WO2016148223A1 - 掘削チップおよび掘削ビット - Google Patents

掘削チップおよび掘削ビット Download PDF

Info

Publication number
WO2016148223A1
WO2016148223A1 PCT/JP2016/058446 JP2016058446W WO2016148223A1 WO 2016148223 A1 WO2016148223 A1 WO 2016148223A1 JP 2016058446 W JP2016058446 W JP 2016058446W WO 2016148223 A1 WO2016148223 A1 WO 2016148223A1
Authority
WO
WIPO (PCT)
Prior art keywords
tip
boron nitride
cubic boron
excavation
sintered body
Prior art date
Application number
PCT/JP2016/058446
Other languages
English (en)
French (fr)
Inventor
エコ ワルドヨ アフマディ
松尾 俊彦
稚晃 桜沢
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016051788A external-priority patent/JP6696242B2/ja
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CA2979800A priority Critical patent/CA2979800C/en
Priority to US15/558,518 priority patent/US10538971B2/en
Priority to CN201680015923.1A priority patent/CN107429548B/zh
Priority to KR1020177025907A priority patent/KR102589417B1/ko
Priority to AU2016234305A priority patent/AU2016234305B2/en
Priority to EP16765052.2A priority patent/EP3272993B1/en
Publication of WO2016148223A1 publication Critical patent/WO2016148223A1/ja
Priority to ZA2017/06539A priority patent/ZA201706539B/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts

Definitions

  • the present invention relates to a drilling tip that is attached to the tip of a drilling bit to perform drilling, and a drilling bit in which such a drilling tip is attached to the tip.
  • a hard tip made of a sintered body of polycrystalline diamond harder than the tip body is provided at the tip of the base body of the tip body made of cemented carbide.
  • a coating of the layer is known.
  • Patent Document 1 discloses that such a polycrystalline diamond is formed on the tip portion of a chip body having a cylindrical rear end portion and a tip portion having a hemispherical shape and an outer diameter that decreases toward the tip side.
  • Patent Document 2 proposes a polycrystalline diamond sintered body adjusted to a hardness by adding a carbide such as WC. Yes.
  • the polycrystalline diamond sintered body has higher wear resistance than cemented carbide, it has poor fracture resistance due to its low toughness. May happen. If the hard layer is damaged and the cemented carbide substrate is exposed, the wear of the drilling tip is accelerated at a stretch and the life of the drilling bit is shortened. To do.
  • the present invention has been made under such a background. It has hardness comparable to that of a polycrystalline diamond sintered body and ensures wear resistance, and has high toughness and excellent fracture resistance. In addition to providing long-life drilling tips that can be used even in mine or Ni-based mines and high-temperature drilling conditions, and can also be used effectively by re-polishing, they also have a long service life.
  • An object of the present invention is to provide a drill bit capable of performing efficient drilling.
  • a drilling tip which is one embodiment of the present invention (hereinafter referred to as “the drilling chip of the present invention”) is attached to the tip of a drilling bit.
  • An excavation tip for excavation having a tip main body having a rear end portion embedded in the bit main body of the excavation bit and a front end portion that tapers toward the front end side protruding from the surface of the excavation bit.
  • the surface of at least the tip of the chip body has a content of cubic boron nitride sintered with a catalytic metal containing Al and at least one of Co, Ni, Mn, and Fe in a range of 70 vol% to 95 vol. % Polycrystalline cubic boron nitride sintered body.
  • excavation bit which is another aspect of the present invention (hereinafter referred to as “excavation bit of the present invention”) is characterized in that such an excavation tip is attached to the tip of the bit body.
  • the polycrystalline cubic boron nitride sintered body having a high content of cubic boron nitride is equivalent to the Hv hardness of 3.5 GPa to 4.2 GPa of the polycrystalline diamond sintered body of the drilling tip for a mining tool. While having hardness, its toughness is higher than that of a polycrystalline diamond sintered body, and there is little possibility of sudden breakage even when excavating a cemented carbide layer. Therefore, the life of the drilling tip formed with such a polycrystalline cubic boron nitride sintered body at least at the tip of the tip body involved in drilling can be extended, and such a drilling tip is arranged at the tip. The installed excavation bit can be exchanged less frequently and can be efficiently excavated.
  • such a polycrystalline cubic boron nitride sintered body has low affinity for Fe and Ni, and further has a high heat-resistant temperature of 1100 ° C., so it can cope with a wide range of excavation conditions. Furthermore, since the polycrystalline cubic boron nitride sintered body can be polished with a diamond grindstone, when it is worn to some extent and its shape is distorted, it can be re-polished before defects and the like can be used effectively.
  • the content of cubic boron nitride in the polycrystalline cubic boron nitride sintered body is less than 70 vol%, the ratio of direct bonding of cubic boron nitride particles decreases, and the required hardness can be obtained. Disappear.
  • the content of cubic boron nitride exceeds 95 vol%, the content of the catalytic metal is reduced and does not reach the entire sintered body, and unreacted cubic boron nitride particles are generated, resulting in uneven firing. It becomes a knot and causes premature wear due to particle dropping.
  • a polycrystalline cubic boron nitride sintered body sintered with such a catalyst metal (binder) is sintered with a ceramic binder such as TiC, TiN, AlN, Al 2 O 3 used for cutting hardened steel, for example.
  • a ceramic binder such as TiC, TiN, AlN, Al 2 O 3 used for cutting hardened steel, for example.
  • the sintered polycrystalline cubic boron nitride sintered body although it is inferior in heat resistance, it has high wear resistance and toughness, and is particularly excellent as a drilling tip used for impact drilling.
  • the polycrystalline cubic boron nitride sintered body includes a metal containing at least one of W, Mo, Cr, V, Zr, and Hf in addition to these catalyst metals in order to promote the sintering reaction.
  • An additive may be added. By adding these metal additives, for example, the occurrence of abnormal grain growth during the sintering reaction can be suppressed. Further, since a metal boride is generated as a reaction product, a harder sintered body can be formed. In addition, under the same sintering conditions (pressure and temperature), the cBN particles are easily bonded to each other, and a harder sintered body can be obtained.
  • the non-cubic boron nitride portion of the polycrystalline cubic boron nitride sintered body occupies 5 to 30 vol% of the polycrystalline cubic boron nitride sintered body.
  • the non-cubic boron nitride portion may be composed of the above-described catalytic metal and a metal additive containing one or more of W, Mo, Cr, V, Zr and Hf.
  • the content of the catalyst metal in the non-cubic boron nitride portion may be 64 wt% to 100 wt%, and the content of the metal additive in the non-cubic boron nitride portion is It may be from 0% to 36% by weight.
  • the content of the catalyst metal in the non-cubic boron nitride portion is from 64 wt% to 90 wt%, and the content of the metal additive in the non-cubic boron nitride portion is from 10 wt%.
  • the content of Al in the catalyst metal may be 10 wt% to 14 wt%.
  • the grain size of the cubic boron nitride in the polycrystalline cubic boron nitride sintered body is in the range of 0.5 ⁇ m to 60 ⁇ m. If the particle size of the cubic boron nitride particles is smaller than 0.5 ⁇ m, it may not be possible to obtain a sintered body having a uniform microstructure, while the particle size of the cubic boron nitride particles is larger than 60 ⁇ m. And, since the specific surface area of the particles is reduced, the content of the catalytic metal is decreased, and the toughness may be lowered.
  • the average particle size of the cubic boron nitride particles must be within the range of 0.5 ⁇ m to 60 ⁇ m as a whole, but the particle size distribution frequency has one peak (single peak peak). It is not necessary to show a particle size distribution), and cubic boron nitride particle powder having a plurality of particle size distribution frequency peaks (multimodal frequency particle size distribution) can also be used. In this case, since the voids can be reduced by entering the small particle diameter particles into the large particle gaps, the sintered body can be further densified.
  • the sintered cubic boron nitride sintered body thus sintered has a Hv hardness in the range of 3.5 GPa to 4.4 GPa. If the Hv hardness is less than 3.5 GPa, the wear resistance may be insufficient. Conversely, if the Hv hardness exceeds 4.4 GPa, the toughness is impaired and sufficient fracture resistance cannot be obtained. There is a fear.
  • the fracture toughness value K I C of the polycrystalline cubic boron nitride sintered body is in the range of 7MPa ⁇ m 1/2 ⁇ 12MPa ⁇ m 1/2, the fracture toughness value K I C below the 7 MPa ⁇ m 1/2 may result in fracture resistance is insufficient, abrasion resistance fracture toughness value K I C conversely exceeds 12 MPa ⁇ m 1/2 may become insufficient .
  • the excavation tip and the excavation bit of the present invention it is possible to prevent both the abrasion tip and the chipping from being suddenly broken or chipped even in the super hard rock layer by achieving both wear resistance and fracture resistance.
  • it can be used under a wide range of excavation conditions, and the excavation tip can be effectively used by regrinding.
  • FIG. 1 is a cross-sectional view showing an embodiment of the excavation tip of the present invention
  • FIG. 2 is a cross-sectional view showing an embodiment of the excavation bit of the present invention to which the excavation tip of this embodiment is attached.
  • the excavation tip of this embodiment has a tip body 1, and this tip body 1 has a base 2 made of a hard material such as a cemented carbide and the surface of at least a tip portion (upper portion in FIG. 1) of the base 2. And a hard layer 3 having a hardness (Hv hardness) higher than that of the base body 2.
  • the Hv hardness can be measured by a test method defined in Japanese Industrial Standard (JIS) Z2244.
  • the chip body 1 has a rear end portion (a lower portion in FIG. 1) formed in a columnar shape or a disc shape with the chip center line C as the center, and the front end portion is the rear end portion in this embodiment.
  • a hemisphere having a center on the chip center line C with a radius equal to the radius of the cylinder or disk is formed, and the outer diameter from the chip center line C gradually decreases toward the tip side. . That is, the excavation tip of this embodiment is a button tip.
  • the hard layer 3 has a two-layer structure including an outermost layer 4 and an intermediate layer 5 interposed between the outermost layer 4 and the substrate 2. ing.
  • the preferred maximum film thickness of the outermost layer 4 is 0.3 ⁇ m to 1.5 ⁇ m, more preferably 0.4 ⁇ m to 1.3 ⁇ m.
  • the preferred maximum film thickness of the intermediate layer 5 is 0.2 ⁇ m to 1.0 ⁇ m, more preferably 0.3 ⁇ m to 0.8 ⁇ m.
  • the outermost layer 4 arrange
  • the intermediate layer 5 is also formed of a polycrystalline cubic boron nitride sintered body sintered with the same catalyst metal, and the content of the cubic boron nitride is the content of the outermost layer 4. It may be less.
  • the content of the cubic boron nitride in the intermediate layer 5 is preferably 40 vol% to 70 vol%, more preferably 45 vol% to 65 vol%.
  • the grain size of the cubic boron nitride in the polycrystalline cubic boron nitride sintered body of the outermost layer 4 is in the range of 0.5 ⁇ m to 60 ⁇ m.
  • the grain size of the cubic boron nitride of the intermediate layer 5 is also in the same range, but may be smaller than the grain size of the cubic boron nitride of the outermost layer 4.
  • the polycrystalline cubic boron nitride sintered body of the outermost layer 4 and the intermediate layer 5 includes at least one of W, Mo, Cr, V, Zr, and Hf in addition to the above-described catalyst metal. A metal additive may be added.
  • Hv hardness of polycrystalline cubic boron nitride sintered body of the outermost layer 4 formed is in the range of 3.5 GPa ⁇ 4.4 GPa
  • fracture toughness value K I C is there is a 7MPa ⁇ m 1/2 ⁇ 12MPa ⁇ m in the range of 1/2.
  • the three-point bending strength TRS of the outermost layer 4 was 1.2 GPa to 1.5 GPa when a TRS sample was prepared from a disk-shaped sample having the same composition as the outermost layer 4 and measured.
  • Fracture toughness value K I C can be measured by the test method defined in ASTM Standard (ASTM) E399.
  • an outermost layer 4 is formed by sintering from hexagonal boron nitride under ultrahigh pressure and high temperature conditions as described in, for example, Japanese Patent No. 5613970 by the inventors of the present invention. Can do.
  • the chip body 1 of the excavation chip of this embodiment can be manufactured by integrally sintering the outermost layer 4, the intermediate layer 5, and the base body 2 made of cemented carbide.
  • a drill bit to which such a drill tip is attached to the tip has a bit body 11 formed of a steel material or the like and having a substantially bottomed cylindrical shape centering on an axis O as shown in FIG. Is the tip (upper part in FIG. 2), and the excavation tip is attached to the tip. Also, a female threaded portion 12 is formed on the inner periphery of the cylindrical rear end (the lower portion in FIG. 2), and a drilling rod connected to the excavator is screwed into the female threaded portion 12 so as to be in the direction of the axis O. By transmitting the striking force and thrust toward the distal end side and the rotational force around the axis O, the rock mass is crushed by the excavation tip to form an excavation hole.
  • the front end portion of the bit body 11 has a slightly larger outer diameter than the rear end portion, and a plurality of discharge grooves 13 extending in parallel to the axis O are spaced apart in the circumferential direction on the outer periphery of the front end portion.
  • the crushed debris formed and crushed by the excavation tip is discharged to the rear end side through the discharge groove 13.
  • a blow hole 14 is formed along the axis O from the bottom surface of the female screw portion 12 of the bottomed bit body 11, and the blow hole 14 is branched obliquely at the tip end portion of the bit body 11. It opens to the front end surface and ejects a fluid such as compressed air supplied through the excavating rod to promote discharge of crushed debris.
  • the front end surface of the bit body 11 has a circular face surface 15 centering on an axis O perpendicular to the inner peripheral axis O, and a rear end side located on the outer periphery of the face surface 15 toward the outer periphery. And a frustoconical gauge surface 16 facing toward the surface.
  • the blow hole 14 opens to the face surface 15, and the tip of the discharge groove 13 opens to the outer peripheral side of the gauge surface 16.
  • a plurality of mounting holes 17 having a circular cross section are perpendicular to the face surface 15 and the gauge surface 16 so as to avoid the openings of the blow hole 14 and the discharge groove 13 respectively. Is formed.
  • the excavation tip is tightly fitted or brazed by press-fitting or shrink fitting with the rear end portion of the tip body 1 being buried as shown in FIG. 2. Fixed, i.e., buried and attached. Further, the tip end portion of the chip body 1 on which the hard layer 3 is formed protrudes from the face surface 15 and the gauge surface 16, and the rock is crushed by the hitting force, thrust force, and rotational force described above.
  • the outermost layer 4 of the hard layer 3 covering the surface of the tip portion of the tip body 1 involved in excavation in this way has a large content of cubic boron nitride as high as 70 vol% to 95 vol%.
  • the polycrystalline cubic boron nitride sintered body is formed of an Hv hardness comparable to the polycrystalline diamond sintered body of a drilling tip for a mining tool as described above. while having a of the fracture toughness value of the polycrystalline diamond sintered body K I C: 3MPa ⁇ m 1/2 ⁇ higher than 6 MPa ⁇ m 1/2, rich in toughness.
  • Hv hardness of the outermost layer 4 or below 3.5 GPa fracture toughness value K I C is 12M Abrasion resistance or above the Pa ⁇ m 1/2 may be insufficient, whereas, Hv hardness conversely or exceeded 4.4 GPa, fracture toughness value K I C is 7 MPa ⁇ m 1/2 If it falls below the range, the toughness may be impaired and sufficient fracture resistance may not be obtained. Therefore, the Hv hardness is in the range of 3.5 GPa to 4.4 GPa as in this embodiment, and the fracture toughness value K I C Desirably is in the range of 7MPa ⁇ m 1/2 ⁇ 12MPa ⁇ m 1/2.
  • the polycrystalline cubic boron nitride sintered body has a low affinity for Fe and Ni, and therefore, stable drilling can be performed over a long period of time in Fe-based and Ni-based mines as well. Furthermore, since the heat resistant temperature is 1100 ° C., which is higher than that of the polycrystalline diamond sintered body, it can be used even under excavation conditions exposed to high temperatures. Moreover, since the polycrystalline cubic boron nitride sintered body can be polished with a diamond grindstone, it can be effectively used by repolishing.
  • the content of cubic boron nitride in the polycrystalline cubic boron nitride sintered body in the outermost layer 4 is less than 70 vol%, the ratio of direct bonding of cubic boron nitride particles is reduced, and the above-mentioned carbide The required Hv hardness in the rock layer cannot be obtained. Further, when the content of cubic boron nitride in the outermost layer 4 exceeds 95 vol%, the content of the catalytic metal is relatively reduced and unreacted cubic boron nitride particles are generated without reaching the entire sintered body. As a result, a non-uniform sintered body is formed, and such unreacted cubic boron nitride particles fall off and the outermost layer 4 is prematurely worn.
