WO2016151895A1 - Exhaust turbine device and supercharger - Google Patents

Exhaust turbine device and supercharger Download PDF

Info

Publication number
WO2016151895A1
WO2016151895A1 PCT/JP2015/076967 JP2015076967W WO2016151895A1 WO 2016151895 A1 WO2016151895 A1 WO 2016151895A1 JP 2015076967 W JP2015076967 W JP 2015076967W WO 2016151895 A1 WO2016151895 A1 WO 2016151895A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
turbine wheel
exhaust
rotation axis
shelf
Prior art date
Application number
PCT/JP2015/076967
Other languages
French (fr)
Japanese (ja)
Inventor
文人 平谷
横山 隆雄
康弘 和田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2016151895A1 publication Critical patent/WO2016151895A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00

Definitions

  • the present disclosure relates to an exhaust turbine apparatus and a supercharger including the exhaust turbine apparatus.
  • Patent Document 1 in an exhaust turbine apparatus including a turbine wheel having a rear surface shape in which the outer diameter side region is thin and the inner diameter side region is thick, the turbine wheel rear surface and a stationary wall surface facing the turbine wheel are provided.
  • the structure which formed the clearance gap formed in between small in the whole radial direction of a turbine wheel is disclosed.
  • the object of the present invention is to provide a simple and low-cost configuration with a turbine wheel rear surface and a stationary wall surface facing the turbine wheel rear surface. It is an object to provide an exhaust turbine apparatus capable of suppressing the amount of exhaust gas leaking from a gap formed between the two and a supercharger including the exhaust turbine apparatus.
  • An exhaust turbine apparatus includes: A rotation axis; A turbine wheel provided at one end of the rotating shaft, the turbine wheel having a plurality of turbine blades provided at intervals in a circumferential direction of the turbine wheel; A stationary wall surface facing the rear surface of the turbine wheel, An exhaust turbine apparatus configured to allow exhaust gas to flow into the turbine blade from a direction intersecting the rotation axis of the rotation shaft, The turbine wheel is formed on the rear surface of the turbine wheel so as to be recessed toward the tip side of the turbine wheel from a radial line passing through an outer peripheral edge of the turbine wheel and extending along a radial direction of the turbine wheel.
  • the stationary wall surface is configured to include a seal fin that forms a labyrinth seal portion at a position facing the shelf surface.
  • a so-called labyrinth seal is formed by forming a flat shelf surface on the rear surface of the turbine wheel and forming a seal fin at a position facing the shelf surface on the stationary wall surface.
  • the flow behind the turbine wheel is sealed. Therefore, unlike Patent Document 1, it is not necessary to form the gap small over the entire radial direction of the turbine wheel, and the sealing performance on the rear surface of the turbine wheel can be improved with a simple and low-cost configuration. As a result, it is possible to suppress a decrease in turbine efficiency due to exhaust gas leakage and carbonization of the lubricating oil supplied to the bearing accommodated in the bearing housing.
  • the recess has two shelf surfaces, a first shelf surface and a second shelf surface formed at a position closer to the rotation axis than the first shelf surface,
  • the stationary wall surface has a seal fin that forms a labyrinth seal at a position facing each of the first shelf surface and the second shelf surface.
  • the expansion space defined between the seal fins facing the first shelf surface and the seal fins facing the second shelf surface is along the radial direction of the turbine wheel. It is formed to extend. Since the centrifugal force acts on the gas in the expansion space toward the outside in the radial direction as the turbine wheel rotates, the action of this centrifugal force causes the exhaust gas to move from the outside in the radial direction to the inside in the expansion space. It can suppress flowing toward. Thereby, the leakage of the exhaust gas from the turbine wheel back surface can be effectively suppressed.
  • the shelf surface is It is formed so as to be along a direction parallel to the rotation axis in a sectional view along the rotation axis. According to the configuration (3), since the shelf surface is formed in a cylindrical shape having a rotation axis as a center line, the processing of the shelf surface is facilitated, and the shape of the shelf surface is used to form a turbine wheel. It is easy to form a back surface shape in which the thickness of the outer diameter side region is reduced and the thickness of the inner diameter side region is increased.
  • the shelf surface is In a cross-sectional view along the rotation axis, it is formed so as to be inclined with respect to the rotation axis so that the distance from the rotation axis increases toward the tip side of the turbine wheel.
  • the expansion space defined between the adjacent seal fins is formed so as to extend along a direction inclined with respect to the rotation axis. Since the centrifugal force acts on the gas in the expansion space toward the outside in the radial direction as the turbine wheel rotates, this centrifugal force causes the exhaust gas to move in the expansion space from the outside in the radial direction to the inside. Can be suppressed. Thereby, the leakage of the exhaust gas from the turbine wheel back surface can be effectively suppressed.
  • At least a part of the gap formed between the seal fin and the shelf surface of the labyrinth seal portion is smaller than the gap formed between the outer front edge of the rear surface of the turbine wheel and the stationary wall surface. It is configured as follows. According to the configuration (1), at least a part of the gap formed between the seal fin of the labyrinth seal portion and the shelf surface is a gap formed between the outer front edge of the rear surface of the turbine wheel and the stationary wall surface. Since it is comprised so that it may become smaller, the leak of the exhaust gas from a turbine wheel back surface can be suppressed effectively.
  • the exhaust turbine device includes a mixed flow turbine or a radial turbine.
  • the exhaust turbine apparatus of any one of the configurations (1) to (5) includes a mixed flow turbine or a radial turbine, it is effective for exhaust gas leakage from the rear surface of the turbine wheel. It is possible to reduce the inertia of the turbine wheel and to ensure the strength at the same time.
  • the supercharger according to at least one embodiment of the present invention is: The exhaust turbine device according to any one of the configurations (1) to (6) is provided. Since the turbocharger having the configuration (7) includes the exhaust turbine device according to any one of the configurations (1) to (6), it is possible to effectively suppress the leakage of exhaust gas from the rear surface of the turbine wheel, and the turbine wheel. Inertia can be reduced and strength can be achieved at the same time.
  • leakage of exhaust gas from the rear surface of the turbine wheel can be suppressed with a simple and low-cost configuration without increasing the inertia of the turbine wheel.
  • the turbine efficiency can be maintained high, carbonization of the lubricating oil supplied to the bearing can be prevented, and at the same time, the response of the exhaust turbine device can be easily improved.
  • an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
  • expressions representing shapes such as quadrangular shapes and cylindrical shapes represent not only geometrically strict shapes such as quadrangular shapes and cylindrical shapes, but also irregularities and chamfers as long as the same effects can be obtained. A shape including a part or the like is also expressed.
  • the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of other constituent elements.
  • an exhaust turbine apparatus 10 (10A, 10B, 10C) according to an embodiment of the present invention includes a rotating shaft 18, a turbine wheel 16 provided at one end of the rotating shaft 18, A wall surface 24 a of a stationary wall 24 disposed to face the back surface 16 a of the turbine wheel 16 is provided.
  • the turbine wheel 16 includes a hub 19 connected to one end portion of the rotating shaft 18 and a plurality of turbine blades 20 provided radially on the outer peripheral surface of the hub 19 at intervals in the circumferential direction.
  • the turbine wheel 16 is accommodated in the turbine housing 14 and is configured to rotate about the rotation axis C together with the rotation shaft 18.
  • the exhaust turbine section 12 is configured such that the exhaust gas flows into the turbine blade 20 from the direction intersecting the rotation axis C of the rotation shaft 18.
  • the exhaust turbine section 12 is configured as a radial turbine configured such that exhaust gas flows into the turbine blade 20 from a direction orthogonal to the rotation axis C of the rotation shaft 18.
  • the stationary wall 24 constitutes a part of a bearing housing disposed adjacent to the turbine housing 14.
  • the illustration of the compressor portion disposed adjacent to the bearing housing is omitted.
  • the turbine housing 14 includes a scroll portion 14 a formed in a spiral shape, and an outlet casing portion that forms an exhaust gas outlet passage in the direction of the rotating shaft 18. 14b.
  • a plurality of nozzle vanes 22 are provided at the outlet of the scroll portion 14a so as to surround the turbine wheel 16 in the circumferential direction.
  • the exhaust gas e exhausted from the internal combustion engine (not shown) is accelerated while passing through the scroll portion 14a, and the angle at which it flows into the turbine blade 20 is defined by a plurality of nozzle vanes 22 provided at the outlet of the scroll portion 14a.
  • the exhaust gas e that has flowed into the turbine blade 20 from the scroll portion 14a through the nozzle vanes 22 imparts a rotational moment to the turbine blade 20, and then flows out through a flow path formed by the outlet casing portion 14b.
  • the rear surface 16 a of the turbine wheel 16 is formed around the rotation shaft 18 in a direction crossing the rotation shaft 18.
  • a wall surface 24a of the stationary wall 24 is disposed to face the back surface 16a.
  • a recess 26 is formed in the back surface 16a.
  • the recess 26 is formed to be recessed toward the tip end side of the turbine wheel 16 from a radial line R that passes through the outer peripheral edge A of the turbine wheel 16 and extends along the radial direction of the turbine wheel 16.
  • the recessed portion 26 has a shelf surface 28 (28a, 28b, 28c) formed in a flat shape in a cross-sectional view along the rotation axis C. That is, the recessed portion 26 is formed in an annular shape around the rotating shaft 18, and the shelf surfaces 28 (28 a, 28 b, 28 c) are formed in the recessed portion 26 in an annular shape.
  • labyrinth seal portions 30 are formed on the wall surface 24a of the stationary wall 24 at positions facing the shelf surfaces 28 (28a, 28b, 28c), respectively.
  • the labyrinth seal portion 30 (30a, 30b, 30c) includes at least one expansion space defined between the plurality of seal fins 32 projecting toward the shelf surface 28 (28a, 28b, 28c) and the adjacent seal fins. 34.
  • the shelf surface 28 (28a) is formed so as to be along a direction parallel to the rotation axis 18 in a sectional view along the rotation axis C. Is done. That is, three-dimensionally, the shelf surface 28 (28a) is formed in a cylindrical shape having a central axis coinciding with the rotation axis C.
  • the labyrinth seal portion 30 (30a) is disposed so as to face the shelf surface 28 (28a).
  • the shelf surface 28 (28b) formed in the recess 26 rotates more than the first shelf surface 28b1 and the first shelf surface 28b1. It has two shelf surfaces, the second shelf surface 28b2 formed at a position close to the axis C.
  • the labyrinth seal portion 30 (30b) includes a seal fin 32 (first seal fin 32b) protruding toward the first shelf surface 28b1 and a seal fin 32 (second seal) protruding toward the second shelf surface 28b2. Fin 32c) and an expansion space 34 (34a) defined between the first seal fin 32b and the second seal fin 32c.
  • the labyrinth seal portion 30 (30b) includes a seal fin 32 (32a) protruding toward the first shelf surface 28b1 and a seal fin 32 (32d) protruding toward the second shelf surface 28b2. And an expansion space 34 (34b) defined between the first seal fin 32a and the seal fin 32b and between the second seal fin 32c and the seal fin 32d.
  • the shelf surface 28 (28c) is in a cross-sectional view along the rotation axis C, and the rotation axis C becomes closer to the tip side of the turbine wheel 16. It is formed so as to be inclined with respect to the rotation axis C so that the distance becomes large. That is, three-dimensionally, the shelf surface 28 (28c) is formed in a conical shape so as to increase in diameter toward the front end side of the turbine wheel 16 around the rotation shaft 18, and the labyrinth seal portion 30 (30c) is It arrange
  • the tip of the seal fin 32 and the shelf surface 28 of the labyrinth seal portion 30 (30a, 30b, 30c).
  • the gap a with (28a, 28b, 28c) is configured to be smaller than the gap b between the outer peripheral edge A of the back surface 16a and the wall surface 24a (a ⁇ b).
  • the distance between the rotating shaft 18 and the shelf surface 28 (28a, 28b, 28c) is appropriately set from the viewpoint of reducing the inertia of the turbine wheel 16 and ensuring the strength.
  • the exhaust gas e flowing into the gap B between the rear surface 16a and the wall surface 24a from the outer peripheral edge A of the turbine wheel 16 is the labyrinth seal portion 30 (30a, 30b, 30c), and the seal fin 32 and the expansion space 34.
  • a pressure loss occurs while passing between the two, and the flow rate of the exhaust gas e flowing into the gap B can be reduced.
  • the flat shelf surface 28 (28a, 28b, 28c) is formed on the back surface 16a in a sectional view along the rotation axis C.
  • the labyrinth seal part 30 (30a, 30b, 30c) is formed in the position which faces the said shelf surface in the wall surface 24a, and, thereby, the leak to the clearance gap B side is sealed. Therefore, unlike Patent Document 1, it is not necessary to form the gap B small over the entire radial direction of the turbine wheel 16, and the sealing performance of the gap B can be improved with a simple and low-cost configuration. Thereby, the leakage of the exhaust gas e to the gap B can be suppressed, and the reduction in turbine efficiency and the carbonization of the lubricating oil supplied to the bearing housed inside the bearing housing can be suppressed.
  • the shelf surface 28 (28a) is formed in a cylindrical shape having the rotation axis C as the center line, so that the shelf surface can be easily processed. become.
  • the expansion space 34 (34a) defined between the first seal fins 32b and the second seal fins 32c has a turbine wheel. It is formed so as to extend along 16 radial directions.
  • the flow of the exhaust gas e passing through the expansion space 34 (34a) includes a radial component from the radially outer side toward the inner side.
  • the centrifugal force c acts on the exhaust gas passing through the expansion space 34 (34a) outward in the radial direction as the turbine wheel 16 rotates.
  • the exhaust gas can be prevented from flowing in the expansion space 34 (34a) from the radially outer side to the inner side. Thereby, the leakage of the exhaust gas from the back surface 16a can be effectively suppressed.
  • the expansion space 34 defined between the adjacent seal fins 32 is along the direction in which the expansion space 34 is inclined with respect to the rotation axis C. It is formed to extend. Therefore, the flow of the exhaust gas e that passes through the expansion space 34 includes a radial component from the radially outer side to the inner side.
  • the centrifugal force c acts on the gas in the expansion space 34 radially outward as the turbine wheel 16 rotates, the exhaust gas flows in the expansion space 34 by the action of the centrifugal force c. It is possible to suppress the flow from the radially outer side to the inner side. Thereby, the leakage of the exhaust gas from the back surface 16a can be effectively suppressed.
  • the seal fins 32 and the shelf surfaces 28 (28a, 28b, 28c) of the labyrinth seal portion 30 (30a, 30b, 30c). Is formed so as to be smaller than the gap b formed between the outer front edge of the back surface 16a and the wall surface 24a, so that the exhaust gas leakage from the back surface 16a is effective. Can be suppressed.
  • turbocharger including any one of the exhaust turbine apparatuses 10 (10A, 10B, 10C) can effectively suppress the leakage of exhaust gas from the rear surface 16a of the turbine wheel 16, and can also reduce the inertia of the turbine wheel 16. Reduction and securing of strength can be achieved at the same time.
  • the shelf surface 28 (28a) has two shelf surfaces, that is, the first shelf surface 28b1 and the second shelf surface 28b2, but three or more A shelf surface may be provided, and a seal fin of the labyrinth seal portion 30 (30b) may be provided toward each shelf surface.
  • the exhaust turbine device 10 (10B) two seal fins that protrude toward each shelf surface are provided, but one seal fin may be provided toward each shelf surface.
  • the exhaust turbine part 12 was comprised as a radial turbine in all the said embodiment, the exhaust turbine part 12 of the exhaust turbine apparatus 10 (10A, 10B, 10C) concerning one Embodiment of this invention is a radial turbine.
  • the stationary wall 24 integrally with a bearing housing (not shown), the number of parts of the exhaust turbine device 10 (10A, 10B, 10C) can be reduced and the cost can be reduced. It can also be manufactured.
  • FIG. 4 shows the shape of the wall surface 24a of the stationary wall 24 facing the rear surface 16a and the rear surface 16a of the turbine wheel 16 of the exhaust turbine device 100 considered by the present inventors in the process leading to the present invention.
  • the recessed portion 102 is formed around the outer diameter side region of the back surface 16a to reduce the thickness.
  • the built-up portion 104 is formed by building up the inner diameter side region of the back surface 16 a.
  • the uneven surface 106 is formed on the wall surface 24a according to the shape of the back surface 16a.
  • an exhaust turbine device having a simple and low cost configuration and a turbocharger including the exhaust turbine device leakage of exhaust gas to the rear side of the turbine wheel can be suppressed.
  • the turbine efficiency of the exhaust turbine device can be maintained high, and the carbonization of the lubricating oil supplied to the bearing provided in the bearing housing can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

This exhaust turbine device comprises: a turbine wheel that is provided at one end of a rotating shaft and has a plurality of turbine blades in a circumferential direction; and a static wall surface that is disposed so as to face a rear surface of the turbine wheel. The turbine wheel is configured to include a recessed part formed in a rear surface of the turbine wheel by being recessed further toward the distal end side of the turbine wheel than a radial direction line which passes through an outer circumferential edge of the turbine wheel and extends in the radial direction of the turbine wheel, the recessed part including a ledge surface that is formed to be flat in a cross-sectional view of the turbine wheel taken along the line of the rotating shaft. The static wall surface is configured to include a labyrinth seal that faces the ledge surface and that has a seal fin that protrudes toward the ledge surface.

Description

排気タービン装置及び過給機Exhaust turbine device and supercharger
 本開示は、排気タービン装置及び該排気タービン装置を備えた過給機に関する。 The present disclosure relates to an exhaust turbine apparatus and a supercharger including the exhaust turbine apparatus.
 斜流タービン又はラジアルタービンのように、排気ガスが回転軸と交差する方向からタービンホイールに流入する排気タービンにおいて、レスポンス性を良くするために、タービンホイール背面の肉厚を低減し、タービンホイールのイナーシャ(慣性モーメント)を低減することが行われる。
 しかし、回転軸に近い内径側領域の肉厚を低減させると、タービンホイールの強度が低下する。そのため、イナーシャの低減と強度確保とが両立する背面形状としては、外径側領域の肉厚を薄く、内径側領域の肉厚を厚くすることが考えられる。
In an exhaust turbine in which exhaust gas flows into the turbine wheel from the direction intersecting the rotation axis, such as a mixed flow turbine or radial turbine, in order to improve the response, the thickness of the turbine wheel rear surface is reduced, Inertia (moment of inertia) is reduced.
However, if the thickness of the inner diameter side region near the rotating shaft is reduced, the strength of the turbine wheel is lowered. Therefore, as a back surface shape in which both reduction of inertia and securing of strength are achieved, it is conceivable to reduce the thickness of the outer diameter side region and increase the thickness of the inner diameter side region.
 一方、排気タービンを有する過給機では、タービンブレードの入口に高温高圧の排気が導入される。タービンホイール背面とこれに対面する静止壁面との間に形成される隙間から排気ガスが漏れると、タービン効率が低下すると共に、タービンハウジングに隣接した軸受ハウジングの内部に収容された軸受に高温の漏洩ガスが流入し、該軸受に供給される潤滑油を炭化させるおそれがある。そのため、上述した隙間を小さくし、隙間から漏れる排気ガスの流量を出来るだけ少なくする必要がある。 On the other hand, in a supercharger having an exhaust turbine, high-temperature and high-pressure exhaust is introduced into the inlet of the turbine blade. If exhaust gas leaks from the gap formed between the rear surface of the turbine wheel and the stationary wall facing it, the turbine efficiency decreases, and high-temperature leakage occurs in the bearing housed inside the bearing housing adjacent to the turbine housing. There is a possibility that gas flows in and carbonizes the lubricating oil supplied to the bearing. Therefore, it is necessary to reduce the above-described gap and reduce the flow rate of exhaust gas leaking from the gap as much as possible.
 特許文献1には、外径側領域の肉厚を薄く、内径側領域の肉厚を厚くした背面形状を有するタービンホイールを備える排気タービン装置において、タービンホイール背面とこれに対面する静止壁面との間に形成される隙間を、タービンホイールの径方向の全体に亘って小さく形成した構成が開示されている。 In Patent Document 1, in an exhaust turbine apparatus including a turbine wheel having a rear surface shape in which the outer diameter side region is thin and the inner diameter side region is thick, the turbine wheel rear surface and a stationary wall surface facing the turbine wheel are provided. The structure which formed the clearance gap formed in between small in the whole radial direction of a turbine wheel is disclosed.
特開2004-183653号公報JP 2004-183653 A
 仮にタービンホイール背面と静止壁面とが接触すると、タービン出力の一部が損失として失われてしまうほか、排気タービンの破損の原因ともなる。よって、タービンホイール背面と静止壁面とが接触しないように、それらの間の隙間は厳密に管理される必要がある。しかしながら、特許文献1に開示されたタービンホイールのように、タービンホイール背面と静止壁面との間に形成される隙間を、タービンホイールの径方向の全体に亘って小さく形成すると、タービンホイール背面及び静止壁面の両方を径方向の全体に亘って高い精度で加工する必要があり、製造コストが増加するという問題がある。 If the back of the turbine wheel and the stationary wall contact, a part of the turbine output is lost as a loss, and the exhaust turbine may be damaged. Therefore, it is necessary to strictly manage the gap between them so that the rear surface of the turbine wheel does not contact the stationary wall surface. However, if the gap formed between the turbine wheel back surface and the stationary wall surface is made small over the entire radial direction of the turbine wheel, as in the turbine wheel disclosed in Patent Document 1, the turbine wheel back surface and the stationary There is a problem that both the wall surfaces need to be processed with high accuracy over the entire radial direction, and the manufacturing cost increases.
 本発明の少なくとも一実施形態は、上述した従来技術の課題に鑑みなされたものであって、その目的とするところは、簡単かつ低コストな構成で、タービンホイール背面とこれに対面する静止壁面との間に形成される隙間から漏洩する排気ガスの量を抑制することが出来る排気タービン装置、及びこれを備える過給機を提供することにある。 At least one embodiment of the present invention has been made in view of the above-described problems of the prior art. The object of the present invention is to provide a simple and low-cost configuration with a turbine wheel rear surface and a stationary wall surface facing the turbine wheel rear surface. It is an object to provide an exhaust turbine apparatus capable of suppressing the amount of exhaust gas leaking from a gap formed between the two and a supercharger including the exhaust turbine apparatus.
 (1)本発明の少なくとも一実施形態に係る排気タービン装置は、
 回転軸と、
 前記回転軸の一端部に設けられるタービンホイールであって、前記タービンホイールの周方向に間隔を置いて設けられる複数のタービンブレードを有するタービンホイールと、
 前記タービンホイールの背面と対面して配置される静止壁面と、を備え、
 前記回転軸の回転軸線と交差する方向から前記タービンブレードに排気ガスが流入するように構成される排気タービン装置であって、
 前記タービンホイールは、前記タービンホイールの背面において、前記タービンホイールの外周縁端を通過し且つ前記タービンホイールの半径方向に沿って延伸する径方向線よりも前記タービンホイールの先端側に凹んで形成される凹み部であって、前記回転軸線に沿った断面視において平坦状に形成される棚面を有する凹み部を含み、
 前記静止壁面は、前記棚面と対面する位置にラビリンスシール部を形成するシールフィンを含むように構成される。
(1) An exhaust turbine apparatus according to at least one embodiment of the present invention includes:
A rotation axis;
A turbine wheel provided at one end of the rotating shaft, the turbine wheel having a plurality of turbine blades provided at intervals in a circumferential direction of the turbine wheel;
A stationary wall surface facing the rear surface of the turbine wheel,
An exhaust turbine apparatus configured to allow exhaust gas to flow into the turbine blade from a direction intersecting the rotation axis of the rotation shaft,
The turbine wheel is formed on the rear surface of the turbine wheel so as to be recessed toward the tip side of the turbine wheel from a radial line passing through an outer peripheral edge of the turbine wheel and extending along a radial direction of the turbine wheel. Including a recess having a shelf surface that is formed flat in a cross-sectional view along the rotational axis,
The stationary wall surface is configured to include a seal fin that forms a labyrinth seal portion at a position facing the shelf surface.
 前記構成(1)によれば、タービンホイールの背面に平坦状の棚面を形成し、静止壁面における上記棚面と対面する位置にシールフィンを形成することで所謂ラビリンスシールを構成し、これによりタービンホイール背面の流れをシールしている。従って、特許文献1のように、上記隙間をタービンホイールの半径方向全体に亘って小さく形成する必要がなく、簡単かつ低コストな構成で、タービンホイール背面のシール性を向上できる。
 これによって、排気ガスの漏洩に伴うタービン効率の低下と、軸受ハウジングの内部に収容された軸受に供給される潤滑油の炭化を抑制できる。
According to the configuration (1), a so-called labyrinth seal is formed by forming a flat shelf surface on the rear surface of the turbine wheel and forming a seal fin at a position facing the shelf surface on the stationary wall surface. The flow behind the turbine wheel is sealed. Therefore, unlike Patent Document 1, it is not necessary to form the gap small over the entire radial direction of the turbine wheel, and the sealing performance on the rear surface of the turbine wheel can be improved with a simple and low-cost configuration.
As a result, it is possible to suppress a decrease in turbine efficiency due to exhaust gas leakage and carbonization of the lubricating oil supplied to the bearing accommodated in the bearing housing.
 (2)幾つかの実施形態では、前記構成(1)において、
 前記凹み部は、第1の棚面と、前記第1の棚面よりも前記回転軸線に対して近い位置に形成される第2の棚面と、の2つの前記棚面を有し、
 前記静止壁面は、前記第1の棚面と前記第2の棚面それぞれに対面する位置にラビリンスシールを形成するシールフィンを有する。
(2) In some embodiments, in the configuration (1),
The recess has two shelf surfaces, a first shelf surface and a second shelf surface formed at a position closer to the rotation axis than the first shelf surface,
The stationary wall surface has a seal fin that forms a labyrinth seal at a position facing each of the first shelf surface and the second shelf surface.
 前記構成(2)によれば、前記第1の棚面に対面するシールフィンと前記第2の棚面に対面するシールフィンとの間に画定される膨張空間が、タービンホイールの半径方向に沿って延在するように形成される。この膨張空間内にある気体には、タービンホイールの回転に伴って半径方向外側に向かって遠心力が作用するため、この遠心力の作用により、排気ガスが膨張空間内を半径方向外側から内側に向かって流れるのを抑制することが出来る。これにより、タービンホイール背面からの排気ガスの漏洩を効果的に抑制できる。 According to the configuration (2), the expansion space defined between the seal fins facing the first shelf surface and the seal fins facing the second shelf surface is along the radial direction of the turbine wheel. It is formed to extend. Since the centrifugal force acts on the gas in the expansion space toward the outside in the radial direction as the turbine wheel rotates, the action of this centrifugal force causes the exhaust gas to move from the outside in the radial direction to the inside in the expansion space. It can suppress flowing toward. Thereby, the leakage of the exhaust gas from the turbine wheel back surface can be effectively suppressed.
 (3)幾つかの実施形態では、前記構成(1)又は(2)において、
 前記棚面は、
 前記回転軸線に沿った断面視において、前記回転軸に対して平行な方向に沿うように形成される。
 前記構成(3)によれば、上記棚面は回転軸線を中心線とする円筒形に形成されるので、該棚面の加工が容易になると共に、この棚面形状とすることで、タービンホイールの外径側領域の肉厚を薄く、かつ内径側領域の肉厚を厚くする背面形状の形成が容易になる。
(3) In some embodiments, in the configuration (1) or (2),
The shelf surface is
It is formed so as to be along a direction parallel to the rotation axis in a sectional view along the rotation axis.
According to the configuration (3), since the shelf surface is formed in a cylindrical shape having a rotation axis as a center line, the processing of the shelf surface is facilitated, and the shape of the shelf surface is used to form a turbine wheel. It is easy to form a back surface shape in which the thickness of the outer diameter side region is reduced and the thickness of the inner diameter side region is increased.
 (4)幾つかの実施形態では、前記構成(1)又は(2)において、
 前記棚面は、
 前記回転軸線に沿った断面視において、前記タービンホイールの先端側へ向かうにつれて前記回転軸線との距離が大きくなるように、前記回転軸線に対して傾斜するように形成される。
 前記構成(4)によれば、隣接するシールフィンの間に画定される膨張空間が、回転軸線に対して傾斜する方向に沿って延在するように形成される。膨張空間内にある気体には、タービンホイールの回転に伴って半径方向外側に向かって遠心力が作用するため、この遠心力の作用により、排気ガスが膨張空間内を半径方向外側から内側に向かって流れるのを抑制することが出来る。これにより、タービンホイール背面からの排気ガスの漏洩を効果的に抑制できる。
(4) In some embodiments, in the configuration (1) or (2),
The shelf surface is
In a cross-sectional view along the rotation axis, it is formed so as to be inclined with respect to the rotation axis so that the distance from the rotation axis increases toward the tip side of the turbine wheel.
According to the configuration (4), the expansion space defined between the adjacent seal fins is formed so as to extend along a direction inclined with respect to the rotation axis. Since the centrifugal force acts on the gas in the expansion space toward the outside in the radial direction as the turbine wheel rotates, this centrifugal force causes the exhaust gas to move in the expansion space from the outside in the radial direction to the inside. Can be suppressed. Thereby, the leakage of the exhaust gas from the turbine wheel back surface can be effectively suppressed.
 (5)幾つかの実施形態では、前記構成(1)~(4)の何れかにおいて、
 前記ラビリンスシール部の前記シールフィンと前記棚面との間に形成される隙間の少なくとも一部は、前記タービンホイールの背面の外側先端縁と前記静止壁面との間に形成される隙間より小さくなるように構成されている。
 前記構成(1)によれば、ラビリンスシール部のシールフィンと棚面との間に形成される隙間の少なくとも一部は、タービンホイール背面の外側先端縁と静止壁面との間に形成される隙間より小さくなるように構成されているので、タービンホイール背面からの排気ガスの漏洩を効果的に抑制できる。
(5) In some embodiments, in any one of the configurations (1) to (4),
At least a part of the gap formed between the seal fin and the shelf surface of the labyrinth seal portion is smaller than the gap formed between the outer front edge of the rear surface of the turbine wheel and the stationary wall surface. It is configured as follows.
According to the configuration (1), at least a part of the gap formed between the seal fin of the labyrinth seal portion and the shelf surface is a gap formed between the outer front edge of the rear surface of the turbine wheel and the stationary wall surface. Since it is comprised so that it may become smaller, the leak of the exhaust gas from a turbine wheel back surface can be suppressed effectively.
 (6)幾つかの実施形態では、前記構成(1)~(5)の何れかにおいて、
 前記排気タービン装置は斜流タービン又はラジアルタービンを備えている。
 前記構成(6)によれば、前記構成(1)~(5)の何れかの排気タービン装置が斜流タービン又はラジアルタービンを備えている場合に、タービンホイール背面からの排気ガスの漏洩を効果的に抑制できると共に、タービンホイールのイナーシャの低減及び強度確保を同時に達成できる。
(6) In some embodiments, in any one of the configurations (1) to (5),
The exhaust turbine device includes a mixed flow turbine or a radial turbine.
According to the configuration (6), when the exhaust turbine apparatus of any one of the configurations (1) to (5) includes a mixed flow turbine or a radial turbine, it is effective for exhaust gas leakage from the rear surface of the turbine wheel. It is possible to reduce the inertia of the turbine wheel and to ensure the strength at the same time.
 (7)本発明の少なくとも一実施形態に係る過給機は、
 前記構成(1)~(6)の何れかの排気タービン装置を備えている。
 前記構成(7)の過給機は、前記構成(1)~(6)の何れかの排気タービン装置を備えるため、タービンホイール背面からの排気ガスの漏洩を効果的に抑制できると共に、タービンホイールのイナーシャの低減及び強度確保を同時に達成できる。
(7) The supercharger according to at least one embodiment of the present invention is:
The exhaust turbine device according to any one of the configurations (1) to (6) is provided.
Since the turbocharger having the configuration (7) includes the exhaust turbine device according to any one of the configurations (1) to (6), it is possible to effectively suppress the leakage of exhaust gas from the rear surface of the turbine wheel, and the turbine wheel. Inertia can be reduced and strength can be achieved at the same time.
 本発明の少なくとも一実施形態によれば、簡単かつ低コストな構成で、タービンホイールのイナーシャを増加させることなく、タービンホイール背面からの排気ガスの漏洩を抑制できる。これによって、タービン効率を高く維持できると共に、軸受に供給される潤滑油の炭化を防止でき、同時に、排気タービン装置のレスポンス性を容易に向上できる。 According to at least one embodiment of the present invention, leakage of exhaust gas from the rear surface of the turbine wheel can be suppressed with a simple and low-cost configuration without increasing the inertia of the turbine wheel. As a result, the turbine efficiency can be maintained high, carbonization of the lubricating oil supplied to the bearing can be prevented, and at the same time, the response of the exhaust turbine device can be easily improved.
一実施形態に係る排気タービン装置の一部を示す側面視断面図である。It is side surface sectional drawing which shows a part of exhaust-gas turbine apparatus which concerns on one Embodiment. 一実施形態に係る排気タービン装置の一部を示す側面視断面図である。It is side surface sectional drawing which shows a part of exhaust-gas turbine apparatus which concerns on one Embodiment. 一実施形態に係る排気タービン装置の一部を示す側面視断面図である。It is side surface sectional drawing which shows a part of exhaust-gas turbine apparatus which concerns on one Embodiment. 本発明者が本発明に至る過程で考えた排気タービン装置(非公開)の側面視断面図である。It is side view sectional drawing of the exhaust-turbine apparatus (non-publication) which this inventor considered in the process leading to this invention.
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments or shown in the drawings are not intended to limit the scope of the present invention, but are merely illustrative examples.
For example, expressions expressing relative or absolute arrangements such as “in a certain direction”, “along a certain direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial” are strictly In addition to such an arrangement, it is also possible to represent a state of relative displacement with an angle or a distance such that tolerance or the same function can be obtained.
For example, an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
For example, expressions representing shapes such as quadrangular shapes and cylindrical shapes represent not only geometrically strict shapes such as quadrangular shapes and cylindrical shapes, but also irregularities and chamfers as long as the same effects can be obtained. A shape including a part or the like is also expressed.
On the other hand, the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of other constituent elements.
 本発明の一実施形態に係る排気タービン装置10(10A、10B、10C)は、図1~図3に示すように、回転軸18と、回転軸18の一端部に設けられるタービンホイール16と、タービンホイール16の背面16aと対面して配置される静止壁24の壁面24aを備えている。タービンホイール16は、回転軸18の一端部に連結されるハブ19と、ハブ19の外周面に周方向に間隔を置いて放射状に設けられる複数のタービンブレード20とを有する。タービンホイール16は、タービンハウジング14の内部に収容され、回転軸18と共に、回転軸線Cを中心に回転するように構成される。
 また、本発明の幾つかの実施形態に係る排気タービン装置10では、その排気タービン部12が、回転軸18の回転軸線Cと交差する方向からタービンブレード20に排気ガスが流入するように構成される。図1~図3に示す実施形態では、排気タービン部12は、回転軸18の回転軸線Cと直交する方向からタービンブレード20に排気ガスが流入するように構成されるラジアルタービンとして構成される。
 また、図1~図3に示す実施形態では、静止壁24は、タービンハウジング14と隣接して配置される軸受ハウジングの一部を構成している。
 なお、図1~図3では、該軸受ハウジングに隣接して配置されるコンプレッサ部の図示は省略されている。
As shown in FIGS. 1 to 3, an exhaust turbine apparatus 10 (10A, 10B, 10C) according to an embodiment of the present invention includes a rotating shaft 18, a turbine wheel 16 provided at one end of the rotating shaft 18, A wall surface 24 a of a stationary wall 24 disposed to face the back surface 16 a of the turbine wheel 16 is provided. The turbine wheel 16 includes a hub 19 connected to one end portion of the rotating shaft 18 and a plurality of turbine blades 20 provided radially on the outer peripheral surface of the hub 19 at intervals in the circumferential direction. The turbine wheel 16 is accommodated in the turbine housing 14 and is configured to rotate about the rotation axis C together with the rotation shaft 18.
Further, in the exhaust turbine apparatus 10 according to some embodiments of the present invention, the exhaust turbine section 12 is configured such that the exhaust gas flows into the turbine blade 20 from the direction intersecting the rotation axis C of the rotation shaft 18. The In the embodiment shown in FIGS. 1 to 3, the exhaust turbine section 12 is configured as a radial turbine configured such that exhaust gas flows into the turbine blade 20 from a direction orthogonal to the rotation axis C of the rotation shaft 18.
In the embodiment shown in FIGS. 1 to 3, the stationary wall 24 constitutes a part of a bearing housing disposed adjacent to the turbine housing 14.
In FIG. 1 to FIG. 3, the illustration of the compressor portion disposed adjacent to the bearing housing is omitted.
 例示的な実施形態では、図1~図3に示すように、タービンハウジング14は、渦巻き形状に形成されたスクロール部14aと、回転軸18の方向に排気ガスの出口通路を形成する出口ケーシング部14bとを有している。
 スクロール部14aの出口には、タービンホイール16を周方向に囲むように複数のノズルベーン22が設けられている。内燃機関(不図示)から排出された排気ガスeは、スクロール部14aを通る間に加速され、スクロール部14aの出口に設けられた複数のノズルベーン22によって、タービンブレード20に流入する角度が規定される。
 スクロール部14aからノズルベーン22の間を通ってタービンブレード20に流入した排気ガスeは、タービンブレード20に回転モーメントを付与した後、出口ケーシング部14bによって形成された流路を通って流出する。
In the exemplary embodiment, as shown in FIGS. 1 to 3, the turbine housing 14 includes a scroll portion 14 a formed in a spiral shape, and an outlet casing portion that forms an exhaust gas outlet passage in the direction of the rotating shaft 18. 14b.
A plurality of nozzle vanes 22 are provided at the outlet of the scroll portion 14a so as to surround the turbine wheel 16 in the circumferential direction. The exhaust gas e exhausted from the internal combustion engine (not shown) is accelerated while passing through the scroll portion 14a, and the angle at which it flows into the turbine blade 20 is defined by a plurality of nozzle vanes 22 provided at the outlet of the scroll portion 14a. The
The exhaust gas e that has flowed into the turbine blade 20 from the scroll portion 14a through the nozzle vanes 22 imparts a rotational moment to the turbine blade 20, and then flows out through a flow path formed by the outlet casing portion 14b.
 図1~図3に示すように、タービンホイール16の背面16aは、回転軸18の周囲に回転軸18と交差する方向に向けて形成されている。静止壁24の壁面24aが背面16aに対面して配置されている。背面16aには凹み部26が形成されている。
 凹み部26は、タービンホイール16の外周縁端Aを通過し、且つタービンホイール16の半径方向に沿って延伸する径方向線Rよりもタービンホイール16の先端側に凹んで形成される。凹み部26は、回転軸線Cに沿った断面視において、平坦状に形成される棚面28(28a、28b、28c)を有する。
 即ち、凹み部26は、回転軸18の周囲に環状に形成され、凹み部26に棚面28(28a、28b、28c)が環状に形成される。
As shown in FIGS. 1 to 3, the rear surface 16 a of the turbine wheel 16 is formed around the rotation shaft 18 in a direction crossing the rotation shaft 18. A wall surface 24a of the stationary wall 24 is disposed to face the back surface 16a. A recess 26 is formed in the back surface 16a.
The recess 26 is formed to be recessed toward the tip end side of the turbine wheel 16 from a radial line R that passes through the outer peripheral edge A of the turbine wheel 16 and extends along the radial direction of the turbine wheel 16. The recessed portion 26 has a shelf surface 28 (28a, 28b, 28c) formed in a flat shape in a cross-sectional view along the rotation axis C.
That is, the recessed portion 26 is formed in an annular shape around the rotating shaft 18, and the shelf surfaces 28 (28 a, 28 b, 28 c) are formed in the recessed portion 26 in an annular shape.
 図1~図3に示すように、静止壁24の壁面24aには、棚面28(28a、28b、28c)に対面する位置に、ラビリンスシール部30(30a、30b、30c)が夫々形成される。ラビリンスシール部30(30a、30b、30c)は、棚面28(28a、28b、28c)に向かって突出する複数のシールフィン32と、隣接するシールフィンの間に画定される少なくとも一つの膨張空間34とを有する。 As shown in FIGS. 1 to 3, labyrinth seal portions 30 (30a, 30b, 30c) are formed on the wall surface 24a of the stationary wall 24 at positions facing the shelf surfaces 28 (28a, 28b, 28c), respectively. The The labyrinth seal portion 30 (30a, 30b, 30c) includes at least one expansion space defined between the plurality of seal fins 32 projecting toward the shelf surface 28 (28a, 28b, 28c) and the adjacent seal fins. 34.
 少なくとも一実施形態は、図1に示す排気タービン装置10Aのように、棚面28(28a)は、回転軸線Cに沿った断面視において、回転軸18に対して平行な方向に沿うように形成される。即ち、立体的には、棚面28(28a)は回転軸線Cと一致する中心軸を有する円柱形状に形成される。ラビリンスシール部30(30a)は、棚面28(28a)に対面するように配置される。 In at least one embodiment, like the exhaust turbine apparatus 10A shown in FIG. 1, the shelf surface 28 (28a) is formed so as to be along a direction parallel to the rotation axis 18 in a sectional view along the rotation axis C. Is done. That is, three-dimensionally, the shelf surface 28 (28a) is formed in a cylindrical shape having a central axis coinciding with the rotation axis C. The labyrinth seal portion 30 (30a) is disposed so as to face the shelf surface 28 (28a).
 少なくとも一実施形態は、図2に示す排気タービン装置10Bのように、凹み部26に形成された棚面28(28b)は、第1の棚面28b1と、第1の棚面28b1よりも回転軸線Cに対して近い位置に形成される第2の棚面28b2との2つの棚面を有する。
 ラビリンスシール部30(30b)は、第1の棚面28b1に向かって突出するシールフィン32(第1シールフィン32b)と、第2の棚面28b2に向かって突出するシールフィン32(第2シールフィン32c)と、第1シールフィン32bと第2シールフィン32cとの間に画定される膨張空間34(34a)とを有する。
 図示した実施形態では、ラビリンスシール部30(30b)は、第1の棚面28b1に向かって突出するシールフィン32(32a)と、第2の棚面28b2に向かって突出するシールフィン32(32d)と、第1シールフィン32aとシールフィン32bとの間、及び第2シールフィン32cとシールフィン32dとの間に夫々画定される膨張空間34(34b)をさらに有する。
In at least one embodiment, as in the exhaust turbine apparatus 10B shown in FIG. 2, the shelf surface 28 (28b) formed in the recess 26 rotates more than the first shelf surface 28b1 and the first shelf surface 28b1. It has two shelf surfaces, the second shelf surface 28b2 formed at a position close to the axis C.
The labyrinth seal portion 30 (30b) includes a seal fin 32 (first seal fin 32b) protruding toward the first shelf surface 28b1 and a seal fin 32 (second seal) protruding toward the second shelf surface 28b2. Fin 32c) and an expansion space 34 (34a) defined between the first seal fin 32b and the second seal fin 32c.
In the illustrated embodiment, the labyrinth seal portion 30 (30b) includes a seal fin 32 (32a) protruding toward the first shelf surface 28b1 and a seal fin 32 (32d) protruding toward the second shelf surface 28b2. And an expansion space 34 (34b) defined between the first seal fin 32a and the seal fin 32b and between the second seal fin 32c and the seal fin 32d.
 少なくとも一実施形態は、図3に示す排気タービン装置10Cのように、棚面28(28c)は、回転軸線Cに沿った断面視において、タービンホイール16の先端側へ向かうにつれて回転軸線Cとの距離が大きくなるように、回転軸線Cに対して傾斜するように形成される。即ち、立体的には、棚面28(28c)は、回転軸18の周囲にタービンホイール16の先端側に向かって拡径するように円錐形状に形成され、ラビリンスシール部30(30c)は、棚面28(28c)に対面するように配置されている。 In at least one embodiment, like the exhaust turbine apparatus 10C shown in FIG. 3, the shelf surface 28 (28c) is in a cross-sectional view along the rotation axis C, and the rotation axis C becomes closer to the tip side of the turbine wheel 16. It is formed so as to be inclined with respect to the rotation axis C so that the distance becomes large. That is, three-dimensionally, the shelf surface 28 (28c) is formed in a conical shape so as to increase in diameter toward the front end side of the turbine wheel 16 around the rotation shaft 18, and the labyrinth seal portion 30 (30c) is It arrange | positions so that the shelf surface 28 (28c) may be faced.
 幾つかの実施形態では、図1~図3に示す排気タービン装置10(10A、10B、10C)のように、ラビリンスシール部30(30a、30b、30c)のシールフィン32の先端と棚面28(28a、28b、28c)との隙間aは、背面16aの外周縁端Aと壁面24aとの隙間bより小さくなるように構成されている(a<b)。
 なお、回転軸18と棚面28(28a、28b、28c)との距離は、タービンホイール16のイナーシャ低減及び強度確保などの観点から適宜に設定される。
In some embodiments, like the exhaust turbine apparatus 10 (10A, 10B, 10C) shown in FIGS. 1 to 3, the tip of the seal fin 32 and the shelf surface 28 of the labyrinth seal portion 30 (30a, 30b, 30c). The gap a with (28a, 28b, 28c) is configured to be smaller than the gap b between the outer peripheral edge A of the back surface 16a and the wall surface 24a (a <b).
The distance between the rotating shaft 18 and the shelf surface 28 (28a, 28b, 28c) is appropriately set from the viewpoint of reducing the inertia of the turbine wheel 16 and ensuring the strength.
 かかる構成において、タービンホイール16の外周縁端Aから背面16aと壁面24a間の隙間Bに流入した排気ガスeは、ラビリンスシール部30(30a、30b、30c)で、シールフィン32と膨張空間34との間を通る間に圧力損失が生じ、隙間Bに流入する排気ガスeの流量を低減することができる。 In such a configuration, the exhaust gas e flowing into the gap B between the rear surface 16a and the wall surface 24a from the outer peripheral edge A of the turbine wheel 16 is the labyrinth seal portion 30 (30a, 30b, 30c), and the seal fin 32 and the expansion space 34. A pressure loss occurs while passing between the two, and the flow rate of the exhaust gas e flowing into the gap B can be reduced.
 図1~図3に示す排気タービン装置10(10A、10B、10C)によれば、回転軸線Cに沿った断面視で、背面16aに平坦状の棚面28(28a、28b、28c)を形成し、壁面24aにおける上記棚面と対面する位置にラビリンスシール部30(30a、30b、30c)を形成し、これにより隙間B側への漏れをシールしている。従って、特許文献1のように、隙間Bをタービンホイール16の径方向の全体に亘って小さく形成する必要がなく、簡単かつ低コストな構成で、隙間Bのシール性を向上できる。
 これによって、隙間Bへの排気ガスeの漏洩を抑制でき、タービン効率の低下と、軸受ハウジングの内部に収容された軸受に供給される潤滑油の炭化を抑制できる。
According to the exhaust turbine apparatus 10 (10A, 10B, 10C) shown in FIGS. 1 to 3, the flat shelf surface 28 (28a, 28b, 28c) is formed on the back surface 16a in a sectional view along the rotation axis C. And the labyrinth seal part 30 (30a, 30b, 30c) is formed in the position which faces the said shelf surface in the wall surface 24a, and, thereby, the leak to the clearance gap B side is sealed. Therefore, unlike Patent Document 1, it is not necessary to form the gap B small over the entire radial direction of the turbine wheel 16, and the sealing performance of the gap B can be improved with a simple and low-cost configuration.
Thereby, the leakage of the exhaust gas e to the gap B can be suppressed, and the reduction in turbine efficiency and the carbonization of the lubricating oil supplied to the bearing housed inside the bearing housing can be suppressed.
 図1に示す排気タービン装置10(10A)によれば、前記作用効果に加えて、棚面28(28a)を回転軸線Cを中心線とする円筒形に形成したので、棚面の加工が容易になる。 According to the exhaust turbine apparatus 10 (10A) shown in FIG. 1, in addition to the above-described effects, the shelf surface 28 (28a) is formed in a cylindrical shape having the rotation axis C as the center line, so that the shelf surface can be easily processed. become.
 図2に示す排気タービン装置10(10B)によれば、前記作用効果に加えて、第1シールフィン32bと第2シールフィン32cとの間に画定される膨張空間34(34a)が、タービンホイール16の径方向に沿って延在するように形成される。膨張空間34(34a)を通過する排気ガスeの流れは、半径方向外側から内側に向かう半径方向成分を含む。
 一方、膨張空間34(34a)を通る排気ガスには、タービンホイール16の回転に伴って半径方向外側に向かって遠心力cが作用する。この遠心力cの作用により、排気ガスが膨張空間34(34a)内を半径方向外側から内側に向かって流れるのを抑制することが出来る。これにより、背面16aからの排気ガスの漏洩を効果的に抑制できる。
According to the exhaust turbine apparatus 10 (10B) shown in FIG. 2, in addition to the above-described effects, the expansion space 34 (34a) defined between the first seal fins 32b and the second seal fins 32c has a turbine wheel. It is formed so as to extend along 16 radial directions. The flow of the exhaust gas e passing through the expansion space 34 (34a) includes a radial component from the radially outer side toward the inner side.
On the other hand, the centrifugal force c acts on the exhaust gas passing through the expansion space 34 (34a) outward in the radial direction as the turbine wheel 16 rotates. By the action of the centrifugal force c, the exhaust gas can be prevented from flowing in the expansion space 34 (34a) from the radially outer side to the inner side. Thereby, the leakage of the exhaust gas from the back surface 16a can be effectively suppressed.
 図3に示す排気タービン装置10(10C)によれば、前記作用効果に加えて、隣接するシールフィン32の間に画定される膨張空間34が、回転軸線Cに対して傾斜する方向に沿って延在するように形成される。そのため、膨張空間34を通過する排気ガスeの流れは、半径方向外側から内側に向かう半径方向成分を含む。一方、膨張空間34内にある気体には、タービンホイール16の回転に伴って半径方向外側に向かって遠心力cが作用するため、この遠心力cの作用により、排気ガスが膨張空間34内を半径方向外側から内側に向かって流れるのを抑制することが出来る。これにより、背面16aからの排気ガスの漏洩を効果的に抑制できる。 According to the exhaust turbine apparatus 10 (10C) shown in FIG. 3, in addition to the above-described effects, the expansion space 34 defined between the adjacent seal fins 32 is along the direction in which the expansion space 34 is inclined with respect to the rotation axis C. It is formed to extend. Therefore, the flow of the exhaust gas e that passes through the expansion space 34 includes a radial component from the radially outer side to the inner side. On the other hand, since the centrifugal force c acts on the gas in the expansion space 34 radially outward as the turbine wheel 16 rotates, the exhaust gas flows in the expansion space 34 by the action of the centrifugal force c. It is possible to suppress the flow from the radially outer side to the inner side. Thereby, the leakage of the exhaust gas from the back surface 16a can be effectively suppressed.
 また、図1~図3に示す排気タービン装置10(10A、10B、10C)によれば、ラビリンスシール部30(30a、30b、30c)のシールフィン32と棚面28(28a、28b、28c)との間に形成される隙間aは、背面16aの外側先端縁と壁面24aとの間に形成される隙間bより小さくなるように構成されているので、背面16aからの排気ガスの漏洩を効果的に抑制できる。 Further, according to the exhaust turbine apparatus 10 (10A, 10B, 10C) shown in FIGS. 1 to 3, the seal fins 32 and the shelf surfaces 28 (28a, 28b, 28c) of the labyrinth seal portion 30 (30a, 30b, 30c). Is formed so as to be smaller than the gap b formed between the outer front edge of the back surface 16a and the wall surface 24a, so that the exhaust gas leakage from the back surface 16a is effective. Can be suppressed.
 さらに、排気タービン装置10(10A、10B、10C)のいずれかを備えた過給機は、タービンホイール16の背面16aからの排気ガスの漏洩を効果的に抑制できると共に、タービンホイール16のイナーシャの低減及び強度確保を同時に達成できる。 Further, the turbocharger including any one of the exhaust turbine apparatuses 10 (10A, 10B, 10C) can effectively suppress the leakage of exhaust gas from the rear surface 16a of the turbine wheel 16, and can also reduce the inertia of the turbine wheel 16. Reduction and securing of strength can be achieved at the same time.
 なお、図2に示す排気タービン装置10(10B)では、棚面28(28a)は2つの棚面、即ち、第1の棚面28b1及び第2の棚面28b2を有するが、3つ以上の棚面を設け、夫々の棚面に向かってラビリンスシール部30(30b)のシールフィンを設けるようにしてもよい。
 また、排気タービン装置10(10B)では、各棚面に向かって突出するシールフィンを2個ずつ設けているが、各棚面に向かって1個のシールフィンを設けるようにしてもよい。
 また、上記実施形態はいずれも排気タービン部12がラジアルタービンとして構成されていたが、本発明の一実施形態にかかる排気タービン装置10(10A、10B、10C)の排気タービン部12は、ラジアルタービン以外に、例えば、斜流タービンとして構成されていてもよい。
 また、静止壁24は軸受ハウジング(不図示)と一体に形成することで、排気タービン装置10(10A、10B、10C)の部品点数を低減し低コスト化できるが、該軸受ハウジングと別体に製造することもできる。
In the exhaust turbine apparatus 10 (10B) shown in FIG. 2, the shelf surface 28 (28a) has two shelf surfaces, that is, the first shelf surface 28b1 and the second shelf surface 28b2, but three or more A shelf surface may be provided, and a seal fin of the labyrinth seal portion 30 (30b) may be provided toward each shelf surface.
In addition, in the exhaust turbine device 10 (10B), two seal fins that protrude toward each shelf surface are provided, but one seal fin may be provided toward each shelf surface.
Moreover, although the exhaust turbine part 12 was comprised as a radial turbine in all the said embodiment, the exhaust turbine part 12 of the exhaust turbine apparatus 10 (10A, 10B, 10C) concerning one Embodiment of this invention is a radial turbine. Besides, for example, it may be configured as a mixed flow turbine.
Further, by forming the stationary wall 24 integrally with a bearing housing (not shown), the number of parts of the exhaust turbine device 10 (10A, 10B, 10C) can be reduced and the cost can be reduced. It can also be manufactured.
 図4は、本発明に至る過程で、本発明者等が考えた排気タービン装置100のタービンホイール16の背面16aと背面16aに対面する静止壁24の壁面24aの形状を示している。
 この形状では、タービンホイール16のイナーシャを低減するために、背面16aの外径側領域をえぐって凹み部102を形成し、肉厚を薄くしている。また、タービンホイール16の強度を確保するため、背面16aの内径側領域を肉盛りして肉盛り部104を形成している。
 また、背面16aと壁面24a間に形成される隙間Bのシール性を確保するため、壁面24aに背面16aの形状に合わせて凹凸面106を形成している。
 背面16a及び壁面24aの前記形状では、隙間Bのシール性には限界があり、かつ背面16a及び壁面24aが複雑な形状となり、排気タービン部12の製造コストが増大する懸念がある。
FIG. 4 shows the shape of the wall surface 24a of the stationary wall 24 facing the rear surface 16a and the rear surface 16a of the turbine wheel 16 of the exhaust turbine device 100 considered by the present inventors in the process leading to the present invention.
In this shape, in order to reduce the inertia of the turbine wheel 16, the recessed portion 102 is formed around the outer diameter side region of the back surface 16a to reduce the thickness. In addition, in order to ensure the strength of the turbine wheel 16, the built-up portion 104 is formed by building up the inner diameter side region of the back surface 16 a.
Moreover, in order to ensure the sealing property of the clearance gap B formed between the back surface 16a and the wall surface 24a, the uneven surface 106 is formed on the wall surface 24a according to the shape of the back surface 16a.
With the shapes of the back surface 16a and the wall surface 24a, there is a limit to the sealing performance of the gap B, and the back surface 16a and the wall surface 24a have complicated shapes, which may increase the manufacturing cost of the exhaust turbine section 12.
 本発明の少なくとも一実施形態によれば、簡単かつ低コストな構成の排気タービン装置及び該排気タービン装置を備えた過給機において、タービンホイール背面側への排気ガスの漏れを抑制できる。これによって、排気タービン装置のタービン効率を高く維持でき、かつ軸受ハウジング内に設けられた軸受に供給される潤滑油の炭化を防止できる。 According to at least one embodiment of the present invention, in an exhaust turbine device having a simple and low cost configuration and a turbocharger including the exhaust turbine device, leakage of exhaust gas to the rear side of the turbine wheel can be suppressed. As a result, the turbine efficiency of the exhaust turbine device can be maintained high, and the carbonization of the lubricating oil supplied to the bearing provided in the bearing housing can be prevented.
 10A、10B、10C  排気タービン装置
 12    排気タービン部
 14    タービンハウジング
  14a  スクロール部
  14b  出口ケーシング部
 16    タービンホイール
  16a  背面
 18    回転軸
 19    ハブ
 20    タービンブレード
 22    ノズルベーン
 24    静止壁
  24a  壁面
 26,102  凹み部
 28(28a、28b(28b1、28b2)、28c)  棚面
 30(30a、30b、30c)  ラビリンスシール部
 32(32a、32b、32c、32d)  シールフィン
 34(34a、34b)  膨張空間
 104   肉盛り部
 106   凹凸面
 A     外周縁端
 B、a、b  隙間
 C     回転軸線
 c     遠心力
 e     排気ガス
10A, 10B, 10C Exhaust turbine device 12 Exhaust turbine part 14 Turbine housing 14a Scroll part 14b Outlet casing part 16 Turbine wheel 16a Rear face 18 Rotating shaft 19 Hub 20 Turbine blade 22 Nozzle vane 24 Stationary wall 24a Wall surface 26, 102 Recessed part 28 (28a 28b (28b1, 28b2), 28c) Shelf surface 30 (30a, 30b, 30c) Labyrinth seal part 32 (32a, 32b, 32c, 32d) Seal fin 34 (34a, 34b) Expansion space 104 Overlay part 106 Uneven surface A Outer peripheral edge B, a, b Clearance C Rotational axis c Centrifugal force e Exhaust gas

Claims (7)

  1.  回転軸と、
     前記回転軸の一端部に設けられるタービンホイールであって、前記タービンホイールの周方向に間隔を置いて設けられる複数のタービンブレードを有するタービンホイールと、
     前記タービンホイールの背面と対面して配置される静止壁面と、を備え、
     前記回転軸の回転軸線と交差する方向から前記タービンブレードに排気ガスが流入するように構成される排気タービン装置であって、
     前記タービンホイールは、前記タービンホイールの背面において、前記タービンホイールの外周縁端を通過し且つ前記タービンホイールの半径方向に沿って延伸する径方向線よりも前記タービンホイールの先端側に凹んで形成される凹み部であって、前記回転軸線に沿った断面視において平坦状に形成される棚面を有する凹み部を含み、
     前記静止壁面は、前記棚面に向かって突出するシールフィンを有するラビリンスシール部を含むように構成されることを特徴とする排気タービン装置。
    A rotation axis;
    A turbine wheel provided at one end of the rotating shaft, the turbine wheel having a plurality of turbine blades provided at intervals in a circumferential direction of the turbine wheel;
    A stationary wall surface facing the rear surface of the turbine wheel,
    An exhaust turbine apparatus configured to allow exhaust gas to flow into the turbine blade from a direction intersecting the rotation axis of the rotation shaft,
    The turbine wheel is formed on the rear surface of the turbine wheel so as to be recessed toward the tip side of the turbine wheel from a radial line passing through an outer peripheral edge of the turbine wheel and extending along a radial direction of the turbine wheel. Including a recess having a shelf surface that is formed flat in a cross-sectional view along the rotational axis,
    The exhaust turbine apparatus according to claim 1, wherein the stationary wall surface includes a labyrinth seal portion having a seal fin protruding toward the shelf surface.
  2.  前記凹み部は複数の前記棚面を有し、
     前記ラビリンスシール部は、前記複数の棚面に向かってそれぞれ突出するシールフィンを有することを特徴とする請求項1に記載の排気タービン装置。
    The recess has a plurality of the shelf surfaces,
    2. The exhaust turbine apparatus according to claim 1, wherein the labyrinth seal portion includes seal fins that project toward the plurality of shelf surfaces.
  3.  前記棚面は、
     前記回転軸線に沿った断面視において、前記回転軸に対して平行な方向に沿うように形成されることを特徴とする請求項1又は2に記載の排気タービン装置。
    The shelf surface is
    3. The exhaust turbine apparatus according to claim 1, wherein the exhaust turbine apparatus is formed so as to be along a direction parallel to the rotation axis in a sectional view along the rotation axis.
  4.  前記棚面は、
     前記回転軸線に沿った断面視において、前記タービンホイールの先端側へ向かうにつれて前記回転軸線との距離が大きくなるように、前記回転軸線に対して傾斜するように形成されることを特徴とする請求項1又は2に記載の排気タービン装置。
    The shelf surface is
    The cross-sectional view along the rotation axis is formed so as to be inclined with respect to the rotation axis so that the distance from the rotation axis increases toward the tip side of the turbine wheel. Item 3. The exhaust turbine apparatus according to Item 1 or 2.
  5.  前記ラビリンスシール部の前記シールフィンと前記棚面との間に形成される隙間は、前記タービンホイールの背面の外側先端縁と前記静止壁面との間に形成される隙間より小さくなるように構成されていることを特徴とする請求項1乃至4の何れか1項に記載の排気タービン装置。 The gap formed between the seal fin of the labyrinth seal portion and the shelf surface is configured to be smaller than the gap formed between the outer front edge of the rear surface of the turbine wheel and the stationary wall surface. The exhaust turbine apparatus according to any one of claims 1 to 4, wherein the exhaust turbine apparatus is provided.
  6.  前記排気タービン装置は斜流タービン又はラジアルタービンを備えていることを特徴とする請求項1乃至5の何れか1項に記載の排気タービン装置。 The exhaust turbine apparatus according to any one of claims 1 to 5, wherein the exhaust turbine apparatus includes a mixed flow turbine or a radial turbine.
  7.  請求項1乃至6の何れか1項に記載の排気タービン装置を備えたことを特徴とする過給機。 A supercharger comprising the exhaust turbine device according to any one of claims 1 to 6.
PCT/JP2015/076967 2015-03-26 2015-09-24 Exhaust turbine device and supercharger WO2016151895A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-064177 2015-03-26
JP2015064177A JP2016183605A (en) 2015-03-26 2015-03-26 Exhaust turbine apparatus and super charger

Publications (1)

Publication Number Publication Date
WO2016151895A1 true WO2016151895A1 (en) 2016-09-29

Family

ID=56978167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076967 WO2016151895A1 (en) 2015-03-26 2015-09-24 Exhaust turbine device and supercharger

Country Status (2)

Country Link
JP (1) JP2016183605A (en)
WO (1) WO2016151895A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167431U (en) * 1985-04-08 1986-10-17
JPS62137303U (en) * 1986-02-24 1987-08-29
JPH06346749A (en) * 1993-06-04 1994-12-20 Mitsubishi Heavy Ind Ltd Exhaust turbo-supercharger
JP2009236068A (en) * 2008-03-28 2009-10-15 Ihi Corp Supercharger
JP2015508143A (en) * 2012-02-23 2015-03-16 ネーピア・ターボチャージャーズ・リミテッド Turbocharger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167431U (en) * 1985-04-08 1986-10-17
JPS62137303U (en) * 1986-02-24 1987-08-29
JPH06346749A (en) * 1993-06-04 1994-12-20 Mitsubishi Heavy Ind Ltd Exhaust turbo-supercharger
JP2009236068A (en) * 2008-03-28 2009-10-15 Ihi Corp Supercharger
JP2015508143A (en) * 2012-02-23 2015-03-16 ネーピア・ターボチャージャーズ・リミテッド Turbocharger

Also Published As

Publication number Publication date
JP2016183605A (en) 2016-10-20

Similar Documents

Publication Publication Date Title
JP5524427B2 (en) Thrust bearing device for turbocharger
EP3078888B1 (en) Seal structure and rotary machine
JP6177421B2 (en) Seal structure and supercharger provided with the seal structure
JP5651459B2 (en) System and apparatus for compressor operation in a turbine engine
JP6225092B2 (en) Labyrinth seal, centrifugal compressor and turbocharger
JP5374563B2 (en) Axial flow turbine
JP5972374B2 (en) Axial fluid machine
KR102031510B1 (en) Seal structure and turbine
JP2009047043A (en) Axial flow turbine
JP6234600B2 (en) Turbine
US10385765B2 (en) Variable geometry turbocharger
US20130266427A1 (en) Sealing system for a turbomachine
US10316680B2 (en) Turbine
JP6096639B2 (en) Rotating machine
US9677463B2 (en) Axial-flow turbine for turbocharger
WO2015137393A1 (en) Shroud, moving blade element, and rotary machine
GB2447892A (en) Sealing assembly
WO2016151895A1 (en) Exhaust turbine device and supercharger
JP2017106544A (en) Seal structure and turbomachine
US11261746B2 (en) Turbine and turbocharger
US20200123966A1 (en) Variable geometry turbocharger
JP2019002361A (en) Turbomachine
US11066946B2 (en) Axial turbomachinery
US9644483B2 (en) Turbomachine bucket having flow interrupter and related turbomachine
US20170089210A1 (en) Seal arrangement for compressor or turbine section of gas turbine engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886447

Country of ref document: EP

Kind code of ref document: A1