US20130266427A1 - Sealing system for a turbomachine - Google Patents

Sealing system for a turbomachine Download PDF

Info

Publication number
US20130266427A1
US20130266427A1 US13/856,535 US201313856535A US2013266427A1 US 20130266427 A1 US20130266427 A1 US 20130266427A1 US 201313856535 A US201313856535 A US 201313856535A US 2013266427 A1 US2013266427 A1 US 2013266427A1
Authority
US
United States
Prior art keywords
sealing
disposed
sealing system
flow
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/856,535
Inventor
Inga Mahle
Alexander Boeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Assigned to MTU AERO ENGINES GMBH reassignment MTU AERO ENGINES GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOECK, ALEXANDER, MAHLE, INGA
Publication of US20130266427A1 publication Critical patent/US20130266427A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/122Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/127Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with a deformable or crushable structure, e.g. honeycomb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to a sealing system for a turbomachine, in particular, for a gas turbine, wherein the sealing system is disposed in an annular space between a flow-restricting wall of the turbomachine and at least one series of rotor blades comprising a plurality of rotor blades, and at least two seals.
  • the invention furthermore relates to a gas turbine, in particular, an aircraft engine that includes at least one sealing system.
  • Sealing systems of this type are employed, in particular, in connection with so-called clearance-maintaining systems in the components of compressors and turbines. These sealing systems function to keep to a minimum a sealing gap of the rotating blading relative to a housing, as well as the clearances of a stationary blading relative to a rotating rotor hub, thereby ensuring stable operating characteristics together with high efficiency.
  • the rotating components of the turbine typically include sealing fins that in the known way touch or run in against honeycomb seals.
  • the seals are provided here in the form of rub linings and abradable linings Sealing systems of this type are disclosed, for example, in U.S. Pat. No. 4,856,963 B1 and DE 198 07 247 A1.
  • the object of this invention is therefore to create a sealing system of the type referenced above that reliably provides an increase in the efficiency of a turbomachine.
  • a further object of the invention is to provide a corresponding gas turbine that exhibits improved efficiency.
  • a sealing system according to the invention for a turbomachine is disposed in an annular space between a flow-restricting wall of the turbomachine and at least one series of rotor blades comprising a plurality of rotor blades.
  • the sealing system here comprises at least two seals, wherein the first seal comprises at least one first sealing fin that is disposed on an end of the rotor blade facing the wall as well as at least one first abradable lining that is disposed on an inside of the wall and that is opposite the first sealing fin, and the second seal is disposed in the direction of flow following the first seal, and comprises a second abradable lining that is provided on the end of the rotor blade facing the wall as well as a second sealing fin that is disposed on the inside of the wall and is opposite the second abradable lining.
  • the first sealing fin and the second abradable lining here can be disposed on a shroud of the rotor blade.
  • this can be a casing of the turbomachine.
  • the sealing system according to the invention is able to ensure that any leakage flow is conducted closely along the end of the rotor blade facing the wall or along the shroud of the rotor blade until it reenters the so-called main flow of the turbomachine, with the result that this is delayed less severely until it reenters the main flow as compared with conventional sealing systems, in particular, sealing systems that have at least two sealing fins on the shroud of the rotor blade.
  • the leakage flow can be introduced with less disruption, that is, with less generation of turbulence, into the main flow.
  • the seal of the sealing system according to the invention which seal is disposed last in the flow direction, is always of the same design as the referenced second seal in order to achieve the described advantages. Otherwise the sealing system according to the invention can be implemented using already known techniques.
  • the sealing system can thus be of relatively lightweight construction so as to prevent any failure of the bond between the second abradable lining and the rotor blade from causing the entire sealing system to fail since those components of the sealing system that are located further forward in the flow direction, that is, the first seal, continue to be present. Also minimized is any secondary damage, such as, for example, that caused by the components of the second abradable lining impacting the stages of the turbomachine located further back in the flow direction, due to the relatively small size of the second abradable lining.
  • the second abradable lining has at least one chamfer in a rearward region in the flow direction.
  • the shroud can have at least one chamfer in a rearward region in the flow direction.
  • the chamfer here can be at an angle a ranging between 10° and 65°, preferably, approximately 20° and 45°, relative to a longitudinal axis of the turbomachine.
  • the first and/or second sealing fin is tilted opposite the flow direction. This also enables turbulences to be significantly reduced within the leakage flow.
  • the first sealing fin is integrated into the shroud. It is also possible to integrate the second sealing fin in the flow-restricting wall. This yields production advantages that result in overall reduced manufacturing costs.