  • the polycrystalline cubic boron nitride sintered body sintered with such a metal binder is: Since it has high wear resistance and toughness compared to a polycrystalline cubic boron nitride sintered body sintered with a ceramic binder such as TiC, TiN, AlN, Al 2 O 3 , the above-mentioned drilling tip particularly used for blow drilling Such an effect can be reliably produced.
  • a metal additive containing at least one of W, Mo, Cr, V, Zr, and Hf is added, the polycrystalline cubic boron nitride sintered body is sintered. The reaction can be promoted.
  • the cubic boron nitride particles in the polycrystalline cubic boron nitride sintered body of the outermost layer 4 of the hard layer 3 have a particle diameter in the range of 0.5 ⁇ m to 60 ⁇ m, the uniform A sintered body having a fine microstructure can be formed, and toughness can be ensured with certainty. That is, if the particle size of the cubic boron nitride particles of the outermost layer 4 is smaller than 0.5 ⁇ m, the structure structure of the sintered body may be uneven and the hardness and toughness may be partially biased. When the cubic boron nitride particles have a particle size larger than 60 ⁇ m, the specific surface area of the particles is reduced, so that the content of the catalytic metal is reduced and the toughness may be lowered.
  • the hard layer 3 has a two-layer structure including the outermost layer 4 and the intermediate layer 5.
  • the hard layer 3 may have a single-layer structure including only the outermost layer 4, or may have three or more layers.
  • a multilayer structure may be used.
  • the layer having a cubic boron nitride content of less than 70 vol%, such as the intermediate layer 5 of the above embodiment, is the outermost layer 4 and the substrate.
  • the fracture toughness value K I C together is the content of cubic boron nitride of the intermediate layer 5 gradually decreases Hv hardness toward the substrate 2 from the outermost layer 4 is reduced Is desirable to be large.
  • the thickness of the hard layer 3 on the chip center line C ensures a certain excavation length. Therefore, the thickness is desirably 0.8 mm or more.
  • the residual stress in the hard layer 3 due to the difference in shrinkage from the cemented carbide during sintering it is desirably 2 mm or less.
  • the entire chip body 1 is formed of a polycrystalline cubic boron nitride sintered body similar to the outermost layer 4. May be.
  • fracture toughness value K I C of the polycrystalline cubic boron nitride sintered body is preferably set to 10 MPa ⁇ m 1/2 or more .
  • the three-point bending strength TRS is 1.3 GPa or more in a large excavation tip in which the outer diameter of the chip body 1 is 16 mm or more and the length in the chip center line C direction is 20 mm or more.
  • the tip part of tip body 1 makes a bullet-like shape.
  • the so-called ballistic type excavation tip and the rear end side of the tip portion have a conical surface and reduce in diameter toward the tip side, and the tip has a smaller radius than the columnar rear end portion of the tip body 1. It is also possible to apply the present invention to a so-called spike type excavation tip having a spherical shape.
  • the cubic boron nitride (cBN) content of the polycrystalline cubic boron nitride sintered body, the type of the catalytic metal, and the hard layer with the composition changed WC: 94 wt%, Co-sintered together with a substrate made of 6 wt% Co hard metal, sintered together under the conditions of sintering pressure 5.8 GPa, sintering temperature 1600 ° C., sintering time 30 minutes, radius 5.5 mm, length in the chip center line direction Ten button chips with a thickness of 16 mm were manufactured.
  • Example 1 has a cubic boron nitride particle size of 60 ⁇ m or more in the polycrystalline cubic boron nitride sintered body, and Example 10 has a particle size of 0.5 ⁇ m or less.
  • Button chip (Comparative Example 3) made of a cemented carbide of WC: 94 wt% and Co 6 wt%, which is the same as the substrate, and a polycrystalline cubic boron nitride sintered body having two hard layers, but the outermost cubic boron nitride ( cBN) Button chip with less than 70 vol% content (Comparative Example 4), Button chip with outermost cubic boron nitride content greater than 95 vol% (Comparative Example 5), Ceramic binder instead of catalyst metal (TiC) Sintered button chip (Comparative Example 6) and a polycrystalline cubic boron nitride sintered body having a single hard layer, and the content of cubic boron nitride in the outermost layer exceeds 95 vol% And button tip (Comparative Example 3)
  • each of the excavation tips of Examples 1 to 11 and Comparative Examples 1 to 7 is combined with two on the face surface and five on the gauge surface of the bit body having a bit diameter of 45 mm as shown in FIG. 14 types of drill bits with 7 attachments were manufactured. Then, with these excavation bits, the excavation work for excavating a plurality of 4 m excavation holes in a mine with an average uniaxial compressive strength of 200 MPa made of a hard rock layer is performed, and the total excavation length until the excavation tip reaches the end of its life. (M) was measured, and the chip breakage state when the excavation chip reached the end of its life was confirmed.
  • Excavation conditions were as follows: the excavator was model number H205D manufactured by TAMROCK, the striking pressure was 160 bar, the feed pressure was 80 bar, the rotational pressure was 55 bar, water was supplied from the blow hole, and the water pressure was 18 bar.
  • the composition of the hard layer of the excavation tip with its outermost layer Hv hardness and fracture toughness value K I C, in Table 1 for Examples 1-4, in Table 2 for Examples 5-11 Comparative Examples 1 to 7 are shown in Table 3, respectively.
  • the hard layer is a polycrystalline diamond sintered body and the drilling bit of Comparative Example 1 having a long drilling distance is 176 m.
  • the excavation length was not as long as 100 m.
  • Comparative Examples 4 to 6 in which the hard layer is a polycrystalline cubic boron nitride sintered body since the cubic boron nitride content of the polycrystalline cubic boron nitride sintered body is small, wear occurs.
  • Comparative Example 5 and Comparative Example 7 in which the content of cubic boron nitride is excessively large, the catalyst metal is insufficient and the structure is uneven, so that the cubic boron nitride particles fall off and also cause early wear. It was happening. Moreover, chipping also occurred in Comparative Example 7 in which the cubic boron nitride particles had a large particle size. Further, in Comparative Example 6 in which a polycrystalline cubic boron nitride sintered body was sintered with a ceramic binder instead of a metal catalyst, the lifetime was reached by chipping. In Comparative Example 6, the excavation length until the lifetime was 20 m, but there are two possible reasons for this.
  • the first reason is that in Comparative Example 6, the polycrystalline cubic boron nitride sintered body is sintered with a ceramic binder instead of the metal catalyst.
  • the second reason is that in Comparative Example 6, no intermediate layer is provided. In this case, the outermost layer having a significantly different coefficient of thermal expansion is directly provided on the tip of the excavation tip body. Therefore, a large stress is generated at the interface between the tip and the outermost layer due to heat generated during excavation, which causes chipping.
  • Example 9 the particle size of cubic boron nitride particles in the polycrystalline cubic boron nitride sintered body was 60 ⁇ m or more and Example 10 in which the particle size was 0.5 ⁇ m or less, and the excavation length did not reach 200 m.
  • the excavation length longer than those of Comparative Examples 1 to 7 is still obtained.
  • the present invention it is possible to prevent accidental chipping and chipping from occurring in a drilling tip even in a cemented rock layer by achieving both wear resistance and chipping resistance. It can be used under excavation conditions, and the excavation tip can be effectively used by re-polishing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Abstract

 掘削ビットの先端部に取り付けられて掘削を行う掘削チップであって、掘削ビットのビット本体に埋設される後端部と、掘削ビットの表面から突出する先端側に向かうに従い先細りとなる先端部とを備えたチップ本体(1)を有し、チップ本体(1)の少なくとも先端部の表面は、Alと、Co、Ni、Mn、Feのうち少なくとも1種とを含む触媒金属により焼結した立方晶窒化ホウ素の含有量が70vol%~95vol%の多結晶立方晶窒化ホウ素焼結体(4)により形成されている。

Description

掘削チップおよび掘削ビット
 本願発明は、掘削ビットの先端部に取り付けられて掘削を行う掘削チップ、およびこのような掘削チップが先端部に取り付けられた掘削ビットに関するものである。
 本願は、2015年3月19日に日本に出願された特願2015-056106号及び2016年3月16日に日本に出願された特願2016-051788号に基づき優先権を主張し、その内容をここに援用する。
 このような掘削チップとしては、打撃掘削用ビットの長寿命化を図るため、超硬合金よりなるチップ本体の基体先端部に、このチップ本体よりも硬質な多結晶ダイヤモンドの焼結体よりなる硬質層が被覆されたものが知られている。例えば、特許文献1には、円柱状の後端部と半球状をなして先端側に向かうに従い外径が小さくなる先端部とを有するチップ本体の上記先端部に、このような多結晶ダイヤモンド焼結体の硬質層を多層に被覆した掘削チップが提案されており、また特許文献2には、多結晶ダイヤモンド焼結体にWC等の炭化物を添加して硬さを調整したものが提案されている。
米国特許第4694918号明細書 米国特許第6651757号明細書
 しかしながら、多結晶ダイヤモンド焼結体は超硬合金に比べて耐摩耗性は高いものの、靱性が低いために耐欠損性に乏しく、超硬岩層の掘削においては突発的な硬質層のチッピングや欠損が起きることがある。硬質層が欠損して超硬合金製の基体が露出すると、掘削チップの摩耗が一気に促進されて掘削ビットの寿命が短くなり、頻繁に掘削ビットを交換しなければならなくなって作業効率が著しく低下する。
 また、特許文献2に記載されているように多結晶ダイヤモンド焼結体に炭化物や窒化物を添加して硬さを調整し、靱性を高める方法では、ダイヤモンド粒子間の結合が減ることにより靱性は向上しても硬さが損なわれる傾向がある。さらに、ダイヤモンド焼結体は、Fe系やNi系の鉱山では親和性が高くて使用することができず、また耐熱温度も700℃程度であるのでこれより高温に晒される条件では使用できない。さらにまた、高硬度であるがために、硬質層がある程度摩耗した掘削チップを再研磨して有効利用を図ることも困難である。
 本願発明は、このような背景の下になされたもので、多結晶ダイヤモンド焼結体に匹敵する硬さを有して耐摩耗性を確保しつつ、高靱性で耐欠損性に優れ、またFe系やNi系の鉱山や高温の掘削条件下でも使用可能で、さらに再研磨による有効利用も可能な長寿命の掘削チップを提供するとともに、このような掘削チップを取り付けた、やはり寿命が長くて効率的な掘削を行うことが可能な掘削ビットを提供することを目的としている。
 上記課題を解決して、このような目的を達成するために、本願発明の一態様である掘削チップ(以下、「本願発明の掘削チップ」と称する)は、掘削ビットの先端部に取り付けられて掘削を行う掘削チップであって、上記掘削ビットのビット本体に埋設される後端部と、該掘削ビットの表面から突出する先端側に向かうに従い先細りとなる先端部とを備えたチップ本体を有し、上記チップ本体の少なくとも上記先端部の表面は、Alと、Co、Ni、Mn、Feのうち少なくとも1種とを含む触媒金属により焼結した立方晶窒化ホウ素の含有量が70vol%~95vol%の多結晶立方晶窒化ホウ素焼結体により形成されていることを特徴とする。
 また、本願発明の他態様である掘削ビット(以下、「本願発明の掘削ビット」と称する)は、このような掘削チップがビット本体の先端部に取り付けられていることを特徴とする。
 このように立方晶窒化ホウ素の含有量の多い多結晶立方晶窒化ホウ素焼結体は、鉱山工具用の掘削チップの多結晶ダイヤモンド焼結体のHv硬さ3.5GPa~4.2GPaと同等の硬さを有する一方で、靱性は多結晶ダイヤモンド焼結体よりも高く、超硬岩層の掘削でも突発的な欠損を生じるおそれが少ない。従って、このような多結晶立方晶窒化ホウ素焼結体を掘削に関与するチップ本体の少なくとも先端部に形成した掘削チップでは寿命の延長を図ることができ、そのような掘削チップを先端部に配設した掘削ビットは交換頻度が減って効率的な掘削作業を行うことが可能となる。
 また、このような多結晶立方晶窒化ホウ素焼結体はFeやNiに対する親和性が低く、さらに耐熱温度も1100℃と高いので、広汎な掘削条件に対応することができる。さらにまた、多結晶立方晶窒化ホウ素焼結体はダイヤモンド砥石によって研磨が可能であるので、ある程度摩耗が生じて形状が歪んだときには欠損等を生じる前に再研磨して有効利用することができる。
 ここで、多結晶立方晶窒化ホウ素焼結体における立方晶窒化ホウ素の含有量が70vol%を下回ると、立方晶窒化ホウ素粒子の直接結合の割合が低下し、必要な硬さを得ることができなくなる。逆に、立方晶窒化ホウ素の含有量が95vol%を上回ると、触媒金属の含有量が少なくなって焼結体全体に行き渡らず、未反応な立方晶窒化ホウ素粒子が発生して不均一な焼結体となり、粒子の脱落による早期摩耗を生じてしまう。
 また、上記触媒金属のうちAlは必須であり、Co、Ni、Mn、Feは少なくとも1種が含まれていればよい。このような触媒金属(バインダー)により焼結した多結晶立方晶窒化ホウ素焼結体は、例えば焼き入れ鋼等の切削に使用されるTiC、TiN、AlN、Al等のセラミックスバインダーにより焼結した多結晶立方晶窒化ホウ素焼結体と比べ、耐熱性には劣るものの耐摩耗性と靱性が高く、特に打撃掘削に用いられる掘削チップとして優れている。
 なお、上記多結晶立方晶窒化ホウ素焼結体には、これらの触媒金属に加えて、焼結反応の促進のためにW、Mo、Cr、V、Zr、Hfのうち少なくとも1種を含む金属添加物が添加されていてもよい。
 これら金属添加物の添加により、例えば焼結反応時の異常粒成長の発生の抑制することができるようになる。また、反応生成物として金属ホウ化物が生成されるので、より硬い焼結体ができるようになる。また、同一焼結条件(圧力・温度)において、cBN粒子同士の結合がしやすくなり、より硬い焼結体を得ることができるようになる。
 上記多結晶立方晶窒化ホウ素焼結体の非立方晶窒化ホウ素部分は、上記多結晶立方晶窒化ホウ素焼結体の5~30vol%を占める。この非立方晶窒化ホウ素部分は、上記触媒金属とW、Mo、Cr、V、Zr及びHfの1種以上を含む金属添加物からなってもよい。また、上記非立方晶窒化ホウ素部分中における、上記触媒金属の含有率は64重量%から100重量%であってもよく、上記非立方晶窒化ホウ素部分中における、上記金属添加物の含有率は0重量%から36重量%であってもよい。
 また、上記非立方晶窒化ホウ素部分中における、上記触媒金属の含有率は64重量%から90重量%とし、上記非立方晶窒化ホウ素部分中における、上記金属添加物の含有率は10重量%から36重量%とし、上記触媒金属中のAlの含有率が10重量%~14重量%としてもよい。
 触媒金属と金属添加物とを適切な含有量で併用することで、必要とされる焼結条件が緩和され、また、多結晶立方晶窒化ホウ素焼結体の硬さが向上する。
 Al含有量が少なすぎるとcBN粒子表面に多く存在する酸素が除去しきれず、cBN粒子同士の結合が阻害される。一方、Al含有量が多すぎると、AlB、AlN、Alのような反応生成物がcBN粒界に多く生成され、硬さの低いセラミックスバインダーcBN焼結体となってしまう。
 さらに、上記多結晶立方晶窒化ホウ素焼結体における立方晶窒化ホウ素の粒径は0.5μm~60μmの範囲内であることが望ましい。立方晶窒化ホウ素粒子の粒径は0.5μmよりも小さいと、均一な微細組織を有する焼結体を得ることができなくなるおそれがある一方、立方晶窒化ホウ素粒子の粒径が60μmよりも大きいと、粒子の比表面面積が減少するために触媒金属の含有量が少なくなり、靱性の低下を招くおそれがある。なお、立方晶窒化ホウ素粒子の粉末の平均粒径は、全体として0.5μm~60μmの範囲内であることは必要であるが、粒径分布度数のピークが一つである(単峰ピークの粒度分布を示す)必要はなく、複数の粒径分布度数ピーク(多峰性の頻度粒度分布)を備えた立方晶窒化ホウ素粒子粉末を用いることもできる。この場合、粒径の大きな粒子間隙に粒径の小さい粒子が入り込むことによって、空隙を少なくすることができるため、焼結体のより一層の高密度化が図られる。
 さらにまた、こうして焼結された多結晶立方晶窒化ホウ素焼結体のHv硬さは、3.5GPa~4.4GPaの範囲内であることが望ましい。Hv硬さが3.5GPaを下回ると耐摩耗性が不十分となるおそれがあり、逆にHv硬さが4.4GPaを上回ると靱性が損なわれて十分な耐欠損性を得ることができなくなるおそれがある。
 同様に、上記多結晶立方晶窒化ホウ素焼結体の破壊靱性値KCは7MPa・m1/2~12MPa・m1/2の範囲内であることが望ましく、破壊靱性値KCが7MPa・m1/2を下回ると耐欠損性が不十分となるおそれがあり、逆に破壊靱性値KCが12MPa・m1/2を上回ると耐摩耗性が不十分となるおそれがある。
 以上説明したように、本願発明の掘削チップおよび掘削ビットによれば、耐摩耗性と耐欠損性の両立を図って超硬岩層でも掘削チップに突発的な欠損やチッピングが生じるのを防ぐことができるとともに、また広汎な掘削条件下での使用が可能であり、しかも再研磨による掘削チップの有効利用を図ることができる。
本願発明の掘削チップの一実施形態を示す断面図である。 図1に示す実施形態の掘削チップを先端部に取り付けた本願発明の掘削ビットの一実施形態を示す断面図である。
 図1は本願発明の掘削チップの一実施形態を示す断面図であり、図2はこの実施形態の掘削チップを取り付けた本願発明の掘削ビットの一実施形態を示す断面図である。本実施形態の掘削チップはチップ本体1を有しており、このチップ本体1は超硬合金等の硬質材料よりなる基体2と、この基体2の少なくとも先端部(図1における上側部分)の表面を被覆する、基体2よりも硬度(Hv硬さ)の高い硬質層3とを備えている。
 Hv硬さは、日本工業規格(JIS)Z2244で定められる試験方法によって測定することができる。
 チップ本体1は、その後端部(図1において下側部分)がチップ中心線Cを中心とした円柱状または円板状をなしているとともに、先端部は、本実施形態では後端部がなす円柱または円板の半径と等しい半径でチップ中心線C上に中心を有する半球状をなしていて、先端側に向かうに従いチップ中心線Cからの外径が漸次小さくなる先細り形状に形成されている。すなわち、本実施形態の掘削チップはボタンチップである。
 本実施形態では、図1に示すようにチップ本体1の先端部だけに硬質層3が被覆されており、この硬質層3を含めたチップ本体1の先端部が上述のような半球状をなすように形成されている。また、本実施形態では、図1に示すように硬質層3が、最外層4と、この最外層4と基体2との間に介装される中間層5とを備えた2層構造とされている。
 必須な構成ではないが、上記最外層4の好ましい最大膜厚は0.3μm~1.5μmであり、より好ましくは0.4μm~1.3μmである。
 同様に、必須な構成ではないが、上記中間層5の好ましい最大膜厚は0.2μm~1.0μmであり、より好ましくは0.3μm~0.8μmである。
 そして、このような硬質層3のうちチップ本体1の先端部の表面に配置される最外層4は、Alと、Co、Ni、Mn、Feのうち少なくとも1種とを含む触媒金属により焼結した立方晶窒化ホウ素の含有量が70vol%~95vol%の多結晶立方晶窒化ホウ素焼結体により形成されている。なお、本実施形態では、中間層5も同様の触媒金属により焼結した多結晶立方晶窒化ホウ素焼結体により形成されているが、その立方晶窒化ホウ素の含有量は最外層4の含有量より少なくてもよい。
 必須な構成ではないが、中間層5の好ましい立方晶窒化ホウ素の含有量は、40vol%~70vol%であり、より好ましくは45vol%~65vol%である。
 さらに、最外層4の多結晶立方晶窒化ホウ素焼結体における立方晶窒化ホウ素の粒径は0.5μm~60μmの範囲内とされている。中間層5の立方晶窒化ホウ素の粒径も同様の範囲内とされているが、最外層4の立方晶窒化ホウ素の粒径より小さくてもよい。さらにまた、これら最外層4と中間層5の多結晶立方晶窒化ホウ素焼結体には、上述した触媒金属に加えて、W、Mo、Cr、V、Zr、Hfのうち少なくとも1種を含む金属添加物が添加されていてもよい。
 なお、本実施形態では、こうして形成された最外層4の多結晶立方晶窒化ホウ素焼結体のHv硬さは、3.5GPa~4.4GPaの範囲内とされ、破壊靱性値KCは7MPa・m1/2~12MPa・m1/2の範囲内とされている。さらに、最外層4の三点曲げ強度TRSは、最外層4と同等の組成を有する円板状のサンプルからTRS用の試料を作成して測定したところ、1.2GPa~1.5GPaであった。
 破壊靱性値KCは、ASTM規格(ASTM)E399で定められる試験方法によって測定することができる。
 また、このような最外層4は、例えば本願発明の発明者等による特許第5613970号公報に記載されているように、六方晶窒化ホウ素から超高圧高温条件下で焼結することにより形成することができる。さらに、この最外層4と中間層5および超硬合金よりなる基体2を一体に焼結することにより、本実施形態の掘削チップのチップ本体1を製造することができる。
 このような掘削チップが先端部に取り付けられる掘削ビットは、鋼材等により形成されて図2に示すように軸線Oを中心とした概略有底円筒状をなすビット本体11を有し、その有底部が先端部(図2において上側部分)とされて、この先端部に掘削チップが取り付けられる。また、円筒状の後端部(図2において下側部分)の内周には雌ネジ部12が形成され、掘削装置に連結された掘削ロッドがこの雌ネジ部12にねじ込まれて軸線O方向先端側に向けての打撃力と推力、および軸線O回りの回転力が伝達されることにより、掘削チップによって岩盤を破砕して掘削孔を形成する。
 ビット本体11の先端部は後端部よりも僅かに外径が大径とされており、この先端部の外周には軸線Oに平行に延びる排出溝13が周方向に間隔をあけて複数条形成されて、上記掘削チップにより岩盤が破砕されて生成された破砕屑がこの排出溝13を通して後端側に排出される。また、有底とされたビット本体11の雌ネジ部12底面からは軸線Oに沿ってブロー孔14が形成され、このブロー孔14はビット本体11先端部において斜めに分岐してビット本体11の先端面に開口し、上記掘削ロッドを介して供給される圧縮空気のような流体を噴出して破砕屑の排出を促進する。
 さらに、ビット本体11の先端面は、内周側の軸線Oに垂直な軸線Oを中心とした円形のフェイス面15と、このフェイス面15の外周に位置して外周側に向かうに従い後端側に向かう円錐台面状のゲージ面16とを備えている。ブロー孔14はフェイス面15に開口するとともに、排出溝13の先端はゲージ面16の外周側に開口している。また、これらフェイス面15とゲージ面16には、それぞれブロー孔14と排出溝13の開口部を避けるようにして、断面円形の複数の取付孔17がフェイス面15とゲージ面16に対して垂直に形成されている。
 このような取付孔17に、上記掘削チップは、図2に示すようにチップ本体1の上記後端部が埋没させられた状態で圧入や焼き嵌め等によって締まり嵌めされたり、ロウ付けされたりすることにより固定され、すなわち埋設されて取り付けられる。さらに、硬質層3が形成されたチップ本体1の先端部がフェイス面15およびゲージ面16から突出して、上述した打撃力と推力および回転力により岩盤を破砕する。
 そして、上記構成の掘削チップでは、こうして掘削に関与するチップ本体1の先端部の表面を被覆する硬質層3の最外層4が、立方晶窒化ホウ素の含有量が70vol%~95vol%と多い多結晶立方晶窒化ホウ素焼結体により形成されており、このような多結晶立方晶窒化ホウ素焼結体は、上述したように鉱山工具用の掘削チップの多結晶ダイヤモンド焼結体に匹敵するHv硬さを有する一方で、同多結晶ダイヤモンド焼結体の破壊靱性値KC:3MPa・m1/2~6MPa・m1/2よりも高く、靱性に富んでいる。
 従って、超硬岩層を掘削する場合でも、掘削チップに突発的な欠損やチッピングを生じるおそれが少なくて寿命が長く、長期に亙って安定した掘削を行うことができる。このため、そのような掘削チップを先端部に取り付けた掘削ビットでは、掘削チップの損傷による掘削ビットの交換頻度が減って、交換作業に要する時間や労力を低減することができ、効率的な掘削作業を行うことが可能となる。
 ここで、最外層4のHv硬さが3.5GPaを下回ったり、破壊靱性値KCが12M
Pa・m1/2を上回ったりすると耐摩耗性が不十分となるおそれがある、一方、逆にHv硬さが4.4GPaを上回ったり、破壊靱性値KCが7MPa・m1/2を下回った
りすると靱性が損なわれて十分な耐欠損性を得ることができなくなるおそれがあるので、本実施形態のようにHv硬さは3.5GPa~4.4GPaの範囲内、破壊靱性値K
は7MPa・m1/2~12MPa・m1/2の範囲内とされるのが望ましい。
 また、多結晶立方晶窒化ホウ素焼結体はFeやNiに対する親和性が低く、このためFe系やNi系の鉱山でも同様に安定した掘削を長期に亙って行うことができる。さらに、耐熱温度が1100℃と多結晶ダイヤモンド焼結体に比べて高いので、高温に晒される掘削条件下でも使用することができる。しかも、多結晶立方晶窒化ホウ素焼結体はダイヤモンド砥石によって研磨が可能であるので、再研磨により有効利用を図ることもできる。
 なお、最外層4における多結晶立方晶窒化ホウ素焼結体の立方晶窒化ホウ素の含有量が70vol%を下回ると、立方晶窒化ホウ素粒子の直接結合の割合が低下して上述のような超硬岩層における必要なHv硬さを得ることができなくなる。また、最外層4の立方晶窒化ホウ素の含有量が95vol%を上回ると、相対的に触媒金属の含有量が少なくなって焼結体全体に行き渡らずに未反応な立方晶窒化ホウ素粒子が発生して不均一な焼結体となってしまい、このような未反応の立方晶窒化ホウ素粒子が脱落して最外層4に早期摩耗が生じてしまう。
 さらに、触媒金属として、Al(必須)と、Co、Ni、Mn、Feは少なくとも1種とが含まれており、このような金属バインダーにより焼結した多結晶立方晶窒化ホウ素焼結体は、TiC、TiN、AlN、Al等のセラミックスバインダーにより焼結した多結晶立方晶窒化ホウ素焼結体と比べて耐摩耗性と靱性が高いので、特に打撃掘削に用いられる掘削チップとして上述のような効果を確実に奏することができる。また、これらの触媒金属に加えて、W、Mo、Cr、V、Zr、Hfのうち少なくとも1種を含む金属添加物が添加されていれば、多結晶立方晶窒化ホウ素焼結体の焼結反応を促進することができる。
 さらにまた、本実施形態では、硬質層3の最外層4の多結晶立方晶窒化ホウ素焼結体における立方晶窒化ホウ素粒子の粒径が0.5μm~60μmの範囲内とされているので、均一な微細組織の焼結体を形成することができるとともに、靱性も確実に確保することができる。すなわち、最外層4の立方晶窒化ホウ素粒子の粒径が0.5μmより小さいと、焼結体の組織構造が不均一となって部分的に硬さや靱性に偏りが生じるおそれがあり、逆に立方晶窒化ホウ素粒子の粒径が60μmよりも大きいと、粒子の比表面面積が減少するために触媒金属の含有量が少なくなって靱性の低下を招くおそれがある。
 なお、本実施形態では、硬質層3が最外層4と中間層5とを備えた2層構造とされているが、最外層4だけの単層構造であってもよく、また3層以上の多層構造でもよい。ただし、このように硬質層3を3層以上の多層構造とした場合には、上記実施形態の中間層5のような立方晶窒化ホウ素の含有量が70vol%未満の層が最外層4と基体2との間に介装されるのが望ましく、最外層4から基体2に向かうに従い中間層5の立方晶窒化ホウ素の含有量が漸減してHv硬さが小さくなるとともに破壊靱性値KCが大きくなるのが望ましい。さらに、本実施形態のように超硬合金等の基体2の先端部に硬質層3を形成する場合には、チップ中心線C上における硬質層3の厚さは、ある程度の掘削長を確保するために0.8mm以上とされるのが望ましく、ただし焼結時の超硬合金との収縮率の違いによる硬質層3内の残留応力を考慮すると2mm以下とされるのが望ましい。
 一方、こうして硬質層3を基体2に被覆してチップ本体1の先端部に形成するのに代えて、チップ本体1全体を最外層4と同様の多結晶立方晶窒化ホウ素焼結体によって形成してもよい。ただし、この場合には、チップ本体1の割れ等を防止するために、多結晶立方晶窒化ホウ素焼結体の破壊靱性値KCは10MPa・m1/2以上に設定されるのが望ましい。さらにまた、チップ本体1の外径が16mm以上、チップ中心線C方向の長さが20mm以上となるような大きな掘削チップでは、三点曲げ強度TRSは1.3GPa以上であるのが望ましい。
 また、本実施形態では、上述のようにチップ本体1の先端部が半球状をなすボタンタイプの掘削チップに本願発明を適用した場合について説明したが、チップ本体1の先端部が砲弾状をなす、いわゆるバリスティックタイプの掘削チップや、先端部の後端側が円錐面状をなして先端側に向かうに従い縮径するとともに、その先端がチップ本体1の円柱状の後端部よりも小さな半径の球面状をなす、いわゆるスパイクタイプの掘削チップに本願発明を適用することも可能である。
 次に、本願発明の掘削チップおよび掘削ビットの実施例を挙げて、本願発明の効果について実証する。本実施例では、上記実施形態に基づき、多結晶立方晶窒化ホウ素焼結体の立方晶窒化ホウ素(cBN)含有量、触媒金属の種類、組成を変化させた硬質層を、WC:94wt%、Co6wt%の超硬合金よりなる基体とともに、焼結圧力5.8GPa、焼結温度1600℃、焼結時間30分の条件下で一体に焼結して半径5.5mm、チップ中心線方向の長さ16mmの10種のボタンチップを製造した。なお、チップ本体先端部がなす半球の半径は5.75mmであった。また、硬質層のチップ中心線方向の厚さは1.5mmである。なお、実施例1、2、5、6、9、10、11は硬質層すべてが最外層となる単層のものであり、実施例3、4、7、8は図1に示した実施形態と同様に硬質層が最外層と中間層とを有するものである。さらに、実施例9は多結晶立方晶窒化ホウ素焼結体における立方晶窒化ホウ素の粒径が60μm以上のもの、実施例10は0.5μm以下のものである。
 また、これら実施例1~11に対する比較例として、硬質層が単層の多結晶ダイヤモンド焼結体よりなり、ダイヤモンド含有量が異なる2種のボタンチップ(比較例1、2)、チップ本体全体が基体と同じWC:94wt%、Co6wt%の超硬合金よりなるボタンチップ(比較例3)、硬質層が2層の多結晶立方晶窒化ホウ素焼結体で、ただし最外層の立方晶窒化ホウ素(cBN)含有量が70vol%を下回るボタンチップ(比較例4)、最外層の立方晶窒化ホウ素含有量が95vol%を上回るボタンチップ(比較例5)、触媒金属に代えてセラミックスバインダー(TiC)により焼結したボタンチップ(比較例6)、および硬質層が単層の多結晶立方晶窒化ホウ素焼結体で最外層の立方晶窒化ホウ素含有量が95vol%を上回り、かつ立方晶窒化ホウ素の粒径が60μmを上回るボタンチップ(比較例7)も、実施例1~11と同じ寸法で製造した。なお、硬質層のチップ中心線方向の厚さは比較例3を除いて実施例1~11と同じく1.5mmである。
 さらに、これら実施例1~11および比較例1~7の掘削チップをそれぞれ1種ずつ、図2に示したようなビット径45mmのビット本体におけるフェイス面に2つ、ゲージ面に5つの合わせて7つ取り付けた14種の掘削ビットを製造した。そして、これらの掘削ビットにより、超硬岩層よりなる平均一軸圧縮強度200MPaの鉱山に1つの掘削長が4mの掘削孔を複数掘削する掘削作業を行い、掘削チップが寿命に至るまでのトータル掘削長(m)を測定するとともに、掘削チップが寿命に達したときのチップ破損状態を確認した。
 なお、掘削条件は、掘削装置がTAMROCK社製型番H205D、打撃圧力は160bar、フィード(送り)圧力は80bar、回転圧力は55bar、ブロー孔からは水を供給してその水圧は18barであった。この結果を、各掘削チップの硬質層の組成とその最外層のHv硬さおよび破壊靱性値KCとともに、実施例1~4については表1に、実施例5~11については表2に、比較例1~7については表3に、それぞれ示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 この結果より、比較例1~7の掘削チップを取り付けた掘削ビットでは、硬質層が多結晶ダイヤモンド焼結体であって掘削距離の長い比較例1でも176mであり、比較例2ともどもチッピングにより寿命となっており、比較例3~7では掘削長が100mにも遠く及ばなかった。このうち、硬質層が多結晶立方晶窒化ホウ素焼結体である比較例4~6でも、比較例4では多結晶立方晶窒化ホウ素焼結体の立方晶窒化ホウ素含有量が少ないために摩耗が著しく、逆に立方晶窒化ホウ素含有量が多すぎる比較例5や比較例7では触媒金属が不足して不均一な組織となっていたため、立方晶窒化ホウ素粒子が脱落してやはり早期の摩耗を生じていた。しかも、立方晶窒化ホウ素粒子の粒径が大きい比較例7ではチッピングも生じていた。さらに、多結晶立方晶窒化ホウ素焼結体を金属触媒の代わりにセラミックスバインダーで焼結した比較例6でもチッピングにより寿命に達していた。この比較例6では、寿命までの掘削長は20mであったが、これには二つの理由が考えられる。一つ目の理由は、比較例6では、多結晶立方晶窒化ホウ素焼結体が金属触媒の代わりにセラミックスバインダーで焼結されていることである。二つ目の理由は、比較例6では中間層が設けられていないことである。この場合、掘削チップ本体の先端部上に、熱膨張率が大きく異なる最外層が直接設けられる。そのため、掘削時に発生する熱により先端部と最外層との界面に大きな応力が発生しチッピング発生の原因となる。
 これに対して、実施例1~8、11の掘削チップを取り付けた掘削ビットでは、摩耗状態がいずれも正常摩耗であり、掘削長が最も短い実施例8でも200m以上の掘削が可能で、実施例2、4、6では300m以上の掘削が可能であった。また、多結晶立方晶窒化ホウ素焼結体における立方晶窒化ホウ素粒子の粒径が60μm以上の実施例9と0.5μm以下の実施例10ではチッピングが認められ、掘削長は200mに達しなかったが、それでも比較例1~7よりは長い掘削長が得られている。
 以上説明したように、本願発明によれば、耐摩耗性と耐欠損性の両立を図って超硬岩層でも掘削チップに突発的な欠損やチッピングが生じるのを防ぐことができるとともに、また広汎な掘削条件下での使用が可能であり、しかも再研磨による掘削チップの有効利用を図ることができる。
 1  チップ本体
 2  基体
 3  硬質層
 4  最外層
 5  中間層
 11  ビット本体
 C  チップ中心線
 O  ビット本体11の軸線

Claims (6)

  1.  掘削ビットの先端部に取り付けられて掘削を行う掘削チップであって、
     上記掘削ビットのビット本体に埋設される後端部と、該掘削ビットの表面から突出する先端側に向かうに従い先細りとなる先端部とを備えたチップ本体を有し、
     上記チップ本体の少なくとも上記先端部の表面は、Alと、Co、Ni、Mn、Feのうち少なくとも1種とを含む触媒金属により焼結した立方晶窒化ホウ素の含有量が70vol%~95vol%の多結晶立方晶窒化ホウ素焼結体により形成されていることを特徴とする掘削チップ。
  2.  上記多結晶立方晶窒化ホウ素焼結体における立方晶窒化ホウ素の粒径が0.5μm~60μmの範囲内であることを特徴とする請求項1に記載の掘削チップ。
  3.  上記多結晶立方晶窒化ホウ素焼結体には、W、Mo、Cr、V、Zr、Hfのうち少なくとも1種を含む金属添加物が添加されていることを特徴とする請求項1または請求項2に記載の掘削チップ。
  4.  上記多結晶立方晶窒化ホウ素焼結体のHv硬さが3.5GPa~4.4GPaの範囲内であることを特徴とする請求項1から請求項3のうちいずれか一項に記載の掘削チップ。
  5.  上記多結晶立方晶窒化ホウ素焼結体の破壊靱性値KCが7MPa・m1/2~12MPa・m1/2の範囲内であることを特徴とする請求項1から請求項4のうちいずれか一項に記載の掘削チップ。
  6.  請求項1から請求項5のうちいずれか一項に記載の掘削チップがビット本体の先端部に取り付けられていることを特徴とする掘削ビット。
PCT/JP2016/058446 2015-03-19 2016-03-17 掘削チップおよび掘削ビット WO2016148223A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2979800A CA2979800C (en) 2015-03-19 2016-03-17 Drill bit insert and drill bit
US15/558,518 US10538971B2 (en) 2015-03-19 2016-03-17 Drill bit insert and drill bit
CN201680015923.1A CN107429548B (zh) 2015-03-19 2016-03-17 挖掘刀片及挖掘钻头
KR1020177025907A KR102589417B1 (ko) 2015-03-19 2016-03-17 굴삭 팁 및 굴삭 비트
AU2016234305A AU2016234305B2 (en) 2015-03-19 2016-03-17 Drill bit insert and drill bit
EP16765052.2A EP3272993B1 (en) 2015-03-19 2016-03-17 Drill tip and drill bit
ZA2017/06539A ZA201706539B (en) 2015-03-19 2017-09-28 Drill bit insert and drill bit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-056106 2015-03-19
JP2015056106 2015-03-19
JP2016051788A JP6696242B2 (ja) 2015-03-19 2016-03-16 掘削チップおよび掘削ビット
JP2016-051788 2016-03-16

Publications (1)

Publication Number Publication Date
WO2016148223A1 true WO2016148223A1 (ja) 2016-09-22

Family

ID=56918934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058446 WO2016148223A1 (ja) 2015-03-19 2016-03-17 掘削チップおよび掘削ビット

Country Status (2)

Country Link
WO (1) WO2016148223A1 (ja)
ZA (1) ZA201706539B (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097884A (ja) * 2000-07-21 2002-04-05 Mitsubishi Materials Corp ビットおよび掘削装置
JP2004026555A (ja) * 2002-06-25 2004-01-29 Toshiba Tungaloy Co Ltd 立方晶窒化ホウ素含有焼結体およびその製造方法
JP2010512300A (ja) * 2006-12-11 2010-04-22 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド 立方体窒化ホウ素成形体
JP2010247262A (ja) * 2009-04-15 2010-11-04 Tungaloy Corp 被覆cBN焼結体
JP2012206902A (ja) * 2011-03-30 2012-10-25 Mitsubishi Materials Corp 立方晶窒化ホウ素の合成方法および立方晶窒化ホウ素焼結体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097884A (ja) * 2000-07-21 2002-04-05 Mitsubishi Materials Corp ビットおよび掘削装置
JP2004026555A (ja) * 2002-06-25 2004-01-29 Toshiba Tungaloy Co Ltd 立方晶窒化ホウ素含有焼結体およびその製造方法
JP2010512300A (ja) * 2006-12-11 2010-04-22 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド 立方体窒化ホウ素成形体
JP2010247262A (ja) * 2009-04-15 2010-11-04 Tungaloy Corp 被覆cBN焼結体
JP2012206902A (ja) * 2011-03-30 2012-10-25 Mitsubishi Materials Corp 立方晶窒化ホウ素の合成方法および立方晶窒化ホウ素焼結体の製造方法

Also Published As

Publication number Publication date
ZA201706539B (en) 2022-05-25

Similar Documents

Publication Publication Date Title
US10024112B2 (en) Superhard cutter
WO2022210771A1 (ja) 掘削チップおよび掘削工具
US20180238170A1 (en) Asymmetric pick tool with an aspect ratio between leading and trailing edges
KR102589417B1 (ko) 굴삭 팁 및 굴삭 비트
JP6701742B2 (ja) 掘削チップおよび掘削ビット
WO2016148223A1 (ja) 掘削チップおよび掘削ビット
AU2020264372B2 (en) Drill bit button insert and drill bit
GB2572487A (en) Polycrystalline diamond constructions
WO2016084914A1 (ja) 掘削チップおよび掘削ビット
EP3859122B1 (en) Excavating tip and excavating bit
WO2016114344A1 (ja) 掘削チップおよび掘削ビット
JP2020076299A (ja) 掘削チップおよび掘削ビット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16765052

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2979800

Country of ref document: CA

Ref document number: 20177025907

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15558518

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016765052

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016234305

Country of ref document: AU

Date of ref document: 20160317

Kind code of ref document: A