WO2015037043A1 - Hybrid vehicle controller - Google Patents

Hybrid vehicle controller Download PDF

Info

Publication number
WO2015037043A1
WO2015037043A1 PCT/JP2013/074304 JP2013074304W WO2015037043A1 WO 2015037043 A1 WO2015037043 A1 WO 2015037043A1 JP 2013074304 W JP2013074304 W JP 2013074304W WO 2015037043 A1 WO2015037043 A1 WO 2015037043A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
engine
torque
motor generator
control
Prior art date
Application number
PCT/JP2013/074304
Other languages
French (fr)
Japanese (ja)
Inventor
祐也 小暮
晴久 土川
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2013/074304 priority Critical patent/WO2015037043A1/en
Publication of WO2015037043A1 publication Critical patent/WO2015037043A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • B60W2710/065Idle condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • B60W2710/085Torque change rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a control device for a hybrid vehicle that performs idle speed control by an engine in an engine power generation mode in which an engine and a motor generator are connected to generate power.
  • the engine generator idle mode can be controlled if the target generator torque of the motor generator cannot be maintained within the specified range.
  • the control apparatus of the hybrid vehicle which performs is known (for example, refer patent document 1).
  • the engine rotation speed becomes the target rotation speed. It fluctuates with respect to (target idle speed).
  • the engine load torque and the engine speed fluctuate with a correlation that when one increases, the other decreases, and when one decreases, the other increases. For this reason, there has been a problem that the engine speed fluctuates in accordance with the engine load torque and idle rotation hunting occurs.
  • the present invention has been made paying attention to the above problem, and provides a control device for a hybrid vehicle capable of improving the stability of the engine speed during idle speed control by the engine in the engine power generation mode. Objective.
  • a control apparatus for a hybrid vehicle includes an engine and a motor generator as a drive source, and connects the engine and the motor generator to generate power in accordance with a target power generation amount.
  • Power generation control means for setting a target power generation torque of the motor generator is provided.
  • the power generation control means performs idle speed control by the engine when the target power generation torque of the motor generator cannot be maintained within a predetermined range, and the target power generation torque is generated during the idle speed control.
  • a target power generation torque rate processing unit for delaying a change in the target power generation torque per unit time when changing so as to increase.
  • the target power generation torque change when the target power generation torque changes so as to increase the power generation amount during the idle speed control by the engine by the target power generation torque rate processing unit, the target power generation per unit time The torque change is delayed.
  • the engine speed and the engine load torque fluctuate with a correlation, but the engine load torque increases in the same manner as the power generation amount when the target power generation torque changes so as to increase the power generation amount. Therefore, when the target power generation torque changes so as to increase the power generation amount, the target power generation torque change per unit time is delayed (torque change is limited), thereby suppressing an increase in engine load torque, Variations in engine speed can be suppressed. Thereby, the stability of the engine speed during idle speed control by the engine in the engine power generation mode can be improved.
  • FIG. 1 is an overall system diagram illustrating an FF hybrid vehicle to which a control device according to a first embodiment is applied. It is a flowchart which shows the flow of the electric power generation torque control process (electric power generation control means) performed with a hybrid control module. It is a figure which shows an example of the map showing the magnitude
  • Example 1 First, the configuration of the hybrid vehicle control device according to the first embodiment will be described by dividing it into “the overall system configuration of the FF hybrid vehicle” and “the detailed configuration of the power generation torque control process”.
  • FIG. 1 is an overall system diagram illustrating an FF hybrid vehicle to which the control device of the first embodiment is applied.
  • the overall system configuration of the FF hybrid vehicle to which the hybrid vehicle control device of the first embodiment is applied will be described below with reference to FIG.
  • the drive system of the FF hybrid vehicle (an example of a hybrid vehicle) includes a starter motor 1, a horizontally mounted engine 2, a first clutch 3 (abbreviated as “CL1”), a motor generator 4, A second clutch 5 (abbreviated as “CL2”) and a belt type continuously variable transmission 6 (abbreviated as “CVT”) are provided.
  • the output shaft of the belt-type continuously variable transmission 6 is drivingly connected to the left and right front wheels 10L and 10R via a final reduction gear train 7, a differential gear 8, and left and right drive shafts 9L and 9R.
  • the left and right rear wheels 11L and 11R are driven wheels.
  • the starter motor 1 is a cranking motor that has a gear that meshes with an engine starting gear provided on a crankshaft of the horizontal engine 2 and that rotates the crankshaft when the engine is started.
  • the horizontal engine 2 is an engine disposed in the front room with the crankshaft direction as the vehicle width direction, and serves as a drive source for the FF hybrid vehicle.
  • the horizontal engine 2 includes an electric water pump 12 and a crankshaft rotation sensor 13 that detects reverse rotation of the horizontal engine 2.
  • the first clutch 3 is a normally open dry multi-plate friction clutch that is hydraulically operated and is interposed between the horizontal engine 2 and the motor generator 4, and is fully engaged / slip engaged / released by the first clutch oil pressure. Be controlled.
  • the motor generator 4 is a three-phase AC permanent magnet synchronous motor connected to the transverse engine 2 via the first clutch 3 and serves as a drive source for the FF hybrid vehicle.
  • a positive torque (drive torque) command is output from the motor controller 83 to the inverter 26
  • the motor generator 4 performs a drive operation to generate drive torque using the discharge power from the high-power battery 21,
  • the front wheels 10L, 10R are driven (powering).
  • a negative torque (power generation torque) command is output from the motor controller 83 to the inverter 26
  • a power generation operation is performed to convert rotational energy from the left and right front wheels 10L, 10R into electric energy, and the generated power is
  • the charging power of the high-power battery 21 is used (regeneration).
  • the motor generator 4 and the inverter 26 are connected via an AC harness 27.
  • the second clutch 5 is a wet-type multi-plate friction clutch that is hydraulically interposed between the motor generator 4 and the left and right front wheels 10L and 10R that are driving wheels, and is fully engaged / slip by the second clutch hydraulic pressure. The fastening / release is controlled.
  • the second clutch 5 of the first embodiment uses the forward clutch 5a and the reverse brake 5b provided in the forward / reverse switching mechanism of the belt-type continuously variable transmission 6 using planetary gears. That is, the forward clutch 5 a is the second clutch 5 during forward travel, and the reverse brake 5 b is the second clutch 5 during reverse travel.
  • the belt type continuously variable transmission 6 is a transmission that obtains a continuously variable transmission ratio by changing the belt winding diameter by the transmission hydraulic pressure to the primary oil chamber and the secondary oil chamber.
  • the belt type continuously variable transmission 6 includes a main oil pump 14 (mechanical drive), a sub oil pump 15 (motor drive), and a line pressure PL generated by adjusting pump discharge pressure from the main oil pump 14. And a control valve unit (not shown) that generates the first and second clutch hydraulic pressures and the transmission hydraulic pressure with the pressure as the original pressure.
  • the sub oil pump 15 is mainly used as an auxiliary pump for producing lubricating cooling oil.
  • the first clutch 3, the motor generator 4 and the second clutch 5 constitute a 1-motor / 2-clutch drive system, and “EV mode” and “HEV mode” are the main driving modes (drive modes) by this drive system.
  • WSC mode The “EV mode” is an electric vehicle travel mode in which the first clutch 3 is disengaged and the second clutch 5 is engaged and only the motor generator 4 is used as a drive source.
  • the “HEV mode” is a hybrid vehicle traveling mode in which the first and second clutches 3 and 5 are engaged and the horizontally placed engine 2 and the motor generator 4 are used as driving sources. It is called “running”.
  • the engine vehicle mode zero torque command to the motor generator 4
  • the motor assist mode positive torque command to the motor generator 4
  • the engine power generation mode to the motor generator 4
  • Negative torque command In the “WSC mode”, the horizontal engine 2 is operated, the first clutch 3 is engaged, and the second clutch 5 is slip-engaged with a transmission torque capacity corresponding to the required driving force. This is an engine-use slip running mode that runs while being included in the power source.
  • the “WSC mode” also has an engine power generation mode in which the motor generator 4 outputs a negative torque command to generate power.
  • the regenerative cooperative brake unit 16 shown in FIG. 1 is a device that controls the total braking torque in accordance with the regenerative operation in principle when the brake is operated.
  • the regenerative cooperative brake unit 16 includes a brake pedal, a negative pressure booster that uses the intake negative pressure of the horizontally placed engine 2, and a master cylinder. Then, during the brake operation, cooperative control for the regenerative / hydraulic pressure is performed such that the amount of subtraction of the regenerative braking force from the required braking force based on the pedal operation amount is shared by the hydraulic braking force.
  • the power system of the FF hybrid vehicle includes a high-power battery 21 as a motor generator power source and a 12V battery 22 as a 12V system load power source.
  • the high-power battery 21 is a secondary battery mounted as a power source for the motor generator 4, and for example, a lithium ion battery in which a cell module constituted by a large number of cells is set in a battery pack case is used.
  • the high-power battery 21 has a built-in junction box in which relay circuits for supplying / cutting off / distributing high-power are integrated, and further includes a cooling fan unit 24 having a battery cooling function, a battery charging capacity (battery SOC) and a battery. And a lithium battery controller 86 for monitoring the temperature.
  • the high-power battery 21 and the motor generator 4 are connected through a DC harness 25, an inverter 26, and an AC harness 27.
  • the inverter 26 is provided with a motor controller 83 that performs power running / regenerative control. That is, the inverter 26 converts the direct current from the DC harness 25 into the three-phase alternating current to the AC harness 27 during power running that drives the motor generator 4 by discharging the high-power battery 21. Further, the three-phase alternating current from the AC harness 27 is converted into direct current to the DC harness 25 during regeneration in which the high-power battery 21 is charged by power generation by the motor generator 4.
  • the 12V battery 22 is a secondary battery mounted as a power source for a 12V system load, which is an auxiliary machine. For example, a lead battery mounted in an engine vehicle or the like is used.
  • the high voltage battery 21 and the 12V battery 22 are connected via a DC branch harness 25a, a DC / DC converter 37, and a battery harness 38.
  • the DC / DC converter 37 converts a voltage of several hundred volts from the high-power battery 21 to 12V, and the charge amount of the 12V battery 22 is controlled by controlling the DC / DC converter 37 by the hybrid control module 81. Is configured to manage.
  • the control system of the FF hybrid vehicle includes a hybrid control module 81 (abbreviation: “HCM”) as an integrated control means for properly managing the energy consumption of the entire vehicle.
  • Control means connected to the hybrid control module 81 include an engine control module 82 (abbreviation: “ECM”), a motor controller 83 (abbreviation: “MC”), and a CVT control unit 84 (abbreviation: “CVTCU”).
  • a lithium battery controller 86 abbreviation: “LBC”.
  • the hybrid control module 81 performs various controls based on input information from each control means, an ignition switch 91, an accelerator opening sensor 92, a vehicle speed sensor 93, and the like.
  • the engine control module 82 performs fuel injection control, ignition control, fuel cut control, and the like of the horizontally placed engine 2.
  • the motor controller 83 performs power running control, regeneration control, and the like of the motor generator 4 by the inverter 26.
  • the CVT control unit 84 performs engagement hydraulic pressure control of the first clutch 3, engagement hydraulic pressure control of the second clutch 5, shift hydraulic pressure control of the belt type continuously variable transmission 6, and the like.
  • the lithium battery controller 86 manages the battery SOC, battery temperature, and the like of the high-power battery 21.
  • FIG. 2 is a flowchart showing the flow of power generation torque control processing (power generation control means) executed by the hybrid control module.
  • power generation control processing power generation control means
  • This control process is executed when the engine power generation mode in which the first clutch 3 is engaged with the horizontal engine 2 operated and the motor generator 4 generates power is entered.
  • step S1 a power generation limit torque in the motor generator 4 is set, and the process proceeds to step S2.
  • the “power generation limit torque” is a value obtained by adding a predetermined margin torque to a negative torque that can be output by the motor generator 4 (hereinafter referred to as “MG lower limit torque”), and is a target power generation torque.
  • the MG lower limit torque is set in advance for each motor generator 4.
  • step S2 following the setting of the power generation limiting torque in step S1, it is determined whether the change per unit time of the power generation limiting torque set in step S1 is changing in the direction of increasing the power generation amount. If YES (increased power generation), the process proceeds to step S3. If NO (no increase in power generation), the process proceeds to step S5.
  • the power generation limiting torque changes according to the rotation speed of motor generator 4 (hereinafter referred to as “motor rotation speed”). That is, when the motor speed increases, the power generation limit torque changes in a direction to decrease the power generation amount, and when the motor rotation speed decreases, the power generation limit torque changes in a direction to increase the power generation amount.
  • the “state where the power generation amount has not changed in the increasing direction” includes a state where the power generation amount changes in a decreasing direction and a state where the power generation amount is maintained (does not change).
  • step S3 following the determination that the power generation limit torque in step S2 changes in the direction of increasing power generation, the battery charge capacity (battery SOC) of the high-power battery 21 is detected, and the detected battery SOC and the map shown in FIG.
  • the “torque change delay degree” set based on the above is calculated, and the process proceeds to step S4.
  • This “degree of delay in torque change” is the amount of delay in the change in the generation limit torque per unit time according to the battery SOC. When the battery SOC is low, the power generation per unit time is higher than when the battery SOC is high. Reduce the degree of delay in the limit torque change. In other words, if the battery SOC is large, the power generation limit torque changes without much delay with respect to the change in the motor speed, and if the battery SOC is small, the power generation limit torque is relatively delayed with respect to the change in the motor speed. .
  • step S4 following the calculation of the degree of delay of the power generation limiting torque in step S3, power generation during engine idle speed control (hereinafter referred to as “ENGISC”) for controlling the horizontal engine 2 to maintain the idle speed.
  • ENGISC engine idle speed control
  • a limit torque is set, and the process proceeds to step S6.
  • the power limit torque during ENGISC in step S4 is a rate process that delays (limits the change in) the MG lower limit torque according to the degree of delay of the power generation limit torque calculated in step S3. A value obtained by adding a predetermined margin torque to the MG lower limit torque.
  • step S5 following the determination that the power generation limit torque in step S2 does not change in the direction of increase in power generation, the power generation limit torque during ENGISC is set, and the process proceeds to step S6.
  • the power generation limit torque during ENGISC in step S5 is a value obtained by adding a predetermined margin torque to the MG lower limit torque set without performing the rate process.
  • step S6 following the setting of the power generation limit torque during ENGISC in step S4 or step S5, it is determined whether or not the horizontally placed engine 2 is performing idle speed control. If YES (in ENGISC), the process proceeds to step S7. If NO (during non-ENGISC), the process proceeds to step S8.
  • the horizontal engine 2 performs the idle speed control under the “WSC mode”, and when the accelerator opening is zero (accelerator release state), one of the ENGISC conditions listed below is satisfied. It is time to do. • When the battery SOC is higher than the specified value.
  • the motor torque continues to be set to the MG lower limit torque, and it is easy for engine blow-up to occur.
  • When the actual motor torque continues to be set to the MG upper limit torque or MG lower limit torque unintentionally. If the motor torque continues to be set to the MG upper limit torque or the MG lower limit torque, it is difficult to maintain idle speed control by the motor generator.
  • step S7 following the determination that engine idle speed control is being performed in step S6, the power generation limit torque in the motor generator 4 is set to the ENGISC power generation limit torque set in step S4 or step S5, and the process returns to step S2. .
  • the power generation limit torque is a value obtained by adding the margin torque to the value obtained by delaying the change per unit time with respect to the lower limit MG torque.
  • this power generation limit torque is a value obtained by adding the margin torque to the lower limit MG torque.
  • step S8 following the determination that engine idle speed control is not being performed in step S6, motor idle speed control (hereinafter referred to as "MGISC") in which the motor generator 4 is controlled to maintain the idle speed is being performed. Is set, and the process proceeds to step S9.
  • the MGISC middle power generation limit torque is a value obtained by adding a predetermined margin torque to the MG lower limit torque.
  • step S9 following the setting of the power generation limit torque during MGISC in step S8, it is determined whether or not the control transition from engine idle speed control to motor idle speed control is in progress. If YES (ENGISC ⁇ MGISC), the process proceeds to step S10. If NO (MGISC), the process proceeds to step S14.
  • the conditions for transition from engine idle speed control to motor idle speed control are as follows. • When the switching threshold is set with hysteresis for the battery SOC predetermined value, and the battery SOC falls below this switching threshold. ⁇ When the switching threshold is set with hysteresis for the battery temperature predetermined value, and the battery temperature exceeds this switching threshold. ⁇ When the potential difference exceeds the switching judgment threshold + hysteresis. -When the actual motor torque has a difference from the MG upper limit torque, and the engine speed is less than a certain number of revolutions and higher than the target number of revolutions by a predetermined number or more
  • step S10 following the determination of ENGISC ⁇ MGISC in step S9, the control transition time is counted, and the process proceeds to step S11.
  • This “control transition time” is the elapsed time from when the condition for transition from engine idle speed control to motor idle speed control is satisfied until the present time.
  • step S11 following the counting of the control transition time in step S10, the control transition coefficient ⁇ is calculated based on the control transition time counted in step S10 and the map shown in FIG. 4, and the process proceeds to step S12.
  • the “control transition coefficient ⁇ ” is a coefficient that determines the ratio of the power generation limit torque during ENGISC and the power generation limit torque during MGISC in the power generation limit torque during control transition.
  • the control transition coefficient ⁇ is gradually increased so that the power generation limit torque during ENGISC changes over time from the power generation limit torque during MGISC so that the power generation limit torque does not change suddenly during control switching. . That is, it is set to zero at the start of control transition (t ⁇ ), and is set to 1 at the end of control transition (time t ⁇ ).
  • step S12 following the calculation of the control transition coefficient ⁇ in step S11, the power generation limit torque in the motor generator 4 is set to the power generation limit torque during ENGISC set in step S4 or step S5 and the power generation limit during MGISC set in step S8. Based on the torque and the control transition coefficient ⁇ obtained in step S11, the following equation (1) is set, and the process proceeds to step S13.
  • Generation limit torque ENGISC medium generation limit torque x (1- ⁇ ) + MGISC medium power generation limit torque x ⁇ (1)
  • step S13 following the setting of the power generation limit torque during the control transition in step S12, it is determined whether or not the horizontal engine 2 is performing the idle speed control again. If YES (in ENGISC), the process returns to step S2. If NO (during non-ENGISC), the process returns to step S8.
  • step S14 following the determination that the control transition is not being performed in step S9, it is assumed that the idle speed control is being performed by the motor generator 4, and the power generation limit torque in the motor generator 4 is set to the power generation limit torque in MGISC set in step S8. Set to and proceed to return.
  • FIG. 5 is a characteristic diagram showing the relationship between the power generation torque in the motor generator and the motor rotational speed.
  • a mechanism for generating rotation hunting during engine idle speed control will be described.
  • the FF hybrid vehicle having the horizontally mounted engine 2 and the motor generator 4 as the driving source has an engine power generation mode in which the horizontally mounted engine 2 and the motor generator 4 are connected by fastening the first clutch 3 and the motor generator 4 generates power. is doing.
  • the negative torque (power generation torque) output from the motor generator 4 is limited by the MG lower limit torque indicated by the solid line in FIG. 5 due to battery requirements such as the battery SOC and battery temperature.
  • a value obtained by adding a margin torque to the MG lower limit torque is defined as a limit power generation torque (power generation limit torque; indicated by a one-dot chain line in FIG. 5).
  • the idling engine speed control is performed to maintain the horizontally installed engine 2 at the idle engine speed.
  • the accelerator opening is zero and the above-described ENGISC condition is satisfied, the idling speed control (ENGISC) by the horizontally placed engine 2 is performed.
  • the power generation limit torque is a relatively low value, so the power generation torque (target motor torque) matches the power generation limit torque. That is, the power generation torque in ENGISC is set on a characteristic diagram shown by a one-dot chain line in FIG.
  • the engine load torque changes due to some trigger such as change of the selection range
  • the engine speed changes with respect to the target speed (target idle speed).
  • the motor rotational speed also changes with respect to the target idle rotational speed as indicated by an arrow X in FIG.
  • FIG. 6 is a time chart showing characteristics of the motor rotation speed, the power generation limit torque, the engine load torque, and the engine torque in the engine idle rotation speed in the engine power generation mode.
  • the engine speed stability improving effect of the first embodiment will be described with reference to FIG.
  • the accelerator opening is zero, and for example, when the battery temperature is low, the idle speed control by the motor generator 4 can be performed.
  • the idle engine speed control is executed by the horizontal engine 2.
  • step S1 the process proceeds from step S1 to step S2, and the change direction of the power generation limit torque is determined.
  • the engine speed is controlled to coincide with the target idle speed, and the speed (motor speed) of the motor generator 4 connected to the horizontal engine 2 is also the target. It matches the idle speed. Therefore, the power generation limit torque remains constant and does not change in the direction of increasing the power generation amount.
  • step S5 the power generation limit torque during ENGISC is set to a value obtained by adding a predetermined margin torque to the MG lower limit torque set without performing the rate process.
  • step S6 the power generation limit torque is set to a value obtained by adding the margin torque to a value for which the rate processing is not performed on the MG lower limit torque.
  • the power generation limit torque becomes a relatively low value, so that the power generation limit torque also changes as the motor speed changes. That is, when the motor rotation speed at time t 2 when rises, power limit torque is changed in a direction to reduce the amount of power generation.
  • step S 2 ⁇ step S 5 ⁇ step S 6 ⁇ step S 7, and the power generation limit torque is a value obtained by adding the margin torque to the value for which the rate processing is not performed on the MG lower limit torque.
  • step S2 the power generation limit torque changes in a direction to increase the power generation amount
  • the process proceeds from step S3 to step S4, and the power generation limit torque during ENGISC performs rate processing.
  • the value is set to a value obtained by adding a predetermined margin torque to the MG lower limit torque set by the execution.
  • the process proceeds from step S6 to step S7, and the power generation limiting torque is set to a value obtained by adding the margin torque to the value obtained by performing the rate processing on the MG lower limit torque.
  • the restriction of the lower limit MG torque, before the motor speed becomes less than the target idling speed, to change the power limit torque in a direction to reduce the amount of power generation at time t 6 time that is, in this time t 6 time, in the flowchart shown in FIG. 2, the flow advances to step S2 ⁇ step S5 ⁇ step S6 ⁇ step S7, power limit torque is a value that does not perform rate processing on MG minimum torque, It is set to the sum of margin torque.
  • the estimated engine torque changes with a delay in response to fluctuations in engine load torque.
  • the engine torque estimation value is also compared with the case where the rate process is not performed on the power generation limit torque (shown by the solid line). , Fluctuations are suppressed.
  • step S6 NO is determined.
  • step S8 the power generation limit torque during idle speed control (MGISC) by the motor generator 4 is set.
  • MGISC power generation limit torque
  • step S9 the process proceeds to step S9, where it is determined whether or not the transition from the engine idle speed control to the motor idle speed control is in progress.
  • step S14 the power generation limit torque is set to a value obtained by adding the margin torque to the power generation limit torque during MGISC, that is, the value for which the rate processing is not performed on the MG lower limit torque.
  • the power generation limit torque becomes a value obtained by adding the margin torque to the MG lower limit torque that is not subjected to the rate processing, and the power generation limit torque is changed according to the required power generation amount. It will be.
  • step S9 If the engine idle speed control is being transited to the motor idle speed control, YES is determined in step S9, and the process proceeds from step S10 to step S11 to step S12. Thereby, according to the transition control time, the ratio between the power generation limit torque during ENGISC and the power generation limit torque during MGISC in the power generation limit torque is set. As a result, the power generation limit torque gradually changes from the ENGISC medium power generation limit torque toward the MGISC medium power generation limit torque.
  • the drive source has an engine (horizontal engine) 2 and a motor generator 4;
  • Power generation control means (FIG. 2) is provided for setting a target power generation torque (power generation limit torque) of the motor generator 4 in accordance with a target power generation amount in an engine power generation mode in which the engine 2 and the motor generator 4 are connected to generate power.
  • the power generation control means (FIG. 2) is configured to delay a target power generation torque rate per unit time when the target power generation torque changes so as to increase the power generation amount during idle speed control by the engine 2.
  • the processing unit (steps S3 and S4) is included.
  • the target power generation torque when the target power generation torque changes so as to increase the power generation amount, the target power generation torque is more limited than when the target power generation torque that cannot absorb the engine torque does not change so as not to increase the power generation amount. I tried to make it bigger. Thereby, during idle speed control by the engine in the engine power generation mode, it is possible to improve stability while preventing the engine speed from rising.
  • the target power generation torque rate processing unit (steps S3 and S4) is configured such that when the charging capacity of the battery (high power battery) 21 storing the power generated by the motor generator 4 is small, the charging capacity of the battery 21 is The delay of the target power generation torque change per unit time is made smaller than when there are many. Thereby, in addition to the effect of (1), it is possible to achieve both battery SOC management and rotational speed stability.
  • the power generation control means (FIG. 2) is configured to generate a target power generation torque (power generation limit torque) during a control transition from idle speed control by the engine (horizontal engine) 2 to idle speed control by the motor generator 4. Is configured to gradually change from the target power generation torque at the time of engine speed control toward the target power generation torque at the time of motor generator speed control.
  • a sudden change in the target power generation torque (power generation limit torque) during the transition from the engine idle speed control to the motor idle speed control is suppressed, and the engine speed is reduced. Stability can be ensured.
  • the hybrid vehicle control device of the present invention has been described based on the first embodiment. However, the specific configuration is not limited to the first embodiment, and the invention according to each claim of the claims is described. Design changes and additions are allowed without departing from the gist.
  • Example 1 the example which applies the control apparatus of the hybrid vehicle of this invention to FF hybrid vehicle was shown.
  • the control device of the present invention can be applied not only to FF hybrid vehicles but also to FR hybrid vehicles, 4WD hybrid vehicles, and plug-in hybrid vehicles. In short, it can be applied to any hybrid vehicle.
  • the first clutch 3 is interposed between the horizontal engine 2 and the motor generator 4, and the horizontal clutch 2 and the motor generator 4 can be connected and disconnected by the first clutch 3.
  • the present invention is not limited to this.
  • a drive source in which the engine and the motor are always directly connected, or a drive source in which the engine, the motor, and the generator are connected via an operating gear may be used.
  • a belt-type continuously variable transmission is used as the automatic transmission
  • the present invention is not limited to this, and a stepped automatic transmission may be used.
  • a clutch or a brake included in the transmission may be used as the second clutch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Provided is a hybrid vehicle controller capable of improving stability of engine speed when controlling engine idle speed during engine power generation mode. A hybrid vehicle controller provided with an engine (2) and a motor generator (4) as drive sources, and provided with a power generation control means for setting a target power generation torque (power generation limit torque) for the motor generator (4) according to a target power generation level when in an engine power generation mode for generating power by connecting the engine (2) and the motor generator (4), wherein the power generation control means (fig. 2) is configured to have a target power generation torque rate processing unit (steps S3, S4) for controlling idle speed using the engine (2) when the target power generation torque of the motor generator (4) cannot be maintained within a prescribed range, and while controlling idle speed, when the target power generation torque changes so as to increase the power generation level, for delaying change in the target power generation torque per unit time.

Description

ハイブリッド車両の制御装置Control device for hybrid vehicle
 本発明は、エンジンとモータジェネレータを連結して発電するエンジン発電モード時、エンジンによるアイドル回転数制御を行うハイブリッド車両の制御装置に関するものである。 The present invention relates to a control device for a hybrid vehicle that performs idle speed control by an engine in an engine power generation mode in which an engine and a motor generator are connected to generate power.
 従来、エンジンとモータジェネレータを駆動源に有し、エンジンとモータジェネレータを連結して発電するエンジン発電モード時、モータジェネレータの目標発電トルクが所定の範囲に維持できなければ、エンジンによるアイドル回転数制御を行うハイブリッド車両の制御装置知られている(例えば、特許文献1参照)。 Conventionally, when the engine and motor generator are connected to the drive source and the engine and motor generator are connected to generate power, the engine generator idle mode can be controlled if the target generator torque of the motor generator cannot be maintained within the specified range. The control apparatus of the hybrid vehicle which performs is known (for example, refer patent document 1).
特開2012-91626号公報JP 2012-91626
 しかしながら、従来のハイブリッド車両の制御装置にあっては、エンジンによるアイドル回転数制御を行っているときに、例えば選択レンジの変更等によりエンジン負荷トルクに変動が生じると、エンジン回転数が目標回転数(目標アイドル回転数)に対して変動する。
 ここで、エンジン負荷トルクとエンジン回転数とは、一方が上昇すれば他方が低下し、一方が低下すれば他方が上昇するという相関関係を持って変動する。このため、エンジン負荷トルクに応じてエンジン回転数が変動し、アイドル回転ハンチングが発生してしまうという問題があった。
However, in the conventional hybrid vehicle control device, when the engine rotation torque is changed due to, for example, a change in the selection range or the like when the engine is performing the idle rotation speed control, the engine rotation speed becomes the target rotation speed. It fluctuates with respect to (target idle speed).
Here, the engine load torque and the engine speed fluctuate with a correlation that when one increases, the other decreases, and when one decreases, the other increases. For this reason, there has been a problem that the engine speed fluctuates in accordance with the engine load torque and idle rotation hunting occurs.
 本発明は、上記問題に着目してなされたもので、エンジン発電モード時のエンジンによるアイドル回転数制御中におけるエンジン回転数の安定性を向上することができるハイブリッド車両の制御装置を提供することを目的とする。 The present invention has been made paying attention to the above problem, and provides a control device for a hybrid vehicle capable of improving the stability of the engine speed during idle speed control by the engine in the engine power generation mode. Objective.
 上記目的を達成するため、本発明のハイブリッド車両の制御装置は、駆動源にエンジンとモータジェネレータを備え、前記エンジンと前記モータジェネレータを連結して発電するエンジン発電モード時、目標発電量に応じて前記モータジェネレータの目標発電トルクを設定する発電制御手段を備えている。
 そして、前記発電制御手段は、前記モータジェネレータの目標発電トルクが所定の範囲に維持できない場合には、前記エンジンによるアイドル回転数制御を行い、前記アイドル回転数制御中、前記目標発電トルクが発電量を増加するように変化する際、単位時間当たりの目標発電トルク変化を遅らせる目標発電トルクレート処理部を有している。
In order to achieve the above object, a control apparatus for a hybrid vehicle according to the present invention includes an engine and a motor generator as a drive source, and connects the engine and the motor generator to generate power in accordance with a target power generation amount. Power generation control means for setting a target power generation torque of the motor generator is provided.
The power generation control means performs idle speed control by the engine when the target power generation torque of the motor generator cannot be maintained within a predetermined range, and the target power generation torque is generated during the idle speed control. A target power generation torque rate processing unit for delaying a change in the target power generation torque per unit time when changing so as to increase.
 よって、本発明のハイブリッド車両の制御装置では、目標発電トルクレート処理部によって、エンジンによるアイドル回転数制御中に、発電量を増加するように目標発電トルクが変化するときには、単位時間当たりの目標発電トルクの変化が遅らされる。
 ここで、エンジン回転数とエンジン負荷トルクは相関関係を持って変動するが、このエンジン負荷トルクは、発電量を増加するように目標発電トルクが変化すると、発電量と同様に上昇する。
 そのため、発電量を増加するように目標発電トルクが変化するときに、単位時間当たりの目標発電トルク変化を遅らせる(トルク変化を制限する)ことで、エンジン負荷トルクの上昇を抑制することができ、エンジン回転数の変動を抑えることができる。これにより、エンジン発電モード時のエンジンによるアイドル回転数制御中におけるエンジン回転数の安定性を向上することができる。
Therefore, in the control apparatus for a hybrid vehicle of the present invention, when the target power generation torque changes so as to increase the power generation amount during the idle speed control by the engine by the target power generation torque rate processing unit, the target power generation per unit time The torque change is delayed.
Here, the engine speed and the engine load torque fluctuate with a correlation, but the engine load torque increases in the same manner as the power generation amount when the target power generation torque changes so as to increase the power generation amount.
Therefore, when the target power generation torque changes so as to increase the power generation amount, the target power generation torque change per unit time is delayed (torque change is limited), thereby suppressing an increase in engine load torque, Variations in engine speed can be suppressed. Thereby, the stability of the engine speed during idle speed control by the engine in the engine power generation mode can be improved.
実施例1の制御装置が適用されたFFハイブリッド車両を示す全体システム図である。1 is an overall system diagram illustrating an FF hybrid vehicle to which a control device according to a first embodiment is applied. ハイブリッドコントロールモジュールにて実行される発電トルク制御処理(発電制御手段)の流れを示すフローチャートである。It is a flowchart which shows the flow of the electric power generation torque control process (electric power generation control means) performed with a hybrid control module. バッテリSOCに対するトルク変化の遅れの大きさを表すマップの一例を示す図である。It is a figure which shows an example of the map showing the magnitude | size of the delay of the torque change with respect to battery SOC. エンジン回転数制御からモータ回転数制御への遷移時間に対する制御遷移係数の大きさを表すマップの一例を示す図である。It is a figure which shows an example of the map showing the magnitude | size of the control transition coefficient with respect to the transition time from engine speed control to motor speed control. モータジェネレータにおける発電トルクとモータ回転数の関係を示す特性線図である。It is a characteristic diagram which shows the relationship between the electric power generation torque in a motor generator, and a motor rotation speed. 実施例1の制御装置において、エンジンアイドル回転数中のMG回転数と、目標発電トルクと、エンジン負荷トルクと、エンジン出力トルクの各特性を示すタイムチャートである。4 is a time chart showing characteristics of an MG rotation speed, a target power generation torque, an engine load torque, and an engine output torque in the engine idle rotation speed in the control device of the first embodiment.
 以下、本発明のハイブリッド車両の制御装置を実現する最良の形態を、図面に示す実施例1に基づいて説明する。 Hereinafter, the best mode for realizing the control apparatus for a hybrid vehicle of the present invention will be described based on Example 1 shown in the drawings.
 (実施例1)
 まず、実施例1のハイブリッド車両の制御装置の構成を、「FFハイブリッド車両の全体システム構成」、「発電トルク制御処理の詳細構成」に分けて説明する。
Example 1
First, the configuration of the hybrid vehicle control device according to the first embodiment will be described by dividing it into “the overall system configuration of the FF hybrid vehicle” and “the detailed configuration of the power generation torque control process”.
 [FFハイブリッド車両の全体システム構成]
 図1は、実施例1の制御装置が適用されたFFハイブリッド車両を示す全体システム図である。以下、図1に基づいて、実施例1のハイブリッド車両の制御装置が適用されたFFハイブリッド車両の全体システム構成を説明する。
[Overall system configuration of FF hybrid vehicle]
FIG. 1 is an overall system diagram illustrating an FF hybrid vehicle to which the control device of the first embodiment is applied. The overall system configuration of the FF hybrid vehicle to which the hybrid vehicle control device of the first embodiment is applied will be described below with reference to FIG.
 FFハイブリッド車両(ハイブリッド車両の一例)の駆動系としては、図1に示すように、スタータモータ1と、横置きエンジン2と、第1クラッチ3(略称「CL1」)と、モータジェネレータ4と、第2クラッチ5(略称「CL2」)と、ベルト式無段変速機6(略称「CVT」)と、を備えている。ベルト式無段変速機6の出力軸は、終減速ギヤトレイン7と差動ギヤ8と左右のドライブシャフト9L,9Rを介し、左右の前輪10L,10Rに駆動連結される。なお、左右の後輪11L,11Rは、従動輪としている。 As shown in FIG. 1, the drive system of the FF hybrid vehicle (an example of a hybrid vehicle) includes a starter motor 1, a horizontally mounted engine 2, a first clutch 3 (abbreviated as “CL1”), a motor generator 4, A second clutch 5 (abbreviated as “CL2”) and a belt type continuously variable transmission 6 (abbreviated as “CVT”) are provided. The output shaft of the belt-type continuously variable transmission 6 is drivingly connected to the left and right front wheels 10L and 10R via a final reduction gear train 7, a differential gear 8, and left and right drive shafts 9L and 9R. The left and right rear wheels 11L and 11R are driven wheels.
 前記スタータモータ1は、横置きエンジン2のクランク軸に設けられたエンジン始動用ギヤに噛み合うギヤを持ち、エンジン始動時にクランク軸を回転駆動するクランキングモータである。 The starter motor 1 is a cranking motor that has a gear that meshes with an engine starting gear provided on a crankshaft of the horizontal engine 2 and that rotates the crankshaft when the engine is started.
 前記横置きエンジン2は、クランク軸方向を車幅方向としてフロントルームに配置したエンジンであり、FFハイブリッド車両の駆動源となる。この横置きエンジン2は、電動ウォータポンプ12と、横置きエンジン2の逆転を検知するクランク軸回転センサ13と、を有する。 The horizontal engine 2 is an engine disposed in the front room with the crankshaft direction as the vehicle width direction, and serves as a drive source for the FF hybrid vehicle. The horizontal engine 2 includes an electric water pump 12 and a crankshaft rotation sensor 13 that detects reverse rotation of the horizontal engine 2.
 前記第1クラッチ3は、横置きエンジン2とモータジェネレータ4との間に介装された油圧作動によるノーマルオープンの乾式多板摩擦クラッチであり、第1クラッチ油圧により完全締結/スリップ締結/開放が制御される。 The first clutch 3 is a normally open dry multi-plate friction clutch that is hydraulically operated and is interposed between the horizontal engine 2 and the motor generator 4, and is fully engaged / slip engaged / released by the first clutch oil pressure. Be controlled.
 前記モータジェネレータ4は、第1クラッチ3を介して横置きエンジン2に連結された三相交流の永久磁石型同期モータであり、FFハイブリッド車両の駆動源となる。このモータジェネレータ4は、モータコントローラ83からインバータ26に対し正のトルク(駆動トルク)指令が出力されている時には、強電バッテリ21からの放電電力を使って駆動トルクを発生する駆動動作をし、左右の前輪10L,10Rを駆動する(力行)。一方、モータコントローラ83からインバータ26に対し負のトルク(発電トルク)指令が出力されている時には、左右の前輪10L,10Rからの回転エネルギーを電気エネルギーに変換する発電動作をし、発電した電力を強電バッテリ21の充電電力とする(回生)。
なお、このモータジェネレータ4とインバータ26は、ACハーネス27を介して接続される。
The motor generator 4 is a three-phase AC permanent magnet synchronous motor connected to the transverse engine 2 via the first clutch 3 and serves as a drive source for the FF hybrid vehicle. When a positive torque (drive torque) command is output from the motor controller 83 to the inverter 26, the motor generator 4 performs a drive operation to generate drive torque using the discharge power from the high-power battery 21, The front wheels 10L, 10R are driven (powering). On the other hand, when a negative torque (power generation torque) command is output from the motor controller 83 to the inverter 26, a power generation operation is performed to convert rotational energy from the left and right front wheels 10L, 10R into electric energy, and the generated power is The charging power of the high-power battery 21 is used (regeneration).
The motor generator 4 and the inverter 26 are connected via an AC harness 27.
 前記第2クラッチ5は、モータジェネレータ4と駆動輪である左右の前輪10L,10Rとの間に介装された油圧作動による湿式の多板摩擦クラッチであり、第2クラッチ油圧により完全締結/スリップ締結/開放が制御される。実施例1の第2クラッチ5は、遊星ギヤによるベルト式無段変速機6の前後進切替機構に設けられた前進クラッチ5aと後退ブレーキ5bを流用している。つまり、前進走行時には、前進クラッチ5aが第2クラッチ5とされ、後退走行時には、後退ブレーキ5bが第2クラッチ5とされる。 The second clutch 5 is a wet-type multi-plate friction clutch that is hydraulically interposed between the motor generator 4 and the left and right front wheels 10L and 10R that are driving wheels, and is fully engaged / slip by the second clutch hydraulic pressure. The fastening / release is controlled. The second clutch 5 of the first embodiment uses the forward clutch 5a and the reverse brake 5b provided in the forward / reverse switching mechanism of the belt-type continuously variable transmission 6 using planetary gears. That is, the forward clutch 5 a is the second clutch 5 during forward travel, and the reverse brake 5 b is the second clutch 5 during reverse travel.
 前記ベルト式無段変速機6は、プライマリ油室とセカンダリ油室への変速油圧によりベルトの巻き付き径を変えることで無段階の変速比を得る変速機である。このベルト式無段変速機6には、メインオイルポンプ14(メカ駆動)と、サブオイルポンプ15(モータ駆動)と、メインオイルポンプ14からのポンプ吐出圧を調圧することで生成したライン圧PLを元圧として第1,第2クラッチ油圧及び変速油圧を作り出す図外のコントロールバルブユニットと、を有する。なお、メインオイルポンプ14は、モータジェネレータ4のモータ軸(=変速機入力軸)により回転駆動される。サブオイルポンプ15は、主に潤滑冷却用油を作り出す補助ポンプとして用いられる。 The belt type continuously variable transmission 6 is a transmission that obtains a continuously variable transmission ratio by changing the belt winding diameter by the transmission hydraulic pressure to the primary oil chamber and the secondary oil chamber. The belt type continuously variable transmission 6 includes a main oil pump 14 (mechanical drive), a sub oil pump 15 (motor drive), and a line pressure PL generated by adjusting pump discharge pressure from the main oil pump 14. And a control valve unit (not shown) that generates the first and second clutch hydraulic pressures and the transmission hydraulic pressure with the pressure as the original pressure. The main oil pump 14 is rotationally driven by the motor shaft (= transmission input shaft) of the motor generator 4. The sub oil pump 15 is mainly used as an auxiliary pump for producing lubricating cooling oil.
 前記第1クラッチ3とモータジェネレータ4と第2クラッチ5により1モータ・2クラッチの駆動システムが構成され、この駆動システムによる主な走行モード(駆動態様)として、「EVモード」と「HEVモード」と「WSCモード」を有する。
前記「EVモード」は、第1クラッチ3を開放し、第2クラッチ5を締結してモータジェネレータ4のみを駆動源とする電気自動車走行モードであり、この「EVモード」による走行を「EV走行」という。
前記「HEVモード」は、第1,第2クラッチ3,5を締結して横置きエンジン2とモータジェネレータ4を駆動源とするハイブリッド車走行モードであり、この「HEVモード」による走行を「HEV走行」という。この「HEVモード」を、モータジェネレータ4の使い方によって細分化すると、エンジン車モード(モータジェネレータ4にゼロトルク指令)・モータアシストモード(モータジェネレータ4に正トルク指令)・エンジン発電モード(モータジェネレータ4に負トルク指令)を有する。
前記「WSCモード」は、横置きエンジン2を作動させた状態で、第1クラッチ3を締結すると共に第2クラッチ5を要求駆動力に応じた伝達トルク容量でスリップ締結し、横置きエンジン2を動力源に含みながら走行するエンジン使用スリップ走行モードである。なお、この「WSCモード」も、モータジェネレータ4に負トルク指令を出力して発電させるエンジン発電モードを有する。
The first clutch 3, the motor generator 4 and the second clutch 5 constitute a 1-motor / 2-clutch drive system, and “EV mode” and “HEV mode” are the main driving modes (drive modes) by this drive system. And “WSC mode”.
The “EV mode” is an electric vehicle travel mode in which the first clutch 3 is disengaged and the second clutch 5 is engaged and only the motor generator 4 is used as a drive source. "
The “HEV mode” is a hybrid vehicle traveling mode in which the first and second clutches 3 and 5 are engaged and the horizontally placed engine 2 and the motor generator 4 are used as driving sources. It is called “running”. When this “HEV mode” is subdivided according to how the motor generator 4 is used, the engine vehicle mode (zero torque command to the motor generator 4), the motor assist mode (positive torque command to the motor generator 4), the engine power generation mode (to the motor generator 4) Negative torque command).
In the “WSC mode”, the horizontal engine 2 is operated, the first clutch 3 is engaged, and the second clutch 5 is slip-engaged with a transmission torque capacity corresponding to the required driving force. This is an engine-use slip running mode that runs while being included in the power source. The “WSC mode” also has an engine power generation mode in which the motor generator 4 outputs a negative torque command to generate power.
 なお、図1の回生協調ブレーキユニット16は、ブレーキ操作時、原則として回生動作を行うことに伴い、トータル制動トルクをコントロールするデバイスである。この回生協調ブレーキユニット16には、ブレーキペダルと、横置きエンジン2の吸気負圧を用いる負圧ブースタと、マスタシリンダと、を備える。そして、ブレーキ操作時、ペダル操作量に基づく要求制動力から回生制動力を差し引いた分を液圧制動力で分担するというように、回生分/液圧分の協調制御を行う。 Note that the regenerative cooperative brake unit 16 shown in FIG. 1 is a device that controls the total braking torque in accordance with the regenerative operation in principle when the brake is operated. The regenerative cooperative brake unit 16 includes a brake pedal, a negative pressure booster that uses the intake negative pressure of the horizontally placed engine 2, and a master cylinder. Then, during the brake operation, cooperative control for the regenerative / hydraulic pressure is performed such that the amount of subtraction of the regenerative braking force from the required braking force based on the pedal operation amount is shared by the hydraulic braking force.
 FFハイブリッド車両の電源システムとしては、図1に示すように、モータジェネレータ電源としての強電バッテリ21と、12V系負荷電源としての12Vバッテリ22と、を備えている。 As shown in FIG. 1, the power system of the FF hybrid vehicle includes a high-power battery 21 as a motor generator power source and a 12V battery 22 as a 12V system load power source.
 前記強電バッテリ21は、モータジェネレータ4の電源として搭載された二次電池であり、例えば、多数のセルにより構成したセルモジュールを、バッテリパックケース内に設定したリチウムイオンバッテリが用いられる。この強電バッテリ21には、強電の供給/遮断/分配を行うリレー回路を集約させたジャンクションボックスが内蔵され、さらに、バッテリ冷却機能を持つ冷却ファンユニット24と、バッテリ充電容量(バッテリSOC)やバッテリ温度を監視するリチウムバッテリコントローラ86と、が付設される。 The high-power battery 21 is a secondary battery mounted as a power source for the motor generator 4, and for example, a lithium ion battery in which a cell module constituted by a large number of cells is set in a battery pack case is used. The high-power battery 21 has a built-in junction box in which relay circuits for supplying / cutting off / distributing high-power are integrated, and further includes a cooling fan unit 24 having a battery cooling function, a battery charging capacity (battery SOC) and a battery. And a lithium battery controller 86 for monitoring the temperature.
 前記強電バッテリ21とモータジェネレータ4は、DCハーネス25とインバータ26とACハーネス27を介して接続される。インバータ26には、力行/回生制御を行うモータコントローラ83が付設される。つまり、インバータ26は、強電バッテリ21の放電によりモータジェネレータ4を駆動する力行時、DCハーネス25からの直流をACハーネス27への三相交流に変換する。また、モータジェネレータ4での発電により強電バッテリ21を充電する回生時、ACハーネス27からの三相交流をDCハーネス25への直流に変換する。 The high-power battery 21 and the motor generator 4 are connected through a DC harness 25, an inverter 26, and an AC harness 27. The inverter 26 is provided with a motor controller 83 that performs power running / regenerative control. That is, the inverter 26 converts the direct current from the DC harness 25 into the three-phase alternating current to the AC harness 27 during power running that drives the motor generator 4 by discharging the high-power battery 21. Further, the three-phase alternating current from the AC harness 27 is converted into direct current to the DC harness 25 during regeneration in which the high-power battery 21 is charged by power generation by the motor generator 4.
 前記12Vバッテリ22は、補機類である12V系負荷の電源として搭載された二次電池であり、例えば、エンジン車等で搭載されている鉛バッテリが用いられる。強電バッテリ21と12Vバッテリ22は、DC分岐ハーネス25aとDC/DCコンバータ37とバッテリハーネス38を介して接続される。前記DC/DCコンバータ37は、強電バッテリ21からの数百ボルト電圧を12Vに変換するものであり、このDC/DCコンバータ37を、ハイブリッドコントロールモジュール81により制御することで、12Vバッテリ22の充電量を管理する構成としている。 The 12V battery 22 is a secondary battery mounted as a power source for a 12V system load, which is an auxiliary machine. For example, a lead battery mounted in an engine vehicle or the like is used. The high voltage battery 21 and the 12V battery 22 are connected via a DC branch harness 25a, a DC / DC converter 37, and a battery harness 38. The DC / DC converter 37 converts a voltage of several hundred volts from the high-power battery 21 to 12V, and the charge amount of the 12V battery 22 is controlled by controlling the DC / DC converter 37 by the hybrid control module 81. Is configured to manage.
 FFハイブリッド車両の制御システムとしては、図1に示すように、車両全体の消費エネルギーを適切に管理する機能を担う統合制御手段として、ハイブリッドコントロールモジュール81(略称:「HCM」)を備えている。このハイブリッドコントロールモジュール81に接続される制御手段として、エンジンコントロールモジュール82(略称:「ECM」)と、モータコントローラ83(略称:「MC」)と、CVTコントロールユニット84(略称:「CVTCU」)と、リチウムバッテリコントローラ86(略称:「LBC」)と、を有する。ハイブリッドコントロールモジュール81を含むこれらの制御手段は、CAN通信線90(CANは「Controller Area Network」の略称)により双方向情報交換可能に接続される。 As shown in FIG. 1, the control system of the FF hybrid vehicle includes a hybrid control module 81 (abbreviation: “HCM”) as an integrated control means for properly managing the energy consumption of the entire vehicle. Control means connected to the hybrid control module 81 include an engine control module 82 (abbreviation: “ECM”), a motor controller 83 (abbreviation: “MC”), and a CVT control unit 84 (abbreviation: “CVTCU”). And a lithium battery controller 86 (abbreviation: “LBC”). These control means including the hybrid control module 81 are connected by a CAN communication line 90 (CAN is an abbreviation of “Controller Area Network”) so that bidirectional information can be exchanged.
 前記ハイブリッドコントロールモジュール81は、各制御手段、イグニッションスイッチ91、アクセル開度センサ92、車速センサ93等からの入力情報に基づき、様々な制御を行う。エンジンコントロールモジュール82は、横置きエンジン2の燃料噴射制御や点火制御や燃料カット制御等を行う。モータコントローラ83は、インバータ26によるモータジェネレータ4の力行制御や回生制御等を行う。CVTコントロールユニット84は、第1クラッチ3の締結油圧制御、第2クラッチ5の締結油圧制御、ベルト式無段変速機6の変速油圧制御等を行う。リチウムバッテリコントローラ86は、強電バッテリ21のバッテリSOCやバッテリ温度等を管理する。 The hybrid control module 81 performs various controls based on input information from each control means, an ignition switch 91, an accelerator opening sensor 92, a vehicle speed sensor 93, and the like. The engine control module 82 performs fuel injection control, ignition control, fuel cut control, and the like of the horizontally placed engine 2. The motor controller 83 performs power running control, regeneration control, and the like of the motor generator 4 by the inverter 26. The CVT control unit 84 performs engagement hydraulic pressure control of the first clutch 3, engagement hydraulic pressure control of the second clutch 5, shift hydraulic pressure control of the belt type continuously variable transmission 6, and the like. The lithium battery controller 86 manages the battery SOC, battery temperature, and the like of the high-power battery 21.
 [発電トルク制御処理の詳細構成]
 図2は、ハイブリッドコントロールモジュールにて実行される発電トルク制御処理(発電制御手段)の流れを示すフローチャートである。以下、発電トルク制御処理の詳細構成を表す図2の各ステップについて説明する。なお、この制御処理は、横置きエンジン2を作動させた状態で第1クラッチ3を締結し、モータジェネレータ4で発電するエンジン発電モードになったら実行される。
[Detailed configuration of power generation torque control processing]
FIG. 2 is a flowchart showing the flow of power generation torque control processing (power generation control means) executed by the hybrid control module. Hereinafter, each step of FIG. 2 showing the detailed configuration of the power generation torque control process will be described. This control process is executed when the engine power generation mode in which the first clutch 3 is engaged with the horizontal engine 2 operated and the motor generator 4 generates power is entered.
 ステップS1では、モータジェネレータ4における発電制限トルクを設定し、ステップS2へ進む。
ここで、「発電制限トルク」とは、モータジェネレータ4が出力可能な負のトルク(以下、「MG下限トルク」という)に、所定のマージントルクを加算した値であり、目標発電トルクである。MG下限トルクは、モータジェネレータ4ごとに予め設定されている。
In step S1, a power generation limit torque in the motor generator 4 is set, and the process proceeds to step S2.
Here, the “power generation limit torque” is a value obtained by adding a predetermined margin torque to a negative torque that can be output by the motor generator 4 (hereinafter referred to as “MG lower limit torque”), and is a target power generation torque. The MG lower limit torque is set in advance for each motor generator 4.
 ステップS2では、ステップS1での発電制限トルクの設定に続き、このステップS1で設定した発電制限トルクの単位時間当たりの変化が、発電量を増加する方向に変化しているか否かを判断する。YES(発電量増加)の場合は、ステップS3へ進む。NO(発電量非増加)の場合は、ステップS5へ進む。
ここで、発電制限トルクは、モータジェネレータ4の回転数(以下、「モータ回転数」という)に応じて変化する。すなわち、モータ回転数が上昇すると発電制限トルクは発電量を低下させる方向に変化し、モータ回転数が低減すると発電制限トルクは発電量を増加させる方向に変化する。そして、予め設定した単位時間におけるモータ回転数変化を検出し、この検出したモータ回転数変化に基づいて、発電制限トルクの変化方向を判断する。
なお、「発電量が増加方向に変化していない状態」には、発電量が低減する方向に変化する状態と、発電量を維持する(変化しない)状態と、を含む。
In step S2, following the setting of the power generation limiting torque in step S1, it is determined whether the change per unit time of the power generation limiting torque set in step S1 is changing in the direction of increasing the power generation amount. If YES (increased power generation), the process proceeds to step S3. If NO (no increase in power generation), the process proceeds to step S5.
Here, the power generation limiting torque changes according to the rotation speed of motor generator 4 (hereinafter referred to as “motor rotation speed”). That is, when the motor speed increases, the power generation limit torque changes in a direction to decrease the power generation amount, and when the motor rotation speed decreases, the power generation limit torque changes in a direction to increase the power generation amount. Then, a change in the motor rotation speed in a preset unit time is detected, and the change direction of the power generation limit torque is determined based on the detected change in the motor rotation speed.
The “state where the power generation amount has not changed in the increasing direction” includes a state where the power generation amount changes in a decreasing direction and a state where the power generation amount is maintained (does not change).
 ステップS3では、ステップS2での発電制限トルクが発電量増加方向に変化との判断に続き、強電バッテリ21のバッテリ充電容量(バッテリSOC)を検出すると共に、検出したバッテリSOCと図3に示すマップに基づいて設定される「トルク変化の遅れ度合」を演算し、ステップS4へ進む。
この「トルク変化の遅れ度合」とは、バッテリSOCに応じた発電制限トルクの単位時間当たりの変化の遅れ量であり、バッテリSOCが少ないときには、バッテリSOCが多いときよりも、単位時間当たりの発電制限トルクの変化の遅れ度合を小さくする。つまり、バッテリSOCが多ければ、発電制限トルクはモータ回転数の変化にあまり遅れることなく変化し、バッテリSOCが少なければ、発電制限トルクはモータ回転数の変化に対して比較的大きく遅れることとなる。
In step S3, following the determination that the power generation limit torque in step S2 changes in the direction of increasing power generation, the battery charge capacity (battery SOC) of the high-power battery 21 is detected, and the detected battery SOC and the map shown in FIG. The “torque change delay degree” set based on the above is calculated, and the process proceeds to step S4.
This “degree of delay in torque change” is the amount of delay in the change in the generation limit torque per unit time according to the battery SOC. When the battery SOC is low, the power generation per unit time is higher than when the battery SOC is high. Reduce the degree of delay in the limit torque change. In other words, if the battery SOC is large, the power generation limit torque changes without much delay with respect to the change in the motor speed, and if the battery SOC is small, the power generation limit torque is relatively delayed with respect to the change in the motor speed. .
 ステップS4では、ステップS3での発電制限トルクの遅れ度合の演算に続き、横置きエンジン2がアイドル回転数を維持するように制御するエンジンアイドル回転数制御(以下、「ENGISC」という)中の発電制限トルクを設定し、ステップS6へ進む。
このステップS4におけるENGISC中発電制限トルクは、ステップS3で演算した発電制限トルクの遅れ度合に応じて、MG下限トルクの変化を遅らせる(変化を制限する)レート処理を行い、このレート処理を行ったMG下限トルクに、所定のマージントルクを加算した値とする。
なお、このステップS3及びステップS4は、横置きエンジン2によるアイドル回転数制御中、目標発電トルク(=発電制限トルク)が発電量を増加するように変化する際、単位時間当たりの目標発電トルク変化を遅らせる目標発電トルクレート処理部に相当する。
In step S4, following the calculation of the degree of delay of the power generation limiting torque in step S3, power generation during engine idle speed control (hereinafter referred to as “ENGISC”) for controlling the horizontal engine 2 to maintain the idle speed. A limit torque is set, and the process proceeds to step S6.
The power limit torque during ENGISC in step S4 is a rate process that delays (limits the change in) the MG lower limit torque according to the degree of delay of the power generation limit torque calculated in step S3. A value obtained by adding a predetermined margin torque to the MG lower limit torque.
It should be noted that the step S3 and the step S4 are the changes in the target power generation torque per unit time when the target power generation torque (= power generation limit torque) changes so as to increase the power generation amount during the idle speed control by the horizontal engine 2. This corresponds to a target power generation torque rate processing unit that delays the.
 ステップS5では、ステップS2での発電制限トルクが発電量増加方向に変化していないとの判断に続き、ENGISC中発電制限トルクを設定し、ステップS6へ進む、
このステップS5におけるENGISC中発電制限トルクは、レート処理を行うことなく設定されるMG下限トルクに、所定のマージントルクを加算した値とする。
In step S5, following the determination that the power generation limit torque in step S2 does not change in the direction of increase in power generation, the power generation limit torque during ENGISC is set, and the process proceeds to step S6.
The power generation limit torque during ENGISC in step S5 is a value obtained by adding a predetermined margin torque to the MG lower limit torque set without performing the rate process.
 ステップS6では、ステップS4又はステップS5でのENGISC中発電制限トルクの設定に続き、横置きエンジン2がアイドル回転数制御を行っているか否かを判断する。YES(ENGISC中)の場合は、ステップS7へ進む。NO(非ENGISC中)の場合は、ステップS8へ進む。
ここで、横置きエンジン2がアイドル回転数制御を行う条件は、「WSCモード」であって、アクセル開度がゼロ(アクセル足離し状態)のとき、以下に列挙するいずれかのENGISC条件が成立するときである。
 ・ バッテリSOCが所定値以上のとき。
  バッテリSOCが所定値以上の時には、バッテリ要求によりMG下限トルクが制限され、モータジェネレータ4によるアイドル回転数制御を行うことができないため。
 ・ 強電バッテリ21の温度が所定値以下のとき。
  バッテリ温度が低温の時には、バッテリ要求によりMG上限トルク及びMG下限トルクが制限され、モータジェネレータ4によるアイドル回転数制御を行うことができないため。
 ・ モータジェネレータ4に割り当てられるトルクと、MG上限トルク又はMG下限トルクのポテンシャル差分が所定値以下のとき。
  ポテンシャル差分が所定値以下では、エンジン吹け上がりに対して、エンジン回転数を抑制するモータトルクを出力できない。これにより、モータトルクがMG下限トルクに設定され続けてしまい、エンジン吹け上がりが発生しやすくなるため。
 ・ 実際のモータトルクが、意図せずにMG上限トルク又はMG下限トルクに設定され続けてしまうとき。
  モータトルクが、MG上限トルク又はMG下限トルクに設定され続けてしまうと、モータジェネレータによるアイドル回転数制御を維持することが難しいため。
In step S6, following the setting of the power generation limit torque during ENGISC in step S4 or step S5, it is determined whether or not the horizontally placed engine 2 is performing idle speed control. If YES (in ENGISC), the process proceeds to step S7. If NO (during non-ENGISC), the process proceeds to step S8.
Here, the horizontal engine 2 performs the idle speed control under the “WSC mode”, and when the accelerator opening is zero (accelerator release state), one of the ENGISC conditions listed below is satisfied. It is time to do.
• When the battery SOC is higher than the specified value.
This is because when the battery SOC is equal to or greater than a predetermined value, the MG lower limit torque is limited by the battery request, and the idle speed control by the motor generator 4 cannot be performed.
-When the temperature of the high voltage battery 21 is below a predetermined value.
This is because when the battery temperature is low, the MG upper limit torque and the MG lower limit torque are limited by the battery request, and the idle speed control by the motor generator 4 cannot be performed.
When the potential difference between the torque assigned to the motor generator 4 and the MG upper limit torque or MG lower limit torque is less than or equal to a predetermined value.
If the potential difference is less than or equal to a predetermined value, it is impossible to output motor torque that suppresses the engine speed against engine run-up. As a result, the motor torque continues to be set to the MG lower limit torque, and it is easy for engine blow-up to occur.
・ When the actual motor torque continues to be set to the MG upper limit torque or MG lower limit torque unintentionally.
If the motor torque continues to be set to the MG upper limit torque or the MG lower limit torque, it is difficult to maintain idle speed control by the motor generator.
 ステップS7では、ステップS6でのエンジンアイドル回転数制御中との判断に続き、モータジェネレータ4における発電制限トルクを、ステップS4又はステップS5で設定したENGISC中発電制限トルクに設定し、ステップS2へ戻る。
これにより、発電制限トルクが発電量を増加方向に変化するときには、発電制限トルクは、下限MGトルクに対して単位時間当たりの変化が遅らされた値にマージントルクを加算した値となる。また、発電制限トルクが発電量を増加する方向に変化しないときには、この発電制限トルクは、下限MGトルクにマージントルクを加算した値となる。
In step S7, following the determination that engine idle speed control is being performed in step S6, the power generation limit torque in the motor generator 4 is set to the ENGISC power generation limit torque set in step S4 or step S5, and the process returns to step S2. .
As a result, when the power generation limit torque changes in the direction of increasing the power generation amount, the power generation limit torque is a value obtained by adding the margin torque to the value obtained by delaying the change per unit time with respect to the lower limit MG torque. When the power generation limit torque does not change in the direction of increasing the power generation amount, this power generation limit torque is a value obtained by adding the margin torque to the lower limit MG torque.
 ステップS8では、ステップS6でのエンジンアイドル回転数制御中ではないとの判断に続き、モータジェネレータ4がアイドル回転数を維持するように制御するモータアイドル回転数制御(以下、「MGISC」という)中の発電制限トルクを設定し、ステップS9へ進む。
このMGISC中発電制限トルクは、MG下限トルクに、所定のマージントルクを加算した値とする。
In step S8, following the determination that engine idle speed control is not being performed in step S6, motor idle speed control (hereinafter referred to as "MGISC") in which the motor generator 4 is controlled to maintain the idle speed is being performed. Is set, and the process proceeds to step S9.
The MGISC middle power generation limit torque is a value obtained by adding a predetermined margin torque to the MG lower limit torque.
 ステップS9では、ステップS8でのMGISC中発電制限トルクの設定に続き、エンジンアイドル回転数制御から、モータアイドル回転数制御への制御遷移中であるか否かを判断する。YES(ENGISC→MGISC)の場合は、ステップS10へ進む。NO(MGISC)の場合は、ステップS14へ進む。
ここで、エンジンアイドル回転数制御から、モータアイドル回転数制御への遷移する条件は、以下の通りである。
 ・ バッテリSOC所定値に対して、ヒステリシスを持って切替閾値を設定し、バッテリSOCがこの切替閾値未満になったとき。
 ・ バッテリ温度所定値に対して、ヒステリシスを持って切替閾値を設定し、バッテリ温度がこの切替閾値を上回ったとき。
 ・ ポテンシャル差分が切替判定閾値+ヒステリシスを超えたとき。
 ・ 実際のモータトルクがMG上限トルクに対して差を持ち、エンジン回転数がある回転数以下で目標回転数より所定回転数以上高くなったとき。
In step S9, following the setting of the power generation limit torque during MGISC in step S8, it is determined whether or not the control transition from engine idle speed control to motor idle speed control is in progress. If YES (ENGISC → MGISC), the process proceeds to step S10. If NO (MGISC), the process proceeds to step S14.
Here, the conditions for transition from engine idle speed control to motor idle speed control are as follows.
• When the switching threshold is set with hysteresis for the battery SOC predetermined value, and the battery SOC falls below this switching threshold.
・ When the switching threshold is set with hysteresis for the battery temperature predetermined value, and the battery temperature exceeds this switching threshold.
・ When the potential difference exceeds the switching judgment threshold + hysteresis.
-When the actual motor torque has a difference from the MG upper limit torque, and the engine speed is less than a certain number of revolutions and higher than the target number of revolutions by a predetermined number or more
 ステップS10では、ステップS9でのENGISC→MGISCとの判断に続き、制御遷移時間をカウントし、ステップS11へ進む。
この「制御遷移時間」とは、エンジンアイドル回転数制御からモータアイドル回転数制御への遷移する条件が成立してから、現時点までの経過時間である。
In step S10, following the determination of ENGISC → MGISC in step S9, the control transition time is counted, and the process proceeds to step S11.
This “control transition time” is the elapsed time from when the condition for transition from engine idle speed control to motor idle speed control is satisfied until the present time.
 ステップS11では、ステップS10での制御遷移時間のカウントに続き、このステップS10でカウントした制御遷移時間と図4に示すマップに基づいて、制御遷移係数αを演算し、ステップS12へ進む。
ここで、「制御遷移係数α」とは、制御遷移中の発電制限トルクにおける、ENGISC中発電制限トルクとMGISC中発電制限トルクの割合を決める係数である。この制御遷移係数αは、図4に示すように、制御切り替え時に発電制限トルクが急変しないように、時間とともにENGISC中発電制限トルクからMGISC中発電制限トルクへ変化させるよう、徐々に値を大きくする。つまり、制御遷移開始(tα)時点ではゼロとし、制御遷移完了時点(時刻tβ)時点で1になるようにする。
In step S11, following the counting of the control transition time in step S10, the control transition coefficient α is calculated based on the control transition time counted in step S10 and the map shown in FIG. 4, and the process proceeds to step S12.
Here, the “control transition coefficient α” is a coefficient that determines the ratio of the power generation limit torque during ENGISC and the power generation limit torque during MGISC in the power generation limit torque during control transition. As shown in FIG. 4, the control transition coefficient α is gradually increased so that the power generation limit torque during ENGISC changes over time from the power generation limit torque during MGISC so that the power generation limit torque does not change suddenly during control switching. . That is, it is set to zero at the start of control transition (tα), and is set to 1 at the end of control transition (time tβ).
 ステップS12では、ステップS11での制御遷移係数αの演算に続き、モータジェネレータ4における発電制限トルクを、ステップS4又はステップS5で設定したENGISC中発電制限トルクと、ステップS8で設定したMGISC中発電制限トルクと、ステップS11で求めた制御遷移係数αに基づき、下記式(1)から設定し、ステップS13へ進む。
  発電制限トルク=ENGISC中発電制限トルク×(1-α)
              +MGISC中発電制限トルク×α …(1)
In step S12, following the calculation of the control transition coefficient α in step S11, the power generation limit torque in the motor generator 4 is set to the power generation limit torque during ENGISC set in step S4 or step S5 and the power generation limit during MGISC set in step S8. Based on the torque and the control transition coefficient α obtained in step S11, the following equation (1) is set, and the process proceeds to step S13.
Generation limit torque = ENGISC medium generation limit torque x (1-α)
+ MGISC medium power generation limit torque x α (1)
 ステップS13では、ステップS12での制御遷移中の発電制限トルクの設定に続き、横置きエンジン2が再びアイドル回転数制御を行っているか否かを判断する。YES(ENGISC中)の場合は、ステップS2へ戻る。NO(非ENGISC中)の場合は、ステップS8へ戻る。 In step S13, following the setting of the power generation limit torque during the control transition in step S12, it is determined whether or not the horizontal engine 2 is performing the idle speed control again. If YES (in ENGISC), the process returns to step S2. If NO (during non-ENGISC), the process returns to step S8.
 ステップS14では、ステップS9での制御遷移中でないとの判断に続き、モータジェネレータ4によるアイドル回転数制御中であるとし、モータジェネレータ4における発電制限トルクを、ステップS8で設定したMGISC中発電制限トルクに設定し、リターンへ進む。 In step S14, following the determination that the control transition is not being performed in step S9, it is assumed that the idle speed control is being performed by the motor generator 4, and the power generation limit torque in the motor generator 4 is set to the power generation limit torque in MGISC set in step S8. Set to and proceed to return.
 次に、作用を説明する。
 まず、「エンジンアイドル回転数制御中の回転ハンチングの発生メカニズム」の説明を行い、続いて、実施例1のFFハイブリッド車両の制御装置における作用を、「エンジン回転数安定性向上作用」と、「回転数制御切り替え作用」に分けて説明する。
Next, the operation will be described.
First, the “generation mechanism of rotation hunting during engine idle speed control” will be described, and then the operation in the control device of the FF hybrid vehicle of the first embodiment will be referred to as “engine speed stability improving effect” and “ The description will be divided into “rotational speed control switching action”.
 [エンジンアイドル回転数制御中の回転ハンチングの発生メカニズム]
 図5は、モータジェネレータにおける発電トルクとモータ回転数の関係を示す特性線図である。以下、図5に基づき、エンジンアイドル回転数制御中の回転ハンチングの発生メカニズムを説明する。
[Generation mechanism of rotation hunting during engine idle speed control]
FIG. 5 is a characteristic diagram showing the relationship between the power generation torque in the motor generator and the motor rotational speed. Hereinafter, based on FIG. 5, a mechanism for generating rotation hunting during engine idle speed control will be described.
 駆動源に横置きエンジン2とモータジェネレータ4を有するFFハイブリッド車両は、第1クラッチ3を締結して横置きエンジン2とモータジェネレータ4を連結すると共に、モータジェネレータ4で発電するエンジン発電モードを有している。
このとき、モータジェネレータ4から出力される負のトルク(発電トルク)は、バッテリSOCやバッテリ温度等のバッテリ要求により、図5に実線で示すMG下限トルクによって制限される。さらに、実際の制御においては、このMG下限トルクにマージントルクを上乗せした値を限界発電トルク(発電制限トルク;図5において一点鎖線で示す)としている。
The FF hybrid vehicle having the horizontally mounted engine 2 and the motor generator 4 as the driving source has an engine power generation mode in which the horizontally mounted engine 2 and the motor generator 4 are connected by fastening the first clutch 3 and the motor generator 4 generates power. is doing.
At this time, the negative torque (power generation torque) output from the motor generator 4 is limited by the MG lower limit torque indicated by the solid line in FIG. 5 due to battery requirements such as the battery SOC and battery temperature. Further, in actual control, a value obtained by adding a margin torque to the MG lower limit torque is defined as a limit power generation torque (power generation limit torque; indicated by a one-dot chain line in FIG. 5).
 このようなFFハイブリッド車両におけるエンジン発電モード時に第2クラッチ5をスリップ締結する「WSCモード」では、エンストを防止するために横置きエンジン2をアイドル回転数に維持するアイドル回転数制御を行う。そして、このとき、アクセル開度がゼロであって、上述したENGISC条件が成立する場合には、横置きエンジン2によるアイドル回転数制御(ENGISC)になる。 In the “WSC mode” in which the second clutch 5 is slip-engaged in the engine power generation mode in such an FF hybrid vehicle, in order to prevent the engine stall, the idling engine speed control is performed to maintain the horizontally installed engine 2 at the idle engine speed. At this time, when the accelerator opening is zero and the above-described ENGISC condition is satisfied, the idling speed control (ENGISC) by the horizontally placed engine 2 is performed.
 このENGISCでは、発電制限トルクが比較的低い値になるため、発電トルク(目標モータトルク)は、発電制限トルクに一致する。つまり、ENGISC中の発電トルクは、図5に一点鎖線で示す特性線図上に設定される。 In this ENGISC, the power generation limit torque is a relatively low value, so the power generation torque (target motor torque) matches the power generation limit torque. That is, the power generation torque in ENGISC is set on a characteristic diagram shown by a one-dot chain line in FIG.
 このような状況において、例えば選択レンジの変更等の何らかのきっかけによってエンジン負荷トルクに変化が生じると、エンジン回転数が目標回転数(目標アイドル回転数)に対して変化する。このとき、横置きエンジン2とモータジェネレータ4は連結されているので、モータ回転数も図5において矢印Xで示すように、目標アイドル回転数に対して変化する。 In such a situation, for example, if the engine load torque changes due to some trigger such as change of the selection range, the engine speed changes with respect to the target speed (target idle speed). At this time, since the horizontally placed engine 2 and the motor generator 4 are connected, the motor rotational speed also changes with respect to the target idle rotational speed as indicated by an arrow X in FIG.
 ここで、ENGISC中の発電トルクは、図5に一点鎖線で示す特性線図上に設定されるので、モータ回転数が目標アイドル回転数に対して変化すれば、図5において矢印Yの範囲で、発電トルクも変化することとなる。 Here, since the power generation torque in ENGISC is set on the characteristic diagram shown by the one-dot chain line in FIG. 5, if the motor rotation speed changes with respect to the target idle rotation speed, in FIG. The power generation torque will also change.
 一方、エンジン負荷トルクは、駆動トルク(エンジントルク)と、発電トルクの合算値である。そのため、エンジン負荷トルクが変動している間は、駆動トルクと発電トルクが変動し、これに伴ってモータ回転数(=エンジン回転数)が変動し続ける。この結果、アイドル回転数ハンチングが生じてしまう。 On the other hand, the engine load torque is a sum of drive torque (engine torque) and power generation torque. Therefore, while the engine load torque is fluctuating, the drive torque and the power generation torque fluctuate, and the motor rotation speed (= engine rotation speed) continues to fluctuate accordingly. As a result, idle speed hunting occurs.
 [エンジン回転数安定性向上作用]
 図6は、エンジン発電モード時のエンジンアイドル回転数中におけるモータ回転数と、発電制限トルクと、エンジン負荷トルクと、エンジントルクの各特性を示すタイムチャートである。以下、図6に基づき、実施例1のエンジン回転数安定性向上作用を説明する。
[Engine speed stability improvement]
FIG. 6 is a time chart showing characteristics of the motor rotation speed, the power generation limit torque, the engine load torque, and the engine torque in the engine idle rotation speed in the engine power generation mode. Hereinafter, the engine speed stability improving effect of the first embodiment will be described with reference to FIG.
 実施例1のFFハイブリッド車両において、エンジン発電モード時、「WSCモード」のときアクセル開度がゼロになり、さらに例えばバッテリ温度が低温下のときには、モータジェネレータ4によるアイドル回転数制御を行うことができず、横置きエンジン2によってアイドル回転数制御を実行する。 In the FF hybrid vehicle of the first embodiment, when the engine power generation mode is in the “WSC mode”, the accelerator opening is zero, and for example, when the battery temperature is low, the idle speed control by the motor generator 4 can be performed. The idle engine speed control is executed by the horizontal engine 2.
 これにより、図2に示すフローチャートでは、ステップS1→ステップS2へと進み、発電制限トルクの変化方向が判断される。ここで、図6に示す時刻t1時点では、エンジン回転数は目標アイドル回転数に一致するように制御され、横置きエンジン2に連結されたモータジェネレータ4の回転数(モータ回転数)も目標アイドル回転数に一致している。そのため、発電制限トルクは一定状態を維持し、発電量を増加する方向に変化しない。これにより、ステップS5へと進んで、ENGISC中発電制限トルクが、レート処理を行うことなく設定されるMG下限トルクに、所定のマージントルクを加算した値に設定される。
そして、ステップS6→ステップS7へと進み、発電制限トルクは、MG下限トルクに対してレート処理を行なわない値に、マージントルクを加算した値に設定される。
Thereby, in the flowchart shown in FIG. 2, the process proceeds from step S1 to step S2, and the change direction of the power generation limit torque is determined. Here, at time t 1 shown in FIG. 6, the engine speed is controlled to coincide with the target idle speed, and the speed (motor speed) of the motor generator 4 connected to the horizontal engine 2 is also the target. It matches the idle speed. Therefore, the power generation limit torque remains constant and does not change in the direction of increasing the power generation amount. Accordingly, the process proceeds to step S5, where the power generation limit torque during ENGISC is set to a value obtained by adding a predetermined margin torque to the MG lower limit torque set without performing the rate process.
Then, the process proceeds from step S6 to step S7, and the power generation limit torque is set to a value obtained by adding the margin torque to a value for which the rate processing is not performed on the MG lower limit torque.
 時刻t2時点で、例えば選択レンジの変更等の何らかのきっかけが生じると、エンジン負荷トルクが低下する。そして、横置きエンジン2に作用する負荷が低下することで、エンジン回転数が増加し、この横置きエンジン2に連結されているモータジェネレータ4の回転数(モータ回転数)も増加する。 At time t 2 when, for example, some kind of trigger such as a change in the selected range occurs, the engine load torque decreases. Then, the load acting on the horizontally mounted engine 2 decreases, so that the engine rotational speed increases, and the rotational speed (motor rotational speed) of the motor generator 4 connected to the laterally mounted engine 2 also increases.
 ここで、エンジンアイドル回転数制御のときには、発電制限トルクが比較的低い値になるため、モータ回転数の変化に伴って発電制限トルクも変化する。すなわち、時刻t2時点でモータ回転数が上昇すると、発電制限トルクは、発電量を低下させる方向に変化する。 Here, in the engine idle speed control, the power generation limit torque becomes a relatively low value, so that the power generation limit torque also changes as the motor speed changes. That is, when the motor rotation speed at time t 2 when rises, power limit torque is changed in a direction to reduce the amount of power generation.
 このときには、図2に示すフローチャートにおいて、ステップS2→ステップS5→ステップS6→ステップS7へと進み、発電制限トルクは、MG下限トルクに対してレート処理を行なわない値に、マージントルクを加算した値に設定される。 At this time, in the flowchart shown in FIG. 2, the process proceeds from step S 2 → step S 5 → step S 6 → step S 7, and the power generation limit torque is a value obtained by adding the margin torque to the value for which the rate processing is not performed on the MG lower limit torque. Set to
 このように、目標アイドル回転数に対してエンジン回転数(=モータ回転数)が高くなると、エンジン負荷トルクを増大することでエンジン回転数の上昇を抑制する必要が生じる。このため、時刻t3時点で、発電制限トルクを発電量を増加させる方向に変化する。これにより、エンジン負荷トルクが増大し、モータ回転数が低減し始め、エンジン回転数も目標アイドル回転数に向かって減少する。
このとき、図2に示すフローチャートのステップS2ではYES(発電制限トルクが発電量を増加する方向に変化)と判断され、ステップS3→ステップS4へと進み、ENGISC中発電制限トルクが、レート処理を行って設定されたMG下限トルクに、所定のマージントルクを加算した値に設定される。
そして、ステップS6→ステップS7へと進み、発電制限トルクは、MG下限トルクに対してレート処理を行った値に、マージントルクを加算した値に設定される。
Thus, when the engine speed (= motor speed) becomes higher than the target idle speed, it is necessary to suppress an increase in the engine speed by increasing the engine load torque. Thus, at time t 3 times, changing the power limit torque in the direction of increasing the power generation amount. As a result, the engine load torque increases, the motor speed starts to decrease, and the engine speed also decreases toward the target idle speed.
At this time, YES is determined in step S2 of the flowchart shown in FIG. 2 (the power generation limit torque changes in a direction to increase the power generation amount), the process proceeds from step S3 to step S4, and the power generation limit torque during ENGISC performs rate processing. The value is set to a value obtained by adding a predetermined margin torque to the MG lower limit torque set by the execution.
Then, the process proceeds from step S6 to step S7, and the power generation limiting torque is set to a value obtained by adding the margin torque to the value obtained by performing the rate processing on the MG lower limit torque.
 これにより、図6に一点鎖線で示すように、発電制限トルクの特性線図の傾きが緩やかになり、図6において実線で示すレート処理をしない場合と比較すると、単位時間当たりの変化量が小さくなる。このため、エンジン負荷トルクは緩やかに増加することになり、モータ回転数(=エンジン回転数)の変化も緩やかになる。 As a result, the slope of the characteristic chart of the power generation limiting torque becomes gentle as shown by the one-dot chain line in FIG. 6, and the amount of change per unit time is small compared to the case where the rate processing shown by the solid line in FIG. 6 is not performed. Become. For this reason, the engine load torque gradually increases, and the change in the motor speed (= engine speed) also becomes moderate.
 これに対し、発電制限トルクとして、MG下限トルクに対してレート処理を行わない値にマージントルクを加算した値を設定した場合では、図6において実線で示すように、エンジン負荷トルクが急激に増加する。このため、モータ回転数が急速に低減してしまい、時刻t4時点で目標アイドル回転数よりも低くなる。そのため、エンジン負荷トルクの増加を抑制してモータ回転数を上昇させるために、時刻t5時点で、発電量を低下させる方向に発電制限トルクを変化させることとなる。この結果、短時間の間にモータ回転数は上昇に転じ、目標アイドル回転数に対してエンジン回転数がハンチングすることとなる。 On the other hand, when a value obtained by adding margin torque to a value that does not perform rate processing on the MG lower limit torque is set as the power generation limit torque, the engine load torque increases rapidly as shown by the solid line in FIG. To do. Therefore, the motor speed will rapidly decrease, it becomes lower than the target idle speed at time t 4 time. Therefore, by suppressing the increase in the engine load torque to increase the motor speed, at time t 5 the time, and changing the power limit torque in a direction to reduce the amount of power generation. As a result, the motor rotation speed increases in a short time, and the engine rotation speed hunts with respect to the target idle rotation speed.
 しかしながら、実施例1では、モータ回転数の変化を緩やかにすることで、モータ回転数(=エンジン回転数)が目標アイドル回転数以下になると予測される時間を、時刻t4よりも遅いタイミングに遅らせることができる。しかもここでは、下限MGトルクの制限により、モータ回転数が目標アイドル回転数以下になる前に、時刻t6時点で発電量を減少させる方向に発電制限トルクを変化させる。
つまり、この時刻t6時点で、図2に示すフローチャートにおいて、ステップS2→ステップS5→ステップS6→ステップS7へと進み、発電制限トルクが、MG下限トルクに対してレート処理を行なわない値に、マージントルクを加算した値に設定される。
However, in the first embodiment, the time when the motor speed (= engine speed) is predicted to be equal to or lower than the target idle speed by slowing the change in the motor speed is set to a timing later than time t 4. Can be delayed. Moreover Here, the restriction of the lower limit MG torque, before the motor speed becomes less than the target idling speed, to change the power limit torque in a direction to reduce the amount of power generation at time t 6 time.
That is, in this time t 6 time, in the flowchart shown in FIG. 2, the flow advances to step S2 → step S5 → step S6 → step S7, power limit torque is a value that does not perform rate processing on MG minimum torque, It is set to the sum of margin torque.
 この結果、モータ回転数(=エンジン回転数)が増加する方向に変化するタイミング(時刻t6)を、レート処理を行わない場合よりも遅らせることができ、エンジン回転数の安定性を向上することができる。
さらに、実施例1では、発電制限トルクの変化を遅らせる(制限する)ことで、モータ回転数の低下量(時刻t3時点から時刻t6時点までの回転数変化量)を、レート処理を行わない場合のモータ回転数の低下量(時刻t3時点から時刻t5時点までの回転数変化量)よりも抑えることができる。このため、エンジン回転数の変化がより安定したものとなる。
As a result, the timing (time t 6 ) at which the motor speed (= engine speed) changes in the increasing direction can be delayed as compared with the case where no rate processing is performed, and the stability of the engine speed is improved. Can do.
Furthermore, in Example 1, delaying the change of the generation restriction torque (limited to) that is, the amount of decrease in the motor rotational speed (speed change amount from time t 3 time to time t 6 time), perform rate processing can be suppressed more than the amount of decrease in the motor rotational speed in the absence (speed change amount from time t 3 time to time t 5 the time). For this reason, the change in engine speed becomes more stable.
 さらに、この実施例1では、図3に示すように、バッテリSOCに応じて、レート処理を行う際の遅れ度合いを設定している。すなわち、バッテリSOCが多くて、比較的充電の必要性が低い場合には、発電制限トルクの変化を、下限MGトルクに対して大きく遅らせる。これにより、モータ回転数(=エンジン回転数)の変化をより緩やかにすることができて、アイドル回転数の安定性を向上することができる。
また、バッテリSOCが少なくて、比較的充電の必要性が高い場合には、発電制限トルクの変化を、下限MGトルクに対してあまり遅らせない。これにより、発電量をある程度確保することができ、バッテリSOCの増大を図ることができる。
つまり、バッテリSOCに応じてレート処理を行う際の遅れ度合いを決めることで、バッテリSOC管理と、回転数安定性の両立を図ることができる。
Further, in the first embodiment, as shown in FIG. 3, the degree of delay in performing the rate processing is set according to the battery SOC. That is, when the battery SOC is large and the necessity for charging is relatively low, the change in the power generation limit torque is greatly delayed with respect to the lower limit MG torque. Thereby, the change in the motor rotation speed (= engine rotation speed) can be made more gradual, and the stability of the idle rotation speed can be improved.
Further, when the battery SOC is small and the necessity for charging is relatively high, the change in the power generation limit torque is not delayed much with respect to the lower limit MG torque. As a result, it is possible to secure a certain amount of power generation and increase the battery SOC.
In other words, by determining the degree of delay when performing rate processing according to the battery SOC, it is possible to achieve both battery SOC management and rotational speed stability.
 なお、エンジントルク推定値は、エンジン負荷トルクの変動に対して応答遅れを持って変化する。そして、図6に一点鎖線で示すように、発電制限トルクにレート処理を行った場合では、エンジントルク推定値においても、発電制限トルクにレート処理を行わない場合(実線で示す)と比較して、変動が抑制される。 Note that the estimated engine torque changes with a delay in response to fluctuations in engine load torque. As shown by the one-dot chain line in FIG. 6, when the rate process is performed on the power generation limit torque, the engine torque estimation value is also compared with the case where the rate process is not performed on the power generation limit torque (shown by the solid line). , Fluctuations are suppressed.
 [回転数制御切り替え作用]
 実施例1のFFハイブリッド車両の制御装置では、例えば、バッテリ温度が上昇することでMG上限トルク及びMG下限トルクとしてモータジェネレータ4によるアイドル回転数制御が実行できるようになると、図2に示すフローチャートのステップS6においてNOと判断される。そして、ステップS8へと進んで、モータジェネレータ4によるアイドル回転数制御(MGISC)中の発電制限トルクが設定される。このMGISC中発電制限トルクは、レート処理を行うことなく設定されるMG下限トルクに、所定のマージントルクを加算した値に設定される。
[Rotation speed control switching action]
In the control apparatus for the FF hybrid vehicle according to the first embodiment, for example, when the battery temperature rises and the idle speed control by the motor generator 4 can be executed as the MG upper limit torque and the MG lower limit torque, the flowchart of FIG. In step S6, NO is determined. Then, the process proceeds to step S8, where the power generation limit torque during idle speed control (MGISC) by the motor generator 4 is set. This MGISC power generation limit torque is set to a value obtained by adding a predetermined margin torque to the MG lower limit torque set without performing the rate process.
 そして、ステップS9へと進み、エンジンアイドル回転数制御からモータアイドル回転数制御への遷移中であるか否かが判断され、NOの場合には、すでに制御遷移処理が終了してモータアイドル回転数制御であるとして、ステップS14へ進み、発電制限トルクは、MGISC中発電制限トルク、つまり、MG下限トルクに対してレート処理を行なわない値に、マージントルクを加算した値に設定される。
これにより、モータジェネレータ4によるアイドル回転数制御中では、発電制限トルクは、レート処理を行っていないMG下限トルクにマージントルクを加算した値になり、必要発電量に合わせて発電制限トルクを変化させることとなる。
Then, the process proceeds to step S9, where it is determined whether or not the transition from the engine idle speed control to the motor idle speed control is in progress. As control, the process proceeds to step S14, where the power generation limit torque is set to a value obtained by adding the margin torque to the power generation limit torque during MGISC, that is, the value for which the rate processing is not performed on the MG lower limit torque.
Thus, during idle speed control by the motor generator 4, the power generation limit torque becomes a value obtained by adding the margin torque to the MG lower limit torque that is not subjected to the rate processing, and the power generation limit torque is changed according to the required power generation amount. It will be.
 また、エンジンアイドル回転数制御からモータアイドル回転数制御への遷移途中であれば、ステップS9においてYESと判断され、ステップS10→ステップS11→ステップS12へと進む。これにより、遷移制御時間に応じて、発電制限トルクにおけるENGISC中発電制限トルクと、MGISC中発電制限トルクのとの割合が設定される。この結果、発電制限トルクは、ENGISC中発電制限トルクから、MGISC中発電制限トルクに向かって徐々に変化する。 If the engine idle speed control is being transited to the motor idle speed control, YES is determined in step S9, and the process proceeds from step S10 to step S11 to step S12. Thereby, according to the transition control time, the ratio between the power generation limit torque during ENGISC and the power generation limit torque during MGISC in the power generation limit torque is set. As a result, the power generation limit torque gradually changes from the ENGISC medium power generation limit torque toward the MGISC medium power generation limit torque.
 このため、エンジンアイドル回転数制御中の発電制限トルクが、MG下限トルクに対して大幅に遅れていた場合であっても、発電制限トルクが急激に変化することを防止することができる。この結果、エンジン回転数の急変を抑制して、回転数の安定性を確保することができる。 For this reason, even if the power generation limit torque during engine idle speed control is significantly delayed from the MG lower limit torque, it is possible to prevent the power generation limit torque from changing suddenly. As a result, it is possible to suppress a sudden change in the engine speed and ensure the stability of the speed.
 次に、効果を説明する。
実施例1のFFハイブリッド車両の制御装置にあっては、下記に列挙する効果を得ることができる。
Next, the effect will be described.
In the control apparatus for the FF hybrid vehicle according to the first embodiment, the effects listed below can be obtained.
 (1) 駆動源にエンジン(横置きエンジン)2とモータジェネレータ4を備え、
 前記エンジン2と前記モータジェネレータ4を連結して発電するエンジン発電モード時、目標発電量に応じて前記モータジェネレータ4の目標発電トルク(発電制限トルク)を設定する発電制御手段(図2)を備えたハイブリッド車両の制御装置において、
 前記発電制御手段(図2)は、前記エンジン2によるアイドル回転数制御中、前記目標発電トルクが発電量を増加するように変化する際、単位時間当たりの目標発電トルク変化を遅らせる目標発電トルクレート処理部(ステップS3,ステップS4)を有する構成とした。すなわち、目標発電トルクが発電量を増加するように変化する場合は、エンジントルクを吸収しきれなくなるような目標発電トルクが発電量を増加しないように変化しない場合に比べ目標発電トルク変化に制限を大きくかけるようにした。
 これにより、エンジン発電モード時のエンジンによるアイドル回転数制御中において、エンジン回転数の吹け上がりを防止しつつ安定性を向上することができる。
(1) The drive source has an engine (horizontal engine) 2 and a motor generator 4;
Power generation control means (FIG. 2) is provided for setting a target power generation torque (power generation limit torque) of the motor generator 4 in accordance with a target power generation amount in an engine power generation mode in which the engine 2 and the motor generator 4 are connected to generate power. In a hybrid vehicle control device,
The power generation control means (FIG. 2) is configured to delay a target power generation torque rate per unit time when the target power generation torque changes so as to increase the power generation amount during idle speed control by the engine 2. The processing unit (steps S3 and S4) is included. In other words, when the target power generation torque changes so as to increase the power generation amount, the target power generation torque is more limited than when the target power generation torque that cannot absorb the engine torque does not change so as not to increase the power generation amount. I tried to make it bigger.
Thereby, during idle speed control by the engine in the engine power generation mode, it is possible to improve stability while preventing the engine speed from rising.
 (2) 前記目標発電トルクレート処理部(ステップS3,ステップS4)は、前記モータジェネレータ4が発電した電力を蓄積するバッテリ(強電バッテリ)21の充電容量が少ないときには、前記バッテリ21の充電容量が多いときよりも、前記単位時間当たりの目標発電トルク変化の遅れを小さくする構成とした。
  これにより、(1)の効果に加え、バッテリSOC管理と、回転数安定性の両立を図ることができる。
(2) The target power generation torque rate processing unit (steps S3 and S4) is configured such that when the charging capacity of the battery (high power battery) 21 storing the power generated by the motor generator 4 is small, the charging capacity of the battery 21 is The delay of the target power generation torque change per unit time is made smaller than when there are many.
Thereby, in addition to the effect of (1), it is possible to achieve both battery SOC management and rotational speed stability.
 (3) 前記発電制御手段(図2)は、前記エンジン(横置きエンジン)2によるアイドル回転数制御から前記モータジェネレータ4によるアイドル回転数制御への制御遷移中、目標発電トルク(発電制限トルク)を、エンジン回転数制御時の目標発電トルクから、モータジェネレータ回転数制御時の目標発電トルクに向かって徐々に変化させる構成とした。
  これにより、(1)又は(2)の効果に加え、エンジンアイドル回転数制御からモータアイドル回転数制御への遷移途中での目標発電トルク(発電制限トルク)の急変を抑制し、エンジン回転数の安定性を確保することができる。
(3) The power generation control means (FIG. 2) is configured to generate a target power generation torque (power generation limit torque) during a control transition from idle speed control by the engine (horizontal engine) 2 to idle speed control by the motor generator 4. Is configured to gradually change from the target power generation torque at the time of engine speed control toward the target power generation torque at the time of motor generator speed control.
As a result, in addition to the effect of (1) or (2), a sudden change in the target power generation torque (power generation limit torque) during the transition from the engine idle speed control to the motor idle speed control is suppressed, and the engine speed is reduced. Stability can be ensured.
 以上、本発明のハイブリッド車両の制御装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 The hybrid vehicle control device of the present invention has been described based on the first embodiment. However, the specific configuration is not limited to the first embodiment, and the invention according to each claim of the claims is described. Design changes and additions are allowed without departing from the gist.
 実施例1では、本発明のハイブリッド車両の制御装置をFFハイブリッド車両に適用する例を示した。しかし、本発明の制御装置は、FFハイブリッド車両に限らず、FRハイブリッド車両や4WDハイブリッド車両、プラグインハイブリッド車両に対しても適用することができる。要するに、ハイブリッド車両であれば適用できる。
さらに、実施例1では、横置きエンジン2とモータジェネレータ4の間に第1クラッチ3を介装し、この第1クラッチ3によって横置きエンジン2とモータジェネレータ4の間を断接可能とする例を示したが、これに限らない。例えば、エンジンとモータが常時直結している駆動源や、エンジンとモータとジェネレータを、作動歯車を介して連結した駆動源であってもよい。
In Example 1, the example which applies the control apparatus of the hybrid vehicle of this invention to FF hybrid vehicle was shown. However, the control device of the present invention can be applied not only to FF hybrid vehicles but also to FR hybrid vehicles, 4WD hybrid vehicles, and plug-in hybrid vehicles. In short, it can be applied to any hybrid vehicle.
Furthermore, in the first embodiment, the first clutch 3 is interposed between the horizontal engine 2 and the motor generator 4, and the horizontal clutch 2 and the motor generator 4 can be connected and disconnected by the first clutch 3. However, the present invention is not limited to this. For example, a drive source in which the engine and the motor are always directly connected, or a drive source in which the engine, the motor, and the generator are connected via an operating gear may be used.
 また、自動変速機としてベルト式無段変速機とする例を示したが、これに限らず、有段の自動変速機であってもよい。このときには、第2クラッチとして変速機の内部に有するクラッチやブレーキを用いてもよい。 Further, although an example in which a belt-type continuously variable transmission is used as the automatic transmission has been shown, the present invention is not limited to this, and a stepped automatic transmission may be used. At this time, a clutch or a brake included in the transmission may be used as the second clutch.

Claims (3)

  1.  駆動源にエンジンとモータジェネレータを備え、
     前記エンジンと前記モータジェネレータを連結して発電するエンジン発電モード時、目標発電量に応じて前記モータジェネレータの目標発電トルクを設定する発電制御手段を備えたハイブリッド車両の制御装置において、
     前記発電制御手段は、前記モータジェネレータの目標発電トルクが所定の範囲に維持できない場合には、前記エンジンによるアイドル回転数制御を行い、前記アイドル回転数制御中、前記目標発電トルクが発電量を増加するように変化する際、単位時間当たりの目標発電トルク変化を遅らせる目標発電トルクレート処理部を有する
     ことを特徴とするハイブリッド車両の制御装置。
    The drive source is equipped with an engine and a motor generator,
    In an engine power generation mode in which the engine and the motor generator are connected to generate power, a hybrid vehicle control device including power generation control means for setting a target power generation torque of the motor generator according to a target power generation amount,
    The power generation control means performs idle speed control by the engine when the target power generation torque of the motor generator cannot be maintained within a predetermined range, and the target power generation torque increases the power generation amount during the idle speed control. A control apparatus for a hybrid vehicle, comprising: a target power generation torque rate processing unit that delays a change in target power generation torque per unit time when changing in such a manner.
  2.  請求項1に記載されたハイブリッド車両の制御装置において、
     前記目標発電トルクレート処理部は、前記モータジェネレータが発電した電力を蓄積するバッテリの充電容量が少ないときには、前記バッテリの充電容量が多いときよりも、前記単位時間当たりの目標発電トルク変化の遅れを小さくする
     ことを特徴とするハイブリッド車両の制御装置。
    In the hybrid vehicle control device according to claim 1,
    The target power generation torque rate processing unit delays a change in the target power generation torque per unit time when the charge capacity of the battery storing the electric power generated by the motor generator is small than when the charge capacity of the battery is large. A control device for a hybrid vehicle, characterized by being made small.
  3.  請求項1又は請求項2に記載されたハイブリッド車両の制御装置において、
     前記発電制御手段は、前記エンジンによるアイドル回転数制御から前記モータジェネレータによるアイドル回転数制御への制御遷移中、目標発電トルクを、エンジン回転数制御時の目標発電トルクから、モータジェネレータ回転数制御時の目標発電トルクに向かって徐々に変化させる
     ことを特徴とするハイブリッド車両の制御装置。
    In the hybrid vehicle control device according to claim 1 or 2,
    The power generation control means is configured to change the target power generation torque from the target power generation torque during the engine speed control to the motor generator speed control during the control transition from the engine idle speed control to the motor generator idle speed control. A control device for a hybrid vehicle, characterized by gradually changing toward a target power generation torque.
PCT/JP2013/074304 2013-09-10 2013-09-10 Hybrid vehicle controller WO2015037043A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/074304 WO2015037043A1 (en) 2013-09-10 2013-09-10 Hybrid vehicle controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/074304 WO2015037043A1 (en) 2013-09-10 2013-09-10 Hybrid vehicle controller

Publications (1)

Publication Number Publication Date
WO2015037043A1 true WO2015037043A1 (en) 2015-03-19

Family

ID=52665186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074304 WO2015037043A1 (en) 2013-09-10 2013-09-10 Hybrid vehicle controller

Country Status (1)

Country Link
WO (1) WO2015037043A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000184506A (en) * 1998-12-17 2000-06-30 Toyota Motor Corp Power output device, hybrid vehicle on which the device is mounted and motor-generator control method
JP2003189401A (en) * 2001-12-12 2003-07-04 Honda Motor Co Ltd Hybrid vehicle and controlling method therefor
JP2007145220A (en) * 2005-11-29 2007-06-14 Toyota Motor Corp Power output device, control method and automobile
JP2012091626A (en) * 2010-10-26 2012-05-17 Nissan Motor Co Ltd Hybrid vehicle control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000184506A (en) * 1998-12-17 2000-06-30 Toyota Motor Corp Power output device, hybrid vehicle on which the device is mounted and motor-generator control method
JP2003189401A (en) * 2001-12-12 2003-07-04 Honda Motor Co Ltd Hybrid vehicle and controlling method therefor
JP2007145220A (en) * 2005-11-29 2007-06-14 Toyota Motor Corp Power output device, control method and automobile
JP2012091626A (en) * 2010-10-26 2012-05-17 Nissan Motor Co Ltd Hybrid vehicle control device

Similar Documents

Publication Publication Date Title
JP6292239B2 (en) Control device for four-wheel drive electric vehicle
JP6256651B2 (en) Vehicle regenerative shift control device
JP6112214B2 (en) Control device for hybrid vehicle
JP6065987B2 (en) Control device for hybrid vehicle
WO2016147875A1 (en) Vehicle oil pump driving control device
JP6070854B2 (en) Control device for hybrid vehicle
JP6369210B2 (en) Control device for hybrid vehicle
JP6187057B2 (en) Control device for hybrid vehicle
JP6187059B2 (en) Control device for hybrid vehicle
JP6229397B2 (en) Control device for hybrid vehicle
JP6229399B2 (en) Control device for hybrid vehicle
JP6194735B2 (en) Control device for hybrid vehicle
JP6433695B2 (en) Vehicle start control device
JP6286972B2 (en) Control device for hybrid vehicle
WO2015198809A1 (en) Hybrid vehicle control device
WO2015052760A1 (en) Device for controlling hybrid vehicle
JP6229398B2 (en) Control device for hybrid vehicle
WO2015037043A1 (en) Hybrid vehicle controller
WO2015037042A1 (en) Hybrid vehicle control device
JP6488798B2 (en) Control device for hybrid vehicle
WO2016013061A1 (en) Vehicle transmission hydraulic pressure controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP