WO2016151676A1 - 画像処理装置、画像処理方法および生体観察装置 - Google Patents

画像処理装置、画像処理方法および生体観察装置 Download PDF

Info

Publication number
WO2016151676A1
WO2016151676A1 PCT/JP2015/058479 JP2015058479W WO2016151676A1 WO 2016151676 A1 WO2016151676 A1 WO 2016151676A1 JP 2015058479 W JP2015058479 W JP 2015058479W WO 2016151676 A1 WO2016151676 A1 WO 2016151676A1
Authority
WO
WIPO (PCT)
Prior art keywords
target component
separation target
wavelengths
difference
image
Prior art date
Application number
PCT/JP2015/058479
Other languages
English (en)
French (fr)
Inventor
正法 三井
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2015/058479 priority Critical patent/WO2016151676A1/ja
Publication of WO2016151676A1 publication Critical patent/WO2016151676A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/044Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for absorption imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration

Definitions

  • the present invention relates to an image processing apparatus, an image processing method, and a living body observation apparatus.
  • the variation factor includes, for example, spatial luminance unevenness, temporal luminance variation, target spectral characteristic variation, texture variation due to structure difference, and the like. There are also differences depending on the type of organ to be observed.
  • the present invention has been made in view of the above-described circumstances, and provides an image processing apparatus, an image processing method, and a living body observation apparatus capable of accurately extracting a target component amount even when a variation factor exists.
  • the purpose is to do.
  • a plurality of wavelengths acquired at a wavelength where the relative absorbance of the separation target component and the relative absorbance of the non-separation target component are different are greater than the total number of components of the separation target component and the non-separation target component.
  • a logarithmic signal value calculation unit that calculates the logarithm of the signal value of each pixel for the plurality of input spectral images, and the same two spectral images acquired at the first two different wavelengths.
  • the amount of the non-separation target component is calculated by dividing the difference between the log signal values calculated by the log signal value calculation unit in the pixel by the difference in relative absorbance of the non-separation target component at the first two different wavelengths.
  • the non-separation target component amount calculation unit calculated by the non-separation target component amount calculation unit, and the two spectral images acquired at the second two different wavelengths. Separation for calculating a separation target component amount using a difference in logarithmic signal value in the pixel, a difference in relative absorbance of the separation target component at two different wavelengths, and a difference in relative absorbance of the non-separation target component
  • An image processing apparatus including a target component amount calculation unit.
  • the log signal value calculation unit receives the plurality of input spectral images. A logarithmic signal value that is the logarithm of the signal value of each pixel is calculated. Then, in the non-separation target component amount calculation unit, the difference between the logarithmic signal values in the same pixel of the two spectral images acquired at the first two different wavelengths is the relative absorbance of the non-separation target component at the first different two wavelengths. The non-separation target component amount is calculated by dividing by the difference.
  • the non-separation target component amount the difference between the logarithmic signal values in the pixels of the two spectral images acquired at the second different two wavelengths, and the separation at the second different two wavelengths
  • the amount of separation target component is calculated using the relative absorbance difference of the target component and the relative absorbance difference of the non-separation target component.
  • the variation factor is separated by calculating a logarithmic signal value. be able to. Since the variation factors at different wavelengths are the same, the variation factors can be canceled by the difference in the log signal values. Thereby, the variation factor contained in the signal value of each pixel can be removed, and the separation target component amount can be accurately calculated.
  • the absorbance of the separation target component at at least one of the first two different wavelengths may be 0.01 or less.
  • the separation target component is calculated from the calculation formula. The amount of non-separation target components can be calculated easily and accurately.
  • separation object component in at least 1 wavelength among said 2nd different 2 wavelengths may be 10 times or more of the light absorbency of the said non-separation object component.
  • the spectral image having a wavelength corresponding to RGB is input, a luminance signal is calculated from a signal value in the same pixel of each spectral image, and the logarithmic signal value in the same pixel of each spectral image.
  • the color difference signal may be calculated from an exponential function value of a difference value obtained by subtracting the product of the relative absorbance at the corresponding wavelength of the separation target component from the amount of the separation target component.
  • the said spectral image of the wavelength corresponding to RGB is input, and according to the magnitude
  • a composite image in which colors are superimposed may be generated.
  • the spectral image having a wavelength corresponding to RGB is input, and the luminance signal and the color difference signal are calculated from the signal value in the same pixel of each spectral image, and the calculated luminance signal and the color difference are calculated.
  • the signal may be multiplied by an attenuation coefficient corresponding to the separation target component amount.
  • the wavelength obtained when the relative absorbance of the separation target component is different from the relative absorbance of the non-separation target component is obtained for a wavelength greater than the total number of components of the separation target component and the non-separation target component.
  • the absorbance of the separation target component at at least one of the first two different wavelengths may be 0.01 or less.
  • separation object component in at least 1 wavelength among said 2nd different 2 wavelengths may be 10 times or more of the light absorbency of the said non-separation object component.
  • the spectral image has a wavelength corresponding to RGB
  • a luminance signal is calculated from a signal value in the same pixel of each spectral image, and the logarithmic signal in the same pixel of each spectral image.
  • calculating a color difference signal from an exponential function value of a difference value obtained by subtracting a product of a relative absorbance at a corresponding wavelength of the separation target component and the amount of the separation target component from the value.
  • the spectral image has a wavelength corresponding to RGB
  • the white light image synthesized by the spectral image is in accordance with the size of the separation target component amount and the non-separation target component amount.
  • a step of generating a composite image in which colors are superimposed may be included.
  • the spectral image has a wavelength corresponding to RGB, and a luminance signal and a color difference signal are calculated from signal values in the same pixel of each spectral image, and the calculated luminance signal and the calculated A step of multiplying the color difference signal by an attenuation coefficient corresponding to the separation target component amount.
  • the amount of the separation target component based on the spectral image acquisition unit that acquires the spectral image of the image, the plurality of spectral images acquired by the spectral image acquisition unit, and the relative absorbance of the separation target component and the non-separation target component A biological observation apparatus including any one of the image processing apparatuses described above.
  • the target component amount can be accurately extracted even when there is a variation factor.
  • 3 is a flowchart illustrating an image processing method by the image processing apparatus of FIG. 2. It is a figure which shows the transmittance
  • a living body observation apparatus 1 is an endoscope apparatus, and as shown in FIG. 1, an elongated insertion part 2 to be inserted into a body and a base end of the insertion part 2 are detachably attached.
  • a processor unit 4 a light source unit 3, an external I / F unit 5, and a monitor 6 are provided.
  • the light source unit 3 includes a white light source 7 that generates white light and three narrow-band filters 8 that transmit one band light in each of the R, G, and B bands from the white light emitted from the white light source 7.
  • a filter turret 9 is provided, and a coupling lens 10 that condenses the band light transmitted through each narrowband filter 8 is provided. Since the band light transmitted through each narrow band filter 8 has R, G, and B bands, respectively, pseudo white light can be synthesized.
  • the insertion unit 2 is provided at the illumination unit 11 that irradiates the band light from the light source unit 3 toward the living tissue X from the distal end 2a of the insertion unit 2, and the distal end 2a of the insertion unit 2, and receives an image signal of the biological tissue X.
  • An imaging unit 12 to be acquired, a memory 13 that stores unique information such as identification information of the imaging unit 12, and a connector 14 that is detachably connected to the processor unit 4 are provided.
  • the illumination unit 11 includes a light guide fiber 15 disposed over substantially the entire length in the longitudinal direction of the insertion portion 2 and an illumination optical system 16 provided at the distal end 2a of the insertion portion 2.
  • the light guide fiber 15 guides the light collected by the coupling lens 10 from the proximal end to the distal end.
  • the illumination optical system 16 diffuses each band light emitted from the distal end of the light guide fiber 15 and irradiates the living tissue X facing the distal end 2 a of the insertion portion 2.
  • the imaging unit 12 includes an objective lens 17 that condenses the reflected light from the biological tissue X, an imaging element (spectral image acquisition unit) 18 that captures the reflected light collected by the objective lens 17, and the imaging element 18. And an A / D converter 19 for converting the image signal acquired by the above method into a digital signal.
  • the image sensor 18 is a monochrome single-plate image sensor, for example, and is configured by a CCD, a CMOS, or the like.
  • the external I / F unit 5 is an input unit through which an operator inputs an observation target.
  • the external I / F unit 5 is an interface for performing input from the operator to the living body observation apparatus 1, and includes a power switch for turning on / off the power and a shutter button for starting a photographing operation.
  • a mode changeover switch for example, a switch for selectively emphasizing unevenness on the surface of the biological tissue X for switching the imaging mode and other various modes.
  • the external I / F unit 5 is configured to input the input information to the control unit 20.
  • the processor unit 4 controls the light source unit 3 and the imaging unit 12 based on the spectral characteristic setting unit 21 that sets the spectral characteristic based on the observation target input from the external I / F unit 5 and the set spectral characteristic.
  • a control unit 20 and an image processing device 22 that processes an image signal acquired by the imaging unit 12 are provided.
  • the spectral characteristic setting unit 21 stores the observation target and the spectral characteristic in association with each other.
  • the observation target input from the external I / F unit 5 is input from the control unit 20
  • the input target is the observation target.
  • the control unit 20 and the image processing device 22 are set.
  • the monitor 6 is a display device such as a CRT or a liquid crystal monitor capable of displaying a moving image of the image processed by the image processing device 22.
  • the image processing apparatus 22 includes an image signal of each pixel corresponding to each band light acquired by the image sensor 18 and converted into a digital signal by the A / D converter 19.
  • Logarithmic signal value calculation unit 23 for calculating the logarithm, logarithmic signal value calculated by the logarithmic signal value calculation unit 23, and non-separation for calculating the non-separation target component amount from the spectral characteristics set by the spectral characteristic setting unit 21
  • a target component amount calculation unit 24 and a separation target component amount calculation unit 25 that calculates a separation target component amount from the calculated non-separation target component amount, logarithmic signal value, and spectral characteristics are provided.
  • the enhancement processing unit 26 will be described later.
  • the image processing apparatus 22 and the image processing method according to the present embodiment will be described with specific examples.
  • a case where a prostate nerve is set as an observation target will be described.
  • carotene in fat becomes a separation target component as Merckmar, and hemoglobin representing blood as a non-separation target.
  • the wavelength ⁇ 1 is a wavelength where the relative absorbance of carotene is high and the relative absorbance of hemoglobin is relatively low (more than 10 times), and the wavelength ⁇ 2 is lower than the relative absorbance of carotene than ⁇ 1.
  • the wavelength at which the relative absorbance of hemoglobin is not so different from the wavelength ⁇ 1 and the wavelength ⁇ 3 are wavelengths at which the relative absorbance of carotene is extremely low (less than 0.01).
  • the narrowband filter 8 provided in the filter turret 9 of the light source unit 3 has the wavelengths ⁇ 1 , ⁇ 2 , and ⁇ 3 as center wavelengths and does not overlap each other. Those that transmit band light having a bandwidth (about 30 nm) are arranged.
  • the control unit 20 controls the motor 9a of the filter turret 9 of the light source unit 3 to sequentially arrange the narrowband filters 8 of wavelengths ⁇ 1 , ⁇ 2 , and ⁇ 3 on the optical axis, and controls the image sensor 18 at the timing.
  • the reflected light in the living tissue X of the band light of the wavelengths ⁇ 1 , ⁇ 2 , ⁇ 3 is photographed.
  • pixel signal values V 1 , V 2 , and V 3 are output from each pixel of the image sensor 18.
  • the pixel signal values V 1 , V 2 , and V 3 corresponding to the wavelengths ⁇ 1 , ⁇ 2 , and ⁇ 3 are expressed by the following equations (1), (2), and (3) based on the Lambert-Beer rule, respectively. Can be expressed as:
  • V 1 Aexp ( ⁇ 1 ⁇ 1 ( ⁇ 1 ) ⁇ 2 ⁇ 2 ( ⁇ 1 )) (1)
  • V 2 Aexp ( ⁇ 1 ⁇ 1 ( ⁇ 2 ) ⁇ 2 ⁇ 2 ( ⁇ 2 )) (2)
  • V 3 Aexp ( ⁇ 1 ⁇ 1 ( ⁇ 3 ) ⁇ 2 ⁇ 2 ( ⁇ 3 )) (3)
  • A is a coefficient indicating spatial illumination unevenness and temporal illumination intensity fluctuation, and is a value that differs for each pixel.
  • ⁇ 1 and ⁇ 2 are the amount of carotene pigment (amount of separation target component) and the amount of hemoglobin pigment (amount of non-separation target component), respectively.
  • ⁇ 1 ( ⁇ ) and ⁇ 2 ( ⁇ ) are relative absorbances of carotene and hemoglobin at the wavelength ⁇ , respectively.
  • a coefficient A indicating a variation factor such as spatial illumination unevenness and temporal illumination intensity variation is included as a separated term.
  • the non-separation target component amount calculation unit 24 uses two wavelengths (first different 2) shown in the equations (5) and (6) among the logarithmic signal values shown in the equations (4), (5), and (6).
  • wavelength) lambda 2 lambda 3 difference log of the obtained logarithmic signal value (V 3) -log (V 2 ) is calculated, and the same two wavelengths lambda 2, the difference between the relative absorbance of hemoglobin in lambda 3 mu 2 ( Divide by ⁇ 2 ) ⁇ 2 ( ⁇ 3 ).
  • the fluctuation factors included in Expressions (5) and (6) can be easily removed by calculating the difference between the two expressions.
  • the separation target component amount calculation unit 25 uses two wavelengths (second different two wavelengths) shown in the equations (4) and (5) among the logarithmic signal values shown in the equations (4), (5), and (6). ) The difference log (V 1 ) ⁇ log (V 2 ) between the logarithmic signal values acquired at ⁇ 1 and ⁇ 2 is calculated, and the difference ⁇ 1 ( ⁇ of the relative absorbance of carotene at the same two wavelengths ⁇ 1 and ⁇ 2 is calculated. 2 ) Divide by - ⁇ 1 ( ⁇ 1 ). As a result, the following equation (9) is obtained.
  • Equation (8) is substituted into Equation (9).
  • Equation (8) is substituted into Equation (9).
  • ⁇ 1 ( ⁇ 1 ( ⁇ 2 ) ⁇ 1 ( ⁇ 1 )) Log (V 1 ) ⁇ log (V 2 ) ⁇ K (log (V 3 ) ⁇ log (V 2 )) (10)
  • Equation (10) By dividing both sides of Equation (10) by ( ⁇ 1 ( ⁇ 2 ) ⁇ 1 ( ⁇ 1 )), the amount of carotene pigment ⁇ 1 itself can be calculated. Since dye amount of hemoglobin is a component amount alpha 2 is removed, the implementation may using equation (10). In this case, equation (10) is (V 1 / V 2) / (V 3 / V 2) K (10) ' It can be expressed as.
  • (V 3 / V 2 ) K corresponds to the non-separation target component amount calculation unit 24 in FIG. 2, and the operation of dividing (V 1 / V 2 ) by that value is the separation target component amount in FIG. This corresponds to the calculation unit 25.
  • the logarithm of the value calculated in this way agrees with the value of Expression (10). Strictly speaking, the output value is not the amount of the dye, but relatively represents the difference in the amount of the dye.
  • the image processing device 22 and the living body observation device 1 when the pigment amount of the carotene that is the separation target component is separated and extracted, the logarithm of the pixel signal value is taken as the logarithmic signal value. Then, even if there are fluctuation factors such as uneven illumination and fluctuations in illumination intensity due to the illumination shape and the three-dimensional structure of the subject by taking the difference, in the process of removing the non-separation target component, Can be removed. As a result, there is an advantage that the separation target component can be separated and extracted with high accuracy.
  • the image processing device 22 may include an enhancement processing unit 26.
  • the enhancement processing unit 26 includes a luminance signal calculation unit (YC conversion unit) 27 that calculates a luminance signal from the acquired RGB pixel signal values of each pixel, and each RGB of each pixel.
  • a subtractor 30 that subtracts the product calculated by the multiplier 29 from the logarithmic signal value, and an exponent calculator (exp calculator) that restores the difference value after the subtraction to the original color space ) 31, a color difference signal calculation unit (YC conversion unit) 32 that calculates a color difference signal from the calculation result (exponential function value) of the exponent calculation unit 31, and an image generation unit 33 that generates an RGB color image from the luminance signal and the color difference signal.
  • the relative absorbance of carotene when the amount of carotene is large, it can be emphasized with a color that further increases the amount of carotene pigment. Therefore, a natural enhanced image can be generated.
  • the brightness signal is calculated from the RGB pixel signal values of each acquired image and used when generating the RGB color image, so the brightness of the image can be preserved and the image appears darker. The inconvenience that becomes difficult can be prevented in advance.
  • the enhancement processing unit 26 enhances by separating the extracted and extracted carotene pigment amount from a specific color and superimposing the color on the RGB color image.
  • a thing may be adopted. Since the superposition ratio C when the color corresponding to the separately extracted component amount and the color of the RGB color image are mixed is determined to be constant, the emphasized color can be added while maintaining the original structure.
  • the color corresponding to the separated and extracted component amount can be arbitrarily determined. For example, when the colors of the green to blue regions are associated, the colors that are not normally present in the living body can be easily recognized immediately.
  • the enhancement processing unit 26 converts each RGB pixel signal value into a luminance / color difference signal, and multiplies each by the attenuation coefficient calculated by the attenuation coefficient calculation unit 34. May be.
  • the attenuation coefficient at this time is set to a value that attenuates more as the amount of component to be separated is smaller.
  • the attenuation is small, the signal value does not change, and the original signal value is maintained.
  • the attenuation increases and the brightness and saturation decrease. As a result, it is possible to emphasize a region with low attenuation relative to a region with high attenuation.
  • the light source unit 3 is assumed to include the white light source 7 and the filter turret 9 including the plurality of narrowband filters 8, and the image sensor 18 is described as a monochrome single-plate image sensor.
  • the image pickup device 18 may be a color image pickup device, and a fixed triple band filter having the transmittance characteristics shown in FIG. 9 may be adopted instead of the filter turret 9. By doing so, it is possible to simultaneously acquire images of three band lights necessary for separating and extracting the amount of pigment of carotene. Moreover, it is good also considering LED which inject
  • a light source that emits broadband light including all of the RGB band lights is used, and a filter having a narrow band filter 8 for sequentially transmitting each band light in front of the monochrome single-plate image sensor.
  • a tunable filter such as the turret 9 or an etalon or a liquid crystal filter may be disposed.
  • a triple band filter may be disposed in front of the color image sensor.
  • a color imaging device may be employed as the imaging device 18 and the filter turret 9 may include two narrow band filters 8 as shown in FIGS. 10A and 10B.
  • Wavelength lambda 1 is relative absorbance is relatively low wavelength of the high hemoglobin relative absorbance of carotene
  • the wavelength lambda 2 is not much difference between relative absorbance of hemoglobin is the wavelength lambda 1 lower than 1 relative absorbance of carotene lambda wavelength
  • wavelength ⁇ 3 is the same as described above in that the relative absorbance of carotene is very low (less than 0.01).
  • Wavelengths ⁇ 1 and ⁇ 2 are used for extraction of carotene
  • ⁇ 2 and ⁇ 3 are used for extraction of hemoglobin.
  • the biological tissue X Since the biological tissue X has a wavelength-dependent scattering characteristic, information of different depths is used when the two wavelengths ⁇ 1 , ⁇ 2 ; ⁇ 2 , ⁇ 3 used for extracting each component are separated.
  • the components are extracted using wavelengths close to each other, so that the amount of pigment of carotene and hemoglobin is reduced. There is an advantage that it can be extracted accurately.
  • the filter turret 9 separates them in time and irradiates them.
  • the wavelength ⁇ 4 is a wavelength for acquiring an R image signal when a white light image is synthesized, and is not used for component extraction.
  • the influence of scattering of the living tissue X can be suppressed and the amount of carotene can be extracted with high accuracy.
  • bilirubin is separated and extracted from the three components of melanin, bilirubin, and hemoglobin.
  • Melanin and hemoglobin are the main pigments that make up the color of the skin, and bilirubin is a pigment that appears as a symptom of jaundice when it grows abnormally in the body.
  • the relative absorbance of these three components is shown in FIG.
  • bilirubin is separated and extracted using four more wavelengths ⁇ 1 , ⁇ 2 , ⁇ 3 , and ⁇ 4 .
  • the wavelengths ⁇ 1 and ⁇ 2 are desirably a combination of wavelengths having a large difference in relative absorbance of bilirubin, and the wavelengths ⁇ 2 , ⁇ 3 and ⁇ 4 are preferably wavelengths having a low relative absorbance of bilirubin.
  • the wavelengths ⁇ 3 and ⁇ 4 are preferably those having a low relative absorbance so that hemoglobin and melanin can be separated.
  • Pixel signal values V 1 , V 2 , V 3 , and V 4 corresponding to the wavelengths ⁇ 1 , ⁇ 2 , ⁇ 3 , and ⁇ 4 are expressed by the following equations (11), (12), (13), and (14), respectively.
  • V 1 Aexp ( ⁇ 1 ⁇ 1 ( ⁇ 1 ) ⁇ 2 ⁇ 2 ( ⁇ 1 ) ⁇ 3 ⁇ 3 ( ⁇ 1 )) (11)
  • V 2 Aexp ( ⁇ 1 ⁇ 1 ( ⁇ 2 ) ⁇ 2 ⁇ 2 ( ⁇ 2 ) ⁇ 3 ⁇ 3 ( ⁇ 2 ))
  • V 3 Aexp ( ⁇ 1 ⁇ 1 ( ⁇ 3 ) ⁇ 2 ⁇ 2 ( ⁇ 3 ) ⁇ 3 ⁇ 3 ( ⁇ 3 )) (13)
  • V 4 Aexp ( ⁇ 1 ⁇ 1 ( ⁇ 4 ) ⁇ 2 ⁇ 2 ( ⁇ 4 ) ⁇ 3 ⁇ 3 ( ⁇ 4 )) (14)
  • ⁇ 1 , ⁇ 2 , and ⁇ 3 are respectively the amount of bilirubin pigment (separation target component amount), the amount of melanin pigment (non-separation target component amount), and the amount of hemoglobin pigment (non-separation target component amount). . Further, ⁇ 1 ( ⁇ ), ⁇ 2 ( ⁇ ), and ⁇ 3 ( ⁇ ) are relative absorbances of bilirubin, melanin, and hemoglobin at the wavelength ⁇ , respectively.
  • the logarithmic signal value calculation unit 23 takes the logarithm of the pixel signal values V 1 , V 2 , V 3 , and V 4 to obtain four log signal values log (V 1 ), log (V 2 ), log ( V 3), to obtain a log (V 4) (logarithmic signal value calculation step S1).
  • logarithmic signal value differences log (V 3 ) ⁇ log (V 2 ), log (V 3 ) ⁇ at wavelengths ⁇ 2 and ⁇ 3 and wavelengths ⁇ 3 and ⁇ 4 ⁇ log (V 4 ) is calculated. By calculating the difference, terms of fluctuation factors such as illumination unevenness can be removed.
  • ⁇ 2 (log (V 3 ) ⁇ log (V 4 )) / ( ⁇ 3 ( ⁇ 4 ) ⁇ 3 ( ⁇ 3 )) (15)
  • the dye amount alpha 3 of hemoglobin can be calculated as follows (non-separated target component amount calculating step S2).
  • the separation target component amount calculation unit 25 calculates a logarithmic signal value difference log (V 1 ) ⁇ log (V 2 ) at the wavelengths ⁇ 1 and ⁇ 2 . By calculating this difference, it is possible to remove a term of variation factors such as illumination unevenness.
  • the pigment amount ⁇ 1 of bilirubin itself can be calculated. since dye amount of melanin and hemoglobin is a component weight alpha 2 is removed, the implementation may using equation (17).
  • the equation (17) is similar to the equation (10) ′ in the signal value space, (V 1 / V 2 ) / (V 3 / V 2 ) K2 ⁇ (V 3 / V 4 ) K1K2-K3 (17) ′ It can be expressed as.
  • the separation target component amount can be separated and extracted with high accuracy while removing the variation factor.
  • Other pigments existing in the body include carotene and lipofuscin.
  • the capsule endoscope system 35 is shown. It may be adopted.
  • the capsule endoscope system 35 includes a capsule main body 36 and an extracorporeal device 37.
  • the capsule body 36 includes a plurality of LEDs 39 for illumination, an objective lens 40, a color imaging device 18, a control unit 20, and a wireless transmission / reception unit 41 in a capsule-shaped casing 38.
  • the extracorporeal device 37 includes a wireless transmission / reception unit 42, an organ determination unit 43, a spectral characteristic setting unit 44, an image processing device 22, an image storage unit 45, and a display unit 46.
  • the illumination light emitted from the LED 39 is reflected by the inner wall of the body cavity, the reflected light is collected by the objective lens 40, and is photographed by the color image sensor 18.
  • the acquired image signal is transmitted outside the body by the wireless transmission / reception unit 41 and received by the wireless transmission / reception unit 42 of the extracorporeal device 37.
  • the organ determination unit 43 determines the organ in which the capsule body 36 exists based on the received image signal.
  • the organ determination may be performed by a general method, for example, a method using SVM (Support Vector Machine).
  • the spectral characteristic setting unit 44 determines the separation target component and the non-separation target component based on the determination result of the organ determination unit 43, sets the spectral characteristics thereof, sets the wavelength of the LED 39 to be used, and performs wireless transmission / reception. It is sent to the capsule body 36 via the parts 41 and 42.
  • the control unit 20 controls the LED 39 and the image pickup device 18 based on the transmitted information of the LED 39, and illumination and image acquisition with band light of a desired wavelength are performed.
  • the separation processing of the separation target component is performed by the image processing device 22 based on the spectral characteristics set by the spectral characteristic setting unit 44 and the wavelength information of the band light.
  • the capsule endoscope system 35 images are acquired at time intervals while passing through a plurality of organs until the capsule body 36 is taken out and discharged.
  • the components are different, since the organ is determined by the organ determination unit 43 and the separation target component and the like are determined according to the determination result, there is an advantage that the separation target component suitable for each organ can be separated and extracted. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Endoscopes (AREA)

Abstract

本発明の画像処理装置(22)は、分離対象成分および非分離対象成分の相対吸光度が異なる波長において、分離対象成分と非分離対象成分との合計成分数より多い波長について取得された複数の分光画像が入力され、入力された複数の分光画像について各画素の信号値の対数を算出する対数信号値算出部(23)と、第1の異なる2波長で取得された2つの分光画像の同一画素における対数信号値の差分を、第1の異なる2波長における非分離対象成分の相対吸光度の差分で除算することにより非分離対象成分量を算出する非分離対象成分量算出部(24)と、算出された非分離対象成分量と、第2の異なる2波長で取得された2つの分光画像の画素における対数信号値の差分と、第2の異なる2波長における分離対象成分の相対吸光度の差分および非分離対象成分の相対吸光度の差分とを用いて分離対象成分量を算出する分離対象成分量算出部(25)とを備える。

Description

画像処理装置、画像処理方法および生体観察装置
 本発明は、画像処理装置、画像処理方法および生体観察装置に関するものである。
 一般環境で撮影された人肌領域を含む画像から、人肌に沈着している色素成分のうちの所望の色素成分の色素量を推定する画像処理方法が知られている(例えば、特許文献1参照。)。
 この画像処理方法は、N個の物質をN波長の光で分離している。
特開2014-2504号公報
 ところで、内視鏡手術中に注目すべき組織や物質を含む領域を画像から抽出する場合には、血液が存在したりその他の変動要因が存在したりして、算出した値が大きく変動し抽出精度が低下することが考えられる。
 ここで、変動要因とは、例えば、空間的な輝度ムラ、時間的な輝度の変動、対象とする分光特性のばらつき、構造の違いによるテクスチャのばらつき等が挙げられる。また、観察する臓器の種類によっても違いがある。
 本発明は上述した事情に鑑みてなされたものであって、変動要因が存在する場合においても対象とする成分量を精度よく抽出することができる画像処理装置、画像処理方法および生体観察装置を提供することを目的としている。
 本発明の一態様は、分離対象成分の相対吸光度と非分離対象成分の相対吸光度とが異なる波長において、前記分離対象成分と前記非分離対象成分との合計成分数より多い波長について取得された複数の分光画像が入力され、入力された複数の前記分光画像について各画素の信号値の対数を算出する対数信号値算出部と、第1の異なる2波長で取得された2つの前記分光画像の同一画素における前記対数信号値算出部により算出された対数信号値の差分を、前記第1の異なる2波長における前記非分離対象成分の相対吸光度の差分で除算することにより前記非分離対象成分量を算出する非分離対象成分量算出部と、該非分離対象成分量算出部により算出された前記非分離対象成分量と、第2の異なる2波長で取得された2つの前記分光画像の前記画素における対数信号値の差分と、前記第2の異なる2波長における前記分離対象成分の相対吸光度の差分および前記非分離対象成分の相対吸光度の差分とを用いて分離対象成分量を算出する分離対象成分量算出部とを備える画像処理装置である。
 本態様によれば、分離対象成分と非分離対象成分との合計成分数より多い波長について取得された複数の分光画像が入力されると、対数信号値算出部において、入力された複数の分光画像について各画素の信号値の対数である対数信号値が算出される。そして、非分離対象成分量算出部において、第1の異なる2波長で取得された2つの分光画像の同一画素における対数信号値の差分が第1の異なる2波長における非分離対象成分の相対吸光度の差分で除算されることにより非分離対象成分量が算出される。さらに、分離対象成分量算出部において、非分離対象成分量と、第2の異なる2波長で取得された2つの分光画像の上記画素における対数信号値の差分と、第2の異なる2波長における分離対象成分の相対吸光度の差分および非分離対象成分の相対吸光度の差分とを用いて分離対象成分量が算出される。
 各波長での画素の信号値には、空間的な照明ムラや時間的な照明ムラ等の変動要因が係数として掛け合わせられているので、対数信号値を算出することにより、変動要因を分離することができる。異なる波長での変動要因は同じなので、対数信号値の差分によって変動要因をキャンセルすることができる。
 これにより、各画素の信号値に含まれている変動要因を除去して分離対象成分量を精度よく算出することができる。
 上記態様においては、前記第1の異なる2波長のうち少なくとも1つの波長における前記分離対象成分の吸光度が0.01以下であってもよい。
 このようにすることで、非分離対象成分量算出部における非分離対象成分量の算出の際に、分離対象成分の吸光度がほとんどない波長での信号値を用いることにより、計算式から分離対象成分を除去することができ、簡易かつ精度よく非分離対象成分量を算出できる。
 また、上記態様においては、前記第2の異なる2波長のうち少なくとも1つの波長における前記分離対象成分の吸光度が前記非分離対象成分の吸光度の10倍以上であってもよい。
 このようにすることで、目的とする分離対象成分が多く含まれる波長での信号値を用いることにより、SN比を向上して、分離対象成分量を精度よく算出することができる。
 また、上記態様においては、RGBに対応する波長の前記分光画像が入力され、各該分光画像の同一画素における信号値から輝度信号を算出するとともに、各前記分光画像の同一画素における前記対数信号値から前記分離対象成分の対応波長における相対吸光度と前記分離対象成分量との積を減算した差分値の指数関数値から色差信号を算出してもよい。
 このようにすることで、分離対象成分量算出部により算出された分離対象成分量が多い領域ほど吸光量が多いときの色になるように強調された自然な強調画像を生成することができる。強調前の信号値から輝度信号を算出することで明るさを保存することができる。
 また、上記態様においては、RGBに対応する波長の前記分光画像が入力され、該分光画像により合成される白色光画像に、前記分離対象成分量および前記非分離対象成分量の大きさに応じた色を重畳した合成画像を生成してもよい。
 このようにすることで、分離対象成分および非分離対象成分に任意の色を割り当てることができ、強調した領域が目に付きやすい合成画像を生成することができる。
 また、上記態様においては、RGBに対応する波長の前記分光画像が入力され、各該分光画像の同一画素における信号値から輝度信号および色差信号を算出するとともに、算出された前記輝度信号および前記色差信号に、前記分離対象成分量に応じた減衰係数を乗算してもよい。
 このようにすることで、分離対象成分量が多いほど元の画像の色および構造が保存され、分離対象成分量が少ないほど減衰された画像となるので、分離対象成分量が多い領域が他の領域に対して相対的に強調された強調画像を生成することができる。
 また、本発明の他の態様は、分離対象成分の相対吸光度と非分離対象成分の相対吸光度とが異なる波長において、前記分離対象成分と前記非分離対象成分との合計成分数より多い波長について取得された複数の分光画像について、各画素の信号値の対数を算出する対数信号値算出ステップと、第1の異なる2波長で取得された2つの前記分光画像の同一画素における前記対数信号値算出ステップにより算出された対数信号値の差分を、前記第1の異なる2波長における前記非分離対象成分の相対吸光度の差分で除算することにより前記非分離対象成分量を算出する非分離対象成分量算出ステップと、該非分離対象成分量算出ステップにより算出された前記非分離対象成分量と、第2の異なる2波長で取得された2つの前記分光画像の前記画素における対数信号値の差分と、前記第2の異なる2波長における前記分離対象成分の相対吸光度の差分および前記非分離対象成分の相対吸光度の差分とを用いて分離対象成分量を算出する分離対象成分量算出ステップとを含む画像処理方法である。
 上記態様においては、前記第1の異なる2波長のうち少なくとも1つの波長における前記分離対象成分の吸光度が0.01以下であってもよい。
 また、上記態様においては、前記第2の異なる2波長のうち少なくとも1つの波長における前記分離対象成分の吸光度が前記非分離対象成分の吸光度の10倍以上であってもよい。
 また、上記態様においては、前記分光画像がRGBに対応する波長を有し、各該分光画像の同一画素における信号値から輝度信号を算出するステップと、各前記分光画像の同一画素における前記対数信号値から前記分離対象成分の対応波長における相対吸光度と前記分離対象成分量との積を減算した差分値の指数関数値から色差信号を算出するステップとを含んでいてもよい。
 また、上記態様においては、前記分光画像がRGBに対応する波長を有し、該分光画像により合成される白色光画像に、前記分離対象成分量および前記非分離対象成分量の大きさに応じた色を重畳した合成画像を生成するステップを含んでいてもよい。
 また、上記態様においては、前記分光画像がRGBに対応する波長を有し、各該分光画像の同一画素における信号値から輝度信号および色差信号を算出するステップと、算出された前記輝度信号および前記色差信号に、前記分離対象成分量に応じた減衰係数を乗算するステップとを含んでいてもよい。
 また、本発明の他の態様は、分離対象成分の相対吸光度と非分離対象成分の相対吸光度とが異なる波長において、前記分離対象成分と前記非分離対象成分との合計成分数より多い波長について複数の分光画像を取得する分光画像取得部と、該分光画像取得部により取得された前記複数の分光画像と前記分離対象成分および前記非分離対象成分の相対吸光度とに基づいて前記分離対象成分量を算出する上記いずれかの画像処理装置とを備える生体観察装置である。
 本発明によれば、変動要因が存在する場合においても対象とする成分量を精度よく抽出することができるという効果を奏する。
本発明の一実施形態に係る生体観察装置の全体構成図である。 図1の生体観察装置に備えられる本発明の一実施形態に係る画像処理装置を示すブロック図である。 図2の画像処理装置による分離対象成分であるカロテンと、非分離対象成分であるヘモグロビンの分光特性を示す図である。 図2の画像処理装置による画像処理方法を説明するフローチャートである。 図1の生体観察装置の光学ユニットに備えられるBの帯域の狭帯域フィルタの透過率特性例を示す図である。 図1の生体観察装置の光学ユニットに備えられるGの帯域の狭帯域フィルタの透過率特性例を示す図である。 図1の生体観察装置の光学ユニットに備えられるRの帯域の狭帯域フィルタの透過率特性例を示す図である。 図2の画像処理装置に備えられる強調処理部の一例を示すブロック図である。 図2の画像処理装置に備えられる強調処理部の他の例を示すブロック図である。 図7Aの重畳色設定方法の一例を説明する図である。 図2の画像処理装置に備えられる強調処理部の他の例を示すブロック図である。 図1の生体観察装置の変形例における狭帯域フィルタの透過率特性を示す図である。 図1の生体観察装置の変形例における第1のフィルタの透過率特性を示す図である。 図10Aの第1のフィルタと切り替えて使用される第2のフィルタの透過率特性を示す図である。 図2の画像処理装置によりカロテンを分離抽出する際の2波長の組み合わせ例を示す図である。 図2の画像処理装置の変形例による分離対象成分であるビリルビンと、非分離対象成分であるメラニンおよびヘモグロビンの分光特性を示す図である。 図12の画像処理装置における第1のフィルタの透過率特性を示す図である。 図13Aの第1のフィルタと切り替えて使用される第2のフィルタの透過率特性を示す図である。 図1の生体観察装置の他の変形例であって、カプセル内視鏡システムを示すブロック図である。
 本発明の一実施形態に係る画像処理装置22および生体観察装置1について、図面を参照して以下に説明する。
 本実施形態に係る生体観察装置1は、内視鏡装置であって、図1に示されるように、体内に挿入される細長い挿入部2と、該挿入部2の基端を着脱可能に取り付けるプロセッサ部4と、光源ユニット3と、外部I/F部5と、モニタ6とを備えている。
 光源ユニット3は、白色光を発生する白色光源7と、該白色光源7から発せられた白色光から、R、G、Bの各帯域において1つの帯域光を透過させる3つの狭帯域フィルタ8を備えるフィルタターレット9と、各狭帯域フィルタ8を透過した帯域光を集光するカップリングレンズ10とを備えている。各狭帯域フィルタ8を透過した帯域光は、それぞれR、G、Bの帯域を有しているので、擬似的な白色光を合成することができるようになっている。
 挿入部2は、光源ユニット3からの帯域光を挿入部2の先端2aから生体組織Xに向けて照射する照明ユニット11と、挿入部2の先端2aに設けられ、生体組織Xの画像信号を取得する撮像ユニット12と、撮像ユニット12の識別情報等の固有情報を記憶するメモリ13と、プロセッサ部4に着脱可能に接続するためのコネクタ14とを備えている。
 照明ユニット11は、挿入部2の長手方向のほぼ全長にわたって配置されたライトガイドファイバ15と、挿入部2の先端2aに設けられた照明光学系16とを備えている。ライトガイドファイバ15は、カップリングレンズ10によって集光された光をその基端から先端まで導光する。照明光学系16は、ライトガイドファイバ15の先端から出射された各帯域光を拡散させ、挿入部2の先端2aに対向する生体組織Xに照射するようになっている。
 撮像ユニット12は、生体組織Xからの反射光を集光する対物レンズ17と、該対物レンズ17によって集光された反射光を撮影する撮像素子(分光画像取得部)18と、該撮像素子18により取得された画像信号をデジタル信号に変換するA/D変換器19とを備えている。
 撮像素子18は、例えば、モノクロ単板撮像素子であり、CCDまたはCMOS等により構成されている。
 外部I/F部5は、操作者が観察対象を入力する入力部である。また、外部I/F部5は、生体観察装置1に対する操作者からの入力等を行うためのインタフェースであり、電源のオン/オフを行うための電源スイッチ、撮影操作を開始するためのシャッタボタン、撮影モードやその他各種のモードを切り替えるためのモード切替スイッチ(例えば、生体組織X表面の凹凸の選択的な強調処理を行うためのスイッチ)等を含んで構成されている。そして、外部I/F部5は入力された情報を制御部20に入力するようになっている。
 プロセッサ部4は、外部I/F部5から入力された観察対象に基づいて分光特性を設定する分光特性設定部21と、設定された分光特性に基づいて光源ユニット3および撮像ユニット12を制御する制御部20と、撮像ユニット12により取得された画像信号を処理する画像処理装置22とを備えている。
 分光特性設定部21は、観察対象と分光特性とを対応づけて記憶しており、外部I/F部5から入力された観察対象が制御部20から入力されると、入力された観察対象に対応づけて記憶されている該観察対象となる物質またはメルクマールとなる成分(分離対象成分)の分光特性、他の成分(非分離対象成分)の分光特性から、画像取得に用いる分光特性を選択して制御部20および画像処理装置22に設定するようになっている。
 モニタ6は、画像処理装置22により処理された画像を動画表示可能なCRTや液晶モニタ等の表示装置である。
 本実施形態に係る画像処理装置22は、図2に示されるように、撮像素子18により取得されA/D変換器19によりデジタル信号に変換された各帯域光に対応する各画素の画像信号の対数を演算する対数信号値算出部23と、対数信号値算出部23により算出された対数信号値と、分光特性設定部21により設定された分光特性とから非分離対象成分量を算出する非分離対象成分量算出部24と、算出された非分離対象成分量、対数信号値および分光特性とから分離対象成分量を算出する分離対象成分量算出部25とを備えている。強調処理部26については後述する。
 ここで、具体例を挙げて、本実施形態に係る画像処理装置22および画像処理方法について説明する。
 観察対象として前立腺の神経を設定した場合について説明する。
 前立腺の神経を観察する場合、メルクマールとして脂肪中のカロテンが分離対象成分となり、非分離対象として血液を表すヘモグロビンが挙げられる。
 カロテンおよびヘモグロビンの分光特性としては、図3に示されるような相対吸光度の波長特性を挙げることができる。そして、分光特性設定部21においては、カロテンを分離対象成分とし、ヘモグロビンを非分離対象成分として観察する場合の帯域光の波長として、λ=480nm、λ=510nm、λ=580nmの3つの波長を選択するようになっている。なお、これらの波長λ,λ,λは厳密なものではなく、これらの近傍の波長を選択してもよい。
 すなわち、図3に示されるように、波長λはカロテンの相対吸光度が高くヘモグロビンの相対吸光度が比較的低い(10倍より大きい)波長、波長λはカロテンの相対吸光度がλよりも低くヘモグロビンの相対吸光度が波長λとあまり差がない波長、波長λはカロテンの相対吸光度が極めて低い(0.01より小さい)波長である。
 光源ユニット3のフィルタターレット9に備えられる狭帯域フィルタ8としては、図5A,図5B,図5Cに示されるように、上記波長λ,λ,λを中心波長とし、相互に重複しない帯域幅(30nm程度)の帯域光を透過させるものが配置されている。制御部20は光源ユニット3のフィルタターレット9のモータ9aを制御して、波長λ,λ,λの狭帯域フィルタ8を順次光軸上に配置し、そのタイミングで撮像素子18を制御して、波長λ,λ,λの帯域光の生体組織Xにおける反射光を撮影させるようになっている。
 波長λ,λ,λの帯域光の生体組織Xにおける反射光が撮影されると、撮像素子18の各画素からは画素信号値V,V,Vが出力される。
 ここで、波長λ,λ,λに対応する画素信号値V,V,Vは、Lambert-Beer則に基づいて、それぞれ下式(1),(2),(3)の通りに表すことができる。
 V=Aexp(-αμ(λ)-αμ(λ))   (1)
 V=Aexp(-αμ(λ)-αμ(λ))   (2)
 V=Aexp(-αμ(λ)-αμ(λ))   (3)
 ここで、Aは空間的な照明ムラや時間的な照明強度の変動を示す係数であり、画素毎に異なる値である。また、α,αは、それぞれカロテンの色素量(分離対象成分量)、ヘモグロビンの色素量(非分離対象成分量)である。また、μ(λ)およびμ(λ)はそれぞれ、波長λにおけるカロテンおよびヘモグロビンの相対吸光度である。
 対数信号値算出部23は、画素信号値V,V,Vの対数をとるので、図4に示されるように下式(4),(5),(6)に示される対数信号値を算出する(対数信号値算出ステップS1)。
 log(V)=logA-αμ(λ)-αμ(λ)  (4)
 log(V)=logA-αμ(λ)-αμ(λ)  (5)
 log(V)=logA-αμ(λ)-αμ(λ)  (6)
 これらの式(4),(5),(6)においては、空間的な照明ムラや時間的な照明強度の変動等の変動要因を示す係数Aが分離された項として含まれることになる。
 非分離対象成分量算出部24は、式(4),(5),(6)に示される対数信号値のうち式(5),(6)に示される2つの波長(第1の異なる2波長)λ,λで取得された対数信号値の差分log(V)-log(V)を算出し、同じ2つの波長λ,λにおけるヘモグロビンの相対吸光度の差分μ(λ)-μ(λ)で除算するようになっている。式(7)に示されるように、式(5),(6)に含まれていた変動要因は、2つの式の差分を算出することにより、容易に除去することができる。
 (log(V)-log(V))/(μ(λ)-μ(λ))
  =α(μ(λ)-μ(λ))/(μ(λ)-μ(λ))+α (7)
 波長λ,λでのカロテンの相対吸光度μ(λ),μ(λ)は極めて低いので、式(7)右辺第1項は無視できる。その結果、ヘモグロビンの色素量αが式(8)の通りに算出される(非分離対象成分量算出ステップS2)。
 α=(log(V)-log(V))/(μ(λ)-μ(λ))  (8)
 分離対象成分量算出部25は、式(4),(5),(6)に示される対数信号値のうち式(4),(5)に示される2つの波長(第2の異なる2波長)λ,λで取得された対数信号値の差分log(V)-log(V)を算出し、同じ2つの波長λ,λにおけるカロテンの相対吸光度の差分μ(λ)-μ(λ)で除算するようになっている。これにより、下式(9)の通りとなる。
 (log(V)-log(V))/(μ(λ)-μ(λ))
  =α+α(μ(λ)-μ(λ))/(μ(λ)-μ(λ)) (9)
 ここで、K=(μ(λ)-μ(λ))/(μ(λ)-μ(λ))として、式(8)を式(9)に代入することにより、式(10)の通りに分離対象成分量であるカロテンの色素量αを算出することができる(分離対象成分量算出ステップS3)。
 α(μ(λ)-μ(λ))
 =log(V)-log(V)-K(log(V)-log(V))
(10)
 式(10)の両辺を(μ(λ)-μ(λ))で除算することにより、カロテンの色素量αそのものを算出できるが、式(10)のままでも非分離対象成分量であるヘモグロビンの色素量αが除去されているので、実装上は式(10)を使用してもよい。
この場合、式(10)は信号値空間では、
 (V/V)/(V/V (10)’
と表すことができる。
 この演算では、図2において対数信号値算出部23が不要となる。また、(V/Vは、図2における非分離対象成分量算出部24に対応し、その値で(V/V)を除算する演算は、図2における分離対象成分量算出部25に対応する。これで算出される値の対数は、式(10)の値と一致する。出力値は厳密には色素量ではないが、相対的に色素量の違いを表すものであり、そのまま強調処理等に用いても作用効果は同じである。
 このように、本実施形態に係る画像処理装置22および生体観察装置1によれば、分離対象成分であるカロテンの色素量を分離抽出する際に、画素信号値の対数をとって対数信号値とし、その上で差分をとることで、照明形状や被写体の3次元構造等による照明ムラや照明強度の変動等の変動要因があっても、非分離対象成分を除去する過程において、その変動要因を取り除くことができる。その結果、分離対象成分を精度よく分離抽出することができるという利点がある。
 なお、本実施形態においては、図2に示されるように、画像処理装置22が強調処理部26を備えていてもよい。
 強調処理部26は、図6に示されるように、取得された各画素のRGBの各画素信号値から輝度信号を算出する輝度信号算出部(YC変換部)27と、各画素のRGBの各画素信号値の対数信号値を算出する対数演算部(log演算部)28と、分離抽出されたカロテンの色素量αに、カロテンのRGB各波長における相対吸光度に相当する係数Kr,Kg,Kbを乗算する乗算部29と、乗算部29により演算された積を対数信号値から減算する減算部30と、減算後の差分値を指数演算によって元の色空間に戻す指数演算部(exp演算部)31と、指数演算部31の演算結果(指数関数値)から色差信号を算出する色差信号算出部(YC変換部)32と、輝度信号および色差信号からRGBカラー画像を生成する画像生成部33とを備えている。
 カロテンの相対吸光度を用いることで、カロテン量が多い場合には、カロテンの色素量をさらに増加させたような色で強調することができる。したがって、自然な強調画像を生成することができる。また、取得された各画像のRGBの各画素信号値から輝度信号を算出しておき、RGBカラー画像の生成時に使用するので、画像の明るさを保存することができ、画像が暗くなって見えにくくなる不都合を未然に防止することができる。
 また、強調処理部26としては、図7Aおよび図7Bに示されるように、分離抽出されたカロテンの色素量と特定の色とを対応させ、その色をRGBカラー画像に重畳することにより強調するものを採用してもよい。分離抽出された成分量に対応する色とRGBカラー画像の色とを混色する際の重畳割合Cを一定に定めているので、元の構造を維持しつつ強調色を付加することができる。分離抽出された成分量に対応させる色は任意に決定できる。例えば、緑から青の領域の色を対応させると、生体には通常存在しない色なので、強調した部分にすぐに目につき易くすることができる。
 また、強調処理部26としては、図8に示されるように、RGBの各画素信号値を輝度・色差信号に変換し、それぞれに減衰係数算出部34により算出された減衰係数を乗算することにしてもよい。このときの減衰係数は、分離対象成分量が少ないほど大きく減衰するような値を設定するようになっている。これにより、分離対象成分量が多い領域では減衰は小さくなって信号値の変化はなく、元の信号値が維持される。一方、分離対象成分量が少ない領域では減衰が大きくなって、輝度および彩度が低下していく。これにより、減衰の大きい領域に対して減衰の小さい領域を相対的に強調することができる。
 また、本実施形態においては、光源ユニット3が、白色光源7と複数の狭帯域フィルタ8を備えるフィルタターレット9とを備えるものとし、撮像素子18がモノクロ単板撮像素子であるとして説明したが、これに代えて、撮像素子18をカラー撮像素子とし、フィルタターレット9に代えて、図9の透過率特性を有する固定のトリプルバンドフィルタを採用してもよい。このようにすることで、カロテンの色素量を分離抽出するために必要な3つの帯域光の画像を同時に取得することができる。また、フィルタを用いることなく、RGBの各帯域光を射出するLEDを光源としてもよい。
 また、光源ユニット3としては、上記RGBの帯域光を全て含む広帯域光を射出する光源を用い、モノクロ単板撮像素子の前段に、各帯域光を順次透過させるための狭帯域フィルタ8を有するフィルタターレット9あるいはエタロンや液晶フィルタのようなチューナブルフィルタを配置してもよい。また、カラー撮像素子を用いる場合には、カラー撮像素子の前段にトリプルバンドフィルタを配置してもよい。
 また、本実施形態においては、撮像素子18としてカラー撮像素子を採用し、フィルタターレット9が、図10Aおよび図10Bに示されるような2つの狭帯域フィルタ8を備えることとしてもよい。
 第1のフィルタは、図10Aに示されるように、λ=480nm、λ=540nm、λ=610nmを中心波長とする帯域幅がそれぞれ30nm程度の狭帯域光を透過可能な透過率特性を有し、第2のフィルタは、図10Bに示されるように、λ=510nmを中心波長とし、帯域幅が30nm程度の狭帯域光を透過可能な透過率特性を有している。
 波長λはカロテンの相対吸光度が高くヘモグロビンの相対吸光度が比較的低い波長、波長λはカロテンの相対吸光度がλよりも低くヘモグロビンの相対吸光度が波長λとあまり差がない波長、波長λはカロテンの相対吸光度が極めて低い(0.01より小さい)波長である点は上記と同様である。
 カロテンの抽出には波長λ,λを用い、ヘモグロビンの抽出にはλ,λを用いる。
 生体組織Xは波長に依存した散乱特性を有しているので、各成分を抽出する際に用いる2波長λ,λ;λ,λが離れていると異なる深さの情報を用いて成分を抽出することになるが、上記波長λ,λ;λ,λの組み合わせは、相互に近接した波長どうしを用いて各成分を抽出するので、カロテンおよびヘモグロビンの色素量を精度よく抽出することができるという利点がある。
 波長λ,λは相互に近接し、かつ、カラー撮像素子の同じカラーフィルタを透過するので、フィルタターレット9によって時間的に分離して照射することとしている。なお、波長λは、白色光画像を合成する際のR画像信号を取得するための波長であり、成分抽出には用いられない。
 なお、波長λ,λの組み合わせは、図11に示されるように、上記の他、λ=460nm付近、λ=540nm付近、あるいは、λ=480nm付近、λ=520nm付近、あるいは、λ=465nm付近、λ=560nm付近としてもよい。これにより、生体組織Xの散乱の影響を抑えて、精度よくカロテン量を抽出することができる。
 また、本実施形態においては、血液の存在する環境下で照明ムラ等の変動要因を除外しながら神経を可視化するために、カロテンを分離対象成分、ヘモグロビンを非分離対象成分として、2つの成分から1つの成分を分離抽出する場合を例示した。これに代えて、3成分以上から1つの成分を抽出する場合にも同様の手法を採用することができる。
 以下、メラニン、ビリルビン、ヘモグロビンの3つの成分のうち、ビリルビンを分離抽出する場合について説明する。メラニン、ヘモグロビンは皮膚の色を構成する主な色素であり、ビリルビンは体内に異常により増殖すると黄疸の症状として現れる色素である。この3つの成分の相対吸光度を図12に示す。
 合計成分数は3なので、それより多い4つの波長λ,λ,λ,λを用いてビリルビンを分離抽出する。波長λ,λは、ビリルビンの相対吸光度の差が大きい波長の組み合わせが望ましく、波長λ,λ,λはビリルビンの相対吸光度が低い波長が好ましい。波長λ,λはヘモグロビンとメラニンを分離できるように、どちらかの相対吸光度が低い波長が好ましい。
 これらの条件から、λ=460nm、λ=540nm、λ=610nm、λ=660nmを選択した。λ=460nmとλ=540nmでは、ビリルビンの相対吸光度の差が大きく、ビリルビン抽出に対する感度を高く設定することができる。また、λ=540nmより長い波長域ではビリルビンの相対吸光度は極めて低い(0.01以下)。さらに、λ=540nmではヘモグロビンの相対吸光度が高いが、λ=610nmおよびλ=660nmでは低いので、メラニンとの分離が可能となる。
 この場合は、図13Aおよび図13Bに示される2つのフィルタを備えるフィルタターレット9を用いて2回の撮影で4つの画像信号を取得する。
 波長λ,λ,λ,λに対応する画素信号値V,V,V,Vは、それぞれ、下式(11),(12),(13),(14)の通りに表すことができる。
 V=Aexp(-αμ(λ)-αμ(λ)-αμ(λ))  (11)
 V=Aexp(-αμ(λ)-αμ(λ)-αμ(λ))  (12)
 V=Aexp(-αμ(λ)-αμ(λ)-αμ(λ))  (13)
 V=Aexp(-αμ(λ)-αμ(λ)-αμ(λ))  (14)
 ここで、α,α,αは、それぞれビリルビンの色素量(分離対象成分量)、メラニンの色素量(非分離対象成分量)、ヘモグロビンの色素量(非分離対象成分量)である。また、μ(λ),μ(λ)およびμ(λ)はそれぞれ、波長λにおけるビリルビン、メラニンおよびヘモグロビンの相対吸光度である。
 画素信号値V,V,V,Vに対して、対数信号値算出部23により対数をとることにより、4つの対数信号値log(V),log(V),log(V),log(V)を得る(対数信号値算出ステップS1)。
 次に、非分離対象成分量算出部24において、波長λ,λおよび波長λ,λにおける対数信号値の差分log(V)-log(V),log(V)-log(V)を算出する。差分の算出により照明ムラ等の変動要因の項を除去することができる。
 波長λ,λにおいて、ビリルビンおよびヘモグロビンの相対吸光度が低いことを利用して、差分log(V)-log(V)内のα,αの項を無視することにより、メラニンの色素量αを以下のように求めることができる。
 α=(log(V)-log(V))/(μ(λ)-μ(λ)) (15)
 また、波長λ,λにおいて、ビリルビンの相対吸光度が低いことを利用して、差分log(V)-log(V)内のαの項を無視し、式(15)を代入して整理することにより、ヘモグロビンの色素量αを以下のように求めることができる(非分離対象成分量算出ステップS2)。
 α(μ(λ)-μ(λ))
 =log(V)-log(V)-K(log(V)-log(V))
(16)
 ここで、
 K=(μ(λ)-μ(λ))/(μ(λ)-μ(λ))
である。
 そして、分離対象成分量算出部25において、波長λ,λにおける対数信号値の差分log(V)-log(V)を算出する。この差分の算出によっても照明ムラ等の変動要因の項を除去することができる。
 差分log(V)-log(V)に式(15)、式(16)を代入して整理することにより、ビリルビンの色素量αを下式(17)のように求めることができる(分離対象成分量算出ステップS3)。
 α(μ(λ)-μ(λ))
 =log(V)-log(V
  -K(log(V)-log(V))
  +(K-K)(log(V)-log(V))   (17)
 式(17)の両辺を(μ(λ)-μ(λ))で除算することにより、ビリルビンの色素量αそのものを算出できるが、式(17)のままでも非分離対象成分量であるメラニンおよびヘモグロビンの色素量αが除去されているので、実装上は式(17)を使用してもよい。この場合、式(17)は信号値空間では式(10)’と同様に、
 (V/V)/(V/VK2・(V/VK1K2-K3 (17)’
と表すことができる。
 このように、分離対象成分以外に2成分以上の成分が存在する場合においても変動要因を除去しつつ精度よく分離対象成分量を分離抽出することができる。なお、生体内に存在する色素としては他にもカロテンやリポフスチン等がある。
 また、本実施形態においては、生体観察装置として、挿入部2を有する通常の内視鏡装置1を例示したが、これに代えて、図14に示されるように、カプセル内視鏡システム35を採用してもよい。
 カプセル内視鏡システム35は、カプセル本体36と体外装置37とを備えている。
 カプセル本体36は、カプセル型の筐体38内に、照明用の複数のLED39、対物レンズ40、カラー撮像素子18、制御部20および無線送受信部41を備えている。
 また、体外装置37は、無線送受信部42、臓器判定部43、分光特性設定部44、画像処理装置22、画像記憶部45および表示部46を備えている。
 カプセル本体36が体腔内に導入されると、LED39から射出された照明光が体腔内壁において反射され、反射光が対物レンズ40によって集光され、カラー撮像素子18によって撮影される。取得された画像信号は無線送受信部41によって体外に送信され、体外装置37の無線送受信部42によって受信される。
 臓器判定部43は受信された画像信号に基づいて、カプセル本体36が存在している臓器を判定する。臓器判定は一般的な手法によって行われればよく、例えば、SVM(Support Vector Machine)を用いる方法等がある。
 分光特性設定部44は、臓器判定部43の判定結果に基づいて、分離対象成分および非分離対象成分を決定し、それらの分光特性を設定するとともに、使用するLED39の波長を設定し、無線送受信部41,42を介してカプセル本体36に送る。カプセル本体36においては、送られてきたLED39の情報に基づいて制御部20がLED39および撮像素子18を制御し、所望の波長の帯域光による照明と画像取得が行われる。
 一方、体外装置37においては、分光特性設定部44により設定された分光特性および帯域光の波長情報に基づいて、画像処理装置22により、分離対象成分の分離抽出処理が行われる。
 このように、カプセル内視鏡システム35においては、カプセル本体36を服用して排出されるまでに複数の臓器を通過しながら、時間間隔をあけて画像を取得していくので、臓器によって検出対象成分が相違するが、臓器判定部43によって臓器を判定し、判定結果に応じて分離対象成分等を決定するので、各臓器において適した分離対象成分の分離抽出を行うことができるという利点がある。
 1,35 生体観察装置
 18 撮像素子(分光画像取得部)
 22 画像処理装置
 23 対数信号値算出部
 24 非分離対象成分量算出部
 25 分離対象成分量算出部
 S1 対数信号値算出ステップ
 S2 非分離対象成分量算出ステップ
 S3 分離対象成分量算出ステップ
 

Claims (13)

  1.  分離対象成分の相対吸光度と非分離対象成分の相対吸光度とが異なる波長において、前記分離対象成分と前記非分離対象成分との合計成分数より多い波長について取得された複数の分光画像が入力され、
     入力された複数の前記分光画像について各画素の信号値の対数を算出する対数信号値算出部と、
     第1の異なる2波長で取得された2つの前記分光画像の同一画素における前記対数信号値算出部により算出された対数信号値の差分を、前記第1の異なる2波長における前記非分離対象成分の相対吸光度の差分で除算することにより前記非分離対象成分量を算出する非分離対象成分量算出部と、
     該非分離対象成分量算出部により算出された前記非分離対象成分量と、第2の異なる2波長で取得された2つの前記分光画像の前記画素における対数信号値の差分と、前記第2の異なる2波長における前記分離対象成分の相対吸光度の差分および前記非分離対象成分の相対吸光度の差分とを用いて分離対象成分量を算出する分離対象成分量算出部とを備える画像処理装置。
  2.  前記第1の異なる2波長のうち少なくとも1つの波長における前記分離対象成分の吸光度が0.01以下である請求項1に記載の画像処理装置。
  3.  前記第2の異なる2波長のうち少なくとも1つの波長における前記分離対象成分の吸光度が前記非分離対象成分の吸光度の10倍以上である請求項1または請求項2に記載の画像処理装置。
  4.  RGBに対応する波長の前記分光画像が入力され、
     各該分光画像の同一画素における信号値から輝度信号を算出するとともに、
     各前記分光画像の同一画素における前記対数信号値から前記分離対象成分の対応波長における相対吸光度と前記分離対象成分量との積を減算した差分値の指数関数値から色差信号を算出する請求項1から請求項3のいずれかに記載の画像処理装置。
  5.  RGBに対応する波長の前記分光画像が入力され、
     該分光画像により合成される白色光画像に、前記分離対象成分量および前記非分離対象成分量の大きさに応じた色を重畳した合成画像を生成する請求項1から請求項3のいずれかに記載の画像処理装置。
  6.  RGBに対応する波長の前記分光画像が入力され、
     各該分光画像の同一画素における信号値から輝度信号および色差信号を算出するとともに、
     算出された前記輝度信号および前記色差信号に、前記分離対象成分量に応じた減衰係数を乗算する請求項1から請求項3のいずれかに記載の画像処理装置。
  7.  分離対象成分の相対吸光度と非分離対象成分の相対吸光度とが異なる波長において、前記分離対象成分と前記非分離対象成分との合計成分数より多い波長について取得された複数の分光画像について、各画素の信号値の対数を算出する対数信号値算出ステップと、
     第1の異なる2波長で取得された2つの前記分光画像の同一画素における前記対数信号値算出ステップにより算出された対数信号値の差分を、前記第1の異なる2波長における前記非分離対象成分の相対吸光度の差分で除算することにより前記非分離対象成分量を算出する非分離対象成分量算出ステップと、
     該非分離対象成分量算出ステップにより算出された前記非分離対象成分量と、第2の異なる2波長で取得された2つの前記分光画像の前記画素における対数信号値の差分と、前記第2の異なる2波長における前記分離対象成分の相対吸光度の差分および前記非分離対象成分の相対吸光度の差分とを用いて分離対象成分量を算出する分離対象成分量算出ステップとを含む画像処理方法。
  8.  前記第1の異なる2波長のうち少なくとも1つの波長における前記分離対象成分の吸光度が0.01以下である請求項7に記載の画像処理方法。
  9.  前記第2の異なる2波長のうち少なくとも1つの波長における前記分離対象成分の吸光度が前記非分離対象成分の吸光度の10倍以上である請求項7または請求項8に記載の画像処理方法。
  10.  前記分光画像がRGBに対応する波長を有し、
     各該分光画像の同一画素における信号値から輝度信号を算出するステップと、
     各前記分光画像の同一画素における前記対数信号値から前記分離対象成分の対応波長における相対吸光度と前記分離対象成分量との積を減算した差分値の指数関数値から色差信号を算出するステップとを含む請求項7から請求項9のいずれかに記載の画像処理方法。
  11.  前記分光画像がRGBに対応する波長を有し、
     該分光画像により合成される白色光画像に、前記分離対象成分量および前記非分離対象成分量の大きさに応じた色を重畳した合成画像を生成するステップを含む請求項7から請求項9のいずれかに記載の画像処理方法。
  12.  前記分光画像がRGBに対応する波長を有し、
     各該分光画像の同一画素における信号値から輝度信号および色差信号を算出するステップと、
     算出された前記輝度信号および前記色差信号に、前記分離対象成分量に応じた減衰係数を乗算するステップとを含む請求項7から請求項9のいずれかに記載の画像処理方法。
  13.  分離対象成分の相対吸光度と非分離対象成分の相対吸光度とが異なる波長において、前記分離対象成分と前記非分離対象成分との合計成分数より多い波長について複数の分光画像を取得する分光画像取得部と、
     該分光画像取得部により取得された前記複数の分光画像と前記分離対象成分および前記非分離対象成分の相対吸光度とに基づいて前記分離対象成分量を算出する請求項1から請求項6のいずれかに記載の画像処理装置とを備える生体観察装置。
     
     
PCT/JP2015/058479 2015-03-20 2015-03-20 画像処理装置、画像処理方法および生体観察装置 WO2016151676A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/058479 WO2016151676A1 (ja) 2015-03-20 2015-03-20 画像処理装置、画像処理方法および生体観察装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/058479 WO2016151676A1 (ja) 2015-03-20 2015-03-20 画像処理装置、画像処理方法および生体観察装置

Publications (1)

Publication Number Publication Date
WO2016151676A1 true WO2016151676A1 (ja) 2016-09-29

Family

ID=56977240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058479 WO2016151676A1 (ja) 2015-03-20 2015-03-20 画像処理装置、画像処理方法および生体観察装置

Country Status (1)

Country Link
WO (1) WO2016151676A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235179A1 (ja) * 2017-06-21 2018-12-27 オリンパス株式会社 画像処理装置、内視鏡装置、画像処理装置の作動方法及び画像処理プログラム
WO2018235178A1 (ja) * 2017-06-21 2018-12-27 オリンパス株式会社 画像処理装置、内視鏡装置、画像処理装置の作動方法及び画像処理プログラム
CN112912713A (zh) * 2018-10-30 2021-06-04 夏普株式会社 系数确定装置、色素浓度计算装置、系数确定方法以及信息处理程序
US11311185B2 (en) 2019-02-19 2022-04-26 Fujifilm Corporation Endoscope system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04332536A (ja) * 1991-05-07 1992-11-19 Minolta Camera Co Ltd 血中酸素量測定装置
JPH09182740A (ja) * 1995-12-30 1997-07-15 Shimadzu Corp 生体の光学的測定装置
JP2005253478A (ja) * 2002-03-18 2005-09-22 Citizen Watch Co Ltd ヘモグロビン分析装置
JP2012143337A (ja) * 2011-01-11 2012-08-02 Fujifilm Corp 内視鏡診断装置
WO2013115323A1 (ja) * 2012-01-31 2013-08-08 オリンパス株式会社 生体観察装置
US8694266B2 (en) * 2008-06-05 2014-04-08 The Regents Of The University Of Michigan Multimodal spectroscopic systems and methods for classifying biological tissue

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04332536A (ja) * 1991-05-07 1992-11-19 Minolta Camera Co Ltd 血中酸素量測定装置
JPH09182740A (ja) * 1995-12-30 1997-07-15 Shimadzu Corp 生体の光学的測定装置
JP2005253478A (ja) * 2002-03-18 2005-09-22 Citizen Watch Co Ltd ヘモグロビン分析装置
US8694266B2 (en) * 2008-06-05 2014-04-08 The Regents Of The University Of Michigan Multimodal spectroscopic systems and methods for classifying biological tissue
JP2012143337A (ja) * 2011-01-11 2012-08-02 Fujifilm Corp 内視鏡診断装置
WO2013115323A1 (ja) * 2012-01-31 2013-08-08 オリンパス株式会社 生体観察装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235179A1 (ja) * 2017-06-21 2018-12-27 オリンパス株式会社 画像処理装置、内視鏡装置、画像処理装置の作動方法及び画像処理プログラム
WO2018235178A1 (ja) * 2017-06-21 2018-12-27 オリンパス株式会社 画像処理装置、内視鏡装置、画像処理装置の作動方法及び画像処理プログラム
CN110769738A (zh) * 2017-06-21 2020-02-07 奥林巴斯株式会社 图像处理装置、内窥镜装置、图像处理装置的工作方法及图像处理程序
CN110769738B (zh) * 2017-06-21 2022-03-08 奥林巴斯株式会社 图像处理装置、内窥镜装置、图像处理装置的工作方法及计算机可读存储介质
CN112912713A (zh) * 2018-10-30 2021-06-04 夏普株式会社 系数确定装置、色素浓度计算装置、系数确定方法以及信息处理程序
CN112912713B (zh) * 2018-10-30 2023-08-01 夏普株式会社 系数确定装置、色素浓度计算装置以及系数确定方法
US11311185B2 (en) 2019-02-19 2022-04-26 Fujifilm Corporation Endoscope system

Similar Documents

Publication Publication Date Title
JP5457247B2 (ja) 電子内視鏡システム、電子内視鏡用のプロセッサ装置、及び電子内視鏡システムの作動方法
US8301229B2 (en) Biological observation display apparatus for presenting color or spectral images
JP5466182B2 (ja) 内視鏡システムおよび内視鏡システムの作動方法
JP5501210B2 (ja) 画像処理装置
JP5190944B2 (ja) 内視鏡装置および内視鏡装置の作動方法
JP5498626B1 (ja) 内視鏡装置
JP5431252B2 (ja) 電子内視鏡システム、電子内視鏡用のプロセッサ装置、及び電子内視鏡システムの作動方法
JP5757891B2 (ja) 電子内視鏡システム、画像処理装置、画像処理装置の作動方法及び画像処理プログラム
JP5485215B2 (ja) 内視鏡装置
JP2008086347A (ja) 電子内視鏡装置
US10034600B2 (en) Endoscope apparatus with spectral intensity control
JP6437943B2 (ja) 内視鏡システム、プロセッサ装置、及び、内視鏡システムの作動方法
JP2012125395A (ja) 内視鏡装置
JP6629639B2 (ja) 内視鏡システム、プロセッサ装置、及び、内視鏡システムの作動方法
WO2016151676A1 (ja) 画像処理装置、画像処理方法および生体観察装置
JP6839773B2 (ja) 内視鏡システム、内視鏡システムの作動方法及びプロセッサ
WO2016151672A1 (ja) 生体観察装置
WO2017077772A1 (ja) プロセッサ装置、内視鏡システム、及び画像処理方法
JP2012143348A (ja) 分光計測システムおよび分光計測方法
WO2016139768A1 (ja) 画像処理装置、生体観察装置および画像処理方法
WO2016121811A1 (ja) 画像処理装置及び画像処理方法、並びに内視鏡システム
JP7059353B2 (ja) 内視鏡システム
JP2009240354A (ja) 電子内視鏡装置
JP2012100733A (ja) 内視鏡診断装置
JP5068205B2 (ja) 電子内視鏡装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP