WO2016147344A1 - プラスチックの連続式油化装置 - Google Patents

プラスチックの連続式油化装置 Download PDF

Info

Publication number
WO2016147344A1
WO2016147344A1 PCT/JP2015/058078 JP2015058078W WO2016147344A1 WO 2016147344 A1 WO2016147344 A1 WO 2016147344A1 JP 2015058078 W JP2015058078 W JP 2015058078W WO 2016147344 A1 WO2016147344 A1 WO 2016147344A1
Authority
WO
WIPO (PCT)
Prior art keywords
plastic
tubular member
heater
curved portion
oil
Prior art date
Application number
PCT/JP2015/058078
Other languages
English (en)
French (fr)
Inventor
清 中島
Original Assignee
清 中島
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清 中島 filed Critical 清 中島
Priority to PCT/JP2015/058078 priority Critical patent/WO2016147344A1/ja
Priority to JP2015532637A priority patent/JP5801987B1/ja
Publication of WO2016147344A1 publication Critical patent/WO2016147344A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/12Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by dry-heat treatment only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • Plastic products made from naphtha obtained in the process of refining crude oil can be produced in large quantities, and as a result, the plastics that are used and discarded (hereinafter referred to as “waste plastics”) are enormous. The amount has been reached.
  • Waste plastic recycling methods include material recycling, chemical recycling, and thermal recycling.
  • Thermal recycling which uses waste plastic as a source of thermal energy, is a useful waste plastic recycling method.
  • various techniques have been proposed for practical use.
  • the waste plastic is cut or left as it is, thermally decomposed to a temperature higher than the melting point and vaporized, and the vaporized gas is cooled to produce oil.
  • waste plastic oiling equipment there are two types of waste plastic oiling equipment: batch type and continuous type, and the continuous type is preferred from the viewpoint of efficiency.
  • Patent Document 1 an extruder that makes a discarded plastic piece into a gel form by frictional heat, and a gel-like plastic supplied from the extruder are separated from the surroundings by a planar heating element.
  • a cylindrical first buffer tank that is heated to 390 ° C. to 405 ° C., and a cylindrical shape that heats the molten plastic supplied from the first buffer tank to 400 ° C. to 415 ° C.
  • a continuous plasticizing device for waste plastic with a condenser is disclosed, and liquid plastic in the evaporating kettle is disclosed. As outgoing area is maximized, the liquid surface of the liquid plastic in the evaporation container is to be located diametrically central position of the cylindrical body, it is described that it is preferable to control the motor of the extruder.
  • the liquid level of the liquid plastic in the evaporation pot is the center position of the diameter of the cylinder. Since the motor of the extruder is controlled so as to be located in the liquid plastic, the depth of the liquid plastic in the evaporation kettle is deep. In the specification, these are collectively referred to as “cold water block”), and bumping is likely to occur, and there is a problem that the yield of oil cannot be improved. In particular, when a large evaporating kettle is used to process a large amount of waste plastic, there is a problem that a cold water mass is generated and the probability of bumping is increased.
  • an object of the present invention is to provide a plastic-type continuous oiling apparatus that can plasticize a plastic in a high yield and is highly economical.
  • Such an object of the present invention is to heat and melt a plastic, to heat and melt the melted plastic melt, to heat and vaporize the liquefied plastic liquid, and to vaporize the vaporized plastic gas
  • a plastic continuous oiling device configured to cool components and separate them into an oil component and a gas component, and a vaporizer for heating and vaporizing the plastic liquid has a riverboat-like outer shape.
  • a tubular member wherein an upper part of the outer shape of the tubular member is rectangular, a lower part of the outer shape is formed in a curved shape, and the plastic liquid material is accommodated in a curved part formed in the curved shape of the tubular member.
  • the plastic continuous oiling apparatus is characterized in that the curved portion is formed, and the distance between the upper edge of the curved portion and the bottom of the curved portion is set to 350 mm or less. It is made.
  • the vaporizer includes a tubular member having a river boat-like outer shape, the upper portion of the outer shape of the tubular member is rectangular, the lower portion is formed in a curved shape, and is formed in a curved shape that accommodates a plastic liquid material. Since the distance between the upper edge of the bent portion and the bottom of the bent portion is set to 350 mm or less, when heated, the distance between the plastic liquid is low due to the low thermal conductivity, which is a general property of plastic. A region having a temperature that is specifically lower than the surroundings and temperature unevenness (generally referred to herein as “cold water mass”) are generated in the body, effectively preventing bumping.
  • the tubular member has a riverboat-like profile and the liquid level of the plastic liquid is sufficiently wide, it is possible to increase the evaporation rate, and therefore the vaporizer can achieve the desired Plus Tsu is vaporized click liquid material, to cool the gas component of vaporized plastic, it is possible to produce a high-quality oil.
  • the vaporizer is configured such that the height position of the liquid surface of the plastic liquid material substantially matches the height position of the upper edge of the curved portion of the tubular member. Yes.
  • the vaporizer is configured such that the height position of the liquid surface of the plastic liquid material substantially matches the height position of the upper edge of the curved portion of the tubular member.
  • the liquid level of the plastic liquid can be further increased, and therefore the evaporation rate can be further improved.
  • the curved portion of the tubular member is formed such that a distance between an upper edge of the curved portion of the tubular member and a bottom portion of the curved portion is 200 mm to 350 mm.
  • the curved portion of the tubular member is formed such that a distance between an upper edge of the curved portion of the tubular member and a bottom portion of the curved portion is 250 mm to 300 mm. .
  • the curved portion of the tubular member may cause the plastic liquid material to be heated without flowing, and the plastic liquid material may be burnt. Since the curved portion of the tubular member is formed so that the distance between the upper edge of the tube and the bottom of the curved portion is 200 mm to 350 mm, the plastic liquid material is formed to have a depth of 200 mm to 350 mm in the curved portion. It can be accommodated and can effectively prevent the plastic liquid from burning.
  • the outer shape of the curved portion of the tubular member is formed by a smooth curve.
  • the cross section of the curved portion of the tubular member has a shape obtained by cutting out a virtual circle by a horizontal plane, and the upper edge of the curved portion is perpendicular to the center of the virtual circle.
  • a plane extending at an angle of ⁇ / 2 a plane extending at an angle of ⁇ / 2 ( ⁇ is 70 degrees to 90 degrees), and an imaginary circle are defined by the intersection line. .
  • the upper edge of the curved portion is located below the maximum diameter portion of the imaginary circle, so that the depth of the plastic liquid material is 350 mm or less in the curved portion.
  • a plastic can be oiled with high yield, and it becomes possible to provide an economical plastic continuous oiling device.
  • FIG. 1 is a schematic perspective view showing an entire plastic continuous oil making apparatus according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a meter, an extruder and a multilayer heating unit.
  • FIG. 3 is an enlarged vertical sectional view of a main part of the extruder.
  • FIG. 4 is a schematic longitudinal sectional view of the multilayer heating unit.
  • FIG. 5 is a schematic cross-sectional view taken along line AA in FIG.
  • FIG. 6 is a schematic perspective view of the vaporizer.
  • FIG. 7 is a schematic view of a vaporizer, a cooler, and an oil component storage tank.
  • FIG. 8 is a schematic longitudinal sectional view of a multilayer heating unit used in a plastic oiling apparatus according to another preferred embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view along the line BB in FIG.
  • FIG. 10 is a schematic perspective view of a vaporizer used in a plastic oiling apparatus according to
  • FIG. 1 is a schematic perspective view showing the entire plastic continuous oil making apparatus according to a preferred embodiment of the present invention, and shows a state in which the cover of the apparatus is removed.
  • the plastic continuous oil making apparatus measures a cut-out plastic and heats a measuring instrument 1 that receives the plastic and a plastic supplied from the measuring instrument 1. Then, the melted and conveyed extruder 2, the supply of molten plastic from the extruder 2, the molten plastic is heated and liquefied, and the liquefied by the multilayer heating unit 3
  • a vaporizer 4 that heats and vaporizes the plastic liquid material
  • a cooler 5 that cools the gas vaporized by the vaporizer 4 and separates the oily components and hydrocarbon gases that have not been oiled
  • An oil component storage tank 6 is provided for filtering and storing oily components generated by cooling the gas by the cooler 5.
  • hydrocarbon gases that have not been liquefied by the cooler 5 are sent to a catalytic reactor (not shown), detoxified, and released to the atmosphere.
  • FIG. 2 is a schematic diagram of the measuring instrument 1, the extruder 2, and the multilayer heating unit 3.
  • the measuring instrument 1 receives the cut plastic while weighing it and is temporarily stored in the hopper 10, disposed below the opening of the hopper 10, and temporarily stored in the hopper 10.
  • a belt feeder 12 is provided for receiving the plastic, transporting it while measuring the weight of the plastic, and dropping it onto the extruder 2 from the opening 11.
  • FIG. 3 is an enlarged vertical cross-sectional view of the main part of the extruder 2.
  • the extruder 2 includes a cylinder 20 and a rotatable helical rod 22 having a spiral protrusion 21 formed on the surface of the cylinder 20.
  • the upstream end is connected to the electric motor 24 via a bearing, a coupling and a bevel gear (not shown).
  • the plastic conveyed in the measuring instrument 1 by the belt feeder 12 is supplied to the extruder 2 through the opening 11 of the measuring instrument 1 formed above the most upstream part of the helical rod 22.
  • the helical rod 22 has a spiral projection 21 formed on the outer surface of a solid rod-like member, and the interval between the adjacent spiral projections 21 of the helical rod 22 and the inner wall of the cylinder 20 is as follows. For example, it is set to about 5 mm.
  • the rotational force of the electric motor 24 is transmitted to the helical rod 22 through the bevel gear, the coupling and the bearing, and the helical rod 22 rotates, and the plastic supplied into the extruder 2 is connected to the multilayer heating unit 3. It is conveyed toward the downstream end portion of the extruded extruder 2.
  • a heater 26 covered with a heat insulating material 25 is wound around an outer peripheral portion of the extruder 2 excluding the upstream portion of the cylinder 20, and the plastic supplied to the extruder 2 is fed by the helical rod 22 to the extruder 2. While being conveyed inside, it is heated by the heater 26, melted in a jelly shape, and conveyed to the multilayer heating unit 3.
  • FIG. 4 is a schematic longitudinal sectional view of the multilayer heating unit 3
  • FIG. 5 is a schematic transverse sectional view along the line AA in FIG.
  • the multilayer heating unit 3 includes two heating tubes 30 and 31 arranged concentrically and having a cylindrical shape.
  • the inner heating tube 30 located inside is formed by a cylindrical body 30a having a radius R1 and a cylindrical body 30b having a radius R2 (here, R1 ⁇ R2).
  • R1 ⁇ R2 a radius of the plastic melt flows.
  • the outer heating tube 31 positioned outside is formed by a cylindrical body 31a having a radius R3 and a cylindrical body 31b having a radius R4 (here, R1 ⁇ R2 ⁇ R3 ⁇ R4), a space through which the plastic melt flows is formed between the cylindrical body 31a and the cylindrical body 31b.
  • the inner heating pipe 30 communicates with the inlet passage 28 connected to the downstream end of the extruder 2 at its upper end, and the outer heating pipe 31 communicates with the lower end of the inner heating pipe 30.
  • a cylindrical first heater 32 is arranged inside the cylindrical body 30 a constituting the inner heating tube 30, and the cylindrical body 30 b and the outer heating tube 31 are configured.
  • a cylindrical second heater 33 is disposed in the space between the cylindrical bodies 31a, and the molten plastic flowing in the inner heating pipe 30 is composed of the first heater 32, the second heater 33, and the like. It is comprised so that it may heat from both sides.
  • the multilayer heating unit 3 further includes a cylindrical third heater 34 outside the cylindrical body 31b constituting the outer heating tube 31, and the molten plastic flowing in the outer heating tube 31 is also the second.
  • the heater 33 and the third heater 34 are heated from both sides, and the second heater 33 is configured to heat both the molten plastic flowing in the inner heating pipe 30 and the molten plastic flowing in the outer heating pipe 31. Has been.
  • the first heater 32, the second heater 33, and the third heater 34 for example, a ceramic heater is preferably used.
  • the heating temperature of the heater 26 provided in the extruder 2 is set so that the molten plastic is supplied at a predetermined inlet temperature T inlet from the extruder 2 to the inlet passage 28 connected to the inlet portion of the multilayer heating unit 3. Has been.
  • the inlet temperature T inlet of the molten plastic at the inlet of the multilayer heating unit 3 is (T0-45) °C ⁇ T inlet ⁇ (T0-15) °C
  • the molten plastic is heated by the heater 26 of the extruder 2.
  • T0 is the vaporization start temperature of the plastic.
  • T inlet is most preferably 375 ° C. to 380 ° C.
  • T inlet is most preferably 365 ° C. to 370 ° C.
  • T inlet is most preferably 345 ° C. to 355 ° C.
  • the inlet temperature of the molten plastic is less than (T0-45) ° C.
  • the viscosity of the molten plastic is too high, and it becomes difficult to uniformly supply the molten plastic into the inner heating tube 30 of the multilayer heating unit 3.
  • the multilayer heating unit 3 makes it extremely difficult to uniformly heat the molten plastic, and in the portion where the temperature of the molten plastic is low, the carbon chain of the molten plastic is difficult to break. It is extremely difficult to gasify and produce a uniform and good quality oil.
  • the first heater 32, the second heater 33, and the third heater 34 of the multilayer heating unit 3 cause the molten plastic to flow. It becomes possible to supply the vaporizer 4 with sufficient and uniform heating.
  • the outer heating pipe 31 of the multilayer heating unit 3 communicates with the outlet passage 36 to the vaporizer 4 at the upper part thereof.
  • the molten plastic supplied from the extruder 2 first flows downward in the cylindrical inner heating tube 30, and the first heater 32 and the second heater 32 are then flown downward. Heated from both sides by the heater 33.
  • the molten plastic is supplied from the lower end portion of the inner heating tube 30 to the outer heating tube 31, flows upward in the cylindrical outer heating tube 31, and is caused by the second heater 33 and the third heater 34. Heated from both sides.
  • the molten plastic heated in the cylindrical inner heating pipe 30 and the cylindrical outer heating pipe 31 of the multilayer heating unit 3 is liquefied and vaporized from an outlet passage 36 attached to the upper part of the cylindrical outer heating pipe 31. 4 is supplied.
  • the heating temperature of the first heater 32, the second heater 33, and the third heater 34 provided in the multilayer heating unit 3 is the outlet temperature T when the molten plastic is sent from the outer heating pipe 31 to the outlet passage 36.
  • T0 is the plastic vaporization start temperature and T inlet ⁇ T outlet .
  • T outlet is most preferably 393 ° C. to 397 ° C.
  • T outlet is most preferably 380 ° C. to 387 ° C.
  • T outlet is most preferably 355 ° C. to 365 ° C.
  • the outlet temperature T outlet of the molten plastic When the outlet temperature T outlet of the molten plastic is less than (T0-40) ° C, the molten plastic does not store sufficient heat energy, so the time required for gasification in the vaporizer 4 becomes longer, or entrainment occurs.
  • the product oil is mixed as an impurity, or the molten plastic is heated at a high temperature in the vaporizer 4 at a high temperature, which may cause scorching.
  • the molten plastic outlet temperature T outlet When the temperature exceeds (T0-10) ° C., the molten plastic is gasified before being supplied to the vaporizer 4, and the liquefied plastic can be supplied to the vaporizer 4 by a predetermined amount. There is a possibility of disappearing, which is not preferable.
  • the inner heating tube 30 and the outer heating tube 31 are melted by controlling the outlet temperature T outlet of the molten plastic so that (T0 ⁇ 40) ° C. ⁇ T outlet ⁇ (T0 ⁇ 10) ° C.
  • T outlet the outlet temperature of the molten plastic
  • the molten plastic can be uniformly and sufficiently heated to store sufficient heat energy in the molten plastic, and the molten plastic can be liquefied and vaporized with little resistance. It becomes possible to supply to the container 4.
  • FIG. 6 is a schematic perspective view of the vaporizer 4.
  • the vaporizer 4 is formed by a tubular member 40 having a riverboat-like outer shape, the tubular member 40 has a plate-like ceiling portion 41, and is formed on the outer peripheral surface of the curved portion 40 a of the tubular member 40. Is provided with a heater 42, and the outer surface of the heater 42 is covered with a heat insulating material 43.
  • the liquefied plastic is supplied to the vaporizer 4 from the outlet passage 36 of the multilayer heating unit 3.
  • the plastic liquid body 45 supplied into the vaporizer 4 from the outlet passage 36 of the multilayer heating unit 3 accumulates in the internal space defined by the curved portion 40 a of the riverboat-like tubular member 40. It is configured as follows.
  • the tubular member 40 has a shape in which a cross-sectional shape of the curved portion 40a is cut out from a virtual circle having a radius R by a horizontal plane, and the upper end portion of the curved portion 40a is ⁇ to the vertical direction from the center of the virtual circle. Defined by the intersection of a plane extending at an angle of / 2, a plane extending at an angle of - ⁇ / 2, and a virtual circle, ⁇ is set to 70 to 90 degrees, and the curved portion 40a It is preferable that the distance between the upper edge of the curved portion 40a and the bottom of the curved portion 40a is set to 350 mm or less.
  • the depth of the plastic liquid body 45 in the tubular member 40 is preferably 200 mm to 350 mm.
  • the plastic in the tubular member 40 When the depth of the plastic liquid body 45 in the tubular member 40 exceeds 350 mm, a cold water mass may be generated in the plastic liquid body 45 and bumping may occur.
  • the plastic in the tubular member 40 When the depth of the liquid material 45 is less than 200 mm, the portion in contact with the curved portion 40a becomes small. As a result, the flow of the plastic liquid material 45 inside the vaporizer during heating becomes small, and natural convection occurs. This is not preferable because the uniform heating is delayed due to heat, the plastic liquid 45 is heated without flowing, and the plastic liquid 45 may be burnt.
  • the depth of the plastic liquid body 45 in the tubular member 40 is 250 mm to 300 mm.
  • the distance between the liquid surface of the plastic liquid body 45 and the ceiling of the tubular member 40 is preferably 100 mm to 200 mm.
  • the gas space can absorb the energy of bumping.
  • FIG. 7 is a schematic diagram of the vaporizer 4, the cooler 5, and the oil component storage tank 6.
  • a reflux pipe 46 extending upward is attached to the ceiling portion 41 of the tubular member 40 constituting the vaporizer 4, and a reflux pipe 48 is connected via a connection portion 47. Yes.
  • the downstream end of the reflux pipe 48 is connected to the cooler 5.
  • the cooler 5 includes a refrigerant pipe 50 through which the refrigerant circulates, and the refrigerant is supplied from the refrigerant supply port 51 into the refrigerant pipe 50 and discharged from the refrigerant discharge port 52. It is configured.
  • what is indicated by reference numeral 53 is a gas recovery pipe for recovering hydrocarbon gas that has not been liquefied in the cooler 5 and sending it to a catalytic reactor (not shown), which will be described later.
  • a gas recovery pipe 65 is connected, and a check valve 58 is provided in the gas recovery pipe 53 upstream of the connecting portion of the gas recovery pipe 65.
  • the gas supplied from the vaporizer 4 to the cooler 5 flows along the refrigerant pipe 50 and is cooled, and the oil component in the gas is condensed and liquefied.
  • the oil component storage tank 6 is divided into two compartments, and a portion extending above the lower compartment 6 b is separated from the upper compartment 6 a by a filter 60.
  • the connecting pipe 56 opens to the lower compartment 6b, and the liquefied component liquefied by the cooler 5 is first sent to the lower compartment 6b of the oil component storage tank 6 and has a specific gravity of 0.7 to 0.9. Impurities 68 having a specific gravity greater than that of the oily component are precipitated at the bottom of the lower compartment 6b.
  • the oleaginized component from which impurities have been removed by precipitation and the low molecular weight volatile organic compound gas are further sent to a portion extending above the lower compartment 6b, and are not precipitated by the filter 60 but floated along with the oil.
  • the fine impurities are filtered, and only the oily component and the low molecular weight volatile organic compound gas pass through the filter 60.
  • the oil component is stored in the upper compartment 6 a of the oil component storage tank 6.
  • the filtered impurities 68 are deposited at the bottom of the lower compartment 6b.
  • the low molecular weight volatile organic compound gas that has passed through the filter 60 and sent into the upper compartment 6a is sent to the gas recovery pipe 65 connected to the ceiling of the upper compartment 6a.
  • the gas recovery pipe 65 is connected to the gas recovery pipe 53, and tries to enter the gas recovery pipe 53 downstream of the connecting portion of the gas recovery pipe 65 through the gas recovery pipe 53 in an emergency.
  • a flame arrester 59 is provided to stop the flame and prevent the occurrence of fire inside.
  • the gas that has passed through the flame arrester 59 is sent to the catalytic reactor through the gas recovery pipe 53, detoxified, and released to the atmosphere.
  • a filter exchange port 61 for exchanging the filter 60 is provided.
  • the amount of oily component stored in the upper compartment 6a is monitored by an electronic liquid level gauge 62.
  • the discharge pump 63 is activated to The chemical component is taken out from the oil component storage tank 6.
  • reference numeral 66 is a cleaning port for removing impurities 68 precipitated in the lower compartment 6b and cleaning the inside of the lower compartment 6b, and also indicated by reference numeral 67. It is the oil quality confirmation side glass.
  • the oil collected from plastic is usually lemon-colored (yellow) or mountain-brown with good transparency, so the oil is visually observed through the oil quality confirmation side glass 67, or the oil becomes cloudy or lemon-colored.
  • the operation of the plastic oiling device is stopped due to temperature setting, excessive supply of raw materials, contamination with foreign matter, heater failure, etc. It is recognized that there is a failure that should have occurred. Therefore, the operator can visually check the recovered oil through the oil quality confirmation side glass 67 to stop the operation of the oil making device and repair the failure when the plastic oil making device fails. It becomes possible.
  • the plastic continuous oil making apparatus configured as described above continuously oils plastic as follows.
  • the cut plastic is put into the hopper 10 of the measuring instrument 1 by the operator.
  • the plastic cut and put into the hopper 10 is temporarily stored and then delivered to the belt feeder 12, and the belt feeder 12 measures the weight of the plastic placed thereon.
  • the belt feeder 12 is controlled by a computer so that the supply rate of the plastic is equal to the supply amount per unit time set by the operator based on the measured weight of the plastic.
  • the belt feeder 12 drops the plastic thus delivered onto the extruder 2 through the opening 11.
  • the extruder 2 includes a helical rod 22 having a spiral protrusion 21 formed on the surface thereof, and a cylinder 20 that accommodates the helical rod 22.
  • the helical rod 22 receives a rotational force of an electric motor 24 from a bevel gear,
  • the helical rod 22 is transmitted through a coupling and a bearing, and is configured to be rotationally driven. Therefore, the plastic supplied into the extruder 2 is conveyed through the extruder 2 by the helical rod 22 that is driven to rotate.
  • a heater 26 covered with a heat insulating material 25 is wound around the outer peripheral portion of the extruder 2 except for the upstream portion of the cylinder 20, and the plastic is transported through the extruder 2 by the helical rod 22, and the heater is heated. It is configured to be heated by 26, melted in a jelly shape, and conveyed toward the multilayer heating unit 3.
  • the molten plastic melted in a jelly form in the extruder 2 is supplied from the upper part into the cylindrical inner heating tube 30 of the multilayer heating unit 3 through the inlet passage 28.
  • the molten plastic supplied to the upper part of the cylindrical inner heating pipe 30 of the multilayer heating unit 3 has an inlet temperature T inlet of the molten plastic at the inlet of the multilayer heating unit 3. (T0-45) °C ⁇ T inlet ⁇ (T0-15) °C It is preferable to be heated by the heater 26 of the extruder 2.
  • T0 is the vaporization start temperature of the plastic.
  • the inlet temperature T inlet of the molten plastic is less than (T0 ⁇ 45) ° C.
  • the viscosity of the molten plastic is too high, and the molten plastic can be uniformly supplied to the inner heating pipe 30 of the multilayer heating unit 3. It becomes difficult, and it becomes very difficult to uniformly heat the molten plastic by the multilayer heating unit 3, and as a result, it is gasified as a long molecule having 30 to 100 carbon atoms, and a high quality oil cannot be produced.
  • the inlet temperature of the molten plastic exceeds (T0-15) ° C.
  • the molten plastic is gasified at the inlet of the multilayer heating unit 3, and the molten plastic is uniformly heated by the multilayer heating unit 3. Not only is this difficult, but the gasified plastic may flow back into the extruder 2, which is not preferable.
  • the molten plastic is transferred from the upper part to the lower part in the inner heating pipe 30, sent from the lower part of the inner heating pipe 30 into the outer heating pipe 31, and transferred from the lower part to the upper part.
  • a cylindrical first heater 32 is disposed inside the inner heating tube 30, and a cylindrical second heater 33 is disposed between the inner heating tube 30 and the outer heating tube 31.
  • the molten plastic flowing from the upper side to the lower side in the inner heating tube 30 is heated from both sides by the first heater 32 and the second heater 33.
  • the cylindrical third heater 34 is disposed outside the outer heating pipe 31 of the multilayer heating unit 3, the molten plastic flowing in the outer heating pipe 31 from the lower side to the upper side is also the first. Heated from both sides by the second heater 33 and the third heater 34.
  • the molten plastic flowing in the cylindrical inner heating tube 30 from the upper side to the lower side is heated from both sides by the cylindrical first heater 32 and the second heater 33, and the cylindrical outer side is heated.
  • the molten plastic is heated from both sides by the cylindrical second heater 33 and the third heater 34. Therefore, the viscosity of the molten plastic, the viscosity of the molten plastic, so that the molten plastic flowing through the central portion of the cylindrical inner heating tube 30 and the molten plastic flowing through the central portion of the cylindrical outer heating tube 31 are heated to a predetermined temperature.
  • the radial width of the multilayer heating unit 3 of the cylindrical inner heating pipe 30 and the cylindrical outer heating pipe 31 is set based on operating conditions such as the supply speed.
  • the width of the cylindrical inner heating tube 30 and the cylindrical outer heating tube 31 is set to 12 mm, for example.
  • the radial width of the multilayer heating unit 3 of the cylindrical inner heating tube 30 and the cylindrical outer heating tube 31 is set, and when the molten plastic flows in the inner heating tube 30, the first Since the heater 32 and the second heater 33 are configured to be heated from both sides by the second heater 33 and the third heater 34 when flowing in the outer heating pipe 31, Heat can be efficiently transferred from the heater 32, the second heater 33, and the third heater 34 to the molten plastic.
  • the molten plastic can be liquefied, and the plastic liquid 45 can be supplied from the outlet passage 36 to the vaporizer 4 with almost no resistance, and the plastic supplied to the vaporizer 4 can be supplied. Sufficient thermal energy can be accumulated in the liquid body 45.
  • the heating temperature of the first heater 32, the second heater 33, and the third heater 34 provided in the multilayer heating unit 3 is the outlet temperature T when the molten plastic is sent from the outer heating pipe 31 to the outlet passage 36.
  • the outlet temperature T outlet of the molten plastic When the outlet temperature T outlet of the molten plastic is less than (T0-40) ° C, the molten plastic does not store sufficient heat energy, so the time required for gasification in the vaporizer 4 becomes longer, or entrainment occurs.
  • the product oil may be mixed as an impurity, or may be heated in the vaporizer 4 at a high temperature, which may cause scorching.
  • the outlet temperature T outlet of the molten plastic is (T0 -10) If the temperature exceeds °C, the molten plastic may be gasified before being supplied to the vaporizer 4, and the liquefied plastic may not be supplied to the vaporizer 4 by a predetermined amount. .
  • the outlet temperature T outlet of the molten plastic By controlling the outlet temperature T outlet of the molten plastic so that (T0 ⁇ 40) ° C. ⁇ T outlet ⁇ (T0 ⁇ 10) ° C., when the molten plastic flows through the inner heating tube 30 and the outer heating tube 31,
  • the molten plastic can be uniformly and sufficiently heated to store sufficient heat energy in the molten plastic, and the molten plastic is liquefied and supplied to the vaporizer 4 with almost no resistance. Is possible.
  • the plastic liquid 45 supplied into the vaporizer 4 from the outlet passage 36 of the multilayer heating unit 3 is an internal space defined by the curved portion 40 a of the tubular member 40 having a riverboat-like outer shape. Housed inside.
  • a heater 42 is provided on the outer peripheral surface of the curved portion 40 a of the tubular member 40, and the outer surface of the heater 42 is covered with a heat insulating material 43.
  • the plastic liquid body 45 sent from the multilayer heating unit 3 into the vaporizer 4 has a curved portion 40a so that the liquid level is the same as the upper edge of the curved portion 40a of the riverboat-like tubular member 40. Housed inside.
  • the curved portion 40a of the tubular member 40 has a cross-sectional shape in which a virtual circle is cut out by a horizontal plane, and the upper end of the curved portion 40a has an angle of ⁇ / 2 with respect to the vertical direction from the center of the virtual circle.
  • the plane is defined by the intersecting line of the plane extending therethrough, the plane extending at an angle of ⁇ / 2, and the virtual circle, and ⁇ is set to 70 degrees to 90 degrees.
  • the plastic liquid body 45 is accommodated in the tubular member 40 so that the height position of the liquid surface thereof is substantially the same as the height position of the upper edge portion of the curved portion 40a.
  • the distance between the upper edge of the bending portion 40a and the bottom portion of the bending portion 40a, that is, the depth of the plastic liquid body 45 accommodated in the bending portion 40a is preferably 200 mm to 350 mm.
  • the depth of the plastic liquid body 45 in the curved portion 40a of the tubular member 40 exceeds 350 mm, a cold water mass may be generated in the plastic liquid body 45 and bumping may occur.
  • the depth of the plastic liquid body 45 in the curved portion 40a of 40 is less than 200 mm, the portion in contact with the curved portion 40a becomes small. As a result, the plastic liquid body 45 inside the vaporizer 4 during heating is small. This is not preferable because the flow of the liquid becomes small, the promotion of uniform heating by natural convection is delayed, the plastic liquid 45 is heated without flowing, and the plastic liquid 45 may be burnt.
  • the distance between the upper edge portion of the bending portion 40a and the bottom portion of the bending portion 40a, that is, the depth of the plastic liquid body 45 accommodated in the bending portion 40a is 250 mm to 300 mm.
  • the distance between the liquid surface of the plastic liquid body 45 and the ceiling of the tubular member 40 is preferably 100 mm to 200 mm.
  • the gas space can absorb the energy of bumping.
  • the plastic liquid 45 heated by the heater 42 is gasified, and the inside of the reflux pipe 48 connected to the reflux pipe 46 via the connection pipe 47 and the reflux pipe 46 attached to the ceiling 41 of the vaporizer 4. And is supplied to the cooler 5.
  • reflux pipes 46 and 48 extend upward, when the heavy component is mixed in the gas component generated by the vaporizer 4, the heavy component returns to the vaporizer 4.
  • the reflux pipes 46 and 48 also function as cooling pipes.
  • the gas supplied to the cooler 5 flows along the refrigerant pipe 50 through which the refrigerant circulates and is cooled, and the oil component in the gas is condensed and liquefied.
  • the liquefied component obtained by liquefying the oil component in the gas supplied to the cooler 5 is sent to the oil component storage tank 6 through the connecting pipe 54 and the connecting pipe 56.
  • the hydrocarbon gas that has not been liquefied in the cooler 5 is sent to the gas recovery pipe 53, passes through the check valve 58 and the flame arrester 59, is sent to a catalytic reactor (not shown), and is rendered harmless. Released into the atmosphere.
  • the connecting pipe 56 opens to the lower compartment 6b of the oil component storage tank 6, and the oiled component that has been liquefied by the cooler 5 is first sent to the lower compartment 6b of the oil component storage tank 6 and has a specific gravity of 0. Impurities 68 having a specific gravity greater than that of the oiled components of .7 to 0.9 are deposited at the bottom of the lower compartment 6b.
  • the oily component from which impurities are removed by precipitation is further sent to a portion extending above the lower compartment 6b, and the filter 60 filters fine impurities floating along with the oil without being precipitated. Only the oil component passes through the filter 60 and is stored in the upper compartment 6 a of the oil component storage tank 6. The filtered impurities 68 are deposited at the bottom of the lower compartment 6b.
  • the hydrocarbon gas volatilized spontaneously from the light oil component in the oily component is sent to the gas recovery pipe 65 connected to the ceiling portion of the upper compartment 6a.
  • the hydrocarbon gas sent to the gas recovery pipe 65 is sent into the gas recovery pipe 53, passes through the flame arrester 59, passes through the gas recovery pipe 53, is sent to the catalytic reactor, is rendered harmless, and is released into the atmosphere. Released.
  • good quality oil having 6 to 30 carbon atoms can be stored in the upper compartment 6a, and the storage amount of the oil component in the upper compartment 6a has reached a predetermined amount by the electronic level gauge 62. If it is recognized, the discharge pump 63 is operated, and the oil component is taken out from the oil component storage tank 6.
  • the vaporizer 4 is formed by a tubular member 40 having a riverboat-like outer shape, and the plastic liquid material 45 supplied into the vaporizer 4 from the outlet passage 36 of the multilayer heating unit 3 is a riverboat-like tubular shape.
  • the curved portion 40a of the tubular member 40 is configured such that a virtual circle having a radius R is cut out by a horizontal plane in the inner space defined by the curved portion 40a of the member 40.
  • the upper end of the curved portion 40a is formed by a plane extending at an angle of ⁇ / 2 with respect to the vertical direction from the center of the virtual circle, a plane extending at an angle of ⁇ / 2, and a virtual circle
  • the plastic liquid body 45 is formed by the tubular member 40 so that ⁇ is set to 70 to 90 degrees and the depth of the plastic liquid body 45 is 200 mm to 350 mm. Since the plastic liquid body 45 is accommodated in the curved portion 40a, the depth of the plastic liquid body 45 is shallow. Therefore, when heated by the heater 42, a cold water mass is generated in the plastic liquid body 45, and bumping occurs effectively. In addition, since the liquid level of the plastic liquid body 45 accommodated in the curved portion 40a is sufficiently wide, the evaporation rate can be improved.
  • the plastic melted in the extruder 2 passes from the inlet passage 28 connected to the downstream end of the extruder 2 to the upper part of the cylindrical inner heating pipe 30 of the multilayer heating unit 3. Is heated from both sides by a cylindrical first heater 32 disposed inside the inner heating tube 30 and a cylindrical second heater 33 disposed outside the inner heating tube 30.
  • the inner heating pipe 30 is sent downward, and the lower part of the inner heating pipe 30 is sent into the outer heating pipe 31, and the cylindrical second heater 33 arranged inside the outer heating pipe 31 and the outer heating.
  • Vaporizer from 36 Therefore, it is possible to efficiently transfer heat from the first heater 32, the second heater 33, and the third heater 34 to the molten plastic to liquefy the molten plastic. In addition, it is possible to accumulate sufficient thermal energy in the plastic liquid body 45, and to selectively vaporize a low-molecular-weight hydrocarbon gas having 6 to 30 carbon atoms in the vaporizer 4, and to melt the plastic. Since the liquid is liquefied, the plastic liquid 45 can be supplied from the outlet passage 36 to the vaporizer 4 with almost no resistance.
  • the first plastic 32 and the second heater 33 cause the second plastic 33 to flow in the outer heating pipe 31. Since the heater 33 and the third heater 34 are configured to be heated from both sides, the heat is efficiently converted from the first heater 32, the second heater 33, and the third heater 34 into molten plastic. Molten plastic flowing in the multilayer heating unit 3 because it is possible to transfer heat and therefore it is not necessary to set the temperature of the first heater 32, the second heater 33 and the third heater 34 to an excessively high temperature. Is excessively heated and there is no fear of carbonization, and the power consumption can be greatly reduced as compared with the conventional case.
  • FIG. 8 is a schematic longitudinal sectional view of the multilayer heating unit 3 used in the plastic oiling apparatus according to another preferred embodiment of the present invention
  • FIG. 9 is a schematic cross-sectional view along the line BB in FIG. FIG.
  • three heating tubes 80, 81, and 82 are arranged concentrically and have a cylindrical shape.
  • the innermost heating tube 80 is formed by a cylindrical body 80a having a radius R5 and a cylindrical body 80b having a radius R6 (where R5 ⁇ R6 A space through which the plastic melt flows is formed between the cylindrical body 80a and the cylindrical body 80b.
  • the central heating tube 81 located at the center is formed by a cylindrical body 81a having a radius R7 and a cylindrical body 81b having a radius R8 (where R5 ⁇ R6 ⁇ R7 ⁇ R8), and a space through which the plastic melt flows is formed between the cylindrical body 81a and the cylindrical body 81b.
  • the outermost outer heating tube 82 is formed by a cylindrical body 82a having a radius R9 and a cylindrical body 82b having a radius R10 (here, R5 ⁇ R6 ⁇ R7 ⁇ R8 ⁇ R9 ⁇ R10), and a space through which the plastic melt flows is formed between the cylindrical body 82a and the cylindrical body 82b.
  • the inner heating pipe 80 communicates at its upper end with the inlet passage 28 connected to the downstream end of the extruder 2, communicates with the central heating pipe 81 at its lower end, and the central heating pipe 81 at its upper end. It communicates with the outer heating tube 82.
  • the outer heating pipe 82 communicates with the outlet passage 36 to the vaporizer 4 at the lower end thereof.
  • a cylindrical first heater 82 is disposed inside a cylindrical body 80 a that constitutes the inner heating pipe 80, and a cylindrical body 80 b that constitutes the inner heating pipe 80.
  • a cylindrical second heater 83 is disposed in the space between the cylindrical heating body 81a and the cylindrical body 81a, and the molten plastic flowing in the inner heating pipe 80 is cylindrical.
  • One heater 82 and a cylindrical second heater 83 are configured to be heated from both sides.
  • a cylindrical third heater 84 is further provided in the gap between the cylindrical body 81 b constituting the central heating pipe 81 and the cylindrical body 82 a constituting the outer heating pipe 82.
  • the molten plastic flowing in the central heating pipe 81 is configured to be heated from both sides by a cylindrical second heater 83 and a cylindrical cylindrical third heater 84. .
  • a cylindrical fourth heater 85 is disposed outside the cylindrical body 82b constituting the outer heating pipe 82, and the molten plastic flowing in the outer heating pipe 82 is cylindrical.
  • the third heater 84 and the fourth cylindrical heater 85 are configured to be heated from both sides.
  • the molten plastic flowing in the inner heating pipe 80 from the upper side to the lower side is heated from both sides by the first heater 83 and the second heater 84, and in the central heating pipe 82 from the lower side to the upper side.
  • the second heater 84 and the third heater 85 are heated from both sides. Since the four heaters 86 are heated from both sides, heat is efficiently transferred from the first heater 83, the second heater 84, the third heater 85, and the fourth heater 86 to the molten plastic, Molten plastic can be liquefied, sufficient thermal energy is accumulated in the plastic liquid body 45, and the vaporizer 4 has 6 to 3 carbon atoms. It is possible to selectively vaporize a high-quality hydrocarbon gas having a low molecular weight, and the molten plastic is liquefied. 4 can be supplied.
  • the molten plastic supplied to the upper part of the cylindrical inner heating tube 80 of the multilayer heating unit 3 has an inlet temperature T inlet of the molten plastic at the inlet of the multilayer heating unit 3. (T0-45) °C ⁇ T inlet ⁇ (T0-15) °C
  • T0 is the vaporization start temperature of the plastic.
  • the heating temperature of the first heater 83, the second heater 84, the third heater 85, and the fourth heater 86 provided in the multilayer heating unit 3 is such that the molten plastic flows from the outer heating pipe 82 to the outlet passage 36.
  • the outlet temperature T outlet when it is sent is (T0-40) ° C ⁇ T outlet ⁇ (T0-10) ° C It is preferable to be controlled so that Here, T inlet ⁇ T outlet .
  • the multilayer heating unit 3 includes the cylindrical inner heating tube 80, the cylindrical central heating tube 81, and the cylindrical outer heating tube 82, and the cylindrical inner heating tube 80.
  • the molten plastic flowing from above to below is heated from both sides by the first heater 83 and the second heater 84, and the molten plastic flowing from below to above in the central heating pipe 82 is The molten plastic that is heated from both sides by the heater 84 and the third heater 85 and flows from the upper side to the lower side in the outer heating pipe 82 is moved to both sides by the third heater 85 and the fourth heater 86. It is comprised so that it may be heated from.
  • the molten plastic is uniformly heated and liquefied by the multilayer heating unit 3 and liquefied, and sufficient heat energy is stored, so that it can be gasified as desired by the vaporizer 4 and has 6 to 30 carbon atoms. It is possible to produce high quality oil with low molecular weight from plastic.
  • FIG. 10 is a schematic perspective view of a vaporizer 4 used in a plastic oiling apparatus according to another embodiment of the present invention.
  • the tubular member 40 of the vaporizer 4 is a polygon 90 in which the cross-sectional shape of the curved portion 40 a approximates a circle (referred to as “approximate circle 90” in this specification). ) Is cut out by a horizontal plane.
  • the plastic liquid body 45 is stored in the curved portion 40a of the tubular member 40 so that the liquid level is located at the same height as the upper edge of the curved portion 40a of the riverboat-like tubular member 40. Therefore, the depth of the plastic liquid body 45 is shallow. Therefore, when the plastic liquid body 45 is heated by the heater 42, a cold water mass is generated in the plastic liquid body 45 and can effectively prevent bumping. In addition, since the liquid level of the plastic liquid body 45 stored in the curved portion 40a is sufficiently wide, the evaporation rate can be improved.
  • the plastic liquid accumulated in the internal space defined by the curved portion 40a of the river-boat-like tubular member 40 is gasified as desired to produce high-quality oil having a low molecular weight of 6 to 30 carbon atoms from the plastic. Is possible.
  • the vaporizer 4 is formed in a river boat shape by the tubular member 40, and the curved portion 40 a of the tubular member 40 has a virtual cross section having a radius R.
  • a circle is cut out by a horizontal plane, and the upper end of the curved portion 40a forms an angle of - ⁇ / 2 with a plane extending at an angle of ⁇ / 2 with respect to the vertical direction from the center of the virtual circle.
  • the plastic liquid body 45 is tubular and is defined by the intersecting line of the extending plane and the virtual circle, ⁇ is set to 70 degrees to 90 degrees, and the plastic liquid body 45 has a depth of 200 mm to 350 mm.
  • the curved portion 40a of the tubular member 40 of the vaporizer 4 is accommodated in the curved portion 40a of the member 40, and in the embodiment shown in FIG. Approximation
  • the outer shape of the curved portion 40a of the tubular member 40 is a shape obtained by cutting out an imaginary circle or an arc of an approximate circle.
  • the outer shape of the portion 40a is not particularly limited as long as it is a shape obtained by cutting an elliptical arc, but is a curved shape.
  • the multilayer heating unit 3 includes a cylindrical inner heating pipe 30 and a cylindrical outer heating pipe 31, and the implementation shown in FIGS.
  • the multilayer heating unit 30 includes the cylindrical inner heating pipe 80, the cylindrical central heating pipe 81, and the cylindrical outer heating pipe 82, but the cylindrical heating provided in the multilayer heating unit 30.
  • the number of tubes is not particularly limited as long as it is 2 or more.
  • the multilayer heating unit 3 comprises a cylindrical inner heating tube 30 and a cylindrical outer heating tube 31, which is the implementation shown in FIGS.
  • the multilayer heating unit 30 includes a cylindrical inner heating pipe 80, a cylindrical central heating pipe 81, and a cylindrical outer heating pipe 82, but the heating pipes 30, 31, 80, 81, 82 are provided.
  • a cylindrical heating tube formed by a smooth curve is preferable, and in order to allow the molten plastic to be heated uniformly, A cylindrical shape is preferred.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

【課題】 プラスチックを高収率で油化することができ、経済性の高いプラスチックの連続式油化装置を提供する。 【解決手段】 プラスチックの連続式油化装置は、プラスチック液状体45を加熱して、気化させる気化器4が川舟状の外形を有する管状部材40を備え、管状部材40の外形の上部が矩形状をなし、下部が湾曲状に形成され、管状部材40の湾曲状に形成された湾曲部40a内にプラスチック液状体45が収容されるように、湾曲部40aが形成され、湾曲部40aの上縁部と湾曲部40aの底部との距離が350mm以下に設定されている。

Description

プラスチックの連続式油化装置
 本発明は、プラスチックの連続式油化装置に関するものであり、さらに詳細には、プラスチックの油化成分を連続的に油化し、燃料として再生することができるプラスチックの連続式油化装置に関するものである。
 原油を精製する過程で得られるナフサを原料にしたプラスチック製品が大量に生産さ れ、その結果、使用済みになって廃棄されるプラスチック(本明細書においては、「廃棄プラスチック」という)も莫大な量に達している。
 そのため、廃棄プラスチックのリサイクルや、廃棄プラスチックを再生して、有効利用する取り組みも盛んに行われている。廃棄プラスチックのリサイクル方法には、マテリアルリサイクル、ケミカルリサイクルおよびサーマルリサイクルがあり、このうち、廃棄プラスチックを熱エネルギー源として利用するサーマルリサイクルは有用な廃棄プラスチックのリサイクル方法で、とくに、廃棄プラスチックを油化し、燃料として用いる方法は、これまで実用化に向けた種々の技術が提案されている。
 一般的な廃棄プラスチックの油化方法においては、廃棄プラスチックを裁断ないしはそのままの形で、融点以上の温度に加熱分解して気化させ、気化したガスを冷却することによって油を生成している。
 また、廃棄プラスチックの油化装置には、バッチ式と連続式があり、効率化の観点から、連続式が好ましいとされている。
 国際公開WO2013/058366 A1(特許文献1)には、廃棄されたプラスチック片を、摩擦熱によってゲル状にする押出機と、押出機から供給されたゲル状プラスチックを、面状発熱体によって周囲から390℃ないし405℃に加熱する円筒状の第1バッファタンクと、第1バッファタンクから供給された溶融プラスチックを、周壁を被覆する面状発熱体によって周囲から400℃ないし415℃に加熱する円筒状の第2バッファタンクと、第2バッファタンクから供給された液状プラスチックを加熱してガス化する円筒状の蒸発釜と、蒸発釜から供給されたプラスチックのガスを液化して、炭化水素油を生成するコンデンサを備えた廃棄プラスチックの連続式油化装置が開示されており、蒸発釜内における液状プラスチックの蒸発面積が最大になるように、蒸発釜内の液状プラスチックの液面が円筒体の直径中心位置に位置するように、押出機のモータを制御することが好ましいと記載されている。
国際公開WO2013/058366 A1
 このように、特許文献1に開示された油化装置においては、蒸発釜が円筒状をなし、蒸発面積が最大にするために、蒸発釜内の液状プラスチックの液面が円筒体の直径中心位置に位置するように、押出機のモータが制御されているため、蒸発釜内の液状プラスチックの深さが深く、そのため、液状プラスチック内に周囲よりも特異的に温度の低い領域や温度ムラ(本明細書においては、これらを総称して、「冷水塊」というがある。)が発生し、突沸が起こりやすく、油化収率を向上させることができないという問題があった。とくに、多くの廃棄プラスチックを処理するために、大きな蒸発釜を用いるときには、冷水塊が発生し、突沸が起こる確率が高くなるという問題があった。
 したがって、本発明は、プラスチックを高収率で油化することができ、経済性の高いプラスチックの連続式油化装置を提供することを目的とするものである。
本発明のかかる目的は、プラスチックを加熱して、溶融し、溶融されたプラスチック溶融体を加熱して、液状化し、液状化したプラスチック液状体を加熱して、気化させ、気化させたプラスチックのガス成分を冷却して、油成分とガス成分に分離するように構成されたプラスチックの連続式油化装置であって、前記プラスチック液状体を加熱して、気化させる気化器が川舟状の外形を有する管状部材を備え、前記管状部材の外形の上部が矩形状をなし、前記外形の下部が湾曲状に形成され、管状部材の湾曲状に形成された湾曲部内に前記プラスチック液状体が収容されるように、前記湾曲部が形成され、前記湾曲部の上縁部と前記湾曲部の底部との距離が350mm以下に設定されたことを特徴とするプラスチックの連続式油化装置によって達成される。
 本発明によれば、気化器は川舟状の外形を有する管状部材を備え、管状部材の外形の上部が矩形状をなし、下部が湾曲状に形成され、プラスチック液状体を収容する湾曲状に形成された湾曲部の上縁部と湾曲部の底部との距離が350mm以下に設定されているから、加熱される際に、プラスチックの一般的な性状である熱伝導度の低さによって、プラスチック液状体内に周囲よりも特異的に温度の低い領域や温度ムラ(本明細書においては、これらを総称して、「冷水塊」というがある。)が生成されて、突沸が起こる効果的に防止することが可能になり、また、管状部材が川舟状の外形を有し、プラスチック液状体の液面は十分広いから、蒸発速度を向上させることが可能になり、したがって、気化器によって、所望のように、プラスチック液状体を気化させ、気化させたプラスチックのガス成分を冷却して、良質な油を生成することが可能になる。
 本発明の好ましい実施態様においては、前記プラスチック液状体の液面の高さ位置が、前記管状部材の前記湾曲部の上縁の高さ位置と実質的に一致するように気化器が構成されている。
 本発明の好ましい実施態様によれば、プラスチック液状体の液面の高さ位置が、管状部材の湾曲部の上縁の高さ位置と実質的に一致するように気化器が構成されているから、プラスチック液状体の液面をより一層広くすることができ、したがって、蒸発速度をより一層向上させることが可能になる。
 本発明の好ましい実施態様においては、前記管状部材の前記湾曲部の上縁と前記湾曲部の底部との距離が200mmないし350mmになるように、前記管状部材の前記湾曲部が形成されている。
 本発明のさらに好ましい実施態様においては、前記管状部材の前記湾曲部の上縁と前記湾曲部の底部との距離が250mmないし300mmになるように、前記管状部材の前記湾曲部が形成されている。
 湾曲部内に収容されたプラスチック液状体の深さが200mm未満の場合には、湾曲部に接している部分が小さくなり、その結果、加熱時の気化器内部でのプラスチック液状体の流動が小さくなって、自然対流による均一な加熱の促進が滞り、プラスチック液状体が流動のないまま加熱され、プラスチック液状体が焦げ付くおそれがあるが、本発明のこの好ましい実施態様によれば、管状部材の湾曲部の上縁と湾曲部の底部との距離が200mmないし350mmになるように、管状部材の湾曲部が形成されているから、湾曲部内に、プラスチック液状体を200mmないし350mmの深さになるように収容することができ、プラスチック液状体が焦げ付くことを効果的に防止することが可能になる。
 本発明のさらに好ましい実施態様においては、前記管状部材の前記湾曲部の外形が滑らかな曲線によって形成されている。
 本発明のさらに好ましい実施態様においては、前記管状部材の前記湾曲部の横断面が仮想円を水平面によって切り欠いた形状をなし、前記湾曲部の上縁部が、前記仮想円の中心から鉛直方向に対し、θ/2の角度をなして延びる平面と、-θ/2(θは70度ないし90度である)の角度をなして延びる平面と、仮想円との交線によって画定されている。
 本発明のさらに好ましい実施態様によれば、湾曲部の上縁部は、仮想円の最大直径部よりも下方に位置するから、湾曲部内に、プラスチック液状体をその深さが350mm以下になるように収容することができるから、加熱される際に、プラスチック液状体内に冷水塊が生成されて、突沸が起こる効果的に防止することが可能になるから、気化器によって、所望のように、プラスチック液状体を気化させ、気化させたプラスチックのガス成分を冷却して、良質な油を生成することが可能になる。
 本発明によれば、プラスチックを高収率で油化することができ、経済性の高いプラスチックの連続式油化装置を提供することが可能になる。
図1は、本発明の好ましい実施態様にかかるプラスチックの連続式油化装置の全体を示す略斜視図である。 図2は、計量器、押出し機および多層加熱ユニットの概略図である。 図3は、押出し機の要部拡大縦断面図である。 図4は、多層加熱ユニットの略縦断面図である。 図5は、図4のA-A線に沿った略横断面図である。 図6は、気化器の略斜視図である。 図7は、気化器、冷却器および油成分貯蔵タンクの概略図である。 図8は、本発明の別の好ましい実施態様にかかるプラスチックの油化装置に用いられる多層加熱ユニットの略縦断面図である。 図9は、図8のB-B線に沿った略横断面図である。 図10は、本発明の他の実施態様にかかるプラスチックの油化装置に用いられる気化器の略斜視図である。
 図1は、本発明の好ましい実施態様にかかるプラスチックの連続式油化装置の全体を示す略斜視図であり、装置のカバーが取り去られた状態を示している。
 図1に示されるように、本発明の好ましい実施態様にかかるプラスチックの連続式油化装置は、裁断されたプラスチックを計量しつつ、受け入れる計量器1と、計量器1から供給されたプラスチックを加熱して、溶融させつつ、搬送する押出し機2と、押出し機2から溶融されたプラスチックの供給を受け、溶融プラスチックを加熱して、液状化する多層加熱ユニット3と、多層加熱ユニット3によって液状化されたプラスチック液状体を加熱して、気化させる気化器4と、気化器4によって気化されたガスを冷却して、油化成分と油化しなかった炭化水素ガス類を分離する冷却器5と、冷却器5によって、ガスが冷却されて生成された油化成分をろ過して貯蔵する油成分貯蔵タンク6を備えている。
 ここに、冷却器5で油化されなかった炭化水素ガス類は、触媒反応器(図示せず)に送られ、無害化されて、大気に放出される。
 図2は、計量器1、押出し機2および多層加熱ユニット3の概略図である。
 図2に示されるように、計量器1は、裁断されたプラスチックを計量しつつ受け入れ、一時的に貯留するホッパ10と、ホッパ10の開口部の下方に配置され、ホッパ10に一時的に貯留されたプラスチックを受け取って、プラスチックの重量を測定しつつ、搬送し、開口部11から押出し機2上に落下させるベルトフィーダー12を備えている。
 図3は、押出し機2の要部拡大縦断面図である。
 図2および図3に示されるように、押出し機2は、シリンダー20と、シリンダー20内に、表面に螺旋状の突起21が形成された回転可能なヘリカルロッド22とを備え、ヘリカルロッド22の上流側端部は、図示しない軸受、カップリングおよびベベルギアを介して、電動モータ24に接続されている。
 ベルトフィーダー12によって、計量器1内を搬送されたプラスチックは、ヘリカルロッド22の最上流部の上方に形成された計量器1の開口部11を介して、押出し機2に供給される。
 ヘリカルロッド22は、中実の棒状部材の外表面に螺旋状の突起21が形成されたもので、ヘリカルロッド22の隣り合った螺旋状の突起21間の底部とシリンダー20の内壁との間隔は、たとえば、約5mmに設定されている。
 電動モータ24の回転力が、ベベルギア、カップリングおよび軸受を介して、ヘリカルロッド22に伝達されて、ヘリカルロッド22が回転し、押出し機2内に供給されたプラスチックは、多層加熱ユニット3に接続された押出し機2の下流側端部に向けて、搬送される。
 押出し機2のシリンダー20の上流部を除く外周部には、防熱材25によって覆われたヒーター26が巻回されており、押出し機2に供給されたプラスチックは、ヘリカルロッド22によって、押出し機2内を搬送されつつ、ヒーター26によって加熱され、ゼリー状に溶融されて、多層加熱ユニット3に搬送されるように構成されている。
 図4は、多層加熱ユニット3の略縦断面図であり、図5は、図4のA-A線に沿った略横断面図である。
 図4および図5に示されるように、多層加熱ユニット3は、同心円状に配置され、筒状をなした2つの加熱管30、31を備えている。2つの加熱管30、31のうち、内側に位置する内側加熱管30は半径R1を有する筒状体30aと半径R2を有する筒状体30bによって形成され(ここに、R1<R2である)、筒状体30aと筒状体30bの間に、プラスチック溶融体が流れるスペースが形成されている。一方、2つの加熱管30、31のうち、外側に位置する外側加熱管31は半径R3を有する筒状体31aと半径R4を有する筒状体31bによって形成され(ここに、R1<R2<R3<R4である)、筒状体31aと筒状体31bの間に、プラスチック溶融体が流れるスペースが形成されている。
 内側加熱管30は、その上端部で押出し機2の下流端部に接続された入口通路28に連通し、外側加熱管31は、内側加熱管30の下端部に連通している。
 図4および図5に示されるように、内側加熱管30を構成する筒状体30aの内側には、円筒状の第一のヒーター32が配置され、筒状体30bと外側加熱管31を構成する筒状体31aの間の空隙部には、円筒状の第二のヒーター33が配置されており、内側加熱管30内を流れる溶融プラスチックは、第一のヒーター32と第二のヒーター33とによって、両側から加熱されるように構成されている。
 多層加熱ユニット3は、さらに、外側加熱管31を構成する筒状体31bの外側に、円筒状の第三のヒーター34を備えており、外側加熱管31内を流れる溶融プラスチックもまた、第二のヒーター33と第三のヒーター34とによって、両側から加熱され、第二のヒーター33は内側加熱管30内を流れる溶融プラスチックおよび外側加熱管31内を流れる溶融プラスチックの双方を加熱するように構成されている。
 第一のヒーター32、第二のヒーター33および第三のヒーター34としては、たとえば、セラミックヒーターが好ましく用いられる。
 押出し機2に設けられたヒーター26の加熱温度は、溶融プラスチックが所定の入口温度Tinletで、押出し機2から多層加熱ユニット3の入口部に接続された入口通路28に供給されるように設定されている。
 ここに、多層加熱ユニット3の入口部における溶融プラスチックの入口温度Tinletが、
     (T0-45)℃≦Tinlet≦(T0-15)℃
になるように、溶融プラスチックが押出し機2のヒーター26によって加熱されることが好ましい。ここに、T0はプラスチックの気化開始温度である。
 具体的には、プラスチックがポリエチレンの場合には、350℃≦Tinlet≦380℃であることが好ましく、Tinletが375℃ないし380℃であることが最も好ましい。
一方、プラスチックがポリプロピレンの場合には、340℃≦Tinlet≦370℃であることが好ましく、Tinletが365℃ないし370℃であることが最も好ましい。
 これに対して、プラスチックがポリスチレンの場合には、320℃≦Tinlet≦360℃であることが好ましく、Tinletが345℃ないし355℃であることが最も好ましい。
 溶融プラスチックの入口温度が(T0-45)℃未満の場合には、溶融プラスチックの粘度が高過ぎて、多層加熱ユニット3の内側加熱管30内に溶融プラスチックを均一に供給することが困難になり、多層加熱ユニット3によって、溶融プラスチックを均一に加熱することがきわめて難しくなって、溶融プラスチックの温度が低い部分では、溶融プラスチックの炭素鎖が切れにくく、気化器4において、炭素数が長い分子のままガス化し、均一で良質な油を生成することがきわめて困難になり、他方、溶融プラスチックの入口温度Tinletが(T0-15)℃を超えている場合には、多層加熱ユニット3の入口部において、溶融プラスチックがガス化し、多層加熱ユニット3によって、溶融プラスチックを均一に加熱することが困難になるだけでなく、ガス化したプラスチックが押出し機2内に逆流するおそれあり、好ましくない。
 したがって、上述のように、多層加熱ユニット3に入口における温度Tinletを制御することによって、多層加熱ユニット3の第一のヒーター32、第二のヒーター33および第三のヒーター34によって、溶融プラスチックを十分に、かつ、均一に加熱して、気化器4に供給することが可能になる。
 図4に示されるように、多層加熱ユニット3の外側加熱管31は、その上部で、気化器4への出口通路36に連通している。
 このように構成された多層加熱ユニット3においては、押出し機2から供給される溶融プラスチックは、まず、円筒状の内側加熱管30内を下方に向かって流れ、第一のヒーター32と第二のヒーター33とによって、両側から加熱される。
 次いで、溶融プラスチックは、内側加熱管30の下端部から外側加熱管31に供給され、円筒状の外側加熱管31内を上方に向かって流れ、第二のヒーター33と第三のヒーター34とによって、両側から加熱される。
 多層加熱ユニット3の円筒状の内側加熱管30および円筒状の外側加熱管31内で加熱された溶融プラスチックは液状化し、円筒状の外側加熱管31の上部に取り付けられた出口通路36から気化器4に供給される。
 多層加熱ユニット3に設けられた第一のヒーター32、第二のヒーター33および第三のヒーター34の加熱温度は、溶融プラスチックが外側加熱管31から出口通路36に送られたときの出口温度Toutletが、
     (T0-40)℃≦Toutlet≦(T0-10)℃
になるように、制御されることが好ましい、ここに、T0はプラスチックの気化開始温度であり、Tinlet<Toutletである。
 具体的には、プラスチックがポリエチレンの場合には、360℃≦Toutlet≦400℃であることが好ましく、Toutletが393℃ないし397℃であることが最も好ましい。
 一方、プラスチックがポリプロピレンの場合には、350℃≦Toutlet≦390℃であることが好ましく、Toutletが380℃ないし387℃であることが最も好ましい
 これに対して、プラスチックがポリスチレンの場合には、340℃≦Toutlet≦380℃であることが好ましく、Toutletが355℃ないし365℃であることが最も好ましい。
 溶融プラスチックの出口温度Toutletが(T0-40)℃未満の場合には、溶融プラスチックが十分な熱エネルギーを蓄えていないため、気化器4におけるガス化に要する時間が長くなったり、飛沫同伴し、生成物である油に不純物として混入したり、あるいは、溶融プラスチックが気化器4内で、急激に高温で加熱されるため、焦げ付きが発生するおそれがあり、他方、溶融プラスチックの出口温度Toutletが(T0-10)℃を超えている場合には、溶融プラスチックが気化器4に供給される前に、ガス化してしまい、液状化したプラスチックを所定量ずつ気化器4に供給することができなくなるおそれあり、好ましくない。
 上述のように、溶融プラスチックの出口温度Toutletを、(T0-40)℃≦Toutlet≦(T0-10)℃となるように制御することによって、内側加熱管30および外側加熱管31を溶融プラスチックが流れる際に、溶融プラスチックを均一にかつ十分に加熱して、溶融プラスチックに十分な熱エネルギーを蓄えさせることができ、また、溶融プラスチックを液状化させて、ほとんど抵抗を受けることなく、気化器4に供給することが可能になる。
 図6は、気化器4の略斜視図である。
 図6に示されるように、気化器4は川舟状の外形を有する管状部材40によって形成され、管状部材40は板状の天井部41を有し、管状部材40の湾曲部40aの外周面にはヒーター42が設けられ、ヒーター42の外面は断熱材43によって覆われている。
 気化器4には、多層加熱ユニット3の出口通路36から、液状化されたプラスチックが供給される。
 図6に示されるように、多層加熱ユニット3の出口通路36から気化器4内に供給されたプラスチック液状体45は、川舟状の管状部材40の湾曲部40aによって画定された内部空間内に溜まるように構成されている。
 プラスチック液状体45の蒸発速度を向上させるためには、プラスチック液状体45の液面の面積が大きいほど、好ましい。
 ここに、管状部材40は、湾曲部40aの横断面形状が半径Rの仮想円を水平面によって切り欠いた形状をなし、湾曲部40aの上端部が、仮想円の中心から鉛直方向に対し、θ/2の角度をなして延びる平面と、-θ/2の角度をなして延びる平面と、仮想円との交線によって画定されており、θは70度ないし90度に設定され、湾曲部40aの上縁部と湾曲部40aの底部との距離が350mm以下に設定されていることが好ましい。
 多層加熱ユニット3から供給された低粘度のプラスチック液状体45の深さが深い場合には、プラスチックの一般的な性状である熱伝導度の低さによって、プラスチック液状体45内に冷水塊が生成されて、突沸が発生するおそれがあるから、プラスチック液状体45の深さを浅くし、プラスチック液状体45の液面を広くすることが好ましく、θはかかる観点から、70度ないし90度の範囲内に設定される。
 本発明において、好ましくは、管状部材40内のプラスチック液状体45の深さは、200mmないし350mmである。
 管状部材40内のプラスチック液状体45の深さが350mmを超えているときは、プラスチック液状体45内に冷水塊が生成されて、突沸が起こるおそれがあり、一方で、管状部材40内のプラスチック液状体45の深さが200mm未満の場合には、湾曲部40aに接している部分が小さくなり、その結果、加熱時の気化器内部でのプラスチック液状体45の流動が小さくなって、自然対流による均一な加熱の促進が滞り、プラスチック液状体45が流動のないまま加熱され、プラスチック液状体45が焦げ付くおそれがあり、好ましくない。
 本発明において、より好ましくは、管状部材40内のプラスチック液状体45の深さは、250mmないし300mmである。
一方、プラスチック液状体45の液面と管状部材40の天井部との距離は100mmないし200mmであることが好ましい。プラスチック液状体42の液面と管状部材40の天井部との距離が100mmないし200mmであるときは、突沸のエネルギーをガス空間が吸収することができる。
 図7は、気化器4、冷却器5および油成分貯蔵タンク6の概略図である。
 図7に示されるように、気化器4を構成する管状部材40の天井部41には、上方に向かって延びる還流管46が取り付けられ、接続部47を介して、還流管48が接続されている。還流管48の下流端部は冷却器5に接続されている。
 図7に示されるように、冷却器5は、冷媒が循環する冷媒パイプ50を備えており、冷媒は冷媒供給口51から冷媒パイプ50内に供給され、冷媒排出口52から排出されるように構成されている。図7において、参照符号53で示されているのは、冷却器5内で液化されなかった炭化水素ガスを回収し、触媒反応器(図示せず)に送るためのガス回収管で、後述するガス回収管65が接続され、ガス回収管65の接続部の上流側のガス回収管53には逆止弁58が設けられている。
 気化器4から、冷却器5に供給されたガスは冷媒パイプ50に沿って流れ、冷却されて、ガス中の油成分が凝縮し液化する。
 その結果、冷却器5に供給されたガス中の油成分が油化された油化成分と油化しなかった低分子量の揮発性有機化合物ガスは、接続部55によって互いに接続された接続管54および接続管56を介して、油成分貯蔵タンク6に向けて送られる。
 図7に示されるように、油成分貯蔵タンク6は2つのコンパートメントに分割されており、下部コンパートメント6bの上方に延びる部分は、フィルタ60によって、上部コンパートメント6aと区切られている。
接続管56は下部コンパートメント6bに開口しており、冷却器5で油化した油化成分は、まず、油成分貯蔵タンク6の下部コンパートメント6bに送られ、比重が0.7ないし0.9の、油化成分よりも比重が大きい不純物68が下部コンパートメント6bの底部に沈澱する。
 不純物が沈澱によって除去された油化成分と低分子量の揮発性有機化合物ガスは、さらに、下部コンパートメント6bの上方に延びる部分に送られ、フィルタ60によって、沈澱せず、油に同伴して浮遊している細かい不純物がろ過され、油化成分と低分子量の揮発性有機化合物ガスのみがフィルタ60を通過する。
 その結果、油化成分は、油成分貯蔵タンク6の上部コンパートメント6a内に貯蔵される。ろ過された不純物68は、下部コンパートメント6bの底部に沈澱する。
 一方、フィルタ60を通過し、上部コンパートメント6a内に送られた低分子量の揮発性有機化合物ガスは、上部コンパートメント6aの天井部分に接続されたガス回収管65に送られる。
 ガス回収管65はガス回収管53に接続されており、ガス回収管65の接続部の下流側のガス回収管53には、非常時に、ガス回収管53を通って、内部に侵入しようとする火炎を消し止め、内部での火災の発生を防止するフレームアレスター59が設けられている。
 フレームアレスター59を通過したガスは、ガス回収管53を通って、触媒反応器に送られ、無害化されて、大気に放出される。
 上述のように、沈澱によって油化成分よりも比重が大きい不純物68が除去された油化成分が、フィルタ60によってろ過されるように構成されているので、フィルタ60の負担を軽減することが可能になる。本実施態様においては、フィルタ60を交換するためのフィルタ交換口61が設けられている。
 上部コンパートメント6a内における油化成分の貯蔵量は、電子式液面計62によってモニターされ、上部コンパートメント6a内における油化成分の貯蔵量が所定量に達すると、排出ポンプ63が作動されて、油化成分が油成分貯蔵タンク6から取り出される。
図7において、参照番号66で示されているのは、下部コンパートメント6bに沈殿した不純物68を取り除くとともに、下部コンパートメント6b内を掃除するための掃除口であり、また、参照番号67で示されているのは、油質確認サイドグラスである。
 プラスチックから回収された油は通常、透明度の良いレモン色(黄色)ないし山吹色をしているので、油質確認サイドグラス67を介して、油を目視し、油が白濁し、または、レモン色であっても透明度が悪く、プリン状の粘度の大きい流体になっていると判断したときは、温度設定、原料供給量過剰、異物混入、ヒーターの故障など、プラスチックの油化装置に運転を中止すべき故障が発生していると認められる。したがって、オペレータが、油質確認サイドグラス67を介して、回収された油を目視することによって、プラスチックの油化装置の故障時に、油化装置の運転を停止して、故障を修理することが可能になる。
 以上のように構成された本実施態様にかかるプラスチック連続油化装置は、以下のようにして、プラスチックを連続的に油化する。
 まず、オペレータによって、裁断されたプラスチックが計量器1のホッパ10に投入される。
 裁断されて、ホッパ10内に投入されたプラスチックは一時的に貯留された後に、ベルトフィーダー12に受け渡され、ベルトフィーダー12によって、その上に載置されているプラスチックの重量が測定される。ベルトフィーダー12は、測定したプラスチックの重量に基づいて、プラスチックの供給量がオペレータが設定した単位時間あたりの供給量に等しくなるように、その供給速度がコンピュータ制御されている。
 ベルトフィーダー12はこうして受け渡されたプラスチックを、開口部11を介して、押出し機2上に落下させる。
 押出し機2は、表面に螺旋状の突起21が形成されたヘリカルロッド22と、ヘリカルロッド22を収容するシリンダー20を備えており、ヘリカルロッド22には、電動モータ24の回転力が、ベベルギア、カップリングおよび軸受を介して伝達され、ヘリカルロッド22は回転駆動されるように構成されている。したがって、押出し機2内に供給されたプラスチックは、回転駆動されるヘリカルロッド22によって、押出し機2内を搬送される。
 押出し機2のシリンダー20の上流部を除く外周部には、防熱材25によって覆われたヒーター26が巻回されており、プラスチックは、ヘリカルロッド22によって、押出し機2内を搬送されつつ、ヒーター26によって加熱され、ゼリー状に溶融されて、多層加熱ユニット3に向けて、搬送されるように構成されている。
 押出し機2内で、ゼリー状に溶融された溶融プラスチックは、入口通路28を介して、多層加熱ユニット3の円筒状の内側加熱管30内に、その上部から供給される。
 多層加熱ユニット3の円筒状の内側加熱管30の上部に供給される溶融プラスチックは、多層加熱ユニット3の入口部における溶融プラスチックの入口温度Tinletが、
     (T0-45)℃≦Tinlet≦(T0-15)℃
になるように、押出し機2のヒーター26によって加熱されていることが好ましい。ここに、T0はプラスチックの気化開始温度である。
 十分に加熱されたプラスチックは炭素鎖の結合が緩み、結合が緩んだ部分からちぎれて生じたラジカルが他の炭素鎖の結合が緩んだ部分にアタックして、水素を奪い、炭素鎖を次々に切断し、結果的に、炭素数が6ないし30の分子になってガス化する。
 しかしながら、溶融プラスチックの入口温度Tinletが(T0-45)℃未満の場合には、溶融プラスチックの粘度が高過ぎて、多層加熱ユニット3の内側加熱管30に溶融プラスチックを均一に供給することが困難になり、多層加熱ユニット3によって、溶融プラスチックを均一に加熱することがきわめて難しくなり、その結果、炭素数が30ないし100の長い分子のままガス化し、良質な油を生成することができない。
 他方、溶融プラスチックの入口温度が(T0-15)℃を超えている場合には、多層加熱ユニット3の入口部において、溶融プラスチックがガス化し、多層加熱ユニット3によって、溶融プラスチックを均一に加熱することが困難になるだけでなく、ガス化したプラスチックが押出し機2内に逆流するおそれあり、好ましくない。
 溶融プラスチックは、内側加熱管30内を上部から下方に向けて移送され、内側加熱管30の下部から、外側加熱管31内に送られ、下部から上方に向けて、移送される。
 内側加熱管30の内側には、円筒状の第一のヒーター32が配置され、内側加熱管30と外側加熱管31の間には、円筒状の第二のヒーター33が配置されているから、内側加熱管30内を上方から下方に向かって流れる溶融プラスチックは、第一のヒーター32と第二のヒーター33とによって、両側から加熱される。
 さらに、多層加熱ユニット3の外側加熱管31の外側には、円筒状の第三のヒーター34が配置されているから、外側加熱管31内を下方から上方に向かって流れる溶融プラスチックもまた、第二のヒーター33と第三のヒーター34とによって、両側から加熱される。
 このように、円筒状の内側加熱管30内を上方から下方に向かって流れる溶融プラスチックは、円筒状の第一のヒーター32と第二のヒーター33とによって、両側から加熱され、円筒状の外側加熱管31内を下方から上方に向かって流れるときは、溶融プラスチックが円筒状の第二のヒーター33と第三のヒーター34とによって、両側から加熱される。したがって、円筒状の内側加熱管30の中央部を流れる溶融プラスチックおよび円筒状の外側加熱管31の中央部を流れる溶融プラスチックが所定の温度に加熱されるように、溶融プラスチックの粘度、溶融プラスチックの供給速度などの運転条件に基づいて、円筒状の内側加熱管30および円筒状の外側加熱管31の多層加熱ユニット3の半径方向の幅が設定されている。円筒状の内側加熱管30および円筒状の外側加熱管31のこの幅は、たとえば、12mmに設定される。
 このように、円筒状の内側加熱管30および円筒状の外側加熱管31の多層加熱ユニット3の半径方向の幅が設定され、溶融プラスチックは、内側加熱管30内を流れるときは、第一のヒーター32と第二のヒーター33とによって、外側加熱管31内を流れるときは、第二のヒーター33と第三のヒーター34とによって、両側から加熱されるように構成されているから、第一のヒーター32、第二のヒーター33および第三のヒーター34から効率よく、熱を溶融プラスチックに伝熱することができる。
 したがって、溶融プラスチックを液状化させることができ、ほとんど抵抗を受けることなく、プラスチック液状体45を、出口通路36から気化器4に供給することが可能になるとともに、気化器4に供給されるプラスチック液状体45に十分な熱エネルギーを蓄積させることができる。
 さらに、第一のヒーター32、第二のヒーター33および第三のヒーター34の温度を過度に高い温度に設定する必要がないから、多層加熱ユニット3内を流れる溶融プラスチックの一部が過度に加熱されて、炭化するおそれがなく、また、電力消費量を従来に比して、大幅に低下させることが可能になる。
 多層加熱ユニット3に設けられた第一のヒーター32、第二のヒーター33および第三のヒーター34の加熱温度は、溶融プラスチックが外側加熱管31から出口通路36に送られたときの出口温度Toutletが、
     (T0-40)℃≦Toutlet≦(T0-10)℃
になるように、制御されることが好ましい。ここに、T0はプラスチックの気化開始温度であり、Tinlet<Toutletであるである。
 溶融プラスチックの出口温度Toutletが(T0-40)℃未満の場合には、溶融プラスチックが十分な熱エネルギーを蓄えていないため、気化器4におけるガス化に要する時間が長くなったり、飛沫同伴し、生成物である油に不純物として混入したり、あるいは、気化器4内で、急激に高温で加熱されるため、焦げ付きが発生するおそれがあり、他方、溶融プラスチックの出口温度Toutletが(T0-10)℃を超えている場合には、溶融プラスチックが気化器4に供給される前に、ガス化してしまい、液状化したプラスチックを所定量ずつ気化器4に供給することができなくなるおそれある。
 溶融プラスチックの出口温度Toutletを(T0-40)℃≦Toutlet≦(T0-10)℃となるように制御することによって、内側加熱管30および外側加熱管31を溶融プラスチックが流れる際に、溶融プラスチックを均一にかつ十分に加熱して、溶融プラスチックに十分な熱エネルギーを蓄えさせることができ、また、溶融プラスチックを液状化させて、ほとんど抵抗を受けることなく、気化器4に供給することが可能になる。
 図6に示されるように、多層加熱ユニット3の出口通路36から気化器4内に供給されたプラスチック液状体45は、川舟状の外形を有する管状部材40の湾曲部40aによって画定された内部空間内に収容される。管状部材40の湾曲部40aの外周面にはヒーター42が設けられ、ヒーター42の外面は断熱材43によって覆われている。
 多層加熱ユニット3から気化器4内に送られたプラスチック液状体45は、その液面が、川舟状の管状部材40の湾曲部40aの上縁部と同じ高さになるように、湾曲部40a内に収容される。
 管状部材40の湾曲部40aは、その横断面形状が仮想円を水平面によって切り欠いた形状をなし、湾曲部40aの上端部が、仮想円の中心から鉛直方向に対し、θ/2の角度をなして延びる平面と、-θ/2の角度をなして延びる平面と、仮想円との交線によって画定されており、θは70度ないし90度に設定されている。
 プラスチック液状体45はその液面の高さ位置が、湾曲部40aの上縁部の高さ位置と実質的に同じになるように、管状部材40内に収容されている。
 本実施態様においては、湾曲部40aの上縁部と湾曲部40aの底部との距離、すなわち、湾曲部40a内に収容されるプラスチック液状体45の深さは200mmないし350mmであることが好ましい。
 管状部材40の湾曲部40a内のプラスチック液状体45の深さが350mmを超えているときは、プラスチック液状体45内に冷水塊が生成されて、突沸が起こるおそれがあり、一方で、管状部材40の湾曲部40a内のプラスチック液状体45の深さが200mm未満の場合には、湾曲部40aに接している部分が小さくなり、その結果、加熱時の気化器4内部でのプラスチック液状体45の流動が小さくなって、自然対流による均一な加熱の促進が滞り、プラスチック液状体45が流動のないまま加熱され、プラスチック液状体45が焦げ付くおそれがあり、好ましくない。
 より好ましくは、湾曲部40aの上縁部と湾曲部40aの底部との距離、すなわち、湾曲部40a内に収容されるプラスチック液状体45の深さは250mmないし300mmである。
一方、プラスチック液状体45の液面と管状部材40の天井部との距離は100mmないし200mmであることが好ましい。プラスチック液状体42の液面と管状部材40の天井部との距離が100mmないし200mmであるときは、突沸のエネルギーをガス空間が吸収することができる。
 ヒーター42によって加熱されたプラスチック液状体45はガス化されて、気化器4の天井部41に取り付けられた還流管46と、接続部47を介して、還流管46に接続された還流管48内を上方に向かって流れ、冷却器5に供給される。
 ここに、還流管46、48は上方に向かって延びているため、気化器4によって生成されたガス成分に重質成分が混入している場合には、重質成分は気化器4内に戻され、また、還流管46、48は冷却管としても機能する。
 冷却器5に供給されたガスは、冷媒が循環する冷媒パイプ50に沿って流れ、冷却されて、ガス中の油成分が凝縮し液化する。
 その結果、冷却器5に供給されたガス中の油成分が液化した油化成分が、接続管54および接続管56を介して、油成分貯蔵タンク6に送られる。
 一方、冷却器5内で液化されなかった炭化水素ガスは、ガス回収管53に送られ、逆止弁58およびフレームアレスター59を通過して、図示しない触媒反応器に送られ、無害化されて、大気に放出される。
 接続管56は、油成分貯蔵タンク6の下部コンパートメント6bに開口しており、冷却器5で油化した油化成分は、まず、油成分貯蔵タンク6の下部コンパートメント6bに送られ、比重が0.7ないし0.9の、油化成分よりも比重が大きい不純物68が下部コンパートメント6bの底部に沈澱する。
 不純物が沈澱によって除去された油化成分は、さらに、下部コンパートメント6bの上方に延びる部分に送られ、フィルタ60によって、沈澱せずに、油に同伴して浮遊している細かい不純物がろ過され、油化成分のみがフィルタ60を通過して、油成分貯蔵タンク6の上部コンパートメント6a内に貯蔵される。ろ過された不純物68は、下部コンパートメント6bの底部に沈澱する。
 一方、油化成分中の軽質油分から自然揮発した炭化水素ガスは、上部コンパートメント6aの天井部分に接続されたガス回収管65に送られる。
 ガス回収管65に送られた炭化水素ガスはガス回収管53内に送られ、フレームアレスター59を通過し、ガス回収管53を通って、触媒反応器に送られ、無害化されて、大気に放出される。
 このように、沈澱によって油化成分よりも比重が大きい不純物68が除去された油化成分が、フィルタ60によってろ過されるように構成されているので、フィルタ60の負担を軽減することが可能になる。
 こうして、上部コンパートメント6a内に、炭素数が6ないし30の良質の油を貯蔵することができ、電子式液面計62によって、上部コンパートメント6a内における油化成分の貯蔵量が所定量に達したことが認められると、排出ポンプ63が作動されて、油化成分が油成分貯蔵タンク6から取り出される。
 本実施態様においては、気化器4は川舟状の外形を有する管状部材40によって形成され、多層加熱ユニット3の出口通路36から気化器4内に供給されたプラスチック液状体45は、川舟状の管状部材40の湾曲部40aによって画定された内部空間内に収容されるように構成されており、管状部材40の湾曲部40aは、その横断面形状が半径Rの仮想円を水平面によって切り欠いた形状をなし、湾曲部40aの上端部が、仮想円の中心から鉛直方向に対し、θ/2の角度をなして延びる平面と、-θ/2の角度をなして延びる平面と、仮想円との交線によって画定されており、θは70度ないし90度に設定され、プラスチック液状体45の深さが200mmないし350mmになるように、プラスチック液状体45が、管状部材40の湾曲部40a内に収容されているから、プラスチック液状体45の深さは浅く、したがって、ヒーター42によって加熱される際に、プラスチック液状体45内に冷水塊が生成されて、突沸が起こる効果的に防止することが可能になり、また、湾曲部40a内に収容されているプラスチック液状体45の液面は十分広いから、蒸発速度を向上させることが可能になる。
 さらに、本実施態様によれば、押出し機2内で溶融されたプラスチックは、押出し機2の下流端部に接続された入口通路28から、多層加熱ユニット3の円筒状の内側加熱管30の上部に供給され、内側加熱管30の内側に配置された円筒状の第一のヒーター32と内側加熱管30の外側に配置された円筒状の第二のヒーター33とによって、両側から加熱されつつ、内側加熱管30内を下方に向けて送られ、内側加熱管30の下部で外側加熱管31内に送られ、外側加熱管31の内側に配置された円筒状の第二のヒーター33と外側加熱管31の外側に配置された円筒状の第三のヒーター34とによって、両側から加熱されつつ、外側加熱管31内を上方に向けて送られ、外側加熱管31の上部に取り付けられた出口通路36から気化器4に供給されるように構成されているから、第一のヒーター32、第二のヒーター33および第三のヒーター34から効率よく、熱を溶融プラスチックに伝熱して、溶融プラスチックを液状化させることができ、プラスチック液状体45に十分な熱エネルギーを蓄積させ、気化器4において、炭素数が6ないし30の低分子量の良質な炭化水素ガスを選択的に気化させることが可能になるとともに、溶融プラスチックが液状化されるから、ほとんど抵抗を受けることなく、プラスチック液状体45を、出口通路36から気化器4に供給することが可能になる。
 また、本実施態様によれば、溶融プラスチックは、内側加熱管30内を流れるときは、第一のヒーター32と第二のヒーター33とによって、外側加熱管31内を流れるときは、第二のヒーター33と第三のヒーター34とによって、両側から加熱されるように構成されているから、第一のヒーター32、第二のヒーター33および第三のヒーター34から効率よく、熱を溶融プラスチックに伝熱することができ、したがって、第一のヒーター32、第二のヒーター33および第三のヒーター34の温度を過度に高い温度に設定する必要がないから、多層加熱ユニット3内を流れる溶融プラスチックが過度に加熱されて、炭化するおそれがなく、また、電力消費量を従来に比して、大幅に低下させることが可能になる。
 図8は、本発明の別の好ましい実施態様にかかるプラスチックの油化装置に用いられる多層加熱ユニット3の略縦断面図であり、図9は、図8のB-B線に沿った略横断面図である。
 図8および図9に示されるように、同心円状に配置され、筒状をなした3つの加熱管80、81、82を備えている。3つの加熱管80、81、82のうち、最も内側に位置する内側加熱管80は、半径R5を有する筒状体80aと半径R6を有する筒状体80bによって形成され(ここに、R5<R6である)、筒状体80aと筒状体80bの間に、プラスチック溶融体が流れるスペースが形成されている。
 一方、3つの加熱管80、81、82のうち、中央に位置する中央加熱管81は、半径R7を有する筒状体81aと半径R8を有する筒状体81bによって形成され(ここに、R5<R6<R7<R8である)、筒状体81aと筒状体81bの間に、プラスチック溶融体が流れるスペースが形成されている。
 さらに、3つの加熱管80、81、82のうち、最も外側に位置する外側加熱管82は、半径R9を有する筒状体82aと半径R10を有する筒状体82bによって形成され(ここに、R5<R6<R7<R8<R9<R10である)、筒状体82aと筒状体82bの間に、プラスチック溶融体が流れるスペースが形成されている。
  内側加熱管80は、その上端部で、押出し機2の下流端部に接続された入口通路28に連通し、その下端部で中央加熱管81と連通し、中央加熱管81はその上端部で外側加熱管82と連通している。
 図8に示されているように、外側加熱管82は、その下端部で、気化器4への出口通路36に連通している。
 図8および図9に示されるように、内側加熱管80を構成する筒状体80aの内側には、円筒状の第一のヒーター82が配置され、内側加熱管80を構成する筒状体80bと中央加熱管81を構成する筒状体81aとの間の空隙部には、円筒状の第二のヒーター83が配置されており、内側加熱管80内を流れる溶融プラスチックは、円筒状の第一のヒーター82と円筒状の第二のヒーター83とによって、両側から加熱されるように構成されている。
 多層加熱ユニット3においては、さらに、中央加熱管81を構成する筒状体81bと外側加熱管82を構成する筒状体82aとの間の空隙部には、円筒状の第三のヒーター84が配置されており、中央加熱管81内を流れる溶融プラスチックは、円筒状の第二のヒーター83と円筒状の円筒状の第三のヒーター84とによって、両側から加熱されるように構成されている。
 さらに、多層加熱ユニット3においては、外側加熱管82を構成する筒状体82bの外側に、円筒状の第四のヒーター85が配置され、外側加熱管82内を流れる溶融プラスチックは、円筒状の第三のヒーター84と円筒状の第四のヒーター85とによって、両側から加熱されるように構成されている。
 このように、内側加熱管80内を上方から下方に向かって流れる溶融プラスチックは、第一のヒーター83と第二のヒーター84とによって、両側から加熱され、中央加熱管82内を下方から上方に向かって流れるときは、第二のヒーター84と第三のヒーター85とによって、両側から加熱され、さらに、外側加熱管82内を上方から下方に向かって流れるときは、第三のヒーター85と第四のヒーター86とによって、両側から加熱されるから、第一のヒーター83、第二のヒーター84、第三のヒーター85および第四のヒーター86から効率よく、熱を溶融プラスチックに伝熱して、溶融プラスチックを液状化させることができ、プラスチック液状体45に十分な熱エネルギーを蓄積させ、気化器4において、炭素数が6ないし30の低分子量の良質な炭化水素ガスを選択的に気化させることが可能になるとともに、溶融プラスチックが液状化されるから、ほとんど抵抗を受けることなく、プラスチック液状体45を、出口通路36から気化器4に供給することが可能になる。
 本実施態様においても、多層加熱ユニット3の円筒状の内側加熱管80の上部に供給される溶融プラスチックは、多層加熱ユニット3の入口部における溶融プラスチックの入口温度Tinletが、
       (T0-45)℃<Tinlet<(T0-15)℃
になるように、溶融プラスチックが押出し機2のヒーター26によって加熱されることが好ましい。ここに、T0はプラスチックの気化開始温度である。
 また、多層加熱ユニット3に設けられた第一のヒーター83、第二のヒーター84、第三のヒーター85および第四のヒーター86の加熱温度は、溶融プラスチックが外側加熱管82から出口通路36に送られたときの出口温度Toutletが、
       (T0-40)℃<Toutlet<(T0-10)℃
になるように、制御されることが好ましい。ここに、Tinlet<Toutletである。
 本実施態様によれば、多層加熱ユニット3は、円筒状の内側加熱管80と、円筒状の中央加熱管81と、円筒状の外側加熱管82を備えており、円筒状の内側加熱管80内を上方から下方に流れる溶融プラスチックは、第一のヒーター83と第二のヒーター84とによって、両側から加熱され、中央加熱管82内を下方から上方に向かって流れる溶融プラスチックは、第二のヒーター84と第三のヒーター85とによって、両側から加熱され、さらに、外側加熱管82内を上方から下方に向かって流れる溶融プラスチックは、第三のヒーター85と第四のヒーター86とによって、両側から加熱されるように構成されている。したがって、多層加熱ユニット3によって、溶融プラスチックは均一に加熱され、液状化するとともに、十分な熱エネルギーを蓄えるから、気化器4によって、所望のようにガス化することができ、炭素数6ないし30の低分子量の良質な油をプラスチックから作り出すことが可能になる。
 図10は、本発明の他の実施態様にかかるプラスチックの油化装置に用いられる気化器4の略斜視図である。
 図10に示されるように、本実施態様にかかる気化器4の管状部材40は、湾曲部40aの横断面形状が円に近似した多角形90(本明細書では、「近似円90」という。)を水平面によって切り欠いた形状をなしている。
 本実施態様においても、プラスチック液状体45は、その液面が川舟状の管状部材40の湾曲部40aの上縁部と同じ高さ位置に位置するように管状部材40の湾曲部40a内に溜められているから、プラスチック液状体45の深さは浅く、したがって、ヒーター42によって加熱される際に、プラスチック液状体45内に冷水塊が生成されて、突沸が起こる効果的に防止することが可能になり、また、湾曲部40a内に溜められているプラスチック液状体45の液面は十分広いから、蒸発速度を向上させることが可能になる。したがって、川舟状の管状部材40の湾曲部40aによって画定された内部空間内に溜まったプラスチック液状体を所望のようにガス化し、炭素数6ないし30の低分子量の良質な油をプラスチックから作り出すことが可能になる。
 本発明は、以上の実施態様に限定されることなく、特許請求の範囲に記載された発明の範囲内で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
 たとえば、図1ないし図7に示された実施態様においては、気化器4は、管状部材40によって、川舟状に形成され、管状部材40の湾曲部40aは、その横断面形状が半径Rの仮想円を水平面によって切り欠いた形状をなし、湾曲部40aの上端部が、仮想円の中心から鉛直方向に対し、θ/2の角度をなして延びる平面と、-θ/2の角度をなして延びる平面と、仮想円との交線によって画定されており、θは70度ないし90度に設定され、プラスチック液状体45の深さが200mmないし350mmになるように、プラスチック液状体45が、管状部材40の湾曲部40a内に収容されており、図10に示された実施態様においては、気化器4の管状部材40の湾曲部40aは、その横断面形状が円に近似した多角形よりなる近似円90を水平面によって切り欠いた形状をなしているが、管状部材40の湾曲部40aの外形がこのように仮想円または近似円の円弧を切り取った形状をなしていることは必ずしも必要でなく、湾曲部40aの外形は、楕円の円弧を切り取った形状でも、湾曲した形状であればとくに限定されない。
 また、図1ないし図7に示された実施態様においては、多層加熱ユニット3は、円筒状の内側加熱管30および円筒状の外側加熱管31を備え、図8および図9に示された実施態様においては、多層加熱ユニット30は、円筒状の内側加熱管80、円筒状の中央加熱管81および円筒状の外側加熱管82を備えているが、多層加熱ユニット30に設けられる円筒状の加熱管の数は2以上であれば、とくに限定されるものではない。
 さらに、図1ないし図7に示された実施態様においては、多層加熱ユニット3は、円筒状の内側加熱管30および円筒状の外側加熱管31を備え、図8および図9に示された実施態様においては、多層加熱ユニット30は、円筒状の内側加熱管80、円筒状の中央加熱管81および円筒状の外側加熱管82を備えているが、加熱管30、31、80、81、82が円筒状に形成されていることは必ずしも必要でなく、断面が楕円形や多角形などの筒状をなしていればよい。ただし、溶融プラスチックが多層加熱ユニット3内を均一に流れるようにするためには、滑らかな曲線によって形成された筒状の加熱管が好ましく、溶融プラスチックが均一に加熱されるようにする上では、円筒状が好ましい。
  1 計量器
  2 押出し機
  3 多層加熱ユニット
  4 気化器
  5 冷却器
  6 油成分貯蔵タンク
  6a 上部コンパートメント
  6b 下部コンパートメント
 10 ホッパ
 11 計量器の開口部
 12 ベルトフィーダー
 20 シリンダー
 21 螺旋状の突起
 22 ヘリカルロッド
 24 電動モータ
 25 防熱材
 26 ヒーター
 28 入口通路
 30 内側加熱管
 31 外側加熱管
 32 第一のヒーター
 33 第二のヒーター
 34 第三のヒーター
 36 出口通路
 40 川舟状の管状部材
 41 天井部
 42 ヒーター
 43 断熱材
 45 プラスチック液状体
 46 還流管
 47 接続部
 48 還流管
 50 冷媒パイプ
 51 冷媒供給口
 52 冷媒排出口
 53 バイパス管
 54 接続管
 55 接続部
 56 接続管
 57 バイパス管
 58 逆止弁
 59 フレームアレスター
 60 フィルタ
 61 フィルタ交換口
 62 電子式液面計
 63 排出ポンプ
 65 ガス回収管
 66 掃除口
 67 油質確認サイドグラス
 68 不純物
 80 内側加熱管
 81 中央加熱管
 82 外側加熱管
 83 第一のヒーター
 84 第二のヒーター
 85 第三のヒーター
 86 第四のヒーター
 90 近似円
 

Claims (6)

  1.  プラスチックを加熱して、溶融し、溶融されたプラスチック溶融体を加熱して、液状化し、液状化したプラスチック液状体を加熱して、気化させ、気化させたプラスチックのガス成分を冷却して、油成分とガス成分に分離するように構成されたプラスチックの連続式油化装置であって、
     前記プラスチック液状体を加熱して、気化させる気化器が川舟状の外形を有する管状部材を備え、前記管状部材の外形の上部が矩形状をなし、前記外形の下部が湾曲状に形成され、管状部材の湾曲状に形成された湾曲部内に前記プラスチック液状体が収容されるように、前記湾曲部が形成され、前記湾曲部の上縁部と前記湾曲部の底部との距離が350mm以下に設定されたことを特徴とするプラスチックの連続式油化装置。
  2.  前記プラスチック液状体の液面の高さ位置が、前記管状部材の前記湾曲部の上縁の高さ位置と実質的に一致するように気化器が構成されたことを特徴とする請求項1に記載のプラスチックの連続式油化装置。
  3.  前記管状部材の前記湾曲部の上縁と前記湾曲部の底部との距離が200mmないし350mmになるように、前記管状部材の前記湾曲部が形成されていることを特徴とする請求項1または2に記載のプラスチックの連続式油化装置。
  4.  前記管状部材の前記湾曲部の上縁と前記湾曲部の底部との距離が250mmないし300mmになるように、前記管状部材の前記湾曲部が形成されていることを特徴とする請求項3に記載のプラスチックの連続式油化装置。
  5.  前記管状部材の前記湾曲部の外形が滑らかな曲線によって形成されていることを特徴とする請求項1ないし4のいずれか1項に記載のプラスチックの連続式油化装置。
  6.  前記管状部材の前記湾曲部の横断面が仮想円を水平面によって切り欠いた形状をなし、前記湾曲部の上縁部が、前記仮想円の中心から鉛直方向に対し、θ/2の角度をなして延びる平面と、-θ/2(θは70度ないし90度である)の角度をなして延びる平面と、仮想円との交線によって画定されていることを特徴とする請求項1ないし5のいずれか1項に記載のプラスチックの連続式油化装置。
     
PCT/JP2015/058078 2015-03-18 2015-03-18 プラスチックの連続式油化装置 WO2016147344A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/058078 WO2016147344A1 (ja) 2015-03-18 2015-03-18 プラスチックの連続式油化装置
JP2015532637A JP5801987B1 (ja) 2015-03-18 2015-03-18 プラスチックの連続式油化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/058078 WO2016147344A1 (ja) 2015-03-18 2015-03-18 プラスチックの連続式油化装置

Publications (1)

Publication Number Publication Date
WO2016147344A1 true WO2016147344A1 (ja) 2016-09-22

Family

ID=54477748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058078 WO2016147344A1 (ja) 2015-03-18 2015-03-18 プラスチックの連続式油化装置

Country Status (2)

Country Link
JP (1) JP5801987B1 (ja)
WO (1) WO2016147344A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183139A (ja) * 1996-12-26 1998-07-14 M C C:Kk 廃プラスチックの油化還元装置
JP2001181442A (ja) * 1999-12-28 2001-07-03 Toshiba Plant Kensetsu Co Ltd 熱分解装置および熱分解方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183139A (ja) * 1996-12-26 1998-07-14 M C C:Kk 廃プラスチックの油化還元装置
JP2001181442A (ja) * 1999-12-28 2001-07-03 Toshiba Plant Kensetsu Co Ltd 熱分解装置および熱分解方法

Also Published As

Publication number Publication date
JPWO2016147344A1 (ja) 2017-04-27
JP5801987B1 (ja) 2015-10-28

Similar Documents

Publication Publication Date Title
US11773330B2 (en) System and process for converting waste plastic into fuel
US9052109B1 (en) Pyrolytic gas processor and tire conversion system therefrom
ES2358200T3 (es) Dispositivo y procedimiento para obtener hidrocarburos fraccionados a partir de sustancias útiles de plástico y/o a partir de sustancias residuales que contienen aceite.
JP5368790B2 (ja) 油化装置
US6126907A (en) Thermal decomposition apparatus of reversed temperature gradient type for polymer waste
BR112021005245A2 (pt) planta de pirólise
BRPI0706854A2 (pt) processo e mecanismo para uso na reciclagem de materiais compostos
PT1745115E (pt) Dispositivo e processo para a extracção e hidrocarbonetos fraccionados a partir de materiais plásticos recicláveis e/ou de resíduos de óleo
JP2005272529A (ja) 廃棄プラスチックの油化設備
JP5801987B1 (ja) プラスチックの連続式油化装置
JP5801986B1 (ja) プラスチックの連続式油化装置
TWI309708B (ja)
US5947721A (en) Recycling apparatus for obtaining oil from plastic waste
US10633595B2 (en) Char separator
JP6184868B2 (ja) 油化装置
JP2010284565A (ja) 有害ガス処理装置及び油化装置
JP2006316196A (ja) 油化装置
JP7307066B2 (ja) プラスティック材料の気化装置、ならびにプラスティック材料から炭化水素化合物を取り出す装置および方法
JP5342791B2 (ja) 廃プラスチックの油化方法及び廃プラスチックの油化装置
JP5586099B2 (ja) 油化装置
EP1108774B1 (en) Thermal decompostion apparatus of reversed temperature gradient type for polymer waste
RU2611864C2 (ru) Устройство для защиты дыхательного оборудования резервуаров от закупорки вязкими фракциями и льдом (варианты)
CN102861450B (zh) 减压短程蒸馏装置及其加热器的自燃清焦方法
CA2781697C (en) System and method for purifying a first liquid content and simultaneously heating a second liquid content
HU226541B1 (en) Apparatus for pyrolyzing scrap rubber and for separation products

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015532637

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885440

Country of ref document: EP

Kind code of ref document: A1