WO2015037042A1 - Hybrid vehicle control device - Google Patents

Hybrid vehicle control device Download PDF

Info

Publication number
WO2015037042A1
WO2015037042A1 PCT/JP2013/074303 JP2013074303W WO2015037042A1 WO 2015037042 A1 WO2015037042 A1 WO 2015037042A1 JP 2013074303 W JP2013074303 W JP 2013074303W WO 2015037042 A1 WO2015037042 A1 WO 2015037042A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle speed
motor
lockup
assist power
engine
Prior art date
Application number
PCT/JP2013/074303
Other languages
French (fr)
Japanese (ja)
Inventor
祐也 小暮
健児 米田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2013/074303 priority Critical patent/WO2015037042A1/en
Publication of WO2015037042A1 publication Critical patent/WO2015037042A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/107Infinitely variable gearings with endless flexible members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0026Lookup tables or parameter maps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0241Clutch slip, i.e. difference between input and output speeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/246Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a control apparatus for a hybrid vehicle having an engine use slip travel mode and a hybrid vehicle travel mode as travel modes.
  • the conventional hybrid vehicle control device has a map that defines the relationship between the lockup vehicle speed and the accelerator opening, and the lockup vehicle speed is set based on this map and the accelerator opening.
  • the lockup vehicle speed is set on the basis that, for example, the driving force necessary for high-load traveling can be provided only by the output power from the engine.
  • the engine can output more power as the rotational speed increases, that is, as the vehicle speed increases. Therefore, in order to ensure the driving force required only by the engine output power, the lockup vehicle speed set based on the map and the accelerator opening cannot be reduced. Therefore, slip engagement of the frictional engagement element is continued even in a high vehicle speed range, causing a problem that durability and fuel consumption of the frictional engagement element are deteriorated.
  • the present invention has been made paying attention to the above problem, and provides a control device for a hybrid vehicle capable of suppressing the deterioration of the durability and fuel consumption of a frictional engagement element while ensuring the necessary driving force. With the goal.
  • a control apparatus for a hybrid vehicle of the present invention is provided between a drive source having an engine and a motor, and between the drive source and the drive wheel, and connects and disconnects the drive source and the drive wheel.
  • the vehicle speed reaches a predetermined lock-up vehicle speed set in advance when the engine is in a slip traveling mode in which the friction engagement element is slip-engaged with the friction engagement element mounted on a hybrid vehicle including the friction engagement element.
  • travel mode control means for completely engaging the friction engagement element and shifting to the hybrid vehicle travel mode.
  • the travel mode control means obtains the lockup vehicle speed based on an assist power calculation unit that calculates motor assist power that is output from the motor and assists the engine, and the motor assist power and the accelerator opening.
  • a lockup vehicle speed setting unit, and further, the lockup vehicle speed setting unit sets the lockup vehicle speed lower as the motor assist power is larger.
  • the assist power calculation unit calculates the motor assist power for assisting the engine.
  • the lockup vehicle speed setting unit obtains the lockup vehicle speed based on the motor assist power and the accelerator opening. At this time, the lockup vehicle speed is set lower as the motor assist power is larger. That is, when setting the lockup vehicle speed that is a predetermined vehicle speed set in advance, the motor assist power is taken into consideration, and if the motor assist power is large, the lockup vehicle speed is set low. Therefore, the lockup vehicle speed can be reduced, and the traveling mode can be changed to the hybrid vehicle mode even in a relatively low vehicle speed range. As a result, it is possible to prevent the frictional engagement element from continuing the slip engagement for a long time and to secure the necessary driving force, while suppressing the durability of the frictional engagement element and the deterioration of fuel consumption.
  • FIG. 1 is an overall system diagram illustrating an FF hybrid vehicle to which a control device according to a first embodiment is applied. It is a flowchart which shows the flow of the driving mode transition control process (driving mode control means) performed with a hybrid control module. It is a figure which shows an example of a mode selection map. It is an example of the lockup vehicle speed map used with the control apparatus of Example 1.
  • FIG. It is a characteristic diagram which shows the clutch input torque with respect to the input rotation speed of a friction engagement element. It is explanatory drawing which shows the ratio of the engine output power and motor assist power which are decided for every battery SOC.
  • Example 1 First, the configuration of the hybrid vehicle control device according to the first embodiment will be described by dividing it into “the overall system configuration of the FF hybrid vehicle”, “the detailed configuration of the travel mode transition control”, and “the detailed configuration of the lockup vehicle speed setting process”. .
  • FIG. 1 is an overall system diagram illustrating an FF hybrid vehicle to which the control device of the first embodiment is applied.
  • the overall system configuration of the FF hybrid vehicle to which the hybrid vehicle control device of the first embodiment is applied will be described below with reference to FIG.
  • a drive system of an FF hybrid vehicle (an example of a hybrid vehicle) includes a starter motor 1, a horizontally mounted engine 2, a first clutch 3 (abbreviated as “CL1”), and a motor / generator (motor). ) 4, a second clutch 5 (abbreviated as “CL2”: friction engagement element), and a belt type continuously variable transmission 6 (abbreviated as “CVT”).
  • the output shaft of the belt-type continuously variable transmission 6 is drivingly connected to the left and right front wheels 10L and 10R via a final reduction gear train 7, a differential gear 8, and left and right drive shafts 9L and 9R.
  • the left and right rear wheels 11L and 11R are driven wheels.
  • the starter motor 1 is a cranking motor that has a gear that meshes with an engine starting gear provided on a crankshaft of the horizontal engine 2 and that rotates the crankshaft when the engine is started.
  • the horizontal engine 2 is an engine disposed in the front room with the crankshaft direction as the vehicle width direction, and serves as a drive source for the FF hybrid vehicle.
  • the horizontal engine 2 includes an electric water pump 12 and a crankshaft rotation sensor 13 that detects reverse rotation of the horizontal engine 2.
  • the first clutch 3 is a normally open dry multi-plate friction clutch that is hydraulically interposed between the horizontal engine 2 and the motor / generator 4, and is fully engaged / slip engaged / released by the first clutch oil pressure. Is controlled.
  • the motor / generator 4 is a three-phase AC permanent magnet synchronous motor connected to the transverse engine 2 via the first clutch 3 and serves as a drive source for the FF hybrid vehicle.
  • the motor / generator 4 uses a high-power battery 21 described later as a power source, and an inverter 26 that converts direct current into three-phase alternating current during power running and converts three-phase alternating current into direct current during regeneration is connected to the stator coil. Connected through.
  • the second clutch 5 is a wet multi-plate friction clutch (friction engagement element) that is hydraulically interposed between the motor / generator 4 and the left and right front wheels 10L and 10R as drive wheels. Full fastening / slip fastening / release is controlled by hydraulic pressure.
  • the second clutch 5 of the first embodiment uses the forward clutch 5a and the reverse brake 5b provided in the forward / reverse switching mechanism of the belt-type continuously variable transmission 6 using planetary gears. That is, the forward clutch 5 a is the second clutch 5 during forward travel, and the reverse brake 5 b is the second clutch 5 during reverse travel.
  • the belt type continuously variable transmission 6 is a transmission that obtains a continuously variable transmission ratio by changing the belt winding diameter by the transmission hydraulic pressure to the primary oil chamber and the secondary oil chamber.
  • the belt type continuously variable transmission 6 includes a main oil pump 14 (mechanical drive), a sub oil pump 15 (motor drive), and a line pressure PL generated by adjusting pump discharge pressure from the main oil pump 14. And a control valve unit (not shown) that generates the first and second clutch hydraulic pressures and the transmission hydraulic pressure with the pressure as the original pressure.
  • the sub oil pump 15 is mainly used as an auxiliary pump for producing lubricating cooling oil.
  • the first clutch 3, the motor / generator 4 and the second clutch 5 constitute a one-motor / two-clutch drive system.
  • the main drive modes (drive modes) of this drive system are “EV mode” and “HEV mode”.
  • WSC mode The “EV mode” is an electric vehicle traveling mode in which the first clutch 3 is disengaged and the second clutch 5 is engaged and only the motor / generator 4 is the driving source. It is called “running”.
  • the “HEV mode” is a hybrid vehicle traveling mode in which the first and second clutches 3 and 5 are engaged and the horizontally placed engine 2 and the motor / generator 4 are used as driving sources. It is called “HEV driving”.
  • the horizontal engine 2 is operated, the first clutch 3 is engaged, and the second clutch 5 is slip-engaged with a transmission torque capacity corresponding to the required driving force.
  • This is an engine-use slip running mode that runs while being included in the power source.
  • the regenerative cooperative brake unit 16 shown in FIG. 1 is a device that controls the total braking torque in accordance with the regenerative operation in principle when the brake is operated.
  • the regenerative cooperative brake unit 16 includes a brake pedal, a negative pressure booster that uses the intake negative pressure of the horizontally placed engine 2, and a master cylinder. Then, during the brake operation, cooperative control for the regenerative / hydraulic pressure is performed such that the amount of subtraction of the regenerative braking force from the required braking force based on the pedal operation amount is shared by the hydraulic braking force.
  • the power system of the FF hybrid vehicle includes a high-power battery 21 as a motor / generator power source and a 12V battery 22 as a 12V system load power source.
  • the high-power battery 21 is a secondary battery mounted as a power source for the motor / generator 4.
  • a lithium ion battery in which a cell module constituted by a large number of cells is set in a battery pack case is used.
  • the high-power battery 21 has a built-in junction box in which relay circuits for supplying / cutting off / distributing high-power are integrated, and further includes a cooling fan unit 24 having a battery cooling function, a battery charging capacity (battery SOC) and a battery. And a lithium battery controller 86 for monitoring the temperature.
  • the high-power battery 21 and the motor / generator 4 are connected through a DC harness 25, an inverter 26, and an AC harness 27.
  • the inverter 26 is provided with a motor controller 83 that performs power running / regenerative control. That is, the inverter 26 converts a direct current from the DC harness 25 into a three-phase alternating current to the AC harness 27 during power running for driving the motor / generator 4 by discharging the high-power battery 21. Further, the three-phase alternating current from the AC harness 27 is converted into a direct current to the DC harness 25 during regeneration in which the high-power battery 21 is charged by power generation by the motor / generator 4.
  • the 12V battery 22 is a secondary battery mounted as a power source for a 12V system load, which is an auxiliary machine. For example, a lead battery mounted in an engine vehicle or the like is used.
  • the high voltage battery 21 and the 12V battery 22 are connected via a DC branch harness 25a, a DC / DC converter 37, and a battery harness 38.
  • the DC / DC converter 37 converts a voltage of several hundred volts from the high-power battery 21 to 12V, and the charge amount of the 12V battery 22 is controlled by controlling the DC / DC converter 37 by the hybrid control module 81. Is configured to manage.
  • the control system of the FF hybrid vehicle includes a hybrid control module 81 (abbreviation: “HCM”) as an integrated control means for properly managing the energy consumption of the entire vehicle.
  • Control means connected to the hybrid control module 81 include an engine control module 82 (abbreviation: “ECM”), a motor controller 83 (abbreviation: “MC”), and a CVT control unit 84 (abbreviation: “CVTCU”).
  • a lithium battery controller 86 abbreviation: “LBC”.
  • the hybrid control module 81 performs various controls based on input information from each control means, an ignition switch 91, an accelerator opening sensor 92, a vehicle speed sensor 93, and the like.
  • the engine control module 82 performs fuel injection control, ignition control, fuel cut control, and the like of the horizontally placed engine 2.
  • the motor controller 83 performs power running control, regeneration control, and the like of the motor / generator 4 by the inverter 26.
  • the CVT control unit 84 performs engagement hydraulic pressure control of the first clutch 3, engagement hydraulic pressure control of the second clutch 5, shift hydraulic pressure control of the belt type continuously variable transmission 6, and the like.
  • the lithium battery controller 86 manages the battery SOC, battery temperature, and the like of the high-power battery 21.
  • FIG. 2 is a flowchart showing a flow of a travel mode transition control process (travel mode control means) executed by the hybrid control module.
  • travel mode transition control process travel mode control means
  • step S1 motor assist power that is output from the motor / generator 4 and assists the output power of the horizontal engine 2 is calculated, and the process proceeds to step S2.
  • This step S2 corresponds to an assist power calculation unit.
  • the “motor assist power” is the maximum power that can be output by the motor / generator 4.
  • the “motor assist power” is limited according to the first assist power obtained by subtracting the motor loss from the maximum battery output power determined according to the temperature of the high-power battery 21 and the charge capacity (battery SOC) of the high-power battery 21.
  • the second assist power is set to a smaller value. That is, if the battery SOC is high, the first assist power is often set to “motor assist power”, and if the battery SOC is low, the second assist power is often set to “motor assist power”.
  • the “motor loss” is calculated from the motor rotation speed and the motor torque.
  • step S2 following the calculation of the motor assist power in step S1, it is determined whether or not the target state of the second clutch 5 is slip engagement. If YES (slip engagement), the process proceeds to step S3. If NO (completely engaged), the process proceeds to step S6.
  • the target state of the second clutch 5 is determined by the position of the operating point (APO, VSP) determined by the accelerator opening and the vehicle speed in the mode selection map shown in FIG. That is, in the mode selection map of FIG. 3, if the operating point (APO, VSP) exists in the “WSC region”, the target state of the second clutch 5 is slip engagement.
  • step S3 following the determination of the second clutch slip engagement in step S2, the lockup vehicle speed is determined based on the motor assist power calculated in step S1 and the accelerator opening detected by the accelerator opening sensor 92. Is set, and the process proceeds to step S4.
  • This step S3 corresponds to a lockup vehicle speed setting unit.
  • the “lock-up vehicle speed” means that when the second clutch 5 is completely engaged from the “WSC mode” and transitions to the “HEV mode”, when driving at a high load such as sandy driving or uphill driving. It is a vehicle speed that can output the “necessary driving force at high load”, which is the required driving force. Details of the “lock-up vehicle speed” setting process will be described later.
  • step S4 following the setting of the lockup vehicle speed in step S3, it is determined whether or not the vehicle speed detected by the vehicle speed sensor 93 has reached the lockup vehicle speed set in step S3. If YES (vehicle speed ⁇ lockup vehicle speed), the process proceeds to step S5. If NO (vehicle speed ⁇ lockup vehicle speed), proceed to return.
  • step S5 following the determination that vehicle speed ⁇ lockup vehicle speed in step S4, the driving point (APO, VSP) crosses the WSC ⁇ HEV switching line in the mode selection map of FIG. Assuming the movement to the “HEV region”, the target state of the second clutch 5 is changed to complete engagement, and the process proceeds to RETURN. Thereby, the second clutch 5 is completely engaged.
  • step S6 following the determination that the second clutch is completely engaged in step S2, the slip-in vehicle speed is set, and the process proceeds to step S7.
  • the “slip-in vehicle speed” is a vehicle speed when the second clutch 5 is slip-engaged from the “HEV mode” and transitioned to the “WSC mode”, and hysteresis is applied to the low vehicle speed side with respect to the lockup vehicle speed. It is set to have. That is, in the mode selection map shown in FIG. 3, it is set by the HEV ⁇ WSC switching line indicated by a broken line.
  • step S7 following the setting of the slip-in vehicle speed in step S6, it is determined whether or not the vehicle speed detected by the vehicle speed sensor 93 is less than the slip-in vehicle speed. If YES (vehicle speed ⁇ slip-in vehicle speed), the process proceeds to step S8. If NO (vehicle speed ⁇ slip-in vehicle speed), the process proceeds to return.
  • step S8 following the determination of vehicle speed ⁇ slip-in vehicle speed in step S7, the driving point (APO, VSP) crosses the HEV ⁇ WSC switching line in the mode selection map of FIG. Assuming the movement to the “WSC region”, the target state of the second clutch 5 is changed to slip engagement, and the process proceeds to RETURN. As a result, slip engagement processing is executed for the second clutch 5.
  • FIG. 4 is an example of a lockup vehicle speed map used in the control device of the first embodiment. Hereinafter, based on FIG. 4, the detailed structure of the lockup vehicle speed setting process of Example 1 is demonstrated.
  • step S3 of the flowchart shown in FIG. 2 the lockup vehicle speed is set.
  • the hybrid control module 81 has a plurality of lockup vehicle speed maps preliminarily defining the relationship among the motor assist power, the accelerator opening, and the lockup vehicle speed (see FIG. 4). ). That is, in the plurality of lockup vehicle speed maps, a plurality of mode selection maps that uniquely set the lockup vehicle speed according to the accelerator opening are set according to the magnitude of the motor assist power.
  • one map to be used for setting the lockup vehicle speed is selected from the plurality of lockup vehicle speed maps shown in FIG. 4 according to the motor assist power calculated in step S1 of the flowchart shown in FIG.
  • the lockup vehicle speed is set based on the selected map and the current accelerator opening.
  • the slip-in vehicle speed has a plurality of slip-in vehicle speed maps that predetermine the relationship among motor assist power, accelerator opening, and slip-in vehicle speed in the hybrid control module 81.
  • FIG. 5 is a characteristic diagram showing the clutch input torque with respect to the input rotation speed of the friction engagement element.
  • FIG. 5 the lock-up vehicle speed setting process of a comparative example and its subject are demonstrated.
  • the output torque of the drive source when the engine is operated is the engine output torque and the motor This is the total output torque. That is, the clutch input torque input to the friction engagement element is the total value of the engine output power and the motor assist power.
  • the motor assist power increases as the battery SOC increases. That is, when the battery SOC is low and the motor assist power is zero (only engine output power), the output torque of the drive source is low, and the “clutch input torque” that is the torque input to the friction engagement element is as shown in FIG. The value indicated by a solid line at. Further, when the battery SOC is high and the motor assist power is maximum, the output torque of the drive source is high, and the clutch input torque is a value indicated by a one-dot chain line in FIG.
  • the engine output power increases as the engine speed increases.
  • the input rotational speed of the frictional engagement element and the vehicle speed are proportional to the engine rotational speed. Therefore, regardless of the battery SOC, as shown in FIG. 5, the clutch input torque increases as the input rotational speed of the frictional engagement element increases, that is, as the vehicle speed increases.
  • the friction engagement element is operated with the engine running.
  • the vehicle may run in the engine-in-use slip running mode (WSC mode). In the “WSC mode”, creep running can be achieved even when the battery SOC is low or the engine water temperature is low.
  • the timing of transition from the “WSC mode” to the “HEV mode” after completely engaging the frictional engagement elements is determined by the vehicle speed. In other words, it is the vehicle speed (lockup vehicle speed) when the input rotation speed of the frictional engagement element reaches the rotation speed that can output the torque necessary for driving on a high load road surface such as sandy ground (necessary driving force at high load). , Completely tighten the frictional engagement element. Thereby, driving
  • the control device for the hybrid vehicle of the comparative example does not consider the motor assist power, and determines the lockup vehicle speed based on the fact that the required driving force at high load can be covered only by the engine output power. It was. That is, the input rotational speed N1 of the frictional engagement element at a position where the clutch input torque characteristic diagram (solid line) when the battery SOC is low and the motor assist power is zero intersects the required driving force during high load (broken line). The vehicle speed required in proportion to the vehicle speed was used as the lockup vehicle speed.
  • step S1 in this flowchart is executed to calculate motor assist power.
  • the motor assist power changes according to the battery temperature, and becomes maximum when the battery temperature is about an appropriate temperature (35 ° C. to 38 ° C.). Further, the motor assist power is limited depending on the battery SOC. That is, if the battery SOC is high, the motor assist power is not limited and depends on the battery temperature or the like, but if the battery SOC is low, the output of the motor assist power may be limited to zero. In step S1, a smaller value of the first assist power obtained by subtracting the motor loss from the maximum battery output power and the second assist power limited according to the battery SOC is the motor assist power. For this reason, the maximum power that can be output by the motor / generator 4 is the motor assist power.
  • step S2 if the second clutch 5 is in the slip engagement state, the process proceeds to step S3 and the lockup vehicle speed is set.
  • step S3 the lockup vehicle speed is set.
  • one map to be used for setting the lockup vehicle speed is selected from the plurality of lockup vehicle speed maps shown in FIG.
  • the lockup vehicle speed is set based on the accelerator opening.
  • the lockup vehicle speed is set to a smaller value as the motor assist power is larger.
  • a predetermined clutch input torque for example, a required driving force at high load
  • the engine output power is increased accordingly. This is because it can be suppressed. That is, when the battery SOC is low, the motor assist power is zero, and the motor regenerative torque must be covered by the engine output power. At this time, the engine output power is required more than the required driving force at the time of high load, and the lockup vehicle speed increases accordingly.
  • the friction of the second clutch 5 can be suppressed, and the clutch can be completely engaged when the input rotational speed of the second clutch 5 is low. Therefore, durability of the second clutch 5 and deterioration of fuel consumption accompanying clutch heat generation can be suppressed.
  • the first assist power obtained by subtracting the motor loss from the maximum output power of the high-power battery 21 and the battery SOC are calculated.
  • the second assist power limited accordingly a smaller value is used as the motor assist power. Therefore, the output power from the motor / generator 4 can be obtained easily and accurately, and the lockup vehicle speed can be set appropriately.
  • a plurality of lockup vehicle speed maps are provided in advance that define the relationship among motor assist power, accelerator opening, and lockup vehicle speed.
  • step S3 of the flowchart shown in FIG. 2 when setting the lockup vehicle speed, one map selected from a plurality of lockup vehicle speed maps as shown in FIG. Based on this, the lockup vehicle speed is set. Therefore, the complicated calculation of the lockup vehicle speed is not required, and the lockup vehicle speed can be easily set by detecting the accelerator opening.
  • This slip-in vehicle speed is the vehicle speed at which the second clutch 5 in the fully engaged state starts to be slip-engaged, but has hysteresis on the low vehicle speed side with respect to the lockup vehicle speed set based on the motor assist power and the accelerator opening. It is the value that is set. Accordingly, if the motor assist power is large, slip engagement is performed at a lower speed side, so that the region of the “HEV mode” can be expanded and friction of the second clutch 5 can be suppressed. And the deterioration of the durability and fuel consumption of the second clutch 5 can be prevented.
  • a drive source having an engine (horizontal engine) 2 and a motor (motor / generator) 4;
  • a frictional engagement element (second clutch) 5 that is interposed between the drive sources 2 and 4 and the drive wheels (left and right front wheels) 10L and 10R and connects and disconnects the drive sources 2 and 4 and the drive wheels 10L and 10R.
  • WSC mode engine use slip traveling mode
  • the friction engagement element 5 is In a hybrid vehicle control device comprising travel mode control means (FIG.
  • the travel mode control means includes an assist power calculation unit (step S1) that calculates motor assist power that is output from the motor 4 and assists the engine 2.
  • a lockup vehicle speed setting unit (step S3) for obtaining the lockup vehicle speed based on the motor assist power and the accelerator opening;
  • the lockup vehicle speed setting unit (step S3) is configured to set the lockup vehicle speed lower as the motor assist power increases.
  • the predetermined lock-up vehicle speed is configured to be a vehicle speed that can output a required driving force at a high load.
  • high-load driving such as sandy driving can be performed, and driving can be performed regardless of vehicle conditions.
  • the assist power calculation unit (step S1) is a first assist that is obtained by subtracting the motor loss from the maximum output power of the battery (high-power battery) 21 that stores the power supplied to the motor (motor / generator) 4. A smaller value of the power and the second assist power limited according to the charge capacity (battery SOC) of the battery 21 is set as the motor assist power.
  • the motor assist power can be obtained easily and accurately, and the lockup vehicle speed can be set appropriately.
  • the lockup vehicle speed setting unit has a plurality of lockup vehicle speed maps (FIG. 4) that define the relationship among the motor assist power, the accelerator opening, and the lockup vehicle speed. And The lockup vehicle speed is set based on a map selected from the plurality of lockup vehicle speed maps according to the motor assist power and the accelerator opening. As a result, in addition to any of the effects (1) to (3), a complicated calculation of the lockup vehicle speed is unnecessary, and the lockup vehicle speed can be easily set by detecting the accelerator opening.
  • the travel mode control means sets the vehicle speed to a slip-in vehicle speed set with hysteresis on the low vehicle speed side with respect to the lockup vehicle speed. Is reached, the engine is switched to the slip mode using the engine (WSC mode).
  • WSC mode the engine
  • the second clutch 5 is slip-engaged on the lower speed side according to the motor assist power at the time of transition from the “HEV mode” to the “WSC mode”.
  • the state of the “HEV mode” can be expanded, and the friction of the second clutch 5 can be suppressed. And the deterioration of the durability and fuel consumption of the second clutch 5 can be prevented.
  • the hybrid vehicle control device of the present invention has been described based on the first embodiment. However, the specific configuration is not limited to the first embodiment, and the invention according to each claim of the claims is described. Design changes and additions are allowed without departing from the gist.
  • the example has the plurality of lockup vehicle speed maps shown in FIG. 4 and uses the plurality of maps when setting the lockup vehicle speed.
  • the present invention is not limited to this.
  • an arithmetic expression for calculating the lockup vehicle speed may be provided, and the lockup vehicle speed may be obtained by calculation from the motor assist power and the accelerator opening.
  • Example 1 the example which applies the control apparatus of the hybrid vehicle of this invention to FF hybrid vehicle was shown.
  • the control device of the present invention can be applied not only to FF hybrid vehicles but also to FR hybrid vehicles, 4WD hybrid vehicles, and plug-in hybrid vehicles. In short, it can be applied to any hybrid vehicle.
  • the first clutch 3 is interposed between the horizontal engine 2 and the motor / generator 4, and the horizontal engine 2 and the motor / generator 4 can be connected / disconnected by the first clutch 3.
  • a drive source in which the engine and the motor are always directly connected, or a drive source in which the engine, the motor, and the generator are connected via an operating gear may be used.
  • a belt-type continuously variable transmission is used as the automatic transmission
  • the present invention is not limited to this, and a stepped automatic transmission may be used.
  • a clutch or a brake included in the transmission may be used as the second clutch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Provided is a hybrid vehicle control device capable of inhibiting degradation of durability of frictional engagement elements and fuel consumption that accompanies clutch heat generation. The control device for a hybrid vehicle comprises: an assist power calculation unit (step S1) for calculating the motor assist power outputted from a motor/generator (4) to assist an engine (2) in a travel mode control means (FIG. 2) for fully engaging a second clutch (5) to transition to HEV mode when the vehicle speed has reached a predetermined lockup vehicle speed set in advance in WSC mode in which the second clutch (5) has been slip-engaged with the engine (2) in an actuated state; and a lockup vehicle speed setting unit (step S3) for determining the lockup vehicle speed and setting the lockup vehicle speed to be lower in commensurate fashion to a higher motor assist power on the basis of the motor assist power and accelerator opening.

Description

ハイブリッド車両の制御装置Control device for hybrid vehicle
 本発明は、走行モードとしてエンジン使用スリップ走行モードとハイブリッド車走行モードを有するハイブリッド車両の制御装置に関するものである。 The present invention relates to a control apparatus for a hybrid vehicle having an engine use slip travel mode and a hybrid vehicle travel mode as travel modes.
 従来、エンジンとモータを駆動源に有するハイブリッド車両に搭載され、エンジンを作動させた状態で、駆動源と駆動輪の間に介装させた摩擦締結要素をスリップ締結したエンジン使用スリップ走行モードのとき、予め設定したロックアップ車速に車速が達したら、摩擦締結要素を完全締結してハイブリッド車走行モードへと走行モードを遷移させるハイブリッド車両の制御装置が知られている(例えば、特許文献1参照)。 Conventionally, when the engine is in a slip traveling mode in which a friction engagement element interposed between the drive source and the drive wheels is slip-engaged in a state where the engine is operated and mounted on a hybrid vehicle having an engine and a motor as a drive source. When a vehicle speed reaches a preset lockup vehicle speed, a hybrid vehicle control device is known in which the frictional engagement element is completely engaged and the travel mode is changed to the hybrid vehicle travel mode (see, for example, Patent Document 1). .
特開2009-132195号公報JP 2009-132195 A
 ところで、従来のハイブリッド車両の制御装置にあっては、ロックアップ車速とアクセル開度の関係を規定するマップを有し、このマップとアクセル開度に基づいてロックアップ車速を設定している。ここで、このマップは、エンジンからの出力パワーのみで例えば高負荷走行時に必要となる駆動力を賄えることを基準にロックアップ車速を設定していた。一方、エンジンは、回転数が上昇するほど、つまり車速が高いほどより多くのパワーを出力できることが分かっている。
 そのため、エンジン出力パワーのみによって必要となる駆動力を確保するために、上記マップとアクセル開度に基づいて設定されるロックアップ車速を低下させることができなかった。そのため、高い車速域であっても摩擦締結要素のスリップ締結が継続され、摩擦締結要素の耐久性や燃費が悪化するという問題が生じていた。
By the way, the conventional hybrid vehicle control device has a map that defines the relationship between the lockup vehicle speed and the accelerator opening, and the lockup vehicle speed is set based on this map and the accelerator opening. Here, in this map, the lockup vehicle speed is set on the basis that, for example, the driving force necessary for high-load traveling can be provided only by the output power from the engine. On the other hand, it has been found that the engine can output more power as the rotational speed increases, that is, as the vehicle speed increases.
Therefore, in order to ensure the driving force required only by the engine output power, the lockup vehicle speed set based on the map and the accelerator opening cannot be reduced. Therefore, slip engagement of the frictional engagement element is continued even in a high vehicle speed range, causing a problem that durability and fuel consumption of the frictional engagement element are deteriorated.
 本発明は、上記問題に着目してなされたもので、必要となる駆動力を確保しつつ、摩擦締結要素の耐久性や燃費の悪化を抑制することができるハイブリッド車両の制御装置を提供することを目的とする。 The present invention has been made paying attention to the above problem, and provides a control device for a hybrid vehicle capable of suppressing the deterioration of the durability and fuel consumption of a frictional engagement element while ensuring the necessary driving force. With the goal.
 上記目的を達成するため、本発明のハイブリッド車両の制御装置は、エンジンとモータを有する駆動源と、前記駆動源と駆動輪の間に介装され、前記駆動源と前記駆動輪とを断接する摩擦締結要素と、を備えたハイブリッド車両に搭載され、前記エンジンを作動させた状態で前記摩擦締結要素をスリップ締結したエンジン使用スリップ走行モードのとき、予め設定した所定のロックアップ車速に車速が達したら、前記摩擦締結要素を完全締結してハイブリッド車走行モードへと遷移させる走行モード制御手段を備えている。
 そして、前記走行モード制御手段は、前記モータから出力されて前記エンジンをアシストするモータアシストパワーを算出するアシストパワー算出部と、前記モータアシストパワーとアクセル開度に基づいて、前記ロックアップ車速を求めるロックアップ車速設定部と、を有し、さらに、前記ロックアップ車速設定部は、前記モータアシストパワーが大きいほど、前記ロックアップ車速を低く設定する。
In order to achieve the above object, a control apparatus for a hybrid vehicle of the present invention is provided between a drive source having an engine and a motor, and between the drive source and the drive wheel, and connects and disconnects the drive source and the drive wheel. The vehicle speed reaches a predetermined lock-up vehicle speed set in advance when the engine is in a slip traveling mode in which the friction engagement element is slip-engaged with the friction engagement element mounted on a hybrid vehicle including the friction engagement element. Then, there is provided travel mode control means for completely engaging the friction engagement element and shifting to the hybrid vehicle travel mode.
The travel mode control means obtains the lockup vehicle speed based on an assist power calculation unit that calculates motor assist power that is output from the motor and assists the engine, and the motor assist power and the accelerator opening. A lockup vehicle speed setting unit, and further, the lockup vehicle speed setting unit sets the lockup vehicle speed lower as the motor assist power is larger.
 よって、本発明のハイブリッド車両の制御装置では、アシストパワー算出部によって、エンジンをアシストするモータアシストパワーが算出される。そして、ロックアップ車速設定部によって、モータアシストパワーとアクセル開度に基づいて、ロックアップ車速が求められるが、このとき、モータアシストパワーが大きいほどロックアップ車速が低く設定される。
 すなわち、予め設定した所定の車速であるロックアップ車速を設定する際、モータアシストパワーを考慮し、このモータアシストパワーが大きければロックアップ車速を低く設定する。
 そのため、ロックアップ車速を低下させることができ、比較的低い車速域であっても走行モードをハイブリッド車モードへと遷移することができる。この結果、摩擦締結要素がスリップ締結を長時間継続することを防止し、必要となる駆動力を確保しつつ、摩擦締結要素の耐久性や燃費の悪化を抑制することができる。
Therefore, in the hybrid vehicle control device of the present invention, the assist power calculation unit calculates the motor assist power for assisting the engine. Then, the lockup vehicle speed setting unit obtains the lockup vehicle speed based on the motor assist power and the accelerator opening. At this time, the lockup vehicle speed is set lower as the motor assist power is larger.
That is, when setting the lockup vehicle speed that is a predetermined vehicle speed set in advance, the motor assist power is taken into consideration, and if the motor assist power is large, the lockup vehicle speed is set low.
Therefore, the lockup vehicle speed can be reduced, and the traveling mode can be changed to the hybrid vehicle mode even in a relatively low vehicle speed range. As a result, it is possible to prevent the frictional engagement element from continuing the slip engagement for a long time and to secure the necessary driving force, while suppressing the durability of the frictional engagement element and the deterioration of fuel consumption.
実施例1の制御装置が適用されたFFハイブリッド車両を示す全体システム図である。1 is an overall system diagram illustrating an FF hybrid vehicle to which a control device according to a first embodiment is applied. ハイブリッドコントロールモジュールにて実行される走行モード遷移制御処理(走行モード制御手段)の流れを示すフローチャートである。It is a flowchart which shows the flow of the driving mode transition control process (driving mode control means) performed with a hybrid control module. モード選択マップの一例を示す図である。It is a figure which shows an example of a mode selection map. 実施例1の制御装置にて使用するロックアップ車速マップの一例である。It is an example of the lockup vehicle speed map used with the control apparatus of Example 1. FIG. 摩擦係合要素の入力回転数に対するクラッチ入力トルクを示す特性線図である。It is a characteristic diagram which shows the clutch input torque with respect to the input rotation speed of a friction engagement element. バッテリSOCごとに決まるエンジン出力パワーとモータアシストパワーの割合を示す説明図である。It is explanatory drawing which shows the ratio of the engine output power and motor assist power which are decided for every battery SOC.
 以下、本発明のハイブリッド車両の制御装置を実現する最良の形態を、図面に示す実施例1に基づいて説明する。 Hereinafter, the best mode for realizing the control apparatus for a hybrid vehicle of the present invention will be described based on Example 1 shown in the drawings.
 (実施例1)
 まず、実施例1のハイブリッド車両の制御装置の構成を、「FFハイブリッド車両の全体システム構成」、「走行モード遷移制御の詳細構成」、「ロックアップ車速設定処理の詳細構成」に分けて説明する。
Example 1
First, the configuration of the hybrid vehicle control device according to the first embodiment will be described by dividing it into “the overall system configuration of the FF hybrid vehicle”, “the detailed configuration of the travel mode transition control”, and “the detailed configuration of the lockup vehicle speed setting process”. .
 [FFハイブリッド車両の全体システム構成]
 図1は、実施例1の制御装置が適用されたFFハイブリッド車両を示す全体システム図である。以下、図1に基づいて、実施例1のハイブリッド車両の制御装置が適用されたFFハイブリッド車両の全体システム構成を説明する。
[Overall system configuration of FF hybrid vehicle]
FIG. 1 is an overall system diagram illustrating an FF hybrid vehicle to which the control device of the first embodiment is applied. The overall system configuration of the FF hybrid vehicle to which the hybrid vehicle control device of the first embodiment is applied will be described below with reference to FIG.
 FFハイブリッド車両(ハイブリッド車両の一例)の駆動系としては、図1に示すように、スタータモータ1と、横置きエンジン2と、第1クラッチ3(略称「CL1」)と、モータ/ジェネレータ(モータ)4と、第2クラッチ5(略称「CL2」:摩擦締結要素)と、ベルト式無段変速機6(略称「CVT」)と、を備えている。ベルト式無段変速機6の出力軸は、終減速ギヤトレイン7と差動ギヤ8と左右のドライブシャフト9L,9Rを介し、左右の前輪10L,10Rに駆動連結される。なお、左右の後輪11L,11Rは、従動輪としている。 As shown in FIG. 1, a drive system of an FF hybrid vehicle (an example of a hybrid vehicle) includes a starter motor 1, a horizontally mounted engine 2, a first clutch 3 (abbreviated as “CL1”), and a motor / generator (motor). ) 4, a second clutch 5 (abbreviated as “CL2”: friction engagement element), and a belt type continuously variable transmission 6 (abbreviated as “CVT”). The output shaft of the belt-type continuously variable transmission 6 is drivingly connected to the left and right front wheels 10L and 10R via a final reduction gear train 7, a differential gear 8, and left and right drive shafts 9L and 9R. The left and right rear wheels 11L and 11R are driven wheels.
 前記スタータモータ1は、横置きエンジン2のクランク軸に設けられたエンジン始動用ギヤに噛み合うギヤを持ち、エンジン始動時にクランク軸を回転駆動するクランキングモータである。 The starter motor 1 is a cranking motor that has a gear that meshes with an engine starting gear provided on a crankshaft of the horizontal engine 2 and that rotates the crankshaft when the engine is started.
 前記横置きエンジン2は、クランク軸方向を車幅方向としてフロントルームに配置したエンジンであり、FFハイブリッド車両の駆動源となる。この横置きエンジン2は、電動ウォータポンプ12と、横置きエンジン2の逆転を検知するクランク軸回転センサ13と、を有する。 The horizontal engine 2 is an engine disposed in the front room with the crankshaft direction as the vehicle width direction, and serves as a drive source for the FF hybrid vehicle. The horizontal engine 2 includes an electric water pump 12 and a crankshaft rotation sensor 13 that detects reverse rotation of the horizontal engine 2.
 前記第1クラッチ3は、横置きエンジン2とモータ/ジェネレータ4との間に介装された油圧作動によるノーマルオープンの乾式多板摩擦クラッチであり、第1クラッチ油圧により完全締結/スリップ締結/開放が制御される。 The first clutch 3 is a normally open dry multi-plate friction clutch that is hydraulically interposed between the horizontal engine 2 and the motor / generator 4, and is fully engaged / slip engaged / released by the first clutch oil pressure. Is controlled.
 前記モータ/ジェネレータ4は、第1クラッチ3を介して横置きエンジン2に連結された三相交流の永久磁石型同期モータであり、FFハイブリッド車両の駆動源となる。このモータ/ジェネレータ4は、後述する強電バッテリ21を電源とし、ステータコイルには、力行時に直流を三相交流に変換し、回生時に三相交流を直流に変換するインバータ26が、ACハーネス27を介して接続される。 The motor / generator 4 is a three-phase AC permanent magnet synchronous motor connected to the transverse engine 2 via the first clutch 3 and serves as a drive source for the FF hybrid vehicle. The motor / generator 4 uses a high-power battery 21 described later as a power source, and an inverter 26 that converts direct current into three-phase alternating current during power running and converts three-phase alternating current into direct current during regeneration is connected to the stator coil. Connected through.
 前記第2クラッチ5は、モータ/ジェネレータ4と駆動輪である左右の前輪10L,10Rとの間に介装された油圧作動による湿式の多板摩擦クラッチ(摩擦締結要素)であり、第2クラッチ油圧により完全締結/スリップ締結/開放が制御される。実施例1の第2クラッチ5は、遊星ギヤによるベルト式無段変速機6の前後進切替機構に設けられた前進クラッチ5aと後退ブレーキ5bを流用している。つまり、前進走行時には、前進クラッチ5aが第2クラッチ5とされ、後退走行時には、後退ブレーキ5bが第2クラッチ5とされる。 The second clutch 5 is a wet multi-plate friction clutch (friction engagement element) that is hydraulically interposed between the motor / generator 4 and the left and right front wheels 10L and 10R as drive wheels. Full fastening / slip fastening / release is controlled by hydraulic pressure. The second clutch 5 of the first embodiment uses the forward clutch 5a and the reverse brake 5b provided in the forward / reverse switching mechanism of the belt-type continuously variable transmission 6 using planetary gears. That is, the forward clutch 5 a is the second clutch 5 during forward travel, and the reverse brake 5 b is the second clutch 5 during reverse travel.
 前記ベルト式無段変速機6は、プライマリ油室とセカンダリ油室への変速油圧によりベルトの巻き付き径を変えることで無段階の変速比を得る変速機である。このベルト式無段変速機6には、メインオイルポンプ14(メカ駆動)と、サブオイルポンプ15(モータ駆動)と、メインオイルポンプ14からのポンプ吐出圧を調圧することで生成したライン圧PLを元圧として第1,第2クラッチ油圧及び変速油圧を作り出す図外のコントロールバルブユニットと、を有する。なお、メインオイルポンプ14は、モータ/ジェネレータ4のモータ軸(=変速機入力軸)により回転駆動される。サブオイルポンプ15は、主に潤滑冷却用油を作り出す補助ポンプとして用いられる。 The belt type continuously variable transmission 6 is a transmission that obtains a continuously variable transmission ratio by changing the belt winding diameter by the transmission hydraulic pressure to the primary oil chamber and the secondary oil chamber. The belt type continuously variable transmission 6 includes a main oil pump 14 (mechanical drive), a sub oil pump 15 (motor drive), and a line pressure PL generated by adjusting pump discharge pressure from the main oil pump 14. And a control valve unit (not shown) that generates the first and second clutch hydraulic pressures and the transmission hydraulic pressure with the pressure as the original pressure. The main oil pump 14 is rotationally driven by a motor shaft (= transmission input shaft) of the motor / generator 4. The sub oil pump 15 is mainly used as an auxiliary pump for producing lubricating cooling oil.
 前記第1クラッチ3とモータ/ジェネレータ4と第2クラッチ5により1モータ・2クラッチの駆動システムが構成され、この駆動システムによる主な走行モード(駆動態様)として、「EVモード」と「HEVモード」と「WSCモード」を有する。
前記「EVモード」は、第1クラッチ3を開放し、第2クラッチ5を締結してモータ/ジェネレータ4のみを駆動源とする電気自動車走行モードであり、この「EVモード」による走行を「EV走行」という。
前記「HEVモード」は、第1,第2クラッチ3,5を締結して横置きエンジン2とモータ/ジェネレータ4を駆動源とするハイブリッド車走行モードであり、この「HEVモード」による走行を「HEV走行」という。
前記「WSCモード」は、横置きエンジン2を作動させた状態で、第1クラッチ3を締結すると共に第2クラッチ5を要求駆動力に応じた伝達トルク容量でスリップ締結し、横置きエンジン2を動力源に含みながら走行するエンジン使用スリップ走行モードである。
The first clutch 3, the motor / generator 4 and the second clutch 5 constitute a one-motor / two-clutch drive system. The main drive modes (drive modes) of this drive system are “EV mode” and “HEV mode”. And “WSC mode”.
The “EV mode” is an electric vehicle traveling mode in which the first clutch 3 is disengaged and the second clutch 5 is engaged and only the motor / generator 4 is the driving source. It is called “running”.
The “HEV mode” is a hybrid vehicle traveling mode in which the first and second clutches 3 and 5 are engaged and the horizontally placed engine 2 and the motor / generator 4 are used as driving sources. It is called “HEV driving”.
In the “WSC mode”, the horizontal engine 2 is operated, the first clutch 3 is engaged, and the second clutch 5 is slip-engaged with a transmission torque capacity corresponding to the required driving force. This is an engine-use slip running mode that runs while being included in the power source.
 なお、図1の回生協調ブレーキユニット16は、ブレーキ操作時、原則として回生動作を行うことに伴い、トータル制動トルクをコントロールするデバイスである。この回生協調ブレーキユニット16には、ブレーキペダルと、横置きエンジン2の吸気負圧を用いる負圧ブースタと、マスタシリンダと、を備える。そして、ブレーキ操作時、ペダル操作量に基づく要求制動力から回生制動力を差し引いた分を液圧制動力で分担するというように、回生分/液圧分の協調制御を行う。 Note that the regenerative cooperative brake unit 16 shown in FIG. 1 is a device that controls the total braking torque in accordance with the regenerative operation in principle when the brake is operated. The regenerative cooperative brake unit 16 includes a brake pedal, a negative pressure booster that uses the intake negative pressure of the horizontally placed engine 2, and a master cylinder. Then, during the brake operation, cooperative control for the regenerative / hydraulic pressure is performed such that the amount of subtraction of the regenerative braking force from the required braking force based on the pedal operation amount is shared by the hydraulic braking force.
 FFハイブリッド車両の電源システムとしては、図1に示すように、モータ/ジェネレータ電源としての強電バッテリ21と、12V系負荷電源としての12Vバッテリ22と、を備えている。 As shown in FIG. 1, the power system of the FF hybrid vehicle includes a high-power battery 21 as a motor / generator power source and a 12V battery 22 as a 12V system load power source.
 前記強電バッテリ21は、モータ/ジェネレータ4の電源として搭載された二次電池であり、例えば、多数のセルにより構成したセルモジュールを、バッテリパックケース内に設定したリチウムイオンバッテリが用いられる。この強電バッテリ21には、強電の供給/遮断/分配を行うリレー回路を集約させたジャンクションボックスが内蔵され、さらに、バッテリ冷却機能を持つ冷却ファンユニット24と、バッテリ充電容量(バッテリSOC)やバッテリ温度を監視するリチウムバッテリコントローラ86と、が付設される。 The high-power battery 21 is a secondary battery mounted as a power source for the motor / generator 4. For example, a lithium ion battery in which a cell module constituted by a large number of cells is set in a battery pack case is used. The high-power battery 21 has a built-in junction box in which relay circuits for supplying / cutting off / distributing high-power are integrated, and further includes a cooling fan unit 24 having a battery cooling function, a battery charging capacity (battery SOC) and a battery. And a lithium battery controller 86 for monitoring the temperature.
 前記強電バッテリ21とモータ/ジェネレータ4は、DCハーネス25とインバータ26とACハーネス27を介して接続される。インバータ26には、力行/回生制御を行うモータコントローラ83が付設される。つまり、インバータ26は、強電バッテリ21の放電によりモータ/ジェネレータ4を駆動する力行時、DCハーネス25からの直流をACハーネス27への三相交流に変換する。また、モータ/ジェネレータ4での発電により強電バッテリ21を充電する回生時、ACハーネス27からの三相交流をDCハーネス25への直流に変換する。 The high-power battery 21 and the motor / generator 4 are connected through a DC harness 25, an inverter 26, and an AC harness 27. The inverter 26 is provided with a motor controller 83 that performs power running / regenerative control. That is, the inverter 26 converts a direct current from the DC harness 25 into a three-phase alternating current to the AC harness 27 during power running for driving the motor / generator 4 by discharging the high-power battery 21. Further, the three-phase alternating current from the AC harness 27 is converted into a direct current to the DC harness 25 during regeneration in which the high-power battery 21 is charged by power generation by the motor / generator 4.
 前記12Vバッテリ22は、補機類である12V系負荷の電源として搭載された二次電池であり、例えば、エンジン車等で搭載されている鉛バッテリが用いられる。強電バッテリ21と12Vバッテリ22は、DC分岐ハーネス25aとDC/DCコンバータ37とバッテリハーネス38を介して接続される。前記DC/DCコンバータ37は、強電バッテリ21からの数百ボルト電圧を12Vに変換するものであり、このDC/DCコンバータ37を、ハイブリッドコントロールモジュール81により制御することで、12Vバッテリ22の充電量を管理する構成としている。 The 12V battery 22 is a secondary battery mounted as a power source for a 12V system load, which is an auxiliary machine. For example, a lead battery mounted in an engine vehicle or the like is used. The high voltage battery 21 and the 12V battery 22 are connected via a DC branch harness 25a, a DC / DC converter 37, and a battery harness 38. The DC / DC converter 37 converts a voltage of several hundred volts from the high-power battery 21 to 12V, and the charge amount of the 12V battery 22 is controlled by controlling the DC / DC converter 37 by the hybrid control module 81. Is configured to manage.
 FFハイブリッド車両の制御システムとしては、図1に示すように、車両全体の消費エネルギーを適切に管理する機能を担う統合制御手段として、ハイブリッドコントロールモジュール81(略称:「HCM」)を備えている。このハイブリッドコントロールモジュール81に接続される制御手段として、エンジンコントロールモジュール82(略称:「ECM」)と、モータコントローラ83(略称:「MC」)と、CVTコントロールユニット84(略称:「CVTCU」)と、リチウムバッテリコントローラ86(略称:「LBC」)と、を有する。ハイブリッドコントロールモジュール81を含むこれらの制御手段は、CAN通信線90(CANは「Controller Area Network」の略称)により双方向情報交換可能に接続される。 As shown in FIG. 1, the control system of the FF hybrid vehicle includes a hybrid control module 81 (abbreviation: “HCM”) as an integrated control means for properly managing the energy consumption of the entire vehicle. Control means connected to the hybrid control module 81 include an engine control module 82 (abbreviation: “ECM”), a motor controller 83 (abbreviation: “MC”), and a CVT control unit 84 (abbreviation: “CVTCU”). And a lithium battery controller 86 (abbreviation: “LBC”). These control means including the hybrid control module 81 are connected by a CAN communication line 90 (CAN is an abbreviation of “Controller Area Network”) so that bidirectional information can be exchanged.
 前記ハイブリッドコントロールモジュール81は、各制御手段、イグニッションスイッチ91、アクセル開度センサ92、車速センサ93等からの入力情報に基づき、様々な制御を行う。エンジンコントロールモジュール82は、横置きエンジン2の燃料噴射制御や点火制御や燃料カット制御等を行う。モータコントローラ83は、インバータ26によるモータ/ジェネレータ4の力行制御や回生制御等を行う。CVTコントロールユニット84は、第1クラッチ3の締結油圧制御、第2クラッチ5の締結油圧制御、ベルト式無段変速機6の変速油圧制御等を行う。リチウムバッテリコントローラ86は、強電バッテリ21のバッテリSOCやバッテリ温度等を管理する。 The hybrid control module 81 performs various controls based on input information from each control means, an ignition switch 91, an accelerator opening sensor 92, a vehicle speed sensor 93, and the like. The engine control module 82 performs fuel injection control, ignition control, fuel cut control, and the like of the horizontally placed engine 2. The motor controller 83 performs power running control, regeneration control, and the like of the motor / generator 4 by the inverter 26. The CVT control unit 84 performs engagement hydraulic pressure control of the first clutch 3, engagement hydraulic pressure control of the second clutch 5, shift hydraulic pressure control of the belt type continuously variable transmission 6, and the like. The lithium battery controller 86 manages the battery SOC, battery temperature, and the like of the high-power battery 21.
 [走行モード遷移制御の詳細構成]
 図2は、ハイブリッドコントロールモジュールにて実行される走行モード遷移制御処理(走行モード制御手段)の流れを示すフローチャートである。以下、走行モード遷移制御処理の詳細構成を表す図2の各ステップについて説明する。なお、この制御処理は、横置きエンジン2が作動している間、継続して実行され続ける。
[Detailed configuration of travel mode transition control]
FIG. 2 is a flowchart showing a flow of a travel mode transition control process (travel mode control means) executed by the hybrid control module. Hereinafter, each step of FIG. 2 showing the detailed configuration of the travel mode transition control process will be described. This control process continues to be executed while the horizontal engine 2 is operating.
 ステップS1では、モータ/ジェネレータ4から出力されて、横置きエンジン2の出力パワーをアシストするモータアシストパワーを算出し、ステップS2へ進む。なお、このステップS2がアシストパワー算出部に相当する。
ここで、「モータアシストパワー」は、モータ/ジェネレータ4によって出力することができる最大パワーである。この「モータアシストパワー」は、強電バッテリ21の温度等に応じて決まるバッテリ出力可能最大パワーから、モータ損失を差し引いた第1アシストパワーと、強電バッテリ21の充電容量(バッテリSOC)に応じて制限される第2アシストパワーと、のうち小さい値とする。
つまり、バッテリSOCが高ければ、第1アシストパワーが「モータアシストパワー」に設定され、バッテリSOCが低ければ、第2アシストパワーが「モータアシストパワー」に設定されることが多い。なお、「モータ損失」は、モータ回転数とモータトルクから算出される。
In step S1, motor assist power that is output from the motor / generator 4 and assists the output power of the horizontal engine 2 is calculated, and the process proceeds to step S2. This step S2 corresponds to an assist power calculation unit.
Here, the “motor assist power” is the maximum power that can be output by the motor / generator 4. The “motor assist power” is limited according to the first assist power obtained by subtracting the motor loss from the maximum battery output power determined according to the temperature of the high-power battery 21 and the charge capacity (battery SOC) of the high-power battery 21. The second assist power is set to a smaller value.
That is, if the battery SOC is high, the first assist power is often set to “motor assist power”, and if the battery SOC is low, the second assist power is often set to “motor assist power”. The “motor loss” is calculated from the motor rotation speed and the motor torque.
 ステップS2では、ステップS1でのモータアシストパワーの算出に続き、第2クラッチ5の目標状態がスリップ締結であるか否かを判断する。YES(スリップ締結)の場合には、ステップS3へ進む。NO(完全締結)の場合には、ステップS6へ進む。
ここで、この第2クラッチ5の目標状態は、図3に示すモード選択マップにおけるアクセル開度と車速で決まる運転点(APO,VSP)の位置によって決まる。つまり、図3のモード選択マップにおいて、運転点(APO,VSP)が「WSC領域」に存在すれば、第2クラッチ5の目標状態はスリップ締結になる。
In step S2, following the calculation of the motor assist power in step S1, it is determined whether or not the target state of the second clutch 5 is slip engagement. If YES (slip engagement), the process proceeds to step S3. If NO (completely engaged), the process proceeds to step S6.
Here, the target state of the second clutch 5 is determined by the position of the operating point (APO, VSP) determined by the accelerator opening and the vehicle speed in the mode selection map shown in FIG. That is, in the mode selection map of FIG. 3, if the operating point (APO, VSP) exists in the “WSC region”, the target state of the second clutch 5 is slip engagement.
 ステップS3では、ステップS2での第2クラッチスリップ締結との判断に続き、ステップS1にて算出したモータアシストパワーと、アクセル開度センサ92によって検出されたアクセル開度と、に基づいてロックアップ車速を設定し、ステップS4へ進む。なお、このステップS3がロックアップ車速設定部に相当する。
ここで、「ロックアップ車速」とは、「WSCモード」から第2クラッチ5を完全締結して「HEVモード」に遷移する際に、砂地走行や上り坂走行等の高負荷走行をするときに必要となる駆動力である「高負荷時必要駆動力」を出力可能な車速である。この「ロックアップ車速」の設定処理の詳細については後述する。
In step S3, following the determination of the second clutch slip engagement in step S2, the lockup vehicle speed is determined based on the motor assist power calculated in step S1 and the accelerator opening detected by the accelerator opening sensor 92. Is set, and the process proceeds to step S4. This step S3 corresponds to a lockup vehicle speed setting unit.
Here, the “lock-up vehicle speed” means that when the second clutch 5 is completely engaged from the “WSC mode” and transitions to the “HEV mode”, when driving at a high load such as sandy driving or uphill driving. It is a vehicle speed that can output the “necessary driving force at high load”, which is the required driving force. Details of the “lock-up vehicle speed” setting process will be described later.
 ステップS4では、ステップS3でのロックアップ車速の設定に続き、車速センサ93によって検出された車速が、ステップS3にて設定したロックアップ車速に達したか否かを判断する。YES(車速≧ロックアップ車速)の場合には、ステップS5へ進む。NO(車速<ロックアップ車速)の場合には、リターンへ進む。 In step S4, following the setting of the lockup vehicle speed in step S3, it is determined whether or not the vehicle speed detected by the vehicle speed sensor 93 has reached the lockup vehicle speed set in step S3. If YES (vehicle speed ≧ lockup vehicle speed), the process proceeds to step S5. If NO (vehicle speed <lockup vehicle speed), proceed to return.
 ステップS5では、ステップS4での車速≧ロックアップ車速との判断に続き、図3のモード選択マップにおいて、運転点(APO,VSP)がWSC⇒HEV切替線を横切って、「WSC領域」から「HEV領域」へと移動したとして、第2クラッチ5の目標状態を完全締結へと変更し、リターンへ進む。これにより、第2クラッチ5は完全締結処理が実行される。 In step S5, following the determination that vehicle speed ≧ lockup vehicle speed in step S4, the driving point (APO, VSP) crosses the WSC⇒HEV switching line in the mode selection map of FIG. Assuming the movement to the “HEV region”, the target state of the second clutch 5 is changed to complete engagement, and the process proceeds to RETURN. Thereby, the second clutch 5 is completely engaged.
 ステップS6では、ステップS2での第2クラッチ完全締結との判断に続き、スリップイン車速を設定し、ステップS7へ進む。
ここで、「スリップイン車速」とは、「HEVモード」から第2クラッチ5をスリップ締結して「WSCモード」に遷移させるときの車速であり、ロックアップ車速に対して低車速側にヒステリシスを持たせて設定される。すなわち、図3に示すモード選択マップでは、破線で示すHEV⇒WSC切替線によって設定される。
In step S6, following the determination that the second clutch is completely engaged in step S2, the slip-in vehicle speed is set, and the process proceeds to step S7.
Here, the “slip-in vehicle speed” is a vehicle speed when the second clutch 5 is slip-engaged from the “HEV mode” and transitioned to the “WSC mode”, and hysteresis is applied to the low vehicle speed side with respect to the lockup vehicle speed. It is set to have. That is, in the mode selection map shown in FIG. 3, it is set by the HEV⇒WSC switching line indicated by a broken line.
 ステップS7では、ステップS6でのスリップイン車速の設定に続き、車速センサ93によって検出された車速が、このスリップイン車速未満になったか否かを判断する。YES(車速<スリップイン車速)の場合には、ステップS8へ進む。NO(車速≧スリップイン車速)の場合には、リターンへ進む。 In step S7, following the setting of the slip-in vehicle speed in step S6, it is determined whether or not the vehicle speed detected by the vehicle speed sensor 93 is less than the slip-in vehicle speed. If YES (vehicle speed <slip-in vehicle speed), the process proceeds to step S8. If NO (vehicle speed ≧ slip-in vehicle speed), the process proceeds to return.
 ステップS8では、ステップS7での車速<スリップイン車速との判断に続き、図3のモード選択マップにおいて、運転点(APO,VSP)がHEV⇒WSC切替線を横切って、「HEV領域」から「WSC領域」へと移動したとして、第2クラッチ5の目標状態をスリップ締結へと変更し、リターンへ進む。これにより、第2クラッチ5はスリップ締結処理が実行される。 In step S8, following the determination of vehicle speed <slip-in vehicle speed in step S7, the driving point (APO, VSP) crosses the HEV⇒WSC switching line in the mode selection map of FIG. Assuming the movement to the “WSC region”, the target state of the second clutch 5 is changed to slip engagement, and the process proceeds to RETURN. As a result, slip engagement processing is executed for the second clutch 5.
 [ロックアップ車速設定処理の詳細構成]
 図4は、実施例1の制御装置にて使用するロックアップ車速マップの一例である。以下、図4に基づき、実施例1のロックアップ車速設定処理の詳細構成を説明する。
[Detailed configuration of lockup vehicle speed setting process]
FIG. 4 is an example of a lockup vehicle speed map used in the control device of the first embodiment. Hereinafter, based on FIG. 4, the detailed structure of the lockup vehicle speed setting process of Example 1 is demonstrated.
 図2に示すフローチャートのステップS3において、ロックアップ車速を設定する。ここで、実施例1では、ハイブリッドコントロールモジュール81において、モータアシストパワーと、アクセル開度と、ロックアップ車速と、の関係を予め規定する複数のロックアップ車速マップを有している(図4参照)。
すなわち、この複数のロックアップ車速マップでは、アクセル開度に応じて一義的にロックアップ車速を設定するモード選択マップが、モータアシストパワーの大きさに応じて複数設定されている。
In step S3 of the flowchart shown in FIG. 2, the lockup vehicle speed is set. Here, in the first embodiment, the hybrid control module 81 has a plurality of lockup vehicle speed maps preliminarily defining the relationship among the motor assist power, the accelerator opening, and the lockup vehicle speed (see FIG. 4). ).
That is, in the plurality of lockup vehicle speed maps, a plurality of mode selection maps that uniquely set the lockup vehicle speed according to the accelerator opening are set according to the magnitude of the motor assist power.
 そして 、この複数のロックアップ車速マップでは、モータアシストパワーが大きいほど、ロックアップ車速が小さい値に設定されている。つまり、モータアシストパワーが最小(=ゼロ)のとき、すなわち横置きエンジン2の出力パワーのみで高負荷時必要駆動力を賄う必要があるときには、図4において太実線で示すマップとなる。また、モータアシストパワーが最大(=10)のとき、すなわち横置きエンジン2の出力パワーを増加させなくても高負荷時必要駆動力を賄えるときには、図4において太破線で示すマップとなる。 In the plurality of lockup vehicle speed maps, the lockup vehicle speed is set to a smaller value as the motor assist power is larger. That is, when the motor assist power is minimum (= zero), that is, when it is necessary to cover the required driving force at the time of high load only with the output power of the horizontally mounted engine 2, the map shown by the thick solid line in FIG. Further, when the motor assist power is maximum (= 10), that is, when the required driving force at high load can be provided without increasing the output power of the horizontally mounted engine 2, the map is shown by a thick broken line in FIG.
 そして、図2に示すフローチャートのステップS1において算出したモータアシストパワーに応じて、図4に示す複数のロックアップ車速マップから、ロックアップ車速の設定に使用するマップを一つ選択する。
そして、マップを選択したら、この選択したマップと、現在のアクセル開度に基づいて、ロックアップ車速を設定する。
Then, one map to be used for setting the lockup vehicle speed is selected from the plurality of lockup vehicle speed maps shown in FIG. 4 according to the motor assist power calculated in step S1 of the flowchart shown in FIG.
When the map is selected, the lockup vehicle speed is set based on the selected map and the current accelerator opening.
 このように、モータアシストパワーによって選択されるマップが異なるため、アクセル開度が同程度であっても、ロックアップ車速が異なることとなる。 Thus, since the maps selected by the motor assist power are different, the lockup vehicle speed is different even if the accelerator opening is the same.
 また、スリップイン車速は、ハイブリッドコントロールモジュール81において、モータアシストパワーと、アクセル開度と、スリップイン車速と、の関係を予め規定する複数のスリップイン車速マップを有している。このスリップイン車速マップは、ロックアップ車速マップに対して低車速側にヒステリシスを持たせて設定され、モータアシストパワーが大きいほど、スリップイン車速が小さい値に設定されている。
つまり、モータアシストパワーが最小(=ゼロ)のとき、すなわち横置きエンジン2の出力パワーのみで高負荷時必要駆動力を賄う必要があるときには、図4において細実線で示すマップとなる。また、モータアシストパワーが最大(=10)のとき、すなわち横置きエンジン2の出力パワーを増加させなくても高負荷時必要駆動力を賄えるときには、図4において細破線で示すマップとなる。
Further, the slip-in vehicle speed has a plurality of slip-in vehicle speed maps that predetermine the relationship among motor assist power, accelerator opening, and slip-in vehicle speed in the hybrid control module 81. The slip-in vehicle speed map is set with hysteresis on the low vehicle speed side with respect to the lock-up vehicle speed map, and the slip-in vehicle speed is set to a smaller value as the motor assist power is larger.
That is, when the motor assist power is at a minimum (= zero), that is, when it is necessary to cover the required driving force at the time of high load only with the output power of the horizontally mounted engine 2, the map is shown by a thin solid line in FIG. Further, when the motor assist power is maximum (= 10), that is, when the required driving force at the time of high load can be provided without increasing the output power of the horizontally mounted engine 2, the map is shown by a thin broken line in FIG.
 次に、作用を説明する。
 まず、[比較例のロックアップ車速設定処理とその課題]を説明し、続いて、実施例1のFFハイブリッド車両の制御装置における作用を、[ロックアップ車速設定作用]、[スリップイン車速設定作用]に分けて説明する。
Next, the operation will be described.
First, [the lock-up vehicle speed setting process of the comparative example and its problem] will be described, and then the actions in the control device for the FF hybrid vehicle of the first embodiment will be described as [lock-up vehicle speed setting action] and [slip-in vehicle speed setting action] ] Are described separately.
 [比較例のロックアップ車速設定処理とその課題]
 図5は、摩擦係合要素の入力回転数に対するクラッチ入力トルクを示す特性線図である。以下、図5に基づき、比較例のロックアップ車速設定処理とその課題を説明する。
[Comparison example lock-up vehicle speed setting process and problems]
FIG. 5 is a characteristic diagram showing the clutch input torque with respect to the input rotation speed of the friction engagement element. Hereinafter, based on FIG. 5, the lock-up vehicle speed setting process of a comparative example and its subject are demonstrated.
 駆動源にエンジンとモータを有し、この駆動源と駆動輪との間に摩擦締結要素を備えたハイブリッド車両において、エンジンを作動させているときの駆動源の出力トルクは、エンジン出力トルクとモータ出力トルクの合計トルクとなる。つまり、摩擦係合要素に入力するクラッチ入力トルクは、エンジンの出力パワーとモータアシストパワーの合計値である。 In a hybrid vehicle having an engine and a motor as a drive source and having a frictional engagement element between the drive source and the drive wheel, the output torque of the drive source when the engine is operated is the engine output torque and the motor This is the total output torque. That is, the clutch input torque input to the friction engagement element is the total value of the engine output power and the motor assist power.
 ここで、モータの出力トルクは、モータに供給する電力を蓄えるバッテリ容量(バッテリSOC)に比例するため、モータアシストパワーはバッテリSOCが高いほど高くなる。
すなわち、バッテリSOCが低く、モータアシストパワーがゼロ(エンジン出力パワーのみ)の場合には、駆動源の出力トルクは低くなり、摩擦係合要素に入力するトルクである「クラッチ入力トルク」は図5において実線で示す値となる。
また、バッテリSOCが高く、モータアシストパワーが最大の場合には、駆動源の出力トルクは高くなり、クラッチ入力トルクは図5において一点鎖線で示す値となる。
Here, since the output torque of the motor is proportional to the battery capacity (battery SOC) that stores electric power supplied to the motor, the motor assist power increases as the battery SOC increases.
That is, when the battery SOC is low and the motor assist power is zero (only engine output power), the output torque of the drive source is low, and the “clutch input torque” that is the torque input to the friction engagement element is as shown in FIG. The value indicated by a solid line at.
Further, when the battery SOC is high and the motor assist power is maximum, the output torque of the drive source is high, and the clutch input torque is a value indicated by a one-dot chain line in FIG.
 さらに、エンジン出力パワーは、エンジンの回転数が高いほど大きくなることが分かっている。また、エンジン回転数に対し、摩擦締結要素の入力回転数及び車速は比例する。そのため、バッテリSOCに拘らず、図5に示すように、摩擦締結要素の入力回転数が高くなるほど、つまり車速が高くなるほど、クラッチ入力トルクは大きくなる。 Furthermore, it has been found that the engine output power increases as the engine speed increases. Further, the input rotational speed of the frictional engagement element and the vehicle speed are proportional to the engine rotational speed. Therefore, regardless of the battery SOC, as shown in FIG. 5, the clutch input torque increases as the input rotational speed of the frictional engagement element increases, that is, as the vehicle speed increases.
 一方、「HEVモード」の選択状態での停車時・発進時・減速時等のように、エンジン回転数がアイドル回転数を下回るような走行領域では、エンジンを作動させた状態で、摩擦締結要素をスリップ締結するエンジン使用スリップ走行モード(WSCモード)で走行することがある。この「WSCモード」では、特にバッテリSOCが低いときやエンジン水温が低いときであってもクリープ走行が達成可能である。 On the other hand, in a driving region where the engine speed is lower than the idle speed, such as when the vehicle is stopped, starting, or decelerating in the selected state of the “HEV mode”, the friction engagement element is operated with the engine running. The vehicle may run in the engine-in-use slip running mode (WSC mode). In the “WSC mode”, creep running can be achieved even when the battery SOC is low or the engine water temperature is low.
 この「WSCモード」から摩擦締結要素を完全締結させて「HEVモード」へ遷移するタイミングは、車速によって決定される。つまり、摩擦締結要素の入力回転数が、砂地等の高負荷路面を走行する際に必要なトルク(高負荷時必要駆動力)を出力できる回転数に達したときの車速(ロックアップ車速)で、摩擦締結要素を完全締結させる。これにより、高負荷路面での走行を確保することができる。 タ イ ミ ン グ The timing of transition from the “WSC mode” to the “HEV mode” after completely engaging the frictional engagement elements is determined by the vehicle speed. In other words, it is the vehicle speed (lockup vehicle speed) when the input rotation speed of the frictional engagement element reaches the rotation speed that can output the torque necessary for driving on a high load road surface such as sandy ground (necessary driving force at high load). , Completely tighten the frictional engagement element. Thereby, driving | running | working on a high load road surface is securable.
 これに対し、比較例のハイブリッド車両の制御装置では、モータアシストパワーを考慮しておらず、エンジン出力パワーのみで高負荷時必要駆動力を賄えることを基準にして、上記ロックアップ車速を決定していた。
つまり、バッテリSOCが低く、モータアシストパワーがゼロのときのクラッチ入力トルク特性線図(実線)と、高負荷時必要駆動力(破線)とが交差する位置での摩擦締結要素の入力回転数N1に比例して求められる車速をロックアップ車速としていた。
On the other hand, the control device for the hybrid vehicle of the comparative example does not consider the motor assist power, and determines the lockup vehicle speed based on the fact that the required driving force at high load can be covered only by the engine output power. It was.
That is, the input rotational speed N1 of the frictional engagement element at a position where the clutch input torque characteristic diagram (solid line) when the battery SOC is low and the motor assist power is zero intersects the required driving force during high load (broken line). The vehicle speed required in proportion to the vehicle speed was used as the lockup vehicle speed.
 そのため、ロックアップ車速を低下させることができず、摩擦締結要素のスリップ締結が継続することで、摩擦締結要素の耐久性や燃費が悪化するという問題が生じていた。 Therefore, the lock-up vehicle speed cannot be decreased, and the slip engagement of the frictional engagement element continues, resulting in a problem that durability and fuel consumption of the frictional engagement element are deteriorated.
 [ロックアップ車速設定作用]
 実施例1のFFハイブリッド車両の制御装置では、横置きエンジン2が作動すると、図2に示す走行モード遷移制御処理が実行される。つまり、まず、このフローチャートにおけるステップS1が実行され、モータアシストパワーを算出する。
[Lock-up vehicle speed setting effect]
In the control apparatus for an FF hybrid vehicle of the first embodiment, when the horizontally placed engine 2 is operated, the travel mode transition control process shown in FIG. 2 is executed. That is, first, step S1 in this flowchart is executed to calculate motor assist power.
 ここで、このモータアシストパワーは、バッテリ温度に応じて変化し、バッテリ温度が適温(35℃~38℃)程度の時に最大になる。また、このモータアシストパワーは、バッテリSOCに応じて制限される。すなわち、バッテリSOCが高ければモータアシストパワーは制限を受けずにバッテリ温度等に依存した値となるが、バッテリSOCが低いときではモータアシストパワーの出力が制限されてゼロになることもある。そして、このステップS1では、バッテリ出力可能最大パワーからモータ損失を差し引いた第1アシストパワーと、バッテリSOCに応じて制限される第2アシストパワーと、のうち小さい値がモータアシストパワーとなる。このため、モータ/ジェネレータ4によって出力可能な最大パワーが、モータアシストパワーとなる。 Here, the motor assist power changes according to the battery temperature, and becomes maximum when the battery temperature is about an appropriate temperature (35 ° C. to 38 ° C.). Further, the motor assist power is limited depending on the battery SOC. That is, if the battery SOC is high, the motor assist power is not limited and depends on the battery temperature or the like, but if the battery SOC is low, the output of the motor assist power may be limited to zero. In step S1, a smaller value of the first assist power obtained by subtracting the motor loss from the maximum battery output power and the second assist power limited according to the battery SOC is the motor assist power. For this reason, the maximum power that can be output by the motor / generator 4 is the motor assist power.
 そして、ステップS2へと進み、第2クラッチ5がスリップ締結状態であれば、ステップS3に進んでロックアップ車速を設定する。
このとき、ステップS1で算出したモータアシストパワーに応じて、図4に示す複数のロックアップ車速マップから、ロックアップ車速の設定に使用するマップを一つ選択し、この選択したマップと、現在のアクセル開度に基づいて、ロックアップ車速を設定する。
Then, the process proceeds to step S2, and if the second clutch 5 is in the slip engagement state, the process proceeds to step S3 and the lockup vehicle speed is set.
At this time, according to the motor assist power calculated in step S1, one map to be used for setting the lockup vehicle speed is selected from the plurality of lockup vehicle speed maps shown in FIG. The lockup vehicle speed is set based on the accelerator opening.
 ここで、複数のロックアップ車速マップでは、モータアシストパワーが大きいほど、ロックアップ車速が小さい値になるように設定されている。これは、図6に示すように、所定のクラッチ入力トルク(例えば高負荷時必要駆動力)を出力する場合であっても、バッテリSOCが高くモータアシストパワーが大きければ、その分エンジン出力パワーを抑制することができるからである。
すなわち、バッテリSOCが低いときには、モータアシストパワーはゼロである上、モータ回生トルク分もエンジン出力パワーで賄う必要がある。このときには、高負荷時必要駆動力以上にエンジン出力パワーが必要となり、それに伴ってロックアップ車速は高くなる。
これに対し、バッテリSOCが高いときには、モータアシストパワーが大きくなるため、エンジン出力パワーが比較的低くても高負荷時必要駆動力を賄うことができる。そして、エンジン出力パワーを低くできる分、ロックアップ車速を低くすることができる。つまり、図5に二点鎖線で示すように、クラッチ入力トルクにおいて、エンジン出力パワーに対してモータアシストパワーが上乗せされる場合には、横置きエンジン2の出力パワーのみで高負荷時必要駆動力を出力する場合の摩擦締結要素の入力回転数N1よりも、低い回転数(N2)で高負荷時必要駆動力を賄うことができる。
Here, in the plurality of lockup vehicle speed maps, the lockup vehicle speed is set to a smaller value as the motor assist power is larger. As shown in FIG. 6, even if a predetermined clutch input torque (for example, a required driving force at high load) is output, if the battery SOC is high and the motor assist power is large, the engine output power is increased accordingly. This is because it can be suppressed.
That is, when the battery SOC is low, the motor assist power is zero, and the motor regenerative torque must be covered by the engine output power. At this time, the engine output power is required more than the required driving force at the time of high load, and the lockup vehicle speed increases accordingly.
On the other hand, when the battery SOC is high, the motor assist power becomes large, so that it is possible to cover the necessary driving force under high load even if the engine output power is relatively low. And since the engine output power can be lowered, the lockup vehicle speed can be lowered. That is, as indicated by a two-dot chain line in FIG. 5, when the motor assist power is added to the engine output power in the clutch input torque, only the output power of the horizontal engine 2 is necessary and the driving force required at high load. The necessary driving force at the time of high load can be covered at a lower rotational speed (N2) than the input rotational speed N1 of the frictional engagement element when outputting.
 この結果、第2クラッチ5の摩擦を抑制し、この第2クラッチ5の入力回転数が低い段階でクラッチ完全締結を行うことができる。そのため、第2クラッチ5の耐久性やクラッチ発熱に伴う燃費の悪化を抑制することができる。 As a result, the friction of the second clutch 5 can be suppressed, and the clutch can be completely engaged when the input rotational speed of the second clutch 5 is low. Therefore, durability of the second clutch 5 and deterioration of fuel consumption accompanying clutch heat generation can be suppressed.
 また、実施例1では、図2に示すフローチャートのステップS1において、モータアシストパワーを算出する際、強電バッテリ21の出力可能最大パワーからモータ損失を差し引いて求められる第1アシストパワーと、バッテリSOCに応じて制限される第2アシストパワーのうち、小さい値をモータアシストパワーとしている。
そのため、モータ/ジェネレータ4からの出力パワーを容易且つ精度よく求めることができ、ロックアップ車速の設定を適切に行うことができる。
In the first embodiment, when calculating the motor assist power in step S1 of the flowchart shown in FIG. 2, the first assist power obtained by subtracting the motor loss from the maximum output power of the high-power battery 21 and the battery SOC are calculated. Of the second assist power limited accordingly, a smaller value is used as the motor assist power.
Therefore, the output power from the motor / generator 4 can be obtained easily and accurately, and the lockup vehicle speed can be set appropriately.
 さらに、この実施例1では、予め、モータアシストパワーと、アクセル開度と、ロックアップ車速と、の関係を規定する複数のロックアップ車速マップ(図4)を有している。そして、図2に示すフローチャートのステップS3において、ロックアップ車速を設定する際、モータアシストパワーに応じて、図4に示すような複数のロックアップ車速マップから選択した一つのマップと、アクセル開度に基づいて、ロックアップ車速を設定している。
そのため、ロックアップ車速の複雑な演算を不要とし、アクセル開度を検出することでロックアップ車速を容易に設定することができる。
Further, in the first embodiment, a plurality of lockup vehicle speed maps (FIG. 4) are provided in advance that define the relationship among motor assist power, accelerator opening, and lockup vehicle speed. In step S3 of the flowchart shown in FIG. 2, when setting the lockup vehicle speed, one map selected from a plurality of lockup vehicle speed maps as shown in FIG. Based on this, the lockup vehicle speed is set.
Therefore, the complicated calculation of the lockup vehicle speed is not required, and the lockup vehicle speed can be easily set by detecting the accelerator opening.
 [スリップイン車速設定作用]
 実施例1のFFハイブリッド車両の制御装置において、横置きエンジン2が作動すると共に、このとき第2クラッチ5がスリップ締結していなければ、この第2クラッチ5が完全締結しているとして、図2に示す走行モード遷移制御処理のステップS6が実行され、スリップイン車速が設定される。
[Slip-in vehicle speed setting effect]
In the control apparatus for the FF hybrid vehicle of the first embodiment, if the horizontally mounted engine 2 is operated and the second clutch 5 is not slip-engaged at this time, it is assumed that the second clutch 5 is completely fastened. Step S6 of the travel mode transition control process shown in FIG. 6 is executed, and the slip-in vehicle speed is set.
 このスリップイン車速は、完全締結状態の第2クラッチ5がスリップ締結し始める車速であるが、モータアシストパワーとアクセル開度に基づいて設定されるロックアップ車速に対して、低車速側にヒステリシスを持たせて設定された値になっている。
これにより、モータアシストパワーが大きければ、より低速側でスリップ締結になるため、「HEVモード」の領域拡大を図ることができ、第2クラッチ5の摩擦を抑制することができる。そして、この第2クラッチ5の耐久性や燃費の悪化を防止することができる。
This slip-in vehicle speed is the vehicle speed at which the second clutch 5 in the fully engaged state starts to be slip-engaged, but has hysteresis on the low vehicle speed side with respect to the lockup vehicle speed set based on the motor assist power and the accelerator opening. It is the value that is set.
Accordingly, if the motor assist power is large, slip engagement is performed at a lower speed side, so that the region of the “HEV mode” can be expanded and friction of the second clutch 5 can be suppressed. And the deterioration of the durability and fuel consumption of the second clutch 5 can be prevented.
 次に、効果を説明する。
 実施例1のFFハイブリッド車両の制御装置にあっては、下記に列挙する効果を得ることができる。
Next, the effect will be described.
In the control apparatus for the FF hybrid vehicle according to the first embodiment, the effects listed below can be obtained.
 (1) エンジン(横置きエンジン)2とモータ(モータ/ジェネレータ)4を有する駆動源と、
 前記駆動源2,4と駆動輪(左右の前輪)10L,10Rの間に介装され、前記駆動源2,4と前記駆動輪10L,10Rとを断接する摩擦締結要素(第2クラッチ)5と、を備えたハイブリッド車両に搭載され、
 前記エンジン2を作動させた状態で前記摩擦締結要素5をスリップ締結したエンジン使用スリップ走行モード(WSCモード)のとき、予め設定した所定のロックアップ車速に車速が達したら、前記摩擦締結要素5を完全締結してハイブリッド車走行モード(HEVモード)へと遷移させる走行モード制御手段(図2)を備えたハイブリッド車両の制御装置において、
 前記走行モード制御手段(図2)は、前記モータ4から出力されて前記エンジン2をアシストするモータアシストパワーを算出するアシストパワー算出部(ステップS1)と、
 前記モータアシストパワーとアクセル開度に基づいて、前記ロックアップ車速を求めるロックアップ車速設定部(ステップS3)と、を有し、
 前記ロックアップ車速設定部(ステップS3)は、前記モータアシストパワーが大きいほど、前記ロックアップ車速を低く設定する構成とした。
 これにより、第2クラッチ5の入力回転数が低い段階でクラッチ完全締結を行うことができ、第2クラッチ5の耐久性やクラッチ発熱に伴う燃費の悪化を抑制することができる。
(1) a drive source having an engine (horizontal engine) 2 and a motor (motor / generator) 4;
A frictional engagement element (second clutch) 5 that is interposed between the drive sources 2 and 4 and the drive wheels (left and right front wheels) 10L and 10R and connects and disconnects the drive sources 2 and 4 and the drive wheels 10L and 10R. And mounted on a hybrid vehicle equipped with
When the vehicle speed reaches a predetermined lock-up vehicle speed in the engine use slip traveling mode (WSC mode) in which the friction engagement element 5 is slip-engaged in a state where the engine 2 is operated, the friction engagement element 5 is In a hybrid vehicle control device comprising travel mode control means (FIG. 2) for complete fastening and transition to a hybrid vehicle travel mode (HEV mode),
The travel mode control means (FIG. 2) includes an assist power calculation unit (step S1) that calculates motor assist power that is output from the motor 4 and assists the engine 2.
A lockup vehicle speed setting unit (step S3) for obtaining the lockup vehicle speed based on the motor assist power and the accelerator opening;
The lockup vehicle speed setting unit (step S3) is configured to set the lockup vehicle speed lower as the motor assist power increases.
Thereby, the clutch complete engagement can be performed at a stage where the input rotational speed of the second clutch 5 is low, and the deterioration of the fuel consumption accompanying the durability of the second clutch 5 and the heat generation of the clutch can be suppressed.
 (2) 前記所定のロックアップ車速を、高負荷時必要駆動力を出力可能な車速とする構成とした。
 これにより、(1)の効果に加え、砂地走行等の高負荷走行を可能とし、車両状況に拘らず走行可能とすることができる。
(2) The predetermined lock-up vehicle speed is configured to be a vehicle speed that can output a required driving force at a high load.
As a result, in addition to the effect of (1), high-load driving such as sandy driving can be performed, and driving can be performed regardless of vehicle conditions.
 (3) 前記アシストパワー算出部(ステップS1)は、前記モータ(モータ/ジェネレータ)4に供給する電力を蓄えるバッテリ(強電バッテリ)21の出力可能最大パワーからモータ損失を差し引いて求められる第1アシストパワーと、前記バッテリ21の充電容量(バッテリSOC)に応じて制限される第2アシストパワーと、のうち小さい値を前記モータアシストパワーとする構成とした。
  これにより、(1)又は(2)の効果に加え、モータアシストパワーを容易且つ精度よく求めることができ、ロックアップ車速の設定を適切に行うことができる。
(3) The assist power calculation unit (step S1) is a first assist that is obtained by subtracting the motor loss from the maximum output power of the battery (high-power battery) 21 that stores the power supplied to the motor (motor / generator) 4. A smaller value of the power and the second assist power limited according to the charge capacity (battery SOC) of the battery 21 is set as the motor assist power.
Thereby, in addition to the effect of (1) or (2), the motor assist power can be obtained easily and accurately, and the lockup vehicle speed can be set appropriately.
 (4) 前記ロックアップ車速設定部(ステップS3)は、前記モータアシストパワーと、前記アクセル開度と、前記ロックアップ車速と、の関係を規定する複数のロックアップ車速マップ(図4)を有し、
 前記モータアシストパワーに応じて前記複数のロックアップ車速マップから選択したマップと、前記アクセル開度に基づいて、前記ロックアップ車速を設定する構成とした。
  これにより、(1)から(3)のいずれかの効果に加え、ロックアップ車速の複雑な演算を不要とし、アクセル開度を検出することでロックアップ車速を容易に設定することができる。
(4) The lockup vehicle speed setting unit (step S3) has a plurality of lockup vehicle speed maps (FIG. 4) that define the relationship among the motor assist power, the accelerator opening, and the lockup vehicle speed. And
The lockup vehicle speed is set based on a map selected from the plurality of lockup vehicle speed maps according to the motor assist power and the accelerator opening.
As a result, in addition to any of the effects (1) to (3), a complicated calculation of the lockup vehicle speed is unnecessary, and the lockup vehicle speed can be easily set by detecting the accelerator opening.
 (5) 前記走行モード制御手段(図2)は、前記ハイブリッド車走行モード(HEVモード)のとき、前記ロックアップ車速に対して低車速側にヒステリシスを持たせて設定されるスリップイン車速に車速が達したら、前記エンジン使用スリップ走行モード(WSCモード)へと遷移させる構成とした。
 これにより、(1)から(4)のいずれかの効果に加え、「HEVモード」から「WSCモード」への遷移の際、モータアシストパワーに応じてより低速側で第2クラッチ5をスリップ締結状態にすることができ、「HEVモード」の領域拡大を図ることができて、第2クラッチ5の摩擦を抑制することができる。そして、この第2クラッチ5の耐久性や燃費の悪化を防止することができる。
(5) In the hybrid vehicle travel mode (HEV mode), the travel mode control means (FIG. 2) sets the vehicle speed to a slip-in vehicle speed set with hysteresis on the low vehicle speed side with respect to the lockup vehicle speed. Is reached, the engine is switched to the slip mode using the engine (WSC mode).
As a result, in addition to any of the effects (1) to (4), the second clutch 5 is slip-engaged on the lower speed side according to the motor assist power at the time of transition from the “HEV mode” to the “WSC mode”. The state of the “HEV mode” can be expanded, and the friction of the second clutch 5 can be suppressed. And the deterioration of the durability and fuel consumption of the second clutch 5 can be prevented.
 以上、本発明のハイブリッド車両の制御装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 The hybrid vehicle control device of the present invention has been described based on the first embodiment. However, the specific configuration is not limited to the first embodiment, and the invention according to each claim of the claims is described. Design changes and additions are allowed without departing from the gist.
 実施例1では、図4に示す複数のロックアップ車速マップを有し、ロックアップ車速を設定する際に、この複数のマップを用いる例を示したが、これに限らない。例えば、ロックアップ車速を演算する演算式を有し、モータアシストパワーとアクセル開度から演算によってロックアップ車速を求めてもよい。 In the first embodiment, the example has the plurality of lockup vehicle speed maps shown in FIG. 4 and uses the plurality of maps when setting the lockup vehicle speed. However, the present invention is not limited to this. For example, an arithmetic expression for calculating the lockup vehicle speed may be provided, and the lockup vehicle speed may be obtained by calculation from the motor assist power and the accelerator opening.
 また、実施例1では、本発明のハイブリッド車両の制御装置をFFハイブリッド車両に適用する例を示した。しかし、本発明の制御装置は、FFハイブリッド車両に限らず、FRハイブリッド車両や4WDハイブリッド車両、プラグインハイブリッド車両に対しても適用することができる。要するに、ハイブリッド車両であれば適用できる。
さらに、実施例1では、横置きエンジン2とモータ/ジェネレータ4の間に第1クラッチ3を介装し、この第1クラッチ3によって横置きエンジン2とモータ/ジェネレータ4の間を断接可能とする例を示したが、これに限らない。例えば、エンジンとモータが常時直結している駆動源や、エンジンとモータとジェネレータを、作動歯車を介して連結した駆動源であってもよい。
Moreover, in Example 1, the example which applies the control apparatus of the hybrid vehicle of this invention to FF hybrid vehicle was shown. However, the control device of the present invention can be applied not only to FF hybrid vehicles but also to FR hybrid vehicles, 4WD hybrid vehicles, and plug-in hybrid vehicles. In short, it can be applied to any hybrid vehicle.
Further, in the first embodiment, the first clutch 3 is interposed between the horizontal engine 2 and the motor / generator 4, and the horizontal engine 2 and the motor / generator 4 can be connected / disconnected by the first clutch 3. Although the example to do was shown, it is not restricted to this. For example, a drive source in which the engine and the motor are always directly connected, or a drive source in which the engine, the motor, and the generator are connected via an operating gear may be used.
 また、自動変速機としてベルト式無段変速機とする例を示したが、これに限らず、有段の自動変速機であってもよい。このときには、第2クラッチとして変速機の内部に有するクラッチやブレーキを用いてもよい。 Further, although an example in which a belt-type continuously variable transmission is used as the automatic transmission has been shown, the present invention is not limited to this, and a stepped automatic transmission may be used. At this time, a clutch or a brake included in the transmission may be used as the second clutch.

Claims (5)

  1.  エンジンとモータを有する駆動源と、
     前記駆動源と駆動輪の間に介装され、前記駆動源と前記駆動輪とを断接する摩擦締結要素と、を備えたハイブリッド車両に搭載され、
     前記エンジンを作動させた状態で前記摩擦締結要素をスリップ締結したエンジン使用スリップ走行モードのとき、予め設定した所定のロックアップ車速に車速が達したら、前記摩擦締結要素を完全締結してハイブリッド車走行モードへと遷移させる走行モード制御手段を備えたハイブリッド車両の制御装置において、
     前記走行モード制御手段は、前記モータから出力されて前記エンジンをアシストするモータアシストパワーを算出するアシストパワー算出部と、
     前記モータアシストパワーとアクセル開度に基づいて、前記ロックアップ車速を求めるロックアップ車速設定部と、を有し、
     前記ロックアップ車速設定部は、前記モータアシストパワーが大きいほど、前記ロックアップ車速を低く設定する
     ことを特徴とするハイブリッド車両の制御装置。
    A drive source having an engine and a motor;
    A friction fastening element that is interposed between the drive source and the drive wheel and that connects and disconnects the drive source and the drive wheel;
    In the engine-use slip running mode in which the friction engagement element is slip-engaged while the engine is in operation, when the vehicle speed reaches a predetermined lock-up vehicle speed set in advance, the friction engagement element is completely engaged and the hybrid vehicle travels. In the control device for a hybrid vehicle provided with the travel mode control means for transitioning to the mode,
    The travel mode control means includes an assist power calculation unit that calculates motor assist power that is output from the motor and assists the engine;
    A lockup vehicle speed setting unit for obtaining the lockup vehicle speed based on the motor assist power and the accelerator opening;
    The control device for a hybrid vehicle, wherein the lockup vehicle speed setting unit sets the lockup vehicle speed lower as the motor assist power is larger.
  2.  請求項1に記載されたハイブリッド車両の制御装置において、
     前記所定のロックアップ車速を、高負荷時必要駆動力を出力可能な車速とする
     ことを特徴とするハイブリッド車両の制御装置。
    In the hybrid vehicle control device according to claim 1,
    The control apparatus for a hybrid vehicle, wherein the predetermined lockup vehicle speed is a vehicle speed at which a required driving force can be output at a high load.
  3.  請求項1又は請求項2に記載されたハイブリッド車両の制御装置において、
     前記アシストパワー算出部は、前記モータに供給する電力を蓄えるバッテリの出力可能最大パワーからモータ損失を差し引いて求められる第1アシストパワーと、前記バッテリの充電容量に応じて制限される第2アシストパワーと、のうち小さい値を前記モータアシストパワーとする
     ことを特徴とするハイブリッド車両の制御装置。
    In the hybrid vehicle control device according to claim 1 or 2,
    The assist power calculation unit includes a first assist power obtained by subtracting a motor loss from a maximum output power of a battery that stores electric power to be supplied to the motor, and a second assist power that is limited according to the charge capacity of the battery. And a smaller value is used as the motor assist power.
  4.  請求項1から請求項3のいずれか一項に記載されたハイブリッド車両の制御装置において、
     前記ロックアップ車速設定部は、前記モータアシストパワーと、前記アクセル開度と、前記ロックアップ車速と、の関係を規定する複数のロックアップ車速マップを有し、
     前記モータアシストパワーに応じて前記複数のロックアップ車速マップから選択したマップと、前記アクセル開度に基づいて、前記ロックアップ車速を設定する
     ことを特徴とするハイブリッド車両の制御装置。
    In the control apparatus of the hybrid vehicle as described in any one of Claims 1-3,
    The lockup vehicle speed setting unit has a plurality of lockup vehicle speed maps that define a relationship among the motor assist power, the accelerator opening, and the lockup vehicle speed,
    The control apparatus for a hybrid vehicle, wherein the lockup vehicle speed is set based on a map selected from the plurality of lockup vehicle speed maps according to the motor assist power and the accelerator opening.
  5.  請求項1から請求項4のいずれか一項に記載されたハイブリッド車両の制御装置において、
     前記走行モード制御手段は、前記ハイブリッド車走行モードのとき、前記ロックアップ車速に対して低車速側にヒステリシスを持たせて設定されるスリップイン車速に車速が達したら、前記エンジン使用スリップ走行モードへと遷移させる
     ことを特徴とするハイブリッド車両の制御装置。
    In the control apparatus of the hybrid vehicle as described in any one of Claims 1-4,
    When the vehicle speed reaches a slip-in vehicle speed set with hysteresis on the low vehicle speed side with respect to the lock-up vehicle speed in the hybrid vehicle travel mode, the travel mode control means switches to the engine use slip travel mode. And a hybrid vehicle control device.
PCT/JP2013/074303 2013-09-10 2013-09-10 Hybrid vehicle control device WO2015037042A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/074303 WO2015037042A1 (en) 2013-09-10 2013-09-10 Hybrid vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/074303 WO2015037042A1 (en) 2013-09-10 2013-09-10 Hybrid vehicle control device

Publications (1)

Publication Number Publication Date
WO2015037042A1 true WO2015037042A1 (en) 2015-03-19

Family

ID=52665185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074303 WO2015037042A1 (en) 2013-09-10 2013-09-10 Hybrid vehicle control device

Country Status (1)

Country Link
WO (1) WO2015037042A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151663A1 (en) * 2015-03-20 2016-09-29 日産自動車株式会社 Vehicle regenerative speed control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008149978A (en) * 2006-12-20 2008-07-03 Nissan Motor Co Ltd Controller of hybrid vehicle
JP2009090735A (en) * 2007-10-04 2009-04-30 Honda Motor Co Ltd Control device for hybrid vehicle
JP2009132195A (en) * 2007-11-29 2009-06-18 Nissan Motor Co Ltd Control apparatus of hybrid vehicle
JP2012091561A (en) * 2010-10-25 2012-05-17 Nissan Motor Co Ltd Hybrid vehicle control device
JP2012092857A (en) * 2010-10-25 2012-05-17 Nissan Motor Co Ltd Control device of electric vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008149978A (en) * 2006-12-20 2008-07-03 Nissan Motor Co Ltd Controller of hybrid vehicle
JP2009090735A (en) * 2007-10-04 2009-04-30 Honda Motor Co Ltd Control device for hybrid vehicle
JP2009132195A (en) * 2007-11-29 2009-06-18 Nissan Motor Co Ltd Control apparatus of hybrid vehicle
JP2012091561A (en) * 2010-10-25 2012-05-17 Nissan Motor Co Ltd Hybrid vehicle control device
JP2012092857A (en) * 2010-10-25 2012-05-17 Nissan Motor Co Ltd Control device of electric vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151663A1 (en) * 2015-03-20 2016-09-29 日産自動車株式会社 Vehicle regenerative speed control device
JPWO2016151663A1 (en) * 2015-03-20 2017-08-31 日産自動車株式会社 Vehicle regenerative shift control device
CN107636362A (en) * 2015-03-20 2018-01-26 日产自动车株式会社 The regeneration speed-change control device of vehicle
EP3273101A4 (en) * 2015-03-20 2018-08-15 Nissan Motor Co., Ltd. Vehicle regenerative speed control device
US10246077B2 (en) 2015-03-20 2019-04-02 Nissan Motor Co., Ltd. Vehicle regenerative speed control device
CN107636362B (en) * 2015-03-20 2019-07-16 日产自动车株式会社 The regeneration speed-change control device of vehicle

Similar Documents

Publication Publication Date Title
JP5641052B2 (en) Hybrid drive device for vehicle
JP6420461B2 (en) Control device for hybrid vehicle
EP3053796B1 (en) Hybrid vehicle control device
JP6256651B2 (en) Vehicle regenerative shift control device
JP6706884B2 (en) Vehicle oil pump drive controller
JP2010155590A (en) Start control device for hybrid car
JP6070854B2 (en) Control device for hybrid vehicle
JP6444488B2 (en) Control device for hybrid vehicle
WO2016035791A1 (en) Hydraulic control device for hybrid vehicle
JP6229399B2 (en) Control device for hybrid vehicle
JP6194735B2 (en) Control device for hybrid vehicle
JP6287513B2 (en) Control device for hybrid vehicle
JP6433695B2 (en) Vehicle start control device
JP6295627B2 (en) Control device for hybrid vehicle
WO2015037042A1 (en) Hybrid vehicle control device
JP6286972B2 (en) Control device for hybrid vehicle
WO2016021018A1 (en) Device for controlling starting of electric vehicle
WO2015052760A1 (en) Device for controlling hybrid vehicle
JP6229398B2 (en) Control device for hybrid vehicle
JP5445709B2 (en) Hybrid drive device for vehicle
JP6318801B2 (en) On-vehicle oil pump drive switching control device
JP6488798B2 (en) Control device for hybrid vehicle
WO2016013061A1 (en) Vehicle transmission hydraulic pressure controller
WO2015037043A1 (en) Hybrid vehicle controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP