WO2016147804A1 - 液位検出方法及び液位検出装置、並びにこの液位検出装置を備えた工作機械 - Google Patents

液位検出方法及び液位検出装置、並びにこの液位検出装置を備えた工作機械 Download PDF

Info

Publication number
WO2016147804A1
WO2016147804A1 PCT/JP2016/055054 JP2016055054W WO2016147804A1 WO 2016147804 A1 WO2016147804 A1 WO 2016147804A1 JP 2016055054 W JP2016055054 W JP 2016055054W WO 2016147804 A1 WO2016147804 A1 WO 2016147804A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
level
liquid level
sensor
output
Prior art date
Application number
PCT/JP2016/055054
Other languages
English (en)
French (fr)
Inventor
静雄 西川
勝彦 大野
将隆 阪本
Original Assignee
Dmg森精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dmg森精機株式会社 filed Critical Dmg森精機株式会社
Priority to DE112016001250.0T priority Critical patent/DE112016001250T5/de
Publication of WO2016147804A1 publication Critical patent/WO2016147804A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/265Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors for discrete levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/266Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors measuring circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/80Arrangements for signal processing
    • G01F23/802Particular electronic circuits for digital processing equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/20Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of apparatus for measuring liquid level

Definitions

  • the present invention relates to a liquid level detection method and a liquid level detection device for detecting a liquid level of a liquid stored in a storage tank or the like, and a machine tool including the liquid level detection device.
  • this capacitance type level measuring device includes two elongated electrodes, a main electrode and an auxiliary electrode, which are arranged in parallel, and these two electrodes are placed in a liquid.
  • an appropriate voltage is applied between the main electrode and auxiliary electrode from a signal source, the capacitance is measured from the current that flows, and the liquid level is calculated based on the measured capacitance it is conceivable that.
  • the measurement principle of the liquid level in this capacitance type level measuring device is based on the fact that the value of the capacitance generated between the auxiliary electrode and the main electrode changes depending on the liquid level. That is, the value of the capacitance generated between the auxiliary electrode and the main electrode is proportional to the area of these electrodes and the dielectric constant of the substance interposed between them if the distance between the auxiliary electrode and the main electrode is constant. Therefore, the value of the capacitance generated between the auxiliary electrode and the main electrode is proportional to the change in the dielectric constant difference of the gas or liquid interposed between the auxiliary electrode and the main electrode, that is, the liquid level. Since the alternating current according to the capacitance value, that is, the liquid level flows between the electrodes, the liquid level can be calculated based on the flowing alternating current. .
  • the alternating current flowing in this way is converted into, for example, an alternating voltage, and then further appropriately processed to be converted into a measurement signal indicating the liquid level.
  • the magnitude of the alternating current flowing between the electrodes differs depending on the dielectric constant of the liquid to be measured.
  • the output signal must be calibrated by calibration.
  • the dielectric constant (relative dielectric constant) of water is about 80
  • the dielectric constant (relative dielectric constant) of oil is approximately 2 to 3
  • a coolant supply device that supplies coolant into the machining area.
  • the coolant is water-soluble
  • the liquid level is changed to the conventional capacitance type.
  • the dielectric constant (relative dielectric constant) changes every moment according to the mixed state of the lubricating oil, and the state of the change is not uniform but has diversity. Therefore, in order to accurately measure the coolant level, frequent calibration is required. Conventionally, the operation has been extremely troublesome and troublesome.
  • the present invention has been made in view of the above circumstances, and even when the type of liquid to be measured and the state of contamination of foreign matter change, it is not necessary to perform calibration each time measurement is performed, and the liquid level detection method and liquid It is an object of the present invention to provide a position detecting device and a machine tool including the liquid level detecting device.
  • a method invention according to the present invention for solving the above problems is as follows.
  • a capacitance type detection sensor having a pair of electrodes, wherein a plurality of detection sensors whose output values change according to the dielectric constant of a substance existing around the electrodes are arranged in a line. After immersing the level sensor in the liquid, The output value output from each detection sensor of the level sensor, the output value output from each detection sensor when the level sensor is immersed in the liquid, and the actual liquid of the liquid with respect to the level sensor
  • the present invention relates to a liquid level detection method in which the liquid level of the liquid with respect to the level sensor is estimated based on a correlation parameter that defines a correlation with the position.
  • the device invention is: A capacitance type detection sensor having a pair of electrodes, wherein a plurality of detection sensors whose output values change according to the dielectric constant of a substance existing around the electrodes are arranged in a line.
  • Level sensor Parameter storage that stores correlation parameters that define the correlation between the output value output from each detection sensor and the actual liquid level of the liquid with respect to the level sensor when the level sensor is immersed in the liquid And The output from each detection sensor of the level sensor is received, and the liquid level of the liquid with respect to the level sensor is estimated based on the received output value of each detection sensor and the correlation parameter stored in the parameter storage unit And a liquid level estimation unit.
  • the inventors first create a level sensor in which a plurality of the detection sensors are arranged in a line, and immerse the level sensor in the liquid and compare the output values output from the detection sensors. Therefore, the liquid level can be detected regardless of the type of liquid and the state of foreign matter mixed in the liquid. That is, the output value from the detection sensor immersed in the liquid (that is, the output value according to the dielectric constant of the liquid) and the output value from the detection sensor outside the liquid (that is, according to the dielectric constant of air) This is because it is assumed that the output value is greatly different, and the liquid surface (liquid level) is present between the detection sensors having greatly different output values.
  • the output value output from each detection sensor changes as a whole depending on the liquid level, the output value does not have a significant difference that can identify the liquid level, that is, there is no significant difference. From the output value itself of each of the detection sensors, it was immediately found that it is difficult to estimate the liquid level. This is considered to be due to mutual interference between the electrode pairs arranged in a row and the wiring from the electrode pairs, and improvement is expected by shielding between the wirings, but it is impossible to eliminate them completely. Also, the cost will increase.
  • the output value output from each detection sensor has an output pattern corresponding to the liquid level, including its overall size. And it was thought that the liquid level could be estimated from this output pattern. Needless to say, such an output pattern cannot be obtained with the conventional capacitance type level measuring apparatus constituted by the two electrodes of the auxiliary electrode and the main electrode.
  • the correlation between the output value output from each detection sensor and the actual liquid level of the liquid with respect to the level sensor is defined.
  • Correlation parameters are obtained in advance, and data relating to the obtained correlation parameters are stored in a parameter storage unit, and the level sensor is output from each detection sensor while the level sensor is immersed in the liquid.
  • the liquid level of the liquid relative to the level sensor is estimated based on the output value obtained and the correlation parameter stored in the parameter storage unit.
  • the correlation parameter includes an output pattern from each detection sensor according to the type of liquid and its liquid level, a mixed state in which foreign matter is mixed in the liquid, and an output pattern from each detection sensor according to the liquid level.
  • This is a parameter obtained from the above, regardless of the type of liquid and the mixing state of foreign matter in the liquid, in other words, any type of liquid and the mixing state in which foreign matter is mixed in the liquid Is a parameter for uniquely deriving the liquid level corresponding to the output value from each detection sensor.
  • the liquid level estimation unit in the liquid level estimation unit, the output value output from each detection sensor while the level sensor is immersed in the liquid, and the correlation parameter stored in the parameter storage unit Therefore, the liquid level of the liquid to be measured can be estimated regardless of the type of liquid and the mixing state of foreign matter in the liquid.
  • the correlation parameter is obtained once from this correlation data. If possible, the liquid level of the liquid to be measured can be estimated without the need for troublesome and troublesome calibration work.
  • the arrangement direction of the detection sensors is preferably coincident with the depth direction of the liquid, but the liquid level can be detected. If so, there is no problem even if it is immersed somewhat obliquely.
  • the correlation parameter defines the correlation between the output value from each detection sensor and the actual liquid level, and it is almost impossible for humans to set this by trial and error. It is preferable to set by learning.
  • Data mining means the process of discovering useful new trends, patterns, correlations, etc. by analyzing a large amount of data using statistical and mathematical techniques. Frequent pattern extraction, classification, regression analysis, clustering It is roughly divided into analysis methods such as.
  • the correlation parameter that is, the algorithm for estimating the liquid level can be obtained by machine learning.
  • the correlation parameter can be easily obtained.
  • the correlation parameter includes an output value output from each detection sensor when the level sensor is immersed in the liquid, and the level of the liquid with respect to the level sensor according to the output value. Based on the actual liquid level, it is acquired in advance by supervised machine learning by back-propagation using a neural network applied to data mining, and is stored in the parameter storage unit.
  • liquid level detection apparatus can be used suitably for the coolant supply apparatus of a machine tool, for example.
  • the present invention although it takes time to obtain the correlation data between the output value from each detection sensor and the liquid level according to the assumed liquid type and the contamination state of the foreign matter. Once the correlation parameter can be obtained from this correlation data, the liquid level of the liquid to be measured can be estimated without the need for troublesome and troublesome calibration work.
  • the correlation parameter is calculated by machine learning, especially a data mining method using a neural network model, it will vary depending on the type of liquid, and if foreign matter is mixed in the liquid, the mixed state It is possible to accurately and easily obtain a complicated and difficult correlation (correlation parameter) between the liquid level of the liquid and the output value from each detection sensor, which differs depending on the condition.
  • FIG. 6 is a table showing the relationship between the voltage value output from the level sensor and the actual liquid level when the liquid to be measured is a water-soluble coolant. It is the graph which showed the data of FIG. 4 with the diagram. It is the table
  • the machine tool 1 of the present example includes a coolant supply device 2 that supplies a coolant C to the motion mechanism unit 3.
  • the motion mechanism unit 3 is not particularly limited, and may be any known motion mechanism unit of a machine tool such as a lathe, a machining center, a grinding machine, a hobbing machine, or a broaching machine.
  • the coolant supply device 2 includes a tank 25 for storing the coolant C, a supply pipe 26 having one end connected to the tank 25 and the other end connected to a processing region of the motion mechanism unit 3, and the supply pipe 26. , A supply pump 27 interposed in the middle, a recovery pipe 28 having one end connected to the processing region of the motion mechanism unit 3 and the other end connected to the tank 25, and a coolant C liquid in the tank 25. And a liquid level detecting device 10 for detecting the level.
  • the coolant C in the tank 25 is supplied into the processing region of the motion mechanism section 3 through the supply pipe 26, and the coolant C supplied into the processing region is supplied. Is recovered into the tank 25 through the recovery pipe 28.
  • the liquid level detection device 10 is a device that detects the level of the coolant C in the tank 25, and a level sensor 11 disposed in the tank 25 and data for processing data output from the level sensor 11. It comprises a processing device 15 and a display device 20 for displaying the results processed by the data processing device 15.
  • a processing device 15 and a display device 20 for displaying the results processed by the data processing device 15.
  • the level sensor 11 includes an electrode unit 12 and a signal generation unit 13 as shown in FIGS.
  • the electrode unit 12 has nine capacitance-type detection sensors S1 to S9 each having a pair of electrodes, and these are arranged in a row and at equal intervals in a direction perpendicular to the direction in which the pair of electrodes are arranged in parallel.
  • the electrodes are appropriately fixed to a holding plate and covered with a resin as a whole, and each electrode constituting each of the detection sensors S1 to S9 is connected to the signal generator 13 by a signal line.
  • nine detection sensors S1 to S9 are provided, but the number of detection sensors may be set as appropriate according to the liquid level detection interval, and may be larger or smaller.
  • the signal generator 13 includes an oscillation circuit, an analog multiplexer, a voltage doubler detection circuit, an operational amplifier, and an A / D converter.
  • the oscillation circuit applies a high-frequency voltage (AC signal) of 4 [MHz] between the electrodes of each of the detection sensors S1 to S9, and a high-frequency current (AC signal) flowing between the electrodes is output to the analog multiplexer. Is done.
  • the frequency of the applied high-frequency voltage is f [Hz]
  • the voltage is Vc [V]
  • the capacitance of each electrode is C [F]
  • the analog multiplexer alternatively outputs output signals (AC signals) from the input detection sensors S1 to S9 to the voltage doubler detection circuit, and the voltage doubler detection circuit converts the AC signal into a DC signal. After that, output to the operational amplifier.
  • Vo [V] of each DC signal output from the voltage doubler detection circuit is expressed by the following equation, where the load resistance of the voltage doubler detection circuit is R [ ⁇ ].
  • the operational amplifier performs impedance conversion on the input DC signal (voltage signal), then converts the analog signal into a digital signal by the A / D converter, and then outputs digital data of the voltage value.
  • the signal generation unit 13 performs a process of converting the output signals from the detection sensors S1 to S9 into voltage signals and outputting the digital values to the outside as described above.
  • the output value output from each of the detection sensors S1 to S9 varies depending on the substance existing around each of the pair of electrodes, that is, the dielectric constant between the liquid to be measured and air.
  • the level sensor 11 having the above configuration is immersed in the coolant C so that the arrangement direction of the detection sensors S1 to S9 coincides with the depth direction. In this state, it is disposed in the tank 25.
  • an output value corresponding to the level of the coolant C with respect to the level sensor 11 is obtained from the detection sensors S1 to S9. That is, the output value from the detection sensor immersed in the liquid (that is, the output value according to the dielectric constant of the liquid) and the output value from the detection sensor outside the liquid (that is, according to the dielectric constant of air) The output value is different from the output value, and the output from each of the detection sensors S1 to S9 indicates an output corresponding to the liquid level of the coolant C.
  • the inventors assumed that the output value from the detection sensor immersed in the liquid and the output value from the detection sensor outside the liquid differed greatly, There was no significant difference in the output values from the detection sensors S1 to S9 to the extent that the liquid level could be determined immediately. This is considered to be due to mutual interference between the electrode pairs arranged in a row and the wiring from the electrode pairs, and improvement is expected by shielding between the wirings, but it is impossible to eliminate them completely. Also, the cost will increase.
  • the liquid level 1 to the liquid level 9 mean the liquid level at which the detection sensor corresponding to the number is immersed in the half coolant C.
  • the liquid level 9 is the liquid level at which the detection sensor S9 is half immersed.
  • the liquid level 8 is a liquid level at which the detection sensor S8 is half immersed.
  • the liquid level 0 is when all the detection sensors S1 to S9 are outside the coolant C, that is, the liquid level of the coolant C is below the detection sensor S1.
  • FIG. 4 is a table showing output voltages corresponding to the detection sensors S1 to S9 at the respective liquid levels 0 to 9, and FIG. 5 is a graph showing this.
  • FIG. 6 is a table showing output voltages corresponding to the detection sensors S1 to S9 at the respective liquid levels 0 to 9, and FIG. 7 is a graph showing this.
  • the water-soluble coolant C graph (shown by a solid line) shown in FIG. 5 and the oil-based coolant C graph (shown by a broken line) shown in FIG. 7 are synthesized.
  • the amount of change is small, and most of the data is the data of the liquid level 0 to the liquid level 3 of the water-soluble coolant C. It is difficult to estimate the liquid level corresponding to the type of the coolant C immediately from the output voltage values corresponding to the detection sensors S1 to S9.
  • the lubricating oil used by the said motion mechanism part 3 is in the state mixed with the coolant C.
  • the concentration of the lubricating oil mixed in the coolant C increases with time.
  • the output voltage corresponding to each of the detection sensors S1 to S9 differs greatly depending on whether the liquid to be measured is water or oil.
  • the concentration increases with time
  • the output voltage corresponding to each of the detection sensors S1 to S9 decreases with time.
  • the liquid level of the coolant C is immediately determined from the output voltage corresponding to each of the detection sensors S1 to S9. Is difficult to estimate.
  • the output voltage corresponding to each of the detection sensors S1 to S9 has an output pattern corresponding to each liquid level, including its overall magnitude. And it is thought that a liquid level can be estimated from this output pattern.
  • the level sensor 11 of this example it is difficult to immediately estimate the liquid level corresponding to the liquid to be measured from the output voltages corresponding to the detection sensors S1 to S9.
  • the output voltage corresponding to the detection sensors S1 to S9 has an output pattern corresponding to the type of liquid to be measured and its liquid level. Therefore, the present inventors consider that there is a certain correlation between the type of liquid to be measured and the output voltage from each of the detection sensors S1 to S9 according to the liquid level. It was considered that the liquid level of the liquid to be measured can be estimated based on the correlation parameter and the output voltage from each of the detection sensors S1 to S9 by acquiring the correlation parameter to be defined.
  • the correlation parameter is acquired in advance by machine learning using a neural network model by the data processing device 15, and the correlation parameter and each of the detection sensors S1 to S9 output from the level sensor 11 are obtained.
  • the liquid level of the coolant C in the tank 25 is estimated based on the output voltage corresponding to.
  • the data processing device 15 includes a liquid level estimation unit 16 and a parameter storage unit 17.
  • the parameter storage unit 17 stores output values output from the detection sensors S1 to S9 when the level sensor 11 is immersed in the liquid, and the liquid for the level sensor 11 according to the output values.
  • the correlation parameter that defines the correlation with the actual liquid level is acquired in advance, and the correlation parameter acquired in advance is input from the outside and stored.
  • This correlation parameter is a parameter that can be applied uniformly to various types of liquids, and when liquids are mixed in a certain liquid, such various mixed states of liquids.
  • the output value output from each of the detection sensors S1 to S9 and the level sensor corresponding to the output value 11 is obtained in advance with correlation data between the liquid and the actual liquid level of the liquid, and based on a large number of acquired correlation data, a supervised machine using back propagation using a neural network applied to data mining Calculated by learning.
  • FIG. 9 is a conceptual diagram showing a neural network model in this example, in which S1 to S9 correspond to the detection sensors S1 to S9.
  • FIG. 10 is an explanatory diagram showing an arithmetic algorithm in this neural network model.
  • the above algorithm is used. , And appropriately setting the number of layers in the intermediate layer and the hierarchy thereof, and by supervised machine learning by the backpropagation, the weighting factors hw i, j and kw j and threshold values v j and kv are used as the correlation parameters. Is calculated.
  • the calculated correlation parameters are stored in the parameter storage unit 18, respectively.
  • FIG. 11 shows an example of data related to the weight coefficient hw i, j calculated in this way
  • FIG. 12 shows an example of data related to the threshold value v j
  • FIG. 13 shows a weight coefficient kw
  • FIG. 14 shows an example of data relating to the threshold value kv.
  • the number j of intermediate layers is arbitrary. Generally, the larger the number j of intermediate layers, the better the sensitivity, but there is a problem that the processing time becomes longer. Is preferred.
  • the output values from the detection sensors S1 to S9 which are the correlation data acquired in advance, are input as the input values x i of the algorithm shown in FIG.
  • the output value obtained by appropriately setting the weighting factors hw i, j , kw j and threshold values v j , kv is compared with the true value (liquid level), and the difference is reduced, that is, By repeating the operation of changing the weighting factors hw i, j , kw j and the threshold values v j , kv so as to converge, the weighting factors hw i, j , kw j , which are correlation parameters, and the threshold values v j , The optimum value of kv is set.
  • the liquid level estimation unit 16 receives the output voltage value of each of the detection sensors S1 to S9 output from the signal generation unit 13 of the level sensor 11, and stores the received output voltage value and the parameter storage unit 17 in the received output voltage value.
  • the liquid level of the coolant C is estimated using the correlation parameters, that is, the weighting factors hw i, j and kw j and the threshold values v j and kv. Specifically, the liquid level of the coolant C is estimated using the above formulas 1 to 3.
  • the liquid level estimation unit 16 uses this value as the maximum value of each of the detection sensors S1 to S9. Divide by the output voltage value (in this example, 2500 mV) to obtain a value of 1 or less (see FIG. 16). Thereafter, the liquid level estimation unit 16 uses the value shown in FIG. 16 as an input value, and uses the weighting coefficient hw i, j and the threshold value v j which are correlation parameters stored in the parameter storage unit 17, and First, the output z j in the intermediate layer is calculated according to Equations 1 and 3.
  • the output voltage values shown in FIG. 15 are output voltage values output from the detection sensors S1 to S9 when the coolant C is oily and the liquid level is 5.
  • FIGS. 17 shows a product of the input value x i shown in FIG. 16 and the weighting coefficient hw i, j (correlation parameter) shown in FIG. 11, that is, the value of x i ⁇ hw i, j Show.
  • FIG. 18 shows the sum of x i ⁇ hw i, j , ie, ⁇ x i ⁇ hw i, j , for 1 to 20 of j based on the calculation result of FIG.
  • FIG. 20 shows the calculation result of FIG.
  • the liquid level estimation unit 16 uses the weighting coefficient kw j and the threshold value kv which are correlation parameters stored in the parameter storage unit 17 based on the output z j of the intermediate layer calculated as described above.
  • the output Z of the output layer is calculated according to the equations 2 and 3.
  • the calculation results in the respective calculation processes for calculating the output Z are shown in FIGS.
  • FIG. 21 shows the product of the output z j of the intermediate layer shown in FIG. 20 and the weighting coefficient kw j (correlation parameter) shown in FIG. 13, that is, the value of z j ⁇ kw j Yes.
  • FIG. 21 shows the product of the output z j of the intermediate layer shown in FIG. 20 and the weighting coefficient kw j (correlation parameter) shown in FIG. 13, that is, the value of z j ⁇ kw j Yes.
  • FIG. 21 shows the product of the output z j of the intermediate layer shown in FIG. 20 and the weighting coefficient kw
  • the liquid level estimated by the liquid level estimation unit 16 in this way is displayed on the display device 20.
  • the example shown in FIGS. 15 to 23 is an example in which the coolant C is oily, but according to the liquid level detection device 10 of this example, even if the liquid to be measured is a water-soluble coolant, By using machine learning at the same time, it is possible to obtain a correlation parameter that can be used in common even if it is of another liquid type or a liquid in which foreign matter is mixed, and stores it in the data storage unit 17. If stored, the liquid level estimation unit 16 can estimate the liquid level without newly performing calibration of the correlation parameter even if the target liquid is changed. Since the liquid level detection device 10 has a simple structure as compared with the conventional liquid level detection device, its manufacturing cost is low.
  • the liquid level detection device 10 of the present example although it takes time to obtain correlation data according to the type of liquid assumed and the contamination state of the foreign matter, the correlation data is once correlated from this correlation data. If the parameters can be obtained, the level of the liquid to be measured can be estimated without the need for troublesome and troublesome calibration work.
  • the liquid level estimation unit 16 since the value related to the liquid level estimated by the liquid level estimation unit 16 is displayed on the display device 20, the operator can select the liquid of the coolant C in the tank 25. The level of the coolant C can be recognized without visually checking the position, which is convenient.
  • the liquid level estimation unit 16 may be configured to display an alarm on the display device 20 to warn an operator when the estimated liquid level is lower than the reference liquid level.
  • the correlation parameter is calculated by supervised machine learning by back-propagation using a neural network applied to data mining.
  • a neural network instead of a neural network as a technique applied to data mining, an SVM (support vector machine) may be applied, and a machine learning method adapted to this may be applied.
  • SVM support vector machine
  • a machine learning method adapted to this may be applied.
  • various machine learning methods such as a genetic algorithm can be applied in place of backpropagation.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

 測定対象たる液体の種類や異物の混入状態が変化する場合でも、測定の都度キャリブレーションを行う必要がない液位検出装置等を提供する。一対の電極を有する静電容量形の検出センサであって、電極の周辺に存在する物質の誘電率に応じて出力値が変化する検出センサの複数個を、一列に配設して構成されるレベルセンサ(11)と、レベルセンサ(11)を液体(C)中に浸漬させたときに、各検出センサから出力される出力値と、レベルセンサ(11)に対する液体の実際の液位との相関を定義する相関パラメータを記憶したパラメータ記憶部(17)と、レベルセンサ(11)の各検出センサからの出力を受信し、受信した各検出センサの出力値と、パラメータ記憶部(17)に記憶された相関パラメータとを基に、レベルセンサ(11)に対する液体(C)の液位を推定する液位推定部(16)とを備える。

Description

液位検出方法及び液位検出装置、並びにこの液位検出装置を備えた工作機械
 本発明は、貯留タンクなどに貯留される液体の液位を検出する液位検出方法及び液位検出装置、並びにこの液位検出装置を備えた工作機械に関する。
 従来、前記液位検出装置の一つとして、特開2001-174313号公報(下記特許文献1)に開示されるような静電容量形レベル測定装置が知られている。この静電容量形レベル測定装置は、同特許文献1に開示されるように、平行に配設される主電極及び補助電極の2つの細長い電極を備えており、この2つの電極を液中に浸漬した状態で、例えば、適宜信号源から主電極と補助電極との両電極間に交流電圧を印加し、そこで流れた電流から静電容量を計測し、それを基に液位を算出するものと考えられる。
 この静電容量形レベル測定装置における液位の測定原理は、補助電極と主電極との間に生じる静電容量の値が、液位によって変化することを利用したものである。即ち、補助電極と主電極との間に生じる静電容量の値は、補助電極と主電極との間の距離が一定であれば、これら電極の面積及びその間に介在する物質の誘電率に比例するため、当該補助電極と主電極との間に生じる静電容量の値は、補助電極と主電極との間に介在する気体や液体の誘電率差の変化、即ち、液体の液位に比例して変化し、この静電容量の値に応じた、即ち、液位に応じた交流電流が前記電極間で流れるため、流れた交流電流に基づいて、液位を算出することができるのである。
 そして、このようにして流れる交流電流は、例えば、交流電圧に変換され、その後、更に適宜処理が加えられて、液位を示す測定信号に変換される。
特開2001-174313号公報
 ところが、上述した従来の静電容量形レベル測定装置では、測定対象である液体の誘電率に応じて、電極間を流れる交流電流の大きさが異なるため、正確な液位を測定するためには、測定対象の液体を変更するたびに、キャリブレーションによって、出力信号を較正しなければならないという問題があった。例えば、水とオイルの液位を測定する場合、水の誘電率(比誘電率)は約80であり、一方、オイルの誘電率(比誘電率)は略2~3であるため、同じ液位であっても、測定対象が水の場合と、オイルの場合とでは、前記電極間で流れる交流電流の値が大きく異なるのである。
 このように、従来の静電容量形レベル測定装置においては、測定対象の液体に応じて、前記電極から出力される信号を較正する必要があり、そのキャリブレーションに相応の時間と労力を要するため、その扱い勝手が悪いという問題があった。
 また、工作機械の分野では、加工領域内にクーラントを供給するクーラント供給装置が使用されているが、クーラントが水溶性のものである場合には、その液位を、上記従来の静電容量形レベル測定装置によって測定する際には、頻繁にキャリブレーションを行わなければならないという問題があった。即ち、この場合、前記水溶性のクーラントは、工作機械の稼働部で使用される潤滑油が混入することが多い環境下にあり、混入する潤滑油は時間とともに増大するため、測定対象としてのクーラントは、潤滑油の混入状態に応じて、その誘電率(比誘電率)が刻々と変化し、また、その変化の状態も一律ではなく多様性を持ったものとなる。したがって、このようなクーラントの液位を正確に測定するには、頻繁なキャリブレーションが必要であり、従来、その作業は極めて煩わしく、面倒であった。
 本発明は、以上の実情に鑑みなされたものであって、測定対象たる液体の種類や異物の混入状態が変化する場合でも、測定の都度キャリブレーションを行う必要がない、液位検出方法及び液位検出装置、並びにこの液位検出装置を備えた工作機械の提供を、その目的とする。
 上記課題を解決するための本発明に係る方法発明は、
 一対の電極を有する静電容量形の検出センサであって、前記電極の周辺に存在する物質の誘電率に応じて出力値が変化する検出センサの複数個を、一列に配設して構成されるレベルセンサを、液体中に浸漬した後、
 前記レベルセンサの各検出センサから出力される出力値、並びに前記レベルセンサを前記液体中に浸漬させたときに、前記各検出センサから出力される出力値と前記レベルセンサに対する前記液体の実際の液位との相関を定義した相関パラメータに基づいて、前記レベルセンサに対する前記液体の液位を推定するようにした液位検出方法に係る。
 また、本発明に係る装置発明は、
 一対の電極を有する静電容量形の検出センサであって、前記電極の周辺に存在する物質の誘電率に応じて出力値が変化する検出センサの複数個を、一列に配設して構成されるレベルセンサと、
 前記レベルセンサを前記液体中に浸漬させたときに、前記各検出センサから出力される出力値と、前記レベルセンサに対する前記液体の実際の液位との相関を定義する相関パラメータを記憶したパラメータ記憶部と、
 前記レベルセンサの各検出センサからの出力を受信し、受信した各検出センサの出力値と、前記パラメータ記憶部に記憶された相関パラメータとを基に、前記レベルセンサに対する前記液体の液位を推定する液位推定部とを備え液位検出装置に係る。
 本発明者等は、まず、前記検出センサの複数個を一列に配設したレベルセンサを作成し、このレベルセンサを液中に浸漬して、各検出センサから出力される出力値を比較することによって、液体の種類や液体への異物の混入状態に関わりなく、その液位を検出することができるものと考えた。即ち、液中に浸漬された検出センサからの出力値(即ち、液体が有する誘電率に応じた出力値)と、液外にある検出センサからの出力値(即ち、空気の誘電率に応じた出力値)とは、その値が大きく異なるものと想定され、このように出力値が大きく異なる検出センサ間に液体表面(液位)が存在すると考えたからである。
 ところが、各検出センサから出力される出力値は、液位によって全体的に変化するものの、当該出力値に、液位を識別可能な程度の顕著な差、即ち、有意差はなく、このため、前記各検出センサの出力値自体から、直ちに、液位を推定するのは困難であるとの知見に至った。尚、これは一列に配置された電極対および電極対からの配線間の相互干渉によるものと考えられ、配線間のシールド等により改善が期待されるが、完全に排除することは不可能であり、また、コストアップになる。
 その一方、各検出センサから出力される出力値は、その全体的な大きさを含め、液位に応じた出力パターンを有することが判明した。そして、この出力パターンから、液位を推定可能であると考えられた。尚、当然のことながら、上述した補助電極及び主電極の2つの電極から構成される従来の静電容量形レベル測定装置では、このような出力パターンは得られない。
 そこで、本発明では、まず、前記レベルセンサを前記液体中に浸漬させたときに、前記各検出センサから出力される出力値と前記レベルセンサに対する前記液体の実際の液位との相関を定義した相関パラメータを予め求めて、得られた相関パラメータに係るデータをパラメータ記憶部に記憶しておき、前記液位推定部において、前記レベルセンサを液中に浸漬した状態で前記各検出センサから出力される出力値と、前記パラメータ記憶部に記憶された相関パラメータとを基に、前記レベルセンサに対する前記液体の液位を推定するようにした。
 前記相関パラメータは、液体の種類とその液位に応じた前記各検出センサからの出力パターンと、液体に異物が混入される混入状態とその液位に応じた前記各検出センサからの出力パターンとから求められるパラメータであって、液体の種類や液体に異物が混入される混入状態に依らず、言い換えれば、どのような種類の液体であっても、また、液体に異物が混入される混入状態がどのような状態であっても、各検出センサからの出力値に対応した液位を一意的に導くためのパラメータである。
 斯くして、本発明によれば、前記液位推定部において、前記レベルセンサを液中に浸漬した状態で前記各検出センサから出力される出力値と、前記パラメータ記憶部に記憶された相関パラメータとから、液体の種類や液体に異物が混入される混入状態に依らず、測定対象の液体の液位を推定することができる。
 以上のように、本発明によれば、想定される液体の種類、また、異物の混入状態に応じた相関データを得る作業に時間を要するものの、一度、この相関データから相関パラメータを取得することができれば、後は、煩わしく面倒なキャリブレーション作業を行う必要なく、測定対象の液体の液位を推定することができる。
 尚、前記レベルセンサを液体中に浸漬させる態様としては、常識的には、その前記検出センサの配列方向を、液体の深さ方向に一致させるのが好ましいが、液位を検出することができるのであれば、多少斜めに浸漬されていても問題はない。
 前記相関パラメータは、各検出センサからの出力値と実際の液位との相関を定義するものであり、これを人間が試行錯誤で設定することは不可能に近いため、この相関パラメータは、機械学習によって設定するのが好ましい。
 また、機械学習の中でもデータマイニングによるのが好ましい。データマイニングは、多量なデータを、統計・数学技法を用いて解析することにより、有益な新しい傾向、パターン、相関関係などを発見する処理を意味し、頻出パターン抽出、クラス分類、回帰分析、クラスタリングなどの解析手法に大別される。
 そして、近年では、ディープラーニング等のニューラルネットワークモデルの学習方式の進歩によって、前記相関パラメータ、即ち、液位を推定するアルゴリズムを、機械学習によって取得することができるようになったものであり、正確な前記相関パラメータを容易に得ることができる。具体的には、前記相関パラメータは、前記レベルセンサを前記液体中に浸漬させたときに、前記各検出センサから出力される出力値と、この出力値に応じた、前記レベルセンサに対する前記液体の実際の液位とを基に、データマイニングに適用されるニューラルネットワークを用いた、バックプロパゲーションによる教師有り機械学習によって予め取得され、前記パラメータ記憶部に格納される。
 そして、上述した液位検出装置は、工作機械の、例えば、クーラント供給装置に好適に用いることができる。
 以上のように、本発明によれば、想定される液体の種類、また、異物の混入状態に応じた、各検出センサからの出力値と液位との相関データを得る作業に時間を要するものの、一度、この相関データから相関パラメータを所得することができれば、後は、煩わしく面倒なキャリブレーション作業を行う必要なく、測定対象の液体の液位を推定することができる。
 また、相関パラメータを、機械学習、中でもニューラルネットワークモデルを用いたデータマイニング手法によって算出するようにすれば、液体の種類に応じて異なり、また、液体に異物が混入される場合にはその混入状態に応じて異なる、前記液体の液位と前記各検出センサからの出力値との複雑で難解な相関関係(相関パラメータ)を、正確に、しかも容易に得ることができる。
本発明の一実施形態に係る工作機械を示した概略構成図である。 本実施形態に係るレベルセンサを示した平面図である。 本実施形態に係るレベルセンサの構成を示した回路図である。 測定対象の液体が水溶性のクーラントである場合に、レベルセンサから出力される電圧値と実際の液位との関係を示した表である。 図4のデータを線図で示したグラフである。 測定対象の液体が油性のクーラントである場合に、レベルセンサから出力される電圧値と実際の液位との関係を示した表である。 図6のデータを線図で示したグラフである。 図5のグラフと図7のグラフとを合成したグラフである。 本実施形態におけるニューラルネットワークモデルを示した概念図である。 本実施形態のニューラルネットワークモデルにおける演算アルゴリズムを示した説明図である。 本実施形態に係る相関パラメータを示した表である。 本実施形態に係る相関パラメータを示した表である。 本実施形態に係る相関パラメータを示した表である。 本実施形態に係る相関パラメータを示した表である。 液位推定について説明するための一例に係る入力電圧データを示した表である。 事前処理後の入力データを示す表である。 入力値xと重み係数hwi,j(相関パラメータ)との積を取った演算結果を示す表である。 Σx・hwi,jに従った演算結果を示す表である。 =(Σx・hwi,j)+vに従った演算結果を示す表である。 =1/(1+exp(-u))に従った算出結果を示す表である。 出力zと重み係数kw(相関パラメータ)との積を取った演算結果を示す表である。 U=(Σz・kw)+kvに従った演算結果を示す表である。 Z=1/(1+exp(-U))に従った演算結果を示す表である。
 以下、本発明の具体的な実施形態に係る工作機械について、図面を参照しながら説明する。図1に示すように、本例の工作機械1は、運動機構部3にクーラントCを供給するクーラント供給装置2を備えている。尚、運動機構部3は、特に限定されるものではなく、旋盤、マシニングセンタ、研削盤、ホブ盤やブローチ盤などの公知のあらゆる工作機械の運動機構部が該当する。
 前記クーラント供給装置2は、クーラントCを貯留するタンク25と、一端がタンク25内に接続され、他端が前記運動機構部3の加工領域内に接続される供給管26と、この供給管26の途中に介在する供給ポンプ27と、一端が同じく運動機構部3の加工領域内に接続され、他端が前記タンク25内に接続される回収管28と、前記タンク25内のクーラントCの液位を検出する液位検出装置10とから構成される。
 このクーラント供給装置2では、前記供給ポンプ27を駆動することにより、タンク25内のクーラントCが、供給管26を通して運動機構部3の加工領域内に供給され、加工領域内に供給されたクーラントCが回収管28を通して、タンク25内に回収される。
 前記液位検出装置10は、タンク25内における前記クーラントCの液位を検出する装置であり、タンク25内に配設されるレベルセンサ11、このレベルセンサ11から出力されるデータを処理するデータ処理装置15及びこのデータ処理装置15によって処理された結果を表示する表示装置20から構成される。
以下、この液位検出装置10を構成する各部の詳細について説明する。
[レベルセンサ]
 前記レベルセンサ11は、図2及び図3に示すように、電極部12及び信号生成部13からなる。電極部12は、一対の電極を有する静電容量形の9個の検出センサS1~S9を有し、これらを一対の電極の並設方向と直交する方向に一列且つ等間隔に配列して、適宜保持板に固定するとともに、全体を樹脂で被覆した構成を備えており、各検出センサS1~S9を構成する各電極は、それぞれ信号線によって前記信号生成部13に接続されている。尚、本例では9個の検出センサS1~S9を備えているが、検出センサを設ける個数は、液位検出する間隔に応じて適宜設定すれば良く、これより多くても少なくても良い。
 前記信号生成部13は、図3に示すように、発振回路、アナログマルチプレクサ、倍電圧検波回路、オペアンプ及びA/D変換器から構成される。発振回路は、例えば、4[MHz]の高周波電圧(交流信号)を各検出センサS1~S9の電極間にそれぞれ印加し、各電極間を流れた高周波電流(交流信号)が前記アナログマルチプレクサに出力される。因みに、印加する高周波電圧の周波数をf[Hz]、電圧をVc[V]とし、各電極の静電容量をC[F]とすると、各電極間を流れる電流i[A]はそれぞれ次式となる。
i=2πf×C×Vc
 前記アナログマルチプレクサは、入力された各検出センサS1~S9からの出力信号(交流信号)を択一的に倍電圧検波回路に出力し、この倍電圧検波回路では、交流信号を直流信号に変換した後、オペアンプに出力する。尚、倍電圧検波回路から出力される各直流信号の電圧値Vo[V]は、倍電圧検波回路の負荷抵抗をR[Ω]として、次式で表わされる。
Vo=iR=2πf×C×Vc×R
 次に、オペアンプでは入力された直流信号(電圧信号)をインピーダンス変換し、ついで、A/D変換器によってアナログ信号をデジタル信号に変換した後、その電圧値のデジタルデータを出力する。
 前記信号生成部13は、以上のようにして、各検出センサS1~S9からの出力信号を電圧信号に変換して、そのデジタル値を外部に出力する処理を行う。尚、各検出センサS1~S9から出力される出力値は、当該各一対の電極の周辺に存在する物質、即ち、測定対象の液体と空気との誘電率に応じて変化する。
 そして、以上の構成を備えたレベルセンサ11は、図1に示すように、前記検出センサS1~S9の配列方向が深さ方向と一致するように、その電極部12がクーラントC中に浸漬された状態で、タンク25内に配設される。
 斯くして、このレベルセンサ11によれば、検出センサS1~S9から、レベルセンサ11に対するクーラントCの液位に応じた出力値が得られる。即ち、液中に浸漬された検出センサからの出力値(即ち、液体が有する誘電率に応じた出力値)と、液外にある検出センサからの出力値(即ち、空気の誘電率に応じた出力値)とは、その値が異なり、各検出センサS1~S9からの出力は、クーラントCの液位に応じた出力を示す。
 そして、本発明者等は、液中に浸漬された検出センサからの出力値と、液外にある検出センサからの出力値とは、その値が大きく異なると想定したが、実際には、各検出センサS1~S9からの出力値に、液位を直ちに判断し得る程度の有意差は存在しなかった。尚、これは一列に配置された電極対および電極対からの配線間の相互干渉によるものと考えられ、配線間のシールド等により改善が期待されるが、完全に排除することは不可能であり、また、コストアップになる。
 図4及び図5に、クーラントCが水溶性である場合の、各液位における前記検出センサS1~S9に対応した出力電圧を示し、図6及び図7に、クーラントが油性、即ちオイルである場合の、各液位における前記検出センサS1~S9に対応した出力電圧を示している。液位1~液位9は、その数字に対応した検出センサが半分クーラントCに浸漬される液位を意味しており、例えば、液位9は検出センサS9が半分浸漬される液位であり、液位8は検出センサS8が半分浸漬される液位である。また、液位0は、全ての検出センサS1~S9がクーラントC外にある、即ち、クーラントCの液位が検出センサS1よりも下方にある場合である。
 図4は、各液位0~9における、各検出センサS1~S9に対応した出力電圧を示す表であり、図5は、これをグラフにしたものである。同様に、図6は、各液位0~9における、各検出センサS1~S9に対応した出力電圧を示す表であり、図7は、これをグラフにしたものである。
 図5及び図7から分かるように、各検出センサS1~S9に対応した出力電圧は、液位によって全体的に変化するものの、このデータから直ちに液位を判別するのは困難である。特に、図7に示した油性のクーラントCの場合には、全体的な変化も小さく、より判別が困難である。
 また、図8には、図5に示した水溶性のクーラントCのグラフ(実線で示したグラフ)と、図7に示した油性のクーラントCのグラフ(破線で示したグラフ)とを合成したグラフを示しているが、このグラフから分かるように、油性のクーラントCの場合には、その変化量が小さく、また、その殆どが、水溶性のクーラントCの液位0~液位3のデータと重複しており、各検出センサS1~S9に対応した出力電圧値から直ちにクーラントCの種類に応じた液位を推定することは困難である。
 また、本例のクーラント供給装置2において、クーラントCに水溶性のものを用いる場合、運動機構部3内において、当該運動機構部3で使用される潤滑油がクーラントCに混入される状態にあり、この状態でクーラントCが回収されるタンク25では、クーラントC内に混入される潤滑油の濃度が、時間とともに増大する状態にある。ところが、上述したように、各検出センサS1~S9に対応した出力電圧は、測定対象の液体が水の場合とオイルの場合とで、大きく異なるため、水溶性クーラントCに混入される潤滑油の濃度が時間とともに増大すると、各検出センサS1~S9に対応した出力電圧が、時間とともに減少することになり、この面でも、各検出センサS1~S9に対応した出力電圧から直ちにクーラントCの液位を推定することは困難である。
 その一方、図5及び図7から分かるように、各検出センサS1~S9に対応した出力電圧は、その全体的な大きさを含め、各液位に応じた出力パターンを有している。そして、この出力パターンから、液位を推定可能であると考えられる。
 以上のように、本例のレベルセンサ11によれば、各検出センサS1~S9に対応した出力電圧から、直ちに、測定対象の液体に応じた液位を推定することは困難であるが、各検出センサS1~S9に対応した出力電圧は、測定対象の液体の種類及びその液位に応じた出力パターンを有している。したがって、本発明者等は、測定対象の液体の種類と、その液位に応じた、各検出センサS1~S9からの出力電圧との間には、一定の相関があると考え、この相関を定義する相関パラメータを取得することによって、当該相関パラメータと各検出センサS1~S9からの出力電圧とを基に、測定対象の液体の液位を推定可能であると考えた。
 そして、本例では、前記データ処理装置15により、ニューラルネットワークモデルを用いた機械学習によって、予め前記相関パラメータを取得し、この相関パラメータと、前記レベルセンサ11から出力される各検出センサS1~S9に対応した出力電圧とを基に、前記タンク25内のクーラントCの液位を推定するようにした。次に、このデータ処理装置15について詳しく説明する。
[データ処理装置]
 前記データ処理装置15は、図1に示すように、液位推定部16及びパラメータ記憶部17から構成される。
 前記パラメータ記憶部17には、前記レベルセンサ11を液体中に浸漬させたときに、各検出センサS1~S9から出力される出力値と、この出力値に応じた、前記レベルセンサ11に対する前記液体の実際の液位との相関を定義する相関パラメータが予め取得され、予め取得された相関パラメータが外部から入力されて格納される。
 この相関パラメータは、様々な種類の液体や、ある液体に異物が混入される場合には、その様々な混入状態の液体について、一様に適用し得るパラメータであり、このような様々な種類の液体や、様々な異物混入状態の液体について、前記レベルセンサ11を液体中に浸漬させたときに、各検出センサS1~S9から出力される出力値と、この出力値に応じた、前記レベルセンサ11に対する前記液体の実際の液位との相関データを予め取得しておき、取得された多数の相関データを基に、データマイニングに適用されるニューラルネットワークを用いた、バックプロパゲーションによる教師有り機械学習によって算出される。
 まず、相関パラメータの算出処理について、図9及び図10に基づいて説明する。図9は、本例におけるニューラルネットワークモデルを示した概念図であり、図中、S1~S9は、前記検出センサS1~S9に対応している。また、図10は、このニューラルネットワークモデルにおける演算アルゴリズムを示した説明図である。
 この図10に示したアルゴリズムでは、入力層のx~xは、それぞれ検出センサS1~S9の出力電圧値に対応している。したがって、本例では、i=9である。また、hwi,j及びkwは重み係数であり、v及びkvは反応感度としての閾値である。そして、中間層における出力zは、以下の数式1によって算出される。
(数式1)
=f((Σhwi,j・x)+v
また、出力層における出力Zは、以下の数式2によって算出される。
(数式2)
Z=f((Σkw・z)+kv)
尚、前記出力z及びZは、以下の数式3によって表されるシグモイド関数によって変換される。
(数式3)
f(u)=1/(1+exp(-u))
 そして、上記のようにして予め取得した様々な種類の液体や、様々な異物混入状態の液体についての、各検出センサS1~S9からの出力値と液位との相関データを基に、上記アルゴリズムを用い、中間層の各層の数やその階層を適宜設定した後、上記バックプロパゲーションによる教師有り機械学習によって、前記相関パラメータとして前記重み係数hwi,j及びkw、並びに閾値v及びkvを算出する。そして算出した相関パラメータを、それぞれ前記パラメータ記憶部18に格納する。図11には、このようにして算出される重み係数hwi,jに係るデータの一例を示し、図12には、閾値vに係るデータの一例を示し、図13には、重み係数kwに係るデータの一例を示し、図14には、閾値kvに係るデータの一例を示している。尚、中間層の個数jは任意であり、一般的には、中間層の個数jが多いほど感度は良くなるが、処理時間が長くなるという問題もあるので、適宜適切な値に設定するのが好ましい。
 尚、本例のバックプロパゲーションによる教師有り機械学習は、上述の予め取得された相関データである各検出センサS1~S9からの出力値を、図10に示したアルゴリズムの入力値xとして入力するとともに、適宜重み係数hwi,j,kw、及び閾値v,kvを設定して得られる出力値と、真の値(液位)とを比較し、その差分を減らすように、即ち、収束させるように、重み係数hwi,j,kw、及び閾値v,kvを変更する作業を繰り返すことによって、相関パラメータである重み係数hwi,j,kw、及び閾値v,kvの最適値を設定するというものである。
 前記液位推定部16は、前記レベルセンサ11の信号生成部13から出力される各検出センサS1~S9の出力電圧値を受信し、受信した出力電圧値と前記パラメータ記憶部17に格納された相関パラメータ、即ち、重み係数hwi,j及びkw、並びに閾値v及びkvとを用いて、クーラントCの液位を推定する。具体的には、上述した数式1~3を用いてクーラントCの液位を推定する。
 例えば、各検出センサS1~S9の出力電圧値が、図15に示すような値であるとすると、前記液位推定部16は、この値を、事前処理として、各検出センサS1~S9の最大出力電圧値(本例では、2500mV)で除して、1以下の値にする(図16参照)。そして、この後、液位推定部16は、図16に示した値を入力値として、前記パラメータ記憶部17に格納された相関パラメータである重み係数hwi,j及び閾値vを用い、前記数式1及び3に従って、まず、中間層における出力zを算出する。尚、図15に示した出力電圧値は、クーラントCが油性であり、液位が5である場合に、各検出センサS1~S9から出力された出力電圧値である。
 前記出力zを算出する各演算過程における演算結果を図17~図20に示す。図17は、図16に示した入力値xと、図11に示した重み係数hwi,j(相関パラメータ)との積を取った値、即ち、x・hwi,jの値を示している。また、図18は、図17の演算結果を基に、jの1から20について、それぞれx・hwi,jの総和、即ち、Σx・hwi,jの演算結果を示している。また、図19は、図18の演算結果を基に、u=(Σx・hwi,j)+vに従った演算結果を示し、図20は、図19の演算結果を基に、z=1/(1+exp(-u))に従った演算結果を示している。
 そして、液位推定部16は、上記のようにして算出された中間層の出力zを基に、前記パラメータ記憶部17に格納された相関パラメータである重み係数kw及び閾値kvを用い、前記数式2及び3に従って、出力層の出力Zを算出する。この出力Zを算出する各演算過程における演算結果を図21~図23に示す。図21は、図20に示した中間層の出力zと、図13に示した重み係数kw(相関パラメータ)との積を取った値、即ち、z・kwの値を示している。また、図22は、図21の演算結果の総和であるΣz・kwに閾値kv(相関パラメータ)加えた値、即ち、U=(Σz・kw)+kvに従った演算結果を示し、図23は、図22の演算結果を基に、Z=1/(1+exp(-U))に従った演算結果を示している。
 そして、最後に、液位推定部16は、図23で得られた値(Z=0.551210539)に9(=i)を乗じることによって、液位を推定する。この場合、液位は、
Z×9=0.551210539×9≒5
となる。
この図15~図23に示した例からも分かるように、液位推定部16によって推定される液位と、実際の液位とは、同じ値であり、本例の液位検出装置10によれば、正確に液位を推定することができる。
 そして、このようにして液位推定部16によって推定された液位が、表示装置20に表示される。
 尚、図15~図23に示した例は、クーラントCが油性である場合の例であるが、本例の液位検出装置10によれば、測定対象の液体が、水溶性のクーラントでも、他の液種のものでも、或いは異物が混入するような液体であっても、同時に機械学習させることにより、共通して使用できる相関パラメータを取得することができ、それを前記データ記憶部17に格納しておけば、前記液位推定部16では、対象液体を変えても、新たに相関パラメータのキャリブレーションを行うことなく液位を推定することができる。尚、液位検出装置10は、従来の液位検出装置に比べて構造が簡単であるので、その製造費用が安価である。
 斯くして、本例の液位検出装置10によれば、想定される液体の種類、また、異物の混入状態に応じた相関データを得る作業に時間を要するものの、一度、この相関データから相関パラメータを所得することができれば、後は、煩わしく面倒なキャリブレーション作業を行う必要なく、測定対象の液体の液位を推定することができる。
 また、本例の液位検出装置10では、前記液位推定部16によって推定した液位に係る値を表示装置20に表示するようにしているので、オペレータは、タンク25内のクーラントCの液位を目視することなく、当該クーラントCの液位を認識することができ、便利である。尚、液位推定部16は、推定された液位が基準液位を下回っている場合には、表示装置20にアラームを表示して、オペレータに警告するように構成されていても良い。
 以上、本発明の具体的な実施形態について説明したが、本発明が採り得る具体的な態様は、何らこれに限定されるものではない。
 例えば、上例では、前記相関パラメータを、データマイニングに適用されるニューラルネットワークを用いた、バックプロパゲーションによる教師有り機械学習によって算出したが、相関パラメータを算出するための機械学習法は、何らこれに限定されるものではない。例えば、データマイニングに適用される手法としてのニューラルネットに代えて、SVM(サポートベクターマシン)を適用しても良く、機械学習法もこれに合わせたものを適用することができる。ニューラルネットワークを用いる場合でも、バックプロパゲーションに代えて、遺伝的アルゴリズム等の様々な機械学習法を適用することができる。
 1  工作機械
 2  クーラント供給装置
 3  運動機構部
 10 液位検出装置
 11 レベルセンサ
 S1~S9 検出センサ
 15 データ処理装置
 16 液位推定部
 17 パラメータ記憶部
 20 表示装置
 25 タンク
 26 供給管
 27 供給ポンプ
 28 回収管
 C  クーラント
 

Claims (7)

  1.  一対の電極を有する静電容量形の検出センサであって、前記電極の周辺に存在する物質の誘電率に応じて出力値が変化する検出センサの複数個を、一列に配設して構成されるレベルセンサと、
     前記レベルセンサを前記液体中に浸漬させたときに、前記各検出センサから出力される出力値と、前記レベルセンサに対する前記液体の実際の液位との相関を定義する相関パラメータを記憶したパラメータ記憶部と、
     前記レベルセンサの各検出センサからの出力を受信し、受信した各検出センサの出力値と、前記パラメータ記憶部に記憶された相関パラメータとを基に、前記レベルセンサに対する前記液体の液位を推定する液位推定部とを備えていることを特徴とする液位検出装置。
  2.  前記相関パラメータは、前記レベルセンサを前記液体中に浸漬させたときに、前記各検出センサから出力される出力値と、この出力値に応じた、前記レベルセンサに対する前記液体の実際の液位とを基に、機械学習によって予め取得され、前記パラメータ記憶部に格納されることを特徴とする請求項1記載の液位検出装置。
  3.  前記相関パラメータは、前記レベルセンサを前記液体中に浸漬させたときに、前記各検出センサから出力される出力値と、この出力値に応じた、前記レベルセンサに対する前記液体の実際の液位とを基に、データマイニングに適用されるニューラルネットワークを用いた、バックプロパゲーションによる教師有り機械学習によって予め取得され、前記パラメータ記憶部に格納されることを特徴とする請求項2記載の液位検出装置。
  4.  前記請求項1乃至3記載のいずれかの液位検出装置を備えたことを特徴とする工作機械。
  5.  一対の電極を有する静電容量形の検出センサであって、前記電極の周辺に存在する物質の誘電率に応じて出力値が変化する検出センサの複数個を、一列に配設して構成されるレベルセンサを、液体中に浸漬した後、
     前記レベルセンサの各検出センサから出力される出力値、並びに前記レベルセンサを前記液体中に浸漬させたときに、前記各検出センサから出力される出力値と前記レベルセンサに対する前記液体の実際の液位との相関を定義した相関パラメータに基づいて、前記レベルセンサに対する前記液体の液位を推定するようにしたことを特徴とする液位検出方法。
  6.  前記相関パラメータは、前記レベルセンサを前記液体中に浸漬させたときに、前記各検出センサから出力される出力値と、この出力値に応じた、前記レベルセンサに対する前記液体の実際の液位とを基に、機械学習によって予め取得されることを特徴とする請求項5記載の液位検出方法。
  7.  前記相関パラメータは、前記レベルセンサを前記液体中に浸漬させたときに、前記各検出センサから出力される出力値と、この出力値に応じた、前記レベルセンサに対する前記液体の実際の液位とを基に、データマイニングに適用されるニューラルネットワークを用いた、バックプロパゲーションによる教師有り機械学習によって予め取得されることを特徴とする請求項6記載の液位検出方法。
     
PCT/JP2016/055054 2015-03-17 2016-02-22 液位検出方法及び液位検出装置、並びにこの液位検出装置を備えた工作機械 WO2016147804A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112016001250.0T DE112016001250T5 (de) 2015-03-17 2016-02-22 Ein Flüssigkeitsstandsmessverfahren und ein Flüssigkeitsstandsmesser sowie eine Werkzeugmaschine ausgestattet mit diesem Flüssigkeitsstandsmesser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015053377A JP5965012B1 (ja) 2015-03-17 2015-03-17 液位検出方法及び液位検出装置、並びにこの液位検出装置を備えた工作機械
JP2015-053377 2015-03-17

Publications (1)

Publication Number Publication Date
WO2016147804A1 true WO2016147804A1 (ja) 2016-09-22

Family

ID=56558089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055054 WO2016147804A1 (ja) 2015-03-17 2016-02-22 液位検出方法及び液位検出装置、並びにこの液位検出装置を備えた工作機械

Country Status (3)

Country Link
JP (1) JP5965012B1 (ja)
DE (1) DE112016001250T5 (ja)
WO (1) WO2016147804A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI636850B (zh) * 2017-04-28 2018-10-01 忠源實業股份有限公司 Center machine for processing machine
CN110849444A (zh) * 2019-11-20 2020-02-28 武汉世纪水元科技股份有限公司 一种基于机器视觉的视频水位测量方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108801387B (zh) * 2018-05-21 2020-04-03 郑州大学 一种基于学习模型的飞机油箱剩余油量测量系统和方法
EP3605030A1 (en) * 2018-08-02 2020-02-05 SUEZ Groupe Grease trap monitoring system and method of operation
CN111580570B (zh) * 2020-05-28 2023-03-17 爱瑟福信息科技(上海)有限公司 容器液位监控方法及其系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008129A (ja) * 2010-06-25 2012-01-12 Siemens Healthcare Diagnostics Products Gmbh 容器内の充填媒質の非侵襲性容量式充填レベル測定装置および方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3591709B2 (ja) * 1999-12-17 2004-11-24 理化工業株式会社 静電容量形レベル測定装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008129A (ja) * 2010-06-25 2012-01-12 Siemens Healthcare Diagnostics Products Gmbh 容器内の充填媒質の非侵襲性容量式充填レベル測定装置および方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI636850B (zh) * 2017-04-28 2018-10-01 忠源實業股份有限公司 Center machine for processing machine
CN110849444A (zh) * 2019-11-20 2020-02-28 武汉世纪水元科技股份有限公司 一种基于机器视觉的视频水位测量方法

Also Published As

Publication number Publication date
DE112016001250T5 (de) 2017-11-30
JP2016173301A (ja) 2016-09-29
JP5965012B1 (ja) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2016147804A1 (ja) 液位検出方法及び液位検出装置、並びにこの液位検出装置を備えた工作機械
JP2007124880A (ja) 部分放電原因自動推論用の神経網の入力ベクトル生成方法
US20130054191A1 (en) Probe indicating intermaterial boundaries
CN103890594B (zh) 分析三相电网中的电能的质量的方法和设备
JP6772963B2 (ja) 異常診断装置及び異常診断方法
EP3179326B1 (en) Railway vehicle maintenance system with modular recurrent neural networks for performing time series prediction
CN108363952A (zh) 诊断装置
CA2680967A1 (en) Method and device for monitoring a zone of a metal
RU2016141161A (ru) Система и способ определения гемолиза
Rao et al. Health monitoring of welded structures using statistical process control
CN104870991A (zh) 用于确定集成在过程容器中的测量变换器的状态的方法和设备
Patil et al. Modeling influence of tube material on vibration based EMMFS using ANFIS
Valtierra-Rodriguez et al. FPGA-based neural network harmonic estimation for continuous monitoring of the power line in industrial applications
Zou et al. Control of weld penetration depth using relative fluctuation coefficient as feedback
Wegerich et al. Nonparametric modeling of vibration signal features for equipment health monitoring
KR19990082532A (ko) 이상 검출 방법 및 이상 검출 시스템
JP2011141872A (ja) 混相系に対する電気ネットワーク解析
Schmetz et al. Decision support by interpretable machine learning in acoustic emission based cutting tool wear prediction
CN113721086A (zh) 用于监视mv或hv电气系统的装备件的电气绝缘状况的方法
JP2006285884A (ja) 故障診断方法およびそれを備えた制御装置
TW201822948A (zh) 偵測工具機的線性滑軌預壓值變化的方法
JP4833775B2 (ja) 振幅算出装置およびそれを備えるインピーダンス測定装置、ならびに振幅算出方法およびそれを備えるインピーダンス測定方法
CN110598680A (zh) 一种机械设备健康状态评估方法、系统和可读存储介质
JP3772237B2 (ja) 混相状態分布計測装置と混相状態分布計測方法
Fleischer et al. Statistical quality control in micro-manufacturing through multivariate μ-EWMA chart

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764634

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016001250

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764634

Country of ref document: EP

Kind code of ref document: A1