WO2016147407A1 - Control device for hybrid vehicles - Google Patents

Control device for hybrid vehicles Download PDF

Info

Publication number
WO2016147407A1
WO2016147407A1 PCT/JP2015/058357 JP2015058357W WO2016147407A1 WO 2016147407 A1 WO2016147407 A1 WO 2016147407A1 JP 2015058357 W JP2015058357 W JP 2015058357W WO 2016147407 A1 WO2016147407 A1 WO 2016147407A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
engine
maximum
controller
motor
Prior art date
Application number
PCT/JP2015/058357
Other languages
French (fr)
Japanese (ja)
Inventor
孝夫 安藤
鈴木 健児
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2017505997A priority Critical patent/JP6414320B2/en
Priority to PCT/JP2015/058357 priority patent/WO2016147407A1/en
Publication of WO2016147407A1 publication Critical patent/WO2016147407A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a control device for a hybrid vehicle.
  • Patent Document 1 There is known a hybrid vehicle that includes an engine, a motor, and a clutch provided therebetween, and travels using the engine and / or motor as a drive source in accordance with the clutch connection / disconnection.
  • the maximum torque that can be achieved by the engine varies depending on various conditions such as engine coolant temperature, engine oil temperature or intake / exhaust valve timing, and the maximum rated torque cannot be achieved even when the accelerator is fully opened. is there.
  • the engine torque command value is set to a value exceeding the maximum torque at that time, the engine torque fluctuates in an unstable manner, thereby generating a so-called surge in which the vehicle swings in the front-rear direction. For this reason, a surge suppression area is provided between the maximum rated torque when the accelerator is fully opened and the maximum torque at that time, which is slightly smaller than this, until the driving state where the maximum rated torque can be achieved even when the accelerator is fully opened.
  • the torque command value is limited so that the torque corresponding to the fully opened accelerator is not generated.
  • engine torque surge suppression control is executed by an engine controller capable of grasping the driving state of the engine.
  • an integrated controller that controls the engine and the motor in an integrated manner includes the engine torque limit signal. Is not entered.
  • the engine torque control by the engine controller is executed independently with respect to the drive torque command value output from the integrated controller. Transition to control causes a torque step. As a result, there is a problem that the behavior of the vehicle is disturbed.
  • the problem to be solved by the present invention is to provide a control device for a hybrid vehicle capable of preventing disturbance of vehicle behavior when suppressing the occurrence of engine surge.
  • the integrated controller determines whether or not the accelerator opening is fully opened. If the accelerator opening is fully open, the integrated controller outputs a full open request command to the engine controller, while the integrated controller inputs the full open request command to the engine controller. If the engine controller determines that the engine is in a state capable of outputting the maximum rated torque, and determines that the engine is in a state capable of outputting the maximum rated torque, the engine torque is determined. The above problem is solved by controlling the maximum rated torque and outputting a signal indicating that the maximum rated torque is controlled to the integrated controller.
  • a determination result indicating that the engine is in a state where the maximum rated torque can be output is fed back from the engine controller to the integrated controller. It can be reflected in the command value.
  • the transition from the surge limit control to the maximum rated torque control at an unintended timing is suppressed from causing a torque step.
  • FIG. 1 is a system diagram showing an example of a hybrid vehicle to which a hybrid vehicle control device according to the present invention is applied. It is a control block diagram which shows the arithmetic processing performed with the integrated controller and engine controller of FIG. It is a figure which shows an example of the driving mode selection control map (EV-HEV selection map) set to the mode selection part of the integrated controller of FIG. It is a hydraulic circuit diagram which shows the principal part of the hydraulic control circuit of the 1st clutch of FIG. 1, and a 2nd clutch. It is a flowchart which shows an example of the arithmetic processing procedure in the integrated controller and engine controller of FIG. It is a time chart which shows an example of operation
  • EV-HEV selection map driving mode selection control map
  • FIG. 1 is an overall system diagram showing an example of a parallel hybrid vehicle to which a hybrid vehicle control device 1 according to the present invention is applied.
  • the drive system of the parallel hybrid vehicle of this embodiment includes an engine (internal combustion engine) Eng, a first clutch (clutch) CL1, a motor generator (motor / generator) MG, A clutch CL2, a continuously variable transmission (belt type continuously variable transmission) CVT, a final gear FG, a left drive wheel LT, and a right drive wheel RT are provided.
  • the vehicle drive system in the present embodiment is not particularly limited, and can be applied to the RR system and MR (midship) system in addition to the FF system, the FR system, and the 4WD system.
  • the engine Eng is one of driving sources for outputting driving energy by burning gasoline, light oil and other fuels, and is based on a control signal from the engine controller 13 which has received a control signal from the integrated controller 10. Is controlled such that the engine torque coincides with the engine torque command value by controlling the intake air amount by the fuel injector, the fuel injection amount by the fuel injector, and the ignition timing by the spark plug.
  • the first clutch CL1 is interposed at a position between the engine Eng and the motor generator MG.
  • the first clutch CL1 for example, a dry clutch that is normally open (normally open) by an urging force of a diaphragm spring, or a wet multi-plate clutch that continuously controls the oil flow rate and hydraulic pressure with a proportional solenoid, is used.
  • motor generator MG are fastened (including half-fastened (slip)) / opened.
  • the hydraulic pressure control circuit 200 is controlled by a control signal from the clutch controller 12 based on a control signal from the integrated controller 10, whereby the engagement (semi-engagement (slip)) between the engine Eng and the motor generator MG is performed. ) / Release is performed.
  • the half-engagement / release control is executed by stroke control on the hydraulic actuator.
  • the motor generator MG is an AC synchronous motor generator in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator.
  • the motor generator MG is provided with a rotation angle sensor such as a resolver for detecting a rotor rotation angle. It has been.
  • Motor generator MG functions not only as an electric motor but also as a generator. When three-phase AC power is supplied from the inverter INV, the motor generator MG is driven to rotate (powering). On the other hand, when the rotor is rotated by an external force, motor generator MG generates AC power by generating electromotive force at both ends of the stator coil (regeneration).
  • the AC power generated by the motor generator MG is converted into DC power by the inverter INV, and then charged to the battery BAT. Further, since a negative torque is generated in the motor generator MG during regeneration, the driving wheel also has a braking function.
  • the motor generator MG is driven to rotate by rotational speed control or torque control based on the control signal from the motor controller 14 that has received the control signal from the integrated controller 10. Instead of motor generator MG, an electric motor (motor) that does not have a power generation function may be used.
  • the battery BAT As the battery BAT, an assembled battery in which a plurality of lithium ion secondary batteries, nickel hydride secondary batteries, and the like are connected in series or in parallel can be exemplified.
  • a current / voltage sensor is attached to the battery BAT, and these detection results are output to the battery controller 15.
  • the battery controller 15 calculates the state of charge SOC of the battery BAT and outputs this to the integrated controller 10.
  • the second clutch CL2 receives the torque output from the engine Eng and the motor generator MG (when the first clutch CL1 is engaged) via the belt-type continuously variable transmission CVT and the final gear FG.
  • the second clutch CL2 of this example includes a sun gear SG, a plurality of pinion gears (not shown), a ring gear RG, a single pinion planetary gear PG provided with a planet carrier PC, a forward clutch FC, and a reverse brake RB.
  • Ring gear RG of planetary gear PG is connected to motor output shaft MGout of motor generator MG
  • sun gear SG of planetary gear PG is connected to transmission input shaft Ain of belt type continuously variable transmission CVT.
  • the forward clutch FC is interposed between the motor output shaft MGout and the sun gear SG
  • the reverse brake RB is interposed between the planet carrier PC and a clutch case (not shown).
  • the torque transmission is disconnected (neutral state) by simultaneously releasing the forward clutch FC and the reverse brake RB.
  • the sun gear SG and the motor output shaft MGout are directly connected by engaging the forward clutch FC and releasing the reverse brake RB.
  • forward clutch FC is a friction element that transmits the output rotation of motor generator MG in the positive direction. Normally, when the vehicle starts, the motor generator MG is rotated in the forward direction, the forward clutch FC is engaged, and the reverse brake RB is released, so that the output rotation in the forward direction of the motor generator MG is transmitted without being reversed. And move forward.
  • the planet carrier PC is fixed to the clutch case by engaging the reverse brake RB and releasing the forward clutch FC. That is, the planet carrier PC cannot be revolved. Therefore, the rotation transmitted from the motor output shaft MGout to the ring gear RG is transmitted to the sun gear SG via the planet carrier PC that rotates but does not revolve, and reversely rotates the sun gear SG. Thereby, transmission torque is generated and output rotation of motor generator MG is transmitted in the reverse direction. That is, reverse brake RB is a friction element that transmits the output rotation of motor generator MG in the reverse direction.
  • the forward clutch FC is a normally open wet multi-plate clutch
  • the reverse brake RB is a normally open wet multi-plate brake.
  • a transmission torque (clutch torque capacity) is generated according to the clutch pressing force (hydraulic pressure). Further, the forward clutch FC and the reverse brake RB each have a small heat capacity.
  • the belt-type continuously variable transmission CVT is a belt-type continuously variable transmission having a pair of pulleys and a pulley belt stretched between the pair of pulleys.
  • the gear ratio (pulley ratio) is freely controlled by changing the pulley width of each of the pair of pulleys and changing the diameter of the surface that holds the pulley belt.
  • the gear ratio of the belt type continuously variable transmission CVT is automatically switched based on the control signal of the transmission controller 11 that receives the control signal from the integrated controller 10 according to the vehicle speed, the accelerator opening, and the like.
  • the hybrid vehicle control device 1 is not limited to a vehicle having a belt-type continuously variable transmission CVT, but also a stepped automatic transmission or a stepped automatic transmission that switches a gear ratio such as 7 forward speeds and 1 reverse speed. It can also be applied to a stepped manual transmission.
  • the hybrid vehicle control device 1 of the present invention can also be applied to a motor generator MG or a motor and a transmission directly connected to each other instead of the second clutch CL2.
  • the input gear of the mechanical oil pump OP is connected to the motor output shaft MGout via the chain CH.
  • the mechanical oil pump OP is a pump that is operated by the rotational driving force of the motor generator MG.
  • a gear pump or a vane pump is used.
  • the mechanical oil pump OP is capable of discharging oil regardless of the rotation direction of the motor generator MG.
  • an electric oil pump MOP that is operated by the rotational driving force of the sub motor SM is also provided.
  • the mechanical oil pump OP and the electric oil pump MOP are used as a hydraulic pressure source that generates a control pressure for the first clutch CL1 and the second clutch CL2 and a control pressure for the belt-type continuously variable transmission CVT.
  • the sub motor SM When the amount of oil discharged from the mechanical oil pump OP is sufficient, the sub motor SM is stopped to stop the electric oil pump MOP, and when the hydraulic pressure discharged from the mechanical oil pump OP decreases, the sub motor SM To drive the electric oil pump MOP and to discharge the hydraulic oil from the electric oil pump MOP.
  • the mechanical oil pump OP is provided in the second clutch CL2 .
  • the installation position of the mechanical oil pump OP is closer to the drive wheels LT and RT than the first clutch CL1. If it exists, you may install not only in this position but in other positions, such as the inside of transmission CVT.
  • oil is used as the working fluid, but it is not limited to oil as long as it is a liquid capable of transmitting pressure.
  • the drive source is set to the engine Eng and / or the motor generator MG, in other words, according to the engagement / semi-engagement (slip) / release state of the first clutch CL1 and the second clutch CL2.
  • An electric vehicle traveling mode hereinafter referred to as an EV traveling mode
  • a hybrid vehicle traveling mode hereinafter referred to as an HEV traveling mode
  • a quasi-electric vehicle traveling mode hereinafter referred to as a quasi-EV traveling mode
  • driving torque control described below. It is possible to switch to each travel mode of the start mode (hereinafter referred to as WSC travel mode).
  • the EV traveling mode is a mode in which the first clutch CL1 is released and the second clutch CL2 is engaged, and the vehicle travels only with the power of the motor generator MG.
  • the HEV traveling mode is a mode in which both the first clutch CL1 and the second clutch CL2 are engaged and the vehicle travels while including at least the power of the engine Eng as a drive source.
  • the HEV travel mode includes a motor assist travel mode, a travel power generation mode, and an engine travel mode. In the motor assist travel mode, both the engine Eng and the motor generator MG are driven, and the drive wheels LT and RT are rotated using these two as power sources.
  • the drive wheels LT and RT are rotated using the engine Eng as a power source, and at the same time, the motor generator MG functions as a generator to charge the battery BAT.
  • the drive wheels LT and RT are rotated using only the engine Eng as a power source without driving the motor generator MG.
  • the quasi-EV traveling mode is a mode in which the first clutch CL1 is in the engaged state but the engine Eng is turned off and the vehicle travels only with the power of the motor generator MG.
  • the WSC travel mode (slip travel mode using engine, Wet Start Clutch) is a motor generator MG at the time of P, N ⁇ D select start from the HEV mode, or at the start of the D range from the EV travel mode or the HEV travel mode. Is controlled so as to maintain the slip engagement state of the second clutch CL2 and the clutch torque so that the clutch transmission torque passing through the second clutch CL2 becomes the required drive torque determined according to the vehicle state and the driver operation. This mode starts while controlling the capacity.
  • the control system of the parallel hybrid vehicle of this embodiment includes an inverter INV, a battery BAT, an integrated controller 10, a transmission controller 11, a clutch controller 12, an engine controller 13, and a motor controller. 14, a battery controller 15, a battery voltage sensor 15a, a battery temperature sensor 15b, an engine speed sensor 21, an accelerator opening sensor 24, a transmission output speed sensor 25, a motor speed sensor 26, A second clutch output rotational speed sensor 28 and a hydraulic oil temperature sensor 29 are provided.
  • These controllers 10, 11, 12, 13, 14, and 15 are connected to each other via, for example, CAN communication.
  • the inverter INV converts the direct current power of the battery BAT into alternating current power during power running and outputs it to the motor generator MG, and converts the alternating current power generated by the motor generator MG into direct current power and outputs it to the battery BAT during regeneration.
  • the output rotation of the motor generator MG is reversed by reversing the phase of the generated drive current.
  • Battery BAT outputs DC power to motor generator MG during power running, and stores regenerative power from motor generator MG via inverter INV during regeneration.
  • the integrated controller 10 is detected by the transmission output speed sensor 25 as a value synchronized with the battery state inputted from the battery controller 15, the accelerator opening detected by the accelerator opening sensor 24, and the transmission output speed.
  • the target drive torque is calculated from the vehicle speed.
  • command values for the actuators (motor generator MG, engine Eng, first clutch CL1, second clutch CL2, belt type continuously variable transmission CVT) are calculated and transmitted to the controllers 11-15. Therefore, as shown in FIG. 2, the integrated controller 10 includes a target drive torque calculation unit 101, a mode selection unit 102, a target power generation output calculation unit 103, a target engine torque calculation unit 104, and a fully open torque increase request unit 105.
  • the target drive torque calculation unit 101 calculates a target drive torque including engine torque and motor torque from the accelerator opening APO detected by the accelerator opening sensor 24 and the vehicle speed VSP detected by the transmission output speed sensor 25. Calculate and output to the target engine torque calculation unit 104.
  • the mode selection unit 102 uses a predetermined mode selection control map (hereinafter also referred to as an EV-HEV selection map) shown in FIG. 3 to calculate a target travel mode (HEV travel mode) from the accelerator opening APO and the vehicle speed VSP. , EV travel mode, WSC travel mode), and outputs to the target engine torque calculation unit 104.
  • a target travel mode HEV travel mode
  • VSP vehicle speed
  • WSC travel mode
  • the HEV ⁇ EV switching line and the EV ⁇ HEV switching line are set with a hysteresis amount as a line dividing the EV area and the HEV area.
  • the HEV traveling mode (mainly the traveling power generation mode or the engine traveling mode) is forcibly set. Is the target travel mode. Therefore, when the operation mode selected by the mode selection unit 102 is switched from the EV mode to the HEV mode, the engine Eng is started.
  • the target power generation output calculation unit 103 calculates a target power generation output based on the SOC of the battery BAT using a predetermined power generation request output map during travel, and outputs the target power generation output to the target engine torque calculation unit 104. Also, it calculates the output required to increase the engine torque from the current engine operating point (rotation speed, torque) to the best fuel consumption line, and adds a smaller output as a required output compared to the target power output to the engine output. .
  • the target engine torque calculation unit 104 calculates a torque to be output by the engine Eng alone among the target drive torques calculated by the target drive torque calculation unit 101.
  • the target drive torque, the target travel mode, and the vehicle speed VSP are calculated.
  • the target engine torque is calculated from the requested power generation output using the engine torque map and the motor assist torque map, and is output to the full-open torque increase request unit 105 and the engine command torque calculation unit 106.
  • the fully open torque increase requesting unit 105 fully opens the accelerator opening APO based on the target engine torque calculated by the target engine torque calculating unit 104 and the accelerator opening APO (a state where the accelerator pedal is fully depressed). And whether or not the target engine torque is equal to or greater than the maximum torque of the engine Eng. If the accelerator opening APO is fully open and the target engine torque is equal to or greater than the maximum torque of the engine Eng, an ON signal for a fully open request is sent. In other cases, it outputs to the engine controller 13, and in other cases, an OFF signal for full opening request is output to the engine controller 13 (or nothing is output).
  • the maximum torque of the engine Eng is the maximum torque for each rotational speed that can be output according to the driving state of the engine Eng at that time, and includes the engine coolant temperature including the rotational speed, This value varies depending on various conditions such as engine oil temperature and intake / exhaust valve opening / closing timing.
  • the maximum rated torque of the engine Eng means the maximum torque for each rotational speed that can be output by the engine Eng, and the engine torque for each rotational speed that can be output when the engine operating conditions are optimal. It shall be said.
  • the engine command torque calculation unit 106 calculates an engine torque command value corresponding to the target engine torque calculated by the target engine torque calculation unit 104 and outputs it to the engine controller 13.
  • the motor command torque calculation unit 107 calculates a motor torque command value to be assisted by the motor generator MG from the target engine torque calculated by the target engine torque calculation unit 104 and the target drive torque, and outputs the motor torque command value to the motor controller 14.
  • the clutch command capacity calculator 108 calculates a clutch capacity command value for each of the first clutch CL1 and the second clutch CL2 from the target engine torque calculated by the target engine torque calculator 104 and the target drive torque, and a clutch controller. 12 is output.
  • the transmission controller 11 performs shift control according to a predetermined shift control map so as to achieve the shift command from the integrated controller 10.
  • the shift control is performed by controlling the hydraulic pressure supplied to the belt type continuously variable transmission CVT via the hydraulic control circuit 200.
  • the clutch controller 12 includes a clutch capacity control unit 121, a second clutch input rotational speed (detected by the motor rotational speed sensor 26), a second clutch output rotational speed (detected by the second clutch output rotational speed sensor 28), clutch oil The temperature (detected by the hydraulic oil temperature sensor 29) is input.
  • the clutch controller 12 is provided in the hydraulic control circuit 200 so as to realize the clutch hydraulic pressure (current) command value supplied from the hydraulic control circuit 200 in response to the CL1 solenoid current command from the integrated controller 10. Controls the current of the solenoid valve. Thereby, the clutch stroke amount of the first clutch CL1 is set.
  • the engine controller 13 includes an engine torque control unit 131, inputs the engine rotation speed detected by the engine rotation speed sensor 21, and performs engine torque control so as to achieve the engine torque command value from the integrated controller 10.
  • a maximum output determination unit 132 that determines whether or not the engine Eng can output the maximum rated torque when the accelerator opening APO is fully open, based on the driving state of the engine;
  • a maximum torque calculator 133 for calculating the maximum torque at that time.
  • the motor controller 14 includes a motor torque control unit 141 and controls the motor generator MG so as to achieve the motor torque command value (or the motor rotation speed command value) from the integrated controller 10.
  • the battery controller 15 manages the state of charge SOC of the battery BAT and transmits the information to the integrated controller 10. The battery SOC indicating the state of charge is calculated based on the power supply voltage detected by the battery voltage sensor 15a and the battery temperature Tbat detected by the battery temperature sensor 15b.
  • FIG. 4 is a hydraulic circuit diagram showing a hydraulic control circuit 200 controlled by the clutch controller 12 in order to control connection / disconnection of the first clutch CL1 and the second clutch CL2.
  • the mechanical oil pump OP discharges hydraulic oil to the transmission hydraulic circuit 201.
  • the transmission hydraulic circuit 201 supplies a line pressure PL adjusted by a line pressure regulator valve 202, which will be described later, to the belt-type continuously variable transmission CVT, the second clutch CL2, and the command hydraulic control unit 210, and the drain thereof.
  • the hydraulic oil is supplied toward the first clutch CL1.
  • the command oil pressure control unit 210 operates a solenoid valve (not shown) that operates according to the CVT solenoid current command and the CL1 solenoid current command from the integrated controller 10 to control the command oil pressure (PS1, PS2, PA, etc. described later). Generate.
  • the line pressure PL is determined by the hydraulic pressure formed in response to the target CVT shift in the pressure adjusting unit 220 having a valve (not shown) for the belt-type continuously variable transmission CVT
  • the transmission hydraulic circuit 201 is provided with a line pressure regulator valve 202 for adjusting the line pressure PL.
  • the line pressure regulator valve 202 includes a spool 202sp that moves in the axial direction as necessary to release the transmission hydraulic circuit 201 to the first clutch hydraulic circuit (decompression side circuit) 204 to reduce the line pressure PL.
  • This spool 202sp is schematically shown, but receives feedback pressure from the feedback circuit 201f in one of the axial directions (rightward in the drawing). Further, the spool 202sp receives the urging force of the spring 202a and the first control pressure PS1 output from the command hydraulic control unit 210 in the opposite direction (left direction in the drawing).
  • the line pressure regulator valve 202 generates a line pressure PL corresponding to the resultant force of the first control pressure PS1 and the urging force of the spring 202a. If the line pressure PL is excessive, the excess hydraulic oil is supplied.
  • the transmission hydraulic circuit 201 is removed to the first clutch hydraulic circuit 204.
  • the first control pressure PS1 is generated by the command hydraulic control unit 210 in order to generate a line pressure PL corresponding to the input torque in the belt-type continuously variable transmission CVT based on the CVT solenoid current command output from the integrated controller 10. The hydraulic pressure that is formed.
  • the first clutch hydraulic circuit 204 is provided with a first clutch pressure regulator valve 205 and a clutch pressure control valve 206.
  • the first clutch pressure regulator valve 205 adjusts the hydraulic pressure of the first clutch hydraulic circuit 204 to the first clutch regulator pressure PRCL, and includes a spool 205sp schematically shown in the drawing.
  • the spool 205sp receives the hydraulic pressure of the first clutch hydraulic circuit 204 from the feedback circuit 204f as a feedback pressure in one axial direction (leftward in the figure). Further, the spool 205sp receives the urging force of the spring 205a and the control pilot pressure PA generated by the command hydraulic control unit 210 in the direction opposite to the feedback pressure (leftward in the drawing).
  • the first clutch pressure regulator valve 205 generates the first clutch regulator pressure PRCL corresponding to the resultant force of the control pilot pressure PA and the urging force of the spring 205a, and when the first clutch regulator pressure PRCL is excessive, The excess hydraulic oil is drawn out to the drain circuit 207. In addition, the hydraulic oil withdrawn to the drain circuit 207 is turned to lubrication of the first clutch CL1.
  • the clutch pressure control valve 206 generates a clutch engagement pressure PCL1 for engaging the first clutch CL1, and outputs the clutch engagement pressure PCL1 to an output circuit 208 communicated with the first clutch CL1.
  • the clutch pressure control valve 206 includes a spool 206sp that moves in the axial direction schematically shown in the drawing. The spool 206sp receives a biasing force of the spring 206a in one of the axial directions (leftward in the figure), and in the opposite direction (rightward in the figure), the second control pressure PS2 output from the command hydraulic pressure control unit 210 and The feedback pressure from the feedback circuit 208f is received.
  • the clutch pressure control valve 206 draws hydraulic fluid from the output circuit 208 to the drain circuit 207 when the clutch engagement pressure PCL1 is larger than a value corresponding to the second control pressure PS2.
  • the clutch engagement pressure PCL1 is smaller than a value corresponding to the clutch control pressure PSCL
  • the first clutch regulator pressure PRCL of the first clutch hydraulic circuit 204 is supplied to the output circuit 208.
  • the second control pressure PS2 is a hydraulic pressure generated by the command hydraulic pressure control unit 210 in response to the CL1 solenoid current command signal from the integrated controller 10.
  • the fully open torque increase request unit 105 of the integrated controller 10 determines whether or not the accelerator opening APO is fully opened. If the accelerator is fully open, the integrated controller 10 determines the maximum output of the engine controller 13. When the full-open request command is input to the maximum output determination unit 132 of the engine controller 13 from the full-open torque increase request unit 105 of the integrated controller 10 while the full-open request command is output to the unit 132, the maximum output determination of the engine controller 13 is performed.
  • the maximum torque calculating unit 133 and the engine Torque control unit 131 sets engine torque at maximum rated torque
  • a signal indicating that the control is performed with the maximum rated torque is transmitted from the maximum torque calculation unit 133 of the engine controller 13 to the target drive torque calculation unit 101, the full-open torque increase request unit 105, and the engine command torque calculation unit 106 of the integrated controller 10. It is characterized by being output to.
  • the engine torque at this time is estimated, and the estimated engine torque value is output to the motor command torque calculation unit 107 of the integrated controller 10.
  • the process shown in this flowchart starts when a vehicle start button (so-called ignition switch) is turned on, and repeats each process at predetermined time intervals until the start button is turned off. That is, as shown in FIG. 6, when the start button of the vehicle is pressed at time t1, engine Eng and motor generator MG are on standby, and at time t2, the accelerator pedal is started to be depressed, and the accelerator pedal is gradually depressed. An example of the process when the accelerator pedal is fully depressed at time t5 will be described.
  • a vehicle start button so-called ignition switch
  • step S1 the target drive torque calculation unit 101 of the integrated controller 10 reads the accelerator opening APO and the vehicle speed VSP at predetermined time intervals, and calculates the target drive torque (total of engine torque and motor torque) at predetermined time intervals.
  • the mode selection unit 102 of the integrated controller 10 reads the accelerator opening APO and the vehicle speed VSP at predetermined time intervals, and uses the EV-HEV selection map shown in FIG. 3 to drive the travel modes (EV, HEV or WSC).
  • the clutch command capacity calculation unit 108 of the integrated controller 10 outputs a control signal for performing connection / disconnection of the first clutch CL1 and the second clutch CL2 to the clutch controller 12 so that the selected travel mode is realized. .
  • the target power generation output calculation unit 103 of the integrated controller 10 reads the state of charge SOC of the battery BAT, uses the power generation request map during travel, and obtains the necessary charge amount in the SOC that requires charging.
  • the target power generation output (engine torque) is calculated.
  • step S ⁇ b> 2 the target engine torque calculation unit 104 calculates the target drive torque calculated by the target drive torque calculation unit 101, the travel mode calculated by the mode selection unit 102, and the target calculated by the target power generation output calculation unit 103.
  • the power generation output is read, and the target engine torque required for the engine Eng alone is calculated.
  • the accelerator opening APO is small and the vehicle speed is slow, such as immediately after time t2 shown in FIG. 6A
  • the EV travel mode is selected according to the EV-HEV selection map of FIG.
  • the target engine torque required for the engine Eng alone is zero.
  • the accelerator opening APO is small and the vehicle speed is slow as just after the time t2 shown in FIG.
  • the state of charge SOC of the battery BAT is equal to or less than a predetermined value that requires charging. Since the traveling in the EV traveling mode is inappropriate, an engine traveling mode (a kind of HEV traveling mode) using only the engine Eng as a traveling drive source is selected.
  • FIGS. 6C and 6D show an example of the latter case.
  • the HEV driving mode is selected according to the EV-HEV selection map of FIG.
  • the target engine torque required for the engine Eng alone is the target engine torque according to the target engine torque map.
  • the target engine torque required for the engine Eng alone is obtained by adding the target power generation output to the target engine torque based on the target engine torque map. Torque.
  • step S3 it is determined whether the target engine torque exceeds the maximum torque and the accelerator opening APO is fully opened.
  • the maximum torque means the maximum torque for each rotational speed that can be output according to the driving state of the engine Eng at that time, and is calculated by the engine controller 13 in the same manner as in step S14 described later.
  • the maximum torque of the engine Eng varies depending on engine operating conditions such as engine coolant temperature, engine oil temperature, intake / exhaust valve opening / closing timing, and the maximum torque calculator 133 of the engine controller 13 determines the maximum torque at this time. Calculate and output this to the fully-open torque increase request unit 105 of the integrated controller 10. Then, fully-open torque increase request unit 105 determines whether or not the target engine torque exceeds the maximum torque of the engine at that time.
  • the engine torque command value When the accelerator is fully opened and the engine torque command value is set to the maximum torque when the accelerator is fully opened at the time of acceleration immediately after starting the vehicle, the temperature of the engine coolant or engine oil is low, or the intake / exhaust valve The engine Eng may not be able to output the maximum rated torque due to various factors, such as when the opening / closing timing of the engine is not set to the timing for steady operation. If the engine torque command value is set to the value when the accelerator is fully opened in such a driving state, a torque fluctuation of the engine may occur and a surge may occur that causes the vehicle to swing in the front-rear direction.
  • a surge suppression region is provided between the maximum rated torque and a smaller maximum torque (surge limiting torque) at that time, and even when the accelerator is fully depressed, the target engine is Control is performed to limit the torque command value to the surge limit torque so that a torque corresponding to the torque limit torque is not generated even if the torque exceeds the surge limit torque.
  • step S3 if the target engine torque does not exceed the maximum torque or the accelerator opening APO is not fully opened, the process proceeds to step S6, and in step S6, the full open request of the full open torque increase request unit 105 of the integrated controller 10 is turned OFF. Set. This full open request is used for determination by the maximum output determination unit 132 of the engine controller 13 in step S11 described later. Then, in the next step S7, it is determined whether or not the target engine torque exceeds the maximum torque. If the target engine torque does not exceed the maximum torque, the process proceeds to step S8, and the engine torque limit count is reset. The engine torque limit count will be described later in the description of steps S9 and S18.
  • step S10 the engine command torque calculator 106 of the integrated controller 10 sets the engine torque command value to the smaller of the target engine torque calculated in step S2 and the preset maximum torque, Proceed to steps S11 and S17.
  • step S11 the maximum output determination unit 132 of the engine controller 13 determines whether or not a full open request is output from the full open torque increase request unit 105 of the integrated controller 10. Since the full open request is OFF in step S6 as described above, the process proceeds to step S14, and in step S14, the maximum torque of the engine Eng according to the driving state at that time is calculated.
  • step S15 the engine torque control unit 131 controls the engine Eng based on the engine torque command value set in step S10.
  • step S16 the engine torque control unit 131 detects the drive state at that time, and calculates the estimated engine torque. This is calculated and output to the motor command torque calculation unit 107 of the integrated controller 10.
  • the transmission controller 11 determines that the engine maximum torque and the motor It limits with the value which added the maximum torque of generator MG.
  • step S18 it is determined whether or not the engine torque limit count exceeds a predetermined value (time) set in advance and the full opening request for the accelerator opening APO is ON.
  • the predetermined value means a time during which the engine torque command value is limited by the surge limiting torque, as in the time t3 to t5 in FIG.
  • step S18 if the engine torque limit count does not exceed a predetermined value (time) set in advance, or if the full opening request for the accelerator opening APO is OFF, the process proceeds to step S20.
  • the fully open request is turned OFF in step S6, and the engine torque limit count is reset (zero) in step S8, so the process proceeds to step S20 in any case.
  • step S20 the motor command torque calculation unit 107 of the integrated controller 10 sets a value obtained by subtracting the engine estimated torque from the target transmission input torque as the motor torque command value.
  • the travel mode is the power generation travel mode (a kind of HEV travel mode)
  • a resistance torque for causing the motor generator MG to function as a generator is required among the target engine torque.
  • the target transmission input torque is a value obtained by subtracting the power generation torque calculated by the target power generation output calculation unit 103 from the target engine torque calculated by the target engine torque calculation unit 104.
  • the estimated engine torque is estimated engine torque calculated by the engine torque control unit 131 of the engine controller 13, and is output from the engine controller 13 to the motor command torque calculation unit 107 in step S16 as described above. .
  • step S1 the control that proceeds to step S1, step S2, step S3, step S6, step S8, step S10, step S11, step S14, step S15, step S16, step S17, step S18, and step S20 is performed as shown in FIG.
  • this corresponds to a traveling example of time t2 to t3, that is, a traveling state in which the vehicle gradually accelerates from the start.
  • the full open request OFF by the full open torque increase request unit 105 of the integrated controller 10 is output to the maximum output determination unit 132 of the engine controller 13, and the engine torque command value by the engine command torque calculation unit 106 is the engine torque of the engine controller 13.
  • the motor torque command value output from the motor command torque calculating unit 107 is output to the motor torque control unit 141 of the motor controller 14, and the clutch capacity command value output from the clutch command capacity calculating unit 108 is output from the clutch controller 12. It is output to the clutch capacity control unit 121.
  • step S7 the target engine torque calculation unit 104 calculates in step S7. It is determined whether or not the target engine torque exceeds the maximum torque of the engine Eng at that time. If the target engine torque exceeds the maximum torque, the process proceeds to step S9, and the engine torque limit count (time) is set. Count up. This corresponds to the time t3 to t5 in FIG.
  • step S10 the engine command torque calculation unit 106 of the integrated controller 10 sets the engine torque command value to the smaller of the target engine torque and the maximum torque calculated in step S2.
  • the engine torque command value is set to the maximum torque, and the process proceeds to steps S11 and S17. That is, whatever the engine Eng drive state is, if the target engine torque exceeds the maximum engine Eng torque at that time, the engine torque command value is replaced with the target engine torque, By limiting to the maximum torque of the engine Eng at the time, the occurrence of surge of the engine Eng is suppressed.
  • the maximum torque in such a case is also referred to as surge limiting torque.
  • step S11 the maximum output determination unit 132 of the engine controller 13 determines whether or not a full open request is output from the full open torque increase request unit 105 of the integrated controller 10. Since the full open request is OFF in step S6 as described above, the process proceeds to step S14, and in step S14, the maximum torque of the engine Eng according to the driving state at that time is calculated.
  • step S15 the engine torque control unit 131 controls the engine Eng based on the engine torque command value set in step S10 (that is, the maximum torque that is the surge limiting torque), and in step S16, at that time , The estimated engine torque is calculated, and this is output to the motor command torque calculation unit 107 of the integrated controller 10.
  • step S17 if the target transmission input torque exceeds the value obtained by adding the maximum torque of the engine Eng and the maximum torque of the motor generator MG, the maximum torque of the engine Eng. And the maximum torque of the motor generator MG.
  • step S18 it is determined whether or not the engine torque limit count exceeds a predetermined value (time) set in advance and the full opening request for the accelerator opening APO is ON.
  • this predetermined value means a time during which the engine torque command value is limited by the maximum torque (surge limiting torque) as shown in time t3 to t5 in FIG. This is a determination time for determining whether or not the target engine torque due to is in a surge limiting region, whether it is temporary or transient when the accelerator opening APO is fully open. That is, if the target engine torque rises temporarily due to the accelerator opening APO, the engine torque command value is limited to the maximum torque (surge limit torque) in order to suppress the occurrence of a surge. If the opening degree APO is transitional to fully open, the engine torque command value is changed to the maximum rated torque when the predetermined value is exceeded in order to meet the demand. It is a count (time) for determining which of these states.
  • step S18 If it is determined in step S18 that the engine torque limit count does not exceed a predetermined value (time) set in advance, or if the full opening request for the accelerator opening APO is OFF, the process proceeds to step S20. In the above description as described above, since the full open request is turned off in step S6, the process proceeds to step S20.
  • step S20 the motor command torque calculation unit 107 of the integrated controller 10 sets a value obtained by subtracting the engine estimated torque from the target transmission input torque as the motor torque command value.
  • the travel mode is the power generation travel mode (a kind of HEV travel mode)
  • a resistance torque for causing the motor generator MG to function as a generator is required among the target engine torque.
  • the target transmission input torque is a value obtained by subtracting the power generation torque calculated by the target power generation output calculation unit 103 from the target engine torque calculated by the target engine torque calculation unit 104.
  • the estimated engine torque is estimated engine torque calculated by the engine torque control unit 131 of the engine controller 13 and is output from the engine controller 13 to the motor command torque calculation unit 107 in step S16 as described above.
  • step S1 the control that proceeds to step S1, step S2, step S3, step S6, step S9, step S10, step S11, step S14, step S15, step S16, step S17, step S18, and step S20 is performed as shown in FIG.
  • this corresponds to a traveling example of time t3 to t5, that is, a traveling state in the latter half where acceleration has been continued.
  • the engine torque command value decreases by the amount by which the target engine torque exceeds the maximum torque (surge limit torque).
  • the estimated engine torque estimated in step S1 also decreases.
  • the motor torque command value calculated by the motor command torque calculation unit 107 is increased corresponding to the decrease value of the estimated engine torque as shown in FIG. Thereby, the target drive torque according to the accelerator opening APO can be realized while suppressing the occurrence of a surge in the engine Eng.
  • step S3 the target engine torque exceeds the maximum torque and the accelerator opening APO is determined. If is fully open, the process proceeds to step S4.
  • step S4 the fully-open torque increase requesting unit 105 of the integrated controller 10 determines that the target engine torque calculated by the target engine torque calculating unit 104 is the maximum rated torque of the engine Eng read from the maximum torque calculating unit 133 of the engine controller 13 ( It is determined whether or not the engine Eng exceeds the maximum torque that can be output when the operating conditions are optimal.
  • step S4 when the target engine torque does not exceed the maximum rated torque of the engine Eng, the process proceeds to step S6, and the control is executed according to the procedure described above. On the other hand, if the target engine torque exceeds the maximum rated torque of the engine Eng in step S4, the process proceeds to step S5, the full open request is turned on, and this is output to the maximum output determination unit 132 of the engine controller 13. To do.
  • step S10 the engine command torque calculation unit 106 of the integrated controller 10 sets the engine torque command value to the smaller one of the target engine torque calculated in step S2 and the maximum engine torque, and step S11.
  • the engine torque command value is set to the maximum torque (surge limit torque), and the process proceeds to steps S11 and S17. That is, by suppressing the engine torque command value with the maximum torque (surge limiting torque), the suppression of the occurrence of surge in the engine Eng is continued.
  • step S11 the maximum output determination unit 132 of the engine controller 13 determines whether or not a full open request is output from the full open torque increase request unit 105 of the integrated controller 10. Since the full open request is ON in step S5 as described above, the process proceeds to step S12, and in step S12, it is determined whether or not the drive state is capable of increasing the torque to the maximum rated torque. If the vehicle travels over a certain period of time after the vehicle is started, the engine cooling water, engine oil, intake / exhaust valve opening / closing timing, etc. reach a steady state, so that the maximum rated torque can be output.
  • the maximum output determination unit 132 detects a drive state that affects such torque, and determines whether or not the maximum rated torque can be output through the surge region that has been limited so far. If it is determined that the engine Eng can output the maximum rated torque, the process proceeds to step S13, and the maximum torque calculator 133 calculates the maximum torque of the engine Eng according to the driving state at that time. In subsequent step S15, the engine torque control unit 131 controls the engine Eng by setting the maximum torque (maximum rated torque) calculated in step S13 as the engine torque command value, and in step S16, the driving at that time is performed. The state is detected, the estimated engine torque is calculated, and this is output to the motor command torque calculation unit 107 of the integrated controller 10.
  • step S17 if the target transmission input torque exceeds the value obtained by adding the maximum torque of the engine Eng and the maximum torque of the motor generator MG, the maximum torque of the engine Eng. And the maximum torque of the motor generator MG.
  • step S18 it is determined whether or not the engine torque limit count exceeds a predetermined value (time) set in advance and the full opening request for the accelerator opening APO is ON.
  • this predetermined value means a time during which the engine torque command value is limited by the surge limiting torque, as shown by time t3 to t5 in FIG. 6C, and the target engine torque based on the accelerator opening APO. Is a determination time for determining whether it is a temporary one or a transient one in which the accelerator opening APO is fully opened.
  • step S5 when the count of the engine torque limit exceeds a predetermined value (time) set in advance, this is shown in FIG. 6 (a). Considering that the target engine torque is transiently increased to the fully open accelerator opening APO, the process proceeds to step S19.
  • step S19 the engine torque command value is set to the maximum rated torque, but the rate of change of the target transmission input torque is limited, and a steep torque step occurs when the surge limiting torque is changed to the maximum rated torque. To suppress.
  • FIG. 6 The driving example shown in FIG. 6 is the same, but when the engine torque command value before setting the engine torque command value to the maximum rated torque is set to the surge limit torque as shown in FIG. This is a case where the stepping in is not abrupt and is gradually stepped on.
  • step S18 if the time during which the engine torque command value is limited by the surge limit torque in step S18 exceeds a predetermined value, the amount of torque change per unit time from the surge limit torque to the maximum rated torque (temporal) (Torque change rate) is set small and gradually approaches the maximum rated torque. Thereby, the torque level
  • the engine torque command value is set to the maximum rated torque.
  • the change rate of the target transmission input torque is not limited. In such a case, since there is no sense of incongruity even if the occupant himself intends to accelerate rapidly and there is a slight torque step, priority is given to shifting to the maximum rated torque in a short time.
  • step S20 the motor command torque calculation unit 107 of the integrated controller 10 sets a value obtained by subtracting the engine estimated torque from the target transmission input torque as the motor torque command value.
  • the travel mode is the power generation travel mode (a kind of HEV travel mode)
  • a resistance torque for causing the motor generator MG to function as a generator is required among the target engine torque.
  • the target transmission input torque is a value obtained by subtracting the power generation torque calculated by the target power generation output calculation unit 103 from the target engine torque calculated by the target engine torque calculation unit 104.
  • the estimated engine torque is estimated engine torque calculated by the engine torque control unit 131 of the engine controller 13 and is output from the engine controller 13 to the motor command torque calculation unit 107 in step S16 as described above.
  • step S1 corresponds to a traveling example after time t5, that is, a traveling state when the accelerator is fully opened in the latter half after continuing acceleration.
  • time t5 corresponds to a traveling example after time t5
  • a target drive torque becomes a value according to the accelerator opening.
  • the target drive torque according to the accelerator opening APO can be realized while suppressing the occurrence of a surge in the engine Eng.
  • the hybrid vehicle control device 1 of the present embodiment when the target engine torque exceeds the maximum torque (surge limit torque) at that time, the engine torque command value is set to the maximum torque (surge limit torque) at that time. Therefore, it is possible to suppress the occurrence of surge in the engine Eng regardless of the driving state of the engine Eng. According to the hybrid vehicle control device 1 of the present embodiment, since the torque difference when the engine torque command value is limited to the surge limit torque is compensated by the motor torque, the target drive torque corresponding to the accelerator opening APO is realized. be able to.
  • the engine controller 13 determines whether or not the engine Eng can output the maximum rated torque, and the engine Eng can output the maximum rated torque. Is fed back from the engine controller 13 to the integrated controller 10, so that the integrated controller 10 can reflect this in the drive torque command value.
  • the transition from the surge limit control to the maximum rated torque control at an unintended timing is suppressed from causing a torque step.
  • the surge limit torque is changed to the maximum rated torque.
  • the hybrid vehicle control device 1 of the present embodiment if the time during which the engine torque command value is limited by the surge limiting torque does not exceed the predetermined value, the maximum value from the surge limiting torque is obtained. Does not limit the rate of torque change to the rated torque. In such a situation, even if there is a slight torque step even if the occupant himself intends rapid acceleration, there is no sense of incongruity, so priority can be given to making the transition to the maximum rated torque in a short time.
  • the motor generator MG corresponds to the motor according to the present invention
  • the first clutch CL1 corresponds to the clutch according to the present invention
  • the accelerator opening sensor 24 corresponds to the accelerator opening detection unit according to the present invention
  • the transmission output rotation speed sensor 25 corresponds to a vehicle speed detection unit according to the present invention
  • the engine command torque calculation unit 106, the motor command torque calculation unit 107, and the clutch command torque calculation unit 108 correspond to a command value calculation according to the present invention.
  • the full-open torque increase request unit 105 corresponds to a full-open determination unit according to the present invention.
  • Command oil pressure control unit 220 ... Pressure adjustment unit PL ... Line pressure CL1 ... First clutch CL2 ; Second clutch CVT ... Belt type continuously variable transmission En ... engine MG ; motor-generator OP ... mechanical oil pump LT ... left driving wheel RT ... right drive wheels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A control device for hybrid vehicles, that: determines whether or not an accelerator position (APO) is fully open, by using a fully-open torque increase request unit (105) in an integrated controller (10); and, if the accelerator position is fully open, outputs a fully-open request command to an engine controller (13) from the integrated controller. If a fully-open request command is input to the engine controller from the integrated controller, a maximum output determination unit (132) in the engine controller determines whether or not maximum rated torque can be output. If a determination is made that the engine can output the maximum rated torque, the engine torque is controlled at the maximum rated torque and a signal for controlling at the maximum rated torque is output to the integrated controller.

Description

ハイブリッド車両の制御装置Control device for hybrid vehicle
 本発明は、ハイブリッド車両の制御装置に関するものである。 The present invention relates to a control device for a hybrid vehicle.
 エンジンと、モータと、これらの間に設けられたクラッチとを備え、クラッチの断接に応じてエンジン及び/又はモータを駆動源として走行するハイブリッド車両が知られている(特許文献1)。 There is known a hybrid vehicle that includes an engine, a motor, and a clutch provided therebetween, and travels using the engine and / or motor as a drive source in accordance with the clutch connection / disconnection (Patent Document 1).
特開2014-73747号公報JP 2014-73747 A
 この種のハイブリッド車両において、エンジンが実現する最大トルクは、エンジン冷却水温度、エンジンオイル温度又は吸排気バルブタイミングなどの諸条件により変動し、アクセルを全開にしても最大定格トルクを実現できないことがある。そして、エンジントルク指令値を、そのときの最大トルクを超える値に設定すると、エンジントルクが不安定に変動し、これによって車両が前後方向に揺れる、いわゆるサージが発生する。このため、アクセル全開時の最大定格トルクと、これより少し小さいそのときの最大トルクとの間にサージ抑制領域を設け、アクセルを全開に踏み込んでも、最大定格トルクが実現できる駆動状態になるまでは、アクセルの全開に応じたトルクが出ないようにトルク指令値を制限することが行われている。 In this type of hybrid vehicle, the maximum torque that can be achieved by the engine varies depending on various conditions such as engine coolant temperature, engine oil temperature or intake / exhaust valve timing, and the maximum rated torque cannot be achieved even when the accelerator is fully opened. is there. If the engine torque command value is set to a value exceeding the maximum torque at that time, the engine torque fluctuates in an unstable manner, thereby generating a so-called surge in which the vehicle swings in the front-rear direction. For this reason, a surge suppression area is provided between the maximum rated torque when the accelerator is fully opened and the maximum torque at that time, which is slightly smaller than this, until the driving state where the maximum rated torque can be achieved even when the accelerator is fully opened. The torque command value is limited so that the torque corresponding to the fully opened accelerator is not generated.
 従来、このようなエンジントルクのサージ抑制制御は、エンジンの駆動状態を把握可能なエンジンコントローラにより実行されるが、エンジンとモータとを統合して制御する統合コントローラには、当該エンジントルクの制限信号は入力されない。このように従来のハイブリッド車両においては、統合コントローラから出力される駆動トルク指令値に対して、エンジンコントローラによるエンジントルク制御が独立して実行されるため、意図しないタイミングでサージ制限制御から最大定格トルク制御に遷移してトルク段差が生じる。その結果、車両の挙動に乱れが発生するという問題がある。 Conventionally, such engine torque surge suppression control is executed by an engine controller capable of grasping the driving state of the engine. However, an integrated controller that controls the engine and the motor in an integrated manner includes the engine torque limit signal. Is not entered. As described above, in the conventional hybrid vehicle, the engine torque control by the engine controller is executed independently with respect to the drive torque command value output from the integrated controller. Transition to control causes a torque step. As a result, there is a problem that the behavior of the vehicle is disturbed.
 本発明が解決しようとする課題は、エンジンのサージ発生を抑制する場合の車両挙動の乱れを防止できるハイブリッド車両の制御装置を提供することである。 The problem to be solved by the present invention is to provide a control device for a hybrid vehicle capable of preventing disturbance of vehicle behavior when suppressing the occurrence of engine surge.
 本発明は、統合コントローラによりアクセル開度が全開か否かを判定し、全開である場合には統合コントローラからエンジンコントローラへ全開要求指令を出力する一方、統合コントローラからエンジンコントローラに全開要求指令が入力された場合には、エンジンコントローラによりエンジンが最大定格トルクを出力可能な状態であるか否かを判定し、エンジンが最大定格トルクを出力可能な状態にあると判定された場合は、エンジントルクを当該最大定格トルクにて制御するとともに、最大定格トルクにて制御する旨の信号を統合コントローラに出力することによって上記課題を解決する。 In the present invention, the integrated controller determines whether or not the accelerator opening is fully opened. If the accelerator opening is fully open, the integrated controller outputs a full open request command to the engine controller, while the integrated controller inputs the full open request command to the engine controller. If the engine controller determines that the engine is in a state capable of outputting the maximum rated torque, and determines that the engine is in a state capable of outputting the maximum rated torque, the engine torque is determined. The above problem is solved by controlling the maximum rated torque and outputting a signal indicating that the maximum rated torque is controlled to the integrated controller.
 本発明によれば、アクセル開度が全開である場合に、エンジンが最大定格トルクを出力可能な状態である旨の判定結果をエンジンコントローラから統合コントローラにフィードバックするので、統合コントローラはこれを駆動トルク指令値に反映することができる。これにより、意図しないタイミングでサージ制限制御から最大定格トルク制御に遷移してトルク段差が生じることが抑制される。その結果、サージ発生を抑制できるとともに車両挙動の乱れも防止することができる。 According to the present invention, when the accelerator opening is fully open, a determination result indicating that the engine is in a state where the maximum rated torque can be output is fed back from the engine controller to the integrated controller. It can be reflected in the command value. As a result, the transition from the surge limit control to the maximum rated torque control at an unintended timing is suppressed from causing a torque step. As a result, it is possible to suppress the occurrence of surges and to prevent disturbance of vehicle behavior.
本発明に係るハイブリッド車両の制御装置を適用したハイブリッド車両の一例を示すシステム図である。1 is a system diagram showing an example of a hybrid vehicle to which a hybrid vehicle control device according to the present invention is applied. 図1の統合コントローラ及びエンジンコントローラで実行される演算処理を示す制御ブロック図である。It is a control block diagram which shows the arithmetic processing performed with the integrated controller and engine controller of FIG. 図1の統合コントローラのモード選択部に設定される走行モード選択制御マップ(EV-HEV選択マップ)の一例を示す図である。It is a figure which shows an example of the driving mode selection control map (EV-HEV selection map) set to the mode selection part of the integrated controller of FIG. 図1の第1クラッチ及び第2クラッチの油圧制御回路の要部を示す油圧回路図である。It is a hydraulic circuit diagram which shows the principal part of the hydraulic control circuit of the 1st clutch of FIG. 1, and a 2nd clutch. 図1の統合コントローラ及びエンジンコントローラにおける演算処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the arithmetic processing procedure in the integrated controller and engine controller of FIG. 図5の演算処理を実行した場合の動作の一例を示すタイムチャートである。It is a time chart which shows an example of operation | movement at the time of performing the arithmetic processing of FIG. 図5のステップS19の制御を実行した場合の動作の一例を示すタイムチャートである。It is a time chart which shows an example of operation at the time of performing control of Step S19 of Drawing 5. 図5のステップS19の制御を実行しない場合の動作の一例を示すタイムチャートである。It is a time chart which shows an example of operation when not performing control of Step S19 of Drawing 5.
 図1は、本発明に係るハイブリッド車両の制御装置1を適用したパラレル式ハイブリッド車両の一例を示す全体システム図である。以下、図1に基づいて、駆動系及び制御系の構成を説明する。図1に示すように、本実施形態のパラレル式ハイブリッド車両の駆動系は、エンジン(内燃機関)Engと、第1クラッチ(クラッチ)CL1と、モータジェネレータ(電動機・発電機)MGと、第2クラッチCL2と、無段変速機(ベルト式無段変速機)CVTと、ファイナルギヤFGと、左駆動輪LTと、右駆動輪RTと、を備える。本実施形態における車両の駆動方式は特に限定されず、FF方式、FR方式、4WD方式のほか、RR方式やMR(ミッドシップ)方式にも適用することができる。 FIG. 1 is an overall system diagram showing an example of a parallel hybrid vehicle to which a hybrid vehicle control device 1 according to the present invention is applied. Hereinafter, based on FIG. 1, the structure of a drive system and a control system is demonstrated. As shown in FIG. 1, the drive system of the parallel hybrid vehicle of this embodiment includes an engine (internal combustion engine) Eng, a first clutch (clutch) CL1, a motor generator (motor / generator) MG, A clutch CL2, a continuously variable transmission (belt type continuously variable transmission) CVT, a final gear FG, a left drive wheel LT, and a right drive wheel RT are provided. The vehicle drive system in the present embodiment is not particularly limited, and can be applied to the RR system and MR (midship) system in addition to the FF system, the FR system, and the 4WD system.
 エンジンEngは、ガソリン、軽油その他の燃料を燃焼させて駆動エネルギを出力する駆動源の一つであり、統合コントローラ10からの制御信号を受けたエンジンコントローラ13からの制御信号に基づいて、スロットルアクチュエータによる吸入空気量と、フューエルインジェクタによる燃料噴射量と、点火プラグによる点火時期が制御され、エンジントルクがエンジントルク指令値と一致するように制御される。 The engine Eng is one of driving sources for outputting driving energy by burning gasoline, light oil and other fuels, and is based on a control signal from the engine controller 13 which has received a control signal from the integrated controller 10. Is controlled such that the engine torque coincides with the engine torque command value by controlling the intake air amount by the fuel injector, the fuel injection amount by the fuel injector, and the ignition timing by the spark plug.
 第1クラッチCL1は、エンジンEngとモータジェネレータMGとの間の位置に介装されている。第1クラッチCL1としては、例えば、ダイアフラムスプリングによる付勢力にて常時開放(ノーマルオープン)の乾式クラッチや、比例ソレノイドで油流量および油圧を連続的に制御する湿式多板クラッチが用いられ、エンジンEngとモータジェネレータMGとの間の締結(半締結(スリップ)を含む)/開放を行なう。第1クラッチCL1が完全締結状態の場合には、モータトルクとエンジントルクとを合計したトルクが第2クラッチCL2へ伝達され、開放状態の場合には、モータトルクのみが第2クラッチCL2へと伝達される。第1クラッチCL1は、統合コントローラ10からの制御信号に基づくクラッチコントローラ12からの制御信号により油圧制御回路200が制御され、これによりエンジンEngとモータジェネレータMGとの間の締結(半締結(スリップ)を含む)/開放が実行される。なお、半締結/開放の制御は、油圧アクチュエータに対するストローク制御により実行される。 The first clutch CL1 is interposed at a position between the engine Eng and the motor generator MG. As the first clutch CL1, for example, a dry clutch that is normally open (normally open) by an urging force of a diaphragm spring, or a wet multi-plate clutch that continuously controls the oil flow rate and hydraulic pressure with a proportional solenoid, is used. And motor generator MG are fastened (including half-fastened (slip)) / opened. When the first clutch CL1 is in the fully engaged state, the total torque of the motor torque and the engine torque is transmitted to the second clutch CL2, and in the released state, only the motor torque is transmitted to the second clutch CL2. Is done. In the first clutch CL1, the hydraulic pressure control circuit 200 is controlled by a control signal from the clutch controller 12 based on a control signal from the integrated controller 10, whereby the engagement (semi-engagement (slip)) between the engine Eng and the motor generator MG is performed. ) / Release is performed. The half-engagement / release control is executed by stroke control on the hydraulic actuator.
 モータジェネレータMGは、ロータに永久磁石を埋設し、ステータにステータコイルが巻きつけられた交流同期型モータジェネレータであり、モータジェネレータMGには、ロータ回転角を検出するレゾルバなどの回転角センサが設けられている。モータジェネレータMGは、電動機としても機能するし発電機としても機能する。インバータINVから三相交流電力が供給されている場合には、モータジェネレータMGは回転駆動する(力行)。一方、外力によってロータが回転している場合には、モータジェネレータMGは、ステータコイルの両端に起電力を生じさせることで交流電力を生成する(回生)。モータジェネレータMGによって発電された交流電力は、インバータINVによって直流電力に変換された後に、バッテリBATに充電される。また、回生中においてモータジェネレータMGには負のトルクが発生するので、駆動輪に対して制動機能をも奏する。モータジェネレータMGは、統合コントローラ10からの制御信号を受けたモータコントローラ14からの制御信号に基づいて、回転数制御又はトルク制御により回転駆動する。なお、モータジェネレータMGに代えて、発電機能を備えない電動機(モータ)を用いてもよい。 The motor generator MG is an AC synchronous motor generator in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator. The motor generator MG is provided with a rotation angle sensor such as a resolver for detecting a rotor rotation angle. It has been. Motor generator MG functions not only as an electric motor but also as a generator. When three-phase AC power is supplied from the inverter INV, the motor generator MG is driven to rotate (powering). On the other hand, when the rotor is rotated by an external force, motor generator MG generates AC power by generating electromotive force at both ends of the stator coil (regeneration). The AC power generated by the motor generator MG is converted into DC power by the inverter INV, and then charged to the battery BAT. Further, since a negative torque is generated in the motor generator MG during regeneration, the driving wheel also has a braking function. The motor generator MG is driven to rotate by rotational speed control or torque control based on the control signal from the motor controller 14 that has received the control signal from the integrated controller 10. Instead of motor generator MG, an electric motor (motor) that does not have a power generation function may be used.
 バッテリBATとしては、複数のリチウムイオン二次電池やニッケル水素二次電池などを直列又は並列に接続した組電池を例示することができる。バッテリBATには電流・電圧センサが取り付けられ、これらの検出結果をバッテリコントローラ15に出力し、バッテリコントローラ15はバッテリBATの充電状態SOCを演算し、これを統合コントローラ10へ出力する。 As the battery BAT, an assembled battery in which a plurality of lithium ion secondary batteries, nickel hydride secondary batteries, and the like are connected in series or in parallel can be exemplified. A current / voltage sensor is attached to the battery BAT, and these detection results are output to the battery controller 15. The battery controller 15 calculates the state of charge SOC of the battery BAT and outputs this to the integrated controller 10.
 第2クラッチCL2は、ベルト式無段変速機CVT及びファイナルギヤFGを介し、エンジンEng及びモータジェネレータMG(第1クラッチCL1が締結されている場合)から出力されたトルクを左右駆動輪LT,RTへ伝達する。本例の第2クラッチCL2は、サンギアSG、複数のピニオンギア(不図示)、リングギアRG、プラネットキャリアPCを備えたシングルピニオン式の遊星歯車PGと、フォワードクラッチFCと、リバースブレーキRBとを有する。遊星歯車PGのリングギアRGは、モータジェネレータMGのモータ出力軸MGoutに連結され、遊星歯車PGのサンギアSGは、ベルト式無段変速機CVTの変速機入力軸Ainに連結されている。フォワードクラッチFCは、モータ出力軸MGoutとサンギアSGとの間に介装され、リバースブレーキRBは、プラネットキャリアPCと図示しないクラッチケースとの間に介装されている。 The second clutch CL2 receives the torque output from the engine Eng and the motor generator MG (when the first clutch CL1 is engaged) via the belt-type continuously variable transmission CVT and the final gear FG. To communicate. The second clutch CL2 of this example includes a sun gear SG, a plurality of pinion gears (not shown), a ring gear RG, a single pinion planetary gear PG provided with a planet carrier PC, a forward clutch FC, and a reverse brake RB. Have. Ring gear RG of planetary gear PG is connected to motor output shaft MGout of motor generator MG, and sun gear SG of planetary gear PG is connected to transmission input shaft Ain of belt type continuously variable transmission CVT. The forward clutch FC is interposed between the motor output shaft MGout and the sun gear SG, and the reverse brake RB is interposed between the planet carrier PC and a clutch case (not shown).
 そして、第2クラッチCL2において、フォワードクラッチFCとリバースブレーキRBとを同時に開放することで、トルク伝達が切断(ニュートラル状態)される。また、フォワードクラッチFCを締結し、リバースブレーキRBを開放することで、サンギアSGとモータ出力軸MGoutとが直結する。ここで、リングギアRGは、モータ出力軸MGoutに連結しているため、サンギアSGとリングギアRGとは同じ回転速度で回転し、伝達トルクが発生すると共に、モータジェネレータMGの出力回転が正方向に伝達される。すなわち、フォワードクラッチFCは、モータジェネレータMGの出力回転を正方向に伝達させる摩擦要素である。通常、車両発進時では、モータジェネレータMGを正方向に回転させると共に、フォワードクラッチFCを締結し、リバースブレーキRBを開放することで、モータジェネレータMGの正方向の出力回転が反転することなく伝達されて前進する。 Then, in the second clutch CL2, the torque transmission is disconnected (neutral state) by simultaneously releasing the forward clutch FC and the reverse brake RB. Further, the sun gear SG and the motor output shaft MGout are directly connected by engaging the forward clutch FC and releasing the reverse brake RB. Here, since the ring gear RG is connected to the motor output shaft MGout, the sun gear SG and the ring gear RG rotate at the same rotational speed, and transmission torque is generated, and the output rotation of the motor generator MG is in the positive direction. Is transmitted to. That is, forward clutch FC is a friction element that transmits the output rotation of motor generator MG in the positive direction. Normally, when the vehicle starts, the motor generator MG is rotated in the forward direction, the forward clutch FC is engaged, and the reverse brake RB is released, so that the output rotation in the forward direction of the motor generator MG is transmitted without being reversed. And move forward.
 これに対し、リバースブレーキRBを締結し、フォワードクラッチFCを開放することで、プラネットキャリアPCはクラッチケースに対し固定される。すなわちプラネットキャリアPCは公転できない状態となる。そのため、モータ出力軸MGoutからリングギアRGに伝達された回転は、自転はするが公転しないプラネットキャリアPCを介してサンギアSGに伝わり、サンギアSGを逆回転させる。これにより、伝達トルクが発生すると共に、モータジェネレータMGの出力回転が逆方向に伝達される。すなわち、リバースブレーキRBは、モータジェネレータMGの出力回転を逆方向に伝達させる摩擦要素である。通常、車両後退時では、モータジェネレータMGを正方向に回転すると共に、リバースブレーキRBを締結し、フォワードクラッチFCを開放することで、モータジェネレータMGの正方向の出力回転が反転して伝達されて後進(後退)する。 On the other hand, the planet carrier PC is fixed to the clutch case by engaging the reverse brake RB and releasing the forward clutch FC. That is, the planet carrier PC cannot be revolved. Therefore, the rotation transmitted from the motor output shaft MGout to the ring gear RG is transmitted to the sun gear SG via the planet carrier PC that rotates but does not revolve, and reversely rotates the sun gear SG. Thereby, transmission torque is generated and output rotation of motor generator MG is transmitted in the reverse direction. That is, reverse brake RB is a friction element that transmits the output rotation of motor generator MG in the reverse direction. Normally, when the vehicle moves backward, the motor generator MG is rotated in the forward direction, the reverse brake RB is engaged, and the forward clutch FC is released, so that the output rotation in the forward direction of the motor generator MG is reversed and transmitted. Move backward (reverse).
 なお、フォワードクラッチFCはノーマルオープンの湿式多板クラッチであり、リバースブレーキRBはノーマルオープンの湿式多板ブレーキである。それぞれクラッチ押付力(油圧力)に応じて伝達トルク(クラッチトルク容量)が発生する。また、フォワードクラッチFC及びリバースブレーキRBは、それぞれ熱容量が小さく設定されている。 The forward clutch FC is a normally open wet multi-plate clutch, and the reverse brake RB is a normally open wet multi-plate brake. A transmission torque (clutch torque capacity) is generated according to the clutch pressing force (hydraulic pressure). Further, the forward clutch FC and the reverse brake RB each have a small heat capacity.
 ベルト式無段変速機CVTは、一対のプーリ及びこの一対のプーリ間に掛け渡されたプーリベルトを有するベルト式無段変速機である。一対のプーリのそれぞれのプーリ幅を変更し、プーリベルトを挟持する面の径を変更して変速比(プーリ比)を自在に制御する。ベルト式無段変速機CVTの変速比は、車速やアクセル開度等に応じて、統合コントローラ10からの制御信号を受けた変速機コントローラ11の制御信号に基づいて自動的に切り換えられる。なお、本発明のハイブリッド車両の制御装置1は、ベルト式無段変速機CVTを備える車両のほか、前進7速、後退1速などといった変速比を段階的に切り換える有段式自動変速機又は有段式手動変速機にも適用することができる。また、本発明のハイブリッド車両の制御装置1は、第2クラッチCL2に代えて、モータジェネレータMG又はモータと、変速機とが直結されたものにも適用することができる。 The belt-type continuously variable transmission CVT is a belt-type continuously variable transmission having a pair of pulleys and a pulley belt stretched between the pair of pulleys. The gear ratio (pulley ratio) is freely controlled by changing the pulley width of each of the pair of pulleys and changing the diameter of the surface that holds the pulley belt. The gear ratio of the belt type continuously variable transmission CVT is automatically switched based on the control signal of the transmission controller 11 that receives the control signal from the integrated controller 10 according to the vehicle speed, the accelerator opening, and the like. The hybrid vehicle control device 1 according to the present invention is not limited to a vehicle having a belt-type continuously variable transmission CVT, but also a stepped automatic transmission or a stepped automatic transmission that switches a gear ratio such as 7 forward speeds and 1 reverse speed. It can also be applied to a stepped manual transmission. The hybrid vehicle control device 1 of the present invention can also be applied to a motor generator MG or a motor and a transmission directly connected to each other instead of the second clutch CL2.
 モータ出力軸MGoutには、チェーンCHを介して機械式オイルポンプOPの入力ギアが接続されている。この機械式オイルポンプOPは、モータジェネレータMGの回転駆動力によって作動するポンプであり、例えばギアポンプやベーンポンプ等が用いられる。機械式オイルポンプOPは、モータジェネレータMGの回転方向に拘らずオイルの吐出が可能とされている。また、オイルポンプとしては、サブモータSMの回転駆動力によって作動する電動オイルポンプMOPも設けられている。そして、この機械式オイルポンプOPと電動オイルポンプMOPは、第1クラッチCL1及び第2クラッチCL2への制御圧及びベルト式無段変速機CVTへの制御圧を生成する油圧源とされている。この油圧源では、機械式オイルポンプOPからの吐出油量が十分であるときはサブモータSMを停止して電動オイルポンプMOPを停止させ、機械式オイルポンプOPからの吐出油圧が低下すると、サブモータSMを駆動して電動オイルポンプMOPのモータを作動させて電動オイルポンプMOPからも作動油を吐出するように切り替えられる。なお、本実施形態では、機械式オイルポンプOPを第2クラッチCL2に設けた例を示したが、この機械式オイルポンプOPの設置位置は、第1クラッチCL1よりも駆動輪LT,RT側であれば、この位置に限らず、変速機CVTの内部など他の位置に設置してもよい。また、本実施形態では、作動液としてオイルを用いたが、圧力を伝達可能な液体であればオイルに限定されない。 The input gear of the mechanical oil pump OP is connected to the motor output shaft MGout via the chain CH. The mechanical oil pump OP is a pump that is operated by the rotational driving force of the motor generator MG. For example, a gear pump or a vane pump is used. The mechanical oil pump OP is capable of discharging oil regardless of the rotation direction of the motor generator MG. Further, as the oil pump, an electric oil pump MOP that is operated by the rotational driving force of the sub motor SM is also provided. The mechanical oil pump OP and the electric oil pump MOP are used as a hydraulic pressure source that generates a control pressure for the first clutch CL1 and the second clutch CL2 and a control pressure for the belt-type continuously variable transmission CVT. With this hydraulic power source, when the amount of oil discharged from the mechanical oil pump OP is sufficient, the sub motor SM is stopped to stop the electric oil pump MOP, and when the hydraulic pressure discharged from the mechanical oil pump OP decreases, the sub motor SM To drive the electric oil pump MOP and to discharge the hydraulic oil from the electric oil pump MOP. In this embodiment, an example in which the mechanical oil pump OP is provided in the second clutch CL2 is shown. However, the installation position of the mechanical oil pump OP is closer to the drive wheels LT and RT than the first clutch CL1. If it exists, you may install not only in this position but in other positions, such as the inside of transmission CVT. In the present embodiment, oil is used as the working fluid, but it is not limited to oil as long as it is a liquid capable of transmitting pressure.
 本実施形態のハイブリッド車両は、駆動源をエンジンEng及び/又はモータジェネレータMGに設定することにより、換言すれば第1クラッチCL1および第2クラッチCL2の締結/半締結(スリップ)/開放状態に応じて、以下に説明する電気自動車走行モード(以下、EV走行モード)と、ハイブリッド車走行モード(以下、HEV走行モード)と、準電気自動車走行モード(以下、準EV走行モード)と、駆動トルクコントロール発進モード(以下、WSC走行モード)の各走行モードに切り換えることができる。 In the hybrid vehicle of the present embodiment, the drive source is set to the engine Eng and / or the motor generator MG, in other words, according to the engagement / semi-engagement (slip) / release state of the first clutch CL1 and the second clutch CL2. An electric vehicle traveling mode (hereinafter referred to as an EV traveling mode), a hybrid vehicle traveling mode (hereinafter referred to as an HEV traveling mode), a quasi-electric vehicle traveling mode (hereinafter referred to as a quasi-EV traveling mode), and driving torque control described below. It is possible to switch to each travel mode of the start mode (hereinafter referred to as WSC travel mode).
 EV走行モードは、第1クラッチCL1を開放させるとともに、第2クラッチCL2を締結し、モータジェネレータMGの動力のみで走行するモードである。HEV走行モードは、第1クラッチCL1及び第2クラッチCL2を共に締結し、少なくともエンジンEngの動力を駆動源に含みながら走行するモードである。HEV走行モードには、モータアシスト走行モード、走行発電モード、エンジン走行モードが含まれる。モータアシスト走行モードは、エンジンEngとモータジェネレータMGとの両方を駆動させて、これら2つを動力源として駆動輪LT,RTを回転させる。走行発電モードは、エンジンEngを動力源として駆動輪LT,RTを回転させると同時に、モータジェネレータMGを発電機として機能させ、バッテリBATを充電する。エンジン走行モードは、モータジェネレータMGを駆動させずに、エンジンEngのみを動力源として駆動輪LT,RTを回転させる。 The EV traveling mode is a mode in which the first clutch CL1 is released and the second clutch CL2 is engaged, and the vehicle travels only with the power of the motor generator MG. The HEV traveling mode is a mode in which both the first clutch CL1 and the second clutch CL2 are engaged and the vehicle travels while including at least the power of the engine Eng as a drive source. The HEV travel mode includes a motor assist travel mode, a travel power generation mode, and an engine travel mode. In the motor assist travel mode, both the engine Eng and the motor generator MG are driven, and the drive wheels LT and RT are rotated using these two as power sources. In the traveling power generation mode, the drive wheels LT and RT are rotated using the engine Eng as a power source, and at the same time, the motor generator MG functions as a generator to charge the battery BAT. In the engine running mode, the drive wheels LT and RT are rotated using only the engine Eng as a power source without driving the motor generator MG.
 準EV走行モードは、第1クラッチCL1が締結状態であるがエンジンEngをOFFとし、モータジェネレータMGの動力のみで走行するモードである。WSC走行モード(エンジン使用スリップ走行モード,Wet Start Clutch)は、HEVモードからのP,N→Dセレクト発進時、または、EV走行モードやHEV走行モードからのDレンジ発進時等において、モータジェネレータMGを回転数制御させることで、第2クラッチCL2のスリップ締結状態を維持し、第2クラッチCL2を経過するクラッチ伝達トルクが、車両状態やドライバ操作に応じて決まる要求駆動トルクとなるようにクラッチトルク容量をコントロールしながら発進するモードである。 The quasi-EV traveling mode is a mode in which the first clutch CL1 is in the engaged state but the engine Eng is turned off and the vehicle travels only with the power of the motor generator MG. The WSC travel mode (slip travel mode using engine, Wet Start Clutch) is a motor generator MG at the time of P, N → D select start from the HEV mode, or at the start of the D range from the EV travel mode or the HEV travel mode. Is controlled so as to maintain the slip engagement state of the second clutch CL2 and the clutch torque so that the clutch transmission torque passing through the second clutch CL2 becomes the required drive torque determined according to the vehicle state and the driver operation. This mode starts while controlling the capacity.
 本実施形態のパラレルハイブリッド車両の制御系は、図1に示すように、インバータINVと、バッテリBATと、統合コントローラ10と、変速機コントローラ11と、クラッチコントローラ12と、エンジンコントローラ13と、モータコントローラ14と、バッテリコントローラ15と、バッテリ電圧センサ15aと、バッテリ温度センサ15bと、エンジン回転速度センサ21と、アクセル開度センサ24と、変速機出力回転数センサ25と、モータ回転数センサ26と、第2クラッチ出力回転数センサ28と、作動油温センサ29と、を備える。これらの各コントローラ10,11,12,13,14,15は、たとえばCAN通信を介して相互に接続されている。 As shown in FIG. 1, the control system of the parallel hybrid vehicle of this embodiment includes an inverter INV, a battery BAT, an integrated controller 10, a transmission controller 11, a clutch controller 12, an engine controller 13, and a motor controller. 14, a battery controller 15, a battery voltage sensor 15a, a battery temperature sensor 15b, an engine speed sensor 21, an accelerator opening sensor 24, a transmission output speed sensor 25, a motor speed sensor 26, A second clutch output rotational speed sensor 28 and a hydraulic oil temperature sensor 29 are provided. These controllers 10, 11, 12, 13, 14, and 15 are connected to each other via, for example, CAN communication.
 インバータINVは、力行時にはバッテリBATの直流電力を交流電力に変換してモータジェネレータMGに出力するとともに、回生時にはモータジェネレータMGで発電された交流電力を直流電力に変換してバッテリBATに出力する。また力行時には、生成する駆動電流の位相を逆転することでモータジェネレータMGの出力回転を反転する。バッテリBATは、力行時にはモータジェネレータMGへ直流電力を出力するとともに、回生時にはモータジェネレータMGからの回生電力を、インバータINVを介して蓄電する。 The inverter INV converts the direct current power of the battery BAT into alternating current power during power running and outputs it to the motor generator MG, and converts the alternating current power generated by the motor generator MG into direct current power and outputs it to the battery BAT during regeneration. During power running, the output rotation of the motor generator MG is reversed by reversing the phase of the generated drive current. Battery BAT outputs DC power to motor generator MG during power running, and stores regenerative power from motor generator MG via inverter INV during regeneration.
 統合コントローラ10は、バッテリコントローラ15から入力されるバッテリ状態、アクセル開度センサ24により検出されるアクセル開度、及び変速機出力回転数に同期した値として変速機出力回転数センサ25により検出される車速から目標駆動トルクを演算する。そして、その結果に基づき各アクチュエータ(モータジェネレータMG、エンジンEng、第1クラッチCL1、第2クラッチCL2、ベルト式無段変速機CVT)に対する指令値を演算し、各コントローラ11~15へ送信する。そのため、統合コントローラ10は、図2に示すように、目標駆動トルク演算部101と、モード選択部102と、目標発電出力演算部103と、目標エンジントルク演算部104と、全開トルクアップ要求部105と、エンジン指令トルク演算部106と、モータ指令トルク演算部107と、クラッチ指令容量演算部108と、を備える。 The integrated controller 10 is detected by the transmission output speed sensor 25 as a value synchronized with the battery state inputted from the battery controller 15, the accelerator opening detected by the accelerator opening sensor 24, and the transmission output speed. The target drive torque is calculated from the vehicle speed. Based on the result, command values for the actuators (motor generator MG, engine Eng, first clutch CL1, second clutch CL2, belt type continuously variable transmission CVT) are calculated and transmitted to the controllers 11-15. Therefore, as shown in FIG. 2, the integrated controller 10 includes a target drive torque calculation unit 101, a mode selection unit 102, a target power generation output calculation unit 103, a target engine torque calculation unit 104, and a fully open torque increase request unit 105. An engine command torque calculator 106, a motor command torque calculator 107, and a clutch command capacity calculator 108.
 目標駆動トルク演算部101は、アクセル開度センサ24により検出されたアクセル開度APOと、変速機出力回転数センサ25により検出された車速VSPから、エンジントルクとモータトルクとを含む目標駆動トルクを演算し、目標エンジントルク演算部104へ出力する。 The target drive torque calculation unit 101 calculates a target drive torque including engine torque and motor torque from the accelerator opening APO detected by the accelerator opening sensor 24 and the vehicle speed VSP detected by the transmission output speed sensor 25. Calculate and output to the target engine torque calculation unit 104.
 モード選択部102は、図3に示す予め定められたモード選択制御マップ(以下、EV-HEV選択マップともいう)を用いて、アクセル開度APOと車速VSPとから、目標走行モード(HEV走行モード、EV走行モード、WSC走行モード)を演算し、目標エンジントルク演算部104へ出力する。図示するEV-HEV選択マップには、EV領域に存在する運転点(APO,VSP)が横切るとHEV走行モードへと切り替えるEV⇒HEV切替線(エンジン始動線)と、HEV領域に存在する運転点(APO,VSP)が横切るとEV走行モードへと切り替えるHEV⇒EV切替線(エンジン停止線)と、HEVモードの選択時に運転点(APO,VSP)がWSC領域に入るとWSC走行モードへと切り替えるHEV⇒WSC切替線と、が設定されている。HEV⇒EV切替線とEV⇒HEV切替線は、EV領域とHEV領域を分ける線としてヒステリシス量を持たせて設定されている。HEV⇒WSC切替線は、ベルト式無段変速機CVTが最低変速比のときに、エンジンEngがアイドル回転数を維持する第1設定車速VSP1に沿って設定されている。但し、「EVモード」の選択中などにおいて、バッテリBATの充電状態SOC(バッテリ電圧およびバッテリ温度から求める)が所定値以下になると、強制的にHEV走行モード(主として走行発電モード又はエンジン走行モード)を目標走行モードとする。したがって、モード選択部102が選択する運転モードが、EVモードからHEVモードに切り換わった場合に、エンジンEngの始動が行われる。 The mode selection unit 102 uses a predetermined mode selection control map (hereinafter also referred to as an EV-HEV selection map) shown in FIG. 3 to calculate a target travel mode (HEV travel mode) from the accelerator opening APO and the vehicle speed VSP. , EV travel mode, WSC travel mode), and outputs to the target engine torque calculation unit 104. In the EV-HEV selection map shown in the figure, when the operating point (APO, VSP) existing in the EV region crosses, the EV → HEV switching line (engine start line) for switching to the HEV driving mode and the operating point existing in the HEV region are shown. Switch to EV travel mode when (APO, VSP) crosses HEV⇒EV switch line (engine stop line), and switch to WSC travel mode when the operating point (APO, VSP) enters the WSC area when HEV mode is selected HEV⇒WSC switching line is set. The HEV → EV switching line and the EV → HEV switching line are set with a hysteresis amount as a line dividing the EV area and the HEV area. The HEV => WSC switching line is set along the first set vehicle speed VSP1 at which the engine Eng maintains the idle speed when the belt-type continuously variable transmission CVT has the minimum speed ratio. However, when the state of charge SOC (obtained from the battery voltage and battery temperature) of the battery BAT becomes equal to or lower than a predetermined value, for example, while the “EV mode” is selected, the HEV traveling mode (mainly the traveling power generation mode or the engine traveling mode) is forcibly set. Is the target travel mode. Therefore, when the operation mode selected by the mode selection unit 102 is switched from the EV mode to the HEV mode, the engine Eng is started.
 目標発電出力演算部103は、予め定められた走行中発電要求出力マップを用いて、バッテリBATのSOCに基づいて目標発電出力を演算し、目標エンジントルク演算部104へ出力する。また、現在のエンジン動作点(回転速度、トルク)から最良燃費線までエンジントルクを上げるために必要な出力を演算し、目標発電出力と比較して少ない出力を要求出力として、エンジン出力に加算する。 The target power generation output calculation unit 103 calculates a target power generation output based on the SOC of the battery BAT using a predetermined power generation request output map during travel, and outputs the target power generation output to the target engine torque calculation unit 104. Also, it calculates the output required to increase the engine torque from the current engine operating point (rotation speed, torque) to the best fuel consumption line, and adds a smaller output as a required output compared to the target power output to the engine output. .
 目標エンジントルク演算部104は、目標駆動トルク演算部101で演算された目標駆動トルクのうちエンジンEng単体で出力すべきトルクを演算するものであり、目標駆動トルクと、目標走行モードと、車速VSPと、要求発電出力とから、エンジントルクマップとモータアシストトルクマップを用いて目標エンジントルクを演算し、全開トルクアップ要求部105、エンジン指令トルク演算部106へ出力する。 The target engine torque calculation unit 104 calculates a torque to be output by the engine Eng alone among the target drive torques calculated by the target drive torque calculation unit 101. The target drive torque, the target travel mode, and the vehicle speed VSP are calculated. Then, the target engine torque is calculated from the requested power generation output using the engine torque map and the motor assist torque map, and is output to the full-open torque increase request unit 105 and the engine command torque calculation unit 106.
 全開トルクアップ要求部105は、目標エンジントルク演算部104で演算された目標エンジントルクと、アクセル開度APOとに基づいて、アクセル開度APOが全開(アクセルペダルが最大に踏み込まれている状態)で且つ目標エンジントルクがエンジンEngの最大トルク以上であるか否かを判定し、アクセル開度APOが全開で且つ目標エンジントルクがエンジンEngの最大トルク以上である場合は、全開要求のON信号をエンジンコントローラ13へ出力し、それ以外の場合は全開要求のOFF信号をエンジンコントローラ13へ出力する(又は何も出力しない)。なお詳細は後述するが、エンジンEngの最大トルクとは、そのときのエンジンEngの駆動状態に応じて出力可能な、回転速度ごとの最大トルクをいい、回転速度を含めた、エンジン冷却水温度、エンジンオイル温度、吸排気バルブの開閉タイミングなどの諸条件により変動する値である。これに対して、エンジンEngの最大定格トルクとは、そのエンジンEngにより出力可能な、回転速度ごとの最大トルクをいい、エンジンの運転条件が最適の場合などに出力可能な回転速度ごとのエンジントルクをいうものとする。 The fully open torque increase requesting unit 105 fully opens the accelerator opening APO based on the target engine torque calculated by the target engine torque calculating unit 104 and the accelerator opening APO (a state where the accelerator pedal is fully depressed). And whether or not the target engine torque is equal to or greater than the maximum torque of the engine Eng. If the accelerator opening APO is fully open and the target engine torque is equal to or greater than the maximum torque of the engine Eng, an ON signal for a fully open request is sent. In other cases, it outputs to the engine controller 13, and in other cases, an OFF signal for full opening request is output to the engine controller 13 (or nothing is output). Although details will be described later, the maximum torque of the engine Eng is the maximum torque for each rotational speed that can be output according to the driving state of the engine Eng at that time, and includes the engine coolant temperature including the rotational speed, This value varies depending on various conditions such as engine oil temperature and intake / exhaust valve opening / closing timing. On the other hand, the maximum rated torque of the engine Eng means the maximum torque for each rotational speed that can be output by the engine Eng, and the engine torque for each rotational speed that can be output when the engine operating conditions are optimal. It shall be said.
 エンジン指令トルク演算部106は、目標エンジントルク演算部104で演算された目標エンジントルクに応じたエンジントルク指令値を演算し、エンジンコントローラ13へ出力する。モータ指令トルク演算部107は、目標エンジントルク演算部104で演算された目標エンジントルクと、目標駆動トルクとから、モータジェネレータMGでアシストすべきモータトルク指令値を演算し、モータコントローラ14へ出力する。クラッチ指令容量演算部108は、目標エンジントルク演算部104で演算された目標エンジントルクと、目標駆動トルクとから、第1クラッチCL1及び第2クラッチCL2それぞれのクラッチ容量指令値を演算し、クラッチコントローラ12へ出力する。 The engine command torque calculation unit 106 calculates an engine torque command value corresponding to the target engine torque calculated by the target engine torque calculation unit 104 and outputs it to the engine controller 13. The motor command torque calculation unit 107 calculates a motor torque command value to be assisted by the motor generator MG from the target engine torque calculated by the target engine torque calculation unit 104 and the target drive torque, and outputs the motor torque command value to the motor controller 14. . The clutch command capacity calculator 108 calculates a clutch capacity command value for each of the first clutch CL1 and the second clutch CL2 from the target engine torque calculated by the target engine torque calculator 104 and the target drive torque, and a clutch controller. 12 is output.
 変速機コントローラ11は、統合コントローラ10からの変速指令を達成するように、予め定められた変速制御マップに応じた変速制御を行なう。変速制御は、油圧制御回路200を介してベルト式無段変速機CVTに供給される油圧制御をすることで行われる。クラッチコントローラ12は、クラッチ容量制御部121を備え、第2クラッチ入力回転数(モータ回転数センサ26により検出)、第2クラッチ出力回転数(第2クラッチ出力回転数センサ28により検出)、クラッチ油温(作動油温センサ29により検出)を入力する。また、クラッチコントローラ12は、統合コントローラ10からのCL1ソレノイド電流指令に対して、油圧制御回路200から供給されるクラッチ油圧(電流)指令値を実現するように油圧制御回路200に設けられた図示しないソレノイドバルブの電流を制御する。これにより、第1クラッチCL1のクラッチストローク量が設定される。 The transmission controller 11 performs shift control according to a predetermined shift control map so as to achieve the shift command from the integrated controller 10. The shift control is performed by controlling the hydraulic pressure supplied to the belt type continuously variable transmission CVT via the hydraulic control circuit 200. The clutch controller 12 includes a clutch capacity control unit 121, a second clutch input rotational speed (detected by the motor rotational speed sensor 26), a second clutch output rotational speed (detected by the second clutch output rotational speed sensor 28), clutch oil The temperature (detected by the hydraulic oil temperature sensor 29) is input. The clutch controller 12 is provided in the hydraulic control circuit 200 so as to realize the clutch hydraulic pressure (current) command value supplied from the hydraulic control circuit 200 in response to the CL1 solenoid current command from the integrated controller 10. Controls the current of the solenoid valve. Thereby, the clutch stroke amount of the first clutch CL1 is set.
 エンジンコントローラ13は、エンジントルク制御部131を備え、エンジン回転速度センサ21により検出されたエンジン回転速度を入力すると共に、統合コントローラ10からのエンジントルク指令値を達成するようにエンジントルク制御を行なう。また、詳細は後述するが、アクセル開度APOが全開である場合に、エンジンEngが最大定格トルクを出力できる状態にあるか否かをエンジンの駆動状態に基づいて判定する最大出力判定部132と、そのときの最大トルクを演算する最大トルク演算部133とを備える。モータコントローラ14は、モータトルク制御部141を備え、統合コントローラ10からのモータトルク指令値(又はモータ回転数指令値)を達成するようにモータジェネレータMGの制御を行なう。バッテリコントローラ15は、バッテリBATの充電状態SOCを管理し、その情報を統合コントローラ10へ送信する。なお、充電状態を示すバッテリSOCは、バッテリ電圧センサ15aが検出する電源電圧と、バッテリ温度センサ15bが検出するバッテリ温度Tbatとに基づいて演算する。 The engine controller 13 includes an engine torque control unit 131, inputs the engine rotation speed detected by the engine rotation speed sensor 21, and performs engine torque control so as to achieve the engine torque command value from the integrated controller 10. As will be described in detail later, a maximum output determination unit 132 that determines whether or not the engine Eng can output the maximum rated torque when the accelerator opening APO is fully open, based on the driving state of the engine; And a maximum torque calculator 133 for calculating the maximum torque at that time. The motor controller 14 includes a motor torque control unit 141 and controls the motor generator MG so as to achieve the motor torque command value (or the motor rotation speed command value) from the integrated controller 10. The battery controller 15 manages the state of charge SOC of the battery BAT and transmits the information to the integrated controller 10. The battery SOC indicating the state of charge is calculated based on the power supply voltage detected by the battery voltage sensor 15a and the battery temperature Tbat detected by the battery temperature sensor 15b.
 図4は、第1クラッチCL1及び第2クラッチCL2の断接を制御するために、クラッチコントローラ12によって制御される油圧制御回路200を示す油圧回路図である。機械式オイルポンプOPは、変速機油圧回路201へ作動油を吐出する。この変速機油圧回路201は、後述するライン圧レギュレータバルブ202により調圧されたライン圧PLを、ベルト式無段変速機CVT、第2クラッチCL2および指令油圧制御部210へ供給するとともに、そのドレーン作動油を第1クラッチCL1に向けて供給する。なお、指令油圧制御部210は、統合コントローラ10からのCVTソレノイド電流指令およびCL1ソレノイド電流指令により作動するソレノイドバルブ(不図示)を動作させて、指令油圧(後述するPS1,PS2,PAなど)を生成する。また、ライン圧PLは、ベルト式無段変速機CVTに対し、バルブ(不図示)を備えた調圧部220において目標CVTシフトに応じて形成された油圧が、プライマリプーリおよびセカンダリプーリ(いずれも図示を省略)の駆動部へ出力される。 FIG. 4 is a hydraulic circuit diagram showing a hydraulic control circuit 200 controlled by the clutch controller 12 in order to control connection / disconnection of the first clutch CL1 and the second clutch CL2. The mechanical oil pump OP discharges hydraulic oil to the transmission hydraulic circuit 201. The transmission hydraulic circuit 201 supplies a line pressure PL adjusted by a line pressure regulator valve 202, which will be described later, to the belt-type continuously variable transmission CVT, the second clutch CL2, and the command hydraulic control unit 210, and the drain thereof. The hydraulic oil is supplied toward the first clutch CL1. The command oil pressure control unit 210 operates a solenoid valve (not shown) that operates according to the CVT solenoid current command and the CL1 solenoid current command from the integrated controller 10 to control the command oil pressure (PS1, PS2, PA, etc. described later). Generate. In addition, the line pressure PL is determined by the hydraulic pressure formed in response to the target CVT shift in the pressure adjusting unit 220 having a valve (not shown) for the belt-type continuously variable transmission CVT. (Not shown).
 変速機油圧回路201には、ライン圧PLを調節するライン圧レギュレータバルブ202が設けられている。ライン圧レギュレータバルブ202は、必要に応じて軸方向に移動することにより変速機油圧回路201を、第1クラッチ油圧回路(減圧側回路)204に逃がしてライン圧PLを減圧するスプール202spを備える。このスプール202spは、模式的に示しているが、軸方向の一方(図において右方向)にフィードバック回路201fからフィードバック圧を受ける。また、スプール202spは、その逆方向(図において左方向)にスプリング202aの付勢力および指令油圧制御部210から出力される第1制御圧PS1を受ける。そして、ライン圧レギュレータバルブ202は、第1制御圧PS1とスプリング202aの付勢力との合力に応じたライン圧PLを生成し、ライン圧PLが過剰な場合には、その余剰分の作動油を変速機油圧回路201から第1クラッチ油圧回路204に抜く。なお、第1制御圧PS1は、統合コントローラ10から出力されるCVTソレノイド電流指令により、ベルト式無段変速機CVTにおける入力トルクに応じたライン圧PLを生成すべく、指令油圧制御部210にて形成される油圧である。 The transmission hydraulic circuit 201 is provided with a line pressure regulator valve 202 for adjusting the line pressure PL. The line pressure regulator valve 202 includes a spool 202sp that moves in the axial direction as necessary to release the transmission hydraulic circuit 201 to the first clutch hydraulic circuit (decompression side circuit) 204 to reduce the line pressure PL. This spool 202sp is schematically shown, but receives feedback pressure from the feedback circuit 201f in one of the axial directions (rightward in the drawing). Further, the spool 202sp receives the urging force of the spring 202a and the first control pressure PS1 output from the command hydraulic control unit 210 in the opposite direction (left direction in the drawing). The line pressure regulator valve 202 generates a line pressure PL corresponding to the resultant force of the first control pressure PS1 and the urging force of the spring 202a. If the line pressure PL is excessive, the excess hydraulic oil is supplied. The transmission hydraulic circuit 201 is removed to the first clutch hydraulic circuit 204. The first control pressure PS1 is generated by the command hydraulic control unit 210 in order to generate a line pressure PL corresponding to the input torque in the belt-type continuously variable transmission CVT based on the CVT solenoid current command output from the integrated controller 10. The hydraulic pressure that is formed.
 第1クラッチ油圧回路204には、第1クラッチ圧レギュレータバルブ205と、クラッチ圧力制御バルブ206と、が設けられている。第1クラッチ圧レギュレータバルブ205は、第1クラッチ油圧回路204の作動油圧を第1クラッチレギュレータ圧PRCLに調節するもので、図において模式的に示すスプール205spを備える。このスプール205spは、軸方向の一方(図において左方向)に、第1クラッチ油圧回路204の作動油圧をフィードバック圧としてフィードバック回路204fから受ける。また、スプール205spは、フィードバック圧とは逆方向(図において左方向)にスプリング205aの付勢力および指令油圧制御部210にて生成される制御パイロット圧PAを受ける。したがって、第1クラッチ圧レギュレータバルブ205は、制御パイロット圧PAとスプリング205aの付勢力との合力に応じた第1クラッチレギュレータ圧PRCLを生成し、第1クラッチレギュレータ圧PRCLが過剰な場合には、その余剰分の作動油をドレーン回路207に抜く。なお、ドレーン回路207に抜かれた作動油は、第1クラッチCL1の潤滑に回される。 The first clutch hydraulic circuit 204 is provided with a first clutch pressure regulator valve 205 and a clutch pressure control valve 206. The first clutch pressure regulator valve 205 adjusts the hydraulic pressure of the first clutch hydraulic circuit 204 to the first clutch regulator pressure PRCL, and includes a spool 205sp schematically shown in the drawing. The spool 205sp receives the hydraulic pressure of the first clutch hydraulic circuit 204 from the feedback circuit 204f as a feedback pressure in one axial direction (leftward in the figure). Further, the spool 205sp receives the urging force of the spring 205a and the control pilot pressure PA generated by the command hydraulic control unit 210 in the direction opposite to the feedback pressure (leftward in the drawing). Therefore, the first clutch pressure regulator valve 205 generates the first clutch regulator pressure PRCL corresponding to the resultant force of the control pilot pressure PA and the urging force of the spring 205a, and when the first clutch regulator pressure PRCL is excessive, The excess hydraulic oil is drawn out to the drain circuit 207. In addition, the hydraulic oil withdrawn to the drain circuit 207 is turned to lubrication of the first clutch CL1.
 クラッチ圧力制御バルブ206は、第1クラッチCL1を締結するクラッチ締結圧PCL1を生成し、このクラッチ締結圧PCL1を第1クラッチCL1に連通された出力回路208に出力する。クラッチ圧力制御バルブ206は、図において模式的に示す軸方向に移動するスプール206spを備える。スプール206spは、軸方向の一方(図において左方向)に、スプリング206aの付勢力を受け、その逆方向(図において右方向)に、指令油圧制御部210から出力される第2制御圧PS2およびフィードバック回路208fからのフィードバック圧を受ける。したがって、クラッチ圧力制御バルブ206は、クラッチ締結圧PCL1が、第2制御圧PS2に応じた値よりも大きい場合は、出力回路208の作動油をドレーン回路207に抜く。一方、クラッチ締結圧PCL1がクラッチ制御圧PSCLに応じた値よりも小さい場合は、第1クラッチ油圧回路204の第1クラッチレギュレータ圧PRCLを出力回路208へ供給する。なお、第2制御圧PS2は、統合コントローラ10からのCL1ソレノイド電流指令信号に応じて指令油圧制御部210にて生成される油圧である。 The clutch pressure control valve 206 generates a clutch engagement pressure PCL1 for engaging the first clutch CL1, and outputs the clutch engagement pressure PCL1 to an output circuit 208 communicated with the first clutch CL1. The clutch pressure control valve 206 includes a spool 206sp that moves in the axial direction schematically shown in the drawing. The spool 206sp receives a biasing force of the spring 206a in one of the axial directions (leftward in the figure), and in the opposite direction (rightward in the figure), the second control pressure PS2 output from the command hydraulic pressure control unit 210 and The feedback pressure from the feedback circuit 208f is received. Therefore, the clutch pressure control valve 206 draws hydraulic fluid from the output circuit 208 to the drain circuit 207 when the clutch engagement pressure PCL1 is larger than a value corresponding to the second control pressure PS2. On the other hand, when the clutch engagement pressure PCL1 is smaller than a value corresponding to the clutch control pressure PSCL, the first clutch regulator pressure PRCL of the first clutch hydraulic circuit 204 is supplied to the output circuit 208. The second control pressure PS2 is a hydraulic pressure generated by the command hydraulic pressure control unit 210 in response to the CL1 solenoid current command signal from the integrated controller 10.
 次に、図5のフローチャート及び図6~図8のタイムチャートを参照して、統合コントローラ10、エンジンコントローラ13、及びモータコントローラ14で実行される走行制御について説明する。本実施形態の走行制御においては、統合コントローラ10の全開トルクアップ要求部105によりアクセル開度APOが全開か否かを判定し、全開である場合には統合コントローラ10からエンジンコントローラ13の最大出力判定部132へ全開要求指令を出力する一方、統合コントローラ10の全開トルクアップ要求部105からエンジンコントローラ13の最大出力判定部132に全開要求指令が入力された場合には、エンジンコントローラ13の最大出力判定部132によりエンジンEngが最大定格トルクを出力可能な状態であるか否かを判定し、エンジンEngが最大定格トルクを出力可能な状態にあると判定された場合は、最大トルク演算部133及びエンジントルク制御部131によりエンジントルクを最大定格トルクにて制御するとともに、最大定格トルクにて制御する旨の信号を、エンジンコントローラ13の最大トルク演算部133から統合コントローラ10の目標駆動トルク演算部101、全開トルクアップ要求部105及びエンジン指令トルク演算部106に出力することを特徴としている。またこのときのエンジントルクを推定し、そのエンジントルク推定値を統合コントローラ10のモータ指令トルク演算部107に出力することを特徴としている。 Next, travel control executed by the integrated controller 10, the engine controller 13, and the motor controller 14 will be described with reference to the flowchart of FIG. 5 and the time charts of FIGS. In the travel control of the present embodiment, the fully open torque increase request unit 105 of the integrated controller 10 determines whether or not the accelerator opening APO is fully opened. If the accelerator is fully open, the integrated controller 10 determines the maximum output of the engine controller 13. When the full-open request command is input to the maximum output determination unit 132 of the engine controller 13 from the full-open torque increase request unit 105 of the integrated controller 10 while the full-open request command is output to the unit 132, the maximum output determination of the engine controller 13 is performed. When it is determined by the unit 132 whether or not the engine Eng is capable of outputting the maximum rated torque, and it is determined that the engine Eng is capable of outputting the maximum rated torque, the maximum torque calculating unit 133 and the engine Torque control unit 131 sets engine torque at maximum rated torque In addition, a signal indicating that the control is performed with the maximum rated torque is transmitted from the maximum torque calculation unit 133 of the engine controller 13 to the target drive torque calculation unit 101, the full-open torque increase request unit 105, and the engine command torque calculation unit 106 of the integrated controller 10. It is characterized by being output to. The engine torque at this time is estimated, and the estimated engine torque value is output to the motor command torque calculation unit 107 of the integrated controller 10.
 このフローチャートに示す処理は、車両のスタートボタン(いわゆるイグニッションスイッチ)がONされた場合にスタートし、スタートボタンがOFFされるまで所定時間間隔で各処理を繰り返す。すなわち、図6に示すように、時間t1にて車両のスタートボタンが押されることでエンジンEng及びモータジェネレータMGがスタンバイし、時間t2にてアクセルペダルの踏み込みが開始され、徐々にアクセルペダルを踏み込み、時間t5にてアクセルペダルが最大に踏み込まれた場合の処理を一例として示す。 The process shown in this flowchart starts when a vehicle start button (so-called ignition switch) is turned on, and repeats each process at predetermined time intervals until the start button is turned off. That is, as shown in FIG. 6, when the start button of the vehicle is pressed at time t1, engine Eng and motor generator MG are on standby, and at time t2, the accelerator pedal is started to be depressed, and the accelerator pedal is gradually depressed. An example of the process when the accelerator pedal is fully depressed at time t5 will be described.
 ステップS1において、統合コントローラ10の目標駆動トルク演算部101は、アクセル開度APOと車速VSPを所定時間間隔で読み込み、所定時間間隔で目標駆動トルク(エンジントルク及びモータトルクの総和)を演算する。同時に、統合コントローラ10のモード選択部102は、アクセル開度APO及び車速VSPを所定時間間隔で読み込み、図3に示すEV-HEV選択マップを用いて、所定時間間隔で走行モード(EV,HEV又はWSC)を演算する。そして、統合コントローラ10のクラッチ指令容量演算部108は、選択された走行モードが実現されるように、第1クラッチCL1及び第2クラッチCL2の断接を実行する制御信号をクラッチコントローラ12へ出力する。また同時に、統合コントローラ10の目標発電出力演算部103は、バッテリBATの充電状態SOCを読み込み、走行中発電要求マップを用い、充電が必要とされるSOCにおいてはその必要な充電量を得るための目標発電出力(エンジントルク)を演算する。 In step S1, the target drive torque calculation unit 101 of the integrated controller 10 reads the accelerator opening APO and the vehicle speed VSP at predetermined time intervals, and calculates the target drive torque (total of engine torque and motor torque) at predetermined time intervals. At the same time, the mode selection unit 102 of the integrated controller 10 reads the accelerator opening APO and the vehicle speed VSP at predetermined time intervals, and uses the EV-HEV selection map shown in FIG. 3 to drive the travel modes (EV, HEV or WSC). Then, the clutch command capacity calculation unit 108 of the integrated controller 10 outputs a control signal for performing connection / disconnection of the first clutch CL1 and the second clutch CL2 to the clutch controller 12 so that the selected travel mode is realized. . At the same time, the target power generation output calculation unit 103 of the integrated controller 10 reads the state of charge SOC of the battery BAT, uses the power generation request map during travel, and obtains the necessary charge amount in the SOC that requires charging. The target power generation output (engine torque) is calculated.
 ステップS2において、目標エンジントルク演算部104は、目標駆動トルク演算部101で演算された目標駆動トルクと、モード選択部102で演算された走行モードと、目標発電出力演算部103で演算された目標発電出力とを読み込み、エンジンEng単体に必要とされる目標エンジントルクを演算する。たとえば、図6(a)に示す時間t2直後のようにアクセル開度APOが小さく且つ車速も遅い場合においては、図3のEV-HEV選択マップによればEV走行モードが選択されるので、バッテリBATの充電状態SOCが発電を必要としない場合には、エンジンEng単体に必要とされる目標エンジントルクはゼロとなる。ただし、図6(a)に示す時間t2直後のようにアクセル開度APOが小さく且つ車速も遅い場合であっても、バッテリBATの充電状態SOCが、充電が必要とされる所定値以下の場合にはEV走行モードによる走行が不適切であるため、エンジンEngのみを走行駆動源とするエンジン走行モード(HEV走行モードの一種)が選択される。図6(c),(d)は後者の場合の一例を示す。 In step S <b> 2, the target engine torque calculation unit 104 calculates the target drive torque calculated by the target drive torque calculation unit 101, the travel mode calculated by the mode selection unit 102, and the target calculated by the target power generation output calculation unit 103. The power generation output is read, and the target engine torque required for the engine Eng alone is calculated. For example, when the accelerator opening APO is small and the vehicle speed is slow, such as immediately after time t2 shown in FIG. 6A, the EV travel mode is selected according to the EV-HEV selection map of FIG. When the state of charge SOC of the BAT does not require power generation, the target engine torque required for the engine Eng alone is zero. However, even when the accelerator opening APO is small and the vehicle speed is slow as just after the time t2 shown in FIG. 6A, the state of charge SOC of the battery BAT is equal to or less than a predetermined value that requires charging. Since the traveling in the EV traveling mode is inappropriate, an engine traveling mode (a kind of HEV traveling mode) using only the engine Eng as a traveling drive source is selected. FIGS. 6C and 6D show an example of the latter case.
 また、図6(a)に示す時間t3直前のアクセル開度APOが中程度且つ車速も中速の場合においては、図3のEV-HEV選択マップによればHEV走行モードが選択されるので、バッテリBATの充電状態SOCが発電を必要としない場合には、エンジンEng単体に必要とされる目標エンジントルクは、目標エンジントルクマップによる目標エンジントルクとなる。さらにこの場合に、バッテリBATの充電状態SOCが発電を必要とする場合には、エンジンEng単体に必要とされる目標エンジントルクは、目標エンジントルクマップによる目標エンジントルクに、目標発電出力を加算したトルクとなる。 Also, in the case where the accelerator opening APO just before time t3 shown in FIG. 6A is medium and the vehicle speed is also medium speed, the HEV driving mode is selected according to the EV-HEV selection map of FIG. When the state of charge SOC of the battery BAT does not require power generation, the target engine torque required for the engine Eng alone is the target engine torque according to the target engine torque map. Further, in this case, when the state of charge SOC of the battery BAT requires power generation, the target engine torque required for the engine Eng alone is obtained by adding the target power generation output to the target engine torque based on the target engine torque map. Torque.
 ステップS3において、目標エンジントルクが最大トルクを超え且つアクセル開度APOが全開か否かを判定する。ここで最大トルクとは、そのときのエンジンEngの駆動状態に応じて出力可能な、回転速度ごとの最大のトルクをいい、後述するステップS14と同様にエンジンコントローラ13により演算される。エンジンEngの最大トルクは、エンジン冷却水温度、エンジンオイル温度、吸排気バルブの開閉タイミングなどエンジンEngの運転条件により変動するため、エンジンコントローラ13の最大トルク演算部133は、このときの最大トルクを演算してこれを統合コントローラ10の全開トルクアップ要求部105に出力する。そして、全開トルクアップ要求部105は、目標エンジントルクが、そのときのエンジンの最大トルクを超えているか否かを判定する。たとえば、始動初期などにおいてはエンジン冷却水やエンジンオイルの温度が充分に上昇していないので、そのエンジンEngが有するポテンシャルの最大定格トルクが200Psであっても、それ以下のたとえば190Psの最大トルクしか実現できない。こうした場合は、最大定格トルク200Psより小さい当該190Psの最大トルクを超えているか否かを判定する。そして、車両を始動させた直後の加速時などにおいて、アクセルを全開にしてエンジンのトルク指令値をアクセル全開時の最大トルクに設定すると、エンジン冷却水やエンジンオイルの温度が低く、又は吸排気バルブの開閉タイミングが定常運転時のタイミングに設定されていないなど、種々の要因によってエンジンEngが最大定格トルクを出力できないことがある。こうした駆動状態の場合にエンジントルク指令値をアクセル全開時の値に設定すると、エンジンのトルク変動が生じ、車両が前後方向に揺れるサージが発生することがある。このため、本実施形態のエンジンEngにおいては最大定格トルクとこれより小さいそのときの最大トルク(サージ制限トルク)との間にサージ抑制領域を設け、アクセルを全開時に近い状態に踏み込んでも(目標エンジントルクがサージ制限トルクを超えても)、それに応じたトルクが出ないようにトルク指令値をサージ制限トルクに制限する制御が行われる。 In step S3, it is determined whether the target engine torque exceeds the maximum torque and the accelerator opening APO is fully opened. Here, the maximum torque means the maximum torque for each rotational speed that can be output according to the driving state of the engine Eng at that time, and is calculated by the engine controller 13 in the same manner as in step S14 described later. The maximum torque of the engine Eng varies depending on engine operating conditions such as engine coolant temperature, engine oil temperature, intake / exhaust valve opening / closing timing, and the maximum torque calculator 133 of the engine controller 13 determines the maximum torque at this time. Calculate and output this to the fully-open torque increase request unit 105 of the integrated controller 10. Then, fully-open torque increase request unit 105 determines whether or not the target engine torque exceeds the maximum torque of the engine at that time. For example, since the temperature of the engine coolant or engine oil has not risen sufficiently at the beginning of startup, even if the maximum rated torque of the potential of the engine Eng is 200 Ps, only a maximum torque of 190 Ps or less, for example, Cannot be realized. In such a case, it is determined whether or not the maximum torque of 190 Ps, which is smaller than the maximum rated torque 200 Ps, is exceeded. When the accelerator is fully opened and the engine torque command value is set to the maximum torque when the accelerator is fully opened at the time of acceleration immediately after starting the vehicle, the temperature of the engine coolant or engine oil is low, or the intake / exhaust valve The engine Eng may not be able to output the maximum rated torque due to various factors, such as when the opening / closing timing of the engine is not set to the timing for steady operation. If the engine torque command value is set to the value when the accelerator is fully opened in such a driving state, a torque fluctuation of the engine may occur and a surge may occur that causes the vehicle to swing in the front-rear direction. For this reason, in the engine Eng of this embodiment, a surge suppression region is provided between the maximum rated torque and a smaller maximum torque (surge limiting torque) at that time, and even when the accelerator is fully depressed, the target engine is Control is performed to limit the torque command value to the surge limit torque so that a torque corresponding to the torque limit torque is not generated even if the torque exceeds the surge limit torque.
 ステップS3において、目標エンジントルクが最大トルクを超えないか又はアクセル開度APOが全開でない場合は、ステップS6へ進み、ステップS6において、統合コントローラ10の全開トルクアップ要求部105の全開要求をOFFに設定する。この全開要求は、後述するステップS11において、エンジンコントローラ13の最大出力判定部132の判定に用いられる。そして、次のステップS7において、目標エンジントルクが最大トルクを超えるか否かが判定され、目標エンジントルクが最大トルクを超えない場合はステップS8に進み、エンジントルク制限のカウントをリセットする。なお、エンジントルク制限のカウントについては、ステップS9及びS18の説明において後述する。 In step S3, if the target engine torque does not exceed the maximum torque or the accelerator opening APO is not fully opened, the process proceeds to step S6, and in step S6, the full open request of the full open torque increase request unit 105 of the integrated controller 10 is turned OFF. Set. This full open request is used for determination by the maximum output determination unit 132 of the engine controller 13 in step S11 described later. Then, in the next step S7, it is determined whether or not the target engine torque exceeds the maximum torque. If the target engine torque does not exceed the maximum torque, the process proceeds to step S8, and the engine torque limit count is reset. The engine torque limit count will be described later in the description of steps S9 and S18.
 そして、ステップS10において、統合コントローラ10のエンジン指令トルク演算部106は、エンジントルク指令値を、ステップS2で演算された目標エンジントルクと、予め設定された最大トルクのいずれか小さい方に設定し、ステップS11及びS17へ進む。 In step S10, the engine command torque calculator 106 of the integrated controller 10 sets the engine torque command value to the smaller of the target engine torque calculated in step S2 and the preset maximum torque, Proceed to steps S11 and S17.
 ステップS11において、エンジンコントローラ13の最大出力判定部132は、統合コントローラ10の全開トルクアップ要求部105から全開要求が出力されているか否かを判定する。上述したとおりステップS6において全開要求はOFFであるから、ステップS14へ進み、ステップS14において、そのときの駆動状態に応じたエンジンEngの最大トルクを演算する。続くステップS15において、エンジントルク制御部131は、ステップS10にて設定されたエンジントルク指令値に基づいてエンジンEngを制御するとともに、ステップS16において、そのときの駆動状態を検出し、推定エンジントルクを演算し、これを統合コントローラ10のモータ指令トルク演算部107へ出力する。 In step S11, the maximum output determination unit 132 of the engine controller 13 determines whether or not a full open request is output from the full open torque increase request unit 105 of the integrated controller 10. Since the full open request is OFF in step S6 as described above, the process proceeds to step S14, and in step S14, the maximum torque of the engine Eng according to the driving state at that time is calculated. In subsequent step S15, the engine torque control unit 131 controls the engine Eng based on the engine torque command value set in step S10. In step S16, the engine torque control unit 131 detects the drive state at that time, and calculates the estimated engine torque. This is calculated and output to the motor command torque calculation unit 107 of the integrated controller 10.
 一方、ステップS17において、変速機コントローラ11は、目標変速機入力トルクが、エンジンEngの最大トルクと、モータジェネレータMGの最大トルクとを加算した値を超えている場合は、当該エンジン最大トルクとモータジェネレータMGの最大トルクとを加算した値で制限する。 On the other hand, when the target transmission input torque exceeds the value obtained by adding the maximum torque of the engine Eng and the maximum torque of the motor generator MG in step S17, the transmission controller 11 determines that the engine maximum torque and the motor It limits with the value which added the maximum torque of generator MG.
 ステップS18において、エンジントルク制限のカウントが予め設定された所定値(時間)を超え且つアクセル開度APOの全開要求がONか否かを判定する。詳細は後述するが、この所定値は、図6(c)の時間t3~t5のように、エンジントルク指令値がサージ制限トルクにより制限されている時間を意味する。ステップS18において、エンジントルク制限のカウントが予め設定された所定値(時間)を超えていないか、又はアクセル開度APOの全開要求がOFFである場合はステップS20へ進む。上述したとおり以上の説明においては、ステップS6において全開要求がOFFとされ、またステップS8にてエンジントルク制限のカウントがリセット(ゼロ)とされているので、いずれにしてもステップS20へ進む。 In step S18, it is determined whether or not the engine torque limit count exceeds a predetermined value (time) set in advance and the full opening request for the accelerator opening APO is ON. Although the details will be described later, the predetermined value means a time during which the engine torque command value is limited by the surge limiting torque, as in the time t3 to t5 in FIG. In step S18, if the engine torque limit count does not exceed a predetermined value (time) set in advance, or if the full opening request for the accelerator opening APO is OFF, the process proceeds to step S20. As described above, in the above description, the fully open request is turned OFF in step S6, and the engine torque limit count is reset (zero) in step S8, so the process proceeds to step S20 in any case.
 ステップS20において、統合コントローラ10のモータ指令トルク演算部107は、目標変速機入力トルクからエンジン推定トルクを減じた値をモータトルク指令値に設定する。ここで、走行モードが発電走行モード(HEV走行モードの一種)である場合は、目標エンジントルクのうちモータジェネレータMGを発電機として機能させるための抵抗トルクが必要とされる。このため、目標変速機入力トルクは、目標エンジントルク演算部104により演算された目標エンジントルクから目標発電出力演算部103により演算された発電トルクを減じた値となる。また、エンジン推定トルクとは、エンジンコントローラ13のエンジントルク制御部131により演算されたエンジンの推定トルクであり、上述したとおり、ステップS16において、エンジンコントローラ13からモータ指令トルク演算部107へ出力される。 In step S20, the motor command torque calculation unit 107 of the integrated controller 10 sets a value obtained by subtracting the engine estimated torque from the target transmission input torque as the motor torque command value. Here, when the travel mode is the power generation travel mode (a kind of HEV travel mode), a resistance torque for causing the motor generator MG to function as a generator is required among the target engine torque. For this reason, the target transmission input torque is a value obtained by subtracting the power generation torque calculated by the target power generation output calculation unit 103 from the target engine torque calculated by the target engine torque calculation unit 104. The estimated engine torque is estimated engine torque calculated by the engine torque control unit 131 of the engine controller 13, and is output from the engine controller 13 to the motor command torque calculation unit 107 in step S16 as described above. .
 以上、ステップS1→ステップS2→ステップS3→ステップS6→ステップS8→ステップS10→ステップS11→ステップS14→ステップS15→ステップS16→ステップS17→ステップS18→ステップS20へと進む制御は、図6の走行例でいえば時間t2~t3の走行例、すなわち発進から徐々に加速して行く走行状態に相当する。なお、統合コントローラ10の全開トルクアップ要求部105による全開要求OFFは、エンジンコントローラ13の最大出力判定部132へ出力され、エンジン指令トルク演算部106によるエンジントルク指令値は、エンジンコントローラ13のエンジントルク制御部131へ出力され、モータ指令トルク演算部107によるモータトルク指令値は、モータコントローラ14のモータトルク制御部141へ出力され、クラッチ指令容量演算部108によるクラッチ容量指令値は、クラッチコントローラ12のクラッチ容量制御部121へ出力される。 As described above, the control that proceeds to step S1, step S2, step S3, step S6, step S8, step S10, step S11, step S14, step S15, step S16, step S17, step S18, and step S20 is performed as shown in FIG. For example, this corresponds to a traveling example of time t2 to t3, that is, a traveling state in which the vehicle gradually accelerates from the start. The full open request OFF by the full open torque increase request unit 105 of the integrated controller 10 is output to the maximum output determination unit 132 of the engine controller 13, and the engine torque command value by the engine command torque calculation unit 106 is the engine torque of the engine controller 13. The motor torque command value output from the motor command torque calculating unit 107 is output to the motor torque control unit 141 of the motor controller 14, and the clutch capacity command value output from the clutch command capacity calculating unit 108 is output from the clutch controller 12. It is output to the clutch capacity control unit 121.
 次に図5のステップS7へ戻り、上述した制御フローがステップS1→ステップS2→ステップS3→ステップS6→ステップS7と進んだ場合に、当該ステップS7において、目標エンジントルク演算部104により演算された目標エンジントルクが、そのときのエンジンEngの最大トルクを超えるか否かが判定されるが、目標エンジントルクが最大トルクを超えた場合は、ステップS9に進み、エンジントルク制限のカウント(時間)をカウントアップする。これは図6(c)の時間t3~t5に相当する。そして、ステップS10において、統合コントローラ10のエンジン指令トルク演算部106は、エンジントルク指令値を、ステップS2で演算された目標エンジントルクと最大トルクのいずれか小さい方に設定するので、この場合にはエンジントルク指令値は最大トルクに設定され、ステップS11及びS17へ進む。すなわち、エンジンEngの駆動状態がどのような状態であれ、目標エンジントルクが、そのときのエンジンEngの最大トルクを超えている場合には、エンジントルク指令値を、目標エンジントルクに代えて、そのときのエンジンEngの最大トルクに制限することでエンジンEngのサージの発生を抑制する。このような場合の最大トルクをサージ制限トルクともいう。 Next, returning to step S7 in FIG. 5, when the above-described control flow proceeds from step S1, step S2, step S3, step S6, and step S7, the target engine torque calculation unit 104 calculates in step S7. It is determined whether or not the target engine torque exceeds the maximum torque of the engine Eng at that time. If the target engine torque exceeds the maximum torque, the process proceeds to step S9, and the engine torque limit count (time) is set. Count up. This corresponds to the time t3 to t5 in FIG. In step S10, the engine command torque calculation unit 106 of the integrated controller 10 sets the engine torque command value to the smaller of the target engine torque and the maximum torque calculated in step S2. In this case, The engine torque command value is set to the maximum torque, and the process proceeds to steps S11 and S17. That is, whatever the engine Eng drive state is, if the target engine torque exceeds the maximum engine Eng torque at that time, the engine torque command value is replaced with the target engine torque, By limiting to the maximum torque of the engine Eng at the time, the occurrence of surge of the engine Eng is suppressed. The maximum torque in such a case is also referred to as surge limiting torque.
 ステップS11において、エンジンコントローラ13の最大出力判定部132は、統合コントローラ10の全開トルクアップ要求部105から全開要求が出力されているか否かを判定する。上述したとおりステップS6において全開要求はOFFであるから、ステップS14へ進み、ステップS14において、そのときの駆動状態に応じたエンジンEngの最大トルクを演算する。続くステップS15において、エンジントルク制御部131は、ステップS10にて設定されたエンジントルク指令値(すなわち、サージ制限トルクである最大トルク)に基づいてエンジンEngを制御するとともに、ステップS16において、そのときの駆動状態を検出し、推定エンジントルクを演算し、これを統合コントローラ10のモータ指令トルク演算部107へ出力する。 In step S11, the maximum output determination unit 132 of the engine controller 13 determines whether or not a full open request is output from the full open torque increase request unit 105 of the integrated controller 10. Since the full open request is OFF in step S6 as described above, the process proceeds to step S14, and in step S14, the maximum torque of the engine Eng according to the driving state at that time is calculated. In the following step S15, the engine torque control unit 131 controls the engine Eng based on the engine torque command value set in step S10 (that is, the maximum torque that is the surge limiting torque), and in step S16, at that time , The estimated engine torque is calculated, and this is output to the motor command torque calculation unit 107 of the integrated controller 10.
 一方、ステップS17において、変速機コントローラ11は、目標変速機入力トルクが、エンジンEngの最大トルクと、モータジェネレータMGの最大トルクとを加算した値を超えている場合は、当該エンジンEngの最大トルクとモータジェネレータMGの最大トルクとを加算した値で制限する。 On the other hand, in step S17, if the target transmission input torque exceeds the value obtained by adding the maximum torque of the engine Eng and the maximum torque of the motor generator MG, the maximum torque of the engine Eng. And the maximum torque of the motor generator MG.
 ステップS18において、エンジントルク制限のカウントが予め設定された所定値(時間)を超え且つアクセル開度APOの全開要求がONか否かを判定する。既述したとおり、この所定値は、図6(c)の時間t3~t5のように、エンジントルク指令値が最大トルク(サージ制限トルク)により制限されている時間を意味し、アクセル開度APOによる目標エンジントルクがサージ制限領域に入った場合に、それが一時的なものなのか又はアクセル開度APOが全開となる過渡的なものなのかを判定するための判定時間である。すなわち、アクセル開度APOによる目標エンジントルクの上昇が一時的なものである場合は、サージの発生を抑制するためにエンジントルク指令値を最大トルク(サージ制限トルク)に制限するが、それがアクセル開度APOの全開への過渡的なものである場合は、その要求に応えるべくこの所定値を超えたらエンジントルク指令値を最大定格トルクに変更する。これらどちらの状態であるかを判定するためのカウント(時間)である。 In step S18, it is determined whether or not the engine torque limit count exceeds a predetermined value (time) set in advance and the full opening request for the accelerator opening APO is ON. As described above, this predetermined value means a time during which the engine torque command value is limited by the maximum torque (surge limiting torque) as shown in time t3 to t5 in FIG. This is a determination time for determining whether or not the target engine torque due to is in a surge limiting region, whether it is temporary or transient when the accelerator opening APO is fully open. That is, if the target engine torque rises temporarily due to the accelerator opening APO, the engine torque command value is limited to the maximum torque (surge limit torque) in order to suppress the occurrence of a surge. If the opening degree APO is transitional to fully open, the engine torque command value is changed to the maximum rated torque when the predetermined value is exceeded in order to meet the demand. It is a count (time) for determining which of these states.
 ステップS18において、エンジントルク制限のカウントが予め設定された所定値(時間)を超えていないか、又はアクセル開度APOの全開要求がOFFである場合はステップS20へ進む。上述したとおり以上の説明においては、ステップS6にて全開要求がOFFとされているので、ステップS20へ進む。 If it is determined in step S18 that the engine torque limit count does not exceed a predetermined value (time) set in advance, or if the full opening request for the accelerator opening APO is OFF, the process proceeds to step S20. In the above description as described above, since the full open request is turned off in step S6, the process proceeds to step S20.
 ステップS20において、統合コントローラ10のモータ指令トルク演算部107は、目標変速機入力トルクからエンジン推定トルクを減じた値をモータトルク指令値に設定する。ここで、走行モードが発電走行モード(HEV走行モードの一種)である場合は、目標エンジントルクのうちモータジェネレータMGを発電機として機能させるための抵抗トルクが必要とされる。このため、目標変速機入力トルクは、目標エンジントルク演算部104により演算された目標エンジントルクから目標発電出力演算部103により演算された発電トルクを減じた値となる。また、エンジン推定トルクとは、エンジンコントローラ13のエンジントルク制御部131により演算されたエンジンの推定トルクであり、上述したとおりステップS16において、エンジンコントローラ13からモータ指令トルク演算部107へ出力される。 In step S20, the motor command torque calculation unit 107 of the integrated controller 10 sets a value obtained by subtracting the engine estimated torque from the target transmission input torque as the motor torque command value. Here, when the travel mode is the power generation travel mode (a kind of HEV travel mode), a resistance torque for causing the motor generator MG to function as a generator is required among the target engine torque. For this reason, the target transmission input torque is a value obtained by subtracting the power generation torque calculated by the target power generation output calculation unit 103 from the target engine torque calculated by the target engine torque calculation unit 104. The estimated engine torque is estimated engine torque calculated by the engine torque control unit 131 of the engine controller 13 and is output from the engine controller 13 to the motor command torque calculation unit 107 in step S16 as described above.
 以上、ステップS1→ステップS2→ステップS3→ステップS6→ステップS9→ステップS10→ステップS11→ステップS14→ステップS15→ステップS16→ステップS17→ステップS18→ステップS20へと進む制御は、図6の走行例でいえば時間t3~t5の走行例、すなわち加速を継続してきた後半の走行状態に相当する。そして、この時間t3~t5においては、図6(c)に示すように、目標エンジントルクが最大トルク(サージ制限トルク)を超えた分だけエンジントルク指令値が減少するため、エンジントルク制御部131にて推定されるエンジン推定トルクも同様に減少する。そのため、モータ指令トルク演算部107により演算されるモータトルク指令値は、図6(d)に示すように、エンジン推定トルクの減少値に対応して増加させる。これにより、エンジンEngのサージの発生を抑制しつつ、アクセル開度APOに応じた目標駆動トルクを実現することができる。 As described above, the control that proceeds to step S1, step S2, step S3, step S6, step S9, step S10, step S11, step S14, step S15, step S16, step S17, step S18, and step S20 is performed as shown in FIG. For example, this corresponds to a traveling example of time t3 to t5, that is, a traveling state in the latter half where acceleration has been continued. Then, during this time t3 to t5, as shown in FIG. 6C, the engine torque command value decreases by the amount by which the target engine torque exceeds the maximum torque (surge limit torque). Similarly, the estimated engine torque estimated in step S1 also decreases. Therefore, the motor torque command value calculated by the motor command torque calculation unit 107 is increased corresponding to the decrease value of the estimated engine torque as shown in FIG. Thereby, the target drive torque according to the accelerator opening APO can be realized while suppressing the occurrence of a surge in the engine Eng.
 次に図3のステップS3に戻り、ステップS3において、目標エンジントルクが最大トルクを超え且つアクセル開度APOが全開か否かを判定した結果、目標エンジントルクが最大トルクを超え且つアクセル開度APOが全開である場合は、ステップS4へ進む。ステップS4において、統合コントローラ10の全開トルクアップ要求部105は、目標エンジントルク演算部104により演算された目標エンジントルクが、エンジンコントローラ13の最大トルク演算部133から読み込んだエンジンEngの最大定格トルク(エンジンEngが本来的に備える、運転条件が最適の場合などに出力可能な最大トルク)を超えているか否かを判断する。 Next, returning to step S3 in FIG. 3, as a result of determining whether or not the target engine torque exceeds the maximum torque and the accelerator opening APO is fully opened in step S3, the target engine torque exceeds the maximum torque and the accelerator opening APO is determined. If is fully open, the process proceeds to step S4. In step S4, the fully-open torque increase requesting unit 105 of the integrated controller 10 determines that the target engine torque calculated by the target engine torque calculating unit 104 is the maximum rated torque of the engine Eng read from the maximum torque calculating unit 133 of the engine controller 13 ( It is determined whether or not the engine Eng exceeds the maximum torque that can be output when the operating conditions are optimal.
 ステップS4において、目標エンジントルクがエンジンEngの最大定格トルクを超えていない場合はステップS6へ進み、上述した手順で制御を実行する。これに対して、ステップS4において、目標エンジントルクが、エンジンEngの最大定格トルクを超えている場合はステップS5へ進み、全開要求をONし、これをエンジンコントローラ13の最大出力判定部132へ出力する。そして、ステップS10において、統合コントローラ10のエンジン指令トルク演算部106は、エンジントルク指令値を、ステップS2で演算された目標エンジントルクと、エンジンの最大トルクのいずれか小さい方に設定し、ステップS11へ進む。この場合には、上述したステップS3及びS4において、エンジントルク指令値が最大トルクを超えているので、エンジントルク指令値を最大トルク(サージ制限トルク)に設定して、ステップS11及びS17へ進む。すなわち、エンジントルク指令値を最大トルク(サージ制限トルク)で制限することでエンジンEngのサージ発生の抑制を継続する。 In step S4, when the target engine torque does not exceed the maximum rated torque of the engine Eng, the process proceeds to step S6, and the control is executed according to the procedure described above. On the other hand, if the target engine torque exceeds the maximum rated torque of the engine Eng in step S4, the process proceeds to step S5, the full open request is turned on, and this is output to the maximum output determination unit 132 of the engine controller 13. To do. In step S10, the engine command torque calculation unit 106 of the integrated controller 10 sets the engine torque command value to the smaller one of the target engine torque calculated in step S2 and the maximum engine torque, and step S11. Proceed to In this case, since the engine torque command value exceeds the maximum torque in steps S3 and S4 described above, the engine torque command value is set to the maximum torque (surge limit torque), and the process proceeds to steps S11 and S17. That is, by suppressing the engine torque command value with the maximum torque (surge limiting torque), the suppression of the occurrence of surge in the engine Eng is continued.
 ステップS11において、エンジンコントローラ13の最大出力判定部132は、統合コントローラ10の全開トルクアップ要求部105から全開要求が出力されているか否かを判定する。上述したとおりステップS5において全開要求はONであるから、ステップS12へ進み、ステップS12において、最大定格トルクへのトルクアップが可能な駆動状態にあるか否かを判定する。車両を始動してからある程度の時間をかけて走行すると、エンジン冷却水、エンジンオイル及び吸排気バルブの開閉タイミングなどは定常状態に達するので最大定格トルクが出力可能な状態となる。最大出力判定部132は、こうしたトルクに影響する駆動状態を検出し、それまで制限されていたサージ領域を抜けて最大定格トルクが出力可能か否かを判定する。そして、エンジンEngが最大定格トルクを出力可能であると判定した場合は、ステップS13へ進み、最大トルク演算部133は、そのときの駆動状態に応じたエンジンEngの最大トルクを演算する。続くステップS15において、エンジントルク制御部131は、ステップS13にて演算された最大トルク(最大定格トルク)をエンジントルク指令値に設定してエンジンEngを制御するとともに、ステップS16において、そのときの駆動状態を検出し、推定エンジントルクを演算し、これを統合コントローラ10のモータ指令トルク演算部107へ出力する。 In step S11, the maximum output determination unit 132 of the engine controller 13 determines whether or not a full open request is output from the full open torque increase request unit 105 of the integrated controller 10. Since the full open request is ON in step S5 as described above, the process proceeds to step S12, and in step S12, it is determined whether or not the drive state is capable of increasing the torque to the maximum rated torque. If the vehicle travels over a certain period of time after the vehicle is started, the engine cooling water, engine oil, intake / exhaust valve opening / closing timing, etc. reach a steady state, so that the maximum rated torque can be output. The maximum output determination unit 132 detects a drive state that affects such torque, and determines whether or not the maximum rated torque can be output through the surge region that has been limited so far. If it is determined that the engine Eng can output the maximum rated torque, the process proceeds to step S13, and the maximum torque calculator 133 calculates the maximum torque of the engine Eng according to the driving state at that time. In subsequent step S15, the engine torque control unit 131 controls the engine Eng by setting the maximum torque (maximum rated torque) calculated in step S13 as the engine torque command value, and in step S16, the driving at that time is performed. The state is detected, the estimated engine torque is calculated, and this is output to the motor command torque calculation unit 107 of the integrated controller 10.
 一方、ステップS17において、変速機コントローラ11は、目標変速機入力トルクが、エンジンEngの最大トルクと、モータジェネレータMGの最大トルクとを加算した値を超えている場合は、当該エンジンEngの最大トルクとモータジェネレータMGの最大トルクとを加算した値で制限する。 On the other hand, in step S17, if the target transmission input torque exceeds the value obtained by adding the maximum torque of the engine Eng and the maximum torque of the motor generator MG, the maximum torque of the engine Eng. And the maximum torque of the motor generator MG.
 ステップS18において、エンジントルク制限のカウントが予め設定された所定値(時間)を超え且つアクセル開度APOの全開要求がONか否かを判定する。既述したとおり、この所定値は、図6(c)の時間t3~t5のように、エンジントルク指令値がサージ制限トルクにより制限されている時間を意味し、アクセル開度APOによる目標エンジントルクがサージ制限領域に入った場合に、それが一時的なものなのか又はアクセル開度APOが全開となる過渡的なものなのかを判定するための判定時間である。すなわち、アクセル開度APOによる目標エンジントルクの上昇が、アクセル開度APOの全開への過渡的なものである場合は、その要求に応えるべくこの所定値を超えたらエンジントルク指令値を最大定格トルクに変更する。以上の制御フローにおいては、ステップS5において全開要求がONされているので、エンジントルク制限のカウントが予め設定された所定値(時間)を超えた場合には、それが図6(a)に示すようなアクセル開度APOの全開への過渡的な目標エンジントルクの上昇であると見做し、ステップS19へ進む。 In step S18, it is determined whether or not the engine torque limit count exceeds a predetermined value (time) set in advance and the full opening request for the accelerator opening APO is ON. As described above, this predetermined value means a time during which the engine torque command value is limited by the surge limiting torque, as shown by time t3 to t5 in FIG. 6C, and the target engine torque based on the accelerator opening APO. Is a determination time for determining whether it is a temporary one or a transient one in which the accelerator opening APO is fully opened. In other words, if the increase in the target engine torque due to the accelerator opening APO is a transient transition to the full opening of the accelerator opening APO, the engine torque command value is set to the maximum rated torque when this predetermined value is exceeded to meet the demand. Change to In the above control flow, since the full open request is turned on in step S5, when the count of the engine torque limit exceeds a predetermined value (time) set in advance, this is shown in FIG. 6 (a). Considering that the target engine torque is transiently increased to the fully open accelerator opening APO, the process proceeds to step S19.
 ステップS19において、エンジントルク指令値は最大定格トルクに設定するものの、目標変速機入力トルクの変化率を制限し、それまでのサージ制限トルクから最大定格トルクに遷移する際の急激なトルク段差が生じるのを抑制する。この様子を図7に示す。図6に示す走行例も同様であるが、図7に示すようにエンジントルク指令値を最大定格トルクに設定する前のエンジントルク指令値がサージ制限トルクに設定されている場合には、アクセルペダルの踏み込みが急激ではなく、徐々に踏み込まれている場合である。したがって、ステップS18においてサージ制限トルクによるエンジントルク指令値の制限がされている時間が所定値を超えている場合には、サージ制限トルクから最大定格トルクへの単位時間当たりのトルク変化量(時間的トルク変化率)を小さく設定し、徐々に最大定格トルクに近づける。これにより、乗員が体感するトルク段差が抑制され、スムーズな走行が実現できる。 In step S19, the engine torque command value is set to the maximum rated torque, but the rate of change of the target transmission input torque is limited, and a steep torque step occurs when the surge limiting torque is changed to the maximum rated torque. To suppress. This is shown in FIG. The driving example shown in FIG. 6 is the same, but when the engine torque command value before setting the engine torque command value to the maximum rated torque is set to the surge limit torque as shown in FIG. This is a case where the stepping in is not abrupt and is gradually stepped on. Therefore, if the time during which the engine torque command value is limited by the surge limit torque in step S18 exceeds a predetermined value, the amount of torque change per unit time from the surge limit torque to the maximum rated torque (temporal) (Torque change rate) is set small and gradually approaches the maximum rated torque. Thereby, the torque level | step difference which a passenger | crew senses is suppressed and smooth driving | running | working is realizable.
 これに対して、図8に示すように、他車両を追い抜く場合のように車両の低速走行状態t3から一気にアクセルを全開まで踏み込んだ場合には、エンジントルク指令値は最大定格トルクに設定するものの、目標変速機入力トルクの変化率は制限しない。このような場合は、乗員自身が急加速を意図していて多少のトルク段差があっても違和感がないことから、短時間で最大定格トルクに遷移させることを優先する。 On the other hand, as shown in FIG. 8, when the accelerator is fully depressed from the low-speed traveling state t3 of the vehicle, such as when overtaking another vehicle, the engine torque command value is set to the maximum rated torque. The change rate of the target transmission input torque is not limited. In such a case, since there is no sense of incongruity even if the occupant himself intends to accelerate rapidly and there is a slight torque step, priority is given to shifting to the maximum rated torque in a short time.
 ステップS20において、統合コントローラ10のモータ指令トルク演算部107は、目標変速機入力トルクからエンジン推定トルクを減じた値をモータトルク指令値に設定する。ここで、走行モードが発電走行モード(HEV走行モードの一種)である場合は、目標エンジントルクのうちモータジェネレータMGを発電機として機能させるための抵抗トルクが必要とされる。このため、目標変速機入力トルクは、目標エンジントルク演算部104により演算された目標エンジントルクから目標発電出力演算部103により演算された発電トルクを減じた値となる。また、エンジン推定トルクとは、エンジンコントローラ13のエンジントルク制御部131により演算されたエンジンの推定トルクであり、上述したとおりステップS16において、エンジンコントローラ13からモータ指令トルク演算部107へ出力される。 In step S20, the motor command torque calculation unit 107 of the integrated controller 10 sets a value obtained by subtracting the engine estimated torque from the target transmission input torque as the motor torque command value. Here, when the travel mode is the power generation travel mode (a kind of HEV travel mode), a resistance torque for causing the motor generator MG to function as a generator is required among the target engine torque. For this reason, the target transmission input torque is a value obtained by subtracting the power generation torque calculated by the target power generation output calculation unit 103 from the target engine torque calculated by the target engine torque calculation unit 104. The estimated engine torque is estimated engine torque calculated by the engine torque control unit 131 of the engine controller 13 and is output from the engine controller 13 to the motor command torque calculation unit 107 in step S16 as described above.
 以上、ステップS1→ステップS2→ステップS3→ステップS6→ステップS9→ステップS10→ステップS11→ステップS12→ステップS13→ステップS15→ステップS16→ステップS17→ステップS18→ステップS19→ステップS20へと進む制御は、図6の走行例でいえば時間t5以降の走行例、すなわち加速を継続してきた後半のアクセル全開時の走行状態に相当する。そして、この時間t5以降においては、図6(e)に示すように、目標駆動トルクがアクセル開度に応じた値となる。これにより、エンジンEngのサージの発生を抑制しつつ、アクセル開度APOに応じた目標駆動トルクを実現することができる。 As described above, the control proceeds to step S1, step S2, step S3, step S6, step S9, step S10, step S11, step S12, step S13, step S15, step S16, step S17, step S18, step S19, and step S20. 6 corresponds to a traveling example after time t5, that is, a traveling state when the accelerator is fully opened in the latter half after continuing acceleration. And after this time t5, as shown in FIG.6 (e), a target drive torque becomes a value according to the accelerator opening. Thereby, the target drive torque according to the accelerator opening APO can be realized while suppressing the occurrence of a surge in the engine Eng.
 以上のとおり、本実施形態のハイブリッド車両の制御装置1によれば、目標エンジントルクがそのときの最大トルク(サージ制限トルク)を超えるとエンジントルク指令値をそのときの最大トルク(サージ制限トルク)に設定するので、エンジンEngの駆動状態がどのような状態であれ、エンジンEngのサージの発生を抑制することができる。本実施形態のハイブリッド車両の制御装置1によれば、エンジントルク指令値をサージ制限トルクに制限した際のトルク差をモータトルクで補填するので、アクセル開度APOに応じた目標駆動トルクを実現することができる。 As described above, according to the hybrid vehicle control device 1 of the present embodiment, when the target engine torque exceeds the maximum torque (surge limit torque) at that time, the engine torque command value is set to the maximum torque (surge limit torque) at that time. Therefore, it is possible to suppress the occurrence of surge in the engine Eng regardless of the driving state of the engine Eng. According to the hybrid vehicle control device 1 of the present embodiment, since the torque difference when the engine torque command value is limited to the surge limit torque is compensated by the motor torque, the target drive torque corresponding to the accelerator opening APO is realized. be able to.
 また、本実施形態のハイブリッド車両の制御装置1によれば、エンジンEngが最大定格トルクを出力可能であるか否かをエンジンコントローラ13で判定するとともに、エンジンEngが最大定格トルクを出力可能な状態である旨の判定結果をエンジンコントローラ13から統合コントローラ10にフィードバックするので、統合コントローラ10はこれを駆動トルク指令値に反映することができる。これにより、意図しないタイミングでサージ制限制御から最大定格トルク制御に遷移してトルク段差が生じることが抑制される。その結果、サージ発生を抑制できるとともに車両挙動の乱れも防止することができる。 Further, according to the hybrid vehicle control device 1 of the present embodiment, the engine controller 13 determines whether or not the engine Eng can output the maximum rated torque, and the engine Eng can output the maximum rated torque. Is fed back from the engine controller 13 to the integrated controller 10, so that the integrated controller 10 can reflect this in the drive torque command value. As a result, the transition from the surge limit control to the maximum rated torque control at an unintended timing is suppressed from causing a torque step. As a result, it is possible to suppress the occurrence of surges and to prevent disturbance of vehicle behavior.
 また、本実施形態のハイブリッド車両の制御装置1によれば、サージ制限トルクによるエンジントルク指令値の制限がされている時間が所定値を超えている場合には、サージ制限トルクから最大定格トルクへの単位時間当たりのトルク変化量(時間的トルク変化率)を小さく設定し、徐々に最大定格トルクに近づける。これにより、乗員が体感するトルク段差が抑制され、スムーズな走行が実現できる。 Further, according to the hybrid vehicle control apparatus 1 of the present embodiment, when the engine torque command value is limited by the surge limit torque for a time exceeding a predetermined value, the surge limit torque is changed to the maximum rated torque. Set the amount of torque change per unit time (temporal torque change rate) to a small value and gradually approach the maximum rated torque. Thereby, the torque level | step difference which a passenger | crew senses is suppressed and smooth driving | running | working is realizable.
 これに対して、本実施形態のハイブリッド車両の制御装置1によれば、サージ制限トルクによるエンジントルク指令値の制限がされている時間が所定値を超えていない場合には、サージ制限トルクから最大定格トルクへのトルク変化率を制限しない。このような状況では、乗員自身が急加速を意図していて多少のトルク段差があっても違和感がないことから、短時間で最大定格トルクに遷移させることを優先することができる。 On the other hand, according to the hybrid vehicle control device 1 of the present embodiment, if the time during which the engine torque command value is limited by the surge limiting torque does not exceed the predetermined value, the maximum value from the surge limiting torque is obtained. Does not limit the rate of torque change to the rated torque. In such a situation, even if there is a slight torque step even if the occupant himself intends rapid acceleration, there is no sense of incongruity, so priority can be given to making the transition to the maximum rated torque in a short time.
 上記モータジェネレータMGが本発明に係るモータに相当し、上記第1クラッチCL1が本発明に係るクラッチに相当し、上記アクセル開度センサ24が本発明に係るアクセル開度検出部に相当し、上記変速機出力回転数センサ25が本発明に係る車速検出部に相当し、上記エンジン指令トルク演算部106,上記モータ指令トルク演算部107及び上記クラッチ指令トルク演算部108が本発明に係る指令値演算部に相当し、上記全開トルクアップ要求部105が本発明に係る全開判定部に相当する。 The motor generator MG corresponds to the motor according to the present invention, the first clutch CL1 corresponds to the clutch according to the present invention, the accelerator opening sensor 24 corresponds to the accelerator opening detection unit according to the present invention, The transmission output rotation speed sensor 25 corresponds to a vehicle speed detection unit according to the present invention, and the engine command torque calculation unit 106, the motor command torque calculation unit 107, and the clutch command torque calculation unit 108 correspond to a command value calculation according to the present invention. The full-open torque increase request unit 105 corresponds to a full-open determination unit according to the present invention.
1…ハイブリッド車両の制御装置
10…統合コントローラ
 101…目標駆動トルク演算部
 102…モード選択部
 103…目標発電出力演算部
 104…目標エンジントルク演算部
 105…全開トルクアップ要求部
 106…エンジン指令トルク演算部
 107…モータ指令トルク演算部
 108…クラッチ指令容量演算部
11…変速機コントローラ
12…クラッチコントローラ
 121…クラッチ容量制御部
13…エンジンコントローラ
 131…エンジントルク制御部
 132…最大出力判定部
 133…最大トルク演算部
14…モータコントローラ
 141…モータトルク制御部
15…バッテリコントローラ
 15a…バッテリ電圧センサ
 15b…バッテリ温度センサ
21…エンジン回転速度センサ
24…アクセル開度センサ
25…変速機出力回転数センサ
26…モータ回転数センサ
27…モータ温度センサ
28…第2クラッチ出力回転数センサ
29…作動油温センサ
30…エンジン水温センサ
200…油圧制御回路
201…変速機油圧回路
201f…フィードバック回路
202…ライン圧レギュレータバルブ
202a…スプリング
202sp…スプール
204…第1クラッチ油圧回路
204f…フィードバック回路
205…第1クラッチ圧レギュレータバルブ
205a…スプリング
205sp…スプール
206…クラッチ圧力制御バルブ
206a…スプリング
206sp…スプール
207…ドレーン回路
208…出力回路
208f…フィードバック回路
210…指令油圧制御部
220…調圧部
PL…ライン圧
CL1…第1クラッチ
CL2…第2クラッチ
CVT…ベルト式無段変速機
Eng…エンジン
MG…モータジェネレータ
OP…機械式オイルポンプ
LT…左駆動輪
RT…右駆動輪
DESCRIPTION OF SYMBOLS 1 ... Hybrid vehicle control apparatus 10 ... Integrated controller 101 ... Target drive torque calculating part 102 ... Mode selection part 103 ... Target power generation output calculating part 104 ... Target engine torque calculating part 105 ... Full open torque up request | requirement part 106 ... Engine command torque calculation 107: Motor command torque calculator 108 ... Clutch command capacity calculator 11 ... Transmission controller 12 ... Clutch controller 121 ... Clutch capacity controller 13 ... Engine controller 131 ... Engine torque controller 132 ... Maximum output determination unit 133 ... Maximum torque Calculation unit 14 ... motor controller 141 ... motor torque control unit 15 ... battery controller 15a ... battery voltage sensor 15b ... battery temperature sensor 21 ... engine rotation speed sensor 24 ... accelerator opening sensor 25 ... transmission output rotation Sensor 26 ... Motor rotation speed sensor 27 ... Motor temperature sensor 28 ... Second clutch output rotation speed sensor 29 ... Hydraulic oil temperature sensor 30 ... Engine water temperature sensor 200 ... Hydraulic control circuit 201 ... Transmission hydraulic circuit 201f ... Feedback circuit 202 ... line Pressure regulator valve 202a ... Spring 202sp ... Spool 204 ... First clutch hydraulic circuit 204f ... Feedback circuit 205 ... First clutch pressure regulator valve 205a ... Spring 205sp ... Spool 206 ... Clutch pressure control valve 206a ... Spring 206sp ... Spool 207 ... Drain circuit 208 ... Output circuit 208f ... Feedback circuit 210 ... Command oil pressure control unit 220 ... Pressure adjustment unit PL ... Line pressure CL1 ... First clutch CL2 ... Second clutch CVT ... Belt type continuously variable transmission En ... engine MG ... motor-generator OP ... mechanical oil pump LT ... left driving wheel RT ... right drive wheels

Claims (4)

  1.  エンジンと、モータと、前記エンジンと前記モータとの間の駆動力を断接するクラッチと、前記エンジンの出力軸及び前記モータの出力軸に直接的又は間接的に接続された駆動車輪と、を備えたハイブリッド車両に対し、制御信号を出力する制御装置であって、
     前記エンジンの駆動を制御するエンジンコントローラと、
     前記モータの駆動を制御するモータコントローラと、
     少なくとも前記エンジンコントローラおよび前記モータコントローラを統合して制御する統合コントローラと、
     前記ハイブリッド車両のアクセル開度を検出するアクセル開度検出部と、
     前記ハイブリッド車両の車速を検出する車速検出部と、を備え、
     前記統合コントローラは、
      前記アクセル開度検出部により検出されたアクセル開度及び前記車速検出部により検出された車速に基づいて、前記ハイブリッド車両の目標駆動トルクを演算する目標駆動トルク演算部と、
      前記アクセル開度及び前記車速に基づいて、前記エンジン、前記モータ及び前記クラッチの断接による前記ハイブリッド車両の走行モードを選択するモード選択部と、
      前記モード選択部により選択された走行モードに応じた、前記エンジンのエンジントルク指令値、前記モータのモータトルク指令値及び前記クラッチのクラッチ容量指令値を演算する指令値演算部と、
      前記アクセル開度が全開か否かを判定し、全開である場合に全開要求指令を前記エンジンコントローラへ出力する全開判定部と、を含み、
      前記指令値演算部は、前記目標駆動トルクのうち前記エンジンが分担する目標エンジントルクが、当該エンジンの最大定格トルクより小さいそのときの最大トルクを超えた場合には、前記エンジンのトルク指令値を前記最大トルクに制限し、
     前記エンジンコントローラは、
      前記統合コントローラから前記全開要求指令が入力された場合に、前記エンジンが前記最大定格トルクを出力可能な状態であるか否かを判定する最大出力判定部と、
      前記最大出力判定部により前記エンジンが前記最大定格トルクを出力可能な状態にあると判定された場合は、前記エンジンを前記最大定格トルクにて制御するとともに、前記最大定格トルクにて制御する旨の信号を前記統合コントローラの前記目標駆動トルク演算部に出力するエンジントルク制御部と、
    を備えるハイブリッド車両の制御装置。
    An engine, a motor, a clutch for connecting and disconnecting a driving force between the engine and the motor, and an output shaft of the engine and a drive wheel connected directly or indirectly to the output shaft of the motor. A control device that outputs a control signal to the hybrid vehicle,
    An engine controller for controlling the driving of the engine;
    A motor controller for controlling the driving of the motor;
    An integrated controller for controlling at least the engine controller and the motor controller;
    An accelerator position detector for detecting an accelerator position of the hybrid vehicle;
    A vehicle speed detector for detecting the vehicle speed of the hybrid vehicle,
    The integrated controller is
    A target drive torque calculation unit that calculates a target drive torque of the hybrid vehicle based on the accelerator opening detected by the accelerator opening detection unit and the vehicle speed detected by the vehicle speed detection unit;
    A mode selection unit that selects a traveling mode of the hybrid vehicle based on connection / disconnection of the engine, the motor, and the clutch based on the accelerator opening and the vehicle speed;
    A command value calculation unit that calculates an engine torque command value of the engine, a motor torque command value of the motor, and a clutch capacity command value of the clutch according to the travel mode selected by the mode selection unit;
    Determining whether or not the accelerator opening is fully open, and when fully open, a full open determination unit that outputs a full open request command to the engine controller, and
    When the target engine torque shared by the engine out of the target drive torque exceeds the maximum torque at that time, which is smaller than the maximum rated torque of the engine, the command value calculation unit calculates the torque command value of the engine. Limited to the maximum torque,
    The engine controller
    A maximum output determination unit that determines whether or not the engine is capable of outputting the maximum rated torque when the full-open request command is input from the integrated controller;
    When the maximum output determination unit determines that the engine is in a state capable of outputting the maximum rated torque, the engine is controlled with the maximum rated torque and controlled with the maximum rated torque. An engine torque controller that outputs a signal to the target drive torque calculator of the integrated controller;
    A control apparatus for a hybrid vehicle comprising:
  2.  前記エンジンコントローラは、前記エンジンの駆動状態に基づいて推定エンジントルクを演算して前記統合コントローラに出力し、
     前記統合コントローラは、前記エンジンのトルク指令値を前記最大トルクに制限する場合に、前記目標エンジントルクと前記最大トルクとの差分トルクを前記モータのモータトルクで補填する制御信号を前記モータコントローラに出力する請求項1に記載のハイブリッド車両の制御装置。
    The engine controller calculates an estimated engine torque based on the driving state of the engine and outputs the estimated engine torque to the integrated controller;
    The integrated controller outputs, to the motor controller, a control signal that compensates for the differential torque between the target engine torque and the maximum torque with the motor torque of the motor when the torque command value of the engine is limited to the maximum torque. The hybrid vehicle control device according to claim 1.
  3.  前記エンジンコントローラは、
      前記最大出力判定部により前記エンジンが前記最大定格トルクを出力可能な状態にあると判定され、前記エンジンを前記最大定格トルクにて制御する場合に、前記最大トルクから前記最大定格トルクへのトルク変化率を制限する請求項1又は2に記載のハイブリッド車両の制御装置。
    The engine controller
    A torque change from the maximum torque to the maximum rated torque when the maximum output determination unit determines that the engine is in a state capable of outputting the maximum rated torque and controls the engine with the maximum rated torque. The hybrid vehicle control device according to claim 1 or 2, wherein the rate is limited.
  4.  前記エンジンコントローラは、
      前記最大出力判定部により前記エンジンが前記最大定格トルクを出力可能な状態にあると判定され、前記エンジンを前記最大定格トルクにて制御する場合に、
      その直前の前記エンジンのトルク指令値が所定時間以上前記サージ制限トルクに制限されているときは、前記最大トルクから前記最大定格トルクへのトルク変化率を制限し、
      その直前の前記エンジンのトルク指令値が所定時間以上前記最大トルクに制限されていないときは、前記最大トルクから前記最大定格トルクへのトルク変化率を制限しない請求項3に記載のハイブリッド車両の制御装置。
    The engine controller
    When the maximum output determination unit determines that the engine is in a state capable of outputting the maximum rated torque, and the engine is controlled with the maximum rated torque,
    When the torque command value of the engine immediately before is limited to the surge limit torque for a predetermined time or more, the torque change rate from the maximum torque to the maximum rated torque is limited,
    The hybrid vehicle control according to claim 3, wherein when the torque command value of the engine immediately before that is not limited to the maximum torque for a predetermined time or more, the rate of torque change from the maximum torque to the maximum rated torque is not limited. apparatus.
PCT/JP2015/058357 2015-03-19 2015-03-19 Control device for hybrid vehicles WO2016147407A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017505997A JP6414320B2 (en) 2015-03-19 2015-03-19 Control device for hybrid vehicle
PCT/JP2015/058357 WO2016147407A1 (en) 2015-03-19 2015-03-19 Control device for hybrid vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/058357 WO2016147407A1 (en) 2015-03-19 2015-03-19 Control device for hybrid vehicles

Publications (1)

Publication Number Publication Date
WO2016147407A1 true WO2016147407A1 (en) 2016-09-22

Family

ID=56918498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058357 WO2016147407A1 (en) 2015-03-19 2015-03-19 Control device for hybrid vehicles

Country Status (2)

Country Link
JP (1) JP6414320B2 (en)
WO (1) WO2016147407A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107415937A (en) * 2017-05-19 2017-12-01 中通客车控股股份有限公司 A kind of special engine based on coaxial parallel-connection plug-in hybrid passenger car
CN113085830A (en) * 2021-05-27 2021-07-09 中国第一汽车股份有限公司 Engine starting control method and device, electronic equipment and storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231225A (en) * 1992-02-26 1993-09-07 Nippondenso Co Ltd Torque controller of vehicle
JP2001157309A (en) * 1999-09-07 2001-06-08 Honda Motor Co Ltd Control system of hybrid vehicle
JP2007230485A (en) * 2006-03-03 2007-09-13 Mitsubishi Fuso Truck & Bus Corp Controller for hybrid electric car
JP2007245852A (en) * 2006-03-15 2007-09-27 Nissan Motor Co Ltd Controller for hybrid vehicle
JP2007292031A (en) * 2006-04-27 2007-11-08 Hitachi Ltd Control device for engine
JP2012255406A (en) * 2011-06-09 2012-12-27 Toyota Motor Corp Control device for hybrid vehicle
JP2014073747A (en) * 2012-10-04 2014-04-24 Nissan Motor Co Ltd Start control device for hybrid vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159251A (en) * 2012-02-07 2013-08-19 Toyota Motor Corp Vehicle and control method for vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231225A (en) * 1992-02-26 1993-09-07 Nippondenso Co Ltd Torque controller of vehicle
JP2001157309A (en) * 1999-09-07 2001-06-08 Honda Motor Co Ltd Control system of hybrid vehicle
JP2007230485A (en) * 2006-03-03 2007-09-13 Mitsubishi Fuso Truck & Bus Corp Controller for hybrid electric car
JP2007245852A (en) * 2006-03-15 2007-09-27 Nissan Motor Co Ltd Controller for hybrid vehicle
JP2007292031A (en) * 2006-04-27 2007-11-08 Hitachi Ltd Control device for engine
JP2012255406A (en) * 2011-06-09 2012-12-27 Toyota Motor Corp Control device for hybrid vehicle
JP2014073747A (en) * 2012-10-04 2014-04-24 Nissan Motor Co Ltd Start control device for hybrid vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107415937A (en) * 2017-05-19 2017-12-01 中通客车控股股份有限公司 A kind of special engine based on coaxial parallel-connection plug-in hybrid passenger car
CN107415937B (en) * 2017-05-19 2023-07-11 中通客车股份有限公司 Special engine based on coaxial parallel plug-in hybrid power bus
CN113085830A (en) * 2021-05-27 2021-07-09 中国第一汽车股份有限公司 Engine starting control method and device, electronic equipment and storage medium

Also Published As

Publication number Publication date
JPWO2016147407A1 (en) 2018-01-11
JP6414320B2 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
JP6048585B2 (en) Start-up control device and start-up control method for hybrid vehicle
JP5888429B2 (en) Start control device for hybrid vehicle
US9085291B2 (en) Control system for vehicle
CN107406069B (en) Vehicle start control device and start control method
RU2657658C1 (en) Damping control device for a hybrid vehicle
WO2012056870A1 (en) Control device for hybrid vehicle
US10246077B2 (en) Vehicle regenerative speed control device
RU2627238C1 (en) Hybrid vehicle control device
WO2016152532A1 (en) Oil pressure control device for vehicle and oil pressure control method for vehicle
JP6320541B2 (en) Hydraulic control device for hybrid vehicle
WO2015045147A1 (en) Device and method for controlling hybrid vehicle
JP5391719B2 (en) Hybrid vehicle
JP6414320B2 (en) Control device for hybrid vehicle
JP2014073747A (en) Start control device for hybrid vehicle
JP2016199170A (en) Control device for hybrid vehicle
JP6079521B2 (en) Hybrid vehicle
US11524675B2 (en) Vehicle and method of warning a vehicle operator of an impending shutdown of an electrical outlet on the vehicle
JP2015107696A (en) Hybrid vehicle control device
JP7172894B2 (en) vehicle controller
JPWO2018189891A1 (en) HYBRID VEHICLE CONTROL METHOD AND HYBRID VEHICLE CONTROL DEVICE
JP6365761B2 (en) Control device for hybrid vehicle
JP6747583B2 (en) Electric vehicle control method and electric vehicle control device
JP6333533B2 (en) Hybrid vehicle
WO2012057130A1 (en) Control device and control method for vehicle
WO2015037042A1 (en) Hybrid vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505997

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885503

Country of ref document: EP

Kind code of ref document: A1