  • the sealing system is provided in the form of a stepped labyrinth. This allows the sealing system to be advantageously adapted to the relevant specific requirements of the turbomachine, in particular, to the requirements presented by a low-pressure turbine.
  • the invention furthermore relates to a gas turbine, in particular, an aircraft engine, comprising at least one sealing system, wherein the sealing system is disposed in an annular space between a flow-restricting wall of the gas turbine and at least one series of rotor blades comprising a plurality of rotor blades, and at least two seals, wherein the first seal comprises at least one sealing fin that is disposed on an end of the rotor blade facing the wall as well as at least one first abradable lining that is disposed on an inside of the wall and is opposite the first sealing fin, and the second seal is disposed in the flow direction following the first seal and comprises a second abradable lining that is provided on the end of the rotor blade facing the wall as well as a second sealing fin that is disposed on the inside of the wall and is opposite the second abradable lining.
  • the first sealing fin and the second abradable lining here can be disposed on a shroud of the rotor blade.
  • the flow-restricting wall can be a casing of the turbomachine.
  • the gas turbine according to the invention exhibits improved efficiency due to the fact that a leakage flow can be conducted by the sealing system closely along the end of the rotor blades facing the flow-restricting wall up to re-entry into a main flow of the gas turbine such that this maintains a high velocity up to the point of re-entry, with the result that the velocity difference vis-à-vis the relatively fast main flow is reduced.
  • the referenced sealing system ensures low generation of turbulence in the leakage flow, thereby allowing this flow to be introduced into the main flow in relatively trouble-free fashion. In overall terms, this results in a reduction in the referenced mixing losses and in a more advantageous flow around the following blade.
  • the seal that is disposed last in the flow direction is always of the same design as the referenced second seal.
  • the sealing system for the gas turbine according to the invention can otherwise be implemented using already known techniques.
  • the sealing system can thus be of relatively lightweight construction so that any failure of the bond between the second abradable lining and the rotor blade does not result in failure of the entire sealing system due to the fact that the components of the sealing system located further forward in the flow direction continue to be present.
  • any consequential damage such as, for example, that caused by components of the second abradable lining impacting stages of the turbomachine located further back in the flow direction are minimized due to the relatively small size of the second abradable lining. Also minimized is the risk of a rotor imbalance in the turbomachine caused by asymmetric rubbing in the gas turbine according to the invention, or by the sealing system according to the invention.
  • FIGURE here provides a sectional, schematic, and partial cutaway view of a sealing system according to the invention.
  • the sealing system 10 depicted in the figure is a component of a low-pressure gas turbine. It is evident that sealing system 10 is disposed in an annular space 30 between a flow-restricting wall 22 of the low-pressure gas turbine and a series of rotor blades comprising a plurality of rotor blades 12 . Sealing system 10 here comprises two seals 34 , 36 , second seal 36 being disposed following first seal 34 in the flow direction 28 .
  • First seal 34 comprises a first sealing fin 18 that is provided on a shroud 16 of rotor blade 12 , and a first abradable lining 24 that is disposed on an inside of wall 22 and is opposite first sealing fin 18 .
  • Second seal 36 comprises a second abradable lining 20 that is disposed following first sealing fin 18 in flow direction 28 , and a second sealing fin 26 that is disposed on the inside of wall 22 , which sealing fin is disposed following first abradable lining 24 in flow direction 28 and is opposite second abradable lining 20 .
  • First and second rub and abradable linings 24 , 20 can be provided in the conventional form. They have a honeycomb structure in the embodiment shown. Another possible approach is to produce first and/or second abradable linings 24 , 20 by spraying them onto shroud 16 or the inside of wall 22 . It is possible, in particular, to employ powder injection molding for this purpose.
  • first and/or second abradable linings 24 , 20 are disposed as a complete system in the referenced regions or to bond them to these regions, for example, by brazing.
  • Second abradable lining 20 in the illustrated embodiment is disposed axially following a reinforcement rib 38 that is created by a Z-interlocking of shrouds 16 . This advantageously creates a flat attachment surface for second abradable lining 20 on the surface of shroud 16 .
  • second abradable lining 20 has at least one chamfer 32 in rearward region in flow direction 28 .
  • Chamfer 32 in the illustrated embodiment here is at an angle a less than 30° relative to a longitudinal axis of the turbomachine, for example, of the low-pressure turbine. It is possible in general for angle to lie within a range between 10° and 65°, preferably, a range between 20° and 45°.
  • sealing system 10 is provided in the form of a stepped labyrinth.
  • First and second abradable linings 24 , 20 , as well as first and second sealing fins 18 , 26 of sealing system 10 can be composed of such materials as are typically used. A wide variety of materials is known that can be used here.
  • First sealing fin 18 in the illustrated embodiment is integrated into shroud 16 .
  • Second sealing fin 26 is attached to the inside of wall 22 .
  • a guide vane 14 is disposed following rotor blade 12 in the flow direction.
  • the sealing system described in the embodiment is not restricted to the area of low-pressure turbines.

Abstract

A sealing system for a turbomachine, in particular, for a gas turbine, having an annular space between a flow-restricting wall and at least one series of rotor blades including a plurality of rotor blades. The sealing system comprises at least one first sealing fin disposed on an end of the rotor blade facing the wall, at least one second abradable lining disposed following the first sealing fin in the flow direction on the end of the rotor blade facing the wall, at least one first abradable lining disposed on the inside of the wall and opposite the first sealing fin, and at least one second sealing fin disposed in the flow direction following the first abradable lining on the inside of the wall and opposite the second abradable lining. The invention furthermore relates to a gas turbine comprising at least one sealing system.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims benefit of and priority to European Patent Application No. 12163065.1, filed Apr. 4, 2012, entitled “Dichtungssystem für eine Strömungsmaschine,” the specification of which is incorporated herein in its entirety.
  • TECHNICAL FIELD
  • The invention relates to a sealing system for a turbomachine, in particular, for a gas turbine, wherein the sealing system is disposed in an annular space between a flow-restricting wall of the turbomachine and at least one series of rotor blades comprising a plurality of rotor blades, and at least two seals. The invention furthermore relates to a gas turbine, in particular, an aircraft engine that includes at least one sealing system.
  • BACKGROUND
  • Sealing systems of this type are employed, in particular, in connection with so-called clearance-maintaining systems in the components of compressors and turbines. These sealing systems function to keep to a minimum a sealing gap of the rotating blading relative to a housing, as well as the clearances of a stationary blading relative to a rotating rotor hub, thereby ensuring stable operating characteristics together with high efficiency. The rotating components of the turbine typically include sealing fins that in the known way touch or run in against honeycomb seals. The seals are provided here in the form of rub linings and abradable linings Sealing systems of this type are disclosed, for example, in U.S. Pat. No. 4,856,963 B1 and DE 198 07 247 A1. By minimizing the radial gaps above the sealing fins, an attempt is made to minimize the leakage flows through cavities in these regions, in particular, in the regions above the shrouds of the rotor blades, and the efficiency losses generated thereby. Nevertheless, mixing losses are generated when the leakage flows enter the so-called main flow of the turbomachine due to the different orientations and velocities of the main flow and the leakage flow. In addition, the flow around a following blade is not optimal and this results in further losses.
  • SUMMARY AND DESCRIPTION
  • The object of this invention is therefore to create a sealing system of the type referenced above that reliably provides an increase in the efficiency of a turbomachine. A further object of the invention is to provide a corresponding gas turbine that exhibits improved efficiency.
  • The objects of the invention are achieved according to the invention by a sealing system having the features described and claimed herein and a gas turbine having the features described and claimed herein. A dvantageous embodiments of the invention are provided in the respective subordinate claims, wherein advantageous embodiments of the sealing system must be considered as advantageous embodiments of the gas turbine according to the invention. Similarly, advantageous embodiments of the gas turbine according to the invention must be considered as advantageous embodiments of the sealing system.
  • A sealing system according to the invention for a turbomachine, in particular, for a gas turbine, is disposed in an annular space between a flow-restricting wall of the turbomachine and at least one series of rotor blades comprising a plurality of rotor blades. The sealing system here comprises at least two seals, wherein the first seal comprises at least one first sealing fin that is disposed on an end of the rotor blade facing the wall as well as at least one first abradable lining that is disposed on an inside of the wall and that is opposite the first sealing fin, and the second seal is disposed in the direction of flow following the first seal, and comprises a second abradable lining that is provided on the end of the rotor blade facing the wall as well as a second sealing fin that is disposed on the inside of the wall and is opposite the second abradable lining. The first sealing fin and the second abradable lining here can be disposed on a shroud of the rotor blade. In terms of the flow-restricting wall, this can be a casing of the turbomachine. The sealing system according to the invention is able to ensure that any leakage flow is conducted closely along the end of the rotor blade facing the wall or along the shroud of the rotor blade until it reenters the so-called main flow of the turbomachine, with the result that this is delayed less severely until it reenters the main flow as compared with conventional sealing systems, in particular, sealing systems that have at least two sealing fins on the shroud of the rotor blade. In addition, the leakage flow can be introduced with less disruption, that is, with less generation of turbulence, into the main flow. This results in an overall strong reduction in the velocity gradients between the leakage flow and the main flow, thereby reducing the mixing losses and significantly improving the efficiency of the turbomachine. In addition, this results in a more advantageous flow around the following blade. The seal of the sealing system according to the invention, which seal is disposed last in the flow direction, is always of the same design as the referenced second seal in order to achieve the described advantages. Otherwise the sealing system according to the invention can be implemented using already known techniques. The sealing system can thus be of relatively lightweight construction so as to prevent any failure of the bond between the second abradable lining and the rotor blade from causing the entire sealing system to fail since those components of the sealing system that are located further forward in the flow direction, that is, the first seal, continue to be present. Also minimized is any secondary damage, such as, for example, that caused by the components of the second abradable lining impacting the stages of the turbomachine located further back in the flow direction, due to the relatively small size of the second abradable lining.
  • In further advantageous embodiments of the sealing system according to the invention, the second abradable lining has at least one chamfer in a rearward region in the flow direction. However, it is also possible for the shroud to have at least one chamfer in a rearward region in the flow direction. The chamfer here can be at an angle a ranging between 10° and 65°, preferably, approximately 20° and 45°, relative to a longitudinal axis of the turbomachine. This design shape of the second abradable lining and/or of the shroud enables the generation of turbulence to be further reduced in the leakage flow in these regions, and this results in a significantly more trouble-free entrance of the leakage flow into the main flow of the turbomachine. This in turn provides a significant reduction in the velocity gradients between the leakage flow and the main flow, thereby reducing mixing losses and improving the efficiency of the turbomachine.
  • In another advantageous embodiment of the sealing system according to the invention, the first and/or second sealing fin is tilted opposite the flow direction. This also enables turbulences to be significantly reduced within the leakage flow.
  • In further advantageous embodiments of the sealing system according to the invention, the first sealing fin is integrated into the shroud. It is also possible to integrate the second sealing fin in the flow-restricting wall. This yields production advantages that result in overall reduced manufacturing costs.
  • In another advantageous embodiment of the sealing system according to the invention, the sealing system is provided in the form of a stepped labyrinth. This allows the sealing system to be advantageously adapted to the relevant specific requirements of the turbomachine, in particular, to the requirements presented by a low-pressure turbine.
  • The invention furthermore relates to a gas turbine, in particular, an aircraft engine, comprising at least one sealing system, wherein the sealing system is disposed in an annular space between a flow-restricting wall of the gas turbine and at least one series of rotor blades comprising a plurality of rotor blades, and at least two seals, wherein the first seal comprises at least one sealing fin that is disposed on an end of the rotor blade facing the wall as well as at least one first abradable lining that is disposed on an inside of the wall and is opposite the first sealing fin, and the second seal is disposed in the flow direction following the first seal and comprises a second abradable lining that is provided on the end of the rotor blade facing the wall as well as a second sealing fin that is disposed on the inside of the wall and is opposite the second abradable lining. The first sealing fin and the second abradable lining here can be disposed on a shroud of the rotor blade. The flow-restricting wall can be a casing of the turbomachine. The gas turbine according to the invention exhibits improved efficiency due to the fact that a leakage flow can be conducted by the sealing system closely along the end of the rotor blades facing the flow-restricting wall up to re-entry into a main flow of the gas turbine such that this maintains a high velocity up to the point of re-entry, with the result that the velocity difference vis-à-vis the relatively fast main flow is reduced. In addition, the referenced sealing system ensures low generation of turbulence in the leakage flow, thereby allowing this flow to be introduced into the main flow in relatively trouble-free fashion. In overall terms, this results in a reduction in the referenced mixing losses and in a more advantageous flow around the following blade. In order to achieve these advantages, the seal that is disposed last in the flow direction is always of the same design as the referenced second seal. The sealing system for the gas turbine according to the invention can otherwise be implemented using already known techniques. The sealing system can thus be of relatively lightweight construction so that any failure of the bond between the second abradable lining and the rotor blade does not result in failure of the entire sealing system due to the fact that the components of the sealing system located further forward in the flow direction continue to be present. In addition, any consequential damage, such as, for example, that caused by components of the second abradable lining impacting stages of the turbomachine located further back in the flow direction are minimized due to the relatively small size of the second abradable lining. Also minimized is the risk of a rotor imbalance in the turbomachine caused by asymmetric rubbing in the gas turbine according to the invention, or by the sealing system according to the invention.
  • Additional embodiments of the sealing system of the gas turbine have been described above.
  • Additional features of the invention are revealed in the claims, the exemplary embodiment, and based on the drawing. The features and combinations of features referenced above in the description, as well as the features and combinations of features referenced below in the exemplary embodiment, can be applied not only in the specific combination indicated but also in other combinations without falling outside the scope of the invention.
  • BRIEF DESCRIPTION OF THE DRAWING
  • The FIGURE here provides a sectional, schematic, and partial cutaway view of a sealing system according to the invention.
  • DETAILED DESCRIPTION
  • The sealing system 10 depicted in the figure is a component of a low-pressure gas turbine. It is evident that sealing system 10 is disposed in an annular space 30 between a flow-restricting wall 22 of the low-pressure gas turbine and a series of rotor blades comprising a plurality of rotor blades 12. Sealing system 10 here comprises two seals 34, 36, second seal 36 being disposed following first seal 34 in the flow direction 28. First seal 34 comprises a first sealing fin 18 that is provided on a shroud 16 of rotor blade 12, and a first abradable lining 24 that is disposed on an inside of wall 22 and is opposite first sealing fin 18. Second seal 36 comprises a second abradable lining 20 that is disposed following first sealing fin 18 in flow direction 28, and a second sealing fin 26 that is disposed on the inside of wall 22, which sealing fin is disposed following first abradable lining 24 in flow direction 28 and is opposite second abradable lining 20. First and second rub and abradable linings 24, 20 can be provided in the conventional form. They have a honeycomb structure in the embodiment shown. Another possible approach is to produce first and/or second abradable linings 24, 20 by spraying them onto shroud 16 or the inside of wall 22. It is possible, in particular, to employ powder injection molding for this purpose. It is also possible, however, to dispose first and/or second abradable linings 24, 20 as a complete system in the referenced regions or to bond them to these regions, for example, by brazing. Second abradable lining 20 in the illustrated embodiment is disposed axially following a reinforcement rib 38 that is created by a Z-interlocking of shrouds 16. This advantageously creates a flat attachment surface for second abradable lining 20 on the surface of shroud 16.
  • It is furthermore evident that second abradable lining 20 has at least one chamfer 32 in rearward region in flow direction 28. Chamfer 32 in the illustrated embodiment here is at an angle a less than 30° relative to a longitudinal axis of the turbomachine, for example, of the low-pressure turbine. It is possible in general for angle to lie within a range between 10° and 65°, preferably, a range between 20° and 45°.
  • It is furthermore evident that depicted sealing system 10 is provided in the form of a stepped labyrinth. First and second abradable linings 24, 20, as well as first and second sealing fins 18, 26 of sealing system 10 can be composed of such materials as are typically used. A wide variety of materials is known that can be used here. First sealing fin 18 in the illustrated embodiment is integrated into shroud 16. Second sealing fin 26 is attached to the inside of wall 22. In the illustrated embodiment, a guide vane 14 is disposed following rotor blade 12 in the flow direction.
  • The sealing system described in the embodiment is not restricted to the area of low-pressure turbines.

Claims (17)

What is claimed is:
1. A sealing system for a turbomachine having a flow-restricting wall and at least one series of rotor blades including a plurality of rotor blades, the flow-restricting wall and the at least one series of rotor blades defining an annular space therebetween having a flow direction, the sealing system comprising:
a first seal and a second seal disposed in the annular space between the flow-restricting wall and the at least one series of rotor blades;
wherein the first seal includes
a first sealing fin that is disposed on an end of a rotor blade facing the flow-restricting wall, the rotor blade being from the at least one series of rotor blades, and
a first abradable lining that is disposed on an inside of the flow-restricting wall and is opposite the first sealing fin; and
wherein the second seal is disposed following the first seal in the flow direction and includes
a second abradable lining that is disposed on the end of the rotor blade facing the flow-restricting wall, and
a second sealing fin that is disposed on the inside of the flow-restricting wall and is opposite the second abradable lining.
2. A sealing system in accordance with claim 1, wherein the first sealing fin and the second abradable lining are disposed on a shroud of the rotor blade.
3. A sealing system in accordance with claim 2, wherein the shroud has at least one chamfer in a rearward region in the flow direction.
4. A sealing system in accordance with claim 3, wherein the chamfer is at an angle a in the range between 10° and 65° relative to a longitudinal axis of the turbomachine.
5. A sealing system in accordance with claim 4, wherein the chamfer is at an angle a in the range between 20° and 45° relative to a longitudinal axis of the turbomachine.
6. Sealing system according to claim 2, characterized in that the first sealing fin is integrated into the shroud.
7. A sealing system in accordance with claim 1, wherein the second abradable lining has at least one chamfer in a rearward region in the flow direction.
8. A sealing system in accordance with claim 7, wherein the chamfer is at an angle a in the range between 10° and 65° relative to a longitudinal axis of the turbomachine.
9. A sealing system in accordance with claim 8, wherein the chamfer is at an angle a in the range between 20° and 45° relative to a longitudinal axis of the turbomachine.
10. A sealing system in accordance with claim 1, wherein at least one of the first sealing fin or the second sealing fin is tilted opposite the flow direction.
11. A sealing system in accordance with claim 1, wherein the second sealing fin is integrated into the flow-restricting wall.
12. A sealing system in accordance with claim 1, wherein the sealing system is provided in the form of a stepped labyrinth.
13. A gas turbine aircraft engine comprising:
a casing wall;
at least one series of rotor blades including a plurality of rotor blades, the casing wall and the at least one series of rotor blades defining an annular space therebetween having a flow direction;
a first seal disposed in the annular space between the casing wall and the at least one series of rotor blades;
the first seal including a first sealing fin that is disposed on an end of a rotor blade facing the casing wall, the rotor blade being from the at least one series of rotor blades, and
a first abradable lining that is disposed on an inside of the casing wall and is opposite the first sealing fin; and
a second seal disposed in the annular space following the first seal in the flow direction and including
a second abradable lining that is disposed on the end of the rotor blade facing the casing wall, and
a second sealing fin that is disposed on the inside of the casing wall and is opposite the second abradable lining.
14. A gas turbine aircraft engine in accordance with claim 13, wherein the first sealing fin and the second abradable lining are disposed on a shroud of the rotor blade.
15. A gas turbine aircraft engine in accordance with claim 14, wherein the first sealing fin is integrated into the shroud.
16. A gas turbine aircraft engine in accordance with claim 13, wherein at least one of the first sealing fin or the second sealing fin is tilted opposite the flow direction.
17. A gas turbine aircraft engine in accordance with claim 13, wherein the second sealing fin is integrated into the casing wall.
US13/856,535 2012-04-04 2013-04-04 Sealing system for a turbomachine Abandoned US20130266427A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12163065.1A EP2647796A1 (en) 2012-04-04 2012-04-04 Seal system for a turbo engine
EP12163065.1 2012-04-04

Publications (1)

Publication Number Publication Date
US20130266427A1 true US20130266427A1 (en) 2013-10-10

Family

ID=46025444

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/856,535 Abandoned US20130266427A1 (en) 2012-04-04 2013-04-04 Sealing system for a turbomachine

Country Status (2)

Country Link
US (1) US20130266427A1 (en)
EP (1) EP2647796A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016102923A1 (en) * 2016-02-19 2017-08-24 Abb Turbo Systems Ag Compressor wheel back radial turbine
US10415735B2 (en) 2015-06-17 2019-09-17 Rolls-Royce Corporation Labyrinth seal with tunable flow splitter
CN114207252A (en) * 2019-08-06 2022-03-18 赛峰飞机发动机公司 Abradable component for a turbine wheel and comprising a wear surface provided with guide vanes
US11339676B2 (en) 2017-12-28 2022-05-24 Mitsubishi Heavy Industries Aero Engines, Ltd. Aircraft gas turbine, and rotor blade of aircraft gas turbine
US20220259983A1 (en) * 2020-03-30 2022-08-18 Ihi Corporation Secondary flow suppression structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9598981B2 (en) * 2013-11-22 2017-03-21 Siemens Energy, Inc. Industrial gas turbine exhaust system diffuser inlet lip
DE102016222720A1 (en) * 2016-11-18 2018-05-24 MTU Aero Engines AG Sealing system for an axial flow machine and axial flow machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6139263A (en) * 1998-02-20 2000-10-31 Klingels; Hermann Flow machine with rotor and stator
US7070387B2 (en) * 2001-08-30 2006-07-04 Snecma Moteurs Gas turbine stator housing
US20080056895A1 (en) * 2006-08-31 2008-03-06 Shigeki Senoo Axial turbine
WO2011054341A2 (en) * 2009-11-07 2011-05-12 Mtu Aero Engines Gmbh Sealing arrangement for a gas turbine and such a gas turbine
US20120230818A1 (en) * 2009-09-30 2012-09-13 Andrew Shepherd Airfoil and corresponding guide vane, blade, gas turbine and turbomachine
US20130272888A1 (en) * 2012-04-13 2013-10-17 General Electric Company Turbomachine blade tip shroud with parallel casing configuration

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4856963A (en) 1988-03-23 1989-08-15 United Technologies Corporation Stator assembly for an axial flow rotary machine
EP1152124A1 (en) * 2000-05-04 2001-11-07 Siemens Aktiengesellschaft Sealing device
WO2005061854A1 (en) * 2003-12-17 2005-07-07 Watson Cogeneration Company Gas turbine tip shroud rails
JP4668976B2 (en) * 2007-12-04 2011-04-13 株式会社日立製作所 Steam turbine seal structure
US7909335B2 (en) * 2008-02-04 2011-03-22 General Electric Company Retractable compliant plate seals
DE102009040758A1 (en) * 2009-09-10 2011-03-17 Mtu Aero Engines Gmbh Deflection device for a leakage current in a gas turbine and gas turbine
US20110070072A1 (en) * 2009-09-23 2011-03-24 General Electric Company Rotary machine tip clearance control mechanism

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6139263A (en) * 1998-02-20 2000-10-31 Klingels; Hermann Flow machine with rotor and stator
US7070387B2 (en) * 2001-08-30 2006-07-04 Snecma Moteurs Gas turbine stator housing
US20080056895A1 (en) * 2006-08-31 2008-03-06 Shigeki Senoo Axial turbine
US20120230818A1 (en) * 2009-09-30 2012-09-13 Andrew Shepherd Airfoil and corresponding guide vane, blade, gas turbine and turbomachine
WO2011054341A2 (en) * 2009-11-07 2011-05-12 Mtu Aero Engines Gmbh Sealing arrangement for a gas turbine and such a gas turbine
US20130272888A1 (en) * 2012-04-13 2013-10-17 General Electric Company Turbomachine blade tip shroud with parallel casing configuration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
English Machine Translation of WO2011054341A2 which was translated from the EPO on 11/19/2016. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10415735B2 (en) 2015-06-17 2019-09-17 Rolls-Royce Corporation Labyrinth seal with tunable flow splitter
DE102016102923A1 (en) * 2016-02-19 2017-08-24 Abb Turbo Systems Ag Compressor wheel back radial turbine
US11339676B2 (en) 2017-12-28 2022-05-24 Mitsubishi Heavy Industries Aero Engines, Ltd. Aircraft gas turbine, and rotor blade of aircraft gas turbine
CN114207252A (en) * 2019-08-06 2022-03-18 赛峰飞机发动机公司 Abradable component for a turbine wheel and comprising a wear surface provided with guide vanes
US20220259983A1 (en) * 2020-03-30 2022-08-18 Ihi Corporation Secondary flow suppression structure
US11808156B2 (en) * 2020-03-30 2023-11-07 Ihi Corporation Secondary flow suppression structure

Also Published As

Publication number Publication date
EP2647796A1 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
US20130266427A1 (en) Sealing system for a turbomachine
JP5985351B2 (en) Axial flow turbine
US9057279B2 (en) Labyrinth seals
US9169736B2 (en) Joint between airfoil and shroud
US8784045B2 (en) Seal assembly
EP3018297B1 (en) Sealing device and turbo machine
CN205744003U (en) Combustion gas turbine
WO2014010052A1 (en) Axial flow fluid machine
US10655481B2 (en) Cover plate for rotor assembly of a gas turbine engine
US20180355744A1 (en) Abradable structure for a turbomachine, turbomachine having an abradable structure, and method for manufacturing an abradable structure
US20180142567A1 (en) Sealing system for an axial turbomachine and axial turbomachine
US11047246B2 (en) Blade or vane, blade or vane segment and assembly for a turbomachine, and turbomachine
JP6153650B2 (en) Steam turbine stationary body and steam turbine provided with the same
US8210821B2 (en) Labyrinth seal for turbine dovetail
JP5172424B2 (en) Axial flow turbine
JP6518526B2 (en) Axial flow turbine
US9695694B2 (en) Aircraft engine blading
US9540953B2 (en) Housing-side structure of a turbomachine
JP2015001180A (en) Axis flow turbine
US20140363283A1 (en) Shroud arrangement for a fluid flow machine
JP5852191B2 (en) End wall member and gas turbine
US20230003137A1 (en) System with a rotor blade for a gas turbine with a blade foot protective plate having a sealing section
JP2019035347A (en) Turbine component, turbine blade, axial flow turbine and remodeling method thereof, and manufacturing method of turbine blade
JP5404187B2 (en) End wall member and gas turbine
RU2369749C1 (en) Two-stage turbine of has turbine engine

Legal Events

Date Code Title Description
AS Assignment

Owner name: MTU AERO ENGINES GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOECK, ALEXANDER;MAHLE, INGA;SIGNING DATES FROM 20130408 TO 20130409;REEL/FRAME:030179/0636

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE