WO2016147269A1 - ハイブリッド建設機械の制御装置 - Google Patents

ハイブリッド建設機械の制御装置 Download PDF

Info

Publication number
WO2016147269A1
WO2016147269A1 PCT/JP2015/057577 JP2015057577W WO2016147269A1 WO 2016147269 A1 WO2016147269 A1 WO 2016147269A1 JP 2015057577 W JP2015057577 W JP 2015057577W WO 2016147269 A1 WO2016147269 A1 WO 2016147269A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
filter
motor generator
regeneration
power running
Prior art date
Application number
PCT/JP2015/057577
Other languages
English (en)
French (fr)
Inventor
新士 石原
星野 雅俊
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to KR1020177011377A priority Critical patent/KR101909403B1/ko
Priority to PCT/JP2015/057577 priority patent/WO2016147269A1/ja
Priority to EP15885367.1A priority patent/EP3269953B1/en
Priority to CN201580059405.5A priority patent/CN107075996B/zh
Priority to JP2017505884A priority patent/JP6255137B2/ja
Priority to US15/526,560 priority patent/US10538236B2/en
Publication of WO2016147269A1 publication Critical patent/WO2016147269A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1886Controlling power supply to auxiliary devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/17Construction vehicles, e.g. graders, excavators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/086Power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/30Auxiliary equipments
    • B60W2710/305Auxiliary equipments target power to auxiliaries
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a control device for a hybrid construction machine, and more specifically, controls the power at the time of regeneration of a diesel particulate filter in a hybrid construction machine having a generator motor for generating power and generating power assist for the engine and engine.
  • the present invention relates to a control device for a hybrid construction machine.
  • a diesel particulate filter (hereinafter simply referred to as “filter”) is used as an exhaust gas aftertreatment device for collecting PM (diesel particulate) contained in exhaust gas of a diesel engine.
  • PM diesel particulate
  • filter regeneration a process called “filter regeneration” is performed in which the accumulated PM is burned and removed by raising and maintaining the catalyst temperature in the filter to a predetermined value or more.
  • the engine is operated when the temperature of the battery is lower than a preset temperature, and a warm-up operation is performed.
  • a method for warming up a hybrid construction machine wherein a heat is generated by operating a generator to charge / discharge the capacitor (see, for example, Patent Document 3).
  • filter regeneration in hybrid construction machines does not require any special operation from the operator, and “continuous regeneration” is automatically performed during construction machine operation. For some reason, the amount of accumulated PM continues to increase.
  • manual regeneration There are two types of processing, “manual regeneration”, which is executed in the event that it has occurred. “Manual regeneration” requests, for example, an operation of “stopping the operation of the hybrid construction machine, raising the gate lock lever, and pressing the filter regeneration switch” to the operator. For this reason, the hybrid construction machine remains in the idle state while “manual regeneration” is being performed.
  • Patent Document 1 The technique described in Patent Document 1 described above is based on the assumption of “manual regeneration”, and “filter regeneration” is a mode in which the motor generator generates power when there is a margin in the amount of power stored in the power storage device. (Regenerative operation) and increasing the engine load to maintain the exhaust gas at a high temperature, and when the power storage amount of the power storage device is greater than or equal to a predetermined value, reducing the load to generate power with the motor generator, An example in which the load applied to the engine by the hydraulic pump is increased is shown. On the other hand, there is no mention of control of the power running operation of the motor generator during filter regeneration or “continuous regeneration”.
  • Patent Document 2 shows a method of appropriately distributing and controlling engine power and motor generator power for the problem of “filter regeneration” in such a hybrid vehicle.
  • this method is effective in a hybrid system in which power can be supplied by each of the engine and the motor generator.
  • the motor generator is mechanically connected to the engine, and power is supplied only by the motor generator. It is difficult to adopt a hybrid construction machine that is difficult to operate because it is difficult to operate with the engine stopped.
  • Patent Document 2 Even if the method of Patent Document 2 can be applied to construction machines by some device, power is supplied only from either the engine or motor generator in the normal travel mode, or only from the engine in the special travel mode. Therefore, there is a possibility that sufficient power cannot be supplied to the hydraulic pump. As a result, the operation of the vehicle body becomes sluggish, which may give the operator a feeling of strangeness.
  • the present invention has been made based on the above-described matters, and an object of the present invention is to control a hybrid construction machine capable of continuing filter regeneration without impairing operability as much as possible regardless of the state of the vehicle body or the power storage device.
  • a device is provided.
  • a first invention includes an engine, a motor generator driven by the engine and capable of generating electric power, a hydraulic pump driven by a total torque of the engine and the motor generator, and the hydraulic pressure A plurality of hydraulic actuators driven by pressure oil discharged from a pump; a power storage device that accumulates the power generated by the motor generator and supplies power for driving the motor generator; the power storage device and the motor power generation A command signal is sent to the inverter for controlling the power running operation or regenerative operation of the motor generator, an inverter for transferring power to and from the machine, a filter for collecting particulate matter in the exhaust gas of the engine
  • the control unit includes a filter regeneration determination unit that determines a request for regeneration of the filter, and A torque command value calculation unit for calculating a normal torque command for the dynamic generator, a normal torque command for the motor generator calculated by the torque command value calculation unit, and a regeneration of the filter determined by the filter regeneration determination unit
  • the power running operation of the motor generator is limited, so that the load borne by the engine can be maintained or increased, and the exhaust gas temperature of the engine is increased / maintained. It can be done easily. Further, in a situation where sufficient power cannot be supplied only by the engine, sufficient power can be supplied to the hydraulic pump using power assist by the motor generator. Thus, the normal operability can be maintained even during filter regeneration.
  • FIG. 1 is a perspective view showing a hybrid excavator provided with a first embodiment of a control device for a hybrid construction machine of the present invention. It is the schematic of the actuator drive system provided with 1st Embodiment of the control apparatus of the hybrid construction machine of this invention. It is a block diagram which shows the control system of the motor generator in 1st Embodiment of the control apparatus of the hybrid construction machine of this invention. It is a rotation speed-torque map for demonstrating an example of the calculation method of the power running possible amount calculating part in 1st Embodiment of the control apparatus of the hybrid construction machine of this invention.
  • FIG. 1 is a perspective view showing a hybrid excavator provided with a first embodiment of a control apparatus for a hybrid construction machine according to the present invention
  • FIG. 2 includes a first embodiment of a control apparatus for a hybrid construction machine according to the present invention.
  • a hybrid excavator 1 includes an articulated front device 1A having a boom 1a, an arm 1b, and a bucket 1c that rotate in a vertical direction, and a vehicle body 1B having an upper swinging body 1d and a lower traveling body 1e. I have.
  • the base end of the boom 1a of the front device 1A is supported by the front part of the upper swing body 1d so as to be rotatable in the vertical direction.
  • the boom 1a, the arm 1b, the bucket 1c, the upper swing body 1d, and the lower travel body 1e are a boom cylinder 3a, an arm cylinder 3b, a bucket cylinder 3c, a swing motor generator 16 (see FIG. 2), and left and right travel motors 3e, Each is driven by 3f.
  • the hydraulic actuators 3a to 3c, 3e, and 3f that drive the boom 1a, the arm 1b, the bucket 1c, and the lower traveling body 1e are referred to as hydraulic working units.
  • the operations of the boom 1a, the arm 1b, the bucket 1c, and the upper swing body 1d are instructed by hydraulic operation signals (control pilot pressure) of the operation lever devices 4a and 4b (see FIG. 2), and the operation of the lower traveling body 1e is not shown. This is instructed by a hydraulic operation signal (control pilot pressure) of the operation pedal device.
  • the actuator drive system in this embodiment shown in FIG. 2 includes a hydraulic drive unit and an electric drive unit.
  • the hydraulic drive unit includes operation lever devices 4a and 4b, a travel operation pedal device (not shown), a direction switching valve 5, a variable displacement hydraulic pump 6, an engine 7, a hydraulic oil tank 8, and a shuttle. And a valve block 9.
  • the operation lever devices 4a and 4b and the operation pedal device are used to open the operation of the pressure reducing valves (remote control valves) provided in the operation lever devices 4a and 4b and the operation pedal device with the primary pressure generated by the discharge oil of a pilot pump (not shown). Depending on the degree, the pressure is reduced to the secondary pressure to generate a control pilot pressure (hydraulic operation signal). The generated control pilot pressure (hydraulic operation signal) is sent to the pressure receiving portion of the direction switching valve 5 to switch the spool of the direction switching valve 5 from the neutral position.
  • the pressure reducing valves remote control valves
  • the generated control pilot pressure is sent to the pressure receiving portion of the direction switching valve 5 to switch the spool of the direction switching valve 5 from the neutral position.
  • the direction switching valve 5 is, for example, an open center type spool valve disposed in the center bypass line, and is switched by a control pilot pressure supplied to the pressure receiving portion.
  • the flow (direction and flow rate) of the pressure oil discharged from the hydraulic pump 6 is controlled, and the driving of the hydraulic actuators 3a to 3c, 3e, 3f is controlled.
  • the hydraulic pump 6 is rotationally driven by an engine 7 and a motor generator 10 described later.
  • the shuttle valve block 9 includes a hydraulic operation signal other than a hydraulic operation signal for instructing a turning operation among hydraulic operation signals (control pilot pressure) generated by the operation lever devices 4a and 4b, and a hydraulic pressure generated by an operation pedal device (not shown). An operation signal is input.
  • the shuttle valve block 9 selects and outputs the hydraulic pressure operation signal having the highest pressure among these input signals.
  • a pipe that connects the operation lever device 4a and the shuttle valve block 9 is provided with a pressure sensor 17 that detects a hydraulic operation signal (control pilot pressure) of the operation lever device 4a.
  • the pressure sensor 18 for detecting a hydraulic operation signal (control pilot pressure) of the operation lever device 4b is provided in the pipe connecting the two.
  • the hydraulic pump 6 is a variable displacement pump and has a positive control regulator 6a.
  • a hydraulic operation signal output from the shuttle valve block 9 is guided to the regulator 6a.
  • the positive control regulator 6a is configured such that the operation amount (required flow rate) of the operation levers and pedals as the operation members of the operation lever devices 4a and 4b and the operation pedal device increases and the hydraulic operation signal increases as the hydraulic operation signal increases.
  • the tilt angle (capacity) of the swash plate is increased. As a result, the discharge flow rate of the hydraulic pump 6 increases.
  • the regulator 6a reduces the swash plate tilt angle (capacity) of the hydraulic pump 6 as the discharge pressure of the hydraulic pump 6 increases so that the absorption torque of the hydraulic pump 6 does not exceed a preset maximum torque.
  • a torque limit control function is provided.
  • the hydraulic pump 6 is provided with a tilt angle sensor 6b that detects the tilt angle (capacity) of the swash plate.
  • a pressure sensor 21 for detecting the discharge pressure of the hydraulic pump 6 is provided in the discharge pipe connecting the hydraulic pump 6 and the direction switching valve 5.
  • the hydraulic load can be estimated according to the turning angle (pump capacity). These correspond to “load calculation means” in the present embodiment.
  • a motor generator 10 mechanically connected to the engine 7, a vehicle body controller 11, inverters 12 and 13, an engine controller 14, a battery 15, A turning motor generator 16, a rotation speed sensor 19 for detecting the rotation speed of the engine 7, and a battery controller 21 are provided.
  • the motor generator 10 is mechanically connected between the hydraulic pump 6 and the engine 7.
  • the motor generator 10 is driven by the function of a generator that converts the motive power of the engine 7 into electric energy (electric power) and outputs the electric energy (electric power) to the inverter 12, and the electric energy (electric power) supplied from the inverter 12. And has a function as an electric motor for assisting driving.
  • the inverter 12 converts AC power generated by the motor generator 10 into DC power and outputs the DC power to the battery 15, and when the motor generator 10 functions as a motor.
  • the DC power from the battery 15 is converted to AC power and supplied to the motor generator 10.
  • the turning motor generator 16 drives and brakes the upper turning body 1d via a drive mechanism (not shown).
  • the turning motor generator 16 functions as an electric motor driven by the electric energy (electric power) supplied from the inverter 13 and the rotational power at the time of braking of the upper-part turning body 1d into electric energy (electric power) to convert it to the inverter 13. Function as a generator to output to the.
  • the inverter 13 converts the regenerated AC power into DC power and outputs it to the battery 15, and when the turning motor generator 16 functions as an electric motor. Converts the DC power from the battery 15 into AC power and supplies it to the turning motor generator 16.
  • the upper swing body 1 d is configured to be driven / brake only by the turning motor generator 16, but instead of the turning motor generator 16, the hydraulic pump 6
  • a hydraulic swing motor that is driven / brake by the pressure oil may be used, or an electric / hydraulic combined swing device that uses the swing motor generator 16 and the hydraulic swing motor together.
  • the battery 15 supplies power to the motor generator 10 and the turning motor generator 16 via the inverters 12 and 13. Further, the battery 15 stores electric energy generated by the motor generator 10 and the turning motor generator 16.
  • the battery 15 is provided with a battery sensor 25 that detects the voltage, current, and temperature of the battery 15, and the voltage, current, and temperature signals of the battery 15 detected by the battery sensor 25 are input to the battery controller 20. .
  • the battery controller 20 estimates the amount of stored electrical energy, that is, the so-called remaining power storage, based on each input detection signal. Moreover, the battery controller 20 outputs a charge / discharge request value to the vehicle body controller 11 as necessary.
  • the engine controller 14 inputs an actual rotational speed signal of the engine 7 detected by the rotational speed sensor 19 and a target rotational speed signal from the vehicle body controller 11 described later, and calculates the rotational speed deviation thereof.
  • the engine controller 14 calculates a target fuel injection amount based on this rotational speed deviation, and outputs a corresponding control signal to the electronic governor 7 a provided in the engine 7.
  • the electronic governor 7 a is operated by this control signal, injects fuel corresponding to the target fuel injection amount, and supplies it to the engine 7.
  • the target rotational speed is set using the encon dial 22 with a value set by the operator according to the work content.
  • the target rotational speed signal set by the encon dial 22 is input to the vehicle body controller 11 and is output from the vehicle body controller 11 to the engine controller 14.
  • a filter 23 is provided in the exhaust gas pipe of the engine 7 as a post-processing device.
  • a differential pressure sensor 24 for detecting the differential pressure of the filter 23 is provided before and after the filter 23 in the exhaust gas pipe line.
  • the differential pressure signal of the filter 23 detected by the differential pressure sensor 24 is input to the engine controller 14 and also output to the vehicle body controller 11.
  • the vehicle body controller 11 estimates the amount of PM collected based on the value of the differential pressure signal, and determines whether to perform filter regeneration.
  • the vehicle body controller 11 includes a control arithmetic circuit, and performs the following four controls related to the motor generator 10 in this control arithmetic circuit.
  • the motor generator 10 When the hydraulic load (pump absorption torque) of the hydraulic pump 6 is large and sufficient power cannot be supplied only by the power of the engine 7, the motor generator 10 is operated in a power running manner to supply sufficient power to the hydraulic pump 6. This assist operation is called power assist.
  • the motor generator 10 is operated to perform a power running operation. The rotation speed is quickly matched with the target rotation speed. This assist operation is called acceleration assist.
  • Regenerative control is performed to generate surplus power, and control to store the generated surplus power in the battery 15 is performed.
  • the inverter 12 is controlled to control the motor generator 10.
  • the power of the battery 15 is supplied to the motor generator 10 to operate the motor generator 10 as an electric motor, and the hydraulic pump 6 is assisted.
  • Control during filter regeneration The vehicle body controller 11 determines whether or not to perform filter regeneration, and performs various restriction controls on the control contents (1) to (3) during filter regeneration.
  • FIG. 3 is a block diagram showing the motor generator control system in the first embodiment of the control device for the hybrid construction machine of the present invention.
  • the same reference numerals as those shown in FIGS. 1 and 2 are the same parts, and detailed description thereof is omitted.
  • the vehicle body controller 11 is composed of 15 calculation units. These calculation units are a calculation group 300a that controls the motor generator in a normal state, and a calculation group 300b that performs effective power running limitation during filter regeneration. And a plurality of calculation units that calculate signals to be input to these calculation groups, and a motor generator control unit 315 that outputs a command signal to the inverter 12.
  • the “computation group 300a for controlling the motor generator at normal time” includes a power assist computation unit 304, an acceleration assist computation unit 307, and a torque command value computation unit 310.
  • a plurality of calculation units that calculate signals to be input to the “calculation group 300a that controls the motor generator in normal time” are a hydraulic load calculation unit 301, a lever input determination unit 302, an engine output measurement unit 303, a target A rotation speed setting unit 305, a rotation speed measurement unit 306, a power storage device management unit 308, and a charge / discharge request calculation unit 309 are provided.
  • the hydraulic load calculation unit 301 inputs a tilt angle (pump capacity) signal of the swash plate of the hydraulic pump 6 detected by the tilt angle sensor 6 b and a discharge pressure signal of the hydraulic pump 6 detected by the pressure sensor 21.
  • the load of the hydraulic pump 6 is calculated from these signals.
  • a target value of the pump volume based on the lever operation amount from the lever input determination unit 302 may be used.
  • the calculated load signal of the hydraulic pump 6 is output to the power assist calculation unit 304 and a power running possible amount calculation unit 313 described later.
  • the lever input determination unit 302 takes in a hydraulic operation signal (control pilot pressure) of the operation lever detected by the pressure sensors 17 and 18, an operation amount of an operation pedal (not shown), a position signal of the gate lock lever, and the like, and outputs these status signals. Are output to the hydraulic load calculation unit 301 and a power running prohibition determination unit 312 described later.
  • the engine output measuring unit 303 measures the load borne by the engine 7 based on the torque signal of the engine 7 output from the engine controller 14 and the actual rotational speed signal of the engine 7.
  • the measured load signal borne by the engine 7 is output to the power assist calculation unit 304 and the torque command value calculation unit 310.
  • the power assist calculation unit 304 receives the load signal of the hydraulic pump 6 calculated by the hydraulic load calculation unit 301 and the load signal borne by the engine 7 measured by the engine output measurement unit 303, and determines the hydraulic pressure from these deviations. A shortage of power to be supplied to the pump 6 is calculated, and a force action force (power running torque) to be borne by the motor generator 10 is calculated. The signal of the calculated force action force (power running torque) is output to the torque command value calculation unit 310.
  • the target engine speed setting unit 305 inputs a target engine speed signal set by the operator via the encon dial 22, and sets the engine target engine speed in accordance with the target engine speed signal.
  • the set engine target speed signal is output to the acceleration assist calculation unit 307.
  • the rotational speed measurement unit 306 inputs and uses the actual rotational speed signal of the engine 7 detected by the rotational speed sensor 19 output from the engine controller 14. Further, a motor rotation number signal used for controlling the motor generator 10 may be used. The measured rotation speed measurement signal is output to the acceleration assist calculation unit 307.
  • the acceleration assist calculation unit 307 inputs the engine target rotation speed signal set by the target rotation speed setting unit 305 and the actual rotation speed signal of the engine 7 measured by the rotation speed measurement unit 306 so as to eliminate these deviations. Then, the force action force (power running torque) to be borne by the motor generator 10 is calculated. When the actual engine speed signal of the engine 7 exceeds the target engine speed signal (over rev), the acceleration assist calculation unit 307 performs the regenerative operation instead of the power running operation so as to eliminate this early. Is commanded. For these calculations, PI control may be used, or a torque table determined for the deviation may be used. The signal of the calculated force action force (power running torque) is output to the torque command value calculation unit 310.
  • the power storage device management unit 308 measures the remaining power level and temperature calculated by the battery controller 20 based on the voltage, current, and temperature signals of the battery 15 detected by the battery sensor 25. Signals such as the measured remaining power and temperature are output to the charge / discharge request calculation unit 309.
  • the charge / discharge request calculation unit 309 receives signals such as the remaining power storage and temperature measured by the power storage device management unit 308, and calculates a charge / discharge request based on these signals.
  • the basic operation of the charge / discharge request calculation unit 309 is to output a charge request when the current power storage remaining amount is small with respect to the target power storage remaining amount, and when the current power storage remaining amount is larger than the target power storage remaining amount. Is to output a discharge request.
  • the charge / discharge request calculation unit 309 may switch the charge request as appropriate.
  • the calculated charge / discharge request signal is output to torque command value calculation section 310.
  • the torque command value calculation unit 310 includes a signal of power action force (power running torque) calculated by the power assist calculation unit 304, a load signal borne by the engine 7 measured by the engine output measurement unit 303, and an acceleration assist calculation unit.
  • the signal of the power action force (power running torque) calculated by 307 and the charge / discharge request signal calculated by the charge / discharge request calculation unit 309 are input, and the torque command value for the motor generator 10 is calculated based on these input signals. To do.
  • the calculated torque command value is output to a powering operation restriction unit 314 described later.
  • the “calculation group 300b that performs effective power running restriction during filter regeneration” includes a power running prohibition determination unit 312, a power running possible amount calculation unit 313, and a power running operation restriction unit 314.
  • a plurality of calculation units that calculate signals to be input to the “calculation group 300b that performs effective power running restriction during filter regeneration” include a hydraulic load calculation unit 301, a lever input determination unit 302, and a filter regeneration determination unit 311. ing.
  • the filter regeneration determination unit 311 receives the differential pressure signal of the filter 23 detected by the differential pressure sensor 24, and determines the filter regeneration request based on the input differential pressure signal, the elapsed time since the end of the previous filter regeneration, and the like. To do. As described above, the filter regeneration request includes “continuous regeneration” in which filter regeneration is automatically performed during the operation of the hybrid excavator 1 without requiring a special operation from the operator, and “hybrid excavator”. There are two regeneration requests, “manual regeneration” that requires an operation of “stopping operation 1, raising the gate lock lever, and pressing the filter regeneration switch”. The filter regeneration request signal determined by the filter regeneration determination unit 311 is output to the power running operation restriction unit 314.
  • the power running prohibition determination unit 312 inputs the signals determined by the lever input determination unit 302 and determines power running prohibition based on these signals. Specifically, the motor generator 10 can be powered when the gate lock lever is raised or when it is determined that neither the operation lever device 4a or 4b nor the operation pedal device is operated by the operator. A command for limiting the amount to 0 [Nm] is output. No command is issued to limit the amount of power that can be generated. The restriction command from the power running prohibition determination unit 312 is output to the power running operation restriction unit 314.
  • the power running possible amount calculation unit 313 receives the load signal of the hydraulic pump 6 calculated by the hydraulic load calculation unit 301 and calculates the power running possible amount of the motor generator 10 based on this input signal.
  • the calculated power running possible amount signal is output to the power running motion restriction unit 314.
  • a calculation method in the power running amount calculation unit 313 will be described with reference to FIG.
  • FIG. 4 is a rotation speed-torque map diagram for explaining an example of a calculation method of a power running amount calculation unit in the first embodiment of the control device for a hybrid construction machine of the present invention.
  • the horizontal axis represents the engine speed and the vertical axis represents the engine torque.
  • the characteristic of the hydraulic load in FIG. 4 is shown as one example in the present embodiment.
  • the characteristic of the idle load is a characteristic determined by the engine 7, and similarly, the characteristic of the minimum reproducible torque indicates the characteristic of the minimum torque of the engine 7 that can perform the filter regeneration.
  • a hatched portion surrounded by the maximum engine torque characteristic and the reproducible minimum torque characteristic indicates a filter reproducible region.
  • the regeneration of the filter can be completed in a short time because the exhaust gas temperature becomes high in the area where the engine torque is large.
  • the regeneration time of the filter becomes long because the exhaust gas temperature becomes low.
  • the output (amount of power running) of the power running calculation unit 313 is “difference between hydraulic load and idle load”. Further, a desirable powering possible amount is “a difference obtained by subtracting the sum of the idle load and the torque margin value from the hydraulic load”. This ensures engine torque and promotes reliable filter regeneration.
  • filter regeneration can be maintained even in a region where the engine torque is slightly lower than the idle load. For this reason, the power running prohibition determination unit 312 may not be provided.
  • the power running operation restriction unit 314 inputs the filter regeneration request signal determined by the filter regeneration determination unit 311, and responds to the torque command to the motor generator 10 calculated by the torque command calculation unit 310.
  • the powering possible amount calculated by the powering possible amount calculating unit 313 is limited to the upper limit, and when the powering prohibition determining unit 312 determines that powering is prohibited, the powering possible amount is limited to 0 [Nm]. .
  • a value obtained by the power running operation restriction unit 314 is output to the motor generator control unit 315 as a final torque command to the motor generator 10.
  • the motor generator control unit 315 inputs a torque command to the final motor generator 10 from the power running operation limiting unit 314, calculates a command to the inverter 12 for generating such torque, and calculates the calculated command The signal is output to the inverter 12.
  • FIG. 5 is a rotation speed-torque map diagram for explaining another example of the calculation method of the power running amount calculation unit in the first embodiment of the control device for the hybrid construction machine of the present invention.
  • the horizontal axis represents the engine speed and the vertical axis represents the engine torque.
  • the characteristic of the hydraulic load in FIG. 5 is larger than the maximum engine torque characteristic. Other characteristics are the same as those in FIG. In FIG. 5, since the hydraulic load is sufficiently large, the power running possible amount calculated by the power running possible amount calculating unit 313 matches the maximum torque determined by the specifications of the motor generator 10.
  • the power assist amount since the signal of the power action force (power assist amount) calculated by the power assist calculation unit 304 is determined by the difference between the hydraulic load and the maximum engine torque, the power assist amount becomes smaller than the power running possible amount. In such a case, since the power running amount is not limited by the power running operation restriction unit 314, the motor generator 10 performs power running according to the power assist amount described above.
  • FIG. 6 is a flowchart showing the control processing contents of the motor generator during filter regeneration in the first embodiment of the control device for a hybrid construction machine of the present invention.
  • the vehicle body controller 11 calculates a torque command value (step S1). Specifically, torque command value calculation unit 310 calculates a torque command value for motor generator 10 based on various input signals.
  • the vehicle body controller 11 determines whether or not the filter is being regenerated (step S2). Specifically, the filter regeneration determination unit 311 determines the filter regeneration request based on the differential pressure signal of the filter 23, the elapsed time from the end of the previous filter regeneration, and the like. If it is determined that the filter 23 is not being reproduced, the process proceeds to (Step S3). Otherwise, the process proceeds to (Step S4).
  • Step S3 When it is determined that the filter is not being regenerated in (Step S2), the vehicle body controller 11 does not perform power running restriction (Step S3).
  • the power generator operation limiter 314 is not limited, and the motor generator 10 is controlled according to the torque command value calculated by the torque command value calculator 310.
  • Step S2 when it is determined in (Step S2) that the filter is being regenerated, the vehicle body controller 11 determines whether the regeneration is manual regeneration or continuous regeneration (Step S4). Specifically, the filter regeneration determination unit 311 determines. If it is determined that manual regeneration is performed, the process proceeds to (Step S6). If it is determined that continuous regeneration is performed, the process proceeds to (Step S5).
  • Step S5 the vehicle body controller 11 determines whether or not the hybrid excavator 1 is idle (Step S5). Specifically, the lever input determination unit 302 determines that the vehicle is idle when the lever operation is not performed for a certain period of time or when the gate lock lever is raised. If it is determined that the engine is idling, the process proceeds to (Step S6). If it is determined that the engine is not idling (load operation is performed), the process proceeds to (Step S7).
  • Step S6 the vehicle body controller 11 limits the power running amount to a minimum (Step S6). Specifically, this corresponds to the case where the power running operation restriction unit 314 inputs the manual regeneration signal from the filter regeneration determination unit 311 and the case where the power running prohibition signal from the power running prohibition determination unit 312 is input during idling.
  • the torque command value from the command value calculation unit 310 is limited.
  • Step S7 the vehicle body controller 11 determines whether or not the power running command is greater than the hydraulic load. Specifically, the power running amount calculation unit 313 of the controller 11 calculates the power running amount based on the hydraulic load calculated by the hydraulic load calculation unit 301 and outputs the power running amount to the power running operation restriction unit 314. The power running operation limiting unit 314 makes the determination by comparing the power running command calculated by the torque command value computing unit 310 with the power running possible amount (hydraulic load reference). If it is determined that the power running command is greater than the hydraulic load (power running possible amount), the process proceeds to (Step S8), and otherwise the process proceeds to (Step S3).
  • Step S7 If it is determined in (Step S7) that the power running command is not larger than the hydraulic load (power running possible amount), the vehicle body controller 11 does not perform power running restriction (Step S3).
  • the torque of the engine 7 can be kept within the reproducible region, so that the power running restriction is not performed.
  • Step S7 When it is determined in (Step S7) that the power running command is larger than the hydraulic load (a possible power running amount), the vehicle body controller 11 limits the power running command to less than the hydraulic load (Step S8). Specifically, the power running operation restriction unit 314 is executed by limiting the power running command calculated by the torque command value calculation unit 310 to the power running possible amount calculated based on the hydraulic load.
  • the power running operation of the motor generator 10 is limited, so the load borne by the engine 7 Can be maintained or increased, and the exhaust gas temperature of the engine 7 can be easily raised / maintained. Further, in a situation where the engine 7 alone cannot supply sufficient power, it is possible to supply sufficient power to the hydraulic pump 6 using power assist by the motor generator 10. Thus, the normal operability can be maintained even during filter regeneration.
  • the control device for a hybrid construction machine of the present invention it is performed when the PM accumulation amount becomes a predetermined value or more because the filter 23 cannot be continuously regenerated.
  • the power running possible amount of the motor generator 10 is limited to a predetermined value or less, so that the load applied to the engine 7 should be maintained at a value that allows the filter regeneration to continue even in manual regeneration performed in an idle state. Can do.
  • the power storage device battery 15
  • the power storage device can be discharged even in an idle state during manual regeneration of the filter 23. For this reason, it is possible to eliminate overcharge of the power storage device (battery 15), warm up the battery by self-heating, and the like.
  • the hybrid construction machine idle A load equivalent to time can be applied to the engine 7. This can prevent the regeneration of the filter 23 from being interrupted during the continuous regeneration.
  • the 10 power running possible amount of a motor generator is changed according to a hydraulic pump load, the situation where the supply power to the hydraulic pump 6 is insufficient can be avoided.
  • the power running possible amount of the motor generator 10 is the same value as that at the time of manual regeneration. Therefore, it is possible to continue filter regeneration in an idle state without distinguishing between manual regeneration and continuous regeneration of filter regeneration. Thus, the normal operability can be maintained even during filter regeneration.
  • FIG. 7 is a schematic diagram of an actuator drive system provided with a second embodiment of the control device for a hybrid construction machine according to the present invention.
  • FIG. 8 is an electric diagram of the second embodiment of the control device for the hybrid construction machine according to the present invention. It is a block diagram which shows the control system of a generator. 7 and 8, the same reference numerals as those shown in FIGS. 1 to 6 are the same parts, and detailed description thereof is omitted.
  • the second embodiment of the control device for a hybrid construction machine according to the present invention shown in FIG. 7 is composed of almost the same equipment as the first embodiment, but differs in the following configuration.
  • the present embodiment is different from the first embodiment in that an electric heater 26 and an inverter 27 that controls electric power supplied to the electric heater 26 are newly provided in the vicinity of the filter 23.
  • an electric heater 26 and an inverter 27 are added to the schematic diagram of the actuator drive system provided with the first embodiment of the control device for the hybrid construction machine shown in FIG. In FIG. 2, signal lines and some of the components are omitted from FIG.
  • the electric heater 26 generates heat by the electric power generated by the motor generator 10 or the electric power supplied from the battery 15 that is a power storage device, raises the temperature of the filter 23, and promotes filter regeneration. Used for.
  • the charge / discharge request signal is input from the charge / discharge request calculation unit 309 to the torque command value calculation unit 310.
  • the charge request is issued from the charge / discharge request calculation unit 309. The only difference is that only the signal is input to the torque command value calculation unit 310.
  • an electric heater control unit 801 is provided, and a discharge request signal is input from the charge / discharge request calculation unit 309.
  • the electric heater control unit 801 calculates a command to the inverter 27 according to the input discharge request signal, and outputs the calculated command signal to the inverter 27. As a result, the electric heater 26 is heated.
  • the discharge request signal from the charge / discharge request calculation unit 309 is not input to the torque command value calculation unit 310, the discharge request signal does not affect the control of the motor generator 10. .
  • the motor generator 10 does not power.
  • the engine torque can always be maintained at or above the idle load, so that the operating point of the engine 7 can be prevented from deviating from the filter reproducible region.
  • the motor generator 10 When a charge request signal is input from the charge / discharge request calculation unit 309 to the torque command value calculation unit 310, the motor generator 10 performs a regenerative operation, so the load on the engine 7 increases and the exhaust gas temperature rises. As a result, the temperature of the filter 23 can be increased.
  • the motor generator 10 when a discharge request signal is output from the charge / discharge request calculation unit 309, the motor generator 10 does not operate, but the filter 23 is heated by heating the electric heater 26 from the electric heater control unit 801 via the inverter 27. Can be raised.
  • the discharge request and the charge request from the charge / discharge request calculation unit 309 can be executed without restriction, warming up of the power storage device (battery 15) by self-heating can be executed efficiently.
  • the engine load is generated by the motor generator 10 in response to the charging request from the power storage device (battery 15). Therefore, the temperature of the exhaust gas can be raised. Further, in response to a discharge request from the power storage device (battery 15), power is supplied to the electric heater 26, so that the catalyst temperature of the filter 23 can be easily raised and maintained. As a result, filter regeneration can be performed efficiently.
  • the motor generator 10 is not operated in response to a discharge request from the power storage device (battery 15).
  • the exhaust gas temperature can be easily maintained at a high temperature.
  • the battery can be easily warmed up by self-heating.
  • a second electric heater may be provided for warming up the battery in addition to the first electric heater for filter regeneration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 車体や蓄電装置の状態に関わらず、できる限り操作性を損ねることなくフィルタ再生を継続することのできるハイブリッド建設機械の制御装置を提供する。 エンジンと、エンジンによって駆動され発電可能な電動発電機と、エンジンと電動発電機の合計トルクで駆動される油圧ポンプと、蓄電装置と、インバータと、エンジンの排気ガス中の粒子状物質を捕集するフィルタと、電動発電機の力行動作または回生動作を制御する指令信号を出力する制御部を備えたハイブリッド建設機械の制御装置において、トルク指令値演算部が演算した電動発電機の通常のトルク指令とフィルタ再生判断部が判断したフィルタの再生の要求信号とを入力して、これらの信号に応じて指令信号を演算する力行動作制限部とを有し、力行動作制限部は、フィルタの再生の要求信号があるときには、電動発電機の力行動作を制限する指令信号を演算する。

Description

ハイブリッド建設機械の制御装置
 本発明は、ハイブリッド建設機械の制御装置に係り、さらに詳しくは、エンジンとエンジンの動力アシストと発電を行う発電電動機を備えたハイブリッド建設機械における、ディーゼル微粒子捕集フィルタの再生時の動力を制御するハイブリッド建設機械の制御装置に関する。
 ディーゼルエンジンに油圧ポンプと電動発電機とを連結し、油圧ポンプによって油圧アクチュエータを駆動すると共に、電動発電機の発電作用によって蓄電装置を充電し、電動発電機の電動作用によってディーゼルエンジンをアシストするハイブリッド建設機械がある。
 このようなハイブリッド建設機械においては、ディーゼルエンジンの排気ガス中に含まれるPM(ディーゼル微粒子)を捕集するための排気ガス後処理装置としてディーゼル微粒子捕集フィルタ(以下、単に「フィルタ」という)を設けている。フィルタに所定値以上のPMが堆積すると、目詰まりを起こすので、フィルタ内の触媒温度を所定値以上に昇温・維持することで堆積したPMを燃焼除去する「フィルタ再生」という処理が行われる。
 フィルタ再生処理を行う際にもエンジン出力を有効に利用することで、エネルギ効率を向上させるために、蓄電装置の蓄電量が閾値より小さいときには、電動発電機によりディーゼルエンジンに加わる負荷を大きくした状態でフィルタ再生するハイブリッド型ショベルがある(例えば、特許文献1参照)。
 また、電気によるモータ走行と化石燃料によるエンジン走行とを切り換えて走行を行うパラレルハイブリッド自動車において、モータ走行が長い時間行われたことによるエンジン排気通路にある触媒の浄化性能の悪化を防止するために、モータによる走行が長い時間行われた後には、エンジンのみで走行する特別走行モードに切り換えて、速やかに触媒の温度を上昇させるようにして有害物質の排出の増加を防止したハイブリッド自動車がある(例えば、特許文献2参照)。
 さらに、低温環境下において、加熱装置を用いることなく効率的に蓄電器を暖めることを目的として、蓄電器の温度が予め設定された温度より低いときにエンジンを作動させて暖機運転を行うと共に、電動発電機を作動させて前記蓄電器を充放電させることにより、前記蓄電器を発熱させることを特徴とするハイブリッド式建設機械の暖機方法がある(例えば、特許文献3参照)。
特開2013-24166号公報 特開2001-115869号公報 特開2010-127271号公報
 一般に、ハイブリッド建設機械における「フィルタ再生」は、オペレータに対して特別な操作を要求せず建設機械の動作中に自動的に実行される「連続再生」と、何らかの理由でPM堆積量が増え続けてしまった場合に実行される「手動再生」の2種類の処理がある。「手動再生」は、例えば、オペレータに対して「ハイブリッド建設機械の操作を停止し、ゲートロックレバーを上げ、フィルタ再生スイッチを押す」という操作を要求する。このため、「手動再生」が実施されている期間、ハイブリッド建設機械はアイドル状態に保たれたままとなる。
 上述した特許文献1に記載の技術は、「手動再生」を前提としたものであって、「フィルタ再生」の態様としては、蓄電装置の蓄電量に余裕がある場合に、電動発電機で発電を行って(回生動作)、エンジン負荷を増加させることにより排気ガスを高温に維持する例と、蓄電装置の蓄電量が所定値以上ある場合に、電動発電機で発電を行う負荷を減らしながら、油圧ポンプによってエンジンにかける負荷を大きくする例とが示されている。一方、フィルタ再生中における電動発電機の力行動作の制御や「連続再生」については、言及されていない。
 このため、「連続再生」時における電動発電機のアシスト制御が不明となり、油圧ポンプに十分な動力が供給できない場合には、車体の動作が緩慢になりオペレータに違和感を与える虞がある。
 また、例えば、特許文献3に記載の蓄電装置の暖機と「フィルタ再生」とを同時に行う必要が生じた場合には、以下のような問題が生起する。 
 蓄電装置の暖機は電動発電機を作動させて充放電を行う。蓄電装置の充電のために電動発電機を回生させると蓄電量が増加するので、所定値まで充電できるが、蓄電装置の放電のために電動発電機を力行させるとエンジンの負荷が減るので、排気ガスの高温を維持できなくなる。また、蓄電装置の充電量が所定値以上のときには、電動発電機の回生が困難になる。これらのことにより、蓄電装置の暖機中には「フィルタ再生」を中断しなければならない可能性が生じる。
 特許文献2に記載の技術は、このようなハイブリッド車における「フィルタ再生」の問題に対して、エンジンの動力と電動発電機の動力を適切に配分制御する方法を示したものである。しかしながら、この方法は、エンジンと電動発電機のそれぞれで動力を供給可能なハイブリッド方式で有効な方法であり、エンジンに機械的に接続された電動発電機を備え,電動発電機のみでの動力供給が困難なハイブリッド方式の建設機械では、エンジンを停止した状態での動作が困難であるため採用できない。
 また、何らかの工夫により特許文献2の方式を建設機械に適用できたとしても、通常走行モードではエンジンもしくは電動発電機のどちらか片方からのみ、特別走行モードではエンジンからのみ、動力が供給されることになるため、油圧ポンプに十分な動力が供給できない可能性がある。この結果、車体の動作が緩慢になりオペレータに違和感を与える虞がある。
 本発明は、上述の事柄に基づいてなされたもので、その目的は、車体や蓄電装置の状態に関わらず、できる限り操作性を損ねることなくフィルタ再生を継続することのできるハイブリッド建設機械の制御装置を提供するものである。
 上記の目的を達成するために、第1の発明は、エンジンと、エンジンによって駆動され発電可能な電動発電機と、前記エンジンと前記電動発電機の合計トルクで駆動される油圧ポンプと、前記油圧ポンプから吐出された圧油で駆動する複数の油圧アクチュエータと、前記電動発電機が発電した電力を蓄積し、前記電動発電機を駆動する電力を供給する蓄電装置と、前記蓄電装置と前記電動発電機との間の電力授受を行うインバータと、前記エンジンの排気ガス中の粒子状物質を捕集するフィルタと、前記電動発電機の力行動作または回生動作を制御するために前記インバータへ指令信号を出力する制御部を備えたハイブリッド建設機械の制御装置において、前記制御部は、前記フィルタの再生の要求を判断するフィルタ再生判断部と、前記電動発電機の通常のトルク指令を演算するトルク指令値演算部と、前記トルク指令値演算部が演算した前記電動発電機の通常のトルク指令と前記フィルタ再生判断部が判断した前記フィルタの再生の要求信号とを入力して、これらの信号に応じて前記指令信号を演算する力行動作制限部とを有し、前記力行動作制限部は、前記フィルタの再生の要求信号があるときには、前記電動発電機の力行動作を制限する指令信号を演算することを特徴とする。
 本発明によれば、フィルタ再生指令が入力された際に、電動発電機の力行動作を制限するので、エンジンが負担する負荷を維持もしくは増加させることができ、エンジンの排気ガス温度を上昇/維持しやすくできる。また、エンジンだけでは十分な動力を供給できない状況においては、電動発電機による動力アシストを利用して油圧ポンプに十分な動力を供給できる。このことにより、通常時の操作性をフィルタ再生中であっても維持することができる。
本発明のハイブリッド建設機械の制御装置の第1の実施の形態を備えたハイブリッドショベルを示す斜視図である。 本発明のハイブリッド建設機械の制御装置の第1の実施の形態を備えたアクチュエータ駆動システムの概略図である。 本発明のハイブリッド建設機械の制御装置の第1の実施の形態における電動発電機の制御システムを示すブロック図である。 本発明のハイブリッド建設機械の制御装置の第1の実施の形態における力行可能量演算部の演算方法の一例を説明するための回転数―トルクマップ図である。 本発明のハイブリッド建設機械の制御装置の第1の実施の形態における力行可能量演算部の演算方法の他の例を説明するための回転数―トルクマップ図である。 本発明のハイブリッド建設機械の制御装置の第1の実施の形態におけるフィルタ再生中の電動発電機の制御処理内容を示すフローチャート図である。 本発明のハイブリッド建設機械の制御装置の第2の実施の形態を備えたアクチュエータ駆動システムの概略図である。 本発明のハイブリッド建設機械の制御装置の第2の実施の形態における電動発電機の制御システムを示すブロック図である。
 以下、本発明のハイブリッド建設機械の制御装置の実施の形態を図面を用いて説明する。
 図1は本発明のハイブリッド建設機械の制御装置の第1の実施の形態を備えたハイブリッドショベルを示す斜視図、図2は本発明のハイブリッド建設機械の制御装置の第1の実施の形態を備えたアクチュエータ駆動システムの概略図である。 
 図1において、ハイブリッドショベル1は、垂直方向にそれぞれ回動するブーム1a、アーム1b及びバケット1cを有する多関節型のフロント装置1Aと、上部旋回体1d及び下部走行体1eを有する車体1Bとを備えている。フロント装置1Aのブーム1aの基端は、上部旋回体1dの前部に垂直方向に回動可能に支持されている。ブーム1a、アーム1b、バケット1c、上部旋回体1d及び下部走行体1eは、ブームシリンダ3a、アームシリンダ3b、バケットシリンダ3c、旋回用電動発電機16(図2参照)及び左右の走行モータ3e、3fによりそれぞれ駆動される。なお、ブーム1a、アーム1b、バケット1c、及び下部走行体1eを駆動する油圧アクチュエータ3a~3c,3e,3fを油圧作業部という。
 ブーム1a、アーム1b、バケット1c、上部旋回体1dの動作は操作レバー装置4a、4b(図2参照)の油圧操作信号(制御パイロット圧力)により指示され、下部走行体1eの動作は図示しない走行用の操作ペダル装置の油圧操作信号(制御パイロット圧力)により指示される。
 図2に示す本実施の形態におけるアクチュエータ駆動システムは、油圧駆動部と電動駆動部とを備えている。油圧駆動部としては、操作レバー装置4a,4bと、図示しない走行用の操作ペダル装置と、方向切換弁5と、可変容量型の油圧ポンプ6と、エンジン7と、作動油タンク8と、シャトル弁ブロック9とを備えている。
 操作レバー装置4a,4b及び操作ペダル装置は、図示しないパイロットポンプの吐出油により生成された1次圧を操作レバー装置4a,4b及び操作ペダル装置に備えられた減圧弁(リモコン弁)の操作開度に応じて2次圧に減圧して制御パイロット圧力(油圧操作信号)を生成する。生成された制御パイロット圧力(油圧操作信号)は、方向切換弁5の受圧部に送られ、方向切換弁5の当該スプールを中立位置から切換え操作する。
 方向切換弁5は、例えばセンタバイパスラインに配置されるオープンセンタタイプのスプール弁であり、受圧部に供給される制御パイロット圧力により切り換え操作される。このことにより、油圧ポンプ6が吐出する圧油の流れ(方向と流量)を制御し、油圧アクチュエータ3a~3c,3e,3fの駆動を制御する。油圧ポンプ6は、エンジン7と後述する電動発電機10とにより回転駆動される。
 なお、図示しないゲートロックレバーが上がっている場合には、上述した制御パイロット圧力(油圧操作信号)が方向切換弁5の受圧部に供給されないので、オペレータが操作レバー装置4a,4b及び操作ペダル装置を操作しても、油圧アクチュエータは動作しない。操作レバー装置4a,4b及び操作ペダル装置と、ゲートロックレバーとをまとめて、本実施の形態における「レバー入力判断手段」とする。
 シャトル弁ブロック9には、操作レバー装置4a,4bが生成する油圧操作信号(制御パイロット圧力)のうち旋回操作を指示する油圧操作信号以外の油圧操作信号と、図示しない操作ペダル装置が生成する油圧操作信号が入力される。シャトル弁ブロック9は、これら入力信号のうちの最も圧力の高い油圧操作信号を選択して出力する。操作レバー装置4aとシャトル弁ブロック9とを接続する配管には、操作レバー装置4aの油圧操作信号(制御パイロット圧力)を検出する圧力センサ17が設けられ、操作レバー装置4bとシャトル弁ブロック9とを接続する配管には、操作レバー装置4bの油圧操作信号(制御パイロット圧力)を検出する圧力センサ18が設けられている。
 油圧ポンプ6は、可変容量型のポンプであって、ポジティブ制御方式のレギュレータ6aを有している。レギュレータ6aには、シャトル弁ブロック9の出力する油圧操作信号が導かれている。ポジティブ制御方式のレギュレータ6aは、操作レバー装置4a,4b及び操作ペダル装置の操作部材である操作レバー及びペダルの操作量(要求流量)が増加して、油圧操作信号が上昇するにしたがって油圧ポンプ6の斜板傾転角(容量)を増加させる。このことにより、油圧ポンプ6の吐出流量が増加する。また、レギュレータ6aは、油圧ポンプ6の吐出圧力が高くなるにしたがって油圧ポンプ6の斜板傾転角(容量)を減らして、油圧ポンプ6の吸収トルクを予め設定した最大トルクを越えないように制御するトルク制限制御機能を備えている。油圧ポンプ6には、斜板の傾転角(容量)を検出する傾転角センサ6bが設けられている。
 油圧ポンプ6と方向切換弁5とを接続する吐出配管には、油圧ポンプ6の吐出圧を検出する圧力センサ21が設けられている。圧力センサ21が検出する油圧ポンプ6の吐出圧と、圧力センサ17,18が検出する操作レバー装置4a,4bの油圧操作信号(制御パイロット圧力)又は傾転角センサ6bが検出する斜板の傾転角(ポンプ容量)に応じて、油圧負荷を推測することができる。これらは、本実施の形態における「負荷演算手段」に相当する。
 本実施の形態におけるアクチュエータ駆動システムの電動駆動部としては、エンジン7と機械的に接続された電動発電機10と、車体コントローラ11と、インバータ12,13と、エンジンコントローラ14と、バッテリ15と、旋回用電動発電機16と、エンジン7の回転数を検出する回転数センサ19と、バッテリコントローラ21とを備えている。
 電動発電機10は、油圧ポンプ6とエンジン7の間に機械的に連結されている。電動発電機10は、エンジン7の動力を電気エネルギ(電力)に変換してインバータ12に出力する発電機としての機能と、インバータ12から供給される電気エネルギ(電力)により駆動され、油圧ポンプ6をアシスト駆動する電動機としての機能とを有している。
 インバータ12は、電動発電機10が発電機として機能するときは、電動発電機10で生成した交流電力を直流電力に変換してバッテリ15に出力し、電動発電機10が電動機として機能するときは、バッテリ15からの直流電力を交流電力に変換して電動発電機10に供給する。
 旋回用電動発電機16は、上部旋回体1dを図示しない駆動機構を介して駆動及び制動する。旋回用電動発電機16は、インバータ13から供給される電気エネルギ(電力)により駆動する電動機としての機能と、上部旋回体1dの制動時の回転動力を電気エネルギ(電力)に変換してインバータ13に出力する発電機としての機能とを備えている。
 インバータ13は、旋回用電動発電機16が制動時に発電機として機能するときは、回生した交流電力を直流電力に変換してバッテリ15に出力し、旋回用電動発電機16が電動機として機能するときは、バッテリ15からの直流電力を交流電力に変換して旋回用電動発電機16に供給する。
 なお、本実施の形態においては、図2に示すように上部旋回体1dを旋回用電動発電機16のみで駆動/制動する構成としているが、旋回用電動発電機16の代わりに油圧ポンプ6からの圧油によって駆動/制動する油圧旋回モータを用いても良いし、旋回用電動発電機16と油圧旋回モータとを併用した電動/油圧併用型の旋回装置としても良い。
 バッテリ15は、インバータ12,13を介して電動発電機10,旋回用電動発電機16に電力を供給する。また、バッテリ15は、電動発電機10,旋回用電動発電機16が発電した電気エネルギを蓄える。バッテリ15には、バッテリ15の電圧や電流や温度を検出するバッテリセンサ25が設けられていて、バッテリセンサ25が検出したバッテリ15の電圧や電流や温度の信号は、バッテリコントローラ20へ入力される。
 バッテリコントローラ20は、入力した各検出信号を基に、蓄えられている電気エネルギの量、いわゆる蓄電残量を推定する。また、バッテリコントローラ20は、必要に応じて、車体コントローラ11へ充放電要求値を出力する。
 エンジンコントローラ14は、回転数センサ19が検出したエンジン7の実回転数信号と、後述する車体コントローラ11からの目標回転数信号とを入力し、これらの回転数偏差を演算する。エンジンコントローラ14は、この回転数偏差に基づいて目標燃料噴射量を演算し、対応する制御信号をエンジン7に備えられた電子ガバナ7aに出力する。電子ガバナ7aは、この制御信号により作動して目標燃料噴射量相当の燃料を噴射してエンジン7に供給する。目標回転数は、オペレータが作業の内容に応じて設定した値を、エンコンダイヤル22を使って設定する。エンコンダイヤル22で設定した目標回転数信号は、車体コントローラ11に入力され、車体コントローラ11からエンジンコントローラ14に出力されている。
 エンジン7の排気ガスの管路には、後処理装置としてフィルタ23が設けられている。排気ガスの管路内のフィルタ23の前後には、フィルタ23の差圧を検出する差圧センサ24が設けられている。差圧センサ24が検出したフィルタ23の差圧信号はエンジンコントローラ14に入力され、車体コントローラ11へも出力される。車体コントローラ11は、この差圧信号の値を基に捕集されたPM量を推測し、フィルタ再生実行の判断を行う。
 車体コントローラ11は、制御演算回路を備えていて、この制御演算回路において電動発電機10に係わる以下の4つの制御を行う。
(1)油圧ポンプ6に必要な動力を供給するための制御 
 油圧ポンプ6の油圧負荷(ポンプ吸収トルク)が大きく、エンジン7の動力だけでは十分な動力を供給できない場合に、電動発電機10を力行動作させて油圧ポンプ6に十分な動力を供給する。このアシスト動作をパワーアシストと呼ぶ。また、エンジン7のアイドル状態からの復帰時など、エンジン7の目標回転数に対して、エンジンの実回転数の乖離が大きい場合には、電動発電機10を力行動作させて、エンジン7の実回転数を素早く目標回転数に合致させる。このアシスト動作を加速アシストと呼ぶ。 
 (2)エンジン7の動力を平滑化するための制御 
 油圧ポンプ6の油圧負荷(ポンプ吸収トルク)が急峻に増加する場合には電動発電機10を力行動作させ、油圧ポンプ6の油圧負荷(ポンプ吸収トルク)が急峻に減少する場合には電動発電機10を回生動作させることで、エンジン動力の変化率が徐変するような制御を行う。この制御によって、排気ガス中の有害物質の生成を抑制することができる。 
 (3)蓄電残量を管理するための制御 
 油圧ポンプ6の油圧負荷(ポンプ吸収トルク)が小さく、且つ、バッテリコントローラ20によって算出されるバッテリ15の蓄電残量が少ないときは、インバータ12を制御して電動発電機10を発電機として動作させる回生制御を行い、余剰の電力を発生させるとともに、発生した余剰電力をバッテリ15に蓄える制御を行う。逆に、油圧ポンプ6の油圧負荷(ポンプ吸収トルク)が大きく、且つ、バッテリコントローラ20によって算出されるバッテリ15の蓄電残量が所定量以上あるときは、インバータ12を制御して電動発電機10にバッテリ15の電力を供給して電動発電機10を電動機として動作させる力行制御を行い、油圧ポンプ6をアシスト駆動する。 
 (4)フィルタ再生時の制御 
 車体コントローラ11は、フィルタ再生実施の判断を行い、フィルタ再生中は、上記(1)~(3)の制御内容に対して各種の制限制御を実施する。
 次に、車体コントローラ11の電動発電機10に係わる上記(1)~(4)の制御について図3を用いて説明する。図3は本発明のハイブリッド建設機械の制御装置の第1の実施の形態における電動発電機の制御システムを示すブロック図である。図3において、図1及び図2に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。
 車体コントローラ11は、15個の演算部で構成されていて、これらの演算部は、通常時の電動発電機の制御を行う演算グループ300aと、フィルタ再生中に有効な力行制限を行う演算グループ300bと、これらの演算グループへ入力する信号を演算する複数の演算部と、インバータ12へ指令信号を出力する電動発電機制御部315とを備えている。
 まず、上述した(1)油圧ポンプ6に必要な動力を供給するための制御と、(2)エンジン7の動力を平滑化するための制御と、(3)蓄電残量を管理するための制御とを実行する「通常時の電動発電機の制御を行う演算グループ300a」に関して説明する。「通常時の電動発電機の制御を行う演算グループ300a」は、パワーアシスト演算部304と、加速アシスト演算部307と、トルク指令値演算部310とを備えている。「通常時の電動発電機の制御を行う演算グループ300a」へ入力する信号を演算する複数の演算部は、油圧負荷演算部301と、レバー入力判断部302と、エンジン出力計測部303と、目標回転数設定部305と、回転数計測部306と、蓄電装置管理部308と、充放電要求演算部309とを備えている。
 油圧負荷演算部301は、傾転角センサ6bが検出する油圧ポンプ6の斜板の傾転角(ポンプ容量)信号と、圧力センサ21が検出する油圧ポンプ6の吐出圧信号とを入力し、これらの信号から油圧ポンプ6の負荷を演算する。なお、傾転角信号に替えて、レバー入力判断部302からのレバー操作量に基づくポンプ容積の目標値を利用しても良い。算出した油圧ポンプ6の負荷信号は、パワーアシスト演算部304と後述する力行可能量演算部313へ出力する。
 レバー入力判断部302は、圧力センサ17,18が検出する操作レバーの油圧操作信号(制御パイロット圧力)や、図示しない操作ペダルの操作量やゲートロックレバーの位置信号などを取り込み、これらの状態信号から判断した信号を油圧負荷演算部301と後述する力行禁止判断部312へ出力する。
 エンジン出力計測部303は、エンジンコントローラ14から出力されるエンジン7のトルク信号とエンジン7の実回転数信号に基づいて、エンジン7が負担している負荷を計測する。計測したエンジン7が負担している負荷信号は、パワーアシスト演算部304とトルク指令値演算部310へ出力する。
 パワーアシスト演算部304は、油圧負荷演算部301が算出した油圧ポンプ6の負荷信号と、エンジン出力計測部303が計測したエンジン7が負担している負荷信号とを入力し、これらの偏差から油圧ポンプ6に供給すべき動力の不足分を演算し、電動発電機10で負担すべき力行動力(力行トルク)を算出する。算出した力行動力(力行トルク)の信号は、トルク指令値演算部310へ出力する。
 目標回転数設定部305は、エンコンダイヤル22によってオペレータが設定した目標回転数信号を入力し、この目標回転数信号に応じてエンジン目標回転数を設定する。設定したエンジン目標回転数信号は、加速アシスト演算部307へ出力する。
 回転数計測部306は、エンジンコントローラ14が出力する回転数センサ19が検出したエンジン7の実回転数信号を入力して利用する。また、電動発電機10の制御に用いられるモータ回転数信号を利用しても良い。計測した回転数計測信号は、加速アシスト演算部307へ出力する。
 加速アシスト演算部307は、目標回転数設定部305が設定したエンジン目標回転数信号と、回転数計測部306が計測したエンジン7の実回転数信号とを入力し、これらの偏差を解消するように電動発電機10で負担すべき力行動力(力行トルク)を算出する。なお、エンジン7の実回転数信号が目標回転数信号を上回る(オーバレブ)状態になっている場合には、これを早期に解消するように、加速アシスト演算部307は、力行動作ではなく回生動作を指令する。これらの演算には、PI制御を用いても良いし、偏差に対して決定されたトルクテーブルを用いても良い。算出した力行動力(力行トルク)の信号は、トルク指令値演算部310へ出力する。
 蓄電装置管理部308は、バッテリセンサ25が検出したバッテリ15の電圧や電流や温度の信号を基にバッテリコントローラ20が算出した蓄電残量や、温度などの計測を行う。計測した蓄電残量や温度などの信号は充放電要求演算部309へ出力する。
 充放電要求演算部309は、蓄電装置管理部308が計測した蓄電残量や温度などの信号を入力し、これらの信号に基づいて、充放電要求を演算する。充放電要求演算部309の基本動作は、目標蓄電残量に対して、現状の蓄電残量が少ないときは充電要求を出力し、目標蓄電残量に対して、現状の蓄電残量が多いときは放電要求を出力することである。また、バッテリ15として、極低温において出力特性が極端に低くなるリチウムイオンバッテリを利用している場合には、充放電を繰り返してバッテリ15の自己発熱による昇温を促す制御を実行するために、充放電要求演算部309が充電要求を適宜切り替える場合がある。算出した充放電要求信号は、トルク指令値演算部310へ出力される。
 トルク指令値演算部310は、パワーアシスト演算部304が算出した力行動力(力行トルク)の信号と、エンジン出力計測部303が計測したエンジン7が負担している負荷信号と、加速アシスト演算部307が算出した力行動力(力行トルク)の信号と、充放電要求演算部309が算出した充放電要求信号とを入力し、これらの入力信号に基づいて電動発電機10に対するトルク指令値を演算する。算出したトルク指令値は、後述する力行動作制限部314へ出力する。
 次に、上述した(4)フィルタ再生時の制御を実行する「フィルタ再生中に有効な力行制限を行う演算グループ300b」に関して説明する。「フィルタ再生中に有効な力行制限を行う演算グループ300b」は、力行禁止判断部312と、力行可能量演算部313と、力行動作制限部314とを備えている。「フィルタ再生中に有効な力行制限を行う演算グループ300b」へ入力する信号を演算する複数の演算部は、油圧負荷演算部301と、レバー入力判断部302と、フィルタ再生判断部311とを備えている。
 フィルタ再生判断部311は、差圧センサ24が検出したフィルタ23の差圧信号を入力し、入力した差圧信号や、前回のフィルタ再生終了からの経過時間などに基づいて、フィルタ再生要求を判断する。上述したように、フィルタ再生要求には、オペレータに対して特別な操作を要求せずに、ハイブリッドショベル1の動作中に自動でフィルタ再生を行う「連続再生」と、オペレータに対して「ハイブリッドショベル1の操作を停止し、ゲートロックレバーを上げ、フィルタ再生スイッチを押す」という操作を要求する「手動再生」の2通りの再生要求がある。フィルタ再生判断部311が判断したフィルタ再生要求の信号は力行動作制限部314へ出力する。
 力行禁止判断部312は、レバー入力判断部302で判断した信号を入力し、これらの信号に基づき力行禁止を判断する。具体的には、ゲートロックレバーがあがっている場合、もしくはオペレータによる操作レバー装置4a,4b及び操作ペダル装置のいずれの操作も行われていないと判断された場合に、電動発電機10の力行可能量を0[Nm]に制限する指令を出力する。発電可能量に対しては制限する指令は出力しない。力行禁止判断部312の制限指令は力行動作制限部314へ出力する。
 力行可能量演算部313は、油圧負荷演算部301が算出した油圧ポンプ6の負荷信号を入力し、この入力信号に基づいて電動発電機10の力行可能量を演算する。算出した力行可能量の信号は、力行動作制限部314へ出力される。 
 力行可能量演算部313での演算方法について図4を用いて説明する。図4は本発明のハイブリッド建設機械の制御装置の第1の実施の形態における力行可能量演算部の演算方法の一例を説明するための回転数―トルクマップ図である。
 図4において、横軸はエンジン回転数を縦軸はエンジントルクを各々示している。図4における油圧負荷の特性は、本実施の形態における1つの例として示している。ここで、アイドル負荷の特性はエンジン7により定まる特性であり、同様に再生可能最小トルクの特性は、フィルタ再生が可能なエンジン7の最小トルクの特性を示している。最大エンジントルク特性と再生可能最小トルクの特性とで囲まれるハッチング部は、フィルタ再生可能領域を示している。
 フィルタ再生可能領域において、エンジントルクの大きい領域では、排気ガス温度が高くなるためにフィルタの再生が短時間で完了できる。一方、エンジントルクが小さい領域では、排気ガス温度が低くなるためにフィルタの再生時間が長くなるといった違いが存在する。
 図4に示すように、「油圧負荷と再生可能最小トルクの差分(最大力行可能量)」だけ電動発電機10で力行を実施した場合であっても、フィルタの再生を維持できるため、この値(最大力行可能量)を力行可能演算部313の出力とする方法も考えられる。しかし、ハイブリッドショベル1における油圧負荷は、急峻に増減するため、(最大力行可能量)を利用する場合には、エンジントルクが再生可能最小トルクを下回る虞がある。
 したがって、力行可能演算部313の出力(力行可能量)としては、「油圧負荷とアイドル負荷の差分」として演算することが好ましい。さらに望ましい力行可能量としては、「油圧負荷からアイドル負荷とトルク余裕値との和を減算した差分」とする。このこと、エンジントルクが確保でき、確実なフィルタ再生が促せる。
 なお、図4に示すようなフィルタ再生可能領域をもつエンジンを搭載するハイブリッドショベル1においては、アイドル負荷に対して、エンジントルクがわずかに低い領域であってもフィルタ再生を維持できる。このため、力行禁止判断部312を設けなくても良い場合もある。
 図3に戻り、力行動作制限部314は、フィルタ再生判断部311で判断されたフィルタ再生要求の信号を入力し、トルク指令演算部310で計算された電動発電機10へのトルク指令に対して、力行可能量演算部313で算出された力行可能量で上限を抑え、さらに、力行禁止判断部312にて、力行禁止判断がされた場合には、力行可能量を0[Nm]に制限する。力行動作制限部314で求まった値が、最終的な電動発電機10へのトルク指令として、電動発電機制御部315に出力される。
 電動発電機制御部315は、力行動作制限部314から最終的な電動発電機10へのトルク指令を入力し、このようなトルクを発生するためのインバータ12への指令を演算し、算出した指令信号をインバータ12へ出力する。
 次に、本実施の形態において、油圧負荷がエンジン7の最大トルクよりも高い場合の力行可能量演算部313での演算方法を図5を用いて説明する。図5は本発明のハイブリッド建設機械の制御装置の第1の実施の形態における力行可能量演算部の演算方法の他の例を説明するための回転数―トルクマップ図である。
 図5において、横軸はエンジン回転数を縦軸はエンジントルクを各々示している。図5における油圧負荷の特性は、最大エンジントルク特性よりも大きい。その他の特性については図4と同じである。図5においては、油圧負荷が十分に大きいので、力行可能量演算部313で算出される力行可能量は電動発電機10の仕様で決まる最大トルクと一致する。
 一方、パワーアシスト演算部304で算出される力行動力(パワーアシスト量)の信号は、油圧負荷と最大エンジントルクの差で決定されるので、力行可能量に対してパワーアシスト量が小さくなる。このような場合には、力行動作制限部314で力行量が制限されないため、電動発電機10は、上述したパワーアシスト量に従って力行を行う。
 このような制御が実行されることにより、フィルタ再生中であっても、油圧ポンプ6に十分な動力を供給できるので、ハイブリッドショベル1の操作性を損ねることを回避できる。
 次に、車体コントローラ11の電動発電機10に係わる(4)フィルタ再生時の制御について図6を用いて説明する。図6は本発明のハイブリッド建設機械の制御装置の第1の実施の形態におけるフィルタ再生中の電動発電機の制御処理内容を示すフローチャート図である。
 車体コントローラ11は、トルク指令値を演算する(ステップS1)。具体的には、トルク指令値演算部310が各種の入力信号に基づいて電動発電機10に対するトルク指令値を演算する。
 車体コントローラ11は、フィルタが再生中か否かを判定する(ステップS2)。具体的には、フィルタ再生判断部311がフィルタ23の差圧信号や、前回のフィルタ再生終了からの経過時間などに基づいて、フィルタ再生要求を判断するので、この判断の結果から判定する。フィルタ23が再生中でないと判定した場合には(ステップS3)へ進み、それ以外の場合には(ステップS4)へ進む。
 (ステップS2)にてフィルタ再生中でないと判定した場合、車体コントローラ11は、力行制限を実施しない(ステップS3)。具体的には、力行動作制限部314での制限は行われず、トルク指令値演算部310で算出されたトルク指令値どおりに電動発電機10が制御される。
 一方、(ステップS2)にてフィルタ再生中と判定した場合、車体コントローラ11は、その再生が手動再生か連続再生かを判定する(ステップS4)。具体的には、フィルタ再生判断部311が判定する。手動再生と判定した場合には(ステップS6)へ進み、連続再生と判定した場合には(ステップS5)へ進む。
 (ステップS4)にて連続再生であると判定した場合、車体コントローラ11は、ハイブリッドショベル1がアイドル中か否かを判定する(ステップS5)。具体的には、レバー入力判定部302において、レバー操作が一定時間実施されていない場合や、ゲートロックレバーが上がっている場合に、アイドル中と判定する。アイドル中と判定した場合には(ステップS6)へ進み、アイドル中ではない(負荷運転中である)と判定した場合には(ステップS7)へ進む。
 (ステップS4)にて手動再生であると判定した場合、又は、(ステップS5)にてアイドル中と判定した場合、車体コントローラ11は、力行量を最小限に制限する(ステップS6)。具体的には、力行動作制限部314がフィルタ再生判断部311からの手動再生信号を入力した場合と、力行禁止判断部312からのアイドル中にともなう力行禁止信号を入力した場合に相当し、トルク指令値演算部310からのトルク指令値を制限する。
 (ステップS5)にてアイドル中ではない(負荷運転中である)と判定した場合、車体コントローラ11は力行指令が油圧負荷より大きいか否かを判定する(ステップS7)。具体的には、コントローラ11の力行可能量演算部313が、油圧負荷演算部301で算出した油圧負荷を基に力行可能量を算出し、力行動作制限部314へ出力する。力行動作制限部314は、トルク指令値演算部310が算出した力行指令と力行可能量(油圧負荷基準)とを比較することで、判定する。力行指令が油圧負荷(力行可能量)より大きいと判定した場合には(ステップS8)へ進み、それ以外の場合には(ステップS3)へ進む。
 (ステップS7)にて力行指令が油圧負荷(力行可能量)より大きくないと判定した場合、車体コントローラ11は力行制限を実施しない(ステップS3)。この判定がされた場合は、図4に示すようにエンジン7のトルクを再生可能領域にとどめることができるので、力行制限は実施されない。
 (ステップS7)にて力行指令が油圧負荷(力行可能量)より大きいと判定した場合、車体コントローラ11は油圧負荷未満に力行指令を制限する(ステップS8)。具体的には、力行動作制限部314において、トルク指令値演算部310が算出した力行指令を、油圧負荷を基に算出した力行可能量まで制限することで実行される。
 上述した本発明のハイブリッド建設機械の制御装置の第1の実施の形態によれば、フィルタ再生指令が入力された際に、電動発電機10の力行動作を制限するので、エンジン7が負担する負荷を維持もしくは増加させることができ、エンジン7の排気ガス温度を上昇/維持しやすくできる。また、エンジン7だけでは十分な動力を供給できない状況においては、電動発電機10による動力アシストを利用して油圧ポンプ6に十分な動力を供給できる。このことにより、通常時の操作性をフィルタ再生中であっても維持することができる。
 また、上述した本発明のハイブリッド建設機械の制御装置の第1の実施の形態によれば、フィルタ23の連続再生が実行できずにPM堆積量が所定値以上になってしまった場合に行う「手動再生」において、電動発電機10の力行可能量を所定値以下に制限するので、アイドル状態で実施される手動再生においても、エンジン7にかかる負荷をフィルタ再生が継続できる値以上に維持することができる。また、電動発電機10の力行動作を完全には禁止しないため、フィルタ23の手動再生中のアイドル状態でも、蓄電装置(バッテリ15)からの放電が可能になる。このため、蓄電装置(バッテリ15)の過充電の解消や自己発熱によるバッテリ暖機等を行うことも可能になる。
 更に、上述した本発明のハイブリッド建設機械の制御装置の第1の実施の形態によれば、電動発電機10の力行可能量を油圧ポンプ6の負荷よりも低く設定するので、ハイブリッド建設機械のアイドル時相当の負荷をエンジン7にかけることができる。このことにより、連続再生中にフィルタ23の再生が中断されることを回避できる。また、電動発電機の10力行可能量を油圧ポンプ負荷に応じて変更するので、油圧ポンプ6への供給動力が不足する事態を回避できる。
 また、上述した本発明のハイブリッド建設機械の制御装置の第1の実施の形態によれば、オペレータによるレバー入力が無い場合には、電動発電機10の力行可能量を手動再生時と同様の値に制限するので、フィルタ再生の手動再生と連続再生とを区別せずに、アイドル状態でのフィルタ再生を継続することが可能になる。このことにより、通常時の操作性をフィルタ再生中であっても維持することができる。
 以下、本発明のハイブリッド建設機械の制御装置の第2の実施の形態を図面を用いて説明する。図7は本発明のハイブリッド建設機械の制御装置の第2の実施の形態を備えたアクチュエータ駆動システムの概略図、図8は本発明のハイブリッド建設機械の制御装置の第2の実施の形態における電動発電機の制御システムを示すブロック図である。図7及び図8において、図1乃至図6に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。
 図7に示す本発明のハイブリッド建設機械の制御装置の第2の実施の形態は、大略第1の実施の形態と同様の機器で構成されるが、以下の構成が異なる。本実施の形態においては、フィルタ23の近傍に電熱ヒータ26と、この電熱ヒータ26に供給する電力を制御するインバータ27とを新たに設けた点が第1の実施の形態と異なる。具体的には、図2に示すハイブリッド建設機械の制御装置の第1の実施の形態を備えたアクチュエータ駆動システムの概略図に電熱ヒータ26とインバータ27とを加えた構成であるが、図7においては、図が煩雑になるのを避けるため、図2から信号線や構成要素の一部を省略している。
 本実施の形態において、電熱ヒータ26は、電動発電機10で発電された電力、もしくは蓄電装置であるバッテリ15から供給される電力によって発熱し、フィルタ23の昇温を行い、フィルタ再生を促進するために利用される。
 本実施の形態における車体コントローラ11の電動発電機10に係わる制御方法について図8を用いて説明する。本実施の形態における制御方法は大略第1の実施の形態と同様なので、図8において、第1の実施の形態と異なる部位について説明する。 
 第1の実施の形態においては、充放電要求演算部309から充放電要求信号がトルク指令値演算部310に入力していたが、本実施の形態においては、充放電要求演算部309から充電要求信号のみがトルク指令値演算部310に入力される点が異なる。
 また、電熱ヒータ制御部801が設けられ、充放電要求演算部309から放電要求信号が入力される。電熱ヒータ制御部801は、入力された放電要求信号に応じて、インバータ27への指令を演算し、算出した指令信号をインバータ27へ出力する。この結果、電熱ヒータ26を加熱する。
 このように、本実施の形態においては、充放電要求演算部309からの放電要求信号がトルク指令値演算部310に入力されないことから、放電要求信号が電動発電機10の制御に影響を与えない。このことにより、上述したパワーアシストや加速アシストが不要なときには、電動発電機10が力行することがない。この結果、常にエンジントルクをアイドル負荷以上に維持することができるので、エンジン7の動作点がフィルタ再生可能領域を逸脱することを防止できる。
 充放電要求演算部309からトルク指令値演算部310に充電要求信号が入力される場合には、電動発電機10が回生動作を行うので、エンジン7への負荷が増加し、排気ガス温度が上昇するのでフィルタ23を昇温できる。一方、充放電要求演算部309から放電要求信号が出力される場合、電動発電機10は不動作であるが、電熱ヒータ制御部801からインバータ27を介して電熱ヒータ26を加熱することでフィルタ23を昇温できる。
 このように、充放電要求演算部309からの放電要求と充電要求とを制限することなく実行できるので、自己発熱による蓄電装置(バッテリ15)の暖機を効率的に実行できる。このように、本実施の形態においては、蓄電装置(バッテリ15)の蓄電残量に拠らず、フィルタ23の再生と蓄電装置(バッテリ15)の暖機を両立することが可能になる。
 上述した本発明のハイブリッド建設機械の制御装置の第2の実施の形態によれば、第1の実施の形態と同様の効果を得ることができる。
 また、上述した本発明のハイブリッド建設機械の制御装置の第2の実施の形態によれば、蓄電装置(バッテリ15)からの充電要求に対して電動発電機10で発電動作を行うことでエンジン負荷を増加するので、排気ガスの温度を昇温することができる。さらに、蓄電装置(バッテリ15)からの放電要求に対しては、電熱ヒータ26への給電を行うので、フィルタ23の触媒温度を昇温・維持し易くなる。この結果、フィルタ再生を効率的に行うことができる。
 さらに、上述した本発明のハイブリッド建設機械の制御装置の第2の実施の形態によれば、蓄電装置(バッテリ15)からの放電要求に対して、電動発電機10を力行動作させないので、エンジン負荷を高く維持でき、排気ガスの温度も高温に維持しやすくなる。また、蓄電装置(バッテリ15)からの充放電要求への追従が容易であるため、自己発熱によるバッテリ暖機を容易に行うことができる。
 なお、本実施の形態の応用として、フィルタ再生用の第1の電熱ヒータに加えて、バッテリ暖機用に第2の電熱ヒータを設けてもよい。このようにハイブリッド建設機械を構成すると、フィルタ再生と蓄電装置の暖機をより効果的に実行できる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
1:ハイブリッドショベル、3a:ブームシリンダ、3b:アームシリンダ、3c:バケットシリンダ、3e,3f:左右の走行モータ、4a,4b:操作レバー装置、5:方向切換弁、6:油圧ポンプ、6a:レギュレータ、7:エンジン、10:電動発電機、11:車体コントローラ、12,13,27:インバータ、14:エンジンコントローラ、15:バッテリ(蓄電装置)、17,18:圧力センサ、19:回転数センサ、20:バッテリコントローラ、21:圧力センサ、22:エンコンダイヤル、23:フィルタ、24:差圧センサ、25:バッテリセンサ(温度,電流,電圧センサ)、26:電熱ヒータ

Claims (6)

  1.  エンジンと、エンジンによって駆動され発電可能な電動発電機と、前記エンジンと前記電動発電機の合計トルクで駆動される油圧ポンプと、前記油圧ポンプから吐出された圧油で駆動する複数の油圧アクチュエータと、前記電動発電機が発電した電力を蓄積し、前記電動発電機を駆動する電力を供給する蓄電装置と、前記蓄電装置と前記電動発電機との間の電力授受を行うインバータと、前記エンジンの排気ガス中の粒子状物質を捕集するフィルタと、前記電動発電機の力行動作または回生動作を制御するために前記インバータへ指令信号を出力する制御部を備えたハイブリッド建設機械の制御装置において、
     前記制御部は、前記フィルタの再生の要求を判断するフィルタ再生判断部と、
    前記電動発電機の通常のトルク指令を演算するトルク指令値演算部と、前記トルク指令値演算部が演算した前記電動発電機の通常のトルク指令と前記フィルタ再生判断部が判断した前記フィルタの再生の要求信号とを入力して、これらの信号に応じて前記指令信号を演算する力行動作制限部とを有し、
     前記力行動作制限部は、前記フィルタの再生の要求信号があるときには、前記電動発電機の力行動作を制限する指令信号を演算する
     ことを特徴とするハイブリッド建設機械の制御装置。
  2.  請求項1に記載のハイブリッド建設機械の制御装置において、
     前記フィルタの差圧を検出する差圧センサをさらに備え、
     前記フィルタ再生判断部は、前記差圧センサが検出した前記フィルタの差圧信号を入力し、オペレータの操作による手動再生要求なのか、前記フィルタの差圧信号による連続再生要求なのかを判断し、
     前記フィルタ再生判断部において、前記フィルタの手動再生の要求信号があると判断したとき、前記力行動作制限部は、前記電動発電機の力行動作を予め定めた所定値以下に制限する指令信号を演算する
     ことを特徴とするハイブリッド建設機械の制御装置。
  3.  請求項2に記載のハイブリッド建設機械の制御装置において、
     前記油圧ポンプの負荷を演算する油圧負荷演算部と、前記油圧負荷演算部が演算した前記油圧ポンプの負荷を入力して、前記油圧ポンプの負荷に応じて前記電動発電機の力行可能量を演算する力行可能量演算部をさらに備え、
     前記フィルタ再生判断部において、前記フィルタの連続再生の要求信号があると判断したときに、前記力行動作制限部は、前記電動発電機の力行動作を前記力行可能量演算部が演算した前記電動発電機の力行可能量よりも小さくする指令信号を演算する
     ことを特徴とするハイブリッド建設機械の制御装置。
  4.  請求項3に記載のハイブリッド建設機械の制御装置において、
     前記複数の油圧アクチュエータの動作を指示する操作レバー装置と、前記操作レバー装置の操作信号を入力して、オペレータの操作の状態を判断するレバー入力判断部とをさらに備え、
     前記フィルタ再生判断部において、前記フィルタの連続再生の要求信号があると判断し、かつ前記レバー入力判断部において、オペレータの操作有り状態であると判断したときに、前記力行動作制限部は、前記電動発電機の力行動作を前記力行可能量演算部が演算した前記電動発電機の力行可能量よりも小さくする指令信号を演算する
     ことを特徴とするハイブリッド建設機械の制御装置。
  5.  請求項1に記載のハイブリッド建設機械の制御装置において、
     前記複数の油圧アクチュエータの動作を指示する操作レバー装置と、前記操作レバー装置の操作信号を入力して、オペレータの操作の状態を判断するレバー入力判断部とをさらに備え、
     前記フィルタの再生の要求信号があると共に、前記レバー入力判断部において、オペレータの操作が無い状態であると判断したときに、前記力行動作制限部は、前記電動発電機の力行動作を予め定めた所定値以下に制限する指令信号を演算する
     ことを特徴とするハイブリッド建設機械の制御装置。
  6.  請求項1に記載のハイブリッド建設機械の制御装置において、
     前記フィルタの近傍に設けられた電熱ヒータと、前記電熱ヒータへ供給する前記蓄電装置からの電力を制御する第2のインバータと、前記蓄電装置の電圧と温度とを検出するバッテリセンサとを備え、
     前記制御部は、前記バッテリセンサが検出した前記蓄電装置の電圧と温度とを入力し、これらに基づいて前記蓄電装置の蓄電残量を演算し、前記蓄電装置に対する充電要求信号と放電要求信号を算出する充放電要求演算部と、前記放電要求信号を入力して前記電熱ヒータへ供給する電力指令信号を演算する電熱ヒータ制御部とを有し、前記充電要求信号は前記トルク指令値演算部に入力し、
     前記力行動作制限部は、前記フィルタの再生の要求信号があるときであって、前記充電要求信号があるときには、前記電動発電機の回生動作の指令信号を演算し、前記電熱ヒータ制御部は、前記フィルタの再生の要求信号があるときであって、前記放電要求信号があるときには、前記電熱ヒータへ供給する電力指令信号を演算する
     ことを特徴とするハイブリッド建設機械の制御装置。
PCT/JP2015/057577 2015-03-13 2015-03-13 ハイブリッド建設機械の制御装置 WO2016147269A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020177011377A KR101909403B1 (ko) 2015-03-13 2015-03-13 하이브리드 건설 기계의 제어 장치
PCT/JP2015/057577 WO2016147269A1 (ja) 2015-03-13 2015-03-13 ハイブリッド建設機械の制御装置
EP15885367.1A EP3269953B1 (en) 2015-03-13 2015-03-13 Hybrid construction machine
CN201580059405.5A CN107075996B (zh) 2015-03-13 2015-03-13 混合动力式工程机械的控制装置
JP2017505884A JP6255137B2 (ja) 2015-03-13 2015-03-13 ハイブリッド建設機械の制御装置
US15/526,560 US10538236B2 (en) 2015-03-13 2015-03-13 Control apparatus for hybrid construction machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057577 WO2016147269A1 (ja) 2015-03-13 2015-03-13 ハイブリッド建設機械の制御装置

Publications (1)

Publication Number Publication Date
WO2016147269A1 true WO2016147269A1 (ja) 2016-09-22

Family

ID=56918742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057577 WO2016147269A1 (ja) 2015-03-13 2015-03-13 ハイブリッド建設機械の制御装置

Country Status (6)

Country Link
US (1) US10538236B2 (ja)
EP (1) EP3269953B1 (ja)
JP (1) JP6255137B2 (ja)
KR (1) KR101909403B1 (ja)
CN (1) CN107075996B (ja)
WO (1) WO2016147269A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106956607A (zh) * 2017-03-21 2017-07-18 杭州蓝力电动科技有限公司 混合动力型工程机械
EP3929141A1 (en) 2020-06-24 2021-12-29 Hiab AB Working equipment with electrically powered hydraulically operated arm arrangement

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101955533B1 (ko) * 2012-10-16 2019-03-07 주식회사 두산 Dpf의 다단 재생장치 및 재생방법
JP6524019B2 (ja) * 2016-05-18 2019-06-05 日立建機株式会社 建設機械
US10851521B2 (en) * 2017-03-07 2020-12-01 Hitachi Construction Machinery Co., Ltd. Construction machine
CN108248597B (zh) * 2018-01-25 2019-08-06 吉林大学 一种用于道路清扫车的液压混合动力系统控制方法
JP6900929B2 (ja) * 2018-04-11 2021-07-14 トヨタ自動車株式会社 車両
US20210402978A1 (en) * 2018-11-08 2021-12-30 Nissan Motor Co., Ltd. Control method of hybrid vehicle and control device of hybrid vehicle
JP7155938B2 (ja) * 2018-11-22 2022-10-19 トヨタ自動車株式会社 ハイブリッド自動車
GB2579647B (en) * 2018-12-10 2022-12-07 Bamford Excavators Ltd Engine system
GB2585951B (en) 2019-07-26 2023-02-01 Bamford Excavators Ltd System for working machine
CN110593991A (zh) * 2019-10-10 2019-12-20 浙江海聚科技有限公司 一种柴油发动机dpf实时发电主动加热装置
JP7414022B2 (ja) * 2021-01-13 2024-01-16 トヨタ自動車株式会社 ハイブリッド車両の制御装置
KR102539054B1 (ko) * 2021-07-07 2023-06-01 울산대학교 산학협력단 유압 플라이휠 어큐뮬레이터, 유압 모터와 발전기를 이용한 에너지 회생 굴삭기 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120887A (ja) * 2003-10-16 2005-05-12 Mitsubishi Motors Corp ディーゼルハイブリッド車
JP2006275009A (ja) * 2005-03-30 2006-10-12 Mitsubishi Fuso Truck & Bus Corp ハイブリッド車両のモータ制御装置
JP2011169203A (ja) * 2010-02-17 2011-09-01 Hino Motors Ltd ハイブリッド自動車の制御装置およびハイブリッド自動車
JP2012047107A (ja) * 2010-08-27 2012-03-08 Hitachi Constr Mach Co Ltd 作業車両の排気ガス浄化システム
JP2012137028A (ja) * 2010-12-27 2012-07-19 Yanmar Co Ltd 作業機械の排気ガス浄化システム
JP2014196035A (ja) * 2013-03-29 2014-10-16 ヤンマー株式会社 ハイブリッド式駆動装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3574049B2 (ja) 1999-08-09 2004-10-06 本田技研工業株式会社 ハイブリッド自動車
US20090113874A1 (en) * 2007-11-02 2009-05-07 Caterpillar Inc. System and method for electrically regenerating a particulate filter assembly of a generator set
JP2010127271A (ja) 2008-12-01 2010-06-10 Sumitomo Heavy Ind Ltd ハイブリッド式建設機械の暖機方法
US8306710B2 (en) * 2010-04-14 2012-11-06 International Engine Intellectual Property Company, Llc Method for diesel particulate filter regeneration in a vehicle equipped with a hybrid engine background of the invention
JP5539116B2 (ja) * 2010-08-31 2014-07-02 日立建機株式会社 油圧作業機
US8516806B2 (en) * 2010-10-19 2013-08-27 Cummins, Inc. Control of aftertreatment regeneration in a hybrid powered vehicle
US20130197735A1 (en) * 2011-01-21 2013-08-01 Hino Motors, Ltd. Regeneration control device, hybrid automobile, regeneration control method, and program
JP5341134B2 (ja) * 2011-05-25 2013-11-13 日立建機株式会社 油圧作業機械
JP5823200B2 (ja) 2011-07-22 2015-11-25 住友建機株式会社 ハイブリッド型ショベル
JP6232795B2 (ja) * 2013-07-18 2017-11-22 コベルコ建機株式会社 ハイブリッド建設機械
JP5991336B2 (ja) * 2014-03-18 2016-09-14 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120887A (ja) * 2003-10-16 2005-05-12 Mitsubishi Motors Corp ディーゼルハイブリッド車
JP2006275009A (ja) * 2005-03-30 2006-10-12 Mitsubishi Fuso Truck & Bus Corp ハイブリッド車両のモータ制御装置
JP2011169203A (ja) * 2010-02-17 2011-09-01 Hino Motors Ltd ハイブリッド自動車の制御装置およびハイブリッド自動車
JP2012047107A (ja) * 2010-08-27 2012-03-08 Hitachi Constr Mach Co Ltd 作業車両の排気ガス浄化システム
JP2012137028A (ja) * 2010-12-27 2012-07-19 Yanmar Co Ltd 作業機械の排気ガス浄化システム
JP2014196035A (ja) * 2013-03-29 2014-10-16 ヤンマー株式会社 ハイブリッド式駆動装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3269953A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106956607A (zh) * 2017-03-21 2017-07-18 杭州蓝力电动科技有限公司 混合动力型工程机械
CN106956607B (zh) * 2017-03-21 2023-10-24 杭州蓝力电动科技有限公司 混合动力型工程机械
EP3929141A1 (en) 2020-06-24 2021-12-29 Hiab AB Working equipment with electrically powered hydraulically operated arm arrangement
US11629480B2 (en) 2020-06-24 2023-04-18 Hiab Ab Working equipment with electrically powered hydraulically operated arm arrangement

Also Published As

Publication number Publication date
EP3269953B1 (en) 2024-08-14
CN107075996A (zh) 2017-08-18
US20170320483A1 (en) 2017-11-09
US10538236B2 (en) 2020-01-21
KR101909403B1 (ko) 2018-10-17
EP3269953A1 (en) 2018-01-17
CN107075996B (zh) 2019-06-25
JP6255137B2 (ja) 2017-12-27
KR20170063840A (ko) 2017-06-08
JPWO2016147269A1 (ja) 2017-08-31
EP3269953A4 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
JP6255137B2 (ja) ハイブリッド建設機械の制御装置
JP5154578B2 (ja) ハイブリッド式建設機械
KR101853147B1 (ko) 하이브리드식 건설 기계
JP6122765B2 (ja) 作業機械
JP5974014B2 (ja) ハイブリッド駆動式の油圧作業機械
JP5591354B2 (ja) ハイブリッド作業機械及びハイブリッド作業機械の制御方法
JP6062116B2 (ja) 作業車両及びその制御方法
JP6091444B2 (ja) ハイブリッド建設機械
JP5340627B2 (ja) ハイブリッド式建設機械
JP4563302B2 (ja) 電力配分制御装置およびハイブリッド建設機械
KR101942674B1 (ko) 하이브리드 건설 기계
JP6524019B2 (ja) 建設機械
CN105940162A (zh) 挖土机
JP6360054B2 (ja) ハイブリッド式作業機械
WO2014141955A1 (ja) ハイブリッド式作業車両
JP2010242444A (ja) ハイブリッド型建設機械
JP2016056527A (ja) ハイブリッド式建設機械
JP6574752B2 (ja) 作業車両及びその制御方法
JP5398647B2 (ja) ハイブリッド式建設機械
KR20150082291A (ko) 하이브리드 쇼벨 및 하이브리드 쇼벨의 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885367

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505884

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177011377

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15526560

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015885367

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE