WO2016146084A1 - 一种全天候太阳能水源热泵空调系统 - Google Patents

一种全天候太阳能水源热泵空调系统 Download PDF

Info

Publication number
WO2016146084A1
WO2016146084A1 PCT/CN2016/077587 CN2016077587W WO2016146084A1 WO 2016146084 A1 WO2016146084 A1 WO 2016146084A1 CN 2016077587 W CN2016077587 W CN 2016077587W WO 2016146084 A1 WO2016146084 A1 WO 2016146084A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
heat exchange
pipeline
heat
heat exchanger
Prior art date
Application number
PCT/CN2016/077587
Other languages
English (en)
French (fr)
Inventor
黄国和
成剑林
李若凰
黄田飞
李忠伟
Original Assignee
黄国和
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黄国和 filed Critical 黄国和
Publication of WO2016146084A1 publication Critical patent/WO2016146084A1/zh
Priority to US15/705,261 priority Critical patent/US10436482B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • F25B27/005Machines, plants or systems, using particular sources of energy using solar energy in compression type systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/28Arrangement or mounting of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0064Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/004Outdoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved

Definitions

  • the invention relates to the technical field of energy conservation and energy utilization, and relates to an environmental protection technology for directly purifying outdoor air filter PM2.5 for treating haze, in particular to an all-weather solar water source heat pump air conditioning system applied to an air-conditioning heating industry.
  • the air on the surface of the earth is affected by the amount of solar energy, and the atmospheric temperature changes periodically with time.
  • the water vapor in the air absorbs the rising temperature of the solar energy, and the liquid water on the surface of the earth absorbs the solar heat to evaporate into gaseous water vapor, so that the air on the surface of the earth contains endless solar energy.
  • solar energy including solar thermal, solar photovoltaic, etc.
  • their utilization methods are only using radiation heat exchange in heat exchange, and the utilization efficiency is very low.
  • the direct use of solar energy in the air is relatively small, especially the way to absorb the solar energy contained in the water vapor is less.
  • the heat source tower heat pump air conditioning system uses the heat source tower to absorb the cold heat source in the air as a new functional mode of the air conditioning system. Due to its good energy saving and wide environmental adaptability, it has been widely used in the middle and lower reaches of the Yangtze River. Various types of construction sites in the area. In the winter, the heat source tower acts as a good heat source collector to extract heat from the low temperature and humid ambient air to provide heat source for the heat pump; in the summer, the heat source tower acts as an efficient cooling tower to discharge heat absorbed by the heat pump from the user to the atmospheric environment. In this way, the heat source tower can be used in winter and summer, saving initial investment and improving energy efficiency.
  • the utility model patent “heat source tower” with application number CN200620073647 proposes an open heat source tower to provide a cold and heat source for the air conditioning system. It is proposed to have an inlet pipe in the upper part of the heat source tower, a sprinkler connected to the end of the inlet pipe, a heat exchange layer under the sprinkler, a storage tank below the heat exchanger, and a liquid storage tank The tube and the circulation pump are connected to the inlet pipe.
  • the other type is a closed tower.
  • CN200810031368 proposes a closed heat source tower as a cold and heat source provider for air conditioning systems, which proposes to use broadband fins and exchanges.
  • the heat pipe constitutes a low-temperature broadband heat exchanger as a heat-exchange device of the heat source tower, and uses a negative temperature anti-frost system composed of a solution tank, a spray pump energy storage control device and a shower to perform frost protection.
  • the antifreeze In the open tower system, since the antifreeze is always in contact with the air, the heat exchange efficiency is high, but in winter the concentration is affected by the air humidity. In actual operation, if the air temperature is low and the humidity is high, since the water vapor in the air is condensed and becomes liquid water, it enters the antifreeze solution, so that the concentration of the antifreeze liquid continuously decreases, and the freezing point Ascending, thus increasing the hidden danger of freezing in the heat pump main body; if the air temperature is high and the humidity is small, the water in the antifreeze liquid evaporates, and the concentration of the antifreeze liquid rises, thereby causing the heat pump heat exchange efficiency to decrease.
  • the antifreeze solution of the open heat source tower is directly in contact with the air, and dust, bacteria and microbial water and grass will accumulate in the antifreeze solution into the heat exchange copper tube of the heat pump main body, and deposit on the pipe wall, which brings about a significant reduction in heat exchange efficiency.
  • the antifreeze in the closed tower is always isolated from the air, its heat exchange efficiency is lower than that of the open system, so it is necessary to increase the area of the low temperature broadband heat exchanger, resulting in a large initial investment. Raise.
  • the heat source tower as the provider of the air conditioning cold and heat source
  • the matching degree with the air conditioner host is not high
  • the heat source tower and the air conditioner host are not good in heat exchange effect, and the overall efficiency of the system is not high.
  • indoor indoor air conditioner condensate is usually dispersed or uniformly discharged into the outdoor or sewer pipe.
  • the air conditioner condensate temperature is low, which is a good cold source of the air conditioning system, which can cause waste of energy because it cannot be utilized.
  • the object of the present invention is to overcome the shortcomings of the above-mentioned open heat source tower heat pump air conditioning system and closed heat source tower heat pump air conditioning system, and provide a high efficiency outdoor open heat exchange, a host closed cycle, a condensed water cooling amount recovery, and an antifreeze concentration control.
  • a simple, all-weather solar water source heat pump air conditioning system that increases solar heat utilization efficiency by increasing solar heat exchange methods such as convective heat transfer and conduction heat transfer.
  • the invention relates to an all-weather solar water source heat pump air conditioning system, which comprises an air water heat exchange system, a water agent heat exchange system, a heat pump main engine, a concentration system, an energy recovery system, a condensed water recovery system and a smog purification system.
  • the air-to-water heat exchange system is composed of an air-liquid water heat exchange device, a liquid water circulation pump, and a circulation pipeline.
  • the air-liquid water heat exchange device is installed at an outdoor high place, and is composed of a frame body, a fan, a mixing plate, a baffle plate, a spray pipe, and a storage tank.
  • the upper part of the frame body is open, and the fan is installed at the upper opening of the frame body, and is mixed.
  • the plate is installed inside the frame and the lower part of the fan.
  • the spray pipe is installed in the lower part of the fan and the upper part of the mixing plate.
  • the frame is open on all sides, and the deflector Installed on the inside of the four sides of the frame, the reservoir is installed in the lower part of the frame.
  • the circulation pipeline connects the spray pipeline and the water heat exchange tank, and the liquid water circulation pump is installed on the pipeline between the spray pipeline and the water heat exchange tank, and the circulation pipeline connects the water storage tank and the water heat exchange tank. connection.
  • the water agent heat exchange system is composed of a water agent heat exchange box, a microchannel superconducting heat exchanger, a stirrer and a concentration controller, and the microchannel superconducting heat exchanger is installed in the middle of the water agent heat exchanger box, and the agitator is installed in the water agent.
  • the concentration controller is installed at the outlet pipe of the water heat exchanger.
  • the heat pump main unit is connected to the microchannel superconducting heat exchanger through a pipe.
  • the concentrating system comprises a concentrated water tank and a concentrated circulation pump, and the concentrated water tank is connected to the water heat exchange box through a pipeline, and the concentrated circulation pump is installed on the pipeline.
  • the energy recovery system includes a turbine generator and an energy storage control device, and the turbine generator is installed on a circulation line between the water storage tank and the water heat exchange tank.
  • the condensate recovery system includes a user condensate water pipeline system and a water agent heat exchange tank, and the user condensate water pipeline system is connected to the water agent heat exchange tank through the pipeline.
  • the smog purification system consists of PM2.5 smog purification particle sedimentation device, sedimentation particle discharge device, and pipeline impurity filtration and discharge device.
  • the PM2.5 smog purification particle sedimentation device is installed at the bottom of the storage tank, and the sedimentation particle discharge device is connected to the bottom of the PM2.5 smog purification particle sedimentation device through a pipeline, and the pipeline impurity filtration discharge device is installed in the connection with the storage tank. On the circulation line.
  • the solar water source heat pump air conditioning system has the following advantages:
  • the water heat exchange box is used in the system to isolate the antifreeze from the heat pump main unit, thereby solving the influence of the antifreeze property on the main machine, and eliminating the corrosion and blockage of the antifreeze to the heat pump main engine, especially solving the open type.
  • the heat pipe tower heat pump system main body copper tube accumulates impurities to avoid attenuation and improve heat transfer efficiency;
  • the water reciprocating cycle is used to adsorb the dust particles of PM2.5-PM10 in the outdoor air to purify the outdoor air and control the haze.
  • Figure 1 is a schematic structural view of the present invention
  • air-liquid water heat exchange device (1) frame (1-1), fan (1-2), mixing plate (1-3), deflector (1-4), spray pipe (1-5), storage tank (1-6), liquid water circulation pump (1-7), water heat exchanger box (2-1), microchannel superconducting heat exchanger (2-2), stirrer ( 2-3), concentration controller (2-4), heat pump main unit (3), concentrated water tank (4-1), concentrated circulation pump (4-2), turbine generator (5-1), energy storage control device (5-2), user cold Condensate piping system (6-1), PM2.5 smog purification particle sedimentation device (7-1), sedimentation particle discharge device (7-2), pipeline impurity filtration discharge device (7-3).
  • the present invention relates to an all-weather solar water source heat pump air conditioning system, which comprises an air water heat exchange system, a water agent heat exchange system, a heat pump main engine, a concentration system, an energy recovery system, a condensate recovery system, and a smog purification system.
  • the air-to-water heat exchange system is composed of an air-liquid water heat exchange device (1), a liquid water circulation pump (1-7), a circulation line A, and a circulation line B.
  • the air-liquid water heat exchange device is installed at an outdoor high place, and is composed of a frame body (1-1), a fan (1-2), a mixing plate (1-3), a baffle plate (1-4), and a spray pipe.
  • the storage tank (1-6) is constructed, the upper part of the frame (1-1) is opened, and the fan (1-2) is installed at the upper opening of the frame (1-1), and the mixing plate (1-3) Installed inside the frame (1-1), the lower part of the fan (1-2), and the spray line (1-5) is installed in the lower part of the fan (1-2) and the upper part of the mixing plate (1-3).
  • the frame (1-1) is open on all four sides, the deflector (1-4) is mounted on the inner side of the four-sided opening of the frame (1-1), and the reservoir (1-6) is mounted on the lower portion of the frame (1-1).
  • the circulation line A connects the spray line (1-5) and the liquid heat exchange tank (2-1), and the liquid water circulation pump (1-7) is installed in the spray line (1-5) and the water agent exchange On the line A between the hot boxes (2-1), the circulation line B connects the reservoirs (1-6) and the liquid heat exchange tank (2-1).
  • the water agent heat exchange system is composed of a water agent heat exchange box (2-1), a microchannel superconducting heat exchanger (2-2), a stirrer (2-3), and a concentration controller (2-4), and the microchannel
  • the superconducting heat exchanger (2-2) is installed in the middle of the water agent heat exchanger box (2-1), and the agitator (2-3) is installed at the bottom of the water agent heat exchanger box (2-1), and the concentration controller (2) -4) Installed at the outlet pipe of the water agent heat exchanger (2-1).
  • the heat pump main unit (3) is connected to the microchannel superconducting heat exchanger (2-2) through a pipe.
  • the concentrating system comprises a concentrated water tank (4-1), a concentrated circulation pump (4-2), and the concentrated water tank (4-1) is connected to the water heat exchange box (2-1) through the pipeline C and the pipeline D, and is concentrated.
  • the circulation pump (4-2) is mounted on line C.
  • the energy recovery system includes a turbine generator (5-1) and an energy storage control device (5-2), and the turbine generator (5-1) is installed in a water storage tank (1-6) and a water heat exchange box (2-1). Between the circulation line B.
  • the condensate recovery system includes the user condensate water piping system (6-1), the water agent heat exchanger tank (2-1), and the user condensate water piping system (6-1) through the pipeline E and the water agent heat exchange tank (2- 1) Connected.
  • the smog purification system consists of a PM2.5 smog purification particle sedimentation device (7-1), a sedimentation particle discharge device (7-2), and a pipe impurity filtration discharge device (7-3).
  • the PM2.5 smog purification particle sedimentation device (7-1) is installed at the bottom of the storage tank (1-6), and the sedimentation particle discharge device (7-2) is cleaned by the pipe and the PM2.5 smog purification particle sedimentation device (7- 1) The bottom is connected, and the pipe impurity filtering discharge device (7-3) is installed on the pipe B.
  • the winter working process of an all-weather solar water source heat pump air conditioning system of the present invention is as follows:
  • the antifreeze liquid flows out from the storage tank (1-6), and the circulation line B descends to the liquid heat exchanger box (2-1) by natural gravity, and is pushed when flowing through the turbine generator (5-1).
  • the turbine performs power generation, and the energy storage control device (5-2) controls and stores the power generation state of the turbine according to the working state of the turbine generator (5-1);
  • the antifreeze enters the water heat exchanger box (2-1), and the flow direction changes under the action of the agitator (2-3).
  • the heat exchange with the refrigerant in the microchannel superconducting heat exchanger (2-2) the heat is transferred to the refrigerant, the temperature is lowered, and the water heat exchange tank (2-1) is again discharged into the circulation line A, thereby Complete the antifreeze cycle;
  • the concentration controller (2-4) is installed at the outlet pipe of the water agent heat exchanger (2-1) to sense the concentration of the antifreeze at the outlet of the water agent heat exchanger (2-1). When the concentration of the antifreeze liquid is reduced to a certain extent After the concentrated circulation pump (4-2) is turned on, the antifreeze is concentrated;
  • Concentrated circulation pump (4-2) The antifreeze solution in the water heat exchange tank (2-1) is sent to the concentrated water tank (4-1) through the pipeline C to concentrate the antifreeze solution, and the concentrated antifreeze liquid After the pipeline D enters the water heat exchange box (2-1) again for recycling;
  • the liquid low-temperature refrigerant flows through the microchannel superconducting heat exchanger (2-2), absorbs the heat of the antifreeze outside the heat exchanger, changes from liquid refrigerant to gaseous refrigerant, and enters the heat pump main unit (3). And then again into a liquid cryogenic refrigerant into the superchannel superconducting heat exchanger (2-2) to complete the refrigerant cycle.
  • the summer work process is as follows:
  • the cooling water flows out of the reservoir (1-6), and the circulation line B descends to the liquid heat exchanger box (2-1) by natural gravity, and is pushed while flowing through the turbine generator (5-1).
  • the turbine performs power generation, and the energy storage control device (5-2) controls and stores the power generation state of the turbine according to the working state of the turbine generator (5-1);
  • the cooling water enters the water heat exchanger box (2-1), and the flow direction changes under the action of the agitator (2-3).
  • the microchannel superconducting heat exchanger (2-2) Exchanges heat with the refrigerant in the microchannel superconducting heat exchanger (2-2), absorbs the heat of the refrigerant, and then raises the temperature, and again flows out of the water heat exchanger box (2-1) into the circulation line A, Thereby completing the cooling water circulation;
  • the gaseous high-temperature refrigerant flows through the microchannel superconducting heat exchanger (2-2), transfers the heat to the cooling water outside the heat exchanger, changes from the gaseous refrigerant to the liquid refrigerant, and enters the heat pump main unit (3) Medium, then again into a gaseous low temperature refrigerant into the superchannel superconducting heat exchanger (2-2), thereby completing the refrigerant cycle;
  • the low temperature condensate generated by the user of the indoor air conditioning system in summer is collected by the user condensate water piping system (6-1) and connected to the liquid heat exchange tank (2-1) through the pipeline E, and the low temperature condensed water enters After the water heat exchange box (2-1) is mixed with the cooling water, the cooling water is replenished with water, and the cooling water temperature is lowered, thereby lowering the refrigerant condensation temperature and improving the working efficiency of the heat pump main unit (3).
  • the air carrying the PM smog particles enters the frame (1-1) from the deflector (1-4) and is taken from the spray pipe ( 1-5)
  • the spray drops to the aqueous solution in the frame (1-1), drops into the reservoir (1-6), and precipitates in the PM2.5 smog purification particle precipitation device (7-1).
  • the sedimentation particle discharge device (7-2) and the pipeline impurity filter discharge device (7-3) collect and collect the impurities of the PM haze particles to achieve the purpose of purifying the outdoor air to control the haze.
  • the pipeline C, pipeline D and pipeline E are all equipped with valves.
  • the valves on pipeline E are closed in winter and open in summer.
  • the valves on pipeline C and pipeline D are open in winter and closed in summer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种太阳能水源热泵空调系统,包括空水换热系统、水剂换热系统、热泵主机、浓缩系统、能量回收系统、冷凝水回收系统和雾霾净化系统。空水换热系统包括空气-液水换热装置(1)。水剂换热系统包括水剂换热箱(2-1)、微通道超导换热器(2-2)、搅拌器(2-3)和浓度控制器(2-4)。水剂换热箱(2-1)通过循环管路A和循环管路B与空气-液水换热装置(1)连接。浓缩系统包括浓缩水槽(4-1),浓缩水槽(4-1)通过管路与水剂换热箱(2-1)连接。能量回收系统包括涡轮发电机(5-1)和储能控制装置(5-2),涡轮发电机(5-1)安装在空气-液水换热装置(1)和水剂换热箱(2-1)之间的管路上。用户冷凝水管路系统(6-1)通过管路E与水剂换热箱(2-1)连接。在空水换热系统与热泵主机之间采用水剂换热系统进行冷热量的传递,避免了结霜及管道污染。

Description

一种全天候太阳能水源热泵空调系统 技术领域
本发明涉及节能及能源利用技术领域,同时涉及一种直接净化室外空气过滤PM2.5治理雾霾的环保技术,特别是一种应用于空调供暖行业的全天候太阳能水源热泵空调系统。
背景技术
地球表面空气受太阳能量影响,随着时间的变化大气温度呈现周期性变化。空气中的水蒸气吸收太阳能温度升高,地球表面的液态水吸收太阳热能蒸发为气态水蒸气,从而地球表面空气中蕴含着无穷无尽的太阳能。目前利用太阳能的方式方法很多,包括太阳能光热、太阳能光电等等,但其利用方式都只是用热交换中的辐射换热,利用效率很低。而直接利用空气中的太阳能则相对较少,尤其是吸收空气中的水蒸气蕴含着的太阳能的途径则更少。
热源塔热泵空调系统利用热源塔吸收空气中的冷热源作为空调系统的一种新的功能方式得到了应用,由于其良好的节能性、广泛的环境适应性,现已经广泛应用于长江中下游地区的各类建筑场所。在冬季,热源塔作为良好的热源收集器从低温潮湿的环境空气中提取热量为热泵提供热源;在夏季,热源塔作为高效的冷却塔将热泵从用户吸收的热量排放到大气环境中去。如此一来,热源塔冬夏季节都可使用,节省了初投资,提高了能源利用率。
目前普遍使用的热源塔分为两大类,其中一类为开式塔,由申请号为CN200620073647的实用新型专利“热源塔”中,提出了一种开式热源塔为空调系统提供冷热源,其提出在热源塔上部设有进液管,进液管端部连接有喷淋器,在喷淋器下方设有换热层,换热器的下方设存储槽,存储槽设有出液管和循环泵,循环泵出口与进液管相连。另一类为闭式塔,由申请号为CN200810031368的发明专利“闭式热源塔”中,提出了一种闭式热源塔作为空调系统的冷热源提供者,其提出利用宽带翅片和换热管构成低温宽带换热器作为热源塔的换热装置,利用溶液池、喷淋泵储能控制装置和喷淋器构成的负温度防霜系统进行防霜。
开式塔系统由于防冻液始终与空气相接触,换热效率较高,但是在冬季其浓度受到空气湿度的影响。在实际运行中如果空气温度低、湿度大,由于空气中的水蒸气遇冷凝结变为液态水进入到防冻液内,从而防冻液的浓度不断下降、冰点 上升,从而升高了在热泵主机内结冰的隐患;如果空气温度高、湿度小,则会出现防冻液内水分蒸发,防冻液浓度上升,从而导致热泵换热效率降低。正由于开式热源塔系统中需要不断调整防冻液浓度,以防止其浓度过高或过低从而保证系统不出故障。为了保证开式热源塔防冻液的浓度范围,申请号为2011204759060的实用新型专利“具有溶液再生功能的热源塔”和申请号为201210234947X的发明专利“一种溶液再生处理装置”以及申请号为2012207346295的实用新型专利“一种溶液储能控制装置余热利用系统”等专利采用了各种防冻液浓缩控制方法,但是各种方法都需要采用不同形式的、另外的热源来对溶液加热以达到浓缩防冻液、控制其浓度的目的,经济性不高、操作复杂。同时开式热源塔的防冻溶液直接与空气接触,灰尘与细菌及微生物水草等会集聚在防冻溶液中进入热泵主机的换热铜管中,沉积在管壁,带来换热效率的大幅降低。另一方面,虽然闭式塔中的防冻液始终与空气相隔绝,但是其换热效率较开式系统低,故需要增大其低温宽带换热器的面积,从而带来了初投资的大幅升高。
同时,在以上的空调系统中,热源塔作为空调冷热源的提供者,与空调主机匹配度不高,容易造成热源塔与空调主机换热效果不好、系统整体效率不高等问题。另外,在目前所使用的空调系统中,夏季室内用户空调冷凝水通常分散或者统一集中排放到室外或者下水管道中。而空调冷凝水温度较低,是良好的空调系统冷源,因其无法得到利用从而造成了能源的浪费。
为了充分利用开式热源塔的高效换热性能、避免其浓度变化缺陷、保证热源塔热泵系统正常运行以及提高闭式热源塔热泵系统工作效率,设计一种集高效换热、冷量回收、浓度可控、避免主机内铜管积聚杂质提升换热效率为一体的热泵空调系统势在必行。
发明内容
本发明的目的在于克服上述开式热源塔热泵空调系统与闭式热源塔热泵空调系统的不足,提供一种能够高效室外开式换热、主机闭式循环、冷凝水冷量回收、防冻液浓度控制简单、通过增加对流换热、传导换热等太阳能热交换方式来提高太阳能热利用效率的全天候太阳能水源热泵空调系统。
本发明的目的是通过如下途径实现的:
本发明一种全天候太阳能水源热泵空调系统,它包括空水换热系统、水剂换热系统、热泵主机、浓缩系统、能量回收系统、冷凝水回收系统、雾霾净化系统。所述的空水换热系统由空气-液水换热装置、液水循环泵、循环管路组成。空气-液水换热装置安装在室外高处,由框体、风机、混合板、导流板、喷淋管路、储水池构成,框体上部开口,风机安装在框体上部开口处,混合板安装在框体内部、风机下部,喷淋管路安装在风机的下部、混合板的上部,框体四面开口,导流板 安装在框体四面开口的内侧,储水池安装在框体下部。循环管路将喷淋管路和水剂换热箱连接,液水循环泵安装在喷淋管路和水剂换热箱之间的管路上,循环管路将储水池和水剂换热箱相连接。水剂换热系统由水剂换热箱、微通道超导换热器、搅拌器、浓度控制器组成,微通道超导换热器安装在水剂换热箱中部,搅拌器安装在水剂换热箱底部,浓度控制器安装在水剂换热器出口管道处。热泵主机通过管道与微通道超导换热器相连接。浓缩系统包括浓缩水槽、浓缩循环泵,浓缩水槽通过管路与水剂换热箱相连接,浓缩循环泵安装在管路上。能量回收系统包括涡轮发电机与储能控制装置,涡轮发电机安装在储水池和水剂换热箱之间的循环管路上。冷凝水回收系统包括用户冷凝水管路系统、水剂换热箱,用户冷凝水管路系统通过管路与水剂换热箱相连接。雾霾净化系统由PM2.5雾霾净化颗粒沉淀装置、沉淀颗粒排放装置、管道杂质过滤排放装置组成。PM2.5雾霾净化颗粒沉淀装置安装在储水池的底部,沉淀颗粒排放装置通过管道与PM2.5雾霾净化颗粒沉淀装置的底部相连接,管道杂质过滤排放装置安装在与储水池相连接的循环管路上。
与现有的空调系统相比,本一种太阳能水源热泵空调系统有如下优点:
1.利用空气-液水换热装置进行高效换热,提高换热效率;
2.在系统中采用水剂换热箱,将防冻液与热泵主机隔绝,从而解决了防冻液性质对主机的影响,杜绝了防冻液对热泵主机的腐蚀和堵塞问题,特别是解决了开式热源塔热泵系统主机内铜管积聚杂质避免衰减提升换热效率的问题;
3.在水剂换热箱中利用微通道超导换热器进行水-制冷剂换热,降低防冻液浓度要求,提高系统安全性;
4.利用涡轮发电机进行能量回收;
5.回收冷凝水冷量,在夏季降低系统能耗,提高热泵制冷效率;
6.解决了闭式热源塔热泵系统制造成本高和换热效率偏低的问题;
7.通过空气中的气态水蒸气-液水换热装置进行高效换热的同时,利用水的往复循环吸附室外空气中PM2.5-PM10的灰尘颗粒,净化室外空气、治理雾霾。
附图说明
下面结合附图对本发明作进一步详细说明:
图1为本发明结构示意图;
图中,空气-液水换热装置(1)、框体(1-1)、风机(1-2)、混合板(1-3)、导流板(1-4)、喷淋管路(1-5)、储水池(1-6)、液水循环泵(1-7)、水剂换热箱(2-1)、微通道超导换热器(2-2)、搅拌器(2-3)、浓度控制器(2-4)、热泵主机(3)、浓缩水槽(4-1)、浓缩循环泵(4-2)、涡轮发电机(5-1)、储能控制装置(5-2)、用户冷 凝水管路系统(6-1)、PM2.5雾霾净化颗粒沉淀装置(7-1)、沉淀颗粒排放装置(7-2)、管道杂质过滤排放装置(7-3)。
具体实施方式
如图所示,本发明一种全天候太阳能水源热泵空调系统,它包括空水换热系统、水剂换热系统、热泵主机、浓缩系统、能量回收系统、冷凝水回收系统、雾霾净化系统。所述的空水换热系统由空气-液水换热装置(1)、液水循环泵(1-7)、循环管路A、循环管路B组成。空气-液水换热装置安装在室外高处,由框体(1-1)、风机(1-2)、混合板(1-3)、导流板(1-4)、喷淋管路(1-5)、储水池(1-6)构成,框体(1-1)上部开口,风机(1-2)安装在框体(1-1)上部开口处,混合板(1-3)安装在框体(1-1)内部、风机(1-2)下部,喷淋管路(1-5)安装在风机(1-2)的下部、混合板(1-3)的上部,框体(1-1)四面开口,导流板(1-4)安装在框体(1-1)四面开口的内侧,储水池(1-6)安装在框体(1-1)下部。循环管路A将喷淋管路(1-5)和水剂换热箱(2-1)连接,液水循环泵(1-7)安装在喷淋管路(1-5)和水剂换热箱(2-1)之间的管路A上,循环管路B将储水池(1-6)和水剂换热箱(2-1)相连接。水剂换热系统由水剂换热箱(2-1)、微通道超导换热器(2-2)、搅拌器(2-3)、浓度控制器(2-4)组成,微通道超导换热器(2-2)安装在水剂换热箱(2-1)中部,搅拌器(2-3)安装在水剂换热箱(2-1)底部,浓度控制器(2-4)安装在水剂换热器(2-1)出口管道处。热泵主机(3)通过管道与微通道超导换热器(2-2)相连接。浓缩系统包括浓缩水槽(4-1)、浓缩循环泵(4-2),浓缩水槽(4-1)通过管路C、管路D与水剂换热箱(2-1)相连接,浓缩循环泵(4-2)安装在管路C上。能量回收系统包括涡轮发电机(5-1)与储能控制装置(5-2),涡轮发电机(5-1)安装在储水池(1-6)和水剂换热箱(2-1)之间的循环管路B上。冷凝水回收系统包括用户冷凝水管路系统(6-1)、水剂换热箱(2-1),用户冷凝水管路系统(6-1)通过管路E与水剂换热箱(2-1)相连接。雾霾净化系统由PM2.5雾霾净化颗粒沉淀装置(7-1)、沉淀颗粒排放装置(7-2)、管道杂质过滤排放装置(7-3)组成。PM2.5雾霾净化颗粒沉淀装置(7-1)安装在储水池(1-6)的底部,沉淀颗粒排放装置(7-2)通过管道与PM2.5雾霾净化颗粒沉淀装置(7-1)的底部相连接,管道杂质过滤排放装置(7-3)安装在管路B上。
本发明一种全天候太阳能水源热泵空调系统冬季工作流程如下:
1.开启液水循环泵(1-7),将防冻液从水剂换热箱(2-1)中抽出由循环管路A送至喷淋管路(1-5),由喷淋管路(1-5)喷淋到混合板(1-3)处,然后依靠重力下降至储水池(1-6)内;开启风机(1-2),空气由导流板(1-4)处进入框体(1-1)内,经过混合板(1-3)后从风机(1-2)处排出。在框体(1-1)内,空气与防冻液在 混合板(1-3)处进行热质交换,空气中的热量和湿量传递给防冻液,防冻液温度升高、浓度减小;
2.防冻液由储水池(1-6)内流出,由循环管路B依靠自然重力下降至水剂换热箱(2-1)内,在流经涡轮发电机(5-1)时推动涡轮进行发电,储能控制装置(5-2)根据涡轮发电机(5-1)的工作状态对涡轮发电状态进行控制及储能;
3.防冻液进入水剂换热箱(2-1)中,在搅拌器(2-3)作用下流向流态发生变化,在流过微通道超导换热器(2-2)时,与微通道超导换热器(2-2)内的制冷剂进行热交换,将热量传递给制冷剂后温度降低,再次流出水剂换热箱(2-1)进入循环管路A,从而完成防冻液循环;
4.浓度控制器(2-4)安装在水剂换热器(2-1)出口管道处,感知水剂换热器(2-1)出口防冻液浓度,当防冻液浓度降低到一定程度后开启浓缩循环泵(4-2)进行防冻液的浓缩;
5.浓缩循环泵(4-2)将水剂换热箱(2-1)中的防冻液通过管路C送入浓缩水槽(4-1)中进行防冻液的浓缩,浓缩后的防冻液经过管路D再次进入到水剂换热箱(2-1)中进行循环利用;
6.液态低温制冷剂在微通道超导换热器(2-2)中流过,吸收了换热器外防冻液的热量,由液态制冷剂变为气态制冷剂,进入热泵主机(3)中,然后再次变为液态低温制冷剂进入超通道超导换热器(2-2)中,从而完成制冷剂循环。
夏季工作流程如下:
1.开启液水循环泵(1-7),将冷却水从水剂换热箱(2-1)中抽出由循环管路A送至喷淋管路(1-5),由喷淋管路(1-5)喷淋到混合板(1-3)处,然后依靠重力下降至储水池(1-6)内;开启风机(1-2),空气由导流板(1-4)处进入框体(1-1)内,经过混合板(1-3)后从风机(1-2)处排出。在框体(1-1)内,空气与冷却水在混合板(1-3)处进行热质交换,冷却水中的热量传递给空气,冷却水温度降低、水分蒸发、水量减少;
2.冷却水由储水池(1-6)内流出,由循环管路B依靠自然重力下降至水剂换热箱(2-1)内,在流经涡轮发电机(5-1)时推动涡轮进行发电,储能控制装置(5-2)根据涡轮发电机(5-1)的工作状态对涡轮发电状态进行控制及储能;
3.冷却水进入水剂换热箱(2-1)中,在搅拌器(2-3)作用下流向流态发生变化,在流过微通道超导换热器(2-2)时,与微通道超导换热器(2-2)内的制冷剂进行热交换,吸收了制冷剂的热量后温度升高,再次流出水剂换热箱(2-1)进入循环管路A,从而完成冷却水循环;
4.气态高温制冷剂在微通道超导换热器(2-2)中流过,将热量传递给换热器外的冷却水,由气态制冷剂变为液态制冷剂,进入热泵主机(3)中,然后再次变为气态低温制冷剂进入超通道超导换热器(2-2)中,从而完成制冷剂循环;
5.夏季室内空调系统用户产生的低温冷凝水通过用户冷凝水管路系统(6-1)收集在一起后通过管路E连接到水剂换热箱(2-1)上,低温冷凝水进入到水剂换热箱(2-1)后与冷却水混合,对冷却水进行了水量补充,同时降低了冷却水温度,从而降低了制冷剂冷凝温度、提高了热泵主机(3)的工作效率。
在全年的运行中,通过开启风机(1-2),携带PM雾霾颗粒的空气由导流板(1-4)处进入框体(1-1)内,被从喷淋管路(1-5)喷淋下降至框体(1-1)内的水溶液吸附,下降到储水池(1-6)内后沉淀在PM2.5雾霾净化颗粒沉淀装置(7-1)中,通过沉淀颗粒排放装置(7-2)和管道杂质过滤排放装置(7-3)将PM雾霾颗粒杂质排放收集,达到净化室外空气治理雾霾的目的。
管路C、管路D、管路E上均装有阀门,管路E上的阀门冬季关闭、夏季打开,管路C、管路D上的阀门冬季打开、夏季关闭。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本领域的技术人员在本发明所揭露的技术范围内,可不经过创造性劳动想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书所限定的保护范围为准。

Claims (5)

  1. 一种全天候太阳能水源热泵空调系统,其特征在于:
    它包括空水换热系统、水剂换热系统、热泵主机、浓缩系统、能量回收系统、冷凝水回收系统、雾霾净化系统;
    所述的空水换热系统由空气-液水换热装置(1)、液水循环泵(1-7)、循环管路A、循环管路B组成;
    空气-液水换热装置安装在室外高处,由框体(1-1)、风机(1-2)、混合板(1-3)、导流板(1-4)、喷淋管路(1-5)、储水池(1-6)构成,框体(1-1)上部开口,风机(1-2)安装在框体(1-1)上部开口处,混合板(1-3)安装在框体(1-1)内部、风机(1-2)下部,喷淋管路(1-5)安装在风机(1-2)的下部、混合板(1-3)的上部,框体(1-1)四面开口,导流板(1-4)安装在框体(1-1)四面开口的内侧,储水池(1-6)安装在框体(1-1)下部;
    循环管路A将喷淋管路(1-5)和水剂换热箱(2-1)连接,液水循环泵(1-7)安装在喷淋管路(1-5)和水剂换热箱(2-1)之间的管路A上,循环管路B将储水池(1-6)和水剂换热箱(2-1)相连接;
    水剂换热系统由水剂换热箱(2-1)、微通道超导换热器(2-2)、搅拌器(2-3)、浓度控制器(2-4)组成,微通道超导换热器(2-2)安装在水剂换热箱(2-1)中部,搅拌器(2-3)安装在水剂换热箱(2-1)底部,浓度控制器(2-4)安装在水剂换热器(2-1)出口管道处;
    热泵主机(3)通过管道与微通道超导换热器(2-2)相连接;
    浓缩系统包括浓缩水槽(4-1)、浓缩循环泵(4-2),浓缩水槽(4-1)通过管路C、管路D与水剂换热箱(2-1)相连接,浓缩循环泵(4-2)安装在管路C上;
    能量回收系统包括涡轮发电机(5-1)与储能控制装置(5-2),涡轮发电机(5-1)安装在储水池(1-6)和水剂换热箱(2-1)之间的循环管路B上;
    冷凝水回收系统包括用户冷凝水管路系统(6-1)、水剂换热箱(2-1),用户冷凝水管路系统(6-1)通过管路E与水剂换热箱(2-1)相连接;
    雾霾净化系统由PM2.5雾霾净化颗粒沉淀装置(7-1)、沉淀颗粒排放装置(7-2)、管道杂质过滤排放装置(7-3)组成;
    PM2.5雾霾净化颗粒沉淀装置(7-1)安装在储水池(1-6)的底部,沉淀颗粒排放装置(7-2)通过管道与PM2.5雾霾净化颗粒沉淀装置(7-1)的底部相连接,管道杂质过滤排放装置(7-3)安装在管路B上。
  2. 如权利要求1所述的一种全天候太阳能水源热泵空调系统,其特征在于:浓度控制器(2-4)感知水剂换热器(2-1)出口防冻液浓度,当防冻液浓度降低到一定程度后开启浓缩循环泵(4-2)进行防冻液的浓缩。
  3. 如权利要求1所述的一种全天候太阳能水源热泵空调系统,其特征在于:水剂换热箱(2-1)中的换热装置为微通道超导换热器(2-2),水剂换热箱(2-1)内装有搅拌器(2-3)对防冻液进行搅拌。
  4. 如权利要求1所述的一种全天候太阳能水源热泵空调系统,其特征在于:夏季空调用户产生的冷凝水经过用户冷凝水管路系统(6-1)收集后经管道D进入到水剂换热箱(2-1)中。
  5. 如权利要求1所述的一种全天候太阳能水源热泵空调系统,PM2.5雾霾净化颗粒沉淀装置(7-1)安装在储水池(1-6)的底部,沉淀颗粒排放装置(7-2)通过管道与PM2.5雾霾净化颗粒沉淀装置(7-1)的底部相连接,管道杂质过滤排放装置(7-3)安装在管路B上。
PCT/CN2016/077587 2015-03-17 2016-03-28 一种全天候太阳能水源热泵空调系统 WO2016146084A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/705,261 US10436482B2 (en) 2015-03-17 2017-09-15 All-weather solar water source heat pump air conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510115998.4A CN104676798B (zh) 2015-03-17 2015-03-17 一种全天候太阳能水源热泵空调系统
CN201510115998.4 2015-03-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/705,261 Continuation US10436482B2 (en) 2015-03-17 2017-09-15 All-weather solar water source heat pump air conditioning system

Publications (1)

Publication Number Publication Date
WO2016146084A1 true WO2016146084A1 (zh) 2016-09-22

Family

ID=53312190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077587 WO2016146084A1 (zh) 2015-03-17 2016-03-28 一种全天候太阳能水源热泵空调系统

Country Status (3)

Country Link
US (1) US10436482B2 (zh)
CN (1) CN104676798B (zh)
WO (1) WO2016146084A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113716799A (zh) * 2021-08-24 2021-11-30 长江生态环保集团有限公司 园区水系与能源耦合治理的系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104676798B (zh) 2015-03-17 2017-04-05 黄国和 一种全天候太阳能水源热泵空调系统
CN106642812A (zh) * 2016-11-03 2017-05-10 江苏海雷德蒙新能源有限公司 一种整体式能源塔热泵系统
CN106524587A (zh) * 2016-11-03 2017-03-22 江苏海雷德蒙新能源有限公司 一种整体式能源塔热泵机组
CN109140851B (zh) * 2018-09-23 2024-02-09 湖南东尤水汽能热泵制造有限公司 一种采暖制冷设备
CN109519350A (zh) * 2018-11-29 2019-03-26 门立山 一种输出能量的机器
CN110206699A (zh) * 2019-07-05 2019-09-06 王恩礼 一种以低品位复合热源为能量的热循环发电系统
CN110553409B (zh) * 2019-10-17 2024-03-29 珠海冰恬环境科技有限公司 一种自给型水源热泵热水节能系统的智控方法
CN111457511A (zh) * 2020-04-05 2020-07-28 梁健 一种空调气水双源共用冷凝换热装置
CN115900169A (zh) * 2022-12-21 2023-04-04 天津大学 一种余热回收型风冷冰箱及其控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06317395A (ja) * 1993-05-06 1994-11-15 Hokkaido Electric Power Co Inc:The 加熱塔用不凍液の濃縮方法
CN201209978Y (zh) * 2008-05-21 2009-03-18 刘秋克 热源塔热泵
CN201293488Y (zh) * 2008-10-15 2009-08-19 东南大学 可避免结霜的空气源热泵装置
CN201535595U (zh) * 2009-10-12 2010-07-28 湖南秋克热源塔热泵科技工程有限公司 太阳能次生源热源塔热泵成套设备
CN102901167A (zh) * 2012-09-28 2013-01-30 东南大学 实现太阳能综合利用的热源塔热泵装置
CN203024348U (zh) * 2012-12-28 2013-06-26 王志林 一种溶液控制装置余热利用系统
CN204084930U (zh) * 2014-09-12 2015-01-07 河南科技大学 一种自复叠式能源塔热泵系统
CN104676798A (zh) * 2015-03-17 2015-06-03 黄国和 一种全天候太阳能水源热泵空调系统
CN204783687U (zh) * 2015-07-09 2015-11-18 广东美芝制冷设备有限公司 空调系统的压缩机和具有该压缩机的空调系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR200908758T1 (tr) * 2007-05-30 2010-01-21 Munters Corporation Kurutucu bir cihaz kullanan nem kontrol sistemi.
CN101281001B (zh) * 2008-05-23 2011-05-04 刘秋克 闭式热源塔
KR20100007818U (ko) * 2009-01-28 2010-08-05 장용기 공기열원 히트펌프 태양열 냉난방시스템
CN101672552B (zh) * 2009-10-12 2011-11-16 刘秋克 太阳能次生源热源塔热泵成套装置
EP2335806A1 (en) * 2009-12-04 2011-06-22 Alstom Technology Ltd Method and system for condensing water vapour from a carbon dioxide rich flue gas
US20170010029A9 (en) * 2011-09-23 2017-01-12 R4 Ventures Llc Multi Purpose Multistage Evaporative Cold Water and Cold Air Generating and Supply System
CN202485482U (zh) * 2011-11-25 2012-10-10 北京紫荆信达节能科技有限公司 具有溶液再生功能的热源塔
JP6015137B2 (ja) * 2012-05-31 2016-10-26 アイシン精機株式会社 吸収式ヒートポンプ装置
GB201209811D0 (en) * 2012-06-01 2012-07-18 Tev Ltd Solar air source heat pump system
JP6130114B2 (ja) * 2012-09-14 2017-05-17 九州電力株式会社 発電システム
US20140338391A1 (en) * 2013-03-15 2014-11-20 Inertech Ip Llc Multi-stage evaporative heat rejection process cycle that facilitates process cooling efficiency, water production, and/or water reclamation for fluid coolers and cooling towers
KR101290776B1 (ko) * 2013-06-03 2013-07-29 주식회사 호성전력 변전소 변압기 배열을 활용한 수축열식 공기열원 히트펌프 시스템
CN103411351B (zh) * 2013-08-19 2015-06-17 东南大学 基于真空沸腾实现溶液再生及其热量再利用的热源塔热泵
US10132577B2 (en) * 2014-01-20 2018-11-20 Baltimore Aircoil Company, Inc. Adiabatic refrigerant condenser controls system
CN204478367U (zh) * 2015-03-17 2015-07-15 黄国和 全天候太阳能水源热泵空调系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06317395A (ja) * 1993-05-06 1994-11-15 Hokkaido Electric Power Co Inc:The 加熱塔用不凍液の濃縮方法
CN201209978Y (zh) * 2008-05-21 2009-03-18 刘秋克 热源塔热泵
CN201293488Y (zh) * 2008-10-15 2009-08-19 东南大学 可避免结霜的空气源热泵装置
CN201535595U (zh) * 2009-10-12 2010-07-28 湖南秋克热源塔热泵科技工程有限公司 太阳能次生源热源塔热泵成套设备
CN102901167A (zh) * 2012-09-28 2013-01-30 东南大学 实现太阳能综合利用的热源塔热泵装置
CN203024348U (zh) * 2012-12-28 2013-06-26 王志林 一种溶液控制装置余热利用系统
CN204084930U (zh) * 2014-09-12 2015-01-07 河南科技大学 一种自复叠式能源塔热泵系统
CN104676798A (zh) * 2015-03-17 2015-06-03 黄国和 一种全天候太阳能水源热泵空调系统
CN204783687U (zh) * 2015-07-09 2015-11-18 广东美芝制冷设备有限公司 空调系统的压缩机和具有该压缩机的空调系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113716799A (zh) * 2021-08-24 2021-11-30 长江生态环保集团有限公司 园区水系与能源耦合治理的系统

Also Published As

Publication number Publication date
CN104676798B (zh) 2017-04-05
US20180003414A1 (en) 2018-01-04
US10436482B2 (en) 2019-10-08
CN104676798A (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
WO2016146084A1 (zh) 一种全天候太阳能水源热泵空调系统
CN101672552B (zh) 太阳能次生源热源塔热泵成套装置
CN201327308Y (zh) 闭式多源双效能源塔
WO2016155600A1 (zh) 一种应用全天候太阳能供热的空调系统改造方法及设备
CN201373532Y (zh) 一种通信机房节能系统
CN103712477B (zh) 热泵供热除雾节水型冷却塔
CN105698352B (zh) 利用太阳能实现溶液再生的冬夏双高效热源塔及换热方法
CN205717789U (zh) 适于调湿机组的回南天专用水路系统
CN111964168B (zh) 制冷控湿净化集水一体的离子液体除湿空调系统
CN102003895A (zh) 一种闭式集成防霜热源塔
CN201497390U (zh) 一种太阳能次生源冷热源塔
CN201327307Y (zh) 开式多源双效能源塔
CN201892437U (zh) 闭式集成防霜热源塔
CN201578867U (zh) 溶液浓缩装置
CN203100472U (zh) 一种融霜闭式集热与冷却两用塔
WO2016116028A1 (zh) 一种全天候太阳能热泵空调系统
CN103759400B (zh) 一种多联中央空调机组凝结水回收利用系统
CN204478367U (zh) 全天候太阳能水源热泵空调系统
CN204404414U (zh) 一种地源供暖空调热泵
CN107327311B (zh) 一种长隧道气源降温设备
CN201476403U (zh) 蒸发式热泵热回收冷暖浴三位一体机
CN204006435U (zh) 蓄能型太阳能杀菌溶液除湿洁净空调系统
CN201535595U (zh) 太阳能次生源热源塔热泵成套设备
CN109163577B (zh) 一种带防雨雪收水装置的新式横流能源塔
CN208139511U (zh) 一种整体式空气源换热节能的防腐化学过滤机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764264

Country of ref document: EP

Kind code of ref document: A1