WO2016147883A1 - 発泡用樹脂組成物及び発泡成形体 - Google Patents

発泡用樹脂組成物及び発泡成形体 Download PDF

Info

Publication number
WO2016147883A1
WO2016147883A1 PCT/JP2016/056602 JP2016056602W WO2016147883A1 WO 2016147883 A1 WO2016147883 A1 WO 2016147883A1 JP 2016056602 W JP2016056602 W JP 2016056602W WO 2016147883 A1 WO2016147883 A1 WO 2016147883A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
weight
foaming
polyolefin
polylactic acid
Prior art date
Application number
PCT/JP2016/056602
Other languages
English (en)
French (fr)
Inventor
智仁 市来
早紀 神代
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to EP16764713.0A priority Critical patent/EP3272797B1/en
Priority to JP2016518219A priority patent/JP5993108B1/ja
Priority to CN201680013791.9A priority patent/CN107428981B/zh
Priority to US15/556,561 priority patent/US10377872B2/en
Publication of WO2016147883A1 publication Critical patent/WO2016147883A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/34Chemical features in the manufacture of articles consisting of a foamed macromolecular core and a macromolecular surface layer having a higher density than the core
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/046Unimodal pore distribution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/16Biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08J2400/104Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/16Biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a foaming resin composition and a foamed molded article.
  • the foamed molded body is generally obtained by foaming a resin composition, and can be reduced in weight and cost, and can have heat insulation properties. Therefore, it is used for various uses such as food containers, daily necessities, and household appliances.
  • the foamed molded article is used for a food container or the like, it is required to have heat resistance that can withstand heating by a microwave oven or the like.
  • attention has been paid to environmentally-friendly foam molded articles, and foam molded articles obtained by foaming a resin composition or the like in which polyolefin and polylactic acid are mixed are being studied.
  • Patent Document 1 a composition composed of polylactic acid, a polyolefin-based resin, and a carboxylic acid vinyl ester-modified polyolefin resin is blended at a specific ratio, so that it has excellent heat resistance and good mechanical properties. It is disclosed that a polylactic acid foam can be obtained.
  • Patent Document 2 a resin composition containing a fatty acid polyester, a polyolefin, and a functional group-containing hydrogenated diene polymer is subjected to foam molding using a foaming agent, whereby flexibility, flexibility, and a foamed cell state are obtained. It is described that an excellent foam molded article can be obtained.
  • foamed molded products It is important for foamed molded products that bubbles formed by foaming (hereinafter, also referred to as “foamed particles”) are uniformly distributed inside the foam molded product. It causes defects on the surface of the body, a decrease in strength, and the like.
  • foamed molded product in order to foam uniformly, it is necessary that the resin composition before foaming is uniformly dispersed.
  • incompatible polymers such as polyolefin and polylactic acid that do not dissolve each other, it is difficult to uniformly disperse them, and there is room for further study in order to improve the dispersibility of the resin composition. was there.
  • the inventors of the present invention have studied a method for obtaining a foam molded article having a low environmental load using polylactic acid, which is a biomass polymer, and that the interface between incompatible polymers that do not dissolve each other has a high effect as a foam nucleus.
  • a foamed molded article having excellent foamability can be obtained by dispersing incompatible polyolefin and polylactic acid.
  • the foamability of the foamed molded product is excellent, a large number of foamed particles having a small particle diameter can be generated inside the foamed molded product.
  • the present inventors have used a modified polyolefin containing a carbonyl group in the molecule as a compatibilizing agent in order to further improve the dispersibility of polyolefin and polylactic acid, so that between polyolefin and polylactic acid can be used.
  • a compatibilizing agent in order to further improve the dispersibility of polyolefin and polylactic acid, so that between polyolefin and polylactic acid can be used.
  • the present inventors have conducted various studies and found that the addition of layered silicate improves the shearing force during mixing and improves the dispersibility of polyolefin and polylactic acid.
  • the present inventors have found that when the amount of layered silicate added is too large, the compatibilizing agent and the layered silicate act so that the dispersibility of polyolefin and polylactic acid decreases. It was. As a result of intensive studies to solve the above-mentioned problems, the present inventors have added a very small amount of filler to the resin composition, so that the polyolefin and polylactic acid can be added without adding an excessive amount of layered silicate. It has been found that dispersibility is improved. In particular, the present inventors have found that the effect is high when a filler having a density different from the density of the layered silicate by 0.20 g / cm 3 or more is used, and the present invention has been completed.
  • the foaming resin composition of the present invention includes a polyolefin, polylactic acid, a modified polyolefin containing a carbonyl group in the molecule, a layered silicate, and a filler.
  • the polyolefin includes polypropylene and / or polyethylene.
  • the content of the whole resin composition is 30% by weight or more and 80% by weight or less, and the polylactic acid has a content of 3% by weight or more and 40% by weight or less based on the whole resin composition.
  • the modified polyolefin containing a carbonyl group has a content of 1% by weight or more and 20% by weight or less with respect to the entire resin composition, and the layered silicate has a content of 10% by weight or more and 40% by weight with respect to the entire resin composition. %, And the filler has a density different by 0.20 g / cm 3 or more with respect to the density of the layered silicate, The content thereof is characterized by being 0.01 wt% or more and 0.5 wt% or less.
  • the foamed molded product of the present invention is characterized by being molded by foaming the foaming resin composition of the present invention.
  • the foamed molded product is preferably obtained by mixing and foaming the foaming resin composition and a supercritical fluid.
  • the foamed molded product is preferably obtained by injection molding of the foaming resin composition.
  • the foaming resin composition of the present invention is excellent in dispersibility and moldability. Since the foamed molded product of the present invention is molded by foaming the foaming resin composition having the above-described properties, a foamed molded product excellent in heat resistance, strength and lightness can be provided.
  • the foaming resin composition of the present invention includes a polyolefin, polylactic acid, a modified polyolefin containing a carbonyl group in the molecule, a layered silicate, and a filler.
  • the polyolefin includes polypropylene and / or polyethylene.
  • the content of the whole resin composition is 30% by weight or more and 80% by weight or less, and the polylactic acid has a content of 3% by weight or more and 40% by weight or less based on the whole resin composition.
  • the modified polyolefin containing a carbonyl group has a content of 1% by weight or more and 20% by weight or less with respect to the entire resin composition, and the layered silicate has a content of 10% by weight or more and 40% by weight with respect to the entire resin composition. %, And the filler has a density different by 0.20 g / cm 3 or more with respect to the density of the layered silicate, The content thereof is characterized by being 0.01 wt% or more and 0.5 wt% or less.
  • polyolefin and polylactic acid are incompatible, even if mixed, they do not dissolve each other and an interface is formed. This interface acts as a foam nucleus.
  • a modified polyolefin containing a carbonyl group By adding a modified polyolefin containing a carbonyl group to both of the above components, both of the above components can be made compatible and easily dispersed.
  • only mixing polyolefin, polylactic acid, and modified polyolefin containing a carbonyl group results in insufficient shearing force at the time of mixing, and dispersion of polyolefin and polylactic acid is insufficient. Therefore, by further adding a layered silicate and a very small amount of filler, the dispersibility of polyolefin and polylactic acid can be improved, and the foaming nuclei can be highly dispersed in the foaming resin composition.
  • the polyolefin includes polypropylene and / or polyethylene.
  • the polyolefin may include both polypropylene and polyethylene, or may include either one.
  • the melt mass flow rate (MFR) of the polypropylene is preferably 5 to 100 g / 10 minutes, more preferably 10 to 50 g / 10 minutes.
  • MFR is a numerical value measured at a temperature of 230 ° C. and a load of 21.2 N in accordance with JIS K7210.
  • the MFR of the polyethylene is preferably 5 to 100 g / 10 minutes, more preferably 10 to 50 g / 10 minutes.
  • MFR is a numerical value measured at a temperature of 190 ° C. and a load of 21.2 N in accordance with JIS K7210.
  • the polyolefin may contain only polypropylene and / or polyethylene, but may contain other polyolefins other than polypropylene and polyethylene.
  • the other polyolefin include an ⁇ -olefin homopolymer, an ethylene-propylene copolymer, an ethylene- ⁇ olefin copolymer, and a propylene- ⁇ olefin copolymer.
  • the ⁇ -olefin include 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 3-methyl-1-pentene, 4-methyl-1-pentene, and 3-ethyl-1.
  • Examples thereof include ⁇ -olefins having 4 to 12 carbon atoms such as pentene, 1-octene, 1-decene, and 1-undecene.
  • the melt viscosity (220 ° C.) of the polyolefin is preferably 150 Pa ⁇ S or more and 400 Pa ⁇ S or less.
  • a more preferable lower limit of the melt viscosity of the polyolefin is 200 Pa ⁇ S, and a more preferable upper limit is 300 Pa ⁇ S.
  • the melt viscosity can be measured, for example, using a flow tester CFT-500D manufactured by Shimadzu Corporation. Specifically, the resin to be measured is heated to a predetermined temperature and fluidized, and is extruded from the cylinder with a piston having a predetermined surface pressure of 1 MPa through a capillary die (inner diameter ⁇ 1 mm, length 10 mm). The viscosity characteristics can be evaluated by the time taken.
  • the polyolefin has a content of 30% by weight or more and 80% by weight or less based on the entire resin composition. If the content of the polyolefin resin relative to the entire resin composition is less than 30% by weight, the flowability and solidification rate of the foaming resin composition are lowered, and the moldability is deteriorated. As a result, the surface of the resulting foamed molded article becomes uneven and the appearance is impaired. In addition, when the foaming resin composition and the supercritical fluid are mixed, it becomes difficult to impregnate the foaming resin composition with the supercritical fluid.
  • the minimum with preferable content with respect to the whole resin composition of the said polyolefin is 35 weight%, and a preferable upper limit is 70 weight%.
  • the polylactic acid is a homopolymer of L-lactic acid or D-lactic acid, a copolymer of L-lactic acid and D-lactic acid, or a mixture of these homopolymers and / or copolymers.
  • Polylactic acid having different crystallinity obtained by a method of copolymerization of enantiomer ratio and enantiomer of lactic acid (random, block, graft, etc.) or a method of adding a crystal nucleating agent can be selected.
  • the polylactic acid preferably has a melt viscosity (220 ° C.) of 150 Pa ⁇ S or more and 400 Pa ⁇ S or less.
  • a more preferable lower limit of the melt viscosity of the polylactic acid is 200 Pa ⁇ S, and a more preferable upper limit is 300 Pa ⁇ S.
  • the melt viscosity of the polylactic acid can be measured in the same manner as the melt viscosity of the polyolefin.
  • the content of the polylactic acid is 3% by weight or more and 40% by weight or less based on the entire resin composition. If the content of the above polylactic acid is less than 3% by weight, the foamed molded product formed by foaming the foaming resin composition will have insufficient foaming properties. The fluidity and solidification rate of the resin composition are lowered and the moldability is deteriorated.
  • the minimum with preferable content with respect to the whole resin composition of the said polylactic acid is 8 weight%, and a preferable upper limit is 30 weight%.
  • the difference in melt viscosity between the polyolefin and polylactic acid is preferably 200 Pa ⁇ S or less.
  • the melt viscosity difference between the polyolefin and polylactic acid is 200 Pa ⁇ S or less, the present inventors can easily mix both components, and further, by adding a layered silicate and a small amount of filler, It has been found that the shearing force during melt mixing is improved, the mixed state of polyolefin and polylactic acid is improved, and the dispersibility can be improved.
  • a more preferred upper limit of the difference in melt viscosity between polyolefin and polylactic acid is 150 Pa ⁇ S.
  • a method of mixing incompatible polymers a method of forming a chemical bond between the two components or a method of forming a cross-linked structure between the same polymers may be used.
  • Foam molding using polylactic acid When obtaining a body, for example, reaction extrusion (reactive processing) in which kneading is performed while synthesizing polylactic acid using a synthesis catalyst such as a metal complex, a radical generator, or the like may be used.
  • a synthesis catalyst such as a metal complex, a radical generator, or the like
  • the interface between polyolefin and polylactic acid acts as a foam nucleus, and a synthetic catalyst, a radical generator, etc. are added to the resin composition, unlike reactive extrusion in which kneading is performed while synthesizing polylactic acid.
  • tin 2-ethylhexanoate is used as a synthesis catalyst, and an antioxidant (eg, Irganox 1010 from Ciba Specialty Chemicals) is added to form L-lactide.
  • an antioxidant eg, Irganox 1010 from Ciba Specialty Chemicals
  • a method of reacting ⁇ -caprolactone a method of reacting polylactic acid and polyethylene glycol using a radical generator such as dicumyl peroxide, a polycarbonate, polybutylene adipate terephthalate (PBAT) using poly (lactic acid) using a radical generator And polycaprolactone (PCL), polybutylene succinate (PBS), polybutylene succinate adipate (PBSA) and the like.
  • a radical generator such as dicumyl peroxide
  • PCL radical generator And polycaprolactone
  • PBS polybutylene succinate
  • PBSA polybutylene succinate adipate
  • Examples of the modified polyolefin containing a carbonyl group in the molecule include those obtained by addition reaction of an unsaturated carboxylic acid, an ester of an unsaturated carboxylic acid, or an anhydride of an unsaturated carboxylic acid to the polyolefin.
  • Examples of the unsaturated carboxylic acid include maleic acid, fumaric acid, and itaconic acid.
  • Examples of the unsaturated carboxylic acid ester include maleic acid monomethyl ester, maleic acid monoethyl ester, maleic acid diethyl ester, and fumaric acid monomethyl ester.
  • Examples of the unsaturated carboxylic acid anhydride include itaconic anhydride and maleic anhydride.
  • modified polyolefin containing a carbonyl group in the molecule examples include maleic anhydride-modified polyolefin and glycidyl methacrylate-modified polyolefin.
  • the modified polyolefin containing a carbonyl group in the molecule may be used alone or in combination of two or more.
  • the modified polyolefin containing a carbonyl group in the molecule may be a copolymer of an olefin and a vinyl monomer.
  • the copolymer of olefin and vinyl monomer for example, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) ethyl acrylate copolymer, and ethylene- (meth) acrylic acid methyl copolymer Etc.
  • (meth) acrylic acid represents acrylic acid and methacrylic acid.
  • compounds obtained by polymerizing vinyl acetate such as ethylene-vinyl acetate copolymer decompose and give off odors. Therefore, in particular, foaming resin compositions are used for food containers, daily necessities, household appliances, etc. Not suitable for use.
  • the MFR of the modified polyolefin containing a carbonyl group in the molecule is preferably 0.1 to 100 g / 10 minutes, more preferably 0.3 to 50 g / 10 minutes.
  • MFR is a numerical value measured at a temperature of 230 ° C. and a load of 21.2 N in accordance with JIS K7210.
  • the modified polyolefin containing a carbonyl group in the molecule has a content of 1% by weight or more and 20% by weight or less based on the entire resin composition.
  • the content of the modified polyolefin containing a carbonyl group in the molecule is within the above range, an interface is formed between the polyolefin and the polylactic acid, which are incompatible, and the dispersibility of both components Can be improved.
  • the content of the modified polyolefin containing a carbonyl group in the molecule is less than 1% by weight with respect to the entire resin composition, an interface cannot be formed between the polyolefin and polylactic acid, and thus the foamed molded article obtained is obtained.
  • numerator is 3 weight%, and a preferable upper limit is 12 weight%.
  • layered silicate examples include pyrophyllite, talc, kaolin (kaolinite), montmorillonite, fisheye stone, margarite, prenite, mica (mica), and the like, and in particular, talc, kaolin, Montmorillonite or mica (mica) is preferably used.
  • the said layered silicate may be used independently and may use 2 or more types together.
  • the content of the layered silicate is 10% by weight or more and 40% by weight or less based on the entire resin composition. If the content of the layered silicate with respect to the entire resin composition is less than 10% by weight, the effect of improving the shearing force at the time of mixing cannot be obtained sufficiently, so that polyolefin and polylactic acid are sufficiently dispersed. However, if it exceeds 40% by weight, the moldability of the foaming resin composition decreases.
  • the minimum with preferable content with respect to the whole resin composition of the said layered silicate is 15 weight%, and a preferable upper limit is 35 weight%.
  • the filler only needs to have a density different from the density of the layered silicate by 0.20 g / cm 3 or more.
  • Other components contained in the foaming resin composition that is, polyolefin, polylactic acid, molecule
  • An inorganic filler composed of an inorganic material or an organic filler composed of an organic material may be used as long as it is a compound different from a modified polyolefin containing a carbonyl group and a layered silicate.
  • the difference in density between the filler and the layered silicate is more preferably 0.25 g / cm 3 or more, and still more preferably 0.30 g / cm 3 or more.
  • the density of the filler may be larger or smaller than the density of the layered silicic acid.
  • the density of the filler and the density of the layered silicate can be measured by a pycnometer method.
  • the inorganic filler examples include metal oxides such as magnesium oxide and calcium oxide, graphite, carbon black, molybdenum disulfide, tungsten disulfide, calcium carbonate, silica, silica gel, zeolite, boron nitride, and alumina. A filler is mentioned.
  • organic filler examples include fluorine resins such as polytetrafluoroethylene (PTFE), ultrahigh molecular weight polyethylene, electron beam cross-linked polyethylene, powdered cellulose, aromatic polyamide, aliphatic polyamide, silicon carbide, acrylic resin, and phenol resin. And fillers containing melamine resin and the like.
  • PTFE polytetrafluoroethylene
  • ultrahigh molecular weight polyethylene and the electron beam cross-linked polyethylene have extremely low fluidity even when heated to a melting point or higher and become a molten state, and therefore cannot be numerically evaluated by melt mass flow rate (MFR) measurement.
  • MFR melt mass flow rate
  • the content of the filler is 0.01% by weight or more and 0.5% by weight or less based on the entire resin composition. If the content of the filler relative to the entire resin composition is less than 0.01% by weight, the dispersibility of the polyolefin and polylactic acid and the foamability of the resulting foamed molded product are reduced, and the content exceeds 0.5% by weight. The foamability of the resulting foamed molded product is reduced.
  • the upper limit with preferable content with respect to the whole resin composition of the said filler is 0.3 weight%.
  • the manufacturing method of the foaming resin composition of this invention is not specifically limited, A well-known method can be used. For example, the method of melt-kneading the mixture of each component with various single-screw or multi-screw extruders is mentioned. Each component may be kneaded in a lump, and after kneading arbitrary components, the remaining components may be added and kneaded.
  • a foamed molded article is obtained by foaming and molding the foaming resin composition.
  • the foaming resin composition has a layered silicate and filler added thereto, and the dispersibility of polyolefin and polylactic acid is improved. Fine bubbles can be present uniformly. For this reason, the said foaming molding is excellent in heat resistance, intensity
  • a pigment filler, a color master batch, or the like can be added to the foaming resin composition.
  • the foamed molded article is suitably used for food containers, daily necessities, and household appliances.
  • the foamed molded article has excellent heat resistance, 7.4 S2029 7.4 heat resistance test (display heat resistance temperature 120 ° C.), 7.10 microwave high frequency suitability test, and 7.11 microwave oven durability. Suitable for testing. Therefore, the food container comprising the foamed molded product can be used for heating or cooking with a microwave oven. Moreover, since it is excellent in heat resistance and hardly deforms even at high temperatures, it can be suitably used for daily necessities and household appliances.
  • the foamed molded product is preferably obtained by mixing and foaming the foaming resin composition and a supercritical fluid.
  • the foaming resin composition has a fine interface formed by highly dispersing polyolefin and polylactic acid that do not dissolve each other. Therefore, in the foaming using a supercritical fluid, the above-mentioned interface becomes the starting point of foaming, fine bubbles can be uniformly present inside the foamed molded product, and characteristics such as heat resistance, strength and lightness are sufficiently exhibited.
  • the Examples of the supercritical fluid include carbon dioxide, nitrogen, argon, and an inert gas supercritical fluid such as helium. Among these, carbon dioxide or nitrogen supercritical fluid is preferable, and nitrogen supercritical fluid is more preferable.
  • the method for producing a foamed molded article using the supercritical fluid firstly injects the supercritical fluid under high pressure into the dissolved foaming resin composition and stirs it, so that the foaming resin composition, the supercritical fluid, To obtain a single phase lysate. Next, by reducing the pressure, the supercritical fluid in the single-phase dissolved material undergoes a phase transition to a gas, and bubbles are generated. When many foaming origins exist uniformly, it becomes a foaming molding containing many fine foam particles. Thereby, the foaming resin composition foams, and a foamed molded article having fine foamed particles is obtained.
  • the foamed molded product is preferably obtained by injection molding of the foaming resin composition.
  • the foamed molded article is preferably obtained by a method of performing injection molding while impregnating the foaming resin composition with a supercritical fluid (hereinafter also referred to as supercritical injection molding).
  • the foaming resin composition can be processed into a precise shape and various shapes by supercritical injection molding.
  • a cavity is formed by moving a part of a mold after filling the foamed resin composition in a molten state in a mold cavity and before cooling and solidification proceed.
  • Foaming is preferably performed by a method of forcibly expanding the pressure and causing a rapid pressure decrease (hereinafter referred to as “core back method”). By using the core back method, the amount of foaming can be greatly increased.
  • FIG. 1 is a schematic cross-sectional view of a foamed molded article of the present invention.
  • the foamed molded product 10 shown in FIG. 1 is obtained by mixing the foaming resin composition of the present invention and the supercritical fluid, and then injecting and foaming.
  • the foam molded body 10 has skin layers (outer skin layers) 11 on both surfaces of a foam layer 12.
  • the foam layer 12 refers to a region having uniform foam particles
  • the skin layer 11 refers to a region where the foam particles are not formed on the surface side of the foam molded article. Since the surface of the foam molded body 10 is the skin layer 11, the strength of the foam molded body 10 can be increased, and the surface can be smoothed. Furthermore, since the center portion is the foamed layer 12, not only can the weight be reduced, but heat can hardly be transmitted, so that the heat resistance of the foamed molded body 10 is improved.
  • the thickness of the foamed molded product is preferably 0.2 to 3.0 mm.
  • foaming may not occur.
  • the thickness exceeds 3.0 mm, the surface may be uneven and the appearance may be impaired.
  • the foaming resin composition of the present invention since the foamability and moldability are superior to those of conventional foaming resin compositions, practically sufficient heat resistance and strength are ensured even when made thinner. A foamed molded product can be produced.
  • the foamed layer preferably has 100 or more foamed particles in the range of 1 mm ⁇ 1 mm of the foamed layer when the cross section of the foamed molded product is observed, and the average particle diameter of 100 arbitrarily selected foamed particles is It is preferable that it is 100 micrometers or less.
  • the measurement of the expanded particles can be performed with a scanning electron microscope (SEM). For example, S-4800 manufactured by Hitachi High-Technologies Corporation can be used.
  • foaming resin composition and the supercritical fluid and foaming and molding the foaming resin composition include, for example, an injection molding machine and a supercritical fluid generator connected to each other. This can be done using an apparatus.
  • the apparatus in which the injection molding machine and the supercritical fluid generator are connected include a MuCell injection molding machine (MuCell is a registered trademark of Trexel. Co., Ltd.).
  • FIG. 2 is a schematic view for explaining an example of a molding apparatus used for producing a foam molded article.
  • the molding apparatus 20 generates a cylinder 25 and a supercritical fluid via an injection control unit 27 in an injection molding machine including a hopper 21 for charging materials, a cylinder 22 having a screw 23, and a nozzle 24.
  • the unit 26 is connected.
  • the above-mentioned polyolefin, polylactic acid, modified polyolefin containing a carbonyl group in the molecule, layered silicate, and filler are melt-mixed in a twin screw extruder having a set temperature of 200 ° C. or higher.
  • a pellet-shaped foaming resin composition is prepared.
  • the obtained pellet-shaped foaming resin composition is put into a hopper 21, and the screw 23 is rotated in accordance with a general injection molding procedure to dissolve and measure the pellet-shaped foaming resin composition.
  • the supercritical fluid is injected into the cylinder 22 via the injection controller 27 connected to the cylinder 25 and the supercritical fluid generator 26, and the screw 23 is By rotating, the supercritical fluid is mixed and impregnated into the melt of the foaming resin composition to form a single-phase solution.
  • the measured single-phase dissolved material is conveyed to the nozzle 24 side by the screw 23 and injected into the mold 28. Due to the pressure loss in the mold, when the supercritical fluid reaches the critical pressure, a phase transition to gas is caused and bubbles are generated. Further, when the single-phase melt is injected into the mold 28, there is also a method of increasing the foaming amount by accelerating the pressure reduction in the mold by widening the cavity.
  • Example 1 Dry blend of 75.5% by weight of polypropylene as polyolefin, 3% by weight of polylactic acid, 1% by weight of modified polyolefin containing carbonyl group in the molecule, 20% by weight of talc as layered silicate, and 0.5% by weight of boron nitride as filler And it knead
  • the obtained foaming resin composition was a resin composition in which polylactic acid particles were dispersed in polypropylene.
  • the pelletized foaming resin composition obtained in a supercritical injection molding machine (manufactured by Toshiba Machine Co., Ltd.) is charged and impregnated with the supercritical fluid while dissolving the foaming resin composition at a cylinder temperature of 200 ° C.
  • a foam molded article was obtained by the core back method using supercritical injection molding.
  • a supercritical fluid of nitrogen was used as the supercritical fluid, the filling amount was 0.1% by weight, and the filling pressure was 16 MPa.
  • the molding conditions were a screw back pressure of 15 MPa, an injection speed of 100 mm / second, and a mold temperature of 50 ° C.
  • the filling amount (unit: wt%) of the supercritical fluid can be calculated by the following formula (1). [(Supercritical fluid flow rate ⁇ supercritical fluid inflow time ⁇ conversion factor 27.8) ⁇ weight of foaming resin composition] ⁇ 100 (1)
  • the obtained foamed molded product was a foamed molded product having skin layers on both sides of the foamed layer.
  • Example 2 A foaming resin composition and a foamed molded article were produced in the same manner as in Example 1 except that the blending amount of each blending raw material was changed to the amount shown in Table 2.
  • Table 2 lists the content of each blended raw material with respect to the entire foaming resin composition.
  • the moldability of the foaming resin composition was evaluated based on the fluidity during injection molding and the cooling and solidification property after injection molding.
  • the case where the fluidity at the time of injection molding and the cooling and solidification property after injection molding were good was evaluated as ⁇ , and the case where either the fluidity at the time of injection molding or the cooling and solidification property after injection molding was bad was marked as x.
  • the evaluation of the fluidity at the time of injection molding is that the foaming resin composition is injected 20 times at an injection pressure of 100 MPa or less, and it is judged that the fluidity is good when no filling is confirmed, and the unfilling is confirmed once or more. It was judged that the liquidity was poor.
  • Cooling and solidification after injection molding is evaluated by cooling with a mold set at 50 ° C. for 1 minute, and when the foamed molded product is taken out from the mold, the deformation is visually confirmed, and when no deformation is confirmed, cooling is performed. When the solidification was good and deformation was confirmed, it was judged that the cooling solidification was poor.
  • a plate-shaped mold having a length of 80 mm, a width of 80 mm, and a thickness of 2 mm was used for both the evaluation of fluidity and the evaluation of cooling and solidification.
  • the cross section of the foamed foamed molded article was observed with SEM (Hitachi High-Technologies Corp., S-4800) to confirm the state of the foamed particles in the foamed layer.
  • the foamability is evaluated by observing the foamed molded body from the cross section, and there are 100 or more foamed particles in the range of 1 mm length and 1 mm width of the foamed layer, and an average particle of 100 arbitrarily selected foamed particles. The case where the diameter was 100 ⁇ m or less was marked as ⁇ , and the case where the average particle diameter of the expanded particles was larger than 100 ⁇ m was marked as x.
  • Microwave oven suitability of the foamed molded product is defined by 7.4 S2029 7.4 heat resistance test (display heat resistance temperature 120 ° C.), 7.10 microwave oven high frequency suitability test, and 7. The test was performed by the method based on the 11 microwave oven durability test. The case where it matched with any test was set as (circle), and the case where it did not fit in any test was set as x.
  • Foamed molded body 11 Skin layer (outer skin layer) 12 Foam layer 20 Molding device 21 Hopper 22 Cylinder 23 Screw 24 Nozzle 25 Cylinder 26 Supercritical fluid generator 27 Injection controller 28 Mold

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、分散性及び成形性に優れた発泡用樹脂組成物を提供する。本発明の発泡用樹脂組成物は、ポリオレフィンと、ポリ乳酸と、分子内にカルボニル基を含む変性ポリオレフィンと、層状ケイ酸塩と、フィラーとを含み、上記ポリオレフィンは、ポリプロピレン及び/又はポリエチレンを含み、樹脂組成物全体に対する含有量が30重量%以上、80重量%以下であり、上記ポリ乳酸は、樹脂組成物全体に対する含有量が3重量%以上、40重量%以下であり、上記分子内にカルボニル基を含む変性ポリオレフィンは、樹脂組成物全体に対する含有量が1重量%以上、20重量%以下であり、上記層状ケイ酸塩は、樹脂組成物全体に対する含有量が10重量%以上、40重量%以下であり、上記フィラーは、上記層状ケイ酸塩の密度に対して0.20g/cm以上異なる密度を有し、樹脂組成物全体に対する含有量が0.01重量%以上、0.5重量%以下である。

Description

発泡用樹脂組成物及び発泡成形体
本発明は、発泡用樹脂組成物及び発泡成形体に関する。
発泡成形体は、一般的に樹脂組成物を発泡させることで得られ、軽量化、コスト削減ができ、また、断熱性をもたせることができる。そのため、食品用容器、日用品、家庭用電化製品等の様々な用途に用いられている。特に、発泡成形体を食品用容器等に用いる場合には、電子レンジ等による加熱に耐えられるような耐熱性を有することが求められる。更に、近年、環境に配慮した発泡成形体が注目されており、ポリオレフィンとポリ乳酸とを混合した樹脂組成物等を発泡させた発泡成形体が検討されている。
例えば、特許文献1では、ポリ乳酸とポリオレフィン系樹脂、カルボン酸ビニルエステル変性ポリオレフィン樹脂からなる組成物を特定の割合で配合することで、耐熱性に優れ、良好な機械的特性を有する外観美麗なポリ乳酸発泡体が得られることが開示されている。また、特許文献2では、脂肪酸ポリエステルとポリオレフィンと官能基含有水添ジエン重合体とを含有する樹脂組成物を、発泡剤を用いて発泡成形することで、柔軟性、可とう性及び発泡セル状態に優れた発泡成形体が得られることが記載されている。
特許第5446261号公報 特開2012-229416号公報
発泡成形体は、発泡によって形成された気泡(以下、「発泡粒子」ともいう)がその内部に均一に分布していることが重要であり、発泡粒子の分布が不均一であると、発泡成形体の表面の欠陥、強度の低下等を招く。発泡成形体において、均一に発泡させるためには、発泡させる前の樹脂組成物が均一に分散していることが必要である。しかしながら、ポリオレフィンとポリ乳酸のような互いに溶解しない非相溶系のポリマー同士を用いる場合には、均一に分散させることが困難であり、樹脂組成物の分散性を向上させるために更なる検討の余地があった。
本発明者らは、バイオマスポリマーであるポリ乳酸を用いて環境負荷の少ない発泡成形体を得る方法について検討を行い、互いに溶解しない非相溶系のポリマー同士の界面が発泡核としての効果が高いことに着目し、非相溶系であるポリオレフィンとポリ乳酸とを分散させることで、発泡性に優れた発泡成形体が得られることを見出した。発泡成形体の発泡性が優れていると、発泡成形体の内部に粒子径の小さい発泡粒子を多数発生させることができる。更に、ポリオレフィンとポリ乳酸との分散性を高めることで、発泡粒子の発泡粒子径をより小さくすることができ、得られる発泡成形体の耐熱性が向上することを見出した。
そこで、本発明者らは、ポリオレフィンとポリ乳酸との分散性を更に向上させるために、相溶化剤として分子内にカルボニル基を含む変性ポリオレフィンを併用することで、ポリオレフィンとポリ乳酸との間に界面を形成し、分散性を高めることを検討した。更に、本発明者らは、種々の検討を行い、層状ケイ酸塩を添加することで、混合時のせん断力が向上し、ポリオレフィンとポリ乳酸との分散性が向上することを見出した。
その一方で、本発明者らは、層状ケイ酸塩の添加量が多すぎると、相溶化剤と層状ケイ酸塩とが作用するため、ポリオレフィンとポリ乳酸との分散性が低下することを見出した。本発明者らは、上記課題を解決すべく鋭意検討した結果、樹脂組成物にごく少量のフィラーを添加することで、過剰量の層状ケイ酸塩を添加せずとも、ポリオレフィンとポリ乳酸との分散性が向上することを見出した。特に、層状ケイ酸塩の密度に対して0.20g/cm以上異なる密度を有するフィラーを用いた場合に効果が高いことを見出し、本発明を完成した。
本発明の発泡用樹脂組成物は、ポリオレフィンと、ポリ乳酸と、分子内にカルボニル基を含む変性ポリオレフィンと、層状ケイ酸塩と、フィラーとを含み、上記ポリオレフィンは、ポリプロピレン及び/又はポリエチレンを含み、樹脂組成物全体に対する含有量が30重量%以上、80重量%以下であり、上記ポリ乳酸は、樹脂組成物全体に対する含有量が3重量%以上、40重量%以下であり、上記分子内にカルボニル基を含む変性ポリオレフィンは、樹脂組成物全体に対する含有量が1重量%以上、20重量%以下であり、上記層状ケイ酸塩は、樹脂組成物全体に対する含有量が10重量%以上、40重量%以下であり、上記フィラーは、上記層状ケイ酸塩の密度に対して0.20g/cm以上異なる密度を有し、樹脂組成物全体に対する含有量が0.01重量%以上、0.5重量%以下であることを特徴とする。
本発明の発泡成形体は、本発明の発泡用樹脂組成物を発泡させて成形したことを特徴とする。
上記発泡成形体は、上記発泡用樹脂組成物と超臨界流体とを混合して発泡させたものであることが好ましい。
上記発泡成形体は、上記発泡用樹脂組成物を射出成形して得られたことが好ましい。
本発明の発泡用樹脂組成物は、分散性及び成形性に優れる。本発明の発泡成形体は、上述した特性を有する発泡用樹脂組成物を発泡させて成形したため、耐熱性、強度及び軽量性に優れた発泡成形体を提供することができる。
本発明の発泡成形体の断面模式図である。 発泡成形体の作製に使用する成形装置の一例を説明するための模式図である。
本発明の発泡用樹脂組成物は、ポリオレフィンと、ポリ乳酸と、分子内にカルボニル基を含む変性ポリオレフィンと、層状ケイ酸塩と、フィラーとを含み、上記ポリオレフィンは、ポリプロピレン及び/又はポリエチレンを含み、樹脂組成物全体に対する含有量が30重量%以上、80重量%以下であり、上記ポリ乳酸は、樹脂組成物全体に対する含有量が3重量%以上、40重量%以下であり、上記分子内にカルボニル基を含む変性ポリオレフィンは、樹脂組成物全体に対する含有量が1重量%以上、20重量%以下であり、上記層状ケイ酸塩は、樹脂組成物全体に対する含有量が10重量%以上、40重量%以下であり、上記フィラーは、上記層状ケイ酸塩の密度に対して0.20g/cm以上異なる密度を有し、樹脂組成物全体に対する含有量が0.01重量%以上、0.5重量%以下であることを特徴とする。
ポリオレフィンとポリ乳酸とは非相溶系であるため、混合しても互いに溶解せず、界面が形成される。この界面が発泡核として作用する。上記両成分に、カルボニル基を含む変性ポリオレフィンを添加することで、上記両成分を相溶化し分散しやすくすることができる。しかしながら、ポリオレフィンとポリ乳酸とカルボニル基を含む変性ポリオレフィンとを混合しただけでは、混合時のせん断力が低いため、ポリオレフィン及びポリ乳酸の分散は不充分である。そこで、更に、層状ケイ酸塩及びごく微量のフィラーを添加することで、ポリオレフィンとポリ乳酸との分散性を改善し、発泡用樹脂組成物中に発泡核を高分散させることができる。
上記ポリオレフィンは、ポリプロピレン及び/又はポリエチレンを含む。
上記ポリオレフィンは、ポリプロピレンとポリエチレンとの両方を含んでもよいし、いずれか一方を含んでもよい。
上記ポリプロピレンのメルトマスフローレート(MFR)は、好ましくは5~100g/10分、より好ましくは10~50g/10分である。MFRは、JIS K7210に準拠し、温度230℃、荷重21.2Nで測定した数値である。
上記ポリエチレンのMFRは、好ましくは5~100g/10分、より好ましくは10~50g/10分である。MFRは、JIS K7210に準拠し、温度190℃、荷重21.2Nで測定した数値である。
上記ポリオレフィンは、ポリプロピレン及び/又はポリエチレンのみを含むものであってもよいが、ポリプロピレン及びポリエチレン以外の他のポリオレフィンを含んでもよい。
上記他のポリオレフィンとしては、例えば、α-オレフィンの単重合体、エチレン-プロピレン共重合体、エチレン-αオレフィン共重合体、及び、プロピレン-αオレフィン共重合体等が挙げられる。上記α-オレフィンとしては、例えば、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、3-エチル-1-ペンテン、1-オクテン、1-デセン、及び、1-ウンデセン等の炭素数4~12のα-オレフィンが挙げられる。
上記ポリオレフィンの溶融粘度(220℃)は、150Pa・S以上、400Pa・S以下であることが好ましい。上記ポリオレフィンの溶融粘度のより好ましい下限は200Pa・Sであり、より好ましい上限は300Pa・Sである。溶融粘度は、例えば、株式会社島津製作所製、フローテスター CFT-500Dを用いて測定することができる。具体的には、測定対象となる樹脂を所定温度に加熱し流動化させ、キャピラリーダイ(内径φ1mm、長さ10mm)を通して、所定面圧を1MPaとしたピストンによってシリンダから押し出し、ピストンの移動量と、かかった時間により粘度特性を評価することができる。
上記ポリオレフィンは、樹脂組成物全体に対する含有量が30重量%以上、80重量%以下である。
上記ポリオレフィンの樹脂組成物全体に対する含有量が、30重量%未満であると、発泡用樹脂組成物の流動性、固化速度が低下し、成形性が悪くなり、80重量%を超えると、発泡性が悪くなり、得られる発泡成形体の表面に凹凸が生じ、外観を損なう。また、発泡用樹脂組成物と超臨界流体とを混合する場合には、発泡用樹脂組成物に超臨界流体が含浸しにくくなる。
上記ポリオレフィンの樹脂組成物全体に対する含有量の好ましい下限は35重量%、好ましい上限は70重量%である。
上記ポリ乳酸は、L-乳酸又はD-乳酸の単重合体、L-乳酸及びD-乳酸の共重合体、又は、これらの単重合体及び/又は共重合体の混合物である。乳酸の鏡像異性体比率及び鏡像異性体が共重合する方法(ランダム、ブロック、グラフトなど)、又は、結晶核剤を添加する方法により得られた結晶性が異なるポリ乳酸を選択できる。
上記ポリ乳酸の溶融粘度(220℃)は、150Pa・S以上、400Pa・S以下であることが好ましい。上記ポリ乳酸の溶融粘度のより好ましい下限は200Pa・Sであり、より好ましい上限は300Pa・Sである。上記ポリ乳酸の溶融粘度は、上記ポリオレフィンの溶融粘度と同様に測定することができる。
上記ポリ乳酸は、樹脂組成物全体に対する含有量が3重量%以上、40重量%以下である。
上記ポリ乳酸の樹脂組成物全体に対する含有量が、3重量%未満であると発泡用樹脂組成物を発泡させて成形した発泡成形体の発泡性が不充分となり、40重量%を超えると発泡用樹脂組成物の流動性、固化速度が低下し、成形性が悪くなる。
上記ポリ乳酸の樹脂組成物全体に対する含有量の好ましい下限は8重量%、好ましい上限は30重量%である。
上記ポリオレフィンの含有量と上記ポリ乳酸の含有量を上記範囲とすることで、発泡用樹脂組成物の流動性を調整し、成形性を良好にすることができる。
上記ポリオレフィンとポリ乳酸との溶融粘度差は、200Pa・S以下であることが好ましい。本発明者らは、上記ポリオレフィンとポリ乳酸との溶融粘度差が200Pa・S以下であると、両成分が混合しやすくなること、更に、層状ケイ酸塩及び少量のフィラーを添加することで、溶融混合時のせん断力が向上し、ポリオレフィンとポリ乳酸との混合状態を良好とし、かつ、分散性を向上できることを見出した。ポリオレフィンとポリ乳酸との溶融粘度差のより好ましい上限は150Pa・Sである。
非相溶系のポリマー同士を混合する方法としては、両成分間に化学結合を形成させる方法、又は、同一ポリマー間で架橋構造を形成させる方法等を用いることがあり、ポリ乳酸を用いて発泡成形体を得る場合には、例えば、金属錯体等の合成触媒、ラジカル発生剤等を用いて、ポリ乳酸を合成しながら混練を行う反応押出(リアクティブプロセッシング)が用いられることがある。本発明は、ポリオレフィンとポリ乳酸との界面を発泡核として作用させるものであり、ポリ乳酸を合成しながら混練を行う反応押出とは異なり樹脂組成物中に合成触媒、ラジカル発生剤等を添加する必要はない。
なお、ポリ乳酸の反応押出の例としては、例えば、合成触媒として2-エチルへキサン酸スズを用い、酸化防止剤(例えば、チバスペシャルティケミカルズ社のイルガノックス1010)を添加してL-ラクチドとε-カプロラクトンを反応させる方法、ジクミルパーオキサイド等のラジカル発生剤を用いて、ポリ乳酸とポリエチレングリコールを反応させる方法、ラジカル発生剤を用いて、ポリ乳酸にポリカーボネート、ポリブチレンアジペートテレフタレート(PBAT)、ポリカプロラクトン(PCL)、ポリブチレンサクシネート(PBS)、ポリブチレンサクシネートアジペート(PBSA)等をグラフト重合させる方法等が挙げられる。
上記分子内にカルボニル基を含む変性ポリオレフィンは、例えば、ポリオレフィンに不飽和カルボン酸、不飽和カルボン酸のエステル、又は、不飽和カルボン酸の無水物を付加反応することによって得られるものが挙げられる。不飽和カルボン酸としては、例えば、マレイン酸、フマル酸、及び、イタコン酸等が挙げられる。不飽和カルボン酸のエステルとしては、例えば、マレイン酸モノメチルエステル、マレイン酸モノエチルエステル、マレイン酸ジエチルエステル、及び、フマル酸モノメチルエステル等が挙げられる。不飽和カルボン酸の無水物としては、例えば、無水イタコン酸、及び、無水マレイン酸等が挙げられる。上記分子内にカルボニル基を含む変性ポリオレフィンとしては、無水マレイン酸変性ポリオレフィン、グリシジルメタクリレート変性ポリオレフィン等が挙げられる。上記分子内にカルボニル基を含む変性ポリオレフィンは、単独で用いてもよく、2種以上を併用してもよい。
上記分子内にカルボニル基を含む変性ポリオレフィンは、オレフィンとビニルモノマーとの共重合体であってもよい。オレフィンとビニルモノマーとの共重合体としては、例えば、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エチル共重合体、及び、エチレン-(メタ)アクリル酸メチル共重合体等が挙げられる。なお、(メタ)アクリル酸は、アクリル酸及びメタクリル酸を表す。ただし、エチレン-酢酸ビニル共重合体等の酢酸ビニルを重合して得られる化合物は、分解して臭気を発するため、特に、発泡用樹脂組成物を食品用容器、日用品、家庭用電化製品等に用いる場合には適さない。
上記分子内にカルボニル基を含む変性ポリオレフィンのMFRは、好ましくは0.1~100g/10分、より好ましくは0.3~50g/10分である。MFRは、JIS K7210に準拠し、温度230℃、荷重21.2Nで測定した数値である。
上記分子内にカルボニル基を含む変性ポリオレフィンは、樹脂組成物全体に対する含有量が1重量%以上、20重量%以下である。
上記分子内にカルボニル基を含む変性ポリオレフィンの樹脂組成物全体に対する含有量が上記範囲であると、非相溶系である上記ポリオレフィンと上記ポリ乳酸との間に界面を形成し、両成分の分散性を向上させることができる。上記分子内にカルボニル基を含む変性ポリオレフィンの樹脂組成物全体に対する含有量が、1重量%未満であるとポリオレフィンとポリ乳酸との間に界面を形成することができないために、得られる発泡成形体の発泡性が低下し、20重量%を超えると、臭気の発生、着色、成形性の悪化、又は、吸水率の増大が引き起こされる。
上記分子内にカルボニル基を含む変性ポリオレフィンの樹脂組成物全体に対する含有量の好ましい下限は3重量%、好ましい上限は12重量%である。
上記層状ケイ酸塩としては、例えば、パイロフィライト、タルク、カオリン(カオリナイト)、モンモリロナイト、魚眼石、マーガライト、プレナイト、又は、マイカ(雲母)等が挙げられ、特に、タルク、カオリン、モンモリロナイト、又は、マイカ(雲母)が好適に用いられる。上記層状ケイ酸塩は、単独で用いてもよく、2種以上を併用してもよい。
上記層状ケイ酸塩は、樹脂組成物全体に対する含有量が10重量%以上、40重量%以下である。
上記層状ケイ酸塩の樹脂組成物全体に対する含有量が、10重量%未満であると混合時のせん断力を向上させる効果が充分に得られないため、ポリオレフィンとポリ乳酸とを充分に分散させることができず、40重量%を超えると、発泡用樹脂組成物の成形性が低下する。
上記層状ケイ酸塩の樹脂組成物全体に対する含有量の好ましい下限は15重量%、好ましい上限は35重量%である。
上記フィラーは、上記層状ケイ酸塩の密度に対して0.20g/cm以上異なる密度を有するものであればよく、発泡用樹脂組成物に含まれる他の成分、すなわちポリオレフィン、ポリ乳酸、分子内にカルボニル基を含む変性ポリオレフィン、層状ケイ酸塩とは異なる化合物であれば、無機材料から構成される無機フィラーであってもよく、有機材料から構成される有機フィラーであってもよい。上記フィラーによれば、層状ケイ酸塩の添加による分散性向上の効果を充分に引き出すことができる。上記フィラーと上記層状ケイ酸塩との密度の差は、0.25g/cm以上であることがより好ましく、0.30g/cm以上であることが更に好ましい。また、上記フィラーの密度は、上記層状ケイ酸の密度より大きくてもよいし、小さくてもよい。上記フィラーの密度及び上記層状ケイ酸塩の密度は、ピクノメーター法により測定することができる。
上記無機フィラーとしては、例えば、酸化マグネシウム、酸化カルシウム等の金属酸化物、グラファイト、カーボンブラック、二硫化モリブデン、二硫化タングステン、炭酸カルシウム、シリカ、シリカゲル、ゼオライト、窒化ホウ素、及び、アルミナ等を含むフィラーが挙げられる。
上記有機フィラーとしては、例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂、超高分子量ポリエチレン、電子線架橋型ポリエチレン、粉末セルロース、芳香族ポリアミド、脂肪族ポリアミド、炭化ケイ素、アクリル樹脂、フェノール樹脂、及び、メラミン樹脂等を含むフィラーが挙げられる。なお、上記超高分子量ポリエチレン及び電子線架橋型ポリエチレンは、融点以上に加熱し溶融状態となっても極めて流動性が低いため、メルトマスフローレート(MFR)測定では数値評価ができない。
上記フィラーは、樹脂組成物全体に対する含有量が0.01重量%以上、0.5重量%以下である。
上記フィラーの樹脂組成物全体に対する含有量が、0.01重量%未満であるとポリオレフィンとポリ乳酸の分散性、及び、得られる発泡成形体の発泡性が低下し、0.5重量%を超えると得られる発泡成形体の発泡性が低下する。
上記フィラーの樹脂組成物全体に対する含有量の好ましい上限は、0.3重量%である。
本発明の発泡用樹脂組成物の製法は特に限定されるものではないが、公知の方法を用いることができる。例えば、単軸又は多軸の各種押出機により各成分の混合物を溶融混練する方法が挙げられる。各成分を一括で混練してもよく、任意の成分を混練した後、残りの成分を添加して混練してもよい。
上記発泡用樹脂組成物を発泡させて成形することで、発泡成形体が得られる。上記発泡用樹脂組成物は、層状ケイ酸塩及びフィラーを添加し、ポリオレフィンとポリ乳酸との分散性が向上されていることから、これを発泡させて得られた発泡成形体の内部には、微細な気泡を均一に存在させることができる。このため、上記発泡成形体は、耐熱性、強度及び軽量性に優れている。
上記発泡成形体は、発泡成形体の表面にランダムな模様、色彩又は文字等を施す場合、上記発泡用樹脂組成物に顔料フィラー、カラーマスターバッチ等を添加することできる。
上記発泡成形体は、食品用容器、日用品、及び、家庭用電化製品に好適に用いられる。上記発泡成形体は、優れた耐熱性を有し、JIS S2029の7.4耐熱性試験(表示耐熱温度120℃)、7.10電子レンジ高周波適正性試験、及び、7.11電子レンジ耐久性試験に適合する。そのため、上記発泡成形体からなる食品用容器は、電子レンジによる加熱又は調理に用いることができる。また、耐熱性に優れ、高温下でも変形し難いため、日用品、及び、家庭用電化製品にも好適に用いられる。
上記発泡成形体は、上記発泡用樹脂組成物と超臨界流体とを混合して発泡させたものであることが好ましい。上記発泡用樹脂組成物は、互いに溶解しないポリオレフィンとポリ乳酸との高分散化によって形成された微細な界面を有する。そのため、超臨界流体を用いた発泡において上記界面が発泡起点となり、発泡成形体の内部に微細な気泡を均一に存在させることができ、耐熱性、強度及び軽量性等の特性が充分に発揮される。上記超臨界流体としては、例えば、二酸化炭素、窒素、アルゴン、及び、ヘリウム等の不活性ガスの超臨界流体が挙げられる。なかでも、二酸化炭素、又は、窒素の超臨界流体が好ましく、窒素の超臨界流体がより好ましい。
上記超臨界流体を用いた発泡成形体の製造方法は、まず、溶解した発泡用樹脂組成物に高圧力下で超臨界流体を注入し攪拌することで、発泡用樹脂組成物と超臨界流体との単一相溶解物を得る。次に、減圧することで、単一相溶解物中の超臨界流体が気体へ相転移するため、気泡が発生する。発泡起点が均一に多数存在する場合には、微細な発泡粒子を多数含む発泡成形体となる。これにより、発泡用樹脂組成物が発泡し、微細な発泡粒子を有する発泡成形体が得られる。
上記発泡成形体は、上記発泡用樹脂組成物を射出成形して得られたことが好ましい。特に、上記発泡成形体は、上記発泡用樹脂組成物に超臨界流体を含浸しながら射出成形を行なう方法(以後、超臨界射出成形ともいう。)により得られたことが好ましい。上記発泡用樹脂組成物は、超臨界射出成形により、上記発泡成形体を精密な形状、及び、多彩な形状に加工することができる。中でも、超臨界射出成形において、金型の空洞部分(キャビティ)内に上記発泡用樹脂組成物を溶融した状態で充填した後、冷却固化が進行する前に金型の一部を動かすことによってキャビティを強制的に広げ急激な圧力減少を引き起こす方法(以後、コアバック法)により発泡させることが好ましく、コアバック法を用いることにより、発泡量を大幅に増大させることができる。
図1は、本発明の発泡成形体の断面模式図である。本発明の発泡用樹脂組成物と超臨界流体とを混合し、その後射出成形して発泡させることで、図1に示した発泡成形体10が得られる。発泡成形体10は、発泡層12の両面にスキン層(外皮層)11を有する。発泡層12は、均一な発泡粒子を有する領域をいい、スキン層11は、発泡成形体の表面側に発泡粒子が形成されていない領域をいう。発泡成形体10は、表面がスキン層11であるため、発泡成形体10の強度を高くすることができ、また、表面を平滑にすることができる。更に、中心部分が発泡層12であるため、軽量化できるだけではなく、熱が伝わり難くなるため、発泡成形体10の耐熱性が向上する。
上記発泡成形体の厚さは、0.2~3.0mmであることが好ましい。上記発泡成形体の厚さが0.2mm未満であると、発泡しないことがあり、3.0mmを超えると表面に凹凸が生じ、外観を損なうことがある。本発明の発泡用樹脂組成物によれば、従来の発泡用樹脂組成物よりも発泡性及び成形性に優れるので、従来よりも薄くしても、実用上充分な耐熱性及び強度が確保された発泡成形体を製造することができる。
上記発泡層は、発泡成形体の断面を観察した場合に、発泡層の1mm×1mmの範囲に発泡粒子を100個以上有することが好ましく、任意に選択した100個の発泡粒子の平均粒子径が100μm以下であることが好ましい。発泡粒子の測定は、走査型電子顕微鏡(SEM)で行うことができ、例えば、株式会社日立ハイテクノジーズ製、S-4800等を用いることができる。
上記発泡用樹脂組成物と上記超臨界流体とを混合すること、及び、上記発泡用樹脂組成物を発泡させて成形することは、例えば、射出成形機と超臨界流体発生機とが連結された装置を用いて行うことができる。射出成形機と超臨界流体発生機とが連結された装置としては、例えば、MuCell射出成形機(MuCellはTrexel.Co.,Ltd.の登録商標)等が挙げられる。
図2は、発泡成形体の作製に使用する成形装置の一例を説明するための模式図である。図2に示すように、成形装置20は、材料を投入するホッパ21、スクリュ23を備えたシリンダ22、ノズル24を備える射出成形機に、注入制御部27を介してボンベ25及び超臨界流体発生部26が接続されている。
製法の具体例としては、まず、上記ポリオレフィン、ポリ乳酸、分子内にカルボニル基を含む変性ポリオレフィン、層状ケイ酸塩、及び、フィラーを200℃以上の設定温度とした二軸押出機で溶融混合させ、ペレット状の発泡用樹脂組成物を作製する。次に、得られた上記ペレット状の発泡用樹脂組成物をホッパ21に投入し、一般的な射出成形の手順に従ってスクリュ23を回転させ上記ペレット状の発泡用樹脂組成物を溶解及び計量する。ペレット状の発泡用樹脂組成物の溶解及び計量中に、ボンベ25及び超臨界流体発生部26に接続された注入制御部27を介して、シリンダ22内に超臨界流体を注入し、スクリュ23を回転させることで、発泡用樹脂組成物の溶融物に超臨界流体を混合及び含浸することで、単一相溶解物とする。計量された上記単一相溶解物をスクリュ23でノズル24側に搬送し、金型28に射出する。金型内での圧力損失により、超臨界流体は臨界圧力に達した時点で気体への相転移が引き起こされ気泡が発生する。更に、上記単一相溶解物を金型28に射出する際に、キャビティを広げることで金型内での圧力減少を加速させ発泡量を増大させる方法もある。
以下、本発明について実施例を掲げてさらに詳しく説明するが、本発明はこれらの実施例のみに限定されるものではない。
(配合原料)
下記の実施例及び比較例において、発泡用樹脂組成物を調製するために使用した配合原料を表1に示した。
Figure JPOXMLDOC01-appb-T000001
(実施例1)
ポリオレフィンとしてポリプロピレン75.5重量%、ポリ乳酸3重量%、分子内にカルボニル基を含む変性ポリオレフィン1重量%、層状ケイ酸塩としてタルク20重量%、フィラーとして窒化ホウ素0.5重量%をドライブレンドし、二軸押出機(日本製鋼所社製、TEX30)を使って温度設定220℃で混練し、ペレット状の発泡用樹脂組成物を得た。得られた発泡用樹脂組成物は、ポリ乳酸の粒子がポリプロピレン中に分散した樹脂組成物であった。
次に、超臨界射出成形機(東芝機械社製)に得られたペレット状の発泡用樹脂組成物を投入し、シリンダ温度200℃で発泡用樹脂組成物を溶解させながら超臨界流体を含浸し、超臨界射出成形を用いてコアバック法により発泡成形体を得た。超臨界流体には窒素の超臨界流体を使用し、充填量を0.1重量%、充填圧力16MPaとした。成形条件は、スクリュ背圧15MPa、射出速度100mm/秒、金型温度50℃とした。縦80mm、横80mm、厚さ2mmの板形状に成形し、発泡成形体とした。なお超臨界流体の充填量(単位:重量%)は、下記式(1)で計算することができる。
[(超臨界流体の流量×超臨界流体の流入時間×換算係数27.8)÷発泡用樹脂組成物の重量]×100  (1)
得られた発泡成形体は、図1に示したように、発泡層の両面にスキン層を有する発泡成形体であった。
(実施例2~14及び比較例1~8)
各配合原料の配合量を表2に示した量に変更した以外は、実施例1と同様にして発泡用樹脂組成物及び発泡成形体を作製した。表2には、各配合原料の発泡用樹脂組成物全体に対する含有量を記載した。
Figure JPOXMLDOC01-appb-T000002
(発泡用樹脂組成物及び発泡成形体の評価)
実施例及び比較例で作製した発泡用樹脂組成物について、分散性及び成形性を評価した。また、実施例及び比較例で作製した発泡成形体について、発泡性及び電子レンジ適性を評価した。結果を表3に示した。
(1)発泡用樹脂組成物の分散性
発泡用樹脂組成物を、偏光顕微鏡(カールツァイス株式会社製、Axio Imager A1m Pol Axio Cam MRc5)で観察し、ポリオレフィンとポリ乳酸との分散状態を確認した。
分散性の評価は、ポリ乳酸粒子の平均粒子径が10μm以下である場合を○とし、ポリ乳酸粒子の平均粒子径が10μmより大きい場合を×とした。
(2)発泡用樹脂組成物の成形性
発泡用樹脂組成物の成形性は、射出成形時の流動性、及び、射出成形後の冷却固化性で評価した。射出成形時の流動性及び射出成形後の冷却固化性がよい場合を○、射出成形時の流動性又は射出成形後の冷却固化性のいずれかが悪い場合を×とした。
射出成形時の流動性の評価は、発泡用樹脂組成物を射出圧力100MPa以下で20回射出し、未充填が確認されなかった場合に流動性がよいと判断し、未充填が1回以上確認された場合に流動性が悪いと判断した。射出成形後の冷却固化性の評価は、50℃に設定した金型で1分間冷却し、発泡成形体を金型から取り出す際に目視で変形を確認し、変形が確認されなかった場合に冷却固化性がよい、変形が確認された場合に冷却固化性が悪いと判断した。なお、流動性の評価及び冷却固化性の評価には共に、縦80mm、横80mm、厚さ2mmの板形状の金型を用いた。
(3)発泡成形体の発泡性
発泡成形体の断面を、SEM(日立ハイテクノロジーズ社製、S-4800)で観察し、発泡層における発泡粒子の状態を確認した。
発泡性の評価は、発泡成形体を断面から観察し、発泡層の縦1mm、横1mmの範囲に、発泡粒子が100個以上存在し、かつ、任意に選択した100個の発泡粒子の平均粒子径が100μm以下である場合を○、発泡粒子の平均粒子径が100μmより大きい場合を×とした。
(4)発泡成形体の電子レンジ適性
発泡成形体の電子レンジ適性は、JIS S2029の7.4耐熱性試験(表示耐熱温度120℃)、7.10電子レンジ高周波適正性試験、及び、7.11電子レンジ耐久性試験に準拠した方法で試験を行った。いずれの試験にも適合した場合を○、いずれかの試験に適合しなかった場合を×とした。
Figure JPOXMLDOC01-appb-T000003
10 発泡成形体
11 スキン層(外皮層)
12 発泡層
20 成形装置
21 ホッパ
22 シリンダ
23 スクリュ
24 ノズル
25 ボンベ
26 超臨界流体発生部
27 注入制御部
28 金型

Claims (4)

  1. ポリオレフィンと、ポリ乳酸と、分子内にカルボニル基を含む変性ポリオレフィンと、層状ケイ酸塩と、フィラーとを含み、
    前記ポリオレフィンは、ポリプロピレン及び/又はポリエチレンを含み、樹脂組成物全体に対する含有量が30重量%以上、80重量%以下であり、
    前記ポリ乳酸は、樹脂組成物全体に対する含有量が3重量%以上、40重量%以下であり、
    前記分子内にカルボニル基を含む変性ポリオレフィンは、樹脂組成物全体に対する含有量が1重量%以上、20重量%以下であり、
    前記層状ケイ酸塩は、樹脂組成物全体に対する含有量が10重量%以上、40重量%以下であり、
    前記フィラーは、前記層状ケイ酸塩の密度に対して0.20g/cm以上異なる密度を有し、樹脂組成物全体に対する含有量が0.01重量%以上、0.5重量%以下である
    ことを特徴とする発泡用樹脂組成物。
  2. 請求項1に記載の発泡用樹脂組成物を発泡させて成形したことを特徴とする発泡成形体。
  3. 請求項1に記載の発泡用樹脂組成物と超臨界流体とを混合して発泡させたものであることを特徴とする請求項2に記載の発泡成形体。
  4. 請求項1に記載の発泡用樹脂組成物を射出成形して得られたことを特徴とする請求項2又は3に記載の発泡成形体。
PCT/JP2016/056602 2015-03-18 2016-03-03 発泡用樹脂組成物及び発泡成形体 WO2016147883A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16764713.0A EP3272797B1 (en) 2015-03-18 2016-03-03 Foamable resin composition and molded foam
JP2016518219A JP5993108B1 (ja) 2015-03-18 2016-03-03 発泡用樹脂組成物及び発泡成形体
CN201680013791.9A CN107428981B (zh) 2015-03-18 2016-03-03 发泡用树脂组合物和发泡成型体
US15/556,561 US10377872B2 (en) 2015-03-18 2016-03-03 Foamable resin composition and molded foam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015055193 2015-03-18
JP2015-055193 2015-03-18

Publications (1)

Publication Number Publication Date
WO2016147883A1 true WO2016147883A1 (ja) 2016-09-22

Family

ID=56919985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056602 WO2016147883A1 (ja) 2015-03-18 2016-03-03 発泡用樹脂組成物及び発泡成形体

Country Status (5)

Country Link
US (1) US10377872B2 (ja)
EP (1) EP3272797B1 (ja)
JP (1) JP5993108B1 (ja)
CN (1) CN107428981B (ja)
WO (1) WO2016147883A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6043897B1 (ja) * 2015-11-06 2016-12-14 バンドー化学株式会社 発泡成形品の製造方法及び発泡成形品
JP2017165906A (ja) * 2016-03-17 2017-09-21 バンドー化学株式会社 発泡用樹脂組成物及び発泡成形体

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180319062A1 (en) * 2015-11-06 2018-11-08 Bando Chemical Industries, Ltd. Molded-foam production process and molded foam
JP7132487B2 (ja) * 2018-03-29 2022-09-07 キョーラク株式会社 発泡成形体の製造方法
BR112020023768A2 (pt) * 2018-05-23 2021-02-09 Borealis Ag composição de poliolefina reticulável que compreende um primeiro e um segundo polímeros de olefina
TWI766088B (zh) * 2018-08-31 2022-06-01 薩摩亞商盛隆材料科技有限公司 發泡成型體、鞋體部件以及其製造方法
CN109572130A (zh) * 2018-11-09 2019-04-05 山东大学 一种轻质高强聚乳酸泡沫材料及其制备方法
EP3808802A1 (en) * 2019-10-14 2021-04-21 SHPP Global Technologies B.V. Compositions of improved through-plane thermal conductivity using foam injection molding with core-back technology

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292499A (ja) * 2003-03-25 2004-10-21 Unitika Ltd 微細な気泡を有する熱可塑性樹脂発泡体およびその製造方法
WO2004099315A1 (ja) * 2003-05-12 2004-11-18 Unitika Ltd. 生分解性ポリエステル樹脂組成物及びその製造方法並びにこれを用いてなる発泡体及び成形体
JP2007246610A (ja) * 2006-03-14 2007-09-27 Asahi Kasei Chemicals Corp 耐熱性に優れた脂肪族ポリエステル樹脂組成物、その発泡シート並びに成形品
JP2009185244A (ja) * 2008-02-08 2009-08-20 Unitika Ltd 樹脂組成物およびそれを成形してなる成形体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930537B2 (ja) 1977-09-20 1984-07-27 住友ノ−ガタック株式会社 絵付成形品の製造方法
US20100120932A1 (en) * 2007-04-05 2010-05-13 Toray Industries, Inc. Polylactic acid foam
TW201209087A (en) * 2010-08-25 2012-03-01 Jin-Fu Chen Biomass composite material composition and foaming method thereof
JP5915345B2 (ja) 2011-04-14 2016-05-11 Jsr株式会社 発泡成形体の製造方法およびそれにより得られた発泡成形体、ならびに発泡用樹脂組成物
ES2577147T3 (es) * 2012-10-15 2016-07-13 The Procter & Gamble Company Composición detergente líquida con partículas abrasivas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292499A (ja) * 2003-03-25 2004-10-21 Unitika Ltd 微細な気泡を有する熱可塑性樹脂発泡体およびその製造方法
WO2004099315A1 (ja) * 2003-05-12 2004-11-18 Unitika Ltd. 生分解性ポリエステル樹脂組成物及びその製造方法並びにこれを用いてなる発泡体及び成形体
JP2007246610A (ja) * 2006-03-14 2007-09-27 Asahi Kasei Chemicals Corp 耐熱性に優れた脂肪族ポリエステル樹脂組成物、その発泡シート並びに成形品
JP2009185244A (ja) * 2008-02-08 2009-08-20 Unitika Ltd 樹脂組成物およびそれを成形してなる成形体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6043897B1 (ja) * 2015-11-06 2016-12-14 バンドー化学株式会社 発泡成形品の製造方法及び発泡成形品
JP2017165906A (ja) * 2016-03-17 2017-09-21 バンドー化学株式会社 発泡用樹脂組成物及び発泡成形体

Also Published As

Publication number Publication date
CN107428981B (zh) 2020-11-20
JP5993108B1 (ja) 2016-09-14
EP3272797B1 (en) 2020-12-30
EP3272797A1 (en) 2018-01-24
EP3272797A4 (en) 2018-08-01
US10377872B2 (en) 2019-08-13
JPWO2016147883A1 (ja) 2017-04-27
CN107428981A (zh) 2017-12-01
US20180051151A1 (en) 2018-02-22

Similar Documents

Publication Publication Date Title
JP5993108B1 (ja) 発泡用樹脂組成物及び発泡成形体
WO2017073165A1 (ja) 発泡成形品の製造方法
TWI444417B (zh) Polypropylene resin foamed beads and molded articles thereof
WO2017077764A1 (ja) 発泡成形品の製造方法及び発泡成形品
WO2017104217A1 (ja) 発泡成形品の製造方法、及び、発泡成形品
JP6430684B1 (ja) 食品用容器の製造方法
JP6768251B2 (ja) 発泡用樹脂組成物及び発泡成形体
JP6085729B1 (ja) 発泡成形品の製造方法、及び、発泡成形品
JP6043897B1 (ja) 発泡成形品の製造方法及び発泡成形品
JP6077726B1 (ja) 発泡成形品の製造方法
JP2017094538A (ja) 断熱性食品容器の製造方法
WO2009057826A1 (ja) 樹脂組成物および発泡成形体
JP2011094068A (ja) 射出発泡成形用ポリプロピレン系樹脂組成物及び該樹脂組成物からなる射出発泡成形体
JP6810829B1 (ja) 発泡用樹脂組成物及び発泡成形体
JP2023101170A (ja) 発泡容器の製造方法
JP2019044002A (ja) 射出成形時の発泡性に優れるポリ乳酸含有プロピレン系樹脂組成物及びその発泡成形体
JP2012166522A (ja) ポリプロピレン系樹脂組成物からなる射出発泡成形体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016518219

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764713

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15556561

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016764713

Country of ref document: EP