センサ43からの検出信号に基づいて、クランク角が図31の角度A33に達したか否かを判定する(ステップS123)。クランク角が角度A33に達するまで、ECU6は、ステップS123の処理を繰り返す。クランク角が角度A33に達すると、ECU6は、吸気通路22に燃料が噴射されるように、第1のシリンダ31Pに対応するインジェクタ19を制御する(ステップS124)。次に、ECU6は、電流センサ44からの検出信号に基づいて、モータ電流が予め定められたしきい値に達したか否かを判定する(ステップS125)。モータ電流がしきい値に達していない場合、ECU6は、モータ電流がしきい値に達するまでステップS125の処理を繰り返す。 Next, the ECU 6 determines whether or not the crank angle has reached the angle A33 in FIG. 31 based on the detection signal from the crank angle sensor 43 (step S123). The ECU 6 repeats the process of step S123 until the crank angle reaches the angle A33. When the crank angle reaches the angle A33, the ECU 6 controls the injector 19 corresponding to the first cylinder 31P so that the fuel is injected into the intake passage 22 (step S124). Next, the ECU 6 determines whether or not the motor current has reached a predetermined threshold value based on the detection signal from the current sensor 44 (step S125). If the motor current has not reached the threshold value, the ECU 6 repeats the process of step S125 until the motor current reaches the threshold value.
 モータ電流がしきい値に達すると、ECU6は、クランク軸13の逆回転が停止されるように始動兼発電機14を制御する(ステップS126)。また、ECU6は、第1のシリンダ31P内の混合気に点火されるように、第1のシリンダ31Pに対応する点火プラグ18を制御する(ステップS127)。なお、ステップS127における点火時または点火の直後に、始動兼発電機14によりクランク軸13が正方向に回転駆動されてもよい。 When the motor current reaches the threshold value, the ECU 6 controls the starter / generator 14 so that the reverse rotation of the crankshaft 13 is stopped (step S126). Further, the ECU 6 controls the spark plug 18 corresponding to the first cylinder 31P so that the air-fuel mixture in the first cylinder 31P is ignited (step S127). Note that the crankshaft 13 may be driven to rotate in the forward direction by the starter / generator 14 at the time of ignition in step S127 or immediately after ignition.
 次に、ECU6は、クランク角センサ43からの検出信号に基づいて、ステップS127での点火から一定時間が経過する前にクランク軸13の回転速度が予め定められた初爆判定値に達したか否かを判定する(ステップS128)。ステップS127での点火によって第1のシリンダ31P内で混合気が適切に燃焼された場合には、クランク角が第1のシリンダ31Pの最初の圧縮上死点に対応する角度A2に到る前に、クランク軸13の回転速度が初爆判定値に達する。 Next, based on the detection signal from the crank angle sensor 43, the ECU 6 determines whether the rotational speed of the crankshaft 13 has reached a predetermined initial explosion determination value before a predetermined time has elapsed since ignition in step S127. It is determined whether or not (step S128). When the air-fuel mixture is properly combusted in the first cylinder 31P by ignition in step S127, before the crank angle reaches the angle A2 corresponding to the first compression top dead center of the first cylinder 31P. The rotational speed of the crankshaft 13 reaches the initial explosion determination value.
 ステップS128において、一定時間内にクランク軸13の回転速度が初爆判定値に達した場合、ECU6は、連通路210が閉止状態となるように補助バルブ駆動部220を制御し(ステップS129)、逆回転始動処理を終了する。 In step S128, when the rotational speed of the crankshaft 13 reaches the initial explosion determination value within a predetermined time, the ECU 6 controls the auxiliary valve drive unit 220 so that the communication path 210 is closed (step S129). The reverse rotation start process is terminated.
 一方、ステップS127での点火によって第1のシリンダ31P内で混合気が適切に燃焼されなかった場合、クランク軸13の回転速度が初爆判定値に達しない。この場合、クランク角が角度A2を超えることなく、クランク軸13が第1のシリンダ31P内の圧力に起因する回転抵抗によって回転停止または逆回転する。本例では、このように混合気が適切に燃焼されなかった場合、逆回転始動動作が繰り返し行われる。 On the other hand, when the air-fuel mixture is not properly combusted in the first cylinder 31P by the ignition in step S127, the rotational speed of the crankshaft 13 does not reach the initial explosion determination value. In this case, the crankshaft 13 stops rotating or reversely rotates due to the rotational resistance caused by the pressure in the first cylinder 31P without the crank angle exceeding the angle A2. In this example, when the air-fuel mixture is not properly combusted in this way, the reverse rotation starting operation is repeatedly performed.
 ステップS128において、一定時間内にクランク軸13の回転速度が初爆判定値に達しなかった場合、ECU6は、クランク軸13が回転停止または逆回転しているか否かを判定する(ステップS130)。クランク軸13が回転停止または逆回転していない場合、クランク軸13の正回転が継続しているので、ECU6は、クランク軸13が回転停止または逆回転するまでステップS130の処理を繰り返す。 In step S128, when the rotation speed of the crankshaft 13 does not reach the initial explosion determination value within a predetermined time, the ECU 6 determines whether the crankshaft 13 is stopped or reversely rotated (step S130). When the crankshaft 13 is not stopped or reversely rotated, the forward rotation of the crankshaft 13 is continued, so the ECU 6 repeats the process of step S130 until the crankshaft 13 stops rotating or reversely rotates.
 クランク軸13が回転停止または逆回転すると、ECU6は、逆回転始動動作が規定回数繰り返されたか否かを判定する(ステップS131)。逆回転始動動作が規定回数繰り返されていない場合、ECU6は、ステップS122に戻る。逆回転始動動作が規定回数繰り返されている場合、エンジンシステム200に異常が生じている可能性がある。エンジンシステム200に異常としては、例えば、エンジンユニットEUの動作異常または各種センサの故障等がある。そのため、ECU6は、警告を発する(ステップS132)。具体的には、警告ランプ等によってエンジンシステム200に異常が生じている可能性が運転者に伝えられる。その後、ECU6は、連通路210が閉止状態となるように補助バルブ駆動部220を制御し(ステップS129)、逆回転始動処理を終了する。 When the crankshaft 13 stops rotating or reversely rotates, the ECU 6 determines whether or not the reverse rotation starting operation has been repeated a specified number of times (step S131). If the reverse rotation starting operation has not been repeated the specified number of times, the ECU 6 returns to step S122. If the reverse rotation starting operation is repeated a specified number of times, there is a possibility that an abnormality has occurred in the engine system 200. Examples of the abnormality in the engine system 200 include an abnormal operation of the engine unit EU or failure of various sensors. Therefore, the ECU 6 issues a warning (step S132). Specifically, a warning lamp or the like informs the driver that there is a possibility that the engine system 200 is abnormal. Thereafter, the ECU 6 controls the auxiliary valve drive unit 220 so that the communication path 210 is closed (step S129), and ends the reverse rotation starting process.
 図9および図10の例、または図20の例においても、図40の例と同様に、クランク軸13の回転速度に基づいて、第1のシリンダ31A内で混合気が適切に燃焼されたか否かの判定が行われてよい。また、混合気が適切に燃焼されていないと判定された場合に、逆回転始動動作が繰り返し行われてもよい。 In the example of FIGS. 9 and 10 or the example of FIG. 20 as well, as in the example of FIG. 40, whether or not the air-fuel mixture is properly combusted in the first cylinder 31A based on the rotational speed of the crankshaft 13 is determined. Such a determination may be made. Further, when it is determined that the air-fuel mixture is not properly burned, the reverse rotation start operation may be repeatedly performed.
 (5)効果
 本実施の形態に係るエンジンシステム200においては、正回転位置合わせ動作中および逆回転始動動作中にデコンプ機構DEaにより第2および第3のシリンダ31Q,31R内の圧力の上昇が抑制される。それにより、第2および第3のシリンダ31Q,31R内の圧力の上昇に起因するクランク軸13の回転抵抗の増大が抑制される。そのため、クランク軸13の回転が妨げられることなく正回転位置合わせ動作および逆回転始動動作が円滑に行われる。したがって、第1のシリンダ31Pで混合気を適切に燃焼させることができ、エンジン10を適切に始動させることができる。また、始動兼発電機14に要求されるトルクが小さくなるので、始動兼発電機14および図示しないバッテリの小型化が可能となる。
(5) Effect In engine system 200 according to the present embodiment, the decompression mechanism DEa suppresses an increase in pressure in second and third cylinders 31Q and 31R during the forward rotation alignment operation and the reverse rotation start operation. Is done. As a result, an increase in rotational resistance of the crankshaft 13 due to an increase in pressure in the second and third cylinders 31Q and 31R is suppressed. Therefore, the forward rotation alignment operation and the reverse rotation start operation are smoothly performed without hindering the rotation of the crankshaft 13. Therefore, the air-fuel mixture can be appropriately combusted in the first cylinder 31P, and the engine 10 can be appropriately started. Further, since the torque required for the starter / generator 14 is reduced, the starter / generator 14 and a battery (not shown) can be reduced in size.
 また、本実施の形態では、連通路210を通して第2のシリンダ31Qと第3のシリンダ31Rとが連通することにより、第2および第3のシリンダ31Q,31R内の圧力の上昇が抑制される。それにより、簡単な構成でかつ簡単な制御で、第2および第3のシリンダ31Q,31R内の圧力の上昇に起因するクランク軸13の回転抵抗の増大を抑制することができる。 Further, in the present embodiment, the second cylinder 31Q and the third cylinder 31R communicate with each other through the communication path 210, thereby suppressing an increase in pressure in the second and third cylinders 31Q and 31R. Thereby, it is possible to suppress an increase in rotational resistance of the crankshaft 13 due to an increase in pressure in the second and third cylinders 31Q and 31R with a simple configuration and simple control.
 また、本実施の形態では、補助バルブ212a,212bが一体的に駆動されることにより、連通路210の開口211a,211bが開閉される。それにより、簡単な構成で適切に連通路210を連通状態と閉止状態とに切り替えることができる。 In this embodiment, the auxiliary valves 212a and 212b are integrally driven to open and close the openings 211a and 211b of the communication path 210. Thereby, the communication path 210 can be appropriately switched between the communication state and the closed state with a simple configuration.
 (6)デコンプ機構の他の例
 上記第3の実施の形態では、正回転位置合わせ動作中および逆回転始動動作中に連通路210が連通状態に維持されるが、本発明はこれに限らず、一定の期間にのみ連通路210が連通状態とされてもよい。例えば、第2および第3のシリンダ31Q,31Rの各々で吸気口21および排気口23が閉じられかつピストン11が上昇する期間にのみ、連通路210が連通状態とされてもよい。
(6) Other Examples of Decompression Mechanism In the third embodiment, the communication path 210 is maintained in the communication state during the forward rotation alignment operation and the reverse rotation start operation, but the present invention is not limited to this. The communication path 210 may be in a communication state only during a certain period. For example, the communication path 210 may be in a communication state only during a period in which the intake port 21 and the exhaust port 23 are closed and the piston 11 is raised in each of the second and third cylinders 31Q and 31R.
 また、上記第3の実施の形態では、連通路210を通して第2のシリンダ31Qと第3のシリンダ31Rとが連通することにより第2および第3のシリンダ31Q,31R内の圧力の上昇が抑制されるが、本発明はこれに限らない。例えば、第2のシリンダ31Qに対応する排気バルブ16がリフトされることにより第2のシリンダ31Q内の圧力が低下され、第3のシリンダ31Rに対応する排気バルブ16がリフトされることにより第3のシリンダ31R内の圧力が低下されてもよい。この場合、図22~図24と同様の構成を有するデコンプ機構が第2および第3のシリンダ31Q,31Rの各々に対応するように設けられてもよい。 In the third embodiment, the second cylinder 31Q and the third cylinder 31R communicate with each other through the communication path 210, thereby suppressing an increase in pressure in the second and third cylinders 31Q and 31R. However, the present invention is not limited to this. For example, when the exhaust valve 16 corresponding to the second cylinder 31Q is lifted, the pressure in the second cylinder 31Q is reduced, and when the exhaust valve 16 corresponding to the third cylinder 31R is lifted, the third The pressure in the cylinder 31R may be reduced. In this case, a decompression mechanism having the same configuration as in FIGS. 22 to 24 may be provided to correspond to each of the second and third cylinders 31Q and 31R.
 [E]他の実施の形態
 上記第1~第3の実施の形態は、本発明を2気筒エンジンおよび3気筒エンジンに適用した例であるが、4気筒以上の多気筒エンジンに本発明を適用してもよい。この場合、逆回転始動動作において、一のシリンダ内で混合気が燃焼され、逆回転始動動作を含むエンジン始動動作において、一または他のシリンダ内の圧力の上昇に起因するクランク軸の回転抵抗の増大が抑制されるように、一または他のシリンダ内の圧力が低下される。それにより、エンジンを適切に始動することができる。
[E] Other Embodiments The first to third embodiments described above are examples in which the present invention is applied to a two-cylinder engine and a three-cylinder engine. However, the present invention is applied to a multi-cylinder engine having four or more cylinders. May be. In this case, in the reverse rotation start operation, the air-fuel mixture is combusted in one cylinder, and in the engine start operation including the reverse rotation start operation, the rotation resistance of the crankshaft caused by the pressure increase in one or the other cylinder The pressure in one or the other cylinder is reduced so that the increase is suppressed. Thereby, the engine can be started appropriately.
 上記実施の形態は、本発明を自動二輪車に適用した例であるが、これに限らず、自動三輪車もしくはATV(All Terrain Vehicle;不整地走行車両)等の他の鞍乗り型車両、または自動四輪車等の他の車両に本発明を適用してもよい。 The above embodiment is an example in which the present invention is applied to a motorcycle. However, the present invention is not limited to this, and other saddle-type vehicles such as an automobile tricycle or an ATV (All Terrain Vehicle) or an automobile The present invention may be applied to other vehicles such as a wheeled vehicle.
 [F]請求項の各構成要素と実施の形態の各要素との対応
 以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明するが、本発明は下記の例に限定されない。
[F] Correspondence between Each Component in Claim and Each Element in Embodiment The following describes an example of correspondence between each component in the claim and each element in the embodiment. It is not limited to.
 上記実施の形態では、エンジンシステム200がエンジンシステムの例であり、エンジンユニットEUがエンジンユニットの例であり、エンジン10がエンジンの例であり、第1のシリンダ31A,31Pが第1の気筒の例であり、第2のシリンダ31B,31Qが第2の気筒の例であり、第3のシリンダ31Rが第3の気筒の例であり、始動兼発電機14が回転駆動部の例であり、ECU6が制御部の例であり、バルブ駆動部17が開閉機構の例であり、デコンプ機構DE,DEaが減圧機構の例であり、インジェクタ19が燃料噴射装置の例であり、点火プラグ18が点火装置の例である。また、連通路210が連通路の例であり、補助バルブ212a,212bおよび補助バルブ駆動部220が連通路開閉機構の例であり、開口211aが第1の開口の例であり、開口211bが第2の開口の例であり、補助バルブ212aが第1のバルブの例であり、補助バルブ212bが第2のバルブの例であり、補助バルブ駆動部220が連通用駆動部の例である。また、自動二輪車100が車両の例であり、後輪7が駆動輪の例であり、車体1が本体部の例である。 In the above embodiment, the engine system 200 is an example of an engine system, the engine unit EU is an example of an engine unit, the engine 10 is an example of an engine, and the first cylinders 31A and 31P are first cylinders. The second cylinders 31B and 31Q are examples of the second cylinder, the third cylinder 31R is an example of the third cylinder, and the starter / generator 14 is an example of the rotation drive unit. The ECU 6 is an example of a control unit, the valve drive unit 17 is an example of an opening / closing mechanism, the decompression mechanisms DE and DEa are examples of a pressure reducing mechanism, the injector 19 is an example of a fuel injection device, and the spark plug 18 is ignited. It is an example of an apparatus. The communication path 210 is an example of a communication path, the auxiliary valves 212a and 212b and the auxiliary valve drive unit 220 are examples of a communication path opening / closing mechanism, the opening 211a is an example of a first opening, and the opening 211b is a first opening. 2, the auxiliary valve 212 a is an example of the first valve, the auxiliary valve 212 b is an example of the second valve, and the auxiliary valve driving unit 220 is an example of the communication driving unit. The motorcycle 100 is an example of a vehicle, the rear wheel 7 is an example of a driving wheel, and the vehicle body 1 is an example of a main body.
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。 As the constituent elements of the claims, various other elements having configurations or functions described in the claims can be used.
 本発明は、種々のエンジンシステムおよび車両に適用可能である。 The present invention is applicable to various engine systems and vehicles.

Claims (16)

  1. 複数の気筒を有するエンジンと、
     前記エンジンのクランク軸を正方向および逆方向に回転させる回転駆動部と、
     少なくとも逆回転始動動作を含むエンジン始動動作が行われるように前記エンジンおよび前記回転駆動部を制御する制御部とを備え、
     前記複数の気筒は、第1および第2の気筒を含み、
     前記逆回転始動動作では、前記クランク軸が逆方向に回転されつつ前記第1の気筒に混合気が導入され、前記第1の気筒内で混合気が燃焼されることにより前記クランク軸が正方向に駆動され、
     前記エンジンは、前記第1および第2の気筒のうち少なくとも一方の気筒内の圧力を低下させる減圧機構を含み、
     前記減圧機構は、前記エンジン始動動作において、前記少なくとも一方の気筒内の圧力の上昇に起因する前記クランク軸の回転抵抗の増大が抑制されるように前記少なくとも一方の気筒内の圧力を低下させる、エンジンシステム。
    An engine having a plurality of cylinders;
    A rotation drive unit for rotating the crankshaft of the engine in a forward direction and a reverse direction;
    A control unit that controls the engine and the rotation drive unit so that an engine start operation including at least a reverse rotation start operation is performed,
    The plurality of cylinders include first and second cylinders;
    In the reverse rotation starting operation, the air-fuel mixture is introduced into the first cylinder while the crankshaft is rotated in the reverse direction, and the air-fuel mixture is combusted in the first cylinder so that the crankshaft is in the forward direction. Driven by
    The engine includes a pressure reducing mechanism that reduces a pressure in at least one of the first and second cylinders,
    The pressure reducing mechanism reduces the pressure in the at least one cylinder so that an increase in rotational resistance of the crankshaft due to an increase in pressure in the at least one cylinder is suppressed in the engine starting operation. Engine system.
  2. 前記減圧機構は、前記逆回転始動動作において、前記少なくとも一方の気筒内の圧力を低下させる、請求項1記載のエンジンシステム。 The engine system according to claim 1, wherein the pressure reducing mechanism reduces the pressure in the at least one cylinder in the reverse rotation starting operation.
  3. 前記エンジンは、前記第1および第2の気筒の各々の吸気口および排気口を開閉する開閉機構をさらに含み、
     通常運転時における前記第1の気筒の吸気行程、圧縮行程、膨張行程および排気行程にそれぞれ対応するクランク角の範囲が第1の吸気範囲、第1の圧縮範囲、第1の膨張範囲および第1の排気範囲と定義され、通常運転時における第2の気筒の吸気行程、圧縮行程、膨張行程および排気行程にそれぞれ対応するクランク角の範囲が第2の吸気範囲、第2の圧縮範囲、第2の膨張範囲および第2の排気範囲と定義され、
     前記第1の排気範囲は、始動吸気範囲を含み、前記第1の膨張範囲は、始動点火範囲を含み、
     前記回転駆動部は、前記逆回転始動動作において、クランク角が前記始動吸気範囲を超えて前記始動点火範囲に到るように前記クランク軸を逆回転させ、
     前記開閉機構は、前記逆回転始動動作において、クランク角が前記始動吸気範囲にあるときに前記第1の気筒の吸気口を開き、
     前記第1の気筒に対応する燃料噴射装置は、前記逆回転始動動作において、クランク角が前記始動吸気範囲にあるときに前記第1の気筒内に混合気が導入されるように、前記第1の気筒に空気を導く吸気通路に燃料を噴射し、
     前記第1の気筒に対応する点火装置は、前記逆回転始動動作において、クランク角が前記始動点火範囲にあるときに前記第1の気筒内の混合気に点火し、
     前記第2の膨張範囲は、始動減圧範囲を含み、
     前記減圧機構は、前記逆回転始動動作において、クランク角が前記始動減圧範囲にあるときに前記第2の気筒内の圧力を低下させる、請求項2記載のエンジンシステム。
    The engine further includes an opening / closing mechanism that opens and closes an intake port and an exhaust port of each of the first and second cylinders,
    The crank angle ranges corresponding to the intake stroke, compression stroke, expansion stroke, and exhaust stroke of the first cylinder during normal operation are the first intake range, the first compression range, the first expansion range, and the first, respectively. The range of the crank angle corresponding to the intake stroke, compression stroke, expansion stroke, and exhaust stroke of the second cylinder during normal operation is defined as the second intake range, the second compression range, and the second compression range, respectively. Defined as an expansion range and a second exhaust range,
    The first exhaust range includes a start-up intake range; the first expansion range includes a start-up ignition range;
    The rotation drive unit reversely rotates the crankshaft so that a crank angle exceeds the start intake air range and reaches the start ignition range in the reverse rotation start operation,
    The opening / closing mechanism opens the intake port of the first cylinder when the crank angle is in the start intake range in the reverse rotation start operation,
    The fuel injection device corresponding to the first cylinder is configured such that, in the reverse rotation start operation, the air-fuel mixture is introduced into the first cylinder when a crank angle is in the start intake air range. Fuel is injected into the intake passage that leads air to
    The ignition device corresponding to the first cylinder ignites the air-fuel mixture in the first cylinder when the crank angle is in the start ignition range in the reverse rotation start operation,
    The second expansion range includes a starting decompression range;
    3. The engine system according to claim 2, wherein, in the reverse rotation start operation, the pressure reduction mechanism reduces the pressure in the second cylinder when a crank angle is in the start pressure reduction range.
  4. 前記第1の圧縮範囲および前記第1の吸気範囲の少なくとも一方は、逆回転開始範囲を含み、
     前記エンジン始動動作は、前記逆回転始動動作の前に前記クランク軸を正方向に回転させることによりクランク角を前記逆回転開始範囲に調整する正回転位置合わせ動作をさらに含む、請求項3記載のエンジンシステム。
    At least one of the first compression range and the first intake range includes a reverse rotation start range,
    The engine start operation further includes a forward rotation alignment operation of adjusting a crank angle to the reverse rotation start range by rotating the crankshaft in a forward direction before the reverse rotation start operation. Engine system.
  5. 前記第2の圧縮範囲は、位置合わせ減圧範囲を含み、
     前記減圧機構は、前記正回転位置合わせ動作において、クランク角が前記位置合わせ減圧範囲にあるときに前記第2の気筒内の圧力を低下させる、請求項4記載のエンジンシステム。
    The second compression range includes an alignment decompression range;
    5. The engine system according to claim 4, wherein the decompression mechanism reduces the pressure in the second cylinder when a crank angle is in the alignment decompression range in the forward rotation alignment operation.
  6. 前記第1の気筒においてピストンが圧縮上死点に達するときのクランク角と、前記第2の気筒においてピストンが圧縮上死点に達するときのクランク角との差が360度である、請求項3~5のいずれか一項に記載のエンジンシステム。 The difference between the crank angle at which the piston reaches compression top dead center in the first cylinder and the crank angle at which the piston reaches compression top dead center in the second cylinder is 360 degrees. The engine system according to any one of 1 to 5.
  7. 前記第2の気筒に対応する燃料噴射装置は、前記逆回転始動動作において、クランク角が前記始動吸気範囲を超えた後であって前記始動点火範囲に到る前に、前記第2の気筒に空気を導く吸気通路に燃料を噴射する、請求項6記載のエンジンシステム。 The fuel injection device corresponding to the second cylinder is provided in the second cylinder in the reverse rotation start operation after the crank angle exceeds the start intake range and before the start ignition range. The engine system according to claim 6, wherein fuel is injected into an intake passage that guides air.
  8. 前記第1の気筒においてピストンが圧縮上死点に達するときのクランク角と、前記第2の気筒においてピストンが圧縮上死点に達するときのクランク角との差が360度以外の角度である、請求項3~5のいずれか一項に記載のエンジンシステム。 The difference between the crank angle when the piston reaches compression top dead center in the first cylinder and the crank angle when the piston reaches compression top dead center in the second cylinder is an angle other than 360 degrees. The engine system according to any one of claims 3 to 5.
  9. 前記エンジン始動動作は、前記逆回転始動動作の前に前記クランク軸を正方向に回転させることによりクランク角を前記逆回転開始範囲に調整する正回転位置合わせ動作をさらに含み、
     前記減圧機構は、前記正回転位置合わせ動作において、前記第1および第2の気筒のうち少なくとも一方の気筒内の圧力を低下させる、請求項1記載のエンジンシステム。
    The engine start operation further includes a forward rotation alignment operation for adjusting a crank angle to the reverse rotation start range by rotating the crankshaft in the forward direction before the reverse rotation start operation,
    2. The engine system according to claim 1, wherein the pressure reducing mechanism reduces a pressure in at least one of the first and second cylinders in the forward rotation alignment operation.
  10. 前記エンジンは、前記第1および第2の気筒の各々の吸気口および排気口を開閉する開閉機構をさらに含み、
     通常運転時における前記第1の気筒の吸気行程、圧縮行程、膨張行程および排気行程にそれぞれ対応するクランク角の範囲が第1の吸気範囲、第1の圧縮範囲、第1の膨張範囲および第1の排気範囲と定義され、通常運転時における第2の気筒の吸気行程、圧縮行程、膨張行程および排気行程にそれぞれ対応するクランク角の範囲が第2の吸気範囲、第2の圧縮範囲、第2の膨張範囲および第2の排気範囲と定義され、
     前記第1の吸気範囲は、逆回転開始範囲を含み、前記第1の排気範囲は、始動吸気範囲を含み、前記第1の膨張範囲は、始動点火範囲を含み、
     前記回転駆動部は、前記正回転位置合わせ動作において、クランク角が前記逆回転開始範囲に到るように前記クランク軸を正回転させ、前記逆回転始動動作において、クランク角が前記逆回転開始範囲から前記始動吸気範囲を超えて前記始動点火範囲に到るように前記クランク軸を逆回転させ、
     前記開閉機構は、前記逆回転始動動作において、クランク角が前記始動吸気範囲にあるときに前記第1の気筒の吸気口を開き、
     前記第1の気筒に対応する燃料噴射装置は、前記逆回転始動動作において、クランク角が前記始動吸気範囲にあるときに前記第1の気筒内に混合気が導入されるように、前記第1の気筒に空気を導く吸気通路に燃料を噴射し、
     前記第1の気筒に対応する点火装置は、前記逆回転始動動作において、クランク角が前記始動点火範囲にあるときに前記第1の気筒内の混合気に点火し、
     第1の圧縮範囲は、位置合わせ減圧範囲を含み、
     前記減圧機構は、前記正回転位置合わせ動作において、クランク角が前記位置合わせ減圧範囲にあるときに前記第1の気筒内の圧力を低下させる、請求項9記載のエンジンシステム。
    The engine further includes an opening / closing mechanism that opens and closes an intake port and an exhaust port of each of the first and second cylinders,
    The crank angle ranges corresponding to the intake stroke, compression stroke, expansion stroke, and exhaust stroke of the first cylinder during normal operation are the first intake range, the first compression range, the first expansion range, and the first, respectively. The range of the crank angle corresponding to the intake stroke, compression stroke, expansion stroke, and exhaust stroke of the second cylinder during normal operation is defined as the second intake range, the second compression range, and the second compression range, respectively. Defined as an expansion range and a second exhaust range,
    The first intake range includes a reverse rotation start range, the first exhaust range includes a start intake range, the first expansion range includes a start ignition range,
    The rotation driving unit rotates the crankshaft forward so that the crank angle reaches the reverse rotation start range in the forward rotation alignment operation, and the crank angle is in the reverse rotation start range in the reverse rotation start operation. The crankshaft is reversely rotated so as to reach the start ignition range beyond the start intake air range,
    The opening / closing mechanism opens the intake port of the first cylinder when the crank angle is in the start intake range in the reverse rotation start operation,
    The fuel injection device corresponding to the first cylinder is configured such that, in the reverse rotation start operation, the air-fuel mixture is introduced into the first cylinder when a crank angle is in the start intake air range. Fuel is injected into the intake passage that leads air to
    The ignition device corresponding to the first cylinder ignites the air-fuel mixture in the first cylinder when the crank angle is in the start ignition range in the reverse rotation start operation,
    The first compression range includes an alignment decompression range;
    10. The engine system according to claim 9, wherein the pressure reducing mechanism reduces the pressure in the first cylinder when a crank angle is in the alignment pressure reducing range in the forward rotation alignment operation.
  11. 前記第1の吸気範囲の少なくとも一部は、前記第2の圧縮範囲内にあり、
     前記逆回転始動動作において、クランク角が前記第1および第2の気筒の圧縮上死点に対応する角度を経由することなく前記始動点火範囲に到る、請求項10記載のエンジンシステム。
    At least a portion of the first intake range is within the second compression range;
    The engine system according to claim 10, wherein, in the reverse rotation starting operation, a crank angle reaches the start ignition range without passing through an angle corresponding to a compression top dead center of the first and second cylinders.
  12. 前記複数の気筒は第3の気筒をさらに含み、
     前記減圧機構は、前記逆回転動作において、前記第2および第3の気筒内の圧力を低下させる、請求項2記載のエンジンシステム。
    The plurality of cylinders further includes a third cylinder;
    The engine system according to claim 2, wherein the pressure reducing mechanism reduces the pressure in the second and third cylinders in the reverse rotation operation.
  13. 前記エンジン始動動作は、逆回転始動動作の前に前記クランク軸を正方向に回転させることによりクランク角を予め定められた逆回転開始範囲に調整する正回転位置合わせ動作を含み、
     前記減圧機構は、前記正回転位置合わせ動作において、前記第2および第3の気筒内の圧力を低下させる、請求項12記載のエンジンシステム。
    The engine start operation includes a forward rotation alignment operation that adjusts the crank angle to a predetermined reverse rotation start range by rotating the crankshaft in the forward direction before the reverse rotation start operation,
    The engine system according to claim 12, wherein the pressure reducing mechanism reduces the pressure in the second and third cylinders in the forward rotation alignment operation.
  14. 前記減圧機構は、
     前記第2の気筒と前記第3の気筒とを連通させる連通路と、
     前記連通路を連通状態と閉止状態とに切り替える連通路開閉機構とを含み、
     前記連通路開閉機構は、前記連通路を連通状態にすることにより、前記第2および第3の気筒内の圧力を低下させる、請求項12または13記載のエンジンシステム。
    The decompression mechanism is
    A communication path for communicating the second cylinder and the third cylinder;
    A communication path opening and closing mechanism that switches the communication path between a communication state and a closed state;
    The engine system according to claim 12 or 13, wherein the communication path opening / closing mechanism reduces the pressure in the second and third cylinders by bringing the communication path into a communication state.
  15. 前記連通路は、前記第2の気筒において開口する第1の開口および前記第3の気筒において開口する第2の開口を有し、
     前記連通路開閉機構は、
     前記第1の開口を開閉する第1のバルブと、
     前記第2の開口を開閉する第2のバルブと、
     前記第1および第2のバルブを一体的に駆動する連通用駆動部とを含み、
     前記連通用駆動部は、前記第1および第2のバルブにより前記第1および第2の開口を開くことにより前記第2および第3の気筒内の圧力を低下させる、請求項14記載のエンジンシステム。
    The communication path has a first opening that opens in the second cylinder and a second opening that opens in the third cylinder;
    The communication path opening and closing mechanism is
    A first valve for opening and closing the first opening;
    A second valve for opening and closing the second opening;
    A communication drive unit that integrally drives the first and second valves;
    The engine system according to claim 14, wherein the communication drive unit reduces the pressure in the second and third cylinders by opening the first and second openings by the first and second valves. .
  16. 駆動輪を有する本体部と、
     前記駆動輪を回転させるための動力を発生する請求項1~15のいずれか一項に記載のエンジンシステムとを備えた、車両。
    A main body having a drive wheel;
    A vehicle comprising the engine system according to any one of claims 1 to 15, which generates power for rotating the drive wheels.
PCT/JP2015/003330 2014-09-30 2015-07-02 Engine system and vehicle WO2016051629A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15846146.7A EP3203056A4 (en) 2014-09-30 2015-07-02 Engine system and vehicle
TW104128526A TWI610021B (en) 2014-09-30 2015-08-28 Engine system and vehicle

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014199952 2014-09-30
JP2014-199952 2014-09-30
JP2014-199953 2014-09-30
JP2014199953 2014-09-30
JP2015-087874 2015-04-22
JP2015087874 2015-04-22

Publications (1)

Publication Number Publication Date
WO2016051629A1 true WO2016051629A1 (en) 2016-04-07

Family

ID=55629709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003330 WO2016051629A1 (en) 2014-09-30 2015-07-02 Engine system and vehicle

Country Status (3)

Country Link
EP (1) EP3203056A4 (en)
TW (1) TWI610021B (en)
WO (1) WO2016051629A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188144A1 (en) * 2016-04-25 2017-11-02 ヤマハ発動機株式会社 Engine control device
CN112135965A (en) * 2019-02-14 2020-12-25 株式会社石川能源研究 Power unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024089335A (en) * 2022-12-21 2024-07-03 カワサキモータース株式会社 Internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332938A (en) * 2001-05-09 2002-11-22 Honda Motor Co Ltd Engine starter
JP2005180380A (en) * 2003-12-22 2005-07-07 Toyota Motor Corp Device and method for engine start control, and vehicle mounting the same
JP2008202557A (en) * 2007-02-22 2008-09-04 Kokusan Denki Co Ltd Engine controlling method and controlling device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261610A (en) * 1986-05-09 1987-11-13 Honda Motor Co Ltd Automatic decompression device for engine
JP4346262B2 (en) * 2001-07-25 2009-10-21 本田技研工業株式会社 Method and apparatus for starting internal combustion engine
TW535845U (en) * 2001-12-12 2003-06-01 Hsing Hua Electric Machinery C Forward/reverse rotation starting apparatus for engine
JP2007270808A (en) * 2006-03-31 2007-10-18 Mazda Motor Corp Control device of multicylinder 4-cycle engine
JP2014077405A (en) * 2012-10-11 2014-05-01 Yamaha Motor Co Ltd Engine system and saddle riding vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332938A (en) * 2001-05-09 2002-11-22 Honda Motor Co Ltd Engine starter
JP2005180380A (en) * 2003-12-22 2005-07-07 Toyota Motor Corp Device and method for engine start control, and vehicle mounting the same
JP2008202557A (en) * 2007-02-22 2008-09-04 Kokusan Denki Co Ltd Engine controlling method and controlling device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3203056A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188144A1 (en) * 2016-04-25 2017-11-02 ヤマハ発動機株式会社 Engine control device
CN112135965A (en) * 2019-02-14 2020-12-25 株式会社石川能源研究 Power unit

Also Published As

Publication number Publication date
TWI610021B (en) 2018-01-01
EP3203056A4 (en) 2018-06-20
TW201619495A (en) 2016-06-01
EP3203056A1 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
US7278383B2 (en) Internal combustion engine with variable compression ratio and valve characteristics
KR100935708B1 (en) Apparatus for and method of controlling a starting operation to restart an engine
JP6135580B2 (en) Engine control device
US10024248B2 (en) Engine control device
WO2016051629A1 (en) Engine system and vehicle
TWI596274B (en) Engine system and straddled vehicle
TWI544140B (en) Engine system and straddle-type vehicle
TWI553218B (en) Engine system and saddle-straddling type motor vehicle
US9885292B2 (en) Control device for compression ratio variable internal combustion engine
JP2009030502A (en) Control device of engine for vehicle
JP4367646B2 (en) Engine starter
JP4765379B2 (en) Control device for internal combustion engine
TW201608114A (en) Engine system and straddle-type vehicle
TWI586889B (en) Engine system and straddled vehicle
TWI615545B (en) Engine system and straddle-type vehicle
JP6575579B2 (en) Engine start control device
JP5040740B2 (en) Variable valve control system for engine
EP3309376A1 (en) Engine system and vehicle
JP2013113141A (en) Control system of vehicle
JP2009228638A (en) Control device of engine
TW201512517A (en) Engine system and saddle-straddling type motor vehicle
JP2008095648A (en) Control device for engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846146

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015846146

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015846146

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP