WO2016147252A1 - Semiconductor apparatus and manufacturing method of same - Google Patents

Semiconductor apparatus and manufacturing method of same Download PDF

Info

Publication number
WO2016147252A1
WO2016147252A1 PCT/JP2015/057477 JP2015057477W WO2016147252A1 WO 2016147252 A1 WO2016147252 A1 WO 2016147252A1 JP 2015057477 W JP2015057477 W JP 2015057477W WO 2016147252 A1 WO2016147252 A1 WO 2016147252A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding material
semiconductor device
melting point
semiconductor chip
wiring board
Prior art date
Application number
PCT/JP2015/057477
Other languages
French (fr)
Japanese (ja)
Inventor
高彰 宮崎
靖 池田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/057477 priority Critical patent/WO2016147252A1/en
Publication of WO2016147252A1 publication Critical patent/WO2016147252A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Definitions

  • the present invention relates to a semiconductor device and a manufacturing technique thereof, and more particularly to a power semiconductor device used for an inverter.
  • power semiconductor devices have a structure in which a semiconductor element (hereinafter also referred to as a semiconductor chip or simply a chip) and an insulating substrate, or an insulating substrate and a metal plate for heat dissipation are joined together by solder or the like. .
  • Solder which is a connecting member used for electrical connection of electrical and electronic equipment components, generally contained lead.
  • ELV Directive End-of Life Life Vehicles Directive
  • RoHS Restriction of the use of certain Hazardous Substances in electrical
  • lead (Pb) -containing solder has been used as a connecting member for semiconductor devices that require high heat resistance, particularly semiconductor devices used in the fields of automobiles, construction machinery, railways, and information equipment. There is a strong demand to use lead-free connecting members for reduction.
  • Si (silicon) semiconductor elements In recent years, development of wide gap semiconductors such as SiC and GaN capable of operating at high temperatures and reducing the size and weight of devices has been promoted.
  • the upper limit of the operating temperature of Si (silicon) semiconductor elements is 150 to 175 ° C., whereas SiC semiconductor elements can be used at 175 ° C. or higher.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-300792 discloses that “a base layer formed by curing a metal particle paste at a high temperature and a metal particle in a surface film formed by curing the metal particle paste at a low temperature include a low-temperature metal solder. A bonding layer composed of a high-temperature metal brazing material layer that is dispersed and absorbed in the material. By joining the back side of the semiconductor chip and the copper wiring pattern, it is possible to ensure strong heat resistance and power cycle performance. In addition, a technique capable of improving the reliability of a semiconductor device (see summary) is disclosed.
  • a semiconductor device in which a high-temperature metal brazing material is formed at the center of the joint and a low-temperature metal brazing material is formed outside the semiconductor chip and the insulating substrate. A part of the low-temperature metal brazing material is formed. Therefore, there is a concern that a crack in the substrate thickness direction (vertical direction) is formed in the power cycle test.
  • An object of the present invention is to provide a technique capable of improving the reliability of a semiconductor device.
  • a semiconductor device supports a semiconductor chip and is electrically connected to the semiconductor chip, a metal plate supporting the wiring board, and disposed between the wiring board and the metal plate. And a bonding material for bonding the wiring board and the metal plate. Furthermore, the bonding material is disposed around the first bonding material in a plan view and a first bonding material formed directly below the semiconductor chip and having a plane size equal to or larger than the plane size of the semiconductor chip. The first bonding material has a melting point higher than that of the second bonding material.
  • the method for manufacturing a semiconductor device includes: (a) a step of mounting a semiconductor chip on a wiring board; (b) mounting the wiring board on which the semiconductor chip is mounted on a metal plate via a bonding material. And in the step (b), the bonding material is heated and melted to bond the wiring board and the metal plate. Further, the bonding material is provided immediately below the semiconductor chip, around a first bonding material formed in a plane size equal to or larger than the plane size of the semiconductor chip, and around the first bonding material in plan view. The first bonding material has a melting point higher than that of the second bonding material.
  • FIG. 2 is a cross-sectional view showing an example of main processes in assembling the semiconductor device shown in FIG. 1.
  • FIG. 2 is a cross-sectional view showing an example of main processes in assembling the semiconductor device shown in FIG. 1.
  • FIG. shows the main processes in the assembly of the 1st modification of the semiconductor device shown in FIG.
  • FIG. 2nd modification of this invention shows the structure of the semiconductor device of the 2nd modification of this invention.
  • FIG. 8 is a plan view illustrating an example of an internal structure of the semiconductor device illustrated in FIG. 7.
  • FIG. 8 is a plan view illustrating an example of an internal structure of the semiconductor device illustrated in FIG. 7.
  • FIG. 2 is a partial side view showing an example of a railway vehicle on which the semiconductor device shown in FIG. 1 is mounted. It is a top view which shows an example of the internal structure of the inverter installed in the rail vehicle shown in FIG. It is a perspective view which shows an example of the motor vehicle carrying the semiconductor device shown in FIG. It is sectional drawing which shows the structure of the semiconductor device of a comparative example.
  • the constituent elements are not necessarily indispensable unless otherwise specified and clearly considered essential in principle. Needless to say.
  • FIG. 1 is a cross-sectional view showing an example of the structure of a semiconductor device (power module) according to an embodiment of the present invention.
  • the semiconductor device of the present embodiment is, for example, a semiconductor module (power module) mounted on a railway vehicle, an automobile body, or the like. Therefore, the semiconductor device includes a plurality of power semiconductor chips (semiconductor elements) 1 and requires heat dissipation measures.
  • the semiconductor chip 1 is, for example, an IGBT (Insulated Gate Bipolar Transistor) or the like, but is not limited thereto.
  • the configuration of the power module 20 shown in FIG. 1 will be described.
  • the power module 20 electrically connects a ceramic substrate (wiring substrate) 3 that supports the semiconductor chip 1, an electrode 1 c on the upper surface (main surface) 1 a of the semiconductor chip 1, and an electrode 3 cb (3 c) on the upper surface 3 a of the ceramic substrate 3. And a terminal (lead) 7 that is electrically connected to the electrode 3cb of the ceramic substrate 3 and drawn to the outside.
  • the ceramic substrate 3 on which the plurality of semiconductor chips 1 and the plurality of terminals 7 are mounted is mounted on a base plate (metal plate) 4 via solder (joining material, solder alloy) 5. That is, the base plate 4 supports the ceramic substrate 3 via the solder 5.
  • the ceramic substrate 3 has a plurality of electrodes 3ca (3c) and electrodes 3cb (3c) formed on the upper surface 3a, while an electrode 3cc (3c) is also formed on the lower surface 3b.
  • These electrodes 3ca, 3cb, 3cc are made of, for example, copper (Cu) or aluminum (Al). Alternatively, copper or aluminum may be subjected to desired metallization such as nickel (Ni) or gold (Au).
  • the electrode 3 cc formed on the lower surface 3 b of the ceramic substrate 3 is electrically connected to the base plate 4 by the solder 5.
  • the semiconductor chip 1 is connected to the ceramic substrate (wiring substrate, insulating substrate, connected member) 3 via the solder 2, and further, the semiconductor chip 1 A base plate (metal plate) 4 for heat release that plays a role of releasing heat during the operation of the ceramic substrate 3 and the ceramic substrate 3 are connected via a solder 5. That is, the ceramic substrate 3 and the base plate 4 are joined by the solder 5 disposed between the ceramic substrate 3 and the base plate 4.
  • the specific structure of the power module 20 will be described.
  • the semiconductor chip 1, the ceramic substrate 3 that is a chip support member connected to the semiconductor chip 1 via the solder (joining material) 5, and the semiconductor chip 1 are electrically connected.
  • the base plate 4 that is also a heat radiating plate is provided with a case 8 that covers the plurality of semiconductor chips 1, the plurality of wires 6, and the ceramic substrate 3, and a sealing resin (not shown) is contained in the case 8. Filled. That is, the plurality of semiconductor chips 1, the plurality of wires 6, and the ceramic substrate 3 are sealed with the sealing resin.
  • a gel-like resin material is preferably used as the resin.
  • the semiconductor chip 1 is joined to the electrode 3ca on the upper surface 3a of the ceramic substrate 3 via the solder 2. That is, the lower surface 1 b of the semiconductor chip 1 and the upper surface 3 a of the ceramic substrate 3 are opposed to each other, and the back electrode of the semiconductor chip 1 and the electrode 3 ca of the ceramic substrate 3 are electrically connected by the solder 2.
  • a gate electrode 1 c is formed on the upper surface 1 a of the semiconductor chip 1, and is electrically connected to the electrode 3 cb of the ceramic substrate 3 via a wire 6.
  • the base plate 4 is a metal plate for heat dissipation.
  • each of the plurality of wires 6 is, for example, an aluminum or copper wire or a ribbon.
  • an electrode 3cc as a wiring portion is formed on the lower surface 3b of the ceramic substrate 3, and a base plate for heat dissipation (metal) is connected to the electrode 3cc via a solder 5 as a bonding material. Plate, heat radiating member) 4 are joined.
  • This solder 5 is the same as a high melting point bonding material (first bonding material) 5a formed directly below the semiconductor chip 1 and having a planar size that is the same as the planar size of the semiconductor chip 1 as viewed from above. It consists of a low melting point bonding material (second bonding material) 5b disposed around the high melting point bonding material 5a in plan view. That is, the high melting point bonding material (first bonding material) 5a has a planar size that is the same as or larger than the planar size of the semiconductor chip 1 immediately below the semiconductor chip 1 corresponding to the position of the semiconductor chip 1. It is formed with.
  • the size of the high melting point bonding material (first bonding material) 5a in plan view may be larger than the size of the semiconductor chip 1 in plan view.
  • the melting point of the high melting point bonding material 5a is higher than the melting point of the low melting point bonding material 5b.
  • the solder 5 as a bonding material includes a high melting point bonding material 5a disposed immediately below the semiconductor chip 1 where the temperature rises, and a periphery of the high melting point bonding material 5a (around the high melting point bonding material 5a in plan view or And a low melting point bonding material 5b disposed on the outer side.
  • the high melting point bonding material 5a is disposed directly below the semiconductor chip 1 with the ceramic substrate 3 interposed therebetween.
  • the thickness of the solder 5 may be thicker than the thickness of the solder 2. Further, the solder 5 is larger than the solder 2 in the area in plan view.
  • the high melting point bonding material 5a is a bonding material having high heat resistance, and preferably a sintered material made of metal particles. Further, a bonding material such as Zn—Al, Au—Ge, or Au—Si may be used.
  • the low melting point bonding material 5b is preferably an Sn-based solder alloy, for example, an Sn-based solder alloy such as Sn—Cu, Sn—Cu—Sn, Sn—Sb, Sn—Ag—Cu.
  • high heat-resistant bonding (bonding with the high melting point bonding material 5a) having high reliability is applied only to a portion immediately below the semiconductor chip 1 that generates large heat, and the high melting point bonding material 5a.
  • a sintered material of metal particles as the high melting point bonding material 5a and to use an Sn-based solder alloy as the low melting point bonding material 5b. This is because there is a concern that sintered metal joints have fine voids in the joining layer even after joining, and have a large surface area compared to the bulk material and oxidize in a high temperature environment to reduce strength.
  • the joining portion (high melting point joining material 5a) of sintered metal is sealed by low melting point metal joining such as Sn-based solder alloy, the joining is performed. Even when the temperature of the portion becomes high, the sintered metal joint can be protected from oxidation.
  • FIG. 13 is a cross-sectional view showing the structure of a semiconductor device of a comparative example that the present inventors have conducted a comparative study.
  • the breakdown progresses only at the junction between the semiconductor chip 1 and the insulating substrate (ceramic substrate 3) close to the heat generating portion.
  • the operating temperature of the chip also rises at the junction of the base plate 4), and the heat generation of the chip causes temperature nonuniformity in the junction between the insulating substrate and the heat dissipation base.
  • the breakage progresses from the joint, particularly when the Sn-based solder 40 is used.
  • the joint portion between the insulating substrate and the heat dissipation base has a larger area than the joint portion between the semiconductor chip 1 and the insulating substrate, and the crack 42 from the end portion develops due to the increased strain at the end portion of the joint portion. Reliability is also required.
  • the chip generates heat when a large current is applied as compared with other electronic components. Therefore, the junction between the insulating substrate and the heat dissipation base is different from other electronic devices. Destruction is a problem.
  • the Sn-based solder 40 when used, the generation of voids at the Sn grain boundaries and the progress of breakage in the vertical direction (substrate thickness direction, vertical direction) are problematic.
  • the crack 41 in the vertical direction is generated because tensile stress acts in the joint due to a temperature change of the joint.
  • the chip (semiconductor chip 1) generates heat during its operation. At that time, it became clear that the temperature rose to almost the same level as that of the chip at the junction between the insulating substrate and the heat dissipation base, particularly in the portion directly under the chip. This is presumably because Al, Cu, AlN, Si 3 N 4 or the like having good thermal conductivity is used for the insulating substrate (ceramic substrate 3). Since the portion immediately below the chip is at a high temperature, destruction of the joint progresses due to ON / OFF of energization. When the breakage progresses in this portion which is a heat radiation path, the heat radiation performance is lowered, the temperature of the chip rises, and finally the power module 50 is broken.
  • Possible joining materials with high power cycle tolerance include sintered metal joining with high melting point after joining, joining with Zn-Al alloy, joining with Au-based solder, etc. Fine metal particles of several hundred ⁇ m are made into a paste with a solvent such as alcohol, and it is necessary to remove the solvent by heating or pressurize when joining. However, in the case of bonding with a large area such as an insulating substrate and a heat dissipation base, the area is large and it is difficult to remove the solvent to the center.
  • the power module 20 of the present embodiment in a large-area joint such as the ceramic substrate (insulating substrate) 3 and the base plate (heat radiating metal plate) 4, high heat-resistant bonding is performed only at a portion directly below the chip (necessary portion).
  • the portion (high melting point bonding material 5a) is the other portion (periphery) is a bonding portion (low melting point bonding material 5b) made of a low melting point metal such as Sn-based solder.
  • the bonded portion (high melting point bonding material 5a) made of sintered metal is sealed by a low melting point metal bonding (low melting point bonding material 5b) such as an Sn-based solder alloy. Even if the temperature becomes high, the sintered metal joint can be protected from oxidation.
  • the reliability of the power module 20 can be improved.
  • FIG. 2 is a cross-sectional view showing an example of main processes in the assembly of the semiconductor device shown in FIG. 1
  • FIG. 3 is a cross-sectional view showing an example of main processes in the assembly of the semiconductor device shown in FIG.
  • a sintered metal (sintered material by metal particles) and other parts (high melting point bonding material 5 a of high melting point bonding material 5 a) are placed on a high heat resistant bonding portion (high melting point bonding material 5 a) immediately below the chip.
  • high melting point bonding material 5 a high melting point bonding material 5 a
  • the semiconductor chip 1 is mounted on the ceramic substrate (wiring substrate, insulating substrate) 3 via the solder 2.
  • the solder 2 has a melting point of 400 ° C., for example. Accordingly, the semiconductor chip 1 is joined to the ceramic substrate 3 via the solder 2 by heating and melting the solder 2 to 400 ° C. or higher.
  • a sintered metal paste which is a high melting point bonding material 5a is applied to the back side (lower surface 3b) side of the ceramic substrate 3. Further, Sn-based solder, which is the low melting point bonding material 5b, is supplied as a foil or a paste to portions other than the high melting point bonding material 5a (around the high melting point bonding material 5a and outside the high melting point bonding material 5a).
  • the size is equal to or larger than that of the semiconductor chip 1 in a plan view immediately below the semiconductor chip 1.
  • the high melting point bonding material 5a is applied, and further, the low melting point bonding material 5b is applied around the high melting point bonding material 5a in plan view.
  • the high melting point bonding material 5a has a higher melting point than the low melting point bonding material 5b.
  • the high melting point bonding material 5a has a melting point of about 320 ° C.
  • the low melting point bonding material 5b has a melting point of less than 320 ° C.
  • the ceramic substrate 3 is disposed on the base plate 4 via the solder 5, and after the placement, the solder (joining material) 5 composed of the high melting point bonding material 5a and the low melting point bonding material 5b. Are heated and melted to join the ceramic substrate 3 and the base plate (metal plate for heat dissipation) 4 together.
  • solder 5 is melted and the ceramic substrate 3 and the base plate 4 are joined. Thereby, the solder joint between the ceramic substrate 3 and the base plate 4 in the module structure shown in FIG. 3 (FIG. 1) is completed.
  • the size of the high melting point bonding material (first bonding material) 5a immediately below the chip may be larger than the size of the semiconductor chip 1 in plan view.
  • the structure is such that the joint portion (high melting point bonding material 5a) made of sintered metal is sealed by low melting point metal bonding such as Sn-based solder alloy. Therefore, the sintered metal joint can be protected from oxidation even if the joint becomes high temperature.
  • bonding can be performed even if the area of the bonded portion of the sintered metal bonding is 400 mm 2 or more.
  • the high melting point bonding material 5 a and the low melting point bonding material 5 b are not applied to the lower surface 3 b side of the ceramic substrate 3, but the high melting point bonding material 5 a and the low melting point bonding material 5 b are applied to the base plate 4.
  • the solder 5 may be heated and melted after the bonding material 5a and the low-melting-point bonding material 5b are applied and the ceramic substrate 3 is disposed thereon.
  • a semiconductor chip 1 is mounted on a ceramic substrate (wiring substrate, insulating substrate) 3 via a solder 2.
  • the mounting of the semiconductor chip 1 on the ceramic substrate 3 via the solder 2 is the same as the above method.
  • a Zn-based sintered metal paste which is a high melting point bonding material 5a
  • Sn-based solder which is the low melting point bonding material 5b
  • Sn-based solder is supplied as a foil or a paste to portions other than the high melting point bonding material 5a (around the high melting point bonding material 5a and outside the high melting point bonding material 5a).
  • the size is equal to or larger than that of the semiconductor chip 1 in a plan view immediately below the semiconductor chip 1.
  • the high melting point bonding material 5a is applied, and further, the low melting point bonding material 5b is applied around the high melting point bonding material 5a in plan view.
  • the high melting point bonding material 5a has a higher melting point than the low melting point bonding material 5b.
  • the high melting point bonding material 5a has a melting point of about 320 ° C.
  • the low melting point bonding material 5b has a melting point of less than 320 ° C.
  • the ceramic substrate 3 is disposed on the base plate 4 via the solder 5, and after the placement, the solder (joining material) 5 composed of the high melting point bonding material 5a and the low melting point bonding material 5b. Are heated and melted to join the ceramic substrate 3 and the base plate (metal plate for heat dissipation) 4 together.
  • solder 5 is melted and the ceramic substrate 3 and the base plate 4 are joined. Thereby, the solder joint between the ceramic substrate 3 and the base plate 4 in the module structure shown in FIG. 3 (FIG. 1) is completed.
  • the size (planar size) of the high melting point bonding material (first bonding material) 5a immediately below the chip in plan view is the size of the semiconductor chip 1 in plan view ( (Plane size) or more.
  • the Zn-based solder alloy when the Zn-based solder alloy is melted, there is a concern that the vapor pressure of Zn is low and Zn evaporates and adheres to the surface of other members, thereby contaminating the other members.
  • the melting point is around 220 ° C., and the molten Sn-based solder alloy surrounds the Zn-based solder alloy. Therefore, it is possible to prevent Zn from adhering to other members.
  • the joint portion by the solder 5 has a large joint area, an Sn-based solder alloy that is softer (easily deformed) than the high heat-resistant joint by a Zn-based solder alloy or the like is applied to the end portion of the joint portion where a large strain occurs. By applying, it is possible to obtain resistance to crack propagation from the end of the joint.
  • ⁇ First Modification> 4, 5, and 6 are cross-sectional views showing main processes in assembling the first modification of the semiconductor device shown in FIG. 1.
  • a sintered material (sintered metal) made of metal particles is applied as the high heat resistant joint (high melting point bonding material 5a), and an Sn-based solder alloy is applied to the other part (low melting point bonding material 5b).
  • high melting point bonding material 5a high melting point bonding material
  • Sn-based solder alloy low melting point bonding material 5b
  • the semiconductor chip 1 is mounted on the ceramic substrate (wiring substrate, insulating substrate) 3 via the solder 2.
  • the mounting of the semiconductor chip 1 on the ceramic substrate 3 via the solder 2 is the same as the above method.
  • a porous metal joint (porous joint material) 9 shown in FIG. 5 is formed by applying a sintered metal paste (high melting point joint material 5a) on the base plate 4 and heating to 300 ° C. or higher. . Thereafter, a low melting point bonding material 5b (for example, a low melting point metal foil, a second bonding material) made of an Sn-based solder alloy is supplied between the ceramic substrate 3 and the base plate 4 so as to cover the porous bonding portion 9. And heating at 300 ° C. or higher for 15 minutes or longer.
  • a sintered metal paste high melting point joint material 5a
  • a low melting point bonding material 5b for example, a low melting point metal foil, a second bonding material
  • the structure of the molten Sn-based solder alloy (low melting point bonding material 5b) and the porous bonding portion (high melting point bonding material 5a) 9 reacts, and Sn—Cu, Sn— as shown in FIG.
  • An intermetallic compound (layer) 10 such as Ag or Ni—Sn is formed. Thereby, the high melting point is achieved.
  • An Sn-based solder alloy (low melting point bonding material 5b) is disposed around the intermetallic compound 10.
  • the intermetallic compound 10 generally has a high melting point, but has a drawback of being hard and brittle. Therefore, an Sn-based solder alloy (low melting point bonding material 5b) is disposed at the end of the joint where large distortion occurs. . Thereby, it becomes possible to satisfy the power cycle reliability required as a joint portion between the ceramic substrate 3 and the base plate 4 for heat dissipation, and the resistance to crack propagation from the end portion of the joint portion.
  • Sn-based solder alloy low melting point bonding material 5b
  • the high melting point joining material (intermetallic compound 10, first joining material) 5a immediately below the chip in plan view.
  • the size (planar size) is not less than the size (planar size) of the semiconductor chip 1 in plan view.
  • the sintered metal paste (the high melting point bonding material 5a, the first bonding material) is not applied on the base plate 4, but is applied to the lower surface 3b side of the ceramic substrate 3. May be.
  • the power module 20 and the assembly thereof according to the present embodiment can be applied to the semiconductor chip 1 made of any material such as Si, SiC, GaAs, CdTe, and GaN.
  • the base plate (metal plate) 4 for heat dissipation may be made of any member such as Cu, Al, Cu—Mo, Al—SiC, Mg—SiC, etc. Can achieve highly reliable bonding.
  • FIG. 7 is a cross-sectional view showing the structure of a semiconductor device according to a second modification of the present invention
  • FIGS. 8 and 9 are plan views showing examples of the internal structure of the semiconductor device shown in FIG.
  • FIG. 1 a plan view at a joint portion between a ceramic substrate (insulating substrate) 3 and a heat radiating base plate (metal plate) 4
  • a high heat-resistant bonding part (first bonding material, high melting point bonding material 5a) is disposed near the center.
  • the installation location of the high heat-resistant bonding part may be changed depending on the position of the semiconductor chip 1 as shown in FIGS.
  • the planar size of the semiconductor chip 1 is directly below each semiconductor chip 1 as shown in FIGS.
  • a high melting point bonding material (first bonding material, high heat resistant bonding portion) 5a having the same plane size (or a plane size larger than the plane size of the semiconductor chip 1) may be disposed.
  • a low melting point bonding material (for example, Sn-based solder alloy) 5b is disposed around each of the four high melting point bonding materials 5a.
  • each of the four high melting point bonding materials 5a is surrounded by the low melting point bonding material 5b.
  • ⁇ Application example> 10 is a partial side view showing an example of a railway vehicle on which the semiconductor device shown in FIG. 1 is mounted
  • FIG. 11 is a plan view showing an example of an internal structure of an inverter installed in the railway vehicle shown in FIG.
  • a railway vehicle 21 shown in FIG. 10 is mounted with the power module 20 shown in FIG. 1, for example, and includes a vehicle main body 26, a power module 20, a mounting member that supports the power module 20, and a current collector.
  • a pantograph 22 and an inverter 23 are provided.
  • the power module 20 is mounted on an inverter 23 installed at the lower part of the vehicle body 26.
  • a plurality of power modules 20 are mounted on a printed circuit board (mounting member) 25 inside the inverter 23, and a cooling device 24 for cooling these power modules 20 is mounted.
  • the cooling device 24 is attached so that the plurality of power modules 20 can be cooled to cool the inside of the inverter 23.
  • FIG. 12 is a perspective view showing an example of an automobile on which the semiconductor device shown in FIG. 1 is mounted.
  • An automobile 27 shown in FIG. 12 is mounted with the power module 20 shown in FIG. 1, for example, and includes a vehicle body 28, a tire 29, the power module 20, and a mounting unit that is a mounting member that supports the power module 20. 30.
  • the power module 20 is mounted on an inverter included in the mounting unit 30.
  • the mounting unit 30 is, for example, an engine control unit, and in this case, the mounting unit 30 is disposed in the vicinity of the engine. ing. In this case, the mounting unit 30 is used in a high temperature environment, and the power module 20 is also in a high temperature state.
  • the mounting unit 30 is in a high temperature environment by providing an inverter in which a plurality of power modules 20 using the module joining structure shown in FIG.
  • the reliability of the automobile 27 can be improved. That is, in the automobile 27 as well, it is possible to realize the power module 20 that can withstand operation stability under a high temperature environment and a high current load, and an inverter system using the same.

Abstract

A power module 20 according to the present invention comprises a ceramic substrate 3 that supports a semiconductor chip 1 and that is electrically connected to the semiconductor chip 1, a base plate 4 for heat radiation that supports the ceramic substrate 3, and a solder 5 that is disposed between the ceramic substrate 3 and the base plate 4 and that bonds the ceramic substrate 3 and the base plate 4. Directly below the semiconductor chip 1, the solder 5 comprises a high melting point bonding material 5a formed into a plane size that is the same as the plane size of the semiconductor chip 1 or that is larger than the plane size of the semiconductor chip 1 and a low melting point bonding material 5b that is disposed around the high melting point bonding material 5a in planar view, wherein the high melting point bonding material 5a has a melting point higher than that of the low melting point bonding material 5b.

Description

半導体装置およびその製造方法Semiconductor device and manufacturing method thereof
 本発明は、半導体装置およびその製造技術に関し、特にインバータに使用されるパワー系の半導体装置に関する。 The present invention relates to a semiconductor device and a manufacturing technique thereof, and more particularly to a power semiconductor device used for an inverter.
 パワー系の半導体装置(パワーモジュール)は、半導体素子(以下、半導体チップまたは単にチップとも言う)と絶縁基板、もしくは絶縁基板と放熱用金属板をはんだ等で接合した構造となっているものが多い。 Many power semiconductor devices (power modules) have a structure in which a semiconductor element (hereinafter also referred to as a semiconductor chip or simply a chip) and an insulating substrate, or an insulating substrate and a metal plate for heat dissipation are joined together by solder or the like. .
 なお、電機・電子機器の部品の電気的接続に使用されている接続部材であるはんだには、一般的に鉛が含まれていたが、近年、環境への意識が高まる中、鉛の規制が始まっている。欧州では自動車中の鉛使用を制限するELV指令(End-of Life Vehicles directive、廃自動車に関する指令)や、電機・電子機器中の鉛使用を禁止するRoHS(Restriction of the use of certain Hazardous Substances in electrical and electronic equipment)指令が施行された。 Solder, which is a connecting member used for electrical connection of electrical and electronic equipment components, generally contained lead. However, in recent years, as environmental awareness has increased, lead regulations It has begun. In Europe, the ELV Directive (End-of Life Life Vehicles Directive), which restricts the use of lead in automobiles, and the RoHS (Restriction of the use of certain Hazardous Substances in electrical) that prohibits the use of lead in electrical and electronic equipment and electronic equipment) directive was enforced.
 これまで、高耐熱性が要求される半導体装置、特に自動車や建機、鉄道、情報機器分野等に用いられる半導体装置の接続部材としては鉛(Pb)入りはんだが使用されてきたが、環境負荷低減のため、鉛フリーの接続部材を使用することが強く要求されている。 Until now, lead (Pb) -containing solder has been used as a connecting member for semiconductor devices that require high heat resistance, particularly semiconductor devices used in the fields of automobiles, construction machinery, railways, and information equipment. There is a strong demand to use lead-free connecting members for reduction.
 近年、高温動作が可能で、かつ機器の小型軽量化が可能なSiCやGaN等のワイドギャップ半導体の開発が推し進められている。なお、一般的にSi(シリコン)の半導体素子は動作温度の上限が150~175℃であるのに対し、SiCの半導体素子は175℃以上での使用が可能である。 In recent years, development of wide gap semiconductors such as SiC and GaN capable of operating at high temperatures and reducing the size and weight of devices has been promoted. In general, the upper limit of the operating temperature of Si (silicon) semiconductor elements is 150 to 175 ° C., whereas SiC semiconductor elements can be used at 175 ° C. or higher.
 ただし、使用環境温度が高温になると、半導体装置(パワーモジュール)において半導体素子に電流の通電と遮断とが繰り返された際に、繰り返しの熱応力が大きくなる。したがって、耐通電熱疲労性や環境温度の変化による耐亀裂進展性が要求される。 However, when the use environment temperature becomes high, repeated energization and interruption of current to the semiconductor element in the semiconductor device (power module) increase repetitive thermal stress. Therefore, resistance to energization thermal fatigue and resistance to crack propagation due to changes in environmental temperature are required.
 上記要求に対応するために、鉛フリーで、かつ高い耐熱性を有し、さらに高信頼性を備えた接合部を有する半導体装置が必要となる。 In order to meet the above requirements, a lead-free semiconductor device having a high heat resistance and having a highly reliable junction is required.
特開2008-300792号公報JP 2008-300792 A
 半導体装置の動作時を模擬した信頼性試験として断続的に通電(ON/OFF)を繰り返すパワーサイクル試験がある。パワーモジュール等の半導体装置では、一般的な電子部品と比較して大電流が印加されることによって、チップが発熱し高温となる。その際、チップの発熱に伴って絶縁基板と放熱用金属板との接合部で、特にチップ直下の部分においてチップとほぼ同等程度まで温度が上昇することを本発明者は見出した。 There is a power cycle test in which energization (ON / OFF) is repeated intermittently as a reliability test simulating the operation of a semiconductor device. In a semiconductor device such as a power module, when a large current is applied compared to a general electronic component, the chip generates heat and becomes high temperature. At that time, the present inventor has found that the temperature rises to almost the same level as the chip at the joint between the insulating substrate and the heat radiating metal plate, particularly in the portion directly under the chip, as the chip generates heat.
 そして、本発明者が検討した結果、接続部材としてSn系はんだを使用した場合、温度が変化した際に部材間の線膨張係数差により生じる接合部の端部からの亀裂進展だけではなく、チップ直下の部分でのSn粒界でのボイドの発生および縦方向(基板厚さ方向)への破壊が進展することが判った。 As a result of investigation by the present inventor, when Sn-based solder is used as the connecting member, not only the crack progress from the end of the joint caused by the difference in linear expansion coefficient between the members when the temperature changes, but also the chip It was found that the generation of voids at the Sn grain boundary in the portion immediately below and the breakdown in the vertical direction (substrate thickness direction) progress.
 このように放熱経路であるチップ直下の部分に破壊が進展すると放熱性が低下し、チップの温度が上昇して最終的に半導体装置(パワーモジュール)の破壊に至って半導体装置の信頼性が低下することが課題である。 As described above, when the breakage progresses to the portion immediately below the chip, which is a heat radiation path, the heat radiation performance is lowered, the temperature of the chip rises, and finally the semiconductor device (power module) is broken and the reliability of the semiconductor device is lowered. This is a problem.
 上記特許文献1(特開2008-300792号公報)には、「金属粒子ペーストを高温硬化させて形成した下地層と、金属粒子ペーストを低温硬化させて形成した表面膜の金属粒子が低温金属ロウ材に分散吸収されて形成された高温化金属ロウ材の層で構成される接合層で、半導体チップの裏側と銅配線パターンを接合することで、耐熱性およびパワーサイクル性に強い接合性を確保し、半導体装置の信頼性を向上させることができる(要約参照)」技術が開示されている。すなわち、半導体チップと絶縁基板の接合において接合部の中央部に高温化金属ロウ材が形成され、その外側に低温金属ロウ材が形成された半導体装置が開示されているが、半導体チップの直下の一部に低温金属ロウ材が形成されており、そのため、パワーサイクル試験で基板厚さ方向(垂直方向)への亀裂が形成されることが懸念される。 Patent Document 1 (Japanese Patent Application Laid-Open No. 2008-300792) discloses that “a base layer formed by curing a metal particle paste at a high temperature and a metal particle in a surface film formed by curing the metal particle paste at a low temperature include a low-temperature metal solder. A bonding layer composed of a high-temperature metal brazing material layer that is dispersed and absorbed in the material. By joining the back side of the semiconductor chip and the copper wiring pattern, it is possible to ensure strong heat resistance and power cycle performance. In addition, a technique capable of improving the reliability of a semiconductor device (see summary) is disclosed. That is, a semiconductor device is disclosed in which a high-temperature metal brazing material is formed at the center of the joint and a low-temperature metal brazing material is formed outside the semiconductor chip and the insulating substrate. A part of the low-temperature metal brazing material is formed. Therefore, there is a concern that a crack in the substrate thickness direction (vertical direction) is formed in the power cycle test.
 本発明の目的は、半導体装置における信頼性を向上させることができる技術を提供することにある。 An object of the present invention is to provide a technique capable of improving the reliability of a semiconductor device.
 本発明の上記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、以下のとおりである。 Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
 本発明に係る半導体装置は、半導体チップを支持し、上記半導体チップと電気的に接続された配線基板と、上記配線基板を支持する金属板と、上記配線基板と上記金属板との間に配置され、上記配線基板と上記金属板とを接合する接合材と、を有するものである。さらに、上記接合材は、上記半導体チップの直下において上記半導体チップの平面サイズと同じかまたはそれより大きな平面サイズで形成された第1接合材と、平面視で上記第1接合材の周囲に配置された第2接合材とからなり、上記第1接合材は、上記第2接合材より融点が高い。 A semiconductor device according to the present invention supports a semiconductor chip and is electrically connected to the semiconductor chip, a metal plate supporting the wiring board, and disposed between the wiring board and the metal plate. And a bonding material for bonding the wiring board and the metal plate. Furthermore, the bonding material is disposed around the first bonding material in a plan view and a first bonding material formed directly below the semiconductor chip and having a plane size equal to or larger than the plane size of the semiconductor chip. The first bonding material has a melting point higher than that of the second bonding material.
 本発明に係る半導体装置の製造方法は、(a)配線基板上に半導体チップを搭載する工程、(b)上記半導体チップが搭載された上記配線基板を、接合材を介して金属板上に搭載する工程、を有し、上記(b)工程において、上記接合材を加熱溶融して上記配線基板と上記金属板とを接合するものである。さらに、上記接合材は、上記半導体チップの直下において、上記半導体チップの平面サイズと同じかまたはそれより大きな平面サイズで形成された第1接合材と、平面視で上記第1接合材の周囲に配置された第2接合材とからなり、上記第1接合材は、上記第2接合材より融点が高い。 The method for manufacturing a semiconductor device according to the present invention includes: (a) a step of mounting a semiconductor chip on a wiring board; (b) mounting the wiring board on which the semiconductor chip is mounted on a metal plate via a bonding material. And in the step (b), the bonding material is heated and melted to bond the wiring board and the metal plate. Further, the bonding material is provided immediately below the semiconductor chip, around a first bonding material formed in a plane size equal to or larger than the plane size of the semiconductor chip, and around the first bonding material in plan view. The first bonding material has a melting point higher than that of the second bonding material.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば、以下のとおりである。 Among the inventions disclosed in the present application, the effects obtained by typical ones will be briefly described as follows.
 半導体装置における信頼性を向上させることができる。 Reliability in semiconductor devices can be improved.
本発明の実施の形態の半導体装置(パワーモジュール)の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the semiconductor device (power module) of embodiment of this invention. 図1に示す半導体装置の組立てにおける主要工程の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of main processes in assembling the semiconductor device shown in FIG. 1. 図1に示す半導体装置の組立てにおける主要工程の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of main processes in assembling the semiconductor device shown in FIG. 1. 図1に示す半導体装置の第1変形例の組立てにおける主要工程を示す断面図である。It is sectional drawing which shows the main processes in the assembly of the 1st modification of the semiconductor device shown in FIG. 図1に示す半導体装置の第1変形例の組立てにおける主要工程を示す断面図である。It is sectional drawing which shows the main processes in the assembly of the 1st modification of the semiconductor device shown in FIG. 図1に示す半導体装置の第1変形例の組立てにおける主要工程を示す断面図である。It is sectional drawing which shows the main processes in the assembly of the 1st modification of the semiconductor device shown in FIG. 本発明の第2変形例の半導体装置の構造を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device of the 2nd modification of this invention. 図7に示す半導体装置の内部構造の一例を示す平面図である。FIG. 8 is a plan view illustrating an example of an internal structure of the semiconductor device illustrated in FIG. 7. 図7に示す半導体装置の内部構造の一例を示す平面図である。FIG. 8 is a plan view illustrating an example of an internal structure of the semiconductor device illustrated in FIG. 7. 図1に示す半導体装置が搭載された鉄道車両の一例を示す部分側面図である。FIG. 2 is a partial side view showing an example of a railway vehicle on which the semiconductor device shown in FIG. 1 is mounted. 図10に示す鉄道車両に設置されたインバータの内部構造の一例を示す平面図である。It is a top view which shows an example of the internal structure of the inverter installed in the rail vehicle shown in FIG. 図1に示す半導体装置が搭載された自動車の一例を示す斜視図である。It is a perspective view which shows an example of the motor vehicle carrying the semiconductor device shown in FIG. 比較例の半導体装置の構造を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device of a comparative example.
 以下の実施の形態では特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。 In the following embodiments, the description of the same or similar parts will not be repeated in principle unless particularly necessary.
 さらに、以下の実施の形態では便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明などの関係にある。 Further, in the following embodiment, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments, but they are not irrelevant to each other unless otherwise specified. The other part or all of the modifications, details, supplementary explanations, and the like are related.
 また、以下の実施の形態において、要素の数など(個数、数値、量、範囲などを含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合などを除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良いものとする。 Also, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), particularly when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and it may be more or less than the specific number.
 また、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 Further, in the following embodiments, the constituent elements (including element steps) are not necessarily indispensable unless otherwise specified and clearly considered essential in principle. Needless to say.
 また、以下の実施の形態において、構成要素等について、「Aからなる」、「Aよりなる」、「Aを有する」、「Aを含む」と言うときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除するものでないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲等についても同様である。 Further, in the following embodiments, regarding constituent elements and the like, when “consisting of A”, “consisting of A”, “having A”, and “including A” are specifically indicated that only those elements are included. It goes without saying that other elements are not excluded except in the case of such cases. Similarly, in the following embodiments, when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof will be omitted. Further, even a plan view may be hatched for easy understanding of the drawing.
 (実施の形態)
 図1は本発明の実施の形態の半導体装置(パワーモジュール)の構造の一例を示す断面図である。
(Embodiment)
FIG. 1 is a cross-sectional view showing an example of the structure of a semiconductor device (power module) according to an embodiment of the present invention.
 本実施の形態の半導体装置は、例えば、鉄道の車両や自動車の車体等に搭載される半導体モジュール(パワーモジュール)である。したがって、複数のパワー系の半導体チップ(半導体素子)1を備えており、放熱対策が必要な半導体装置である。なお、半導体チップ1は、例えばIGBT(Insulated Gate Bipolar Transistor )等であるが、ただしこれに限定されるものではない。 The semiconductor device of the present embodiment is, for example, a semiconductor module (power module) mounted on a railway vehicle, an automobile body, or the like. Therefore, the semiconductor device includes a plurality of power semiconductor chips (semiconductor elements) 1 and requires heat dissipation measures. The semiconductor chip 1 is, for example, an IGBT (Insulated Gate Bipolar Transistor) or the like, but is not limited thereto.
 図1に示すパワーモジュール20の構成について説明する。パワーモジュール20は、半導体チップ1を支持するセラミック基板(配線基板)3と、半導体チップ1の上面(主面)1aの電極1cとセラミック基板3の上面3aの電極3cb(3c)とを電気的に接続する導電性のワイヤ6と、セラミック基板3の電極3cbと電気的に接続し、外部に引き出される端子(リード)7とを有している。 The configuration of the power module 20 shown in FIG. 1 will be described. The power module 20 electrically connects a ceramic substrate (wiring substrate) 3 that supports the semiconductor chip 1, an electrode 1 c on the upper surface (main surface) 1 a of the semiconductor chip 1, and an electrode 3 cb (3 c) on the upper surface 3 a of the ceramic substrate 3. And a terminal (lead) 7 that is electrically connected to the electrode 3cb of the ceramic substrate 3 and drawn to the outside.
 また、複数の半導体チップ1および複数の端子7が搭載されたセラミック基板3は、はんだ(接合材、はんだ合金)5を介してベース板(金属板)4に搭載されている。すなわち、ベース板4は、はんだ5を介してセラミック基板3を支持している。ここで、セラミック基板3は、その上面3aに複数の電極3ca(3c)および電極3cb(3c)が形成されており、一方、下面3bにも電極3cc(3c)が形成されている。これらの電極3ca,3cb,3ccは、例えば、銅(Cu)やアルミニウム(Al)からなる。もしくは、銅やアルミニウムにニッケル(Ni)や金(Au)などの所望のメタライズを施したものでもよい。そして、セラミック基板3の下面3bに形成された電極3ccは、はんだ5によってベース板4に電気的に接続されている。 Further, the ceramic substrate 3 on which the plurality of semiconductor chips 1 and the plurality of terminals 7 are mounted is mounted on a base plate (metal plate) 4 via solder (joining material, solder alloy) 5. That is, the base plate 4 supports the ceramic substrate 3 via the solder 5. Here, the ceramic substrate 3 has a plurality of electrodes 3ca (3c) and electrodes 3cb (3c) formed on the upper surface 3a, while an electrode 3cc (3c) is also formed on the lower surface 3b. These electrodes 3ca, 3cb, 3cc are made of, for example, copper (Cu) or aluminum (Al). Alternatively, copper or aluminum may be subjected to desired metallization such as nickel (Ni) or gold (Au). The electrode 3 cc formed on the lower surface 3 b of the ceramic substrate 3 is electrically connected to the base plate 4 by the solder 5.
 すなわち、本実施の形態のパワーモジュール20は、半導体チップ1が、はんだ2を介してセラミック基板(配線基板、絶縁性基板、被接続部材)3に接続されたものであり、さらに、半導体チップ1の動作時の熱を逃がす役割を果たす放熱用のベース板(金属板)4とセラミック基板3とが、はんだ5を介して接続されている。つまり、セラミック基板3とベース板4との間に配置されたはんだ5によってセラミック基板3とベース板4とが接合されている。 That is, in the power module 20 of the present embodiment, the semiconductor chip 1 is connected to the ceramic substrate (wiring substrate, insulating substrate, connected member) 3 via the solder 2, and further, the semiconductor chip 1 A base plate (metal plate) 4 for heat release that plays a role of releasing heat during the operation of the ceramic substrate 3 and the ceramic substrate 3 are connected via a solder 5. That is, the ceramic substrate 3 and the base plate 4 are joined by the solder 5 disposed between the ceramic substrate 3 and the base plate 4.
 パワーモジュール20の具体的構造について説明すると、半導体チップ1と、半導体チップ1とはんだ(接合材)5を介して接続されたチップ支持部材であるセラミック基板3と、半導体チップ1と電気的に接続された複数のワイヤ6とを有している。つまり、セラミック基板3の基材の上面3aには、配線パターン等の電極(導体部、配線部)3caが形成され、この電極3ca上にはんだ2を介して半導体チップ1が搭載されている。 The specific structure of the power module 20 will be described. The semiconductor chip 1, the ceramic substrate 3 that is a chip support member connected to the semiconductor chip 1 via the solder (joining material) 5, and the semiconductor chip 1 are electrically connected. A plurality of wires 6. That is, an electrode (conductor portion, wiring portion) 3 ca such as a wiring pattern is formed on the upper surface 3 a of the base material of the ceramic substrate 3, and the semiconductor chip 1 is mounted on the electrode 3 ca via the solder 2.
 また、放熱板でもあるベース板4には、複数の半導体チップ1、複数のワイヤ6およびセラミック基板3を覆うケース8が設けられており、そのケース8内には図示しない封止用の樹脂が充填されている。つまり、複数の半導体チップ1、複数のワイヤ6およびセラミック基板3は、上記封止用の樹脂によって封止されている。上記樹脂は、例えばゲル状の樹脂材を用いることが好ましい。 The base plate 4 that is also a heat radiating plate is provided with a case 8 that covers the plurality of semiconductor chips 1, the plurality of wires 6, and the ceramic substrate 3, and a sealing resin (not shown) is contained in the case 8. Filled. That is, the plurality of semiconductor chips 1, the plurality of wires 6, and the ceramic substrate 3 are sealed with the sealing resin. For example, a gel-like resin material is preferably used as the resin.
 また、半導体チップ1は、セラミック基板3の上面3aの電極3ca上にはんだ2を介して接合されている。つまり、半導体チップ1の下面1bとセラミック基板3の上面3aとが対向しており、半導体チップ1の裏面電極とセラミック基板3の電極3caとがはんだ2によって電気的に接続されている。 The semiconductor chip 1 is joined to the electrode 3ca on the upper surface 3a of the ceramic substrate 3 via the solder 2. That is, the lower surface 1 b of the semiconductor chip 1 and the upper surface 3 a of the ceramic substrate 3 are opposed to each other, and the back electrode of the semiconductor chip 1 and the electrode 3 ca of the ceramic substrate 3 are electrically connected by the solder 2.
 また、半導体チップ1の上面1aには、例えばゲート用の電極1cが形成されており、セラミック基板3の電極3cbとワイヤ6を介して電気的に接続されている。 Further, for example, a gate electrode 1 c is formed on the upper surface 1 a of the semiconductor chip 1, and is electrically connected to the electrode 3 cb of the ceramic substrate 3 via a wire 6.
 また、端子7は、その一端が、セラミック基板3の電極3cbに接合されており、さらに他端がケース8の外部に引き出されている。また、ベース板4は、放熱用の金属板である。 Further, one end of the terminal 7 is joined to the electrode 3 cb of the ceramic substrate 3, and the other end is drawn out of the case 8. The base plate 4 is a metal plate for heat dissipation.
 また、複数のワイヤ6のそれぞれは、例えば、アルミニウムまたは銅のワイヤ、もしくはリボン状のものである。 Further, each of the plurality of wires 6 is, for example, an aluminum or copper wire or a ribbon.
 そして、本実施の形態のパワーモジュール20では、セラミック基板3のの下面3bに配線部である電極3ccが形成され、この電極3ccに接合材であるはんだ5を介して放熱用のベース板(金属板、放熱部材)4が接合されている。 In the power module 20 of the present embodiment, an electrode 3cc as a wiring portion is formed on the lower surface 3b of the ceramic substrate 3, and a base plate for heat dissipation (metal) is connected to the electrode 3cc via a solder 5 as a bonding material. Plate, heat radiating member) 4 are joined.
 このはんだ5は、半導体チップ1の直下において、上方から眺めた平面視で半導体チップ1の平面サイズと同じ大きさの平面サイズで形成された高融点接合材(第1接合材)5aと、同じく平面視で高融点接合材5aの周囲に配置された低融点接合材(第2接合材)5bとからなる。つまり、高融点接合材(第1接合材)5aは、半導体チップ1の位置に対応した半導体チップ1の直下において、半導体チップ1の平面サイズと同じ、もしくは半導体チップ1の平面サイズより大きな平面サイズで形成されている。言い換えると、高融点接合材(第1接合材)5aの平面視での大きさは、半導体チップ1の平面視の大きさ以上であればよい。そして、高融点接合材5aの融点は、低融点接合材5bの融点より高い。 This solder 5 is the same as a high melting point bonding material (first bonding material) 5a formed directly below the semiconductor chip 1 and having a planar size that is the same as the planar size of the semiconductor chip 1 as viewed from above. It consists of a low melting point bonding material (second bonding material) 5b disposed around the high melting point bonding material 5a in plan view. That is, the high melting point bonding material (first bonding material) 5a has a planar size that is the same as or larger than the planar size of the semiconductor chip 1 immediately below the semiconductor chip 1 corresponding to the position of the semiconductor chip 1. It is formed with. In other words, the size of the high melting point bonding material (first bonding material) 5a in plan view may be larger than the size of the semiconductor chip 1 in plan view. The melting point of the high melting point bonding material 5a is higher than the melting point of the low melting point bonding material 5b.
 すなわち、接合材であるはんだ5は、温度が上昇する半導体チップ1の直下に配置された高融点接合材5aと、この高融点接合材5aの周囲(平面視で高融点接合材5aの周りもしくは外側)に配置された低融点接合材5bとからなる。 That is, the solder 5 as a bonding material includes a high melting point bonding material 5a disposed immediately below the semiconductor chip 1 where the temperature rises, and a periphery of the high melting point bonding material 5a (around the high melting point bonding material 5a in plan view or And a low melting point bonding material 5b disposed on the outer side.
 そして、高融点接合材5aは、セラミック基板3を介して半導体チップ1の直下に配置されている。 The high melting point bonding material 5a is disposed directly below the semiconductor chip 1 with the ceramic substrate 3 interposed therebetween.
 なお、はんだ5の厚さは、はんだ2の厚さより厚くてもよい。さらにその平面視での面積においてもはんだ5は、はんだ2より大きい。 In addition, the thickness of the solder 5 may be thicker than the thickness of the solder 2. Further, the solder 5 is larger than the solder 2 in the area in plan view.
 また、高融点接合材5aは、高耐熱性を有した接合材であり、好ましくは、金属粒子による焼結材である。さらに、Zn-Al、Au-Ge、Au-Si等の接合材であってもよい。 The high melting point bonding material 5a is a bonding material having high heat resistance, and preferably a sintered material made of metal particles. Further, a bonding material such as Zn—Al, Au—Ge, or Au—Si may be used.
 一方、低融点接合材5bは、好ましくは、Sn系はんだ合金であり、例えば、Sn-Cu、Sn-Cu-Sn、Sn-Sb、Sn-Ag-Cu等のSn系はんだ合金である。 On the other hand, the low melting point bonding material 5b is preferably an Sn-based solder alloy, for example, an Sn-based solder alloy such as Sn—Cu, Sn—Cu—Sn, Sn—Sb, Sn—Ag—Cu.
 つまり、本実施の形態のパワーモジュール20では、発熱の大きな半導体チップ1の直下の部分のみに高い信頼性を有する高耐熱接合(高融点接合材5aによる接合)を適用し、高融点接合材5aの周囲の部分には接合部の端部からの亀裂進展を抑制可能なSn系はんだ合金等の低融点接合材5bによる接合を適用している。 That is, in the power module 20 of the present embodiment, high heat-resistant bonding (bonding with the high melting point bonding material 5a) having high reliability is applied only to a portion immediately below the semiconductor chip 1 that generates large heat, and the high melting point bonding material 5a. The joining by the low melting-point joining material 5b, such as Sn type solder alloy which can suppress the crack progress from the edge part of a junction part, is applied to the surrounding part.
 その結果、セラミック基板3の下部のベース板4との接合部の接合信頼性を高めることができ、これにより、パワーモジュール20における信頼性を向上させることができる。 As a result, it is possible to increase the bonding reliability of the bonded portion with the base plate 4 below the ceramic substrate 3, thereby improving the reliability of the power module 20.
 さらに、例えば、高融点接合材5aとして金属粒子による焼結材を用い、低融点接合材5bとしてSn系はんだ合金を用いることが好ましい。これは、焼結金属接合は接合後も接合層中に微細なボイドが存在するため、バルク材と比較して表面積が大きく高温環境下において酸化することで強度が低下するという懸念がある。 Further, for example, it is preferable to use a sintered material of metal particles as the high melting point bonding material 5a and to use an Sn-based solder alloy as the low melting point bonding material 5b. This is because there is a concern that sintered metal joints have fine voids in the joining layer even after joining, and have a large surface area compared to the bulk material and oxidize in a high temperature environment to reduce strength.
 しかしながら、本実施の形態のパワーモジュール20では、焼結金属による接合部(高融点接合材5a)が、Sn系はんだ合金等の低融点金属接合によって封止されるような構造となるため、接合部が高温となっても焼結金属接合を酸化から保護することが可能となる。 However, in the power module 20 of the present embodiment, since the joining portion (high melting point joining material 5a) of sintered metal is sealed by low melting point metal joining such as Sn-based solder alloy, the joining is performed. Even when the temperature of the portion becomes high, the sintered metal joint can be protected from oxidation.
 ここで、図13を用いて比較例のモジュール構造を説明して、本実施の形態のパワーモジュール20の上記比較例との違いを説明する。 Here, the module structure of the comparative example will be described with reference to FIG. 13, and the difference from the comparative example of the power module 20 of the present embodiment will be described.
 図13は本発明者が比較検討を行った比較例の半導体装置の構造を示す断面図である。 FIG. 13 is a cross-sectional view showing the structure of a semiconductor device of a comparative example that the present inventors have conducted a comparative study.
 図13に示すようなモジュール構造(パワーモジュール50)では、発熱部に近い半導体チップ1と絶縁基板(セラミック基板3)の接合においてのみ破壊が進展すると考えられてきたが、絶縁基板と放熱ベース(ベース板4)の接合部においてもチップの動作温度が上昇し、チップの発熱によって絶縁基板と放熱ベースの接合部中に温度の不均一が生じる。その結果、特にSn系はんだ40を使用した場合、接合部中から破壊が進展することが明らかとなってきた。 In the module structure (power module 50) as shown in FIG. 13, it has been considered that the breakdown progresses only at the junction between the semiconductor chip 1 and the insulating substrate (ceramic substrate 3) close to the heat generating portion. The operating temperature of the chip also rises at the junction of the base plate 4), and the heat generation of the chip causes temperature nonuniformity in the junction between the insulating substrate and the heat dissipation base. As a result, it has been clarified that the breakage progresses from the joint, particularly when the Sn-based solder 40 is used.
 また、絶縁基板と放熱ベースの接合部は、半導体チップ1と絶縁基板の接合部と比較して大面積であり、接合部の端部におけるひずみが大きくなることによって端部からの亀裂42の進展に対する信頼性も要求される。 Further, the joint portion between the insulating substrate and the heat dissipation base has a larger area than the joint portion between the semiconductor chip 1 and the insulating substrate, and the crack 42 from the end portion develops due to the increased strain at the end portion of the joint portion. Reliability is also required.
 また、パワーモジュール20では、他の電子部品と比較して大電流が印加されることによって、チップが発熱するため、絶縁基板と放熱ベースの接合部において他の電子機器とは異なる接合部中からの破壊が問題となっている。特にSn系はんだ40を使用した場合、Sn粒界でのボイドの発生および縦方向(基板厚さ方向、垂直方向)への破壊の進展が問題となっている。特に縦方向への亀裂41は、接合部の温度変化によって接合部中に引っ張りの応力が働くため、発生すると考えられる。 Further, in the power module 20, the chip generates heat when a large current is applied as compared with other electronic components. Therefore, the junction between the insulating substrate and the heat dissipation base is different from other electronic devices. Destruction is a problem. In particular, when the Sn-based solder 40 is used, the generation of voids at the Sn grain boundaries and the progress of breakage in the vertical direction (substrate thickness direction, vertical direction) are problematic. In particular, it is considered that the crack 41 in the vertical direction is generated because tensile stress acts in the joint due to a temperature change of the joint.
 パワーモジュール50ではその動作時に、チップ(半導体チップ1)が発熱する。その際、絶縁基板と放熱ベースの接合部で特にチップ直下の部分においてチップとほぼ同等程度まで温度が上昇することが明らかとなった。これは、絶縁基板(セラミック基板3)に熱伝導の良いAl、Cu、AlNやSi3 N4 等が使用されているためだと考えられる。チップの直下の部分は高温となるため通電のON/OFFによって接合部の破壊が進展する。放熱経路であるこの部分に破壊が進展すると放熱性が低下し、チップの温度が上昇して最終的にパワーモジュール50の破壊に至る。 In the power module 50, the chip (semiconductor chip 1) generates heat during its operation. At that time, it became clear that the temperature rose to almost the same level as that of the chip at the junction between the insulating substrate and the heat dissipation base, particularly in the portion directly under the chip. This is presumably because Al, Cu, AlN, Si 3 N 4 or the like having good thermal conductivity is used for the insulating substrate (ceramic substrate 3). Since the portion immediately below the chip is at a high temperature, destruction of the joint progresses due to ON / OFF of energization. When the breakage progresses in this portion which is a heat radiation path, the heat radiation performance is lowered, the temperature of the chip rises, and finally the power module 50 is broken.
 パワーサイクル耐量の高い接合材として、接合後の融点の高い焼結金属接合やZn-Al合金による接合、Au系はんだによる接合等が候補として想定されるが、焼結金属接合は、数nm~数100μmの微細な金属粒子をアルコール等の溶剤でペースト状にしたものであり、接合の際には加熱によって溶剤の除去や、加圧が必要である。しかしながら、絶縁基板と放熱ベースなど大面積の接合の場合、面積が大きく中心部まで溶剤を除去することが難しい。 Possible joining materials with high power cycle tolerance include sintered metal joining with high melting point after joining, joining with Zn-Al alloy, joining with Au-based solder, etc. Fine metal particles of several hundred μm are made into a paste with a solvent such as alcohol, and it is necessary to remove the solvent by heating or pressurize when joining. However, in the case of bonding with a large area such as an insulating substrate and a heat dissipation base, the area is large and it is difficult to remove the solvent to the center.
 さらに、大きな加圧力が必要となり大規模な設備が必要となるなど大面積の接合部への適用は困難である。また、Au系はんだを適用した場合、Auは高コストなため大面積の接合部全体に適用した場合コストが高くなるといった懸念がある。 Furthermore, it is difficult to apply to large-area joints because a large pressure is required and a large-scale facility is required. In addition, when Au-based solder is applied, there is a concern that since Au is expensive, the cost increases when applied to the entire large-area joint.
 しかしながら本実施の形態のパワーモジュール20では、セラミック基板(絶縁基板)3とベース板(放熱用金属板)4といった大面積の接合部において、チップ直下の部分(必要な部分)においてのみ高耐熱接合部(高融点接合材5a)とし、その他の部分(周囲)はSn系はんだ等の低融点な金属による接合部(低融点接合材5b)としている。 However, in the power module 20 of the present embodiment, in a large-area joint such as the ceramic substrate (insulating substrate) 3 and the base plate (heat radiating metal plate) 4, high heat-resistant bonding is performed only at a portion directly below the chip (necessary portion). The portion (high melting point bonding material 5a) is the other portion (periphery) is a bonding portion (low melting point bonding material 5b) made of a low melting point metal such as Sn-based solder.
 高耐熱な接合材を少なくとも耐熱性、信頼性が要求されるチップ直下の部分に適応することで、接合面積を抑えることが可能となり、前述の高耐熱接合を適用することが可能となる。そして、その他(周囲)の温度の上昇が少ない部分には、Sn-Cu、Sn-Cu-Sb、Sn-Ag-Cu等のSn系はんだ合金を適用することで端部からの亀裂進展を抑制することが可能となる。 適 応 By applying a high heat-resistant bonding material to at least the part directly under the chip where heat resistance and reliability are required, it becomes possible to reduce the bonding area and to apply the high heat bonding described above. And, in other parts where the temperature rise is small, Sn-Cu, Sn-Cu-Sb, Sn-Ag-Cu and other Sn-based solder alloys are used to suppress crack growth from the edges. It becomes possible to do.
 これにより、大面積な接合部においてもパワーサイクル信頼性と組立て性を両立することが可能となる。 This makes it possible to achieve both power cycle reliability and ease of assembly even in a large-area joint.
 また、上述のように焼結金属による接合部(高融点接合材5a)が、Sn系はんだ合金等の低融点金属接合(低融点接合材5b)によって封止される構造であるため、接合部が高温となっても焼結金属接合を酸化から保護することができる。 Further, as described above, the bonded portion (high melting point bonding material 5a) made of sintered metal is sealed by a low melting point metal bonding (low melting point bonding material 5b) such as an Sn-based solder alloy. Even if the temperature becomes high, the sintered metal joint can be protected from oxidation.
 以上により、パワーモジュール20における信頼性を向上させることができる。 As described above, the reliability of the power module 20 can be improved.
 次に、本実施の形態のパワーモジュール20の組立てについて説明する。図2は図1に示す半導体装置の組立てにおける主要工程の一例を示す断面図、図3は図1に示す半導体装置の組立てにおける主要工程の一例を示す断面図である。 Next, the assembly of the power module 20 of this embodiment will be described. 2 is a cross-sectional view showing an example of main processes in the assembly of the semiconductor device shown in FIG. 1, and FIG. 3 is a cross-sectional view showing an example of main processes in the assembly of the semiconductor device shown in FIG.
 ここでは、図2、図3に示すように、チップ直下の高耐熱接合部(高融点接合材5a)に焼結金属(金属粒子による焼結材)、その他の部分(高融点接合材5aの周囲の部分)にSn系はんだ合金(低融点接合材5b)を適用した場合について示す。 Here, as shown in FIG. 2 and FIG. 3, a sintered metal (sintered material by metal particles) and other parts (high melting point bonding material 5 a of high melting point bonding material 5 a) are placed on a high heat resistant bonding portion (high melting point bonding material 5 a) immediately below the chip. A case where an Sn-based solder alloy (low melting point bonding material 5b) is applied to the surrounding portion will be described.
 パワーモジュール20の組立てでは、まず、図2に示すように、セラミック基板(配線基板、絶縁基板)3上に、はんだ2を介して半導体チップ1を搭載する。はんだ2は、例えば融点が400℃である。したがって、はんだ2を400℃以上に加熱溶融することで、セラミック基板3上にはんだ2を介して半導体チップ1を接合する。 In assembling the power module 20, first, as shown in FIG. 2, the semiconductor chip 1 is mounted on the ceramic substrate (wiring substrate, insulating substrate) 3 via the solder 2. The solder 2 has a melting point of 400 ° C., for example. Accordingly, the semiconductor chip 1 is joined to the ceramic substrate 3 via the solder 2 by heating and melting the solder 2 to 400 ° C. or higher.
 次に、セラミック基板3の裏(下面3b)側に高融点接合材5aである焼結金属ペーストを塗布する。さらに、高融点接合材5a以外の部分(高融点接合材5aの周囲、高融点接合材5aの外側部分)に、低融点接合材5bであるSn系はんだを箔もしくはペーストで供給する。 Next, a sintered metal paste which is a high melting point bonding material 5a is applied to the back side (lower surface 3b) side of the ceramic substrate 3. Further, Sn-based solder, which is the low melting point bonding material 5b, is supplied as a foil or a paste to portions other than the high melting point bonding material 5a (around the high melting point bonding material 5a and outside the high melting point bonding material 5a).
 すなわち、高融点接合材5aと低融点接合材5bとからなるはんだ(接合材)5において、半導体チップ1の直下に、平面視で半導体チップ1と同じ大きさまたは半導体チップ1より大きくなるように高融点接合材5aを塗布し、さらに、平面視で高融点接合材5aの周囲に低融点接合材5bを塗布する。ここで、高融点接合材5aは、低融点接合材5bより融点が高い。例えば、高融点接合材5aの融点は、約320℃であり、低融点接合材5bの融点は、320℃未満である。 That is, in the solder (bonding material) 5 composed of the high melting point bonding material 5a and the low melting point bonding material 5b, the size is equal to or larger than that of the semiconductor chip 1 in a plan view immediately below the semiconductor chip 1. The high melting point bonding material 5a is applied, and further, the low melting point bonding material 5b is applied around the high melting point bonding material 5a in plan view. Here, the high melting point bonding material 5a has a higher melting point than the low melting point bonding material 5b. For example, the high melting point bonding material 5a has a melting point of about 320 ° C., and the low melting point bonding material 5b has a melting point of less than 320 ° C.
 次に、図3に示すように、ベース板4上にはんだ5を介してセラミック基板3を配置し、配置後、高融点接合材5aと低融点接合材5bとからなるはんだ(接合材)5を加熱溶融してセラミック基板3とベース板(放熱用の金属板)4とを接合する。 Next, as shown in FIG. 3, the ceramic substrate 3 is disposed on the base plate 4 via the solder 5, and after the placement, the solder (joining material) 5 composed of the high melting point bonding material 5a and the low melting point bonding material 5b. Are heated and melted to join the ceramic substrate 3 and the base plate (metal plate for heat dissipation) 4 together.
 この時、例えば、リフロー炉等で加圧と300℃以上の加熱を加えることで、はんだ5を溶融してセラミック基板3とベース板4とを接合する。これにより、図3(図1)に示すモジュール構造におけるセラミック基板3とベース板4とのはんだ接合を完了する。 At this time, for example, by applying pressure and heating at 300 ° C. or higher in a reflow furnace or the like, the solder 5 is melted and the ceramic substrate 3 and the base plate 4 are joined. Thereby, the solder joint between the ceramic substrate 3 and the base plate 4 in the module structure shown in FIG. 3 (FIG. 1) is completed.
 なお、接合後のはんだ5において、チップ直下の高融点接合材(第1接合材)5aの平面視での大きさは、半導体チップ1の平面視の大きさ以上であればよい。 In addition, in the solder 5 after bonding, the size of the high melting point bonding material (first bonding material) 5a immediately below the chip may be larger than the size of the semiconductor chip 1 in plan view.
 上述のように焼結金属接合は接合後も接合層中に微細なボイドが存在するため、バルク材と比較して表面積が大きく高温環境下において酸化することで強度が低下するという懸念がある。 As described above, since sintered metal bonding has fine voids in the bonding layer even after bonding, there is a concern that the surface area is larger than that of the bulk material and the strength is reduced by oxidation in a high temperature environment.
 しかし、本実施の形態のパワーモジュール20の組立てにおいては、焼結金属による接合部(高融点接合材5a)が、Sn系はんだ合金等の低融点金属接合によって封止されるような構造となるため、接合部が高温となっても焼結金属接合を酸化から保護することができる。 However, in the assembly of the power module 20 of the present embodiment, the structure is such that the joint portion (high melting point bonding material 5a) made of sintered metal is sealed by low melting point metal bonding such as Sn-based solder alloy. Therefore, the sintered metal joint can be protected from oxidation even if the joint becomes high temperature.
 また、焼結金属接合(高融点接合材5aによる接合)において接合面積が400mmとなると、端部から中央部までの距離が長く、中央部付近の溶剤が接合中に除去しにくくなるが、本実施の形態のパワーモジュール20では、焼結金属接合の接合部面積が400mm以上であっても接合することができる。 Further, when the bonding area is 400 mm 2 in the sintered metal bonding (bonding with the high melting point bonding material 5a), the distance from the end to the center is long, and the solvent near the center is difficult to remove during the bonding. In the power module 20 according to the present embodiment, bonding can be performed even if the area of the bonded portion of the sintered metal bonding is 400 mm 2 or more.
 なお、図2、図3に示すパワーモジュールの組立てについては、高融点接合材5aと低融点接合材5bとをセラミック基板3の下面3b側に塗布するのではなく、ベース板4上に高融点接合材5aおよび低融点接合材5bを塗布して、その上にセラミック基板3を配置してからはんだ5を加熱溶融するようにしてもよい。 2 and 3, the high melting point bonding material 5 a and the low melting point bonding material 5 b are not applied to the lower surface 3 b side of the ceramic substrate 3, but the high melting point bonding material 5 a and the low melting point bonding material 5 b are applied to the base plate 4. The solder 5 may be heated and melted after the bonding material 5a and the low-melting-point bonding material 5b are applied and the ceramic substrate 3 is disposed thereon.
 次に、図2、図3に示すパワーモジュールにおいて、高融点接合材5aとしてZn系はんだ合金を適用し、低融点接合材5bとしてSn系はんだ合金を適用する場合の組立てについて説明する。 Next, in the power module shown in FIG. 2 and FIG. 3, the assembly in the case where a Zn solder alloy is applied as the high melting point bonding material 5a and the Sn solder alloy is applied as the low melting point bonding material 5b will be described.
 まず、図2に示すように、セラミック基板(配線基板、絶縁基板)3上にはんだ2を介して半導体チップ1を搭載する。セラミック基板3上へのはんだ2を介した半導体チップ1の搭載については、上記方法と同様である。 First, as shown in FIG. 2, a semiconductor chip 1 is mounted on a ceramic substrate (wiring substrate, insulating substrate) 3 via a solder 2. The mounting of the semiconductor chip 1 on the ceramic substrate 3 via the solder 2 is the same as the above method.
 次に、セラミック基板3の裏(下面3b)側に高融点接合材5aであるZn系の焼結金属ペーストを塗布する。さらに、高融点接合材5a以外の部分(高融点接合材5aの周囲、高融点接合材5aの外側部分)に、低融点接合材5bであるSn系はんだを箔もしくはペーストで供給する。 Next, a Zn-based sintered metal paste, which is a high melting point bonding material 5a, is applied to the back side (lower surface 3b) side of the ceramic substrate 3. Further, Sn-based solder, which is the low melting point bonding material 5b, is supplied as a foil or a paste to portions other than the high melting point bonding material 5a (around the high melting point bonding material 5a and outside the high melting point bonding material 5a).
 すなわち、高融点接合材5aと低融点接合材5bとからなるはんだ(接合材)5において、半導体チップ1の直下に、平面視で半導体チップ1と同じ大きさまたは半導体チップ1より大きくなるように高融点接合材5aを塗布し、さらに、平面視で高融点接合材5aの周囲に低融点接合材5bを塗布する。ここで、高融点接合材5aは、低融点接合材5bより融点が高い。例えば、高融点接合材5aの融点は、約320℃であり、低融点接合材5bの融点は、320℃未満である。 That is, in the solder (bonding material) 5 composed of the high melting point bonding material 5a and the low melting point bonding material 5b, the size is equal to or larger than that of the semiconductor chip 1 in a plan view immediately below the semiconductor chip 1. The high melting point bonding material 5a is applied, and further, the low melting point bonding material 5b is applied around the high melting point bonding material 5a in plan view. Here, the high melting point bonding material 5a has a higher melting point than the low melting point bonding material 5b. For example, the high melting point bonding material 5a has a melting point of about 320 ° C., and the low melting point bonding material 5b has a melting point of less than 320 ° C.
 次に、図3に示すように、ベース板4上にはんだ5を介してセラミック基板3を配置し、配置後、高融点接合材5aと低融点接合材5bとからなるはんだ(接合材)5を加熱溶融してセラミック基板3とベース板(放熱用の金属板)4とを接合する。 Next, as shown in FIG. 3, the ceramic substrate 3 is disposed on the base plate 4 via the solder 5, and after the placement, the solder (joining material) 5 composed of the high melting point bonding material 5a and the low melting point bonding material 5b. Are heated and melted to join the ceramic substrate 3 and the base plate (metal plate for heat dissipation) 4 together.
 この時、例えば、リフロー炉等で加圧と300℃以上の加熱を加えることで、はんだ5を溶融してセラミック基板3とベース板4とを接合する。これにより、図3(図1)に示すモジュール構造におけるセラミック基板3とベース板4とのはんだ接合を完了する。 At this time, for example, by applying pressure and heating at 300 ° C. or higher in a reflow furnace or the like, the solder 5 is melted and the ceramic substrate 3 and the base plate 4 are joined. Thereby, the solder joint between the ceramic substrate 3 and the base plate 4 in the module structure shown in FIG. 3 (FIG. 1) is completed.
 なお、図3に示す接合後のはんだ5において、チップ直下の高融点接合材(第1接合材)5aの平面視での大きさ(平面サイズ)は、半導体チップ1の平面視の大きさ(平面サイズ)以上である。 In the solder 5 after bonding shown in FIG. 3, the size (planar size) of the high melting point bonding material (first bonding material) 5a immediately below the chip in plan view is the size of the semiconductor chip 1 in plan view ( (Plane size) or more.
 また、Zn系はんだ合金を溶融した際に、Znの蒸気圧が低くZnが蒸発してしまい他の部材の表面に付着することで上記他の部材を汚染してしまうという課題の発生が懸念される。しかしながら、本実施の形態のパワーモジュール20の構成とすることで、Zn系はんだ合金の溶融時には、融点が220℃前後であり、溶融しているSn系はんだ合金がZn系はんだ合金を取り囲む構造となっており他の部材へのZnの付着を防止することが可能になる。 Also, when the Zn-based solder alloy is melted, there is a concern that the vapor pressure of Zn is low and Zn evaporates and adheres to the surface of other members, thereby contaminating the other members. The However, with the configuration of the power module 20 of the present embodiment, when the Zn-based solder alloy is melted, the melting point is around 220 ° C., and the molten Sn-based solder alloy surrounds the Zn-based solder alloy. Therefore, it is possible to prevent Zn from adhering to other members.
 さらに、はんだ5による接合部は接合面積が大きいため、大きなひずみの発生する接合部の端部に、Zn系はんだ合金等による高耐熱接合と比較して軟らかい(変形し易い)Sn系はんだ合金を適用することにより、接合部の端部からの亀裂進展に対しても耐性を得ることができる。 Furthermore, since the joint portion by the solder 5 has a large joint area, an Sn-based solder alloy that is softer (easily deformed) than the high heat-resistant joint by a Zn-based solder alloy or the like is applied to the end portion of the joint portion where a large strain occurs. By applying, it is possible to obtain resistance to crack propagation from the end of the joint.
 また、高耐熱接合部(高融点接合材5a)にAu系はんだ合金を使用した場合、セラミック基板3とベース板4の間の接合部全体にAu系はんだ合金を使用するのに比較してコストを低減することができる。 In addition, when an Au-based solder alloy is used for the high heat-resistant joint (high melting point bonding material 5a), the cost is lower than when an Au-based solder alloy is used for the entire joint between the ceramic substrate 3 and the base plate 4. Can be reduced.
 <第1変形例>
 図4、図5、図6はそれぞれ図1に示す半導体装置の第1変形例の組立てにおける主要工程を示す断面図である。
<First Modification>
4, 5, and 6 are cross-sectional views showing main processes in assembling the first modification of the semiconductor device shown in FIG. 1.
 本第1変形例では、高耐熱接合部(高融点接合材5a)として金属粒子による焼結材(焼結金属)を適用し、その他の部分(低融点接合材5b)にSn系はんだ合金を適用する場合の組立てについて説明する。 In the first modification, a sintered material (sintered metal) made of metal particles is applied as the high heat resistant joint (high melting point bonding material 5a), and an Sn-based solder alloy is applied to the other part (low melting point bonding material 5b). The assembly in the case of applying will be described.
 まず、図4に示すように、セラミック基板(配線基板、絶縁基板)3上にはんだ2を介して半導体チップ1を搭載する。セラミック基板3上へのはんだ2を介した半導体チップ1の搭載については、上記方法と同様である。 First, as shown in FIG. 4, the semiconductor chip 1 is mounted on the ceramic substrate (wiring substrate, insulating substrate) 3 via the solder 2. The mounting of the semiconductor chip 1 on the ceramic substrate 3 via the solder 2 is the same as the above method.
 次に、ベース板4上に焼結金属ペースト(高融点接合材5a)を塗布し、300℃以上に加熱することで、図5に示すポーラス状接合部(多孔質接合材)9を形成する。その後、Sn系はんだ合金からなる低融点接合材5b(例えば、低融点金属箔、第2接合材)をセラミック基板3とベース板4との間において上記ポーラス状接合部9を覆うように供給し、300℃以上で15min間以上加熱する。これにより、溶融したSn系はんだ合金(低融点接合材5b)とポーラス状接合部(高融点接合材5a)9との構造体が反応し、図6に示すような、Sn-Cu、Sn-Ag、Ni-Sn等の金属間化合物(層)10が形成される。これにより、高融点化が達成される。なお、金属間化合物10の周囲には、Sn系はんだ合金(低融点接合材5b)が配置される。 Next, a porous metal joint (porous joint material) 9 shown in FIG. 5 is formed by applying a sintered metal paste (high melting point joint material 5a) on the base plate 4 and heating to 300 ° C. or higher. . Thereafter, a low melting point bonding material 5b (for example, a low melting point metal foil, a second bonding material) made of an Sn-based solder alloy is supplied between the ceramic substrate 3 and the base plate 4 so as to cover the porous bonding portion 9. And heating at 300 ° C. or higher for 15 minutes or longer. As a result, the structure of the molten Sn-based solder alloy (low melting point bonding material 5b) and the porous bonding portion (high melting point bonding material 5a) 9 reacts, and Sn—Cu, Sn— as shown in FIG. An intermetallic compound (layer) 10 such as Ag or Ni—Sn is formed. Thereby, the high melting point is achieved. An Sn-based solder alloy (low melting point bonding material 5b) is disposed around the intermetallic compound 10.
 ここで、金属間化合物10は、一般的に高融点であるが、硬く脆いという欠点があるため、大きな歪みが生じる接合部の端部にSn系はんだ合金(低融点接合材5b)を配置する。これにより、セラミック基板3と放熱用のベース板4との接合部として必要なパワーサイクル信頼性、および接合部の端部からの耐亀裂進展性をそれぞれ満たすことが可能になる。 Here, the intermetallic compound 10 generally has a high melting point, but has a drawback of being hard and brittle. Therefore, an Sn-based solder alloy (low melting point bonding material 5b) is disposed at the end of the joint where large distortion occurs. . Thereby, it becomes possible to satisfy the power cycle reliability required as a joint portion between the ceramic substrate 3 and the base plate 4 for heat dissipation, and the resistance to crack propagation from the end portion of the joint portion.
 なお、図6に示すモジュール構造のセラミック基板3とベース板4との接合部(はんだ5)において、チップ直下の高融点接合材(金属間化合物10、第1接合材)5aの平面視での大きさ(平面サイズ)は、半導体チップ1の平面視の大きさ(平面サイズ)以上である。 In addition, in the joint portion (solder 5) between the ceramic substrate 3 and the base plate 4 having the module structure shown in FIG. 6, the high melting point joining material (intermetallic compound 10, first joining material) 5a immediately below the chip in plan view. The size (planar size) is not less than the size (planar size) of the semiconductor chip 1 in plan view.
 また、図4~図6に示す組立てについては、焼結金属ペースト(高融点接合材5a、第1接合材)をベース板4上に塗布するのではなく、セラミック基板3の下面3b側に塗布してもよい。 4 to 6, the sintered metal paste (the high melting point bonding material 5a, the first bonding material) is not applied on the base plate 4, but is applied to the lower surface 3b side of the ceramic substrate 3. May be.
 以上、本実施の形態のパワーモジュール20およびその組立てでは、Si、SiC、GaAs、CdTe、GaN等どのような材料からなる半導体チップ1であっても適用することが可能である。 As described above, the power module 20 and the assembly thereof according to the present embodiment can be applied to the semiconductor chip 1 made of any material such as Si, SiC, GaAs, CdTe, and GaN.
 さらに、基板については、Cu、Al、42アロイや、CIC(Copper Invar Copper)、または、DBC(Direct Bond Copper)、DBA(Direct Bond Aluminum)等の金属を貼り合わせたセラミック基板(絶縁基板)3であってもよい。また、放熱用のベース板(金属板)4は、Cu、Al、Cu-Mo、Al-SiC、Mg-SiC等どのような部材からなるものであってもよく、どのような部材に対しても信頼性の高い接合を実現することができる。 Furthermore, as for the substrate, a ceramic substrate (insulating substrate) 3 bonded with a metal such as Cu, Al, 42 alloy, CIC (Copper Invar Copper), DBC (Direct Bond Copper), DBA (Direct Bond Aluminum) 3 or the like. It may be. The base plate (metal plate) 4 for heat dissipation may be made of any member such as Cu, Al, Cu—Mo, Al—SiC, Mg—SiC, etc. Can achieve highly reliable bonding.
 <第2変形例>
 図7は本発明の第2変形例の半導体装置の構造を示す断面図であり、図8、図9は、それぞれ図7に示す半導体装置の内部構造の一例を示す平面図である。
<Second Modification>
FIG. 7 is a cross-sectional view showing the structure of a semiconductor device according to a second modification of the present invention, and FIGS. 8 and 9 are plan views showing examples of the internal structure of the semiconductor device shown in FIG.
 図1や図2~図3および図4~図6で示したパワーモジュールでは、一例としてセラミック基板(絶縁基板)3と放熱用のベース板(金属板)4との接合部における平面視での中央部付近に高耐熱接合部(第1接合材、高融点接合材5a)を配置している。しかしながら、高耐熱接合部(第1接合材、高融点接合材5a)の設置箇所は、図7~図9に示すように半導体チップ1の位置によって変化させてもよい。 In the power modules shown in FIG. 1, FIG. 2 to FIG. 3 and FIG. 4 to FIG. 6, as an example, a plan view at a joint portion between a ceramic substrate (insulating substrate) 3 and a heat radiating base plate (metal plate) 4 A high heat-resistant bonding part (first bonding material, high melting point bonding material 5a) is disposed near the center. However, the installation location of the high heat-resistant bonding part (first bonding material, high melting point bonding material 5a) may be changed depending on the position of the semiconductor chip 1 as shown in FIGS.
 例えば、図8に示すようにセラミック基板3上に4つの半導体チップ1が搭載されている構造の場合、図7、図9に示すように各半導体チップ1の直下に半導体チップ1の平面サイズと同じ平面サイズ(あるいは半導体チップ1の平面サイズより大きな平面サイズでもよい)となるような高融点接合材(第1接合材、高耐熱接合部)5aを配置するものである。その際、4つの高融点接合材5aのそれぞれの周囲には低融点接合材(例えば、Sn系はんだ合金等)5bが配置されている。 For example, in the case of a structure in which four semiconductor chips 1 are mounted on a ceramic substrate 3 as shown in FIG. 8, the planar size of the semiconductor chip 1 is directly below each semiconductor chip 1 as shown in FIGS. A high melting point bonding material (first bonding material, high heat resistant bonding portion) 5a having the same plane size (or a plane size larger than the plane size of the semiconductor chip 1) may be disposed. At that time, a low melting point bonding material (for example, Sn-based solder alloy) 5b is disposed around each of the four high melting point bonding materials 5a.
 つまり、図9に示すように4つの高融点接合材5aのそれぞれは、それらの周りを低融点接合材5bによって取り囲まれている。 That is, as shown in FIG. 9, each of the four high melting point bonding materials 5a is surrounded by the low melting point bonding material 5b.
 このようなモジュール構造であっても、図1に示すパワーモジュール20と同様の効果を得ることができ、接合信頼性の高いモジュール構造を実現することができる。 Even with such a module structure, the same effect as that of the power module 20 shown in FIG. 1 can be obtained, and a module structure with high bonding reliability can be realized.
 <適用例>
 図10は図1に示す半導体装置が搭載された鉄道車両の一例を示す部分側面図、図11は図10に示す鉄道車両に設置されたインバータの内部構造の一例を示す平面図である。
<Application example>
10 is a partial side view showing an example of a railway vehicle on which the semiconductor device shown in FIG. 1 is mounted, and FIG. 11 is a plan view showing an example of an internal structure of an inverter installed in the railway vehicle shown in FIG.
 本適用例では、上記実施の形態のパワーモジュール20を搭載した鉄道車両について説明する。図10に示す鉄道車両21は、例えば、図1に示すパワーモジュール20が搭載されたものであり、車両本体26と、パワーモジュール20と、パワーモジュール20を支持する実装部材と、集電装置であるパンタグラフ22と、インバータ23とを備えている。そして、パワーモジュール20は、車両本体26の下部に設置されたインバータ23に搭載されている。 In this application example, a railway vehicle equipped with the power module 20 of the above embodiment will be described. A railway vehicle 21 shown in FIG. 10 is mounted with the power module 20 shown in FIG. 1, for example, and includes a vehicle main body 26, a power module 20, a mounting member that supports the power module 20, and a current collector. A pantograph 22 and an inverter 23 are provided. The power module 20 is mounted on an inverter 23 installed at the lower part of the vehicle body 26.
 図11に示すように、インバータ23の内部では、プリント基板(実装部材)25上に複数のパワーモジュール20が搭載され、さらにこれらのパワーモジュール20を冷却する冷却装置24が搭載されている。図1に示す本実施の形態のパワーモジュール20では、半導体チップ1からの発熱量が多い。したがって、複数のパワーモジュール20を冷却してインバータ23の内部を冷却可能なように冷却装置24が取り付けられている。 As shown in FIG. 11, a plurality of power modules 20 are mounted on a printed circuit board (mounting member) 25 inside the inverter 23, and a cooling device 24 for cooling these power modules 20 is mounted. In the power module 20 of the present embodiment shown in FIG. 1, the amount of heat generated from the semiconductor chip 1 is large. Therefore, the cooling device 24 is attached so that the plurality of power modules 20 can be cooled to cool the inside of the inverter 23.
 これにより、鉄道車両21において、図1に示すモジュールの接合構造が用いられた複数のパワーモジュール20を搭載したインバータ23が設けられていることにより、インバータ23内が高温環境となった場合であっても、インバータ23およびそれが設けられた鉄道車両21の信頼性を高めることができる。すなわち、高温環境下での動作安定性と高電流負荷にも耐え得るパワーモジュール20およびこれを用いたインバータシステムを実現することができる。 As a result, in the railway vehicle 21, the inverter 23 equipped with the plurality of power modules 20 using the module joining structure shown in FIG. Even so, the reliability of the inverter 23 and the railway vehicle 21 provided with the inverter 23 can be improved. That is, it is possible to realize a power module 20 that can withstand operation stability under a high temperature environment and a high current load, and an inverter system using the same.
 次に、上記実施の形態のパワーモジュール20を搭載した自動車について説明する。図12は図1に示す半導体装置が搭載された自動車の一例を示す斜視図である。 Next, an automobile equipped with the power module 20 of the above embodiment will be described. 12 is a perspective view showing an example of an automobile on which the semiconductor device shown in FIG. 1 is mounted.
 図12に示す自動車27は、例えば、図1に示すパワーモジュール20が搭載されたものであり、車体28と、タイヤ29と、パワーモジュール20と、パワーモジュール20を支持する実装部材である実装ユニット30と、を備えている。 An automobile 27 shown in FIG. 12 is mounted with the power module 20 shown in FIG. 1, for example, and includes a vehicle body 28, a tire 29, the power module 20, and a mounting unit that is a mounting member that supports the power module 20. 30.
 自動車27では、パワーモジュール20は、実装ユニット30に含まれるインバータに搭載されているが、実装ユニット30は、例えば、エンジン制御ユニット等であり、その場合、実装ユニット30はエンジンの近傍に配置されている。この場合には、実装ユニット30は、高温環境下での使用となり、これにより、パワーモジュール20も高温状態となる。 In the automobile 27, the power module 20 is mounted on an inverter included in the mounting unit 30. The mounting unit 30 is, for example, an engine control unit, and in this case, the mounting unit 30 is disposed in the vicinity of the engine. ing. In this case, the mounting unit 30 is used in a high temperature environment, and the power module 20 is also in a high temperature state.
 しかしながら、自動車27において、図1に示すモジュールの接合構造が用いられた複数のパワーモジュール20を搭載したインバータが設けられていることにより、実装ユニット30が高温環境となった場合であっても、自動車27の信頼性を高めることができる。つまり自動車27においても、高温環境下での動作安定性と高電流負荷にも耐え得るパワーモジュール20およびこれを用いたインバータシステムを実現することができる。 However, even if the mounting unit 30 is in a high temperature environment by providing an inverter in which a plurality of power modules 20 using the module joining structure shown in FIG. The reliability of the automobile 27 can be improved. That is, in the automobile 27 as well, it is possible to realize the power module 20 that can withstand operation stability under a high temperature environment and a high current load, and an inverter system using the same.
 以上、本発明者によってなされた発明を発明の実施の形態に基づき具体的に説明したが、本発明は前記発明の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiments of the invention. However, the present invention is not limited to the embodiments of the invention, and various modifications can be made without departing from the scope of the invention. It goes without saying that it is possible.
 なお、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 Note that the present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
 また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加、削除、置換をすることが可能である。なお、図面に記載した各部材や相対的なサイズは、本発明を分かりやすく説明するため簡素化・理想化しており、実装上はより複雑な形状となる。 Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. . In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment. In addition, each member and relative size which were described in drawing are simplified and idealized in order to demonstrate this invention clearly, and it becomes a more complicated shape on mounting.
  1 半導体チップ
 1a 上面
 1b 下面
 1c 電極
  2 はんだ
  3 セラミック基板(配線基板)
 3a 上面
 3b 下面
  3c,3ca,3cb,3cc 電極
  4 ベース板(金属板)
  5 はんだ(接合材)
 5a 高融点接合材(第1接合材)
 5b 低融点接合材(第2接合材)
  6 ワイヤ
  7 端子
  8 ケース
  9 ポーラス状接合部(多孔質接合材)
 10 金属間化合物
 20 パワーモジュール(半導体装置)
 21 鉄道車両
 22 パンタグラフ
 23 インバータ
 24 冷却装置
 25 プリント基板
 26 車両本体
 27 自動車
 28 車体
 29 タイヤ
 30 実装ユニット
 40 Sn系はんだ
 41,42 亀裂
 50 パワーモジュール
DESCRIPTION OF SYMBOLS 1 Semiconductor chip 1a Upper surface 1b Lower surface 1c Electrode 2 Solder 3 Ceramic substrate (wiring board)
3a upper surface 3b lower surface 3c, 3ca, 3cb, 3cc electrode 4 base plate (metal plate)
5 Solder (joining material)
5a High melting point bonding material (first bonding material)
5b Low melting point bonding material (second bonding material)
6 Wire 7 Terminal 8 Case 9 Porous joint (porous joint material)
10 Intermetallic compounds 20 Power modules (semiconductor devices)
DESCRIPTION OF SYMBOLS 21 Rail vehicle 22 Pantograph 23 Inverter 24 Cooling device 25 Printed circuit board 26 Vehicle main body 27 Car 28 Car body 29 Tire 30 Mounting unit 40 Sn system solder 41, 42 Crack 50 Power module

Claims (13)

  1.  半導体チップを支持し、前記半導体チップと電気的に接続された配線基板と、
     前記配線基板を支持する金属板と、
     前記配線基板と前記金属板との間に配置され、前記配線基板と前記金属板とを接合する接合材と、
     を有し、
     前記接合材は、前記半導体チップの直下において、前記半導体チップの平面サイズと同じかまたはそれより大きな平面サイズで形成された第1接合材と、平面視で前記第1接合材の周囲に配置された第2接合材とからなり、
     前記第1接合材は、前記第2接合材より融点が高い、半導体装置。
    A wiring board that supports the semiconductor chip and is electrically connected to the semiconductor chip;
    A metal plate that supports the wiring board;
    A bonding material disposed between the wiring board and the metal plate, and bonding the wiring board and the metal plate;
    Have
    The bonding material is disposed immediately below the semiconductor chip, around a first bonding material formed in a plane size equal to or larger than the planar size of the semiconductor chip and around the first bonding material in plan view. Second bonding material,
    The first bonding material is a semiconductor device having a higher melting point than the second bonding material.
  2.  請求項1記載の半導体装置において、
     前記第1接合材は、前記配線基板を介して前記半導体チップの直下に配置されている、半導体装置。
    The semiconductor device according to claim 1,
    The semiconductor device, wherein the first bonding material is disposed directly below the semiconductor chip via the wiring board.
  3.  請求項1記載の半導体装置において、
     前記第1接合材は、金属粒子による焼結材であり、
     前記第2接合材は、Sn系はんだ合金である、半導体装置。
    The semiconductor device according to claim 1,
    The first bonding material is a sintered material made of metal particles,
    The semiconductor device, wherein the second bonding material is a Sn-based solder alloy.
  4.  請求項1記載の半導体装置において、
     前記第1接合材は、金属間化合物を含み、
     前記第2接合材は、Sn系はんだ合金である、半導体装置。
    The semiconductor device according to claim 1,
    The first bonding material includes an intermetallic compound,
    The semiconductor device, wherein the second bonding material is a Sn-based solder alloy.
  5.  請求項1記載の半導体装置において、
     前記第1接合材は、Zn系はんだ合金またはAu系はんだ合金であり、
     前記第2接合材は、Sn系はんだ合金である、半導体装置。
    The semiconductor device according to claim 1,
    The first bonding material is a Zn-based solder alloy or an Au-based solder alloy,
    The semiconductor device, wherein the second bonding material is a Sn-based solder alloy.
  6.  請求項1記載の半導体装置において、
     鉄道の車両に設けられたインバータに搭載されている、半導体装置。
    The semiconductor device according to claim 1,
    A semiconductor device mounted on an inverter provided in a railway vehicle.
  7.  請求項1記載の半導体装置において、
     自動車の車体に設けられたインバータに搭載されている、半導体装置。
    The semiconductor device according to claim 1,
    A semiconductor device mounted on an inverter provided in the body of an automobile.
  8.  (a)配線基板上に半導体チップを搭載する工程、
     (b)前記半導体チップが搭載された前記配線基板を、接合材を介して金属板上に搭載する工程、
     を有し、
     前記(b)工程において、前記接合材を加熱溶融して前記配線基板と前記金属板とを接合し、
     前記接合材は、前記半導体チップの直下において、前記半導体チップの平面サイズと同じかまたはそれより大きな平面サイズで形成された第1接合材と、平面視で前記第1接合材の周囲に配置された第2接合材とからなり、
     前記第1接合材は、前記第2接合材より融点が高い、半導体装置の製造方法。
    (A) mounting a semiconductor chip on a wiring board;
    (B) a step of mounting the wiring board on which the semiconductor chip is mounted on a metal plate via a bonding material;
    Have
    In the step (b), the bonding material is heated and melted to bond the wiring board and the metal plate,
    The bonding material is disposed immediately below the semiconductor chip, around a first bonding material formed in a plane size equal to or larger than the planar size of the semiconductor chip and around the first bonding material in plan view. Second bonding material,
    The method for manufacturing a semiconductor device, wherein the first bonding material has a higher melting point than the second bonding material.
  9.  請求項8記載の半導体装置の製造方法において、
     前記第1接合材は、金属粒子による焼結材であり、
     前記(b)工程において、前記配線基板上に配置された前記焼結材を加熱して前記配線基板上に多孔質接合材を形成し、その後、前記多孔質接合材および前記第2接合材を加熱溶融し、前記加熱溶融により形成された前記接合材を介して前記配線基板と前記金属板とを接合する、半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 8.
    The first bonding material is a sintered material made of metal particles,
    In the step (b), the sintered material disposed on the wiring board is heated to form a porous bonding material on the wiring board, and then the porous bonding material and the second bonding material are formed. A method for manufacturing a semiconductor device, comprising: heating and melting, and bonding the wiring board and the metal plate through the bonding material formed by the heating and melting.
  10.  請求項9記載の半導体装置の製造方法において、
     前記(b)工程で前記配線基板上に前記多孔質接合材を形成した後、前記多孔質接合材上に、前記多孔質接合材より平面サイズが大きな前記第2接合材である低融点金属箔を配置し、その後、前記多孔質接合材および前記低融点金属箔を加熱溶融し、前記加熱溶融により形成された前記接合材を介して前記配線基板と前記金属板とを接合する、半導体装置の製造方法。
    In the manufacturing method of the semiconductor device according to claim 9,
    After forming the porous bonding material on the wiring board in the step (b), the low melting point metal foil which is the second bonding material having a larger planar size than the porous bonding material on the porous bonding material Of the semiconductor device, after which the porous bonding material and the low melting point metal foil are heated and melted, and the wiring board and the metal plate are bonded via the bonding material formed by the heating and melting. Production method.
  11.  請求項10記載の半導体装置の製造方法において、
     前記(b)工程で前記多孔質接合材および前記低融点金属箔を加熱溶融することで、金属間化合物を形成する、半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 10.
    A method for manufacturing a semiconductor device, wherein an intermetallic compound is formed by heating and melting the porous bonding material and the low-melting-point metal foil in the step (b).
  12.  請求項8記載の半導体装置の製造方法において、
     前記第1接合材は、金属粒子による焼結材であり、
     前記第2接合材は、Sn系はんだ合金である、半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 8.
    The first bonding material is a sintered material made of metal particles,
    The method for manufacturing a semiconductor device, wherein the second bonding material is an Sn-based solder alloy.
  13.  請求項8記載の半導体装置の製造方法において、
     前記第1接合材は、Zn系はんだ合金またはAu系はんだ合金であり、
     前記第2接合材は、Sn系はんだ合金である、半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 8.
    The first bonding material is a Zn-based solder alloy or an Au-based solder alloy,
    The method for manufacturing a semiconductor device, wherein the second bonding material is an Sn-based solder alloy.
PCT/JP2015/057477 2015-03-13 2015-03-13 Semiconductor apparatus and manufacturing method of same WO2016147252A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057477 WO2016147252A1 (en) 2015-03-13 2015-03-13 Semiconductor apparatus and manufacturing method of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057477 WO2016147252A1 (en) 2015-03-13 2015-03-13 Semiconductor apparatus and manufacturing method of same

Publications (1)

Publication Number Publication Date
WO2016147252A1 true WO2016147252A1 (en) 2016-09-22

Family

ID=56918797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057477 WO2016147252A1 (en) 2015-03-13 2015-03-13 Semiconductor apparatus and manufacturing method of same

Country Status (1)

Country Link
WO (1) WO2016147252A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019067976A (en) * 2017-10-03 2019-04-25 トヨタ自動車株式会社 Semiconductor device
WO2019097790A1 (en) * 2017-11-15 2019-05-23 パナソニックIpマネジメント株式会社 Semiconductor module and production method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242356A (en) * 1997-02-27 1998-09-11 Kyocera Corp Manufacture of package for housing semiconductor device
JP2007243118A (en) * 2006-03-13 2007-09-20 Fuji Electric Holdings Co Ltd Semiconductor device
JP2009088215A (en) * 2007-09-28 2009-04-23 Dowa Metaltech Kk Semiconductor device
JP2015005571A (en) * 2013-06-19 2015-01-08 株式会社デンソー Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242356A (en) * 1997-02-27 1998-09-11 Kyocera Corp Manufacture of package for housing semiconductor device
JP2007243118A (en) * 2006-03-13 2007-09-20 Fuji Electric Holdings Co Ltd Semiconductor device
JP2009088215A (en) * 2007-09-28 2009-04-23 Dowa Metaltech Kk Semiconductor device
JP2015005571A (en) * 2013-06-19 2015-01-08 株式会社デンソー Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019067976A (en) * 2017-10-03 2019-04-25 トヨタ自動車株式会社 Semiconductor device
WO2019097790A1 (en) * 2017-11-15 2019-05-23 パナソニックIpマネジメント株式会社 Semiconductor module and production method therefor
JPWO2019097790A1 (en) * 2017-11-15 2020-10-08 パナソニックセミコンダクターソリューションズ株式会社 Semiconductor module and its manufacturing method
US10847702B2 (en) 2017-11-15 2020-11-24 Panasonic Semiconductor Solutions Co., Ltd. Semiconductor module
JP7201439B2 (en) 2017-11-15 2023-01-10 ヌヴォトンテクノロジージャパン株式会社 Semiconductor module and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6234630B2 (en) Power module
US10510640B2 (en) Semiconductor device and method for manufacturing semiconductor device
CN109314063B (en) Power semiconductor device
JP2007251076A (en) Power semiconductor module
JP6267229B2 (en) Lead-free solder foil and semiconductor device
JP6261642B2 (en) Power semiconductor device
JP4557804B2 (en) Semiconductor device and manufacturing method thereof
JP6945418B2 (en) Semiconductor devices and manufacturing methods for semiconductor devices
WO2017037837A1 (en) Semiconductor device and power electronic device
JP6429208B2 (en) Semiconductor device and moving body
WO2016147252A1 (en) Semiconductor apparatus and manufacturing method of same
WO2018020640A1 (en) Semiconductor device
JP6546892B2 (en) Semiconductor device
JP2016025194A (en) Method of manufacturing semiconductor module, semiconductor power module, vehicle having semiconductor module, and railway vehicle having semiconductor module
JP6505004B2 (en) Semiconductor device, method of manufacturing the same, power module and vehicle
JP6966379B2 (en) Semiconductor devices and their manufacturing methods
JP6011410B2 (en) Semiconductor device assembly, power module substrate and power module
JP4861200B2 (en) Power module
JP2011023748A (en) Electronic apparatus
JP6936595B2 (en) Semiconductor device
JP2018006512A (en) Semiconductor device and mobile body
WO2021240944A1 (en) Semiconductor device
JP6698879B2 (en) Semiconductor device and method of manufacturing semiconductor device
WO2016132453A1 (en) Semiconductor device
JP2020107627A (en) Semiconductor device and manufacturing method of semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP