WO2016149913A1 - 一种阵列天线的互耦阻抗的计算方法及装置 - Google Patents

一种阵列天线的互耦阻抗的计算方法及装置 Download PDF

Info

Publication number
WO2016149913A1
WO2016149913A1 PCT/CN2015/074988 CN2015074988W WO2016149913A1 WO 2016149913 A1 WO2016149913 A1 WO 2016149913A1 CN 2015074988 W CN2015074988 W CN 2015074988W WO 2016149913 A1 WO2016149913 A1 WO 2016149913A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
array
elements
mutual coupling
excitation voltage
Prior art date
Application number
PCT/CN2015/074988
Other languages
English (en)
French (fr)
Inventor
周俊鹤
李剑
毕晓艳
陈大庚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580048351.2A priority Critical patent/CN106716721A/zh
Priority to PCT/CN2015/074988 priority patent/WO2016149913A1/zh
Publication of WO2016149913A1 publication Critical patent/WO2016149913A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and an apparatus for calculating a mutual coupling impedance of an array antenna.
  • MIMO technology refers to the use of multiple transmit and receive antennas at the transmitting end and the receiving end respectively, so that signals can be transmitted and received through multiple antennas at the transmitting end and the receiving end, thereby making full use of space resources and achieving no increase in spectrum resources and antennas. In the case of transmit power, the system channel capacity is doubled.
  • Beamforming refers to the use of an array antenna at the transmitting end or the receiving end of a MIMO system to generate a beam with directivity, concentrating energy in the direction to be transmitted, and concentrating energy in a specific direction to avoid dispersion to each
  • the attenuation caused by the direction thus the signal strength is stronger, the signal quality is better, so that higher spatial resolution can be obtained, the signal quality is increased, and interference with other users is reduced.
  • large-scale MIMO systems there are many antenna elements in the array antenna. Especially when the antenna elements are closely arranged, the mutual coupling effect between the antenna elements will not be negligible. To improve the performance of beamforming, It is necessary to obtain the mutual coupling impedance of the array antennas at the transmitting end and the receiving end in a massive MIMO system.
  • the simulation calculation method is a commonly used method for obtaining the mutual coupling impedance of the array antenna in the MIMO system in the prior art.
  • the basic principle of the simulation calculation method is to first calculate the mutual coupling impedance of a small array and then use it to construct the mutual coupling impedance of the large array antenna.
  • Common simulation methods include moment method, finite element method, time domain finite difference and other numerical algorithms.
  • the invention provides a method and a device for calculating mutual mutual impedance of an array antenna, so as to solve the problem that the mutual coupling impedance of the array antenna obtained by the simulation method is inaccurate in the prior art.
  • the present invention provides a method for calculating a mutual coupling impedance of an array antenna, including:
  • the excitation voltage vector formed for each specific excitation voltage applied to each of the antenna elements is proportional to the nth of the preset matrix Q Column vectors, different values of n corresponding to the excitation voltage vector are different;
  • the set of target antenna elements includes at least one antenna element, and the first parameter G nn is a pair An nth diagonal element of the angle matrix G; respectively calculating the target antenna element according to a load impedance Z L of each antenna element in the target antenna element set and a value of each first parameter G nn set of values corresponding to each antenna element of the second parameter D NN, the second parameter D NN n-th diagonal element of the diagonal matrix D;
  • the mutual coupling impedance Z of the array antenna is obtained according to the obtained mutual coupling impedance estimation value Z' corresponding to each antenna element in the target antenna array element set.
  • the obtaining according to the obtained voltage between the positive and negative poles of each antenna element and the corresponding specific excitation voltage, is obtained in the target antenna array element set.
  • the value of the first parameter G nn corresponding to each antenna element includes:
  • the array antenna includes a circular array antenna
  • nth column vector has different values of n corresponding to the excitation voltage vector of different times, and specifically includes:
  • the mutual coupling impedance estimation value Z' specifically includes:
  • the array antenna includes a line array antenna
  • nth column vector has different values of n corresponding to the excitation voltage vector of different times, and specifically includes:
  • the mutual coupling impedance estimation value Z' specifically includes:
  • the array antenna includes N-column rectangular array antenna
  • nth column vector has different values of n corresponding to the excitation voltage vector of different times, and specifically includes:
  • the excitation voltage vector formed for each specific excitation voltage applied to each of the antenna elements is proportional to The nth column vector of the third preset matrix Q 3 , the n values corresponding to the different excitation voltage vectors are different, and the third preset matrix
  • the elements in the Q 31 are The values of k and l are any natural numbers between 1 and N, and the elements in the Q 32 are The values of p and q are any natural numbers between 1 and M;
  • the mutual coupling impedance estimation value Z' specifically includes:
  • the sixth implementation manner of the first aspect obtaining the mutual coupling impedance Z of the array antenna according to the obtained mutual coupling impedance estimation value Z′ corresponding to each antenna element in the target antenna array set, specifically including:
  • the obtained mutual coupling impedance estimation value Z′ is determined as the mutual coupling impedance of the array antenna
  • the mutual coupling impedance Z of the array antenna is calculated by using the least mean square error estimation value Z′ by a minimum mean square error algorithm.
  • the present invention provides a computing device for mutual coupling impedance of an array antenna, including:
  • a applying module configured to apply a predetermined number of specific excitation voltages to each of the array antenna elements, and the excitation voltage vector formed by each specific excitation voltage applied to each of the antenna elements is proportional to a preset The nth column vector of the matrix Q, the n values corresponding to the different excitation voltage vectors are different;
  • An acquiring module configured to acquire, after each application of the specific excitation voltage, the voltage between the positive and negative poles of each antenna array element in the target antenna array element set, the target antenna array element set Including at least one antenna element;
  • a calculation module configured to obtain the target antenna array element set according to a voltage between the positive and negative electrodes of each antenna element element and a corresponding specific excitation voltage obtained by the acquisition module after each application of the excitation voltage a first parameter corresponding to each antenna element nn G value of the first parameter G is a diagonal matrix G nn n-th diagonal element of;
  • a processing module configured to obtain a mutual coupling impedance Z of the array antenna according to the obtained mutual coupling impedance estimation value Z′ corresponding to each antenna element in the target antenna array element set.
  • the calculating module is further configured to calculate a ratio of a voltage between the positive and negative electrodes of each antenna element that has been acquired and a corresponding specific excitation voltage, The ratio is determined as a value of a first parameter G nn corresponding to each antenna element in the set of target antenna elements.
  • the applying module is further used to When the array antenna includes a ring array antenna, a specific excitation voltage is applied N times for each antenna element in the ring array antenna, and a vector of excitation voltages is formed for each specific excitation voltage applied to each antenna element element.
  • the first preset matrix Q n-1 column vector, the value of n different views of excitation vectors corresponding to different voltages, the first preset matrix elements Q 1 is:
  • the N is the number of antenna elements in the ring array antenna, and the values of m and n are any natural numbers between 1 and N;
  • the calculation module is further configured to determine, as the target antenna array element set, the values of the N second parameters D nn corresponding to each antenna array element in the target antenna array element set obtained N times. The value of each diagonal element of the diagonal matrix D corresponding to each antenna element;
  • the applying module is further configured to: when the array antenna includes a line array antenna, apply a specific excitation voltage twice for each antenna element in the line array antenna, and apply each time for each antenna array element excitation voltage is proportional to a second predetermined vector matrix formed by a particular excitation voltage n-th column vector Q 2, different views of the excitation vector corresponding to n different voltage value, the second predetermined matrix 2 in Q
  • the elements are: Wherein N is the number of antenna elements in the line array antenna, and the values of m and n are any natural numbers between 1 and N;
  • the calculation module is further configured to pass the value of the two second parameters D nn corresponding to each antenna array element in the set of target antenna array elements obtained twice Calculating values of Z 1 and Z 2 , the Z 1 being the self-impedance of each antenna element in the line array antenna, and the Z 2 being between two adjacent antenna elements in the line array antenna Mutual coupling impedance;
  • the application module is further used to
  • the array antenna includes a rectangular area array antenna including M rows and N columns
  • three specific excitation voltages are applied to each of the antenna array elements including the M rows and N columns, each time
  • the excitation voltage vector formed by the specific excitation voltage applied by each antenna element is proportional to the nth column vector of the third preset matrix Q 3 , and the n values corresponding to the different excitation voltage vectors are different, the third pre- Set matrix
  • the elements in the Q 31 are The values of k and l are any natural numbers between 1 and N, and the elements in the Q 32 are The values of p and q are any natural numbers between 1 and M;
  • the calculation module is further configured to pass a value of three second parameters D nn corresponding to each antenna array element in the set of target antenna array elements obtained through three times
  • the processing module is further configured to: when the target antenna array element includes one antenna array element, determine a mutual mutual impedance estimation value Z′ as the array antenna Mutual coupling impedance;
  • the mutual coupling impedance Z of the array antenna is calculated by using the least mean square error estimation value Z′ by a minimum mean square error algorithm.
  • the present invention also provides a computing device for mutual coupling impedance of an array antenna, including:
  • a processor configured to apply a predetermined number of specific excitation voltages to each of the array antenna elements, and the excitation voltage vector formed by each specific excitation voltage applied to each of the antenna elements is proportional to a preset The nth column vector of the matrix Q, the n values corresponding to the different excitation voltage vectors are different;
  • a voltage sensor configured to acquire a voltage between a positive and negative pole of each antenna element in the target antenna array set after each application of the excitation voltage
  • the processor is further configured to obtain, according to a voltage between the positive and negative electrodes of each antenna element obtained by the voltage sensor and a corresponding specific excitation voltage, a corresponding number of each antenna element in the target antenna array set. a value of a parameter G nn stored by a memory, the set of target antenna elements comprising at least one antenna element, the first parameter G nn being the nth diagonal element of the diagonal matrix G;
  • the processor is further configured to separately calculate the target antenna according to a load impedance Z L of each antenna element in the target antenna array set and a value of each first parameter G nn stored in the memory.
  • the value of the second parameter D nn corresponding to each antenna element in the array of array elements is stored by a memory, and the second parameter D nn is the nth diagonal element of the diagonal matrix D;
  • the processor is further configured to obtain, according to the value of all the second parameters D nn corresponding to each antenna element in the target antenna array set obtained by the preset number of times stored in the memory, to obtain the target antenna The mutual coupling impedance estimated value Z' corresponding to each antenna array element in the array element set;
  • the mutual coupling impedance Z of the array antenna is obtained according to the obtained mutual coupling impedance estimation value Z' corresponding to each antenna element in the target antenna array element set.
  • the processor is further configured to calculate a ratio of a voltage between a positive and negative pole of each antenna element obtained and a corresponding specific excitation voltage The ratio is determined as a value of a first parameter G nn corresponding to each antenna element in the set of target antenna elements.
  • the processor is further configured to When the antenna includes a ring array antenna, a specific excitation voltage is applied N times for each antenna element in the ring array antenna, and an excitation voltage vector formed for each specific excitation voltage applied to each antenna element element is proportional to the first a preset matrix is the n-th column vector, the value of n different voltage vector corresponding to the views of excitation different from Q 1 ', the first preset matrix elements of Q 1 is:
  • the N is the number of antenna elements in the ring array antenna, and the values of m and n are any natural numbers between 1 and N;
  • the processor is further configured to: when When the antenna includes a line array antenna, a specific excitation voltage is applied twice for each antenna element in the line array antenna, and an excitation voltage vector formed for each specific excitation voltage applied to each antenna element element is proportional to the first The nth column vector of the two preset matrices Q 2 , the n values corresponding to the different excitation voltage vectors are different, and the elements in the second preset matrix Q 2 are: Wherein N is the number of antenna elements in the line array antenna, and the values of m and n are any natural numbers between 1 and N;
  • the processor is further configured to: when When the antenna includes a rectangular area array antenna including M rows and N columns, three specific excitation voltages are applied to each of the antenna array elements including the M rows and N columns, each time for each of the antenna elements
  • the excitation voltage vector formed by the specific excitation voltage applied by the antenna element is proportional to the nth column vector of the third preset matrix Q 3 , and the n values corresponding to the different excitation voltage vectors are different, and the third preset matrix
  • the elements in the Q 31 are The values of k and l are any natural numbers between 1 and N, and the elements in the Q 32 are The values of p and q are any natural numbers between 1 and M;
  • n (a-1) ⁇ M + b
  • the value of a is any natural number between 1 and N
  • the value of b is between 1 and M.
  • the Z 1 is a self-impedance of each of the antenna elements in the rectangular area array antenna
  • the Z 2x is a mutual relationship between two adjacent antenna elements in the row direction of the rectangular area array antenna a coupling impedance
  • the Z 2y is a mutual coupling impedance between two adjacent antenna elements in a column direction of the rectangular array antenna
  • the processor is further configured to: when the target antenna array element includes one antenna array element, determine a mutual mutual impedance estimation value Z′ as a mutual coupling impedance of the array antenna;
  • the mutual coupling impedance Z of the array antenna is calculated by using the least mean square error estimation value Z′ by a minimum mean square error algorithm.
  • the method and apparatus for calculating the mutual coupling impedance of the array antenna provided by the present invention, by applying a specific excitation voltage a plurality of times, and acquiring each of the target antenna array elements including at least one antenna element after each application of the specific excitation voltage Calculating a voltage between the positive and negative poles of the antenna element, and calculating a first parameter corresponding to each antenna element according to the obtained voltage between the positive and negative poles of each antenna element and the specific excitation voltage corresponding to each antenna element, and Calculating a second parameter according to the first parameter and a load impedance of the antenna element, and calculating a mutual coupling impedance of the array antenna according to a relationship between the second parameter and a mutual coupling impedance of the array antenna.
  • the present invention Compared with the prior art, firstly calculating the mutual coupling impedance of a small array and then using it to equivalently construct the mutual coupling impedance of the large array, the present invention applies the specific form of the excitation voltage by using the array antenna itself as the measuring entity, and Acquiring the voltage between the positive and negative poles of one or more antenna elements in the array antenna in real time, and obtaining the mutual coupling impedance of the array antenna based on the real-time obtained voltage and excitation voltage, so the array antenna provided by the present invention
  • the calculation method of mutual coupling impedance can improve the accuracy of the mutual coupling impedance of the array antenna, and thus improve the beamforming performance of the massive MIMO system.
  • FIG. 1 is a schematic structural diagram of a common large-scale array antenna according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for calculating mutual mutual impedance of an array antenna according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart diagram of a method for calculating a mutual coupling impedance of a ring array antenna according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a ring array antenna composed of four antenna array elements according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of a method for calculating a mutual coupling impedance of a line array antenna according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a line array antenna composed of four antenna elements according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart diagram of a method for calculating a mutual coupling impedance of a rectangular area array antenna according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a rectangular area array antenna composed of 9 antenna elements according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a device for calculating mutual mutual impedance of an array antenna according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a device for calculating mutual mutual impedance of an array antenna according to an embodiment of the present invention.
  • the embodiment of the present invention provides a method for calculating the mutual coupling impedance of the array antenna.
  • the method provided by the embodiment of the present invention can be applied to an array antenna of any size, for example, a circular array antenna, a line array antenna, and a rectangular array antenna including four antenna elements, and is particularly applicable to a plurality of antenna elements.
  • a large-scale array antenna for example, an array antenna composed of more than 15 antenna elements.
  • Common large-scale array antennas include line array antennas, ring array antennas, and rectangular array antennas.
  • FIG. 1 is a schematic structural diagram of a common large-scale array antenna; wherein, an array antenna in which a plurality of antenna elements are arranged in a straight line at equal intervals is a line array antenna; and an array in which a plurality of antenna elements are equally arranged in a ring shape
  • the antenna is a ring array antenna; the array antennas in which the plurality of antenna elements are arranged at equal intervals are rectangular array antennas.
  • Embodiments of the present invention provide a method for calculating a mutual coupling impedance of an array antenna, including: applying a corresponding external excitation voltage signal to different types of array antennas; (optionally, a voltage sensor may be used to detect a partial array element in the antenna array element) The voltage change; using the relationship between the excitation voltage and the element voltage (for example, the ratio of the two), the mutual impedance or mutual coupling impedance matrix of the array antenna is obtained. With this simple measurement calculation, it is possible to achieve a higher precision mutual coupling impedance with a small complexity.
  • the mutual coupling impedance of the array antenna can be expressed by the following formula (1):
  • Q in the formula (1) is the preset matrix referred to in step 101
  • Q H is a conjugate transposed matrix of the preset matrix Q
  • Q and Q H are known ⁇ matrices having orthogonal properties
  • D is an unknown diagonal matrix. Therefore, according to formula (1), if we want to find the mutual coupling impedance Z of the array antenna, we need to take the diagonal matrix D.
  • the specific excitation voltage applied by the antenna element, the load impedance of the antenna element and the antenna element form a closed loop, respectively, so the excitation voltage vector U E formed by the specific excitation voltage applied by each antenna element in the entire array antenna, and each antenna
  • the relationship between the voltage vector U formed by the voltage between the positive and negative electrodes of each antenna element in the array antenna and the excitation voltage vector U F formed by the specific excitation voltage applied by each antenna element can be expressed by the following formula (2):
  • the voltage on each side of each antenna element in equation (2) can be read by a voltage sensor, and Q, Q H , and U F are known matrices, so the pair of matrices G can be obtained by using equation (2).
  • the diagonal element D nn of the diagonal matrix D is obtained according to the formula (3), and the mutual coupling impedance Z of the array antenna is obtained.
  • the calculation method of the mutual coupling impedance of the array antenna includes:
  • the excitation voltage applied to each antenna element in this embodiment is a specific form of excitation voltage.
  • the special form referred to means that the excitation voltage generated by the excitation voltage applied to all antenna elements each time (or composed) is proportional to the nth column vector of the preset matrix Q, for example: at each application of the excitation In the case of voltage, each element of the nth column vector of the preset matrix Q or each element of the nth column vector is multiplied by a certain multiple and the corresponding value is determined as the excitation of each antenna element. Voltage.
  • the excitation voltage vectors corresponding to different times are respectively proportional to different column vectors of the preset matrix Q, that is, each time a specific excitation voltage is applied, the corresponding n is different; for example, when the excitation voltage is applied for the first time, The value of each element in the first column vector of the matrix Q or the value corresponding to each element in the first column vector multiplied by a certain multiple is sequentially determined as the excitation voltage of each antenna element; When a specific excitation voltage is applied twice, the second column vector of the preset matrix or the value corresponding to each element of the second column vector multiplied by a certain multiple may be sequentially determined as the excitation voltage of each antenna element.
  • the mutual coupling impedance of the array antenna can be decomposed into a known ⁇ matrix with orthogonal properties, an unknown diagonal matrix, and a conjugate transposed matrix of the ⁇ matrix.
  • the preset matrix Q refers to a unitary matrix with orthogonal properties obtained by decomposing the mutual coupling impedance of the array antenna. Since the mutual coupling impedance of the array antennas of different forms is different, the decomposition is obtained. The specific form of the unitary matrix with orthogonal properties is also different. For example, when the array antenna is a ring array antenna including N antenna elements, the preset matrix Q is an N ⁇ N normalized inverse Fourier transform (IDFT).
  • IDFT normalized inverse Fourier transform
  • the expression of the elements in matrix Q is Where m and n are both natural numbers between 1 and N; when the array antenna is a line array antenna comprising N antenna elements, the preset matrix Q is an N ⁇ N discrete sine A Discrete Sine Transform (DST) matrix in which elements are expressed in the form Wherein the values of m and n are both natural numbers between 1 and N; when the array antenna is a rectangular array antenna comprising M rows and N columns, the preset matrix Q is one (M ⁇ N) a matrix of rows (M x N), expressed in the form of The elements in the Q 31 are The values of k and I are any natural number between 1 and N, and the elements in the Q 32 are The values of p and q are any natural number between 1 and M.
  • DST Discrete Sine Transform
  • the preset number of times is related to the number of diagonal elements in the unknown diagonal matrix obtained by decomposing the mutual coupling impedance of the array antenna to be obtained, and the diagonal matrix obtained by mutual coupling impedance decomposition of the array antennas of different forms
  • the representation form is also different, and thus the preset number of times is also related to the specific form of the array antenna. For example, when the array antenna is a ring array antenna including N antenna elements, the mutual coupling impedance of the ring array antenna is decomposed.
  • the expression of the diagonal element of the resulting diagonal matrix is where m and n are natural numbers between 1 and N, Z 1 is the self-impedance of each antenna element in the ring array antenna, and Z i (i is 2 to N) is the first antenna
  • the matrix element is the reference.
  • the mutual coupling impedance between the antenna element and the adjacent array element is an unknown parameter. It is required to take N diagonal elements to obtain the values of Z 1 to Z N .
  • the corresponding preset number is N times; when the array antenna is a line array antenna including N antenna elements, the diagonal elements of the diagonal matrix obtained by the mutual coupling impedance decomposition of the line array antenna are expressed as Wherein, Z 1 is a self-impedance of each antenna element in the line array antenna, and the Z 2 is a mutual coupling impedance between two adjacent antenna elements in the line array antenna; n is a value of 1 to N Among the natural numbers, there are two unknown parameters of Z 1 and Z 2 in the expression of the diagonal elements. Therefore, two diagonal elements are required to obtain two equations and obtain the solutions of the equations to obtain Z 1 and Z.
  • the value of 2 the corresponding preset number is 2 times; when the array antenna is a rectangular array antenna comprising M rows and N columns of antenna elements, the pair of diagonal matrices obtained by mutual coupling impedance decomposition of the rectangular array antenna
  • Z 2x represents the mutual coupling impedance between adjacent array elements in the row direction; Z 2y represents the mutual coupling impedance between adjacent array elements in the column direction; in the above formula, there are a total of Z 1 , Z Two unknown variables, 2x and Z 2y , corresponding to the preset number of times.
  • the preset number of times the specific excitation voltage is applied exceeds the preset number of times (for example, more than N, 2, and 3 respectively)
  • more D nn can be obtained, and the preset number of D nn can be selected for calculation, or Calculate with the excess D nn , get more mutual coupling impedance estimates and use the least mean square error method to get more accurate mutual coupling impedance.
  • the number of times the specific excitation voltage is applied to the opposite array antenna is 6 times, 6 D nn can be obtained, so that two sets of Z 1 , Z 2x and Z 2y can be obtained, and thus two mutual coupling impedances can be obtained, and then The two mutual coupling impedances use the least mean square error method to obtain a more accurate mutual coupling impedance.
  • the signal of the nth column vector proportional to the preset matrix Q may be sent to the antenna array port by the baseband signal; and the elements of the nth column vector of the preset matrix Q may also be used.
  • the phase and amplitude are applied by an external programmable control circuit, which can be referred to the prior art.
  • the target is calculated according to the load impedance Z L of each antenna element in the target antenna array set and the value of each first parameter G nn antenna element set value corresponding to each antenna element of the second parameter D NN, the second parameter D NN n-th diagonal element of the diagonal matrix D.
  • the set of target antenna array elements refers to a set formed by selecting a certain number of antenna array elements from the array antenna. Each time the specific excitation voltage is applied, the corresponding target antenna array set is the same when performing this step. Thus, each time this step is performed, a value of the second parameter D nn corresponding to each of the antenna elements in the set of target antenna elements is obtained.
  • the voltage between the positive and negative poles of each antenna array element in the target antenna array element set may be obtained in real time by using a voltage sensor.
  • the corresponding specific excitation voltage is the specific excitation voltage applied to each antenna element in step 101.
  • the first parameter G nn corresponding to each antenna array element in the target antenna array element set is obtained according to the obtained voltage between the positive and negative poles of each antenna array element and the corresponding specific excitation voltage. Values, including:
  • the value of the second parameter D nn corresponding to the array element includes:
  • the values of n in G nn and D nn are related to the diagonal matrices G and D obtained by the mutual coupling impedance decomposition of the array antenna, for example, when the array antenna is a ring array antenna including N antenna elements, the array The diagonal matrices G and D corresponding to the antenna are both N ⁇ N diagonal matrices, and the values of n in G nn and D nn are all natural numbers between 1 and N; when the array antenna contains N antenna array elements For the line array antenna, the diagonal matrices G and D corresponding to the array antenna are both N ⁇ N diagonal matrices, and the values of n in G nn and D nn are all natural numbers between 1 and N; When the antenna is a rectangular area array antenna including M rows and N columns of antenna elements, the corresponding diagonal matrices G and D are diagonal matrices of M ⁇ N rows of M ⁇ N columns, and the value of n is 1 to M ⁇ N. The natural number between.
  • the load impedance Z L of each antenna array element in the target antenna array element set can be obtained by consulting the data of the antenna array element provided by the manufacturer.
  • G nn obtained in the above calculation process is the nth element of the diagonal matrix G; the corresponding D nn is the nth element of the diagonal matrix D; this is the same as when a specific excitation voltage is applied in step 101.
  • the nth column vector of the preset matrix Q corresponding to the excitation voltage vector corresponds to the value of the nth column vector.
  • a certain applied excitation voltage vector corresponds to the first column vector of the preset matrix Q, then G 11 and D 11 are obtained in this step; in step 101, a certain excitation voltage vector corresponds to The second column vector of the preset matrix Q is obtained in this step as G 22 and D 22 .
  • the value of the plurality of second parameters D nn corresponding to each of the antenna elements in the target antenna array set can be obtained by this step.
  • the number of second parameters D nn corresponding to each antenna element is the same as the number of times the specific excitation voltage is applied.
  • a mutual coupling impedance estimation value corresponding to the antenna element is calculated according to the values of the plurality of second parameters D nn corresponding to the same antenna element, and finally the target antenna element is obtained.
  • the mutual coupling impedance estimation value corresponding to each antenna element in the set, and the calculation process of each antenna element is the same.
  • the step is to determine the values of the N second parameters D nn corresponding to one antenna element as the N diagonal elements of the diagonal matrix D, respectively.
  • D nn constitutes n values on the diagonal of the diagonal matrix D in the formula (1), so that D can be determined, and then the obtained diagonal matrix D is used to obtain a mutual coupling impedance estimation value; The matrix is expanded, and the corresponding values of each matrix element are calculated separately to obtain mutual mutual impedance estimation values.
  • the reason why this step is called the mutual coupling impedance estimation value is that there may be an error between the mutual coupling impedances of the array antennas calculated according to different antenna elements.
  • the correspondence between the second parameter D nn and the mutual coupling impedance of the array antenna is also different.
  • the specific calculation process needs to be combined with the specific form of the array antenna. For details, refer to the following embodiments.
  • the obtained mutual coupling impedance estimation value is determined as the mutual coupling impedance of the array antenna.
  • any one of the array antenna elements may be selected as the antenna array element corresponding to the antenna element set in the target antenna array.
  • the mutual coupling impedance estimate can be directly determined as the impedance value of the array antenna.
  • the at least two mutual coupling impedance estimates are calculated by a minimum mean square error algorithm.
  • the mutual coupling impedance of the array antenna is calculated by a minimum mean square error algorithm.
  • the number of antenna array elements in the selected target antenna array element set is not limited to one, and thus multiple mutual coupling impedance estimates can be calculated, and then The mutual coupling impedance estimates are calculated by the least mean square error algorithm to obtain the mutual coupling impedance of the final antenna system.
  • the method for calculating the mutual coupling impedance of the array antenna provided by the present invention, by applying a specific excitation voltage a plurality of times, and acquiring each antenna array in the set of target antenna elements including at least one antenna element after each application of the specific excitation voltage Calculating a voltage between the positive and negative poles, and calculating a first parameter corresponding to each antenna element according to the obtained voltage between the positive and negative poles of each antenna element and the specific excitation voltage corresponding to each antenna element, and according to the The first parameter and the load impedance of the antenna element are calculated to obtain a second parameter, and the mutual coupling impedance of the array antenna is calculated according to the relationship between the second parameter and the mutual coupling impedance of the array antenna.
  • the mutual coupling impedance is then used to equivalently construct the mutual coupling impedance of the large array.
  • the present invention applies a specific form of excitation voltage and acquires one or more antennas in the array antenna in real time.
  • the voltage between the positive and negative electrodes of the array element is calculated based on the real-time acquired voltage and the specific excitation voltage to obtain the mutual coupling impedance of the array antenna. Therefore, the calculation method of the mutual coupling impedance of the array antenna provided by the present invention can improve the array antenna.
  • the accuracy of the mutual coupling impedance can further improve the beamforming performance of the massive MIMO system.
  • the antenna array is equivalent to a circuit network, and an excitation voltage is applied to the antenna elements in the antenna array, and the voltage between the positive and negative poles of each antenna element is measured, and then obtained by matrix inversion.
  • the mutual coupling impedance of the array antenna in the MIMO system however, the calculation method needs to measure a large number of parameters, such as the voltage between the positive and negative poles of all the antenna elements; and the inverse of the matrix needs to be solved during the calculation, when the array antenna contains When the number of antenna elements is large, the computational complexity of matrix inversion will increase rapidly. Therefore, the existing real-time measurement method is complicated, especially in the case of high dimension, the complexity of matrix inversion is very high; In this application, the mutual coupling impedance of the array antenna is obtained by simple matrix multiplication, and the complexity is greatly reduced.
  • the calculation method provided by the present invention only needs to measure the voltage between the positive and negative poles of one or more antenna elements, and only needs to perform calculations such as simple ratio calculation and solution equation in the solution process, and does not need to perform matrix inversion operation. Therefore, the amount of calculation can be reduced, and the implementation process is simpler than the existing real-time measurement method.
  • the array antennas of the embodiments of the present invention may have different configurations. Therefore, based on the method shown in FIG. 2, the present embodiment provides mutual interconnection of the loop array antenna, the line array antenna, and the rectangular array antenna.
  • the specific calculation methods of the coupling impedance are as follows.
  • Uniform Circular Arrays is an array of antennas formed by combining multiple antenna elements in a circular manner. The spacing between antenna elements is fixed. It is a common array antenna. .
  • the array antenna is a ring array antenna including N antenna elements
  • the inventors have found that since the N antenna elements of the UCA are uniformly distributed, the mutual coupling impedance of the UCA is a cyclic matrix, and the expression is:
  • Z 1 is the self-impedance of each antenna element
  • Z i is the mutual coupling impedance between the antenna element and each adjacent antenna element based on the first antenna element.
  • the matrix Z is both a conjugate symmetric matrix and a cyclic matrix in this embodiment, according to the characteristics of the cyclic matrix, the matrix Z can be decomposed into:
  • Q is a normalized inverse discrete Fourier transform (IDFT) matrix
  • Q H is a conjugate transposed matrix of matrix Q
  • Q H is a normalized discrete Fourier transform (DFT) matrix
  • DFT discrete Fourier transform
  • N in the formula (6) is the number of antenna elements in the ring array antenna.
  • D is an unknown diagonal matrix whose diagonal elements are:
  • D nn is the discrete Fourier transform of Z m, Z m referred to above that is, Z i.
  • the voltage vector U formed by the voltage between the positive and negative terminals of all antenna elements in the ring array antenna has the following relationship with the antenna current vector I:
  • Z L is a load impedance matrix corresponding to the ring array antenna. Assuming that the load impedance of each antenna element is equal, the load impedance matrix Z L of the ring array antenna is proportional to the unit matrix.
  • G is a diagonal matrix
  • the elements on the diagonal can be calculated by the following formula (12) by the elements on the diagonal of the diagonal matrix D:
  • All elements of the diagonal matrix G can be obtained by applying different specific excitation voltages N times to obtain the ratio of the specific excitation voltage corresponding to a single antenna element and the voltages on both sides thereof.
  • D can be calculated, and then the mutual coupling impedance Z of the circular array antenna can be obtained by IDFT the matrix D.
  • the calculation of the mutual coupling impedance of the ring array antenna is the inverse process of the above derivation process, and the specific calculation process is as shown in FIG. 3, including:
  • 201 Applying N times of specific excitation voltages to each of the antenna elements in the ring array antenna, and generating an excitation voltage vector corresponding to a specific excitation voltage applied to each of the antenna elements each time is proportional to a first preset matrix Q.
  • n-th column vector 1 different views of the excitation voltage vector corresponding to different values of n, the first preset matrix elements of Q 1 is:
  • the N is the number of antenna elements in the ring array antenna, and the values of m and n are any natural numbers between 1 and N.
  • each baseband signal may be transmitted through signal satisfies a first preset n-th column vector of matrix Q 1 is wherein the antenna element is applied onto port; Q may also be in accordance with the n-th column vector 1
  • the amplitude and phase of each element are applied by an external programmable control circuit, which can be referred to the prior art.
  • the specific excitation voltage After each application of the specific excitation voltage, obtain a voltage between the positive and negative poles of each antenna element in the target antenna array set, and according to the obtained voltage between the positive and negative poles of each antenna array element and Corresponding specific excitation voltages, obtaining a value of a first parameter G nn corresponding to each antenna element in the set of target antenna elements, the set of target antenna elements comprising at least one antenna element, the first parameter G Nn is the nth diagonal element of the diagonal matrix G.
  • the voltage between the positive and negative electrodes of each of the antenna elements and the corresponding specific excitation voltage may be obtained by formula (11).
  • the ratio of the first parameter G nn is obtained.
  • the value of D nn can be calculated from G nn by the formula (12).
  • steps 202 and 203 are steps that need to be performed each time a specific excitation voltage is applied, so that if a specific excitation voltage is applied N times to the entire array antenna, then the target antenna element set is set.
  • Each of the antenna elements in the array can obtain N second parameters D nn .
  • the diagonal matrix D has a total of N diagonal elements, each time a specific excitation voltage is applied, a diagonal element can be obtained, and the diagonal elements obtained at different times are different, and thus can be calculated after N calculations. The values of all diagonal elements of the diagonal matrix D are obtained.
  • the correspondence relationship between the diagonal matrix D represented by the formula (7) and the mutual coupling impedance Z of the array antenna can be obtained only after the diagonal matrix D is subjected to the inverse discrete Fourier transform.
  • the mutual coupling impedance of the loop array antenna can be obtained; of course, it can also be calculated by the formula (5), but the calculation method has a large calculation amount.
  • the mutual coupling impedance estimation value corresponding to the antenna array element is directly determined as the mutual coupling impedance of the array antenna.
  • the mutual coupling impedance estimates corresponding to the at least two antenna elements are calculated by a minimum mean square error method to obtain mutual impedance of the array antenna.
  • the specific implementation process of this step is as follows:
  • Diagonal matrix of the antenna array 1 of D 1 and D NN element antenna element 2 corresponding diagonal elements (1) are as follows and the diagonal elements of the diagonal matrix D D NN 2 (2) below:
  • the relationship between the preset matrix Q 1 and the mutual coupling impedance Z of the ring array antenna, the diagonal matrix D 1 corresponding to the antenna array element 1 and the antenna array element 2 D 2 can also be expressed by the following formula (14):
  • the mutual coupling impedance of the circular array antenna calculated according to the minimum mean square error method is as follows:
  • the present embodiment also shows a UCA schematic diagram of the antenna array element 1, the antenna element 2, the antenna element 3, and the antenna element 4 arranged in equal clockwise directions.
  • U E1 , U E2 , U E3 , and U E4 are specific excitation voltages corresponding to antenna array elements 1, 2, 3, and 4, respectively
  • Z L is the load impedance of each antenna array element, which is selected in this embodiment.
  • the antenna array elements have the same specifications, so the load impedance Z L of each antenna element is also the same; the dotted line connection of the excitation voltage and the load impedance indicates the principle of the antenna element connection circuit, and the excitation voltage comes from the input antenna array port signal, the load
  • the impedance Z L is determined by the characteristics of the device connected to the antenna array port, which can be known by referring to the technical data of the antenna array element.
  • ULA Uniform Linear Arrays
  • Z 1 is the self-impedance of each of the antenna elements in the line array antenna
  • Z 2 is a mutual coupling impedance between two adjacent antenna elements in the line array antenna, and other array elements The mutual coupling impedance between the two is small and can be ignored.
  • the matrix Z can be broken down into:
  • Q is a discrete sine transform (DST) matrix and Q H is its conjugate transposed matrix.
  • DST discrete sine transform
  • the diagonal elements of the diagonal matrix D can be expressed by the following formula:
  • the voltage vector and current vector on the antenna have the following relationship:
  • Z L is the load impedance matrix of the line array antenna, and when all the load elements connected to the array elements are equal, it is a diagonal matrix;
  • the excitation voltage vector on the antenna element is set to the nth column vector of the matrix Q
  • the measured voltage vector formed by the voltage between the positive and negative electrodes of all the antenna elements is the column vector multiplied by a factor G nn . Therefore, by calculating the ratio of the actual voltage on either side of any one of the antenna elements to the corresponding specific excitation voltage, the value of G nn can be obtained.
  • the diagonal element D nn of the diagonal matrix D is Z 1 and Z 2 are related to two unknowns; thus, the values of Z 1 and Z 2 in the mutual coupling impedance can be obtained by the values of two D nn , and the value of the mutual coupling impedance Z can be obtained.
  • the calculation of the mutual coupling impedance of the line array antenna is the inverse process of the above derivation process, and the specific calculation process is as shown in FIG. 5, including:
  • a signal that satisfies the feature of the nth column vector of the second preset matrix Q 2 can be applied to the antenna array port through the baseband signal, or can be externally programmable.
  • the circuit is applied.
  • the specific process can refer to the ring array antenna through circuit elements such as a splitter, a phase shifter, a transmitter, etc.; however, the amplitude and phase of the transmitted signal are related to the second preset matrix Q 2 .
  • the ratio between the voltage between the positive and negative poles of each antenna array element in the acquired target antenna array element set and the corresponding specific excitation voltage may be determined by formula (23) as each of the target antenna array element sets.
  • the value of the second parameter D nn can be calculated according to the value of the first parameter G nn obtained in step 402 by using equation (24).
  • step 402 needs to be performed after each application of a specific excitation voltage. Step 403.
  • FIG. 6 a schematic diagram of a ULA system consisting of antenna array elements 1, antenna array elements 2, antenna array elements 3, and antenna array elements 4 is equally arranged, but the method can be extended to include more antenna elements.
  • the U E1 , U E2 , U E3 , and U E4 are specific excitation voltages corresponding to the antenna elements 1, 2, 3, and 4, respectively, and Z L is the load impedance of the antenna element.
  • the dotted line connection of the excitation voltage and the load impedance in the figure indicates the principle of the antenna array connection circuit.
  • the excitation voltage is from the signal input to the antenna array port, and the load impedance is determined by the characteristics of the device connected to the antenna array port.
  • Uniform Panel Arrays are a combination of multiple antenna elements in a rectangular manner. The spacing between the elements is fixed, which is another common array antenna.
  • the mutual coupling impedance Z can be described by:
  • N ⁇ N in the expression form of Z indicates that the matrix Z is a block matrix containing N ⁇ N matrix blocks, and M ⁇ M indicates that each block matrix is a matrix of M rows and M columns, and thus the matrix Z is M.
  • Z 1 self-impedance, Z 2x and Z 2y are mutual impedances of adjacent array elements in the row direction and the column direction, respectively.
  • the mutual coupling impedance matrix can be matrix-decomposed to obtain the following equation (25):
  • the matrix Q is a known (M ⁇ N) ⁇ (M ⁇ N) unitary matrix having orthogonal properties; a third preset matrix
  • the elements in the Q 31 are The values of k and l are any natural numbers between 1 and N, and the elements in the Q 32 are The values of p and q are any natural number between 1 and M.
  • the matrix D is also a diagonal matrix of (M ⁇ N) ⁇ (M ⁇ N), and its diagonal elements can be expressed by the following formula (26):
  • the value is any natural number between 1 and M
  • Z 1 represents the self-impedance of the antenna element in the rectangular array antenna
  • Z 2x represents the mutual coupling impedance between adjacent elements in the row direction
  • Z 2y represents the adjacent direction in the column direction Mutual coupling impedance between array elements.
  • the applied excitation voltage vector is the nth column vector of the matrix Q
  • the voltage vector formed by the voltage between the positive and negative electrodes of all the antenna elements and the excitation voltage vector of the antenna element are different by a proportional coefficient G nn .
  • the calculation of the mutual coupling impedance of the rectangular array antenna is the inverse process of the above derivation process, and the specific calculation process is shown in FIG. 7 .
  • the matrix Q 31 is the same as the preset matrix Q corresponding to the line array antenna including N antenna elements; the matrix Q 32 is corresponding to the line array antenna including M antenna elements Let matrix Q be the same.
  • the reason why the preset matrix corresponding to the rectangular array is in this description is that the mutual coupling impedance of the rectangular array and the corresponding first parameter can be derived from the calculation method of the line array antenna.
  • the excitation voltage may be transmitted to satisfy a specific n-th column vector of matrix Q 3 wherein the antenna elements to the signal applied to port up, may be applied by an external programmable control signal baseband circuit, reference may be a specific implementation process the antenna array system and a wire loop antenna array system, through a splitter, a phase shifter, the transmitter circuit elements implemented; but transmit amplitude and phase of the signal Q 3 associated with the third preset matrix.
  • the specific excitation voltage After each application of the specific excitation voltage, obtain a voltage between the positive and negative poles of each antenna element in the target antenna array set, and according to the acquired voltage between the positive and negative poles of each antenna array element and Corresponding specific excitation voltages, obtaining a value of a first parameter G nn corresponding to each antenna element in the set of target antenna elements, the set of target antenna elements comprising at least one antenna element, the first parameter G Nn is the nth diagonal element of the diagonal matrix G.
  • the ratio between the voltage between the positive and negative poles of each antenna array element and the corresponding specific excitation voltage in the acquired target antenna array element set can be determined as the target antenna array element set by formula (27).
  • the value of the second parameter D nn can be calculated according to the correspondence between the first parameter G nn and the second parameter D nn by the formula (28).
  • n (a-1) ⁇ M + b
  • a is taken as any natural number between 1 and N
  • b is between 1 and M.
  • the Z 1 is a self-impedance of each of the antenna elements in the rectangular area array antenna
  • the Z 2x is a mutual relationship between two adjacent antenna elements in the row direction of the rectangular area array antenna
  • the coupling impedance, the Z 2y is a mutual coupling impedance between two adjacent antenna elements in the column direction of the rectangular area array antenna.
  • n 1 (a 1 -1) ⁇ M + b 1
  • n 2 (a 2 -1) ⁇ M + b 2
  • n 3 (a 3 -1) ⁇ M + b 3 (29)
  • a 1 , a 2 , and a 3 are any natural numbers between 1 and N, and b 1 , b 2 , and b 3 are arbitrary natural numbers between 1 and M.
  • the expression of the mutual coupling impedance of the rectangular planar array antenna is obtained by calculating Z 1 , Z 2x and Z 2y
  • a mutual impedance estimation value corresponding to each antenna element in the target antenna array element set is obtained.
  • FIG. 8 a schematic diagram of a UPA system composed of 9 antennas, but the method can be extended to a system implementation of more antennas.
  • U E11 , U E12 , U E13 , U E21 , U E22 , U E23 , U E31 , U E32 , U E33 are external excitation voltages and Z L is the load impedance of the antenna elements.
  • the dotted line connection of the external excitation voltage and the load impedance in the figure indicates the principle of the antenna array connection circuit.
  • the external excitation voltage is from the signal input to the antenna array port, and the load impedance is determined by the characteristics of the device connected to the antenna array port.
  • the embodiment of the present invention further provides a computing device for mutual coupling impedance of an array antenna, which can be applied to a base station side or a terminal side, as long as the array antenna needs to be calculated.
  • the mutual coupling impedance can be applied to the device provided by the embodiment of the present invention. As shown in FIG. 9, the device includes:
  • An application module 801 configured to apply a predetermined number of specific excitation voltages to each of the array antenna elements, and the excitation voltage vector formed by each specific excitation voltage applied to each of the antenna elements is proportional to the pre-
  • the nth column vector of the matrix Q is set, and the n values corresponding to the excitation voltage vectors of different times are different.
  • the obtaining module 802 is configured to acquire, after the applying module 801 applies the specific excitation voltage, a voltage between a positive and a negative poles of each antenna array element in the target antenna array element set, where the target antenna array element set includes at least An antenna array element.
  • the calculation module 803 is configured to obtain the target antenna array element according to the voltage between the positive and negative electrodes of each antenna element element and the corresponding specific excitation voltage acquired by the acquisition module 802 after each application of the excitation voltage.
  • a first set of parameters corresponding to each antenna element nn G value of the first parameter G is a diagonal matrix G nn n-th diagonal element of;
  • the processing module 804 is configured to obtain a mutual coupling impedance Z of the array antenna according to the obtained mutual coupling impedance estimation value Z′ corresponding to each antenna element in the target antenna array element set.
  • the calculating module 803 is further configured to calculate a ratio of a voltage between the positive and negative poles of each antenna element obtained and a corresponding specific excitation voltage, and determine the ratio as the target antenna array element set.
  • the applying module 801 is further configured to: when the array antenna includes a ring array antenna, apply N times specific excitation voltages for each of the antenna elements in the ring array antenna, each time for each of the specific excitation voltage applied to the antenna elements constitute a different excitation voltage vector, the excitation voltage is proportional to a first predetermined vector matrix Q n-1 are column vectors of different views of the excitation voltage vector corresponding to the value of n,
  • the elements in the first preset matrix Q 1 are:
  • the N is the number of antenna elements in the ring array antenna, and the values of m and n are any natural numbers between 1 and N.
  • the calculating module 803 is further configured to determine, as the target antenna array element set, the values of the N second parameters D nn corresponding to each antenna array element in the target antenna array element set obtained N times. a value of each diagonal element of the diagonal matrix D corresponding to each antenna element;
  • the applying module 801 is further configured to: when the array antenna includes a line array antenna, apply a specific excitation voltage twice for each antenna element in the line array antenna, each time for each of the The excitation voltage vector formed by the specific excitation voltage applied by the antenna array element is proportional to the nth column vector of the second preset matrix Q 2 , and the different values of the n corresponding to the excitation voltage vector are different, the second preset matrix
  • the elements in Q 2 are:
  • the N is the number of antenna elements in the line array antenna, and the values of m and n are any natural numbers between 1 and N.
  • the calculating module 803 is further configured to: pass the value of the two second parameters D nn corresponding to each antenna element in the target antenna array set obtained twice; Calculating values of Z 1 and Z 2 , the Z1 being the self-impedance of each of the antenna elements in the line array antenna, wherein Z 2 is between two adjacent antenna elements in the line array antenna Mutual coupling impedance;
  • the applying module 801 is further configured to: when the array antenna includes a rectangular area array antenna including M rows and N columns, each of the rectangular planar array antennas including M rows and N columns
  • the array element applies 3 times of the specific excitation voltage, and the excitation voltage vector formed by the specific excitation voltage applied to each of the antenna elements each time is proportional to the nth column vector of the third preset matrix Q 3 .
  • the excitation voltage vector corresponds to a different value of n, the third preset matrix
  • the elements in the Q 31 are The values of k and l are any natural numbers between 1 and N, and the elements in the Q 32 are The values of p and q are any natural number between 1 and M.
  • the Z 1 is a self-impedance of each of the antenna elements in the rectangular array antenna
  • the Z 2x is a mutual coupling impedance between two adjacent antenna elements in the row direction of the rectangular array antenna.
  • the Z 2y is a mutual coupling impedance between two adjacent antenna elements in the column direction of the rectangular array antenna;
  • processing module 804 is further configured to: when the target antenna array element includes one antenna array element, determine a mutual mutual impedance estimation value Z′ as a mutual coupling impedance of the array antenna;
  • the mutual coupling impedance Z of the array antenna is calculated by using the least mean square error estimation value Z′ by a minimum mean square error algorithm.
  • the apparatus for calculating the mutual coupling impedance of the array antenna provided by the present invention, by applying a specific excitation voltage a plurality of times, and acquiring each antenna array in the set of target antenna elements including at least one antenna element after each application of the specific excitation voltage Calculating a voltage between the positive and negative poles, and calculating a first parameter corresponding to each antenna element according to the obtained voltage between the positive and negative poles of each antenna element and the specific excitation voltage corresponding to each antenna element, and according to the The first parameter and the load impedance of the antenna element are calculated to obtain a second parameter, and the mutual coupling impedance of the array antenna is calculated according to the relationship between the second parameter and the mutual coupling impedance of the array antenna.
  • the present invention Compared with the prior art, firstly calculating the mutual coupling impedance of a small array and then using it to equivalently construct the mutual coupling impedance of the large array, the present invention applies the specific form of the excitation voltage by using the array antenna itself as the measuring entity, and Acquiring the voltage between the positive and negative poles of one or more antenna elements in the array antenna in real time, and obtaining the mutual coupling impedance of the array antenna based on the real-time acquired voltage and the specific excitation voltage, so the array antenna provided by the present invention
  • the calculation method of mutual coupling impedance can improve the accuracy of the mutual coupling impedance of the array antenna, and thus can improve the beamforming performance of the massive MIMO system.
  • the embodiment of the present invention further provides a computing device for mutual coupling impedance of an array antenna, which can be applied to the base station side or to the terminal side, as long as the array antenna needs to be calculated.
  • the mutual coupling impedance can be applied to the device provided by the embodiment of the present invention.
  • the device includes: a processor 901, a bus 902, a memory 903, and a voltage sensor 904.
  • the processor 901 and the memory 903 are connected by a bus 902. :
  • the processor 901 is configured to apply a predetermined number of specific excitation voltages to each of the array antennas, and the excitation voltage vector formed by each specific excitation voltage applied to each of the antenna elements is proportional to the pre- Let the nth column vector of the matrix Q have different n values corresponding to the excitation voltage vectors of different times;
  • a voltage sensor 904 configured to acquire a voltage between the positive and negative poles of each antenna element in the target antenna array set after each application of the excitation voltage
  • the processor 901 is further configured to obtain, according to the voltage between the positive and negative poles of each of the antenna elements obtained by the voltage sensor 904 and the corresponding specific excitation voltage, the corresponding one of each antenna array element in the target antenna array element set. a value of a parameter G nn stored by a memory 903, the set of target antenna elements comprising at least one antenna element, the first parameter G nn being the nth diagonal element of the diagonal matrix G;
  • the processor 901 is further configured to separately calculate the target antenna array element according to a load impedance Z L of each antenna array element in the target antenna array element set and a value of each first parameter G nn stored in the memory 903.
  • the value of the second parameter D nn corresponding to each antenna element in the set is stored by the memory 903, and the second parameter D nn is the nth diagonal element of the diagonal matrix D;
  • the mutual coupling impedance Z of the array antenna is obtained according to the obtained mutual coupling impedance estimation value Z' corresponding to each antenna element in the target antenna array element set.
  • the processor 901 is further configured to calculate a ratio of a voltage between the positive and negative poles of each antenna element that has been acquired and a corresponding specific excitation voltage, and determine the ratio as the target antenna array element set.
  • the processor 901 is further configured to: when the array antenna includes a ring array antenna, apply N times of specific excitation voltages for each of the antenna elements in the ring array antenna, each time for each of the The excitation voltage vector formed by the specific excitation voltage applied by the antenna element is proportional to the nth column vector of the first preset matrix Q 1 , and the different values of the n corresponding to the excitation voltage vector are different, the first preset matrix
  • the elements in Q 1 are:
  • the N is the number of antenna elements in the ring array antenna, and the values of m and n are any natural numbers between 1 and N;
  • the processor 901 is further configured to: when the array antenna includes a line array antenna, apply a specific excitation voltage twice for each antenna element in the line array antenna, each time for each of the The excitation voltage vector formed by the specific excitation voltage applied by the antenna array element is proportional to the nth column vector of the second preset matrix Q 2 , and the different values of the n corresponding to the excitation voltage vector are different, the second preset matrix
  • the elements in Q 2 are: Wherein N is the number of antenna elements in the line array antenna, and the values of m and n are any natural numbers between 1 and N;
  • the processor 901 is further configured to: when the array antenna includes a rectangular area array antenna including M rows and N columns, each of the rectangular planar array antennas including M rows and N columns
  • the array element applies 3 times of the specific excitation voltage, and the excitation voltage vector formed by the specific excitation voltage applied to each of the antenna elements each time is proportional to the nth column vector of the third preset matrix Q 3 .
  • the excitation voltage vector corresponds to a different value of n , the third preset matrix
  • the elements in the Q 31 are The values of k and l are any natural numbers between 1 and N, and the elements in the Q 32 are The values of p and q are any natural numbers between 1 and M;
  • the processor 901 is further configured to: when the target antenna array element includes one antenna array element, determine a mutual mutual impedance estimation value Z′ as a mutual coupling impedance of the array antenna;
  • the mutual coupling impedance Z of the array antenna is calculated by using the least mean square error estimation value Z′ by a minimum mean square error algorithm.
  • the memory 903 is configured to store various parameters obtained in the foregoing process, such as a first parameter G nn , a second parameter D nn , and a mutual coupling impedance estimation value Z′ corresponding to each antenna element;
  • a first parameter G nn a second parameter D nn , and a mutual coupling impedance estimation value Z′ corresponding to each antenna element;
  • the processor 901 may be a processor or a collective name of multiple processing elements.
  • the processor 901 may be a central processing unit (CPU), or may be an application specific integrated circuit (ASIC), or one or more configured to implement the embodiments of the present invention.
  • An integrated circuit such as one or more digital signal processors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs).
  • DSPs digital signal processors
  • FPGAs Field Programmable Gate Arrays
  • the memory 903 may be a storage device or a collective name of a plurality of storage elements, and is used to store executable program code or the like. And the memory 903 may include random access memory (RAM), and may also include non-volatile memory such as a magnetic disk memory, a flash memory, or the like.
  • RAM random access memory
  • non-volatile memory such as a magnetic disk memory, a flash memory, or the like.
  • the bus 902 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus 902 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • the apparatus for calculating the mutual coupling impedance of the array antenna provided by the present invention, by applying a specific excitation voltage a plurality of times, and acquiring each antenna array in the set of target antenna elements including at least one antenna element after each application of the specific excitation voltage Calculating a voltage between the positive and negative poles, and calculating a first parameter corresponding to each antenna element according to the obtained voltage between the positive and negative poles of each antenna element and the specific excitation voltage corresponding to each antenna element, and according to the The first parameter and the load impedance of the antenna element are calculated to obtain a second parameter, and the mutual coupling impedance of the array antenna is calculated according to the relationship between the second parameter and the mutual coupling impedance of the array antenna.
  • the present invention Compared with the prior art, firstly calculating the mutual coupling impedance of a small array and then using it to equivalently construct the mutual coupling impedance of the large array, the present invention applies the specific form of the excitation voltage by using the array antenna itself as the measuring entity, and Real-time acquisition of the voltage between the positive and negative poles of one or more antenna elements in the array antenna, and the voltage obtained in real time
  • the mutual excitation impedance of the array antenna is obtained after the operation is based on the specific excitation voltage. Therefore, the calculation method of the mutual coupling impedance of the array antenna provided by the present invention can improve the mutual coupling impedance accuracy of the array antenna, thereby improving the mass MIMO system. Beamforming performance.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium. Based on such understanding, the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product.
  • Stored in a storage medium comprising instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种阵列天线的互耦阻抗的计算方法及装置,涉及通信技术领域,为了解决现有技术中通过仿真计算法得到的互耦阻抗不准确的问题而发明。该方法包括:为阵列天线中的每个天线阵元施加预设次数的特定激励电压;在每次施加激励电压后,根据已获取的目标天线阵元集合中每个天线阵元正负极间的电压以及对应的特定激励电压,得到每个天线阵元对应的第一参数的值;根据天线阵元的负载阻抗以及第一参数的值,计算得到第二参数的值;根据经过预设次数得到的每个天线阵元对应的所有第二参数的值,得到与每个天线阵元对应的互耦阻抗估计值;根据已得到的互耦阻抗估计值,得到阵列天线的互耦阻抗。本发明应用在阵列天线的互耦阻抗的计算过程中。

Description

一种阵列天线的互耦阻抗的计算方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种阵列天线的互耦阻抗的计算方法及装置。
背景技术
作为未来演进的公共陆地移动网络(英文:Public Land Mobile Network,简称:PLMN)(也可以称为5G)的关键技术之一,多入多出(英文:Multiple-lnput Multiple-Output,简称:MIMO)目前已经成为业界的研究热点。MIMO技术是指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收,从而能够充分利用空间资源,实现在不增加频谱资源和天线发射功率的情况下,成倍的提高系统信道容量。
MIMO技术有多个研究方向,其重要的发展方向之一为波束赋形(英文:Beamforming)。波束赋形是指利用MIMO系统中发射端或者接收端的阵列天线产生一个具有指向性的波束,将能量集中在欲传输的方向,由于将能量集中在了某一个特定的方向,避免了分散到各个方向带来的衰减,因而信号强度较强,信号质量较好,从而可以获得较高的空间分辨率,增加信号品质并减少与其他用户间的干扰。在大规模MIMO系统中阵列天线的天线阵元较多,尤其是天线阵元紧密排列时,天线阵元间互耦效应对波束赋形性能的影响将不可忽略;为了改善波束赋形的性能,需要获取大规模MIMO系统中发射端和接收端的阵列天线的互耦阻抗。
仿真计算法是现有技术中获得MIMO系统中阵列天线的互耦阻抗常用的方法。仿真计算法的基本原理为,首先计算一个小型阵列的互耦阻抗然后利用它来等效建构大型阵列天线的互耦阻抗。常见的仿真计算法包括矩量法、有限元法、时域有限差分等数值算法。
在实际应用中,一些环境参数例如温度、湿度的变化,天线高度的变化等都将会带来互耦阻抗的变化;因而当阵列天线规模较大,并且各个天线阵元的间距较小时,从上述数值算法得到阵列天线的互耦阻抗为一种理论上的结果,和真实情况存在较大误差,因而现有技术计算得到的阵列天线的互耦阻抗不准确。
发明内容
本发明提供一种阵列天线的互耦阻抗的计算方法及装置,以解决现有技术中存在的通过仿真计算法得到的阵列天线的互耦阻抗不准确的问题。
为达到上述目的,本发明采用如下技术方案:
第一方面,本发明提供了一种阵列天线的互耦阻抗的计算方法,包括:
为所述阵列天线中的每个天线阵元施加预设次数的特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于预设矩阵Q的第n个列向量,不同次的所述激励电压向量对应的n值不同;
在每次施加所述激励电压后,获取目标天线阵元集合中每个天线阵元正负极间的电压并根据已获取的所述每个天线阵元正负极间的电压以及对应的特定激励电压,得到所述目标天线阵元集合中每个天线阵元对应的第一参数Gnn的值,所述目标天线阵元集合包括至少一个天线阵元,所述第一参数Gnn为对角矩阵G的第n个对角元素;根据所述目标天线阵元集合中每个天线阵元的负载阻抗ZL以及每个第一参数Gnn的值,分别计算得到所述目标天线阵元集合中每个天线阵元对应的第二参数Dnn的值,所述第二参数Dnn为对角矩阵D的第n个对角元素;
根据经过预设次数得到的所述目标天线阵元集合中每个天线阵元对应的所有第二参数Dnn的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′;
根据已得到的与所述目标天线阵元集合中每一个天线阵元对应的互耦阻抗估计值Z′,得到所述阵列天线的互耦阻抗Z。
结合第一方面,在第一方面的第一种实现方式中,所述根据已获取的每个天线阵元正负极间的电压以及对应的特定激励电压,得到所述目标天线阵元集合中每个天线阵元对应的第一参数Gnn的值,具体包括:
计算已获取的每个天线阵元正负极间的电压和对应的特定激励电压的比值,将所述比值确定为所述目标天线阵元集合中每个天线阵元对应的第一参数Gnn的值。
结合第一方面或者第一方面的第一种实现方式,在所述第一方面的第二种实现方式中,所述根据所述目标天线阵元集合中每个天线阵元的负载阻抗ZL以及每个第一参数Gnn的值,分别计算得到所述目标天线阵元集合中每个天线阵元对应的第二参数Dnn的值,具体包括:
根据所述目标天线阵元集合中每个天线阵元的负载阻抗ZL以及每个第一参数Gnn的值,通过公式Gnn=Dnn/(Dnn+ZL),分别计算得到所述目标天线阵元集合中每个天线阵元对应的第二参数Dnn的值。
结合第一方面或者第一方面的第一种实现方式、第二种实现方式中的任意一种实现方式,在第一方面的第三种实现方式中,所述阵列天线包括环形阵列天线;
所述为所述阵列天线中的每个天线阵元施加预设次数的特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于预设矩阵Q的第n个列向量,不同次的所述激励电压向量对应的n值不同,具体包括:
为所述环形阵列天线中的每个天线阵元施加N次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于第一预设矩阵Q1的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第一预设矩阵Q1中的元素为:
Figure PCTCN2015074988-appb-000001
所述N为所述环形阵列天线中天线阵元的个数,所述m和n的取值为1至N之间的任意自然数;
所述根据经过预设次数得到的所述目标天线阵元集合中每个天线阵元对应的所有第二参数Dnn的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′,具体包括:
将经过N次得到的所述目标天线阵元集合中每个天线阵元对应的N个第二参数Dnn的值,分别确定为所述目标天线阵元集合中每个天线阵元对应的对角矩阵D的每个对角元素的值;
将所述对角矩阵D进行离散傅里叶逆变换后,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
结合第一方面,或者第一方面的第一种实现方式、第二种实现方式中的任意一种实现方式,在第一方面的第四种实现方式中,
所述阵列天线包括线阵列天线;
所述为所述阵列天线中的每个天线阵元施加预设次数的特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于预设矩阵Q的第n个列向量,不同次的所述激励电压向量对应的n值不同,具体包括:
为所述线阵列天线中的每个天线阵元施加2次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于第二预设矩阵Q2的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第二预设矩阵Q2中的元素为:
Figure PCTCN2015074988-appb-000002
其中所述N为所述线阵列天线中天线阵元的个数,所述m和n的取值为1至N之间的任意自然数;
所述根据经过预设次数得到的所述目标天线阵元集合中每个天线阵元对应的所有第二参数Dnn的值,得到与所述目标天线阵元集合中每个 天线阵元对应的互耦阻抗估计值Z′,具体包括:
将经过2次得到的所述目标天线阵元集合中每个天线阵元对应的2个第二参数Dnn的值,通过公式
Figure PCTCN2015074988-appb-000003
计算得到Z1和Z2的值,所述Z1为所述线阵列天线中每个天线阵元的自阻抗,所述Z2为所述线阵列天线中相邻两个天线阵元之间的互耦阻抗;
根据已计算得到的所述Z1和Z2的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
结合第一方面,或者第一方面的第一种实现方式、第二种实现方式中的任意一种实现方式,在第一方面的第五种实现方式中,所述阵列天线包括包含M行和N列的矩形面阵列天线;
所述为所述阵列天线中的每个天线阵元施加预设次数的特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于预设矩阵Q的第n个列向量,不同次的所述激励电压向量对应的n值不同,具体包括:
为所述包含M行和N列的矩形面阵列天线中的每个天线阵元施加3次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于第三预设矩阵Q3的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第三预设矩阵
Figure PCTCN2015074988-appb-000004
所述Q31中的元素为
Figure PCTCN2015074988-appb-000005
所述k和l的取值为1至N之间的任意自然数,所述Q32中的元素为
Figure PCTCN2015074988-appb-000006
所述p和q的取值为1至M之间的任意自然数;
所述根据经过预设次数得到的所述目标天线阵元集合中每个天线阵元对应的所有第二参数Dnn的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′,具体包括:
将经过3次得到的所述目标天线阵元集合中每个天线阵元对应的3个第二参数Dnn的值,通过公式
Figure PCTCN2015074988-appb-000007
计算得到Z1、Z2x和Z2y的值,,其中n=(a-1)×M+b,a的取值为1至N之间的任意自然数,b的取值为1至M之间的任意自然数,所述Z1为所述矩形面阵列天线中每个天线阵元的自阻抗,所述Z2x为所述矩形面阵列天线中行方向上相邻两个天线阵元之间的互耦阻抗,所述Z2y为所述矩形面阵列天线中列方向上相邻两个天线阵元之间的互耦阻抗;
根据已计算得到的所述Z1、Z2x和Z2y的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
结合第一方面,或者第一方面的第一种、第二种、第三种、第四种、第五种实现方式中的任意一种实现方式,在第一方面的第六种实现方式中,所述根据已得到的与所述目标天线阵元集合中每一个天线阵元对应的互耦阻抗估计值Z′,得到所述阵列天线的互耦阻抗Z,具体包括:
如果所述目标天线阵元集合中包括一个天线阵元,则将得到的一个互耦阻抗估计值Z′确定为所述阵列天线的互耦阻抗;
如果所述目标天线阵元集合中包括至少两个天线阵元,则将所述至少两个互耦阻抗估计值Z′通过最小均方误差算法,计算得到所述阵列天线的互耦阻抗Z。
第二方面,本发明提供了一种阵列天线的互耦阻抗的计算装置,包括:
施加模块,用于为所述阵列天线中的每个天线阵元施加预设次数的特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于预设矩阵Q的第n个列向量,不同次的所述激励电压向量对应的n值不同;
获取模块,用于在所述施加模块每次施加所述特定激励电压后,获取目标天线阵元集合中每个天线阵元正负极间的电压,所述目标天线阵元集 合包括至少一个天线阵元;
计算模块,用于在每次施加激励电压后,根据所述获取模块已获取的所述每个天线阵元正负极间的电压以及对应的特定激励电压,得到所述目标天线阵元集合中每个天线阵元对应的第一参数Gnn的值,所述第一参数Gnn为对角矩阵G的第n个对角元素;
根据所述目标天线阵元集合中每个天线阵元的负载阻抗ZL以及每个第一参数Gnn的值,分别计算得到所述目标天线阵元集合中每个天线阵元对应的第二参数Dnn的值,所述第二参数Dnn为对角矩阵D的第n个对角元素;
根据经过预设次数得到的所述目标天线阵元集合中每个天线阵元对应的所有第二参数Dnn的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′;
处理模块,用于根据已得到的与所述目标天线阵元集合中每一个天线阵元对应的互耦阻抗估计值Z′,得到所述阵列天线的互耦阻抗Z。
结合第二方面,在第二方面的第一种实现方式中,所述计算模块,还用于计算已获取的每个天线阵元正负极间的电压和对应的特定激励电压的比值,将所述比值确定为所述目标天线阵元集合中每个天线阵元对应的第一参数Gnn的值。
结合第二方面或者第二方面的第一种实现方式,在第二方面的第二种实现方式中,所述计算模块,还用于根据所述目标天线阵元集合中每个天线阵元的负载阻抗ZL以及每个第一参数Gnn的值,通过公式Gnn=Dnn/(Dnn+ZL),分别计算得到所述目标天线阵元集合中每个天线阵元对应的第二参数Dnn的值。
结合第二方面或者第二方面的第一种实现方式、第二种实现方式中的任意一种实现方式,在第二方面的第三种实现方式中,所述施加模块,还用于当所述阵列天线包括环形阵列天线时,为所述环形阵列天线中的每个天线阵元施加N次特定激励电压,每次为所述每个天线阵元施加的特定 激励电压形成的激励电压向量正比于第一预设矩阵Q1的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第一预设矩阵Q1中的元素为:
Figure PCTCN2015074988-appb-000008
所述N为所述环形阵列天线中天线阵元的个数,所述m和n的取值为1至N之间的任意自然数;
所述计算模块,还用于将经过N次得到的所述目标天线阵元集合中每个天线阵元对应的N个第二参数Dnn的值,分别确定为所述目标天线阵元集合中每个天线阵元对应的对角矩阵D的每个对角元素的值;
将所述对角矩阵D进行离散傅里叶逆变换后,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
结合第二方面或者第二方面的第一种实现方式、第二种实现方式中的任意一种实现方式,在第二方面的第四种实现方式中,
所述施加模块,还用于当所述阵列天线包括线阵列天线时,为所述线阵列天线中的每个天线阵元施加2次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于第二预设矩阵Q2的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第二预设矩阵Q2中的元素为:
Figure PCTCN2015074988-appb-000009
其中所述N为所述线阵列天线中天线阵元的个数,所述m和n的取值为1至N之间的任意自然数;
所述计算模块,还用于将经过2次得到的所述目标天线阵元集合中每个天线阵元对应的2个第二参数Dnn的值,通过公式
Figure PCTCN2015074988-appb-000010
计算得到Z1和Z2的值,所述Z1为所述线阵列天线中每个天线阵元的自阻抗,所述Z2为所述线阵列天线中相邻两个天线阵元之间的互耦阻抗;
根据已计算得到的所述Z1和Z2的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
结合第二方面或者第二方面的第一种实现方式、第二种实现方式中的任意一种实现方式,在第二方面的第五种实现方式中,所述施加模块,还用于当所述阵列天线包括包含M行和N列的矩形面阵列天线时,为所述包含M行和N列的矩形面阵列天线中的每个天线阵元施加3次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于第三预设矩阵Q3的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第三预设矩阵
Figure PCTCN2015074988-appb-000011
所述Q31中的元素为
Figure PCTCN2015074988-appb-000012
所述k和l的取值为1至N之间的任意自然数,所述Q32中的元素为
Figure PCTCN2015074988-appb-000013
所述p和q的取值为1至M之间的任意自然数;
所述计算模块,还用于将经过3次得到的所述目标天线阵元集合中每个天线阵元对应的3个第二参数Dnn的值,通过公式
Figure PCTCN2015074988-appb-000014
计算得到Z1、Z2x和Z2y的值,其中n=(a-1)×M+b,a的取值为1至N之间的任意自然数,b的取值为1至M之间的任意自然数,所述Z1为所述矩形面阵列天线中每个天线阵元的自阻抗,所述Z2x为所述矩形面阵列天线中行方向上相邻两个天线阵元之间的互耦阻抗,所述Z2y为所述矩形面阵列天线中列方向上相邻两个天线阵元之间的互耦阻抗;
根据已计算得到的所述Z1、Z2x和Z2y的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
结合第二方面或者第二方面的第一种实现方式、第二种实现方式、第三种、第四种、第五种实现方式中的任意一种实现方式,在第二方面的第六种实现方式中,所述处理模块,还用于当所述目标天线阵元集合中包括一个天线阵元时,将得到的一个互耦阻抗估计值Z′确定为所述阵列天线 的互耦阻抗;
当所述目标天线阵元集合中包括至少两个天线阵元时,将所述至少两个互耦阻抗估计值Z′通过最小均方误差算法,计算得到所述阵列天线的互耦阻抗Z。
第三方面,本发明还提供了一种阵列天线的互耦阻抗的计算装置,包括:
处理器,用于为所述阵列天线中的每个天线阵元施加预设次数的特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于预设矩阵Q的第n个列向量,不同次的所述激励电压向量对应的n值不同;
电压传感器,用于在每次施加所述激励电压后,获取目标天线阵元集合中每个天线阵元正负极间的电压;
所述处理器,还用于根据电压传感器获取的所述每个天线阵元正负极间的电压以及对应的特定激励电压,得到所述目标天线阵元集合中每个天线阵元对应的第一参数Gnn的值并通过存储器存储,所述目标天线阵元集合包括至少一个天线阵元,所述第一参数Gnn为对角矩阵G的第n个对角元素;
所述处理器,还用于根据所述目标天线阵元集合中每个天线阵元的负载阻抗ZL以及所述存储器存储的每个第一参数Gnn的值,分别计算得到所述目标天线阵元集合中每个天线阵元对应的第二参数Dnn的值并通过存储器存储,所述第二参数Dnn为对角矩阵D的第n个对角元素;
所述处理器,还用于根据所述存储器存储的经过预设次数得到的所述目标天线阵元集合中每个天线阵元对应的所有第二参数Dnn的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′;
根据已得到的与所述目标天线阵元集合中每一个天线阵元对应的互耦阻抗估计值Z′,得到所述阵列天线的互耦阻抗Z。
根据第三方面,在第三方面的第一种实现方式中,所述处理器,还用于计算已获取的每个天线阵元正负极间的电压和对应的特定激励电压的比值,将所述比值确定为所述目标天线阵元集合中每个天线阵元对应的第一参数Gnn的值。
结合第三方面或者第三方面的第一种实现方式,在第三方面的第二种实现方式中,所述处理器,还用于根据所述目标天线阵元集合中每个天线阵元的负载阻抗ZL以及每个第一参数Gnn的值,通过公式Gnn=Dnn/(Dnn+ZL),分别计算得到所述目标天线阵元集合中每个天线阵元对应的第二参数Dnn的值。
结合第三方面或者第三方面的第一种、第二种实现方式中的任意一种实现方式,在第三方面的第三种实现方式中,所述处理器,还用于当所述阵列天线包括环形阵列天线时,为所述环形阵列天线中的每个天线阵元施加N次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于第一预设矩阵Q1的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第一预设矩阵Q1中的元素为:
Figure PCTCN2015074988-appb-000015
所述N为所述环形阵列天线中天线阵元的个数,所述m和n的取值为1至N之间的任意自然数;
将经过N次得到的所述目标天线阵元集合中每个天线阵元对应的N个第二参数Dnn的值,分别确定为所述目标天线阵元集合中每个天线阵元对应的对角矩阵D的每个对角元素的值;
将所述对角矩阵D进行离散傅里叶逆变换后,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
结合第三方面或者第三方面的第一种、第二种实现方式中的任意一种实现方式,在第三方面的第四种实现方式中,所述处理器,还用于当所述阵列天线包括线阵列天线时,为所述线阵列天线中的每个天线阵元施加2次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激 励电压向量正比于第二预设矩阵Q2的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第二预设矩阵Q2中的元素为:
Figure PCTCN2015074988-appb-000016
其中所述N为所述线阵列天线中天线阵元的个数,所述m和n的取值为1至N之间的任意自然数;
将经过2次得到的所述目标天线阵元集合中每个天线阵元对应的2个第二参数Dnn的值,通过公式
Figure PCTCN2015074988-appb-000017
计算得到Z1和Z2的值,所述Z1为所述线阵列天线中每个天线阵元的自阻抗,所述Z2为所述线阵列天线中相邻两个天线阵元之间的互耦阻抗;
根据已计算得到的所述Z1和Z2的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
结合第三方面或者第三方面的第一种、第二种实现方式中的任意一种实现方式,在第三方面的第五种实现方式中,所述处理器,还用于当所述阵列天线包括包含M行和N列的矩形面阵列天线时,为所述包含M行和N列的矩形面阵列天线中的每个天线阵元施加3次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于第三预设矩阵Q3的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第三预设矩阵
Figure PCTCN2015074988-appb-000018
所述Q31中的元素为
Figure PCTCN2015074988-appb-000019
所述k和l的取值为1至N之间的任意自然数,所述Q32中的元素为
Figure PCTCN2015074988-appb-000020
所述p和q的取值为1至M之间的任意自然数;
将经过3次得到的所述目标天线阵元集合中每个天线阵元对应的3个第二参数Dnn的值,通过公式
Figure PCTCN2015074988-appb-000021
计算得 到Z1、Z2x和Z2y的值,其中n=(a-1)×M+b,a的取值为1至N之间的任意自然数,b的取值为1至M之间的任意自然数,所述Z1为所述矩形面阵列天线中每个天线阵元的自阻抗,所述Z2x为所述矩形面阵列天线中行方向上相邻两个天线阵元之间的互耦阻抗,所述Z2y为所述矩形面阵列天线中列方向上相邻两个天线阵元之间的互耦阻抗;
根据已计算得到的所述Z1、Z2x和Z2y的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
结合第三方面或者第三方面的第一种、第二种、第三种、第四种、第五种实现方式中的任意一种实现方式,在第三方面的第六种实现方式中,所述处理器,还用于当所述目标天线阵元集合中包括一个天线阵元时,将得到的一个互耦阻抗估计值Z′确定为所述阵列天线的互耦阻抗;
当所述目标天线阵元集合中包括至少两个天线阵元时,将所述至少两个互耦阻抗估计值Z′通过最小均方误差算法,计算得到所述阵列天线的互耦阻抗Z。
本发明提供的阵列天线的互耦阻抗的计算方法及装置,通过多次施加特定激励电压,并在每次施加特定激励电压之后,获取包含至少一个天线阵元的目标天线阵元集合中每个天线阵元正负极间的电压,并根据获取的每个天线阵元正负极间的电压以及每个天线阵元对应的特定激励电压分别计算每个天线阵元对应的第一参数,且根据该第一参数以及天线阵元的负载阻抗计算得到第二参数,再根据该第二参数与阵列天线的互耦阻抗之间的关系计算得到阵列天线的互耦阻抗。与现有技术中首先计算一个小型阵列的互耦阻抗然后利用它来等效建构大型阵列的互耦阻抗相比,本发明由于以阵列天线本身为测量实体,通过施加特定形式的激励电压,且实时获取该阵列天线中一个或多个天线阵元正负极间的电压,并以实时获取的电压和激励电压为基础经过运算后得到阵列天线的互耦阻抗,因而本发明提供的阵列天线的互耦阻抗的计算方法能够提高阵列天线的互耦阻抗的准确性,进而可以改善大规模MIMO系统的波束赋形性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的常见的大规模阵列天线的结构示意图;
图2为本发明实施例提供的一种阵列天线的互耦阻抗的计算方法的流程示意图;
图3为本发明实施例提供的一种环形阵列天线的互耦阻抗的计算方法的流程示意图;
图4为本发明实施例提供的由4个天线阵元组成的环形阵列天线示意图;
图5为本发明实施例提供的一种线阵列天线的互耦阻抗的计算方法的流程示意图;
图6为本发明实施例提供的由4个天线阵元组成的线阵列天线的示意图;
图7为本发明实施例提供的一种矩形面阵列天线的互耦阻抗的计算方法的流程示意图;
图8为本发明实施例提供的一种由9个天线阵元组成的矩形面阵列天线的示意图;
图9为本发明实施例提供的一种阵列天线的互耦阻抗的计算装置的结构示意图;
图10为本发明实施例提供的一种阵列天线的互耦阻抗的计算装置的结构示意图。
具体实施方式
下面将结合本实施例中的附图,对本实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出 创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了解决现有技术中存在的大规模阵列天线的互耦阻抗的计算结果不准确的问题,本发明实施例提供了一种阵列天线的互耦阻抗的计算方法。本发明实施例提供的方法可以应用于任何规模的阵列天线中,例如,包含4个天线阵元的环形阵列天线、线阵列天线和矩形面阵列天线,尤其应用于包含天线阵元个数较多的大规模阵列天线中,例如由15个以上天线阵元组成的阵列天线。常见的大规模阵列天线包括线阵列天线、环形阵列天线和矩形面阵列天线等。如图1所示为常见的大规模阵列天线的结构示意图;其中,多个天线阵元等间距呈直线排列形成的阵列天线为线阵列天线;多个天线阵元等间距呈环形排列形成的阵列天线为环形阵列天线;多个天线阵元等间距呈矩形排列形成的阵列天线为矩形面阵列天线。
本发明实施例提供了一种阵列天线的互耦阻抗的计算方法包括:对不同类型阵列天线施加对应的外部激励电压信号;(可选地,可以利用电压传感器)检测天线阵元中部分阵元的电压变化;利用激励电压与阵元电压之间的关系(例如二者之比),获取阵列天线的互偶阻抗或互耦阻抗矩阵。通过这种简单的测量计算方式,可以在很小复杂度的情况下实现获取较高精度的互耦阻抗。
实施例1:
阵列天线的互耦阻抗经分解可通过下述公式(1)表达:
Z=QDQH    (1)
其中,公式(1)中的Q为步骤101中所指的预设矩阵,QH为预设矩阵Q的共轭转置矩阵,Q和QH为已知的具有正交性质的酉矩阵;D为未知的对角矩阵,因而根据公式(1),若想求取阵列天线的互耦阻抗Z,需要求取对角矩阵D。
此外,根据电路原理,阵列天线中各个天线阵元正负极间的电压形成的电压向量U和各个天线阵元的电流形成的天线电流向量I之间的关系为:U=ZI;由于每个天线阵元施加的特定激励电压、天线阵元的负载阻 抗和天线阵元分别形成一个闭环回路,所以整个阵列天线中,各个天线阵元施加的特定激励电压形成的激励电压向量UE、各个天线阵元正负极间的电压形成的电压向量U与各个天线阵元的电流形成的天线电流向量I、阵列天线的负载阻抗ZL的对应关系为U=UE-ZLI;因而可以得到阵列天线中各个天线阵元正负极间的电压形成的电压向量U与各个天线阵元施加的特定激励电压形成的激励电压向量UF之间的关系可通过下述公式(2)表达:
U=QGQHUE    (2)
其中,G为未知的对角矩阵,且对角矩阵G的对角元素Gnn与对角矩阵D的对角元素Dnn之间存在公式(3)所述的对应关系:
Figure PCTCN2015074988-appb-000022
此外,公式(2)中每个天线阵元两侧的电压可以通过电压传感器读取得到,而Q、QH、UF为已知矩阵,因而利用公式(2)可求取矩阵G的对角元素Gnn,该具体过程包括:当激励电压向量UE设定为Q的第n个列向量UE,n,根据矩阵的乘法规则和Q矩阵的复正交性,将UE,n代入公式(2)中,可得U=QGQHUE,n=QGB,其中B为列向量,该列向量第n行元素为1,其它元素为0。进一步运算得到U=QC,其中C为列向量,该列向量的第n行元素为Gnn,其它元素为0,最终得到U=UE,nGnn。因而可以得到此时阵列天线中各个天线阵元正负极间的电压形成的电压向量U的值为Gnn乘以Q的第n个列向量(激励电压UE,n)。因此,如果外部激励电压UE设置为正比于矩阵Q的第n个列向量,则任意一个天线阵元正负极间的电压会正比于施加于该天线阵元两侧的电压,且二者之间的正比例系数为Gnn
求取Gnn后再根据公式(3)求取对角矩阵D的对角元素Dnn,进而求取阵列天线的互耦阻抗Z。
因而,当为阵列天线中每个天线阵元施加特定形式的激励电压时,阵 列天线中各个天线阵元的正负极之间存在电压;且针对阵列天线中任意一个天线阵元,该任意一个天线阵元正负极间的电压、施加于该天线阵元的特定激励电压和阵列天线的互耦阻抗三者之间存在一定的对应关系,因而可通过为阵列天线中每个天线阵元施加特定形式的激励电压后,获取任意一个天线阵元正负极间的电压,根据获取的该任意一个天线阵元正负极间的电压、施加于该任意一个天线阵元的特定激励电压经过运算后得到阵列天线的互耦阻抗估计值。此外,为了得到阵列天线的互耦阻抗的精确值,可选取多个天线阵元,对每个天线阵元采用相同的运算方式后得到与每个天线阵元对应的互耦阻抗估计值,再根据得到的互耦阻抗估计值得到阵列天线的互耦阻抗。基于此原理,如图2所示,本实施例提供的阵列天线的互耦阻抗的计算方法包括:
101:为所述阵列天线中的每个天线阵元施加预设次数的特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于预设矩阵Q的第n个列向量,不同次的所述激励电压向量对应的n值不同。
与现有技术不同的是,本实施例中为每个天线阵元所施加的激励电压为特定形式的激励电压。所指的特殊形式的意思为,每次为所有天线阵元施加的激励电压形成的(或组成的)激励电压向量正比于预设矩阵Q的第n个列向量,例如:在每次施加激励电压时,可将预设矩阵Q的第n个列向量中每一个元素或者将该第n个列向量的的每一个元素均乘以一定倍数后对应的值确定为每个天线阵元的激励电压。且不同次对应的所述激励电压向量分别正比于预设矩阵Q的不同列向量,也即每次施加特定激励电压时,对应的n不同;例如在第1次施加激励电压时,可将预设矩阵Q的第1个列向量中每一个元素的值或者将第1个列向量中的每一个元素乘以一定倍数后对应的值依次确定为每个天线阵元的激励电压;但在第2次施加特定激励电压时,可将预设矩阵的第2个列向量或者将第2个列向量中每一个元素乘以一定倍数后对应的值依次确定为每个天线阵元的激励电压。
一般而言,阵列天线的互耦阻抗可以分解为一个已知的具有正交性质 的酉矩阵、一个未知的对角矩阵以及该酉矩阵的共轭转置矩阵相乘的形式,本实施例中所指的所述预设矩阵Q即是指所述阵列天线的互耦阻抗分解后得到的具有正交性质的酉矩阵,由于不同形态的阵列天线的互耦阻抗的表达形式不同因而其分解得到的具有正交性质的酉矩阵的具体形态也不相同。例如:当所述阵列天线为包含N个天线阵元的环形阵列天线时,所述预设矩阵Q为一种N×N的归一化的离散傅里叶逆变换(Inverse Discrete Fourier Transform,IDFT)矩阵,矩阵Q中的元素的表达形式为
Figure PCTCN2015074988-appb-000023
其中m和n的取值均为1至N之间的自然数;当所述阵列天线为包含N个天线阵元的线阵列天线时,所述预设矩阵Q为一种N×N的离散正弦变换(Discrete Sine Transform,DST)矩阵,该矩阵中的元素的表达形式为
Figure PCTCN2015074988-appb-000024
其中m和n的取值均为1至N之间的自然数;当所述阵列天线为包含M行和N列的矩形面阵列天线时,所述预设矩阵Q为一种(M×N)行(M×N)列的矩阵,其表达形式为
Figure PCTCN2015074988-appb-000025
所述Q31中的元素为
Figure PCTCN2015074988-appb-000026
所述k和I的取值为1至N之间的任意自然数,所述Q32中的元素为
Figure PCTCN2015074988-appb-000027
所述p和q的取值为1至M之间的任意自然数。
所述预设次数与需要求取的阵列天线的互耦阻抗分解后得到的未知对角矩阵中的对角元素的个数相关,而不同形态的阵列天线的互耦阻抗分解得到的对角矩阵的表达形式也不相同,因而所述预设次数也和阵列天线的具体形态有关,例如:当阵列天线为包含N个天线阵元的环形阵列天线时,该环形阵列天线的互耦阻抗的分解后得到的对角矩阵的对角元素的 表达式为
Figure PCTCN2015074988-appb-000028
其中m和n的取值为1至N之间的自然数,Z1为环形阵列天线中每个天线阵元的自阻抗,Zi(i的取值为2至N)为以第一个天线阵元为基准的,该天线阵元与相邻阵元的互耦阻抗,均为未知参数,需要求取N个对角元素才能求取Z1至ZN的值,相应的预设次数为N次;当阵列天线为包含N个天线阵元的线阵列天线时,线阵列天线的互耦阻抗分解后得到的对角矩阵的对角元素的表达形式为
Figure PCTCN2015074988-appb-000029
其中,Z1为线阵列天线中每个天线阵元的自阻抗,所述Z2为线阵列天线中相邻两个天线阵元之间的互耦阻抗;n的取值为1至N之间的自然数,该对角元素的表达形式中,有Z1和Z2两个未知参数,因而需要求取2个对角元素,得到两个方程并求取方程的解,得到Z1和Z2的值,相应的该预设次数为2次;当阵列天线为包含M行N列天线阵元的矩形面阵列天线时,矩形面阵列天线的互耦阻抗分解后得到的对角矩阵的对角元素的表达形式为
Figure PCTCN2015074988-appb-000030
其中n=(a-1)×M+b,a的取值为1至N之间的任意自然数,b的取值为1至M之间的任意自然数,Z1表示矩形面阵列天线中天线阵元的自阻抗,Z2x表示行方向上相邻阵元之间的互耦阻抗;Z2y表示列方向上相邻阵元之间的互耦阻抗;在上式中,总共有Z1、Z2x和Z2y三个未知变量,相应的该预设次数为3次。
进一步地,当施加特定激励电压的次数超过预设次数(如:分别超过N、2、3)时,可以得到更多的Dnn,则可以选择预设次数的Dnn来进行计算,也可以用多余的Dnn都进行计算,得到更多的互耦阻抗估计值后利用最小均方误差的方法来得到更精确的互耦阻抗。例如:当对面阵列天线施加特定激励电压的次数为6次时,可以得到6个Dnn,从而可以得到两组Z1、Z2x和Z2y,进而可以得到两个互耦阻抗,然后对这两个互耦阻抗利用最小均方误差的方法得到更精确的互耦阻抗。
在施加激励电压时,可通过基带信号发送正比于预设矩阵Q的第n个列向量的信号到天线阵元端口上来施加;还可根据预设矩阵Q的第n个列向量的各个元素的相位和幅度,通过外部可编程控制电路来施加,该具体实现过程可参考现有技术。
102:在每次施加所述特定激励电压后,获取目标天线阵元集合中每个天线阵元正负极间的电压并根据已获取的所述每个天线阵元正负极间的电压以及对应的特定激励电压,得到所述目标天线阵元集合中每个天线阵元对应的第一参数Gnn的值,所述目标天线阵元集合包括至少一个天线阵元,所述第一参数Gnn为对角矩阵G的第n个对角元素;根据所述目标天线阵元集合中每个天线阵元的负载阻抗ZL以及每个第一参数Gnn的值,分别计算得到所述目标天线阵元集合中每个天线阵元对应的第二参数Dnn的值,所述第二参数Dnn为对角矩阵D的第n个对角元素。
其中,所指的目标天线阵元集合为从所述阵列天线中选取一定个数的天线阵元所形成的集合。每次施加所述特定激励电压后,执行本步骤时对应的目标天线阵元集合相同。因而每次执行本步骤时,会得到与所述目标天线阵元集合中的每一个天线阵元对应的第二参数Dnn的值。
可选的,在本步骤的具体实现过程中,可通过电压传感器实时获取目标天线阵元集合中每一个天线阵元正负极间的电压。另外,所对应的特定激励电压即为步骤101中为每个天线阵元施加的特定激励电压。
可选的,所述根据已获取的每个天线阵元正负极间的电压以及对应的特定激励电压,得到所述目标天线阵元集合中每个天线阵元对应的第一参数Gnn的值,具体包括:
计算已获取的每个天线阵元正负极间的电压和对应的特定激励电压的比值,将所述比值确定为所述目标天线阵元集合中每个天线阵元对应的第一参数Gnn的值。
可选的,所述根据所述目标天线阵元集合中每个天线阵元的负载阻抗ZL以及每个第一参数Gnn的值,分别计算得到所述目标天线阵元集合中每 个天线阵元对应的第二参数Dnn的值,具体包括:
根据所述目标天线阵元集合中每个天线阵元的负载阻抗ZL以及每个第一参数Gnn的值,通过公式Gnn=Dnn/(Dnn+ZL),分别计算得到所述目标天线阵元集合中每个天线阵元对应的第二参数Dnn的值。
其中,Gnn和Dnn中n的取值与阵列天线的互耦阻抗分解得到的对角矩阵G和D相关,例如:当阵列天线为包含N个天线阵元的环形阵列天线时,该阵列天线对应的对角矩阵G和D均为N×N的对角矩阵,Gnn和Dnn中n的取值均为1至N之间的自然数;当该阵列天线为包含N个天线阵元的线阵列天线时,该阵列天线对应的对角矩阵G和D均为N×N的对角矩阵,Gnn和Dnn中n的取值均为1至N之间的自然数;当该阵列天线为包含M行N列天线阵元的矩形面阵列天线时,对应的对角矩阵G和D均为M×N行M×N列的对角矩阵,n的取值为1至M×N之间的自然数。
其中,所述目标天线阵元集合中每个天线阵元的负载阻抗ZL可通过查阅生产厂家提供的天线阵元的资料得到。
需要说明的是,上述计算过程中得到的Gnn为对角矩阵G的第n个元素;相应的Dnn为对角矩阵D的第n个元素;这与步骤101中施加特定激励电压时,激励电压向量对应的预设矩阵Q的第n个列向量相对应,其取值与第n个列向量的取值相同。例如,步骤101中,某次施加的激励电压向量对应的为预设矩阵Q的第1个列向量,则本步骤中得到的为G11和D11;步骤101中,某次激励电压向量对应的为预设矩阵Q的第2个列向量,则本步骤中得到的为G22和D22
当施加完预设次数的特定激励电压后,通过本步骤可得到与目标天线阵元集合中的每个天线阵元对应的多个第二参数Dnn的值。每个天线阵元对应的第二参数Dnn的个数与施加的特定激励电压的次数相同。
103:根据经过预设次数得到的所述目标天线阵元集合中每个天线阵元对应的所有第二参数Dnn的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
在本步骤的具体实现过程中,根据同一个天线阵元对应的多个第二参数Dnn的值可计算得到该天线阵元对应的一个互耦阻抗估计值,因而最终得到与目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值,且每个天线阵元的计算过程相同,例如:当阵列天线为包含N个天线阵元的环形阵列天线时,对应的预设次数为N次,因而共得到N个第二参数Dnn的值,则本步骤是将一个天线阵元对应的N个第二参数Dnn的值分别确定为对角矩阵D的N个对角元素,得到对角矩阵D的表达形式,然后将对角矩阵D经离散傅里叶逆变化后得到环形阵列天线的一个互耦阻抗估计值;当阵列天线为包含N个天线阵元的线阵列天线时,对应的预设次数为2次,本步骤是将一个天线阵元对应的2个第二参数Dnn通过分别代入公式
Figure PCTCN2015074988-appb-000031
得到两个方程,通过解该两个方程计算得到Z1和Z2的值,其中,所述Z1为所述线阵列天线中每个天线阵元的自阻抗,所述Z2为所述线阵列天线中相邻两个天线阵元之间的互耦阻抗,将Z1和Z2代入线阵列天线的互耦阻抗的表达式
Figure PCTCN2015074988-appb-000032
中,得到线阵列天线的一个互耦阻抗估计值;当阵列天线为M行N列的矩形面阵列天线时,其对应的预设次数为3次,本步骤是将一个天线阵元对应的3个第二参数Dnn通过分别代入公式
Figure PCTCN2015074988-appb-000033
得到三个方程,通过求解方程,得到未知参数Z2x,Z2y和Z1的值,进而得到所有的对角元素的值,再通过对角矩阵与矩形面阵列天线的互耦阻抗之间的对应关系Z=QDQH,得到一个矩形面阵列天线的互耦阻抗估计值。或者,Dnn构成了公式(1)中对角矩阵D的对角线上的n个值,从而可以确定D,然后利用得到的对角矩阵D得到互耦阻抗估计值;另外,也可以按照矩阵展开,分别计算每个矩阵元素对应值的方式一一得到互耦阻抗估计值。此外,本步骤中之所以称之为互耦阻抗估计值,是因为根据不同天线 阵元计算得到的阵列天线的互耦阻抗之间可能存在误差。
根据阵列天线的不同形态,第二参数Dnn与阵列天线的互耦阻抗之间的对应关系也不相同,其具体计算过程需要结合阵列天线的具体形态,详见下述各个实施例。
104:根据已得到的与所述目标天线阵元集合中每一个天线阵元对应的互耦阻抗估计值Z′,得到所述阵列天线的互耦阻抗Z。
作为本步骤的一种实现方式,如果所述目标天线阵元集合中包括一个天线阵元,则将得到的一个互耦阻抗估计值确定为所述阵列天线的互耦阻抗。
一般而言,为了减少操作流程,可选取阵列天线中的任意一个天线阵元作为当目标天线阵元集合中仅包括一个天线阵元时,通过本实施例提供的方法可得到该天线阵元对应的互耦阻抗估计值,可将该估计值直接确定为阵列天线的阻抗值。
作为本步骤的另一种实现方式,如果所述目标天线阵元集合中包括至少两个天线阵元,则将所述至少两个互耦阻抗估计值通过最小均方误差算法,计算得到所述阵列天线的互耦阻抗。
一般而言,为了得到更精确的阵列天线的互耦阻抗,所选取的目标天线阵元集合中天线阵元的个数不限于1个,因而可通过计算多个互耦阻抗估计值,再将多个互耦阻抗估计值通过最小均方误差算法计算后得到最终的天线系统的互耦阻抗。
本发明提供的阵列天线的互耦阻抗的计算方法,通过多次施加特定激励电压,并在每次施加特定激励电压之后,获取包含至少一个天线阵元的目标天线阵元集合中每个天线阵元正负极间的电压,并根据获取的每个天线阵元正负极间的电压以及每个天线阵元对应的特定激励电压分别计算每个天线阵元对应的第一参数,且根据该第一参数以及天线阵元的负载阻抗计算得到第二参数,再根据该第二参数与阵列天线的互耦阻抗之间的关系计算得到阵列天线的互耦阻抗。与现有技术中首先计算一个小型阵列的 互耦阻抗然后利用它来等效建构大型阵列的互耦阻抗相比,本发明由于以阵列天线本身为测量实体,通过施加特定形式的激励电压,且实时获取该阵列天线中一个或多个天线阵元正负极间的电压,并以实时获取的电压和特定激励电压为基础经过运算后得到阵列天线的互耦阻抗,因而本发明提供的阵列天线的互耦阻抗的计算方法能够提高阵列天线的互耦阻抗的准确性,进而可以改善大规模MIMO系统的波束赋形性能。
此外,现有技术中还存在一种用于测量MIMO系统中阵列天线的互耦阻抗的实时测量法。在该方法中,将天线阵列等效为一个电路网络,通过为天线阵列中的天线阵元施加激励电压,并且测量每个天线阵元正负极间的电压,再通过矩阵求逆后求得MIMO系统中阵列天线的互耦阻抗;但是该计算方法需要测量大量的参数,如所有天线阵元正负极间的电压等;且计算过程中需要求解矩阵的逆,则当阵列天线中包含的天线阵元的数量较多时,矩阵求逆的运算量会迅速增长,因此现有的这种实时测量法较复杂,尤其是在维度很高的情况下,矩阵求逆的复杂度非常高;而本申请通过简单的矩阵乘法就实现了获得阵列天线的互耦阻抗,复杂度大大降低。
而本发明提供的计算方法由于仅需测量一个或多个天线阵元正负极间的电压,且在求解过程中仅需通过简单的求比值、解方程等运算,无需进行矩阵求逆的运算,因而能够减少计算量,其实现过程相对于现有的实时测量法较简单。
由于本发明实施例所指的阵列天线可能存在不同的形态,因而,在结合图2所示的方法的基础上,本实施例给出了环形阵列天线、线阵列天线和矩形面阵列天线的互耦阻抗的具体计算方法,分别如下所示。
实施例2:
环形阵列天线(Uniform Circular Arrays,UCA)是一个由多个天线阵元按照圆形的方式组合在一起形成的一个天线阵,天线阵元之间的间距是固定的,是一种常见的阵列天线。
当所述阵列天线为包含N个天线阵元的环形阵列天线时,经发明人研究发现,由于UCA的N个天线阵元均匀分布,因而UCA的互耦阻抗是循环矩阵,其表达式为:
Figure PCTCN2015074988-appb-000034
其中Z1是每个天线阵元的自阻抗,Zi为以第1个天线阵元为基准,该天线阵元与每一个相邻的天线阵元之间的互耦阻抗。
由于本实施例中矩阵Z既是一个共轭对称矩阵,且是循环矩阵,根据循环矩阵的特性,所述矩阵Z能够被分解为:
Z=QDQH    (5)
其中,Q为归一化的离散傅里叶逆变换(IDFT)矩阵,QH为矩阵Q的共轭转置矩阵,则QH是一个归一化的离散傅里叶变换(DFT)矩阵;且矩阵Q由下列元素构成:
Figure PCTCN2015074988-appb-000035
公式(6)中的N为环形阵列天线中天线阵元的个数。
其中,D为未知的对角矩阵,其对角元素为:
Figure PCTCN2015074988-appb-000036
通过公式(7)所提供的对角元素的表达形式可知,Dnn是Zm的离散傅里叶变换,所指的Zm也即是上述Zi
此外,环形阵列天线中所有天线阵元正负极间的电压形成的电压向量U和天线电流向量I有下列关系:
U=ZI    (8)
且由电路原理可知,天线阵元两侧的激励电压向量UF、天线阵元正负极间的电压向量U与天线电流向量I存在下述对应关系:
U=UE-ZLI    (9)
其中,ZL是该环形阵列天线对应的负载阻抗矩阵,假设每一个天线阵元的负载阻抗相等,则该环形阵列天线的负载阻抗矩阵ZL正比于单位矩阵。
结合上述公式(8)和(9),可以得到下述公式:
U=Z(Z+ZL)-1UE    (10)
结合上述公式(5)和公式(10),可得到天线阵元正负极间的电压向量的另一种表达形式,如下述公式(11)所示:
U=QGQHUE    (11)
其中G是对角矩阵,其对角线上的元素可通过对角矩阵D的对角线上的元素可通过下述公式(12)计算得到:
Figure PCTCN2015074988-appb-000037
由上述公式(4)到(12)的推导过程可知,由于矩阵Q可通过公式(6)直接给出,因而若想求出环形阵列天线的互耦阻抗,仅需要求出对角矩阵D即可;此外,如果激励电压向量UE取矩阵Q的任一列向量,则天线电压向量也会正比于激励电压向量UE,二者之间相差一个比例系数Gnn。这样,对于任意一个天线阵元,如果我们用每次该天线阵元正负极间的电压除以激励电压,就能得到每一个对角元素Gnn。通过N次施加不同的特定激励电压,获取单独一个天线阵元对应的特定激励电压和其两侧的电压的比值,就可以得到对角矩阵G的所有元素。一旦对角矩阵G已知,D就能够被计算出来,然后通过对矩阵D作IDFT,就可以得到环形阵列天线的互耦阻抗Z。
基于环形阵列天线的上述推导过程,环形阵列天线的互耦阻抗的计算为上述推导过程的逆过程,其具体计算过程如图3所示,包括:
201:为所述环形阵列天线中的每个天线阵元施加N次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于第一预设矩阵Q1的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第一预设矩阵Q1中的元素为:
Figure PCTCN2015074988-appb-000038
所述N为所述环形阵列天线中天线阵元的个数,所述m和n的取值为1至N之间的任意自然数。
每次施加的所述特定激励电压可以通过基带信号发送满足第一预设矩阵Q1的第n个列向量特征的信号到天线阵元端口上来施加;也可以根据Q1的第n个列向量的幅度和各个元素的相位,通过外部可编程控制电路来施加,该具体实现过程可参考现有技术。
202:在每次施加所述特定激励电压后,获取目标天线阵元集合中每个天线阵元正负极间的电压并根据已获取的所述每个天线阵元正负极间的电压以及对应的特定激励电压,得到所述目标天线阵元集合中每个天线阵元对应的第一参数Gnn的值,所述目标天线阵元集合包括至少一个天线阵元,所述第一参数Gnn为对角矩阵G的第n个对角元素。
在每次施加步骤201所指的特定形式的激励电压后,本步骤中,可通过公式(11),由已获取的所述每个天线阵元正负极间的电压以及对应的特定激励电压的比值,得到第一参数Gnn的值。
203:根据所述目标天线阵元集合中每个天线阵元的负载阻抗ZL以及每个第一参数Gnn的值,分别计算得到所述目标天线阵元集合中每个天线阵元对应的第二参数Dnn的值,所述第二参数Dnn为对角矩阵D的第n个对角元素。
在本步骤中,可通过公式(12),由Gnn计算得到Dnn的值。
此外,需要说明的是,步骤202和步骤203为每次施加完特定激励电压后都需要执行的步骤,从而,若对整个阵列天线施加N次特定激励电压,则对于所述目标天线阵元集合中的每个天线阵元可以得到N个第二参数Dnn
204:将经过N次得到的所述目标天线阵元集合中每个天线阵元对应的N个第二参数Dnn的值,分别确定为所述目标天线阵元集合中每个天线 阵元对应的对角矩阵D的每个对角元素的值。
在环形阵列天线中,需要施加N次特定激励电压,经过施加N次特定激励电压后,最后得到与每个天线阵元对应的N个第二参数Dnn;由于对角矩阵D为N×N的对角矩阵,因而对角矩阵D共有N个对角元素,每次施加特定激励电压后都能得到一个对角元素,不同次得到的对角元素不同,因而经过N次计算后,可计算得到对角矩阵D的所有对角元素的值。
205:将所述对角矩阵D进行离散傅里叶逆变换后,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
在本步骤的具体实现过程中,由公式(7)所表示的对角矩阵D与阵列天线的互耦阻抗Z的对应关系,可得仅需将对角矩阵D经过离散傅里叶逆变换后便可得到环形阵列天线的互耦阻抗;当然也可以通过公式(5)计算得到,但该计算方法的计算量较大。
206:根据已得到的与所述目标天线阵元集合中每一个天线阵元对应的互耦阻抗估计值Z′,得到所述环形阵列天线的互耦阻抗Z。
如果目标天线阵元集合中包括一个天线阵元,则将该天线阵元对应的互耦阻抗估计值直接确定为阵列天线的互耦阻抗。
如果目标天线阵元集合中包括至少两个天线阵元,则将所述至少两个天线阵元对应的互耦阻抗估计值通过最小均方误差法计算后得到阵列天线的互耦阻抗。
例如:以目标天线阵元集合中包括两个天线阵元为例,本步骤的具体实现过程如下:
天线阵元1和天线阵元2对应的对角矩阵D1中的对角元素Dnn (1)和对角矩阵D2的对角元素Dnn (2)分别如下所示:
Figure PCTCN2015074988-appb-000039
Figure PCTCN2015074988-appb-000040
Figure PCTCN2015074988-appb-000041
Figure PCTCN2015074988-appb-000042
此外,根据公式(5)中所表述的对角矩阵D、预设矩阵Q1与环形阵列天线的互耦阻抗Z的关系,天线阵元1和天线阵元2对应的对角矩阵D1和D2还可以通过下述公式(14)表示:
Figure PCTCN2015074988-appb-000043
则根据最小均方误差法计算得到的环形阵列天线的互耦阻抗,如下所示:
Figure PCTCN2015074988-appb-000044
此外,如图4所示,本实施例还给出了以天线阵元1、天线阵元2、天线阵元3和天线阵元4按照顺时针方向等间距排列组成的UCA示意图。其中,UE1、UE2、UE3、UE4分别为天线阵元1、2、3和4对应的特定激励电压,ZL为每一个天线阵元的负载阻抗,本实施例中所选取的天线阵元的规格相同,因而每个天线阵元的负载阻抗ZL也相同;激励电压和负载阻抗的虚线连接表示天线阵元连接电路原理示意,激励电压来自输入天线阵元端口的信号,负载阻抗ZL由连接天线阵元端口的器件的特性决定,可通过查阅天线阵元的技术资料后得知。
实施例3:
线阵列天线(Uniform Linear Arrays,ULA)是一个由多个天线阵元按照线性的方式组合的,阵元之间的间距是固定的,也是一种常见的阵列天线。
发明人在研究中发现,由N个天线阵元组成的线阵列天线的互耦阻抗的表示形式如下:
Figure PCTCN2015074988-appb-000045
其中,Z1为所述线阵列天线中每个天线阵元的自阻抗,所述Z2为所述线阵列天线中相邻两个天线阵元之间的互耦阻抗,而其他阵元之间之间的互耦阻抗很小,可以忽略。这样,矩阵Z可以被分解为:
Z=QDQH    (17)
其中,Q是一个离散正弦变换(DST)矩阵,而QH是其共轭转置矩阵。矩阵Q中的元素为:
Figure PCTCN2015074988-appb-000046
对角矩阵D的对角元素可以由下式表述:
Figure PCTCN2015074988-appb-000047
根据欧姆定律,天线上的电压向量以及电流向量有着如下关系:
U=ZI    (20)
当外部施加激励电压UE时,根据电路原理,天线阵元的激励电压向量UE、线阵列天线的负载阻抗矩阵ZL、天线阵元正负极间的电压向量U之间存在如下关系:
U=UE-ZLI    (21)
其中ZL是线阵列天线的的负载阻抗矩阵,当所有阵元所接的负载阻抗相等时,其为一个对角矩阵;
根据公式(20)和(21),可得天线阵元电压与天线阵元的激励电压之间存在如公式(22)的关系:
U=Z(Z+ZL)-1UE    (22)
结合公式(17)至公式(22),可以得到:
U=QGQHUE    (23)
其中G是一个对角矩阵,其对角上的元素Gnn与对角矩阵D的对角元素Dnn满足下述公式(24)的对应关系:
Figure PCTCN2015074988-appb-000048
当天线阵元上的激励电压向量设置为矩阵Q的第n个列向量时,测量得到的所有天线阵元正负极间的电压形成的电压向量为该列向量乘以一个因数Gnn。因此,通过计算任意一个天线阵元两侧的实际电压与对应的特定激励电压的比值,就可以得到Gnn的值。通过施加两次特定激励电压,得到两个不同值的Gnn之后,便相应的可以得到两个Dnn的值,且由上述公式(19)可知,对角矩阵D的对角元素Dnn与Z1和Z2两个未知数相关;因而通过两个Dnn的值便就可以得到互耦阻抗中Z1和Z2的值,进而可以得到互耦阻抗Z的值。
基于线阵列天线的互耦阻抗的上述推导过程,线阵列天线的互耦阻抗的计算为上述推导过程的逆过程,其具体计算过程如图5所示,包括:
401:为所述线阵列天线中的每个天线阵元施加2次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于第二预设矩阵Q2的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第二预设矩阵Q2中的元素为:
Figure PCTCN2015074988-appb-000049
其中所述N为所述线阵列天线中天线阵元的个数,所述m和n的取值为1至N之间的任意自然数。
可选的,在每次施加特定激励电压时,可以通过基带信号发送满足第二预设矩阵Q2的第n个列向量特征的信号到天线阵元端口上来施加,也可以通过外部可编程控制电路来施加,其具体过程可参考环形阵列天线可通过分路器、移相器、发射机等电路元件实现;但发射信号的幅度和相位与第二预设矩阵Q2相关。
402:在每次施加所述特定激励电压后,获取目标天线阵元集合中每个天线阵元正负极间的电压并根据已获取的所述每个天线阵元正负极间的电压以及对应的特定激励电压,得到所述目标天线阵元集合中每个天线阵元对应的第一参数Gnn的值,所述目标天线阵元集合包括至少一个天线阵元,所述第一参数Gnn为对角矩阵G的第n个对角元素。
本步骤中,可通过公式(23)将已获取的目标天线阵元集合中每个天线阵元正负极间的电压与对应的特定激励电压比值,确定为所述目标天线阵元集合中每个天线阵元对应的第一参数Gnn的值。
403:根据所述目标天线阵元集合中每个天线阵元的负载阻抗ZL以及每个第一参数Gnn的值,分别计算得到所述目标天线阵元集合中每个天线阵元对应的第二参数Dnn的值,所述第二参数Dnn为对角矩阵D的第n个对角元素。
本步骤中,可通过公式(24),根据步骤402中得到的第一参数Gnn的值计算得到第二参数Dnn的值。
需要说明的是,在每次施加特定激励电压后均需要执行步骤402和 步骤403。
404:将经过2次得到的所述目标天线阵元集合中每个天线阵元对应的2个第二参数Dnn的值,通过公式
Figure PCTCN2015074988-appb-000050
计算得到Z1和Z2的值,所述Z1为所述线阵列天线中每个天线阵元的自阻抗,所述Z2为所述线阵列天线中相邻两个天线阵元之间的互耦阻抗。
将得到的两个第二参数Dnn的值代入公式
Figure PCTCN2015074988-appb-000051
后,可得到关于未知数Z1和Z2的两个方程,求解该两个方程可以得到Z1和Z2的值。
405:根据已计算得到的所述Z1和Z2的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
由于如公式(16)所示的线阵列天线的互耦阻抗Z仅与Z1和Z2相关,因而可将Z1和Z2的值代入Z的表达式中得到线阵列天线的互耦阻抗;当然也可通过Z1和Z2的值得到对角矩阵D的值,再通过公式(17)计算得到,但显然该计算方法的计算过程复杂。
406:根据已得到的与所述目标天线阵元集合中每一个天线阵元对应的互耦阻抗估计值Z′,得到所述线阵列天线的互耦阻抗Z。
此外,如图6所示,以天线阵元1、天线阵元2、天线阵元3和天线阵元4等间距排列组成的ULA系统示意图,但该方法可以扩展到包含更多天线阵元的线阵列天线中。其中,UE1、UE2、UE3、UE4为分别为天线阵元1、2、3、4对应的特定激励电压,ZL为天线阵元的负载阻抗。图中激励电压和负载阻抗的虚线连接表示天线阵元连接电路原理示意,激励电压来自输入天线阵元端口的信号,负载阻抗由连接天线阵元端口的器件的特性决定。
实施例4:
矩形面阵列天线(Uniform Panel Arrays,UPA)是一个由多个天线阵元按照矩形的方式组合的,各个阵元之间的间距是固定的,为另一种常见的阵列天线。
将天线阵列从一维的线性阵列拓展到二维的包含M行N列的矩形面阵列天线之后,其互耦阻抗Z可以由下式描述:
Figure PCTCN2015074988-appb-000052
其中,
Figure PCTCN2015074988-appb-000053
其中,Z的表达形式中的N×N表明矩阵Z为包含N×N个矩阵分块的分块矩阵,M×M表明每个分块矩阵为M行M列的矩阵,因而矩阵Z为M×N行M×N列的矩阵;Z1自阻抗,Z2x和Z2y分别为行方向和和列方向上相邻阵元的互阻抗。互耦阻抗矩阵可以进行矩阵分解获得下式(25):
Z=QDQH    (25)
其中,矩阵Q为已知的(M×N)×(M×N)的具有正交性质的酉矩阵;第三预设矩阵
Figure PCTCN2015074988-appb-000054
所述Q31中的元素为
Figure PCTCN2015074988-appb-000055
所述k和l的取值为1至N之间的任意自然数,所述Q32中的元素为
Figure PCTCN2015074988-appb-000056
所述p和q的取值为1至M之间的任意自然数。
矩阵D也为(M×N)×(M×N)的对角矩阵,其对角元素可通过下述公式(26)表示:
Figure PCTCN2015074988-appb-000057
在上式中,总共有Z1、Z2x和Z2y三个未知变量,其中n=(a-1)×M+b,a的取值为1至N之间的任意自然数,b的取值为1至M之间的任意自然数,Z1表示矩形面阵列天线中天线阵元的自阻抗;Z2x表示行方向上相邻阵元之间的互耦阻抗;Z2y表示列方向上相邻阵元之间的互耦阻抗。
此外,与环形阵列天线和线阵列天线的互耦阻抗的推导过程类似,还可得到矩形面阵列天线中天线阵元的实际电压与激励电压之间存在如公式(27)的对应关系:
U=QGQHUE    (27)
其中G是一个对角矩阵,其对角元素Gnn与对角矩阵D的对角元素Dnn满足下述公式(28)的对应关系:
Figure PCTCN2015074988-appb-000058
同样,当施加的激励电压向量为矩阵Q的第n个列向量时,所有天线阵元正负极间的电压形成的电压向量和天线阵元的激励电压向量之间相差一个比例系数Gnn
在这样的情况下,根据矩阵D的元素的表达形式中,总共有Z1、Z2x和Z2y三个未知变量,因而通过三次分别施加不同的特定激励电压,在每次施加特定激励电压后,通过计算任意一个天线阵元两侧的实际电压和施加于该天线阵元的特定激励电压的比值,得到对角矩阵G的三个对角元素,进而得到与之对应的对角矩阵D的三个对角元素的值,并通过对角矩阵D与互耦阻抗Z的对应关系,求得矩形面阵列天线的互耦阻抗Z的值。
基于矩形面阵列天线的互耦阻抗的上述推导过程,矩形面阵列天线的互耦阻抗的计算为上述推导过程的逆过程,其具体计算过程如图7所示, 包括:
601:为所述矩形面阵列天线中的每个天线阵元施加3次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于第三预设矩阵Q3的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第三预设矩阵
Figure PCTCN2015074988-appb-000059
所述Q31中的元素为
Figure PCTCN2015074988-appb-000060
所述k和l的取值为1至N之间的任意自然数,所述Q32中的元素为
Figure PCTCN2015074988-appb-000061
所述p和q的取值为1至M之间的任意自然数。
其中,
Figure PCTCN2015074988-appb-000062
表示克罗内克积(Kronecker积),矩阵Q31与包含N个天线阵元的线阵列天线对应的预设矩阵Q相同;矩阵Q32与包含M个天线阵元的线阵列天线对应的预设矩阵Q相同。之所以矩形面阵列对应的预设矩阵采用这种描述形式,是由于矩形面阵列的互耦阻抗以及对应的第一参数可由线阵列天线的计算方法推导得到。
可选的,特定激励电压可以通过基带信号发送满足矩阵Q3的第n个列向量特征的信号到天线阵元端口上来施加,也可以通过外部可编程控制电路来施加,其具体实现过程可参考环形天线阵列系统和线天线阵列系统,可通过分路器、移相器、发射机等电路元件实现;但发射信号的幅度和相位与第三预设矩阵Q3相关。
602:在每次施加所述特定激励电压后,获取目标天线阵元集合中每个天线阵元正负极间的电压并根据已获取的所述每个天线阵元正负极间的电压以及对应的特定激励电压,得到所述目标天线阵元集合中每个天线阵元对应的第一参数Gnn的值,所述目标天线阵元集合包括至少一个天线阵元,所述第一参数Gnn为对角矩阵G的第n个对角元素。
本步骤中,可通过公式(27),将已获取的目标天线阵元集合中每个天线阵元正负极间的电压与对应的特定激励电压比值,确定为所述目标 天线阵元集合中每个天线阵元对应的第一参数Gnn的值。
603:根据所述目标天线阵元集合中每个天线阵元的负载阻抗ZL以及每个第一参数Gnn的值,分别计算得到所述目标天线阵元集合中每个天线阵元对应的第二参数Dnn的值,所述第二参数Dnn为对角矩阵D的第n个对角元素。
本步骤中,可通过公式(28),根据第一参数Gnn与第二参数Dnn的对应关系,计算得到第二参数Dnn的值。
604:将经过3次得到的所述目标天线阵元集合中每个天线阵元对应的3个第二参数Dnn的值,通过公式
Figure PCTCN2015074988-appb-000063
计算得到Z1、Z2x和Z2y的值,其中n=(a-1)×M+b,a的取值为1至N之间的任意自然数,b的取值为1至M之间的任意自然数,所述Z1为所述矩形面阵列天线中每个天线阵元的自阻抗,所述Z2x为所述矩形面阵列天线中行方向上相邻两个天线阵元之间的互耦阻抗,所述Z2y为所述矩形面阵列天线中列方向上相邻两个天线阵元之间的互耦阻抗。
在矩形面阵列天线中,共施加了3次特定激励电压,因而经过上述步骤602和步骤603,共得到对角矩阵D的3个对角元素;将得到的3个对角元素的值代入公式
Figure PCTCN2015074988-appb-000064
得到关于未知参数Z1、Z2x和Z2y的三个方程,如下述(29)所示,且该三个方程线性无关,可以解得Z1、Z2x和Z2y的值。
Figure PCTCN2015074988-appb-000065
其中n1=(a1-1)×M+b1
Figure PCTCN2015074988-appb-000066
其中n2=(a2-1)×M+b2
Figure PCTCN2015074988-appb-000067
其中n3=(a3-1)×M+b3(29)
其中,a1、a2、a3的取值为1至N之间的任意自然数,b1、b2、b3的取值为1至M之间的任意自然数。
605:根据已计算得到的所述Z1、Z2x和Z2y的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
在本步骤的一种实现方式中,通过将计算得到Z1、Z2x和Z2y代入矩形面阵列天线的互耦阻抗的表达式
Figure PCTCN2015074988-appb-000068
中,得到目标天线阵元集合中每个天线阵元对应的一个互耦阻抗估计值。
在本步骤的另一种实现方式中,当然还可以通过将计算得到Z1、Z2x和Z2y代入公式(26),可以得到对角矩阵D的所有对角元素的值,进而再通过公式(25)计算得到目标天线阵元集合中每个天线阵元对应的一个互耦阻抗估计值,但此种算法的实现过程较复杂。
606:根据已得到的与所述目标天线阵元集合中每一个天线阵元对应的互耦阻抗估计值Z′,得到所述矩形面阵列天线的互耦阻抗Z。
此外,如图8所示,以9根天线组成的UPA系统的示意图,但该方法可以扩展到更多天线的系统实现中。UE11、UE12、UE13、UE21、UE22、UE23、UE31、UE32、UE33为外部激励电压,ZL为天线阵元的负载阻抗。图中外部激励电压和负载阻抗的虚线连接表示天线阵元连接电路原理示意,外部激励电压来自输入天线阵元端口的信号,负载阻抗由连接天线阵元端口的器件的特性决定。
作为上述各方法的具体实现和应用,本发明实施例还提供了一种阵列天线的互耦阻抗的计算装置,该装置可以应用于基站侧,也可以应用于终端侧,只要需要计算阵列天线的互耦阻抗均可应用本发明实施例提供的装置,如图9所示,该装置包括:
施加模块801,用于为所述阵列天线中的每个天线阵元施加预设次数的特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于预设矩阵Q的第n个列向量,不同次的所述激励电压向量对应的n值不同。
获取模块802,用于在所述施加模块801每次施加所述特定激励电压后,获取目标天线阵元集合中每个天线阵元正负极间的电压,所述目标天线阵元集合包括至少一个天线阵元。
计算模块803,用于在每次施加激励电压后,根据所述获取模块802已获取的所述每个天线阵元正负极间的电压以及对应的特定激励电压,得到所述目标天线阵元集合中每个天线阵元对应的第一参数Gnn的值,所述第一参数Gnn为对角矩阵G的第n个对角元素;
根据所述目标天线阵元集合中每个天线阵元的负载阻抗ZL以及每个第一参数Gnn的值,分别计算得到所述目标天线阵元集合中每个天线阵元对应的第二参数Dnn的值,所述第二参数Dnn为对角矩阵D的第n个对角元素;
根据经过预设次数得到的所述目标天线阵元集合中每个天线阵元对应的所有第二参数Dnn的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
处理模块804,用于根据已得到的与所述目标天线阵元集合中每一个天线阵元对应的互耦阻抗估计值Z′,得到所述阵列天线的互耦阻抗Z。
进一步的,所述计算模块803,还用于计算已获取的每个天线阵元正负极间的电压和对应的特定激励电压的比值,将所述比值确定为所述目标天线阵元集合中每个天线阵元对应的第一参数Gnn的值。
进一步的,所述计算模块803,还用于根据所述目标天线阵元集合中每个天线阵元的负载阻抗ZL以及每个第一参数Gnn的值,通过公式Gnn=Dnn/(Dnn+ZL),分别计算得到所述目标天线阵元集合中每个天线阵元对应的第二参数Dnn的值。
进一步的,所述施加模块801,还用于当所述阵列天线包括环形阵列天线时,为所述环形阵列天线中的每个天线阵元施加N次特定激励电压,每次为所述每个天线阵元施加的特定激励电压均构成一个激励电压向量,所述激励电压向量正比于第一预设矩阵Q1的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第一预设矩阵Q1中的元素为:
Figure PCTCN2015074988-appb-000069
所述N为所述环形阵列天线中天线阵元的个数,所述m和n的取值为1至N之间的任意自然数。
所述计算模块803,还用于将经过N次得到的所述目标天线阵元集合中每个天线阵元对应的N个第二参数Dnn的值,分别确定为所述目标天线阵元集合中每个天线阵元对应的对角矩阵D的每个对角元素的值;
将所述对角矩阵D进行离散傅里叶逆变换后,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
进一步的,所述施加模块801,还用于当所述阵列天线包括线阵列天线时,为所述线阵列天线中的每个天线阵元施加2次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于第二预设矩阵Q2的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第二预设矩阵Q2中的元素为:
Figure PCTCN2015074988-appb-000070
其中所述N为所述线阵列天线中天线阵元的个数,所述m和n的取值为1至N之间的任意自然数。
所述计算模块803,还用于将经过2次得到的所述目标天线阵元集合中每个天线阵元对应的2个第二参数Dnn的值,通过公式
Figure PCTCN2015074988-appb-000071
计算得到Z1和Z2的值,所述Z1为所述线阵列天线中每个天线阵元的自阻抗,所述Z2为所述线阵列天线中相邻两个天线阵元之间的互耦阻抗;
根据已计算得到的所述Z1和Z2的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
进一步的,所述施加模块801,还用于当所述阵列天线包括包含M行和N列的矩形面阵列天线时,为所述包含M行和N列的矩形面阵列天线中的每个天线阵元施加3次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于第三预设矩阵Q3的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第三预设矩阵
Figure PCTCN2015074988-appb-000072
所述Q31中的元素为
Figure PCTCN2015074988-appb-000073
所述k和l的取值为1至N之间的任意自然数,所述Q32中的元素为
Figure PCTCN2015074988-appb-000074
所述p和q的取值为1至M之间的任意自然数。
所述计算模块803,还用于将经过3次得到的所述目标天线阵元集合中每个天线阵元对应的3个第二参数Dnn的值,通过公式
Figure PCTCN2015074988-appb-000075
计算得到Z1、Z2x和Z2y的值,其中n=a×N+b,a的取值为1至N之间的任意自然数,b的取值为1至M之间的任意自然数,所述Z1为所述矩形面阵列天线中每个天线阵元的自阻抗,所述Z2x为所述矩形面阵列天线中行方向上相邻两个天线阵元之间的互耦阻抗,所述Z2y为所述矩形面阵列天线中列方向上相邻两个天线阵元之间的互耦阻抗;
根据已计算得到的所述Z1、Z2x和Z2y的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
进一步的,所述处理模块804,还用于当所述目标天线阵元集合中包括一个天线阵元时,将得到的一个互耦阻抗估计值Z′确定为所述阵列天线的互耦阻抗;
当所述目标天线阵元集合中包括至少两个天线阵元时,将所述至少两个互耦阻抗估计值Z′通过最小均方误差算法,计算得到所述阵列天线的互耦阻抗Z。
本发明提供的阵列天线的互耦阻抗的计算装置,通过多次施加特定激励电压,并在每次施加特定激励电压之后,获取包含至少一个天线阵元的目标天线阵元集合中每个天线阵元正负极间的电压,并根据获取的每个天线阵元正负极间的电压以及每个天线阵元对应的特定激励电压分别计算每个天线阵元对应的第一参数,且根据该第一参数以及天线阵元的负载阻抗计算得到第二参数,再根据该第二参数与阵列天线的互耦阻抗之间的关系计算得到阵列天线的互耦阻抗。与现有技术中首先计算一个小型阵列的互耦阻抗然后利用它来等效建构大型阵列的互耦阻抗相比,本发明由于以阵列天线本身为测量实体,通过施加特定形式的激励电压,且实时获取该阵列天线中一个或多个天线阵元正负极间的电压,并以实时获取的电压和特定激励电压为基础经过运算后得到阵列天线的互耦阻抗,因而本发明提供的阵列天线的互耦阻抗的计算方法能够提高阵列天线的互耦阻抗的准确性,进而可以改善大规模MIMO系统的波束赋形性能。
作为上述各图所示方法的补充,本发明实施例还提供了一种阵列天线的互耦阻抗的计算装置,该装置可以应用于基站侧,也可以应用于终端侧,只要需要计算阵列天线的互耦阻抗均可应用本发明实施例提供的装置,如图10所示,该装置包括:处理器901、总线902、存储器903和电压传感器904,处理器901、存储器903通过总线902连接;其中:
处理器901,用于为所述阵列天线中的每个天线阵元施加预设次数的特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于预设矩阵Q的第n个列向量,不同次的所述激励电压向量对应的n值不同;
电压传感器904,用于在每次施加所述激励电压后,获取目标天线阵元集合中每个天线阵元正负极间的电压;
处理器901,还用于根据电压传感器904获取的所述每个天线阵元正负极间的电压以及对应的特定激励电压,得到所述目标天线阵元集合中每个天线阵元对应的第一参数Gnn的值并通过存储器903存储,所述目标天线阵元集合包括至少一个天线阵元,所述第一参数Gnn为对角矩阵G的第n个对角元素;
处理器901,还用于根据所述目标天线阵元集合中每个天线阵元的负载阻抗ZL以及存储器903存储的每个第一参数Gnn的值,分别计算得到所述目标天线阵元集合中每个天线阵元对应的第二参数Dnn的值并通过存储器903存储,所述第二参数Dnn为对角矩阵D的第n个对角元素;
根据经过预设次数得到的所述目标天线阵元集合中每个天线阵元对应的所有第二参数Dnn的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′;
根据已得到的与所述目标天线阵元集合中每一个天线阵元对应的互耦阻抗估计值Z′,得到所述阵列天线的互耦阻抗Z。
进一步的,所述处理器901,还用于计算已获取的每个天线阵元正负极间的电压和对应的特定激励电压的比值,将所述比值确定为所述目标天线阵元集合中每个天线阵元对应的第一参数Gnn的值。
进一步的,所述处理器901,还用于根据所述目标天线阵元集合中每个天线阵元的负载阻抗ZL以及每个第一参数Gnn的值,通过公式Gnn=Dnn/(Dnn+ZL),分别计算得到所述目标天线阵元集合中每个天线阵元对应的第二参数Dnn的值。
进一步的,所述处理器901,还用于当所述阵列天线包括环形阵列天线时,为所述环形阵列天线中的每个天线阵元施加N次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于第一预设矩阵Q1的第n个列向量,不同次的所述激励电压向量对应的 n值不同,所述第一预设矩阵Q1中的元素为:
Figure PCTCN2015074988-appb-000076
所述N为所述环形阵列天线中天线阵元的个数,所述m和n的取值为1至N之间的任意自然数;
将经过N次得到的所述目标天线阵元集合中每个天线阵元对应的N个第二参数Dnn的值,分别确定为所述目标天线阵元集合中每个天线阵元对应的对角矩阵D的每个对角元素的值;
将所述对角矩阵D进行离散傅里叶逆变换后,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
进一步的,所述处理器901,还用于当所述阵列天线包括线阵列天线时,为所述线阵列天线中的每个天线阵元施加2次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于第二预设矩阵Q2的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第二预设矩阵Q2中的元素为:
Figure PCTCN2015074988-appb-000077
其中所述N为所述线阵列天线中天线阵元的个数,所述m和n的取值为1至N之间的任意自然数;
将经过2次得到的所述目标天线阵元集合中每个天线阵元对应的2个第二参数Dnn的值,通过公式
Figure PCTCN2015074988-appb-000078
计算得到Z1和Z2的值,所述Z1为所述线阵列天线中每个天线阵元的自阻抗,所述Z2为所述线阵列天线中相邻两个天线阵元之间的互耦阻抗;
根据已计算得到的所述Z1和Z2的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
进一步的,所述处理器901,还用于当所述阵列天线包括包含M行和N列的矩形面阵列天线时,为所述包含M行和N列的矩形面阵列天线 中的每个天线阵元施加3次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于第三预设矩阵Q3的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第三预设矩阵
Figure PCTCN2015074988-appb-000079
所述Q31中的元素为
Figure PCTCN2015074988-appb-000080
所述k和l的取值为1至N之间的任意自然数,所述Q32中的元素为
Figure PCTCN2015074988-appb-000081
所述p和q的取值为1至M之间的任意自然数;
将经过3次得到的所述目标天线阵元集合中每个天线阵元对应的3个第二参数Dnn的值,通过公式
Figure PCTCN2015074988-appb-000082
计算得到Z1、Z2x和Z2y的值,其中n=a×N+b,a的取值为1至N之间的任意自然数,b的取值为1至M之间的任意自然数,所述Z1为所述矩形面阵列天线中每个天线阵元的自阻抗,所述Z2x为所述矩形面阵列天线中行方向上相邻两个天线阵元之间的互耦阻抗,所述Z2y为所述矩形面阵列天线中列方向上相邻两个天线阵元之间的互耦阻抗;
根据已计算得到的所述Z1、Z2x和Z2y的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
进一步的,所述处理器901,还用于当所述目标天线阵元集合中包括一个天线阵元时,将得到的一个互耦阻抗估计值Z′确定为所述阵列天线的互耦阻抗;
当所述目标天线阵元集合中包括至少两个天线阵元时,将所述至少两个互耦阻抗估计值Z′通过最小均方误差算法,计算得到所述阵列天线的互耦阻抗Z。
需要说明的是,存储器903,用于存储上述过程中得到的各个参数,如第一参数Gnn、第二参数Dnn以及每个天线阵元对应的互耦阻抗估计值Z′;当处理器901需要通过上述各个参数进行下一步计算时,可直接从 存储器903中读取后进行处理。
还需要说明的是,本发明实施例所述的处理器901可以是一个处理器,也可以是多个处理元件的统称。例如,该处理器901可以是中央处理器(Central Processing Unit,简称CPU),也可以是特定集成电路(Application Specific Integrated Circuit,简称ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,简称DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,简称FPGA)。
存储器903可以是一个存储装置,也可以是多个存储元件的统称,且用于存储可执行程序代码等。且存储器903可以包括随机存储器(RAM),也可以包括非易失性存储器(non-volatile memory),例如磁盘存储器,闪存(Flash)等。
总线902可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线902可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本发明提供的阵列天线的互耦阻抗的计算装置,通过多次施加特定激励电压,并在每次施加特定激励电压之后,获取包含至少一个天线阵元的目标天线阵元集合中每个天线阵元正负极间的电压,并根据获取的每个天线阵元正负极间的电压以及每个天线阵元对应的特定激励电压分别计算每个天线阵元对应的第一参数,且根据该第一参数以及天线阵元的负载阻抗计算得到第二参数,再根据该第二参数与阵列天线的互耦阻抗之间的关系计算得到阵列天线的互耦阻抗。与现有技术中首先计算一个小型阵列的互耦阻抗然后利用它来等效建构大型阵列的互耦阻抗相比,本发明由于以阵列天线本身为测量实体,通过施加特定形式的激励电压,且实时获取该阵列天线中一个或多个天线阵元正负极间的电压,并以实时获取的电压和 特定激励电压为基础经过运算后得到阵列天线的互耦阻抗,因而本发明提供的阵列天线的互耦阻抗的计算方法能够提高阵列天线的互耦阻抗的准确性,进而可以改善大规模MIMO系统的波束赋形性能。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品 存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种阵列天线的互耦阻抗的计算方法,其特征在于,包括:
    为所述阵列天线中的每个天线阵元施加预设次数的特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于预设矩阵Q的第n个列向量,不同次的所述激励电压向量对应的n值不同;
    在每次施加所述激励电压后,获取目标天线阵元集合中每个天线阵元正负极间的电压并根据已获取的所述每个天线阵元正负极间的电压以及对应的特定激励电压,得到所述目标天线阵元集合中每个天线阵元对应的第一参数Gnn的值,所述目标天线阵元集合包括至少一个天线阵元,所述第一参数Gnn为对角矩阵G的第n个对角元素;
    根据所述目标天线阵元集合中每个天线阵元的负载阻抗ZL以及每个第一参数Gnn的值,分别计算得到所述目标天线阵元集合中每个天线阵元对应的第二参数Dnn的值,所述第二参数Dnn为对角矩阵D的第n个对角元素;
    根据经过预设次数得到的所述目标天线阵元集合中每个天线阵元对应的所有第二参数Dnn的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′;
    根据已得到的与所述目标天线阵元集合中每一个天线阵元对应的互耦阻抗估计值Z′,得到所述阵列天线的互耦阻抗Z。
  2. 根据权利要求1所述的一种阵列天线的互耦阻抗的计算方法,其特征在于,
    所述根据已获取的每个天线阵元正负极间的电压以及对应的特定激励电压,得到所述目标天线阵元集合中每个天线阵元对应的第一参数Gnn的值,具体包括:
    计算已获取的每个天线阵元正负极间的电压和对应的特定激励电压的比值,将所述比值确定为所述目标天线阵元集合中每个天线阵元对应的第 一参数Gnn的值。
  3. 根据权利要求1或2所述的一种阵列天线的互耦阻抗的计算方法,其特征在于,
    所述根据所述目标天线阵元集合中每个天线阵元的负载阻抗ZL以及每个第一参数Gnn的值,分别计算得到所述目标天线阵元集合中每个天线阵元对应的第二参数Dnn的值,具体包括:
    根据所述目标天线阵元集合中每个天线阵元的负载阻抗ZL以及每个第一参数Gnn的值,通过公式Gnn=Dnn/(Dnn+ZL),分别计算得到所述目标天线阵元集合中每个天线阵元对应的第二参数Dnn的值。
  4. 根据权利要求1至3任一项所述的一种阵列天线的互耦阻抗的计算方法,其特征在于,
    所述阵列天线包括环形阵列天线;
    所述为所述阵列天线中的每个天线阵元施加预设次数的特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于预设矩阵Q的第n个列向量,不同次的所述激励电压向量对应的n值不同,具体包括:
    为所述环形阵列天线中的每个天线阵元施加N次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于第一预设矩阵Q1的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第一预设矩阵Q1中的元素为:
    Figure PCTCN2015074988-appb-100001
    所述N为所述环形阵列天线中天线阵元的个数,所述m和n的取值为1至N之间的任意自然数;
    所述根据经过预设次数得到的所述目标天线阵元集合中每个天线阵元对应的所有第二参数Dnn的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′,具体包括:
    将经过N次得到的所述目标天线阵元集合中每个天线阵元对应的N个第二参数Dnn的值,分别确定为所述目标天线阵元集合中每个天线阵元对应的对角矩阵D的每个对角元素的值;
    将所述对角矩阵D进行离散傅里叶逆变换后,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
  5. 根据权利要求1至3任一项所述的一种阵列天线的互耦阻抗的计算方法,其特征在于,
    所述阵列天线包括线阵列天线;
    所述为所述阵列天线中的每个天线阵元施加预设次数的特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于预设矩阵Q的第n个列向量,不同次的所述激励电压向量对应的n值不同,具体包括:
    为所述线阵列天线中的每个天线阵元施加2次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于第二预设矩阵Q2的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第二预设矩阵Q2中的元素为:
    Figure PCTCN2015074988-appb-100002
    其中所述N为所述线阵列天线中天线阵元的个数,所述m和n的取值为1至N之间的任意自然数;
    所述根据经过预设次数得到的所述目标天线阵元集合中每个天线阵元对应的所有第二参数Dnn的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′,具体包括:
    将经过2次得到的所述目标天线阵元集合中每个天线阵元对应的2个第二参数Dnn的值,通过公式
    Figure PCTCN2015074988-appb-100003
    计算得到Z1和Z2的值,所述Z1为所述线阵列天线中每个天线阵元的自阻抗,所述Z2为所述线阵 列天线中相邻两个天线阵元之间的互耦阻抗;
    根据已计算得到的所述Z1和Z2的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
  6. 根据权利要求1至3任一项所述的一种阵列天线的互耦阻抗的计算方法,其特征在于,
    所述阵列天线包括包含M行和N列的矩形面阵列天线;
    所述为所述阵列天线中的每个天线阵元施加预设次数的特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于预设矩阵Q的第n个列向量,不同次的所述激励电压向量对应的n值不同,具体包括:
    为所述包含M行和N列的矩形面阵列天线中的每个天线阵元施加3次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于第三预设矩阵Q3的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第三预设矩阵
    Figure PCTCN2015074988-appb-100004
    所述Q31中的元素为
    Figure PCTCN2015074988-appb-100005
    所述k和l的取值为1至N之间的任意自然数,所述Q32中的元素为
    Figure PCTCN2015074988-appb-100006
    所述p和q的取值为1至M之间的任意自然数;
    所述根据经过预设次数得到的所述目标天线阵元集合中每个天线阵元对应的所有第二参数Dnn的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′,具体包括:
    将经过3次得到的所述目标天线阵元集合中每个天线阵元对应的3个第二参数Dnn的值,通过公式
    Figure PCTCN2015074988-appb-100007
    计算得到Z1、Z2x和Z2y的值,其中n=(a-1)×M+b,a的取值为1至N之间的任意自然数,b的取值为1至M之间的任意自然数,所述Z1为所述矩形面阵列天 线中每个天线阵元的自阻抗,所述Z2x为所述矩形面阵列天线中行方向上相邻两个天线阵元之间的互耦阻抗,所述Z2y为所述矩形面阵列天线中列方向上相邻两个天线阵元之间的互耦阻抗;
    根据已计算得到的所述Z1、Z2x和Z2y的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
  7. 根据权利要求1至6任一项所述的一种阵列天线的互耦阻抗的计算方法,其特征在于,
    所述根据已得到的与所述目标天线阵元集合中每一个天线阵元对应的互耦阻抗估计值Z′,得到所述阵列天线的互耦阻抗Z,具体包括:
    如果所述目标天线阵元集合中包括一个天线阵元,则将得到的一个互耦阻抗估计值Z′确定为所述阵列天线的互耦阻抗;
    如果所述目标天线阵元集合中包括至少两个天线阵元,则将所述至少两个互耦阻抗估计值Z′通过最小均方误差算法,计算得到所述阵列天线的互耦阻抗Z。
  8. 一种阵列天线的互耦阻抗的计算装置,其特征在于,包括:
    施加模块,用于为所述阵列天线中的每个天线阵元施加预设次数的特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于预设矩阵Q的第n个列向量,不同次的所述激励电压向量对应的n值不同;
    获取模块,用于在所述施加模块每次施加所述特定激励电压后,获取目标天线阵元集合中每个天线阵元正负极间的电压,所述目标天线阵元集合包括至少一个天线阵元;
    计算模块,用于在每次施加激励电压后,根据所述获取模块已获取的所述每个天线阵元正负极间的电压以及对应的特定激励电压,得到所述目标天线阵元集合中每个天线阵元对应的第一参数Gnn的值,所述第一参数 Gnn为对角矩阵G的第n个对角元素;
    根据所述目标天线阵元集合中每个天线阵元的负载阻抗ZL以及每个第一参数Gnn的值,分别计算得到所述目标天线阵元集合中每个天线阵元对应的第二参数Dnn的值,所述第二参数Dnn为对角矩阵D的第n个对角元素;
    根据经过预设次数得到的所述目标天线阵元集合中每个天线阵元对应的所有第二参数Dnn的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′;
    处理模块,用于根据已得到的与所述目标天线阵元集合中每一个天线阵元对应的互耦阻抗估计值Z′,得到所述阵列天线的互耦阻抗Z。
  9. 根据权利要求8所述的一种阵列天线的互耦阻抗的计算装置,其特征在于,
    所述计算模块,还用于计算已获取的每个天线阵元正负极间的电压和对应的特定激励电压的比值,将所述比值确定为所述目标天线阵元集合中每个天线阵元对应的第一参数Gnn的值。
  10. 根据权利要求8或9所述的一种阵列天线的互耦阻抗的计算装置,其特征在于,
    所述计算模块,还用于根据所述目标天线阵元集合中每个天线阵元的负载阻抗ZL以及每个第一参数Gnn的值,通过公式Gnn=Dnn/(Dnn+ZL),分别计算得到所述目标天线阵元集合中每个天线阵元对应的第二参数Dnn的值。
  11. 根据权利要求8至10任一项所述的一种阵列天线的互耦阻抗的计算装置,其特征在于,
    所述施加模块,还用于当所述阵列天线包括环形阵列天线时,为所述环形阵列天线中的每个天线阵元施加N次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于第一预设矩阵 Q1的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第一预设矩阵Q1中的元素为:
    Figure PCTCN2015074988-appb-100008
    所述N为所述环形阵列天线中天线阵元的个数,所述m和n的取值为1至N之间的任意自然数;
    所述计算模块,还用于将经过N次得到的所述目标天线阵元集合中每个天线阵元对应的N个第二参数Dnn的值,分别确定为所述目标天线阵元集合中每个天线阵元对应的对角矩阵D的每个对角元素的值;
    将所述对角矩阵D进行离散傅里叶逆变换后,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
  12. 根据权利要求8至11任一项所述的一种阵列天线的互耦阻抗的计算装置,其特征在于,
    所述施加模块,还用于当所述阵列天线包括线阵列天线时,为所述线阵列天线中的每个天线阵元施加2次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于第二预设矩阵Q2的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第二预设矩阵Q2中的元素为:
    Figure PCTCN2015074988-appb-100009
    其中所述N为所述线阵列天线中天线阵元的个数,所述m和n的取值为1至N之间的任意自然数;
    所述计算模块,还用于将经过2次得到的所述目标天线阵元集合中每个天线阵元对应的2个第二参数Dnn的值,通过公式
    Figure PCTCN2015074988-appb-100010
    计算得到Z1和Z2的值,所述Z1为所述线阵列天线中每个天线阵元的自阻抗,所述Z2为所述线阵列天线中相邻两个天线阵元之间的互耦阻抗;
    根据已计算得到的所述Z1和Z2的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
  13. 根据权利要求8至11任一项所述的一种阵列天线的互耦阻抗的计算装置,其特征在于,
    所述施加模块,还用于当所述阵列天线包括包含M行和N列的矩形面阵列天线时,为所述包含M行和N列的矩形面阵列天线中的每个天线阵元施加3次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于第三预设矩阵Q3的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第三预设矩阵
    Figure PCTCN2015074988-appb-100011
    所述Q31中的元素为
    Figure PCTCN2015074988-appb-100012
    所述k和l的取值为1至N之间的任意自然数,所述Q32中的元素为
    Figure PCTCN2015074988-appb-100013
    所述p和q的取值为1至M之间的任意自然数;
    所述计算模块,还用于将经过3次得到的所述目标天线阵元集合中每个天线阵元对应的3个第二参数Dnn的值,通过公式
    Figure PCTCN2015074988-appb-100014
    计算得到Z1、Z2x和Z2y的值,其中n=a×N+b,a的取值为1至N之间的任意自然数,b的取值为1至M之间的任意自然数,所述Z1为所述矩形面阵列天线中每个天线阵元的自阻抗,所述Z2x为所述矩形面阵列天线中行方向上相邻两个天线阵元之间的互耦阻抗,所述Z2y为所述矩形面阵列天线中列方向上相邻两个天线阵元之间的互耦阻抗;
    根据已计算得到的所述Z1、Z2x和Z2y的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
  14. 根据权利要求8至13任一项所述的一种阵列天线的互耦阻抗的计算装置,其特征在于,
    所述处理模块,还用于当所述目标天线阵元集合中包括一个天线阵元 时,将得到的一个互耦阻抗估计值Z′确定为所述阵列天线的互耦阻抗;
    当所述目标天线阵元集合中包括至少两个天线阵元时,将所述至少两个互耦阻抗估计值Z′通过最小均方误差算法,计算得到所述阵列天线的互耦阻抗Z。
  15. 一种阵列天线的互耦阻抗的计算装置,其特征在于,包括:
    处理器,用于为所述阵列天线中的每个天线阵元施加预设次数的特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于预设矩阵Q的第n个列向量,不同次的所述激励电压向量对应的n值不同;
    电压传感器,用于在每次施加所述激励电压后,获取目标天线阵元集合中每个天线阵元正负极间的电压;
    所述处理器,还用于根据电压传感器获取的所述每个天线阵元正负极间的电压以及对应的特定激励电压,得到所述目标天线阵元集合中每个天线阵元对应的第一参数Gnn的值并通过存储器存储,所述目标天线阵元集合包括至少一个天线阵元,所述第一参数Gnn为对角矩阵G的第n个对角元素;
    所述处理器,还用于根据所述目标天线阵元集合中每个天线阵元的负载阻抗ZL以及所述存储器存储的每个第一参数Gnn的值,分别计算得到所述目标天线阵元集合中每个天线阵元对应的第二参数Dnn的值并通过存储器存储,所述第二参数Dnn为对角矩阵D的第n个对角元素;
    所述处理器,还用于根据所述存储器存储的经过预设次数得到的所述目标天线阵元集合中每个天线阵元对应的所有第二参数Dnn的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′;
    根据已得到的与所述目标天线阵元集合中每一个天线阵元对应的互耦阻抗估计值Z′,得到所述阵列天线的互耦阻抗Z。
  16. 根据权利要求15所述的一种阵列天线的互耦阻抗的计算装置,其特征在于,
    所述处理器,还用于计算已获取的每个天线阵元正负极间的电压和对应的特定激励电压的比值,将所述比值确定为所述目标天线阵元集合中每个天线阵元对应的第一参数Gnn的值。
  17. 根据权利要求15或16所述的一种阵列天线的互耦阻抗的计算装置,其特征在于,
    所述处理器,还用于根据所述目标天线阵元集合中每个天线阵元的负载阻抗ZL以及每个第一参数Gnn的值,通过公式Gnn=Dnn/(Dnn+ZL),分别计算得到所述目标天线阵元集合中每个天线阵元对应的第二参数Dnn的值。
  18. 根据权利要求15至17任一项所述的一种阵列天线的互耦阻抗的计算装置,其特征在于,
    所述处理器,还用于当所述阵列天线包括环形阵列天线时,为所述环形阵列天线中的每个天线阵元施加N次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于第一预设矩阵Q1的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第一预设矩阵Q1中的元素为:
    Figure PCTCN2015074988-appb-100015
    所述N为所述环形阵列天线中天线阵元的个数,所述m和n的取值为1至N之间的任意自然数;
    将经过N次得到的所述目标天线阵元集合中每个天线阵元对应的N个第二参数Dnn的值,分别确定为所述目标天线阵元集合中每个天线阵元对应的对角矩阵D的每个对角元素的值;
    将所述对角矩阵D进行离散傅里叶逆变换后,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
  19. 根据权利要求15至17任一项所述的一种阵列天线的互耦阻抗的计算装置,其特征在于,
    所述处理器,还用于当所述阵列天线包括线阵列天线时,为所述线阵列天线中的每个天线阵元施加2次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于第二预设矩阵Q2的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第二预设矩阵Q2中的元素为:
    Figure PCTCN2015074988-appb-100016
    其中所述N为所述线阵列天线中天线阵元的个数,所述m和n的取值为1至N之间的任意自然数;
    将经过2次得到的所述目标天线阵元集合中每个天线阵元对应的2个第二参数Dnn的值,通过公式
    Figure PCTCN2015074988-appb-100017
    计算得到Z1和Z2的值,所述Z1为所述线阵列天线中每个天线阵元的自阻抗,所述Z2为所述线阵列天线中相邻两个天线阵元之间的互耦阻抗;
    根据已计算得到的所述Z1和Z2的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
  20. 根据权利要求15至17任一项所述的一种阵列天线的互耦阻抗的计算装置,其特征在于,
    所述处理器,还用于当所述阵列天线包括包含M行和N列的矩形面阵列天线时,为所述包含M行和N列的矩形面阵列天线中的每个天线阵元施加3次特定激励电压,每次为所述每个天线阵元施加的特定激励电压形成的激励电压向量正比于第三预设矩阵Q3的第n个列向量,不同次的所述激励电压向量对应的n值不同,所述第三预设矩阵
    Figure PCTCN2015074988-appb-100018
    所述Q31中的元素为
    Figure PCTCN2015074988-appb-100019
    所述k和l的取值为1至N之间的任意自然数,所述Q32中的元素为
    Figure PCTCN2015074988-appb-100020
    所述p和q的取值为1至M 之间的任意自然数;
    将经过3次得到的所述目标天线阵元集合中每个天线阵元对应的3个第二参数Dnn的值,通过公式
    Figure PCTCN2015074988-appb-100021
    计算得到Z1、Z2x和Z2y的值,其中n=a×N+b,a的取值为1至N之间的任意自然数,b的取值为1至M之间的任意自然数,所述Z1为所述矩形面阵列天线中每个天线阵元的自阻抗,所述Z2x为所述矩形面阵列天线中行方向上相邻两个天线阵元之间的互耦阻抗,所述Z2y为所述矩形面阵列天线中列方向上相邻两个天线阵元之间的互耦阻抗;
    根据已计算得到的所述Z1、Z2x和Z2y的值,得到与所述目标天线阵元集合中每个天线阵元对应的互耦阻抗估计值Z′。
  21. 根据权利要求15至20任一项所述的一种阵列天线的互耦阻抗的计算装置,其特征在于,
    所述处理器,还用于当所述目标天线阵元集合中包括一个天线阵元时,将得到的一个互耦阻抗估计值Z′确定为所述阵列天线的互耦阻抗;
    当所述目标天线阵元集合中包括至少两个天线阵元时,将所述至少两个互耦阻抗估计值Z′通过最小均方误差算法,计算得到所述阵列天线的互耦阻抗Z。
PCT/CN2015/074988 2015-03-24 2015-03-24 一种阵列天线的互耦阻抗的计算方法及装置 WO2016149913A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580048351.2A CN106716721A (zh) 2015-03-24 2015-03-24 一种阵列天线的互耦阻抗的计算方法及装置
PCT/CN2015/074988 WO2016149913A1 (zh) 2015-03-24 2015-03-24 一种阵列天线的互耦阻抗的计算方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/074988 WO2016149913A1 (zh) 2015-03-24 2015-03-24 一种阵列天线的互耦阻抗的计算方法及装置

Publications (1)

Publication Number Publication Date
WO2016149913A1 true WO2016149913A1 (zh) 2016-09-29

Family

ID=56979000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074988 WO2016149913A1 (zh) 2015-03-24 2015-03-24 一种阵列天线的互耦阻抗的计算方法及装置

Country Status (2)

Country Link
CN (1) CN106716721A (zh)
WO (1) WO2016149913A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112886277B (zh) * 2021-01-06 2022-03-01 之江实验室 一种星载阵列天线互阻抗的计算方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6604225B1 (en) * 1995-11-16 2003-08-05 Fujitsu Limited Calculation of electromagnetic field intensity by moment method
CN103000996A (zh) * 2012-11-22 2013-03-27 北京航空航天大学 一种均匀圆阵测向天线接收互阻抗测试及互耦补偿系统
CN103678802A (zh) * 2013-12-11 2014-03-26 中国舰船研究设计中心 基于互阻抗原理的平面有源相控阵天线辐射近场计算方法
CN104077431A (zh) * 2014-04-10 2014-10-01 电子科技大学 一种基于偶极子阵列互耦仿真方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4920470B2 (ja) * 2007-03-28 2012-04-18 三菱電機株式会社 交番磁界解析方法、および交番磁界解析プログラム
JP4465383B2 (ja) * 2007-12-06 2010-05-19 日本電信電話株式会社 アレーアンテナ制御方法、受信アンテナ装置、および無線通信システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6604225B1 (en) * 1995-11-16 2003-08-05 Fujitsu Limited Calculation of electromagnetic field intensity by moment method
CN103000996A (zh) * 2012-11-22 2013-03-27 北京航空航天大学 一种均匀圆阵测向天线接收互阻抗测试及互耦补偿系统
CN103678802A (zh) * 2013-12-11 2014-03-26 中国舰船研究设计中心 基于互阻抗原理的平面有源相控阵天线辐射近场计算方法
CN104077431A (zh) * 2014-04-10 2014-10-01 电子科技大学 一种基于偶极子阵列互耦仿真方法

Also Published As

Publication number Publication date
CN106716721A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
EP3342062B1 (en) Method and apparatus for beamforming with coupled antennas
Van Der Veen et al. Joint angle and delay estimation using shift-invariance properties
CN108896833B (zh) 一种用于校准的5g阵列天线非线性点测量方法
CN112469119B (zh) 定位方法、装置、计算机设备和存储介质
CN107907855A (zh) 一种互素阵列转化为均匀线阵的doa估计方法及装置
CN108802669B (zh) 二维波达方向估计方法、二维波达方向估计装置及终端
WO2016149913A1 (zh) 一种阵列天线的互耦阻抗的计算方法及装置
CN108107392B (zh) 多线trl校准方法及终端设备
Yao et al. Eigenvalue estimation of parameterized covariance matrices of large dimensional data
CN109444561A (zh) 一种用于阵列天线校准的天线面测量方法
Yuan et al. Exact solution of an approximate weighted least squares estimate of energy-based source localization in sensor networks
Wang Sensor array calibration in presence of mutual coupling and gain/phase errors by combining the spatial-domain and time-domain waveform information of the calibration sources
Ma et al. Accelerating SVD computation on FPGAs for DSP systems
Lu et al. DCT and DST filtering with sparse graph operators
Cao et al. DOA estimation for noncircular signals in the presence of mutual coupling
US20180006741A1 (en) Testing Device and Testing Method with a fading simulator
Akkar et al. Directions of arrival estimation with planar antenna arrays in the presence of mutual coupling
WO2016026263A1 (zh) 确定自适应滤波器的稳定因子的方法和装置
Zhou et al. Linear prediction approach to oversampling parameter estimation for multiple complex sinusoids
Xu et al. Two-dimensional direction-of-arrival estimation of noncircular signals in coprime planar array with high degree of freedom
Zhuang et al. Low complexity 2-D DOA estimator for arbitrary arrays: A hybrid MUSIC-based method
Wu et al. Electromagnetic coupling matrix modeling and ESPRIT-based direction finding: a case study using a uniform linear array of identical dipoles
Cordill et al. Mutual coupling calibration using the Reiterative Superresolution (RISR) algorithm
Pan et al. Direction-of-Arrival Estimation for Arbitrary Array: Combining Spatial Annihilating and Manifold Separation
Pan et al. Joint estimation of DOA and mutual coupling via block sparse Bayesian learning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885852

Country of ref document: EP

Kind code of ref document: A1