WO2016145665A1 - 一种设备到设备d2d通信方法及装置 - Google Patents

一种设备到设备d2d通信方法及装置 Download PDF

Info

Publication number
WO2016145665A1
WO2016145665A1 PCT/CN2015/074630 CN2015074630W WO2016145665A1 WO 2016145665 A1 WO2016145665 A1 WO 2016145665A1 CN 2015074630 W CN2015074630 W CN 2015074630W WO 2016145665 A1 WO2016145665 A1 WO 2016145665A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
link
information
sent
transmission
Prior art date
Application number
PCT/CN2015/074630
Other languages
English (en)
French (fr)
Inventor
黎超
张兴炜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020177027402A priority Critical patent/KR20170121263A/ko
Priority to KR1020197013825A priority patent/KR102043761B1/ko
Priority to JP2017548905A priority patent/JP6522776B2/ja
Priority to EP15885048.7A priority patent/EP3258731A4/en
Priority to PCT/CN2015/074630 priority patent/WO2016145665A1/zh
Priority to CN201580058747.5A priority patent/CN107079508B/zh
Publication of WO2016145665A1 publication Critical patent/WO2016145665A1/zh
Priority to US15/707,420 priority patent/US10638529B2/en
Priority to US16/836,576 priority patent/US20200229252A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/14Access restriction or access information delivery, e.g. discovery data delivery using user query or user detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/24Negotiation of communication capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a Device to Device (D2D) communication method and apparatus.
  • D2D Device to Device
  • the D2D communication mode can also be used.
  • a user equipment User Equipment, UE for short
  • the UE directly communicates with another UE.
  • D2D communication not only saves radio resource spectrum resources, but also reduces the pressure on the core network. Therefore, D2D technology has become an important technology that can be standardized for the 5th Generation (5G Generation) in the 3rd Generation Patnership Project (3GPP) standard.
  • 5G Generation 5th Generation
  • 3GPP 3rd Generation Patnership Project
  • Device discovery refers to a process in which devices participating in D2D communication determine mutual existence before implementing D2D information transmission.
  • a device participating in D2D communication implements device discovery under scheduling of a core network device, where the core network device may be a base station of a cellular communication network or a similar device.
  • D2D communication is frequently applied, for example, when a device participating in D2D communication is in a position such as a basement, an elevator shaft, or the like that cannot establish a wireless connection with a core network device, or a wireless connection established with a core network device is unstable.
  • a device participating in D2D communication has a low probability of success in performing device discovery, it affects D2D communication.
  • the embodiment of the invention provides a device-to-device D2D communication method and device, so as to at least solve the problem of low success rate found between user equipments in the prior art.
  • an embodiment of the present invention provides a device-to-device D2D communication method, where the method includes:
  • the first user equipment UE determines the first message to be transmitted.
  • the first message includes one or a combination of the following information: transmission probability, number of retransmissions, transmission period, cyclic prefix CP type, transmission power, current hop count, number of antenna ports, transmission mode, bandwidth of the D2D link, D2D Link frame number, time-division duplex TDD uplink and downlink configuration information, and indication information whether it is in the network.
  • the first UE sends the first message to the second UE by using a D2D link.
  • the first UE may determine the first message according to a predetermined rule.
  • the first UE may also receive a first message sent by the third UE by using the D2D link, and determine a first message to be sent according to the first message sent by the third UE. this.
  • the first message to be sent determined by the first UE may be the same as the first message sent by the third UE, or may be different in format or content.
  • the first message may be configured by the base station for the first UE, and the configured first message is sent to the first UE.
  • the first UE receives the first message sent by the base station, and determines the first message to be sent according to the first message sent by the base station.
  • the first message to be sent determined by the first UE may be the same as or different from the first message format configured by the base station.
  • the first UE may send the first message according to the third UE. Receive or send data.
  • the first information of the at least one information included in the first message is further used to implicitly indicate the second information in the at least one information included in the first message.
  • the information that may be included in the first message to be sent determined by the first UE is related to each other.
  • the first UE may carry part of the information in the first message to be transmitted.
  • the second UE receives the partial information sent by the first UE, and according to the association relationship, other information associated with the partial information is obtained. By designing this way, the resources occupied by the first letter can be saved.
  • the first UE may transmit a D2D synchronization signal in the D2D link.
  • the D2D synchronization signal includes a primary side link synchronization signal PSSS and a slave side link synchronization signal SSSS, and the side link signal identifier SLSSID corresponding to the PSSS and the SSSS is an integer not less than 336, where The SLSSID is used to identify the D2D link
  • the channel carrying the first message is carried.
  • the first UE sends the first message to the second UE by using a dedicated control channel or a non-control channel in the D2D link.
  • some or all of the reserved fields may be used to carry the first message using a reserved field included in the dedicated control channel.
  • the dedicated control channel may also carry a second message, and the second message is used to identify the dedicated control channel as a channel carrying the first message.
  • DMRS demodulation reference signal
  • the dedicated control channel is generated using a scrambling sequence for scrambling, the scrambling sequence is used to identify the dedicated control channel as a channel carrying the first message, the scrambling
  • the dedicated control channel is generated using a cyclic redundancy check CRC mask, the CRC mask being used to identify the dedicated control channel as the channel carrying the first message.
  • the first message sent by the first UE to the second UE is carried by one or a combination of the following: a CRC mask, a D2D synchronization signal, and a DMRS.
  • the first message is carried by the DMRS
  • the first message is carried by a modulation symbol on two adjacent DMRSs in the D2D link; or, the first message is described by D2D
  • the modulation symbols are carried on any one of the two adjacent DMRSs in the link; or the first signal is carried by a cyclic shift of different DMRSs in the D2D link.
  • the first UE satisfies at least one condition of the conditions A and B: Condition A: the signal quality received by the first UE from the base station is less than The first threshold; condition B: the signal quality of the D2D UE received from the network received by the first UE is greater than the second threshold.
  • the first UE If the first UE is a UE outside the network, the first UE satisfies the condition C: the signal quality received by the first UE from other UEs is less than a third threshold.
  • an embodiment of the present invention further provides a user equipment UE, which includes a module for performing a first UE behavior in the above method design.
  • the modules can be software and/or hardware.
  • the user equipment UE includes a processor storable memory that is configured to support the UE in performing the corresponding functions in the methods described above.
  • the memory is for coupling with a processor that stores program instructions and data necessary for the UE.
  • an embodiment of the present invention further provides a communication system, where the system includes the first UE and the second UE in the foregoing aspect.
  • the system may also include the third UE or base station described above in the above aspects.
  • an embodiment of the present invention provides a computer storage medium for containing the program involved in performing the above aspects.
  • the D2D communication method provided by the embodiment of the present invention, the user equipment and the system, on the one hand, by transmitting a first message to another D2D device (second UE) through a D2D link by a D2D device (first UE),
  • D2D discovery signals different D2D devices can send and receive data with the same parameters in the same resource pool (collection of individual user resources), thereby implementing D2D discovery between user equipments with partial coverage or network coverage;
  • the first message from one D2D device (first UE) to another D2D device (second UE)
  • it is possible to limit and unify the format of the D2D discovery signal it is possible to limit and unify the format of the D2D discovery signal, thereby being able to adjust between multiple UEs Sending reduces the conflict and interference in the D2D discovery process and improves the transmission efficiency.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of another communication system according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a D2D communication method according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a D2D link according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another D2D link according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of still another D2D link according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of carrying a first message through a DMRS according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another UE according to an embodiment of the present invention.
  • the scenario includes a cellular communication mode in which the base station is the scheduling core and the user equipment is the scheduled object, and also includes a D2D communication mode in which direct communication is performed between the user equipments.
  • a cellular communication mode a User Equipment (UE) communicates with another UE through a base station in a conventional manner.
  • the UE communicates directly with the UE.
  • FIG. 1 and FIG. 2 shows a D2D communication mode with partial network coverage, that is, a part of UEs (for example, UE1) performing D2D communication are within the coverage of a cellular network base station, and D2D communication is performed. Another part of the UE (e.g., UE2, UE3) is outside the coverage of the base station.
  • a UE (such as UE1) within the coverage of the base station may establish a wireless connection with the base station, and may also be called a UE within the network.
  • a UE outside the coverage of the base station may also be called a UE outside the network.
  • the UEs in the network may be one or more, and the UEs outside the network may also be one or more.
  • UE1 is in the coverage of the base station, and can establish a radio link with the base station, so UE1 is in the network; UE2, UE3, UE4, UE5, UE6, UE7, UE8, UE9, UE10 are in The coverage of the base station is outside, so these UEs are outside the network.
  • UE4, UE5, UE6, UE7, and UE8 can establish mutual wireless connection through, for example, an ad hoc network, since there is no base station in the cellular network. Participation, that is, outside the coverage of the base station, is still considered to be outside the network.
  • the words “first”, “second”, “third” and the like are used herein to distinguish the same or similar items having the same functions and functions, and those skilled in the art may Understanding the words “first”, “second”, “third” and the like does not limit the quantity and order of execution.
  • the D2D device may also be referred to as a D2D UE or a UE, and the first UE, the second UE, and the third UE are relative concepts herein.
  • a D2D device can act as either a receiver in a D2D link or as a sender in another D2D link.
  • Embodiments of the present invention provide a D2D communication method, a D2D device, and a communication system.
  • the solution provided by the embodiment of the present invention can be applied to D2D communication in a scenario based on a 3GPP LTE system (for example, the scenario shown in FIG. 1 and FIG. 2 above), and can also be applied to D2D communication based on other communication systems and based on subsequent evolution. D2D communication under the system.
  • FIG. 3 is a schematic flowchart of a D2D communication method, and the method flow includes the following steps:
  • the D2D device determines a first message to be sent.
  • the first letter can be used for D2D discovery.
  • the first UE may determine the first message itself according to the pre-configured information.
  • the first message may also be determined based on information obtained from a base station or other D2D device.
  • the first UE may receive the first message sent by another D2D device (such as the third UE), and determine the first message to be sent according to the received first message.
  • the first UE is equivalent to the relay transmission.
  • the first UE may be first by the base station The message is configured and sent to the first UE.
  • the first message to be sent of the first UE, or the other D2D device (such as the third UE) is sent to the first message, or the first message configured by the base station may include one or any combination of the following information: : Transmission probability, number of retransmissions, transmission period, Cyclic Prefix (CP) type, transmission power, current hop count, number of antenna ports, transmission mode, bandwidth of D2D link, D2D link frame number, time division Duplex (Time Division Duplexing, TDD for short) uplink and downlink configuration information, and whether or not the information is in the network.
  • CP Cyclic Prefix
  • the UEs coordinate the unified transmission of the D2D discovery signal through the first message, and provide a reference standard for transmitting D2D discovery signals between subsequent UEs, thereby improving the D2D discovery process.
  • the probability of success in D2D discovery is the probability of success in D2D discovery.
  • the first UE sends the first message to the second UE.
  • the first UE may send the first signaling to the second UE by using a dedicated control channel or a non-control channel in the D2D link.
  • the first message may be sent by one D2D device (the first UE) to another D2D device (the second UE), and the first message may include any one of the foregoing enumerated information. Or multiple information.
  • the first information includes the transmission probability; or the first information includes the transmission probability, the number of retransmissions, and the transmission period, and the like, which is not specifically limited in this embodiment of the present invention. The following briefly describes the information listed above:
  • the D2D discovery is classified into type 1 (type 1) and type 2 (type 2), where type 1 refers to the transmission resource used by the UE as the transmitting end when D2D discovery is configured to a group of UEs in a predefined or pre-configured resource pool. Each UE selects its own transmission resource in the resource pool; and type2 refers to the transmission resource used by the UE as the sender at the time of D2D discovery, which is configured by the network each time, where the network may be a network such as a base station. device.
  • type 1 refers to the transmission resource used by the UE as the transmitting end when D2D discovery is configured to a group of UEs in a predefined or pre-configured resource pool. Each UE selects its own transmission resource in the resource pool; and type2 refers to the transmission resource used by the UE as the sender at the time of D2D discovery, which is configured by the network each time, where the network may be a network such as a base station. device.
  • the UE that is the transmitting end that is, the first UE randomly selects the sending resource according to a certain transmission probability Pb in the predefined or pre-configured resource pool, and may also send the packet to the receiving.
  • the information of the transmission probability Pb is carried by the UE in the end, that is, the first information of the second UE.
  • UE1 in the network may send the transmission probability Pb to UE2 and UE3 outside the network, and UEs outside the network such as UE2 and UE3 may The transmission resource is randomly selected on the corresponding resource by using the transmission probability Pb transmitted by the UE1, thereby transmitting its D2D discovery signal according to the transmission resource obtained by the random selection.
  • the UE in the network sends the transmission probability to the UE outside the network, which is equivalent to the UE in the network controlling the usage strength of the UE resources outside the network (for example, the greater the probability, the higher the resource usage intensity), and thus the UEs in the network and outside the network have the same discovery opportunity when they discover each other, which facilitates mutual discovery between UEs in the network and outside the network.
  • the UE4 outside the network may send the transmission probability Pb to the UE5 and the UE6 outside the network, and the UEs outside the network such as the UE5 and the UE6 may send the UE4.
  • the transmission probability Pb randomly selects a transmission resource on the corresponding resource, thereby transmitting its D2D discovery signal according to the obtained transmission resource.
  • the first UE outside the network sends the transmission probability to the second UE outside the network, and the first UE outside the network controls the usage strength of the second UE resource outside the network (for example, the greater the probability, the strength of resource usage)
  • the usage strength of the second UE resource outside the network for example, the greater the probability, the strength of resource usage
  • the transmission probability Pb can be quantized using finite bits. For example, using 2 bits to indicate Pb, Pb can be quantized into the following four values: ⁇ 0.25, 0.50, 0.75, 1 ⁇ .
  • the first UE may carry information of the number of retransmissions in the first message sent to the second UE, to indicate that the second UE receives or transmits data according to the number of retransmissions. For example, when the first UE transmits the D2D discovery signal, it transmits its own D2D discovery signal according to a certain number of retransmissions, and the second UE needs to receive the first according to the number of retransmissions indicated by the first UE in the first signaling. A D2D discovery signal sent by a UE, otherwise it may not be able to correctly receive the D2D discovery signal sent by the first UE.
  • the second UE when the second UE acts as a relay UE and starts transmitting its own D2D discovery signal, it may also send the D2D discovery signal according to the number of retransmissions indicated in the first received message received by itself. It can be ensured that its receiving UE can also receive the D2D discovery signal sent by the second UE according to the number of retransmissions.
  • the data packets retransmitted in multiple retransmissions may be the same version of the same data packet, or may carry the same information but adopt different frequencies and coding modes. Modulation mode or different versions of the transmission rate.
  • the transmission of the D2D discovery signal can have a certain delay. Considering that a larger delay can support more users to transmit in parallel, it is possible to define a transmission period of a D2D discovery signal in which one D2D discovery signal is transmitted only once. If the transmission period of the D2D discovery signal is properly extended, the power consumption of the D2D device due to the transmission of the D2D discovery signal can also be reduced. The transmission period may be carried in the first message sent by the D2D device, similar to the number of retransmissions.
  • a limited bit can be used to quantize the discovery period.
  • the discovery period can be quantized into the following six values: ⁇ 32, 64, 128, 256, 512, 1024 ⁇ , and the unit can be a radio frame (for example, each radio frame takes up a duration) 10ms) or a wireless sub-frame (for example, each radio sub-frame has a duration of 1 ms), which is not specifically limited in this embodiment of the present invention.
  • the CP type includes a long CP or a short CP.
  • the long CPs occupy a large number of samples.
  • the parameters of the Long Term Evolution (LTE) system are taken as an example.
  • the number of sampling points corresponding to the 20 MHz bandwidth is 512, and the corresponding time length is 16.7 ⁇ s;
  • the number of samples occupied by the CP is small.
  • the number of sampling points corresponding to the 20 MHz bandwidth is 160 (corresponding to the first orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing) on each subframe. : OFDM) symbol) or 144 (corresponding to symbols other than the first OFDM symbol on each subframe), the corresponding time lengths are 5.2 ⁇ s and 4.7 ⁇ s, respectively.
  • the first UE may carry in the first message sent to the second UE.
  • the indication information is used to indicate the CP type of the first UE.
  • the second UE receives the first message and can learn the CP type. Therefore, the second UE does not need to perform blind detection according to different CP types, so that the receiving complexity can be reduced.
  • mutual interference caused by multiple UEs using different CP types can be avoided.
  • the CP type includes two states of a long CP or a short CP, it is preferable to use a 1-bit indication, thereby reducing the overhead cost. It is to be understood that the present invention is not limited by the specific embodiment of the present invention.
  • the first UE may carry the transmission power information in the first message sent to the second UE.
  • the transmit power may be the current transmit power, or the maximum transmit power, or the minimum transmit power, or the threshold interval of the transmit power, which is not specifically limited in this embodiment of the present invention.
  • the second UE can use the transmit power indicated in the first message sent by the first UE.
  • the second UE may also determine the transmit power by itself, and the transmit power value determined by the second UE itself meets the transmit power requirement indicated by the first UE, for example, does not exceed the maximum transmit power, or is not less than the minimum transmit power. Or within the transmit power threshold interval.
  • UE1 in the network may indicate the transmission power, such as the current transmission power, or the maximum transmission power, or the minimum transmission power, or the transmission to UE2 and UE3 outside the network.
  • the threshold range of power, etc. Therefore, the first UE can control the transmission power or the transmission power range of the UE2 and the UE3 outside the network, thereby ensuring the quality of the D2D discovery signal, and also avoiding or reducing potential interference with other UEs in the network.
  • the out-of-network UE4 may indicate the transmission power, such as the current transmission power, or the maximum transmission power, or the minimum transmission power, or the transmission to the UE5 and the UE6 outside the network.
  • the threshold range of power, etc. Therefore, the UE4 can control the transmission power or the transmission power range in a specific D2D discovery group outside the network, thereby avoiding or reducing potential interference between different D2D discovery groups outside the network under the condition of ensuring coverage.
  • the transmit power is quantized using limited bits. For example, using 2 bits to indicate the transmission power, the transmission power can be quantized into the following four values: ⁇ 10, 16, 23, 31 ⁇ dBm. Among them, which value is specifically quantized depends on the upper limit value and the lower limit value of the maximum transmission power value supported by the final system.
  • the current hop count is used to indicate the current hop count of the D2D data being forwarded, or the current hop count of the D2D sync signal.
  • the coverage of one D2D discovery signal group can be extended without increasing the transmission power of each UE.
  • the UE at the receiving end may make a determination of the synchronization source selection according to the current hop count information sent by each intermediate UE.
  • the second UE may receive the data packet from the same UE that is forwarded by the multiple first UEs, and the second UE may be sent according to the current information sent by the multiple first UEs.
  • the hop count information determines which data packet is sent by the first UE, or the current hop count information sent by the multiple first UEs may provide a reference indication for the combination of the data packets sent by the multiple first UEs.
  • the current hop count combined with the maximum number of forward hops can limit the number of times D2D data or information is allowed to be forwarded, so that the coverage of the D2D discovery signal can be controlled within an appropriate range.
  • a limited number of bits can be used to quantize the current hop count. For example, if the maximum allowed hop count definition (information or pre-configuration) is 3, then 2 bits can be used to indicate the current hop count.
  • the first UE may carry information of the number of antenna ports in the first message sent to the second UE, so that the second UE receives or transmits data according to the information of the number of the antenna ports.
  • the second UE receives data in a single antenna mode.
  • the number of antenna ports is 1, it indicates that the first UE is currently using a single antenna mode, and correspondingly, the second UE receives data in a single antenna mode.
  • the number of antenna ports is 2, indicating that the first UE is currently using multiple input multiple output (Multiple-Input Multiple-Output, MIMO for short) mode.
  • MIMO Multiple-Input Multiple-Output
  • the first UE may further indicate which MIMO mode is currently used by the first UE by using the first message or other information.
  • the MIMO mode of the MIMO transmission mode indicates which MIMO mode is specifically used, and the embodiment of the present invention is not specifically described herein.
  • one or more bits may be used to indicate the number of antenna ports.
  • the number of antenna ports can be quantized using as few bits as possible. For example, using 2 bits to indicate the number of antenna ports, the number of antenna ports can be quantized into the following four values: ⁇ 1, 2, 4, 8 ⁇ .
  • the transmission mode is used to distinguish various specific transmission modes. Different transmission modes correspond to different transmitter and receiver structures, and also correspond to different transmission effects. Specifically, the transmission mode provided by the embodiment of the present invention may include at least one of the following transmission modes:
  • Nonlinear transmission mode and MIMO transmission mode.
  • the non-linear transmission mode is a mode other than a linear transmission mode such as a MIMO transmission mode, and includes a non-orthogonal nonlinear transmission mode, such as single-user overlapping coding, multi-user non-orthogonal transmission, and the like.
  • Single-user overlapping coding for a single UE may be that the first UE adds different data symbols on the same transmission resource to the second UE with different powers, or may be a code that the first UE encodes different data packets. The words are superimposed on different powers and then sent to the second UE on the same transmission resource.
  • the second UE may use two methods such as serial-to-peer interference cancellation to demodulate two different data on the same transmission resource.
  • the multi-user non-orthogonal transmission is for multiple UEs.
  • data is simultaneously sent to multiple second UEs.
  • the same or partially identical time-frequency resources may be used to transmit data to different second UEs, and different second UEs may be based on serial interference cancellation methods.
  • the signal of the first UE with higher power is demodulated, and then the signal of the weaker first UE is demodulated.
  • nonlinear transmission mode it is characterized by transmitting multiple copies of data on the same resource, so that the transmission efficiency can be greatly improved, and the nonlinear transmission is not limited to multiple antennas, that is, a single
  • the UE of the antenna can also use nonlinear transmission.
  • the MIMO transmission mode includes transmit diversity or spatial multiplexing.
  • the transmit diversity includes: Frequency Frequency Block Code (SFBC) mode, Space Time Block Code (STBC) mode, and Cyclic Delay Diversity (CDD) mode.
  • SFBC Frequency Frequency Block Code
  • STBC Space Time Block Code
  • CDD Cyclic Delay Diversity
  • Spatial multiplexing transmits multiple copies of data on the same time-frequency resource through spatial domain resources.
  • the information that needs to be indicated is: number of code words (such as single codeword, double codeword), and number of spatial layers (such as layer 1, layer 2, 3) Layer, 4 layers) and other information.
  • Different MIMO modes support different application scenarios.
  • transmit diversity can improve the robustness of the wireless link, and can improve the equivalent received signal-to-noise ratio of the second UE under the same transmit power; and spatial multiplexing Then, under the same transmission power, the efficiency of unit time-frequency resource transmission can be improved, that is, a single time-frequency resource can transmit more data.
  • the first UE may select an appropriate MIMO transmission mode according to the needs of the current transmission (whether it is required to improve coverage, link reliability, or need to improve transmission efficiency).
  • MIMO spatial multiplexing is generally orthogonal or nearly orthogonal in space, and the receiver also uses linear equalization receivers to receive and demodulate data, which is a key difference from nonlinear transmission.
  • one or more bits may be used to indicate the transmission mode.
  • the transmission mode can be quantized using as few bits as possible. For example, 2 bits are used to indicate the number of spatial layers, corresponding to the ⁇ 1, 2, 3, 4 ⁇ layers, respectively; 2 bits are used to indicate the mode of the transmit diversity, corresponding to ⁇ SFBC, STBC, CDD, respectively.
  • the bandwidth of the D2D link is used to indicate the maximum bandwidth when the D2D link is transmitted.
  • the second UE may perform the D2D discovery signal transmission and reception only in the frequency domain range of the bandwidth indication of the D2D link, thereby The bandwidth range of D2D transmission and reception is limited, so that different UEs can send and receive data on the specified bandwidth, thereby facilitating mutual discovery between devices.
  • a limited number of bits can be used to quantize the bandwidth of the D2D link. For example, using 3 bits and 6 states to indicate the bandwidth of the D2D link, the bandwidth of the D2D link can be quantized into ⁇ 6, 15, 25, 75, 100 ⁇ Physical Resource Block (PRB).
  • PRB Physical Resource Block
  • the UE at the transmitting end may carry the information of the D2D link frame number in the first message sent to the receiving UE.
  • the D2D link frame number is used to unify the relative timing reference relationship between UEs in the group, so that the transmission and reception of each UE is aligned in the time domain.
  • the D2D link frame number may specifically be a sub-radio frame number and a frame index of the D2D link, which is not specifically limited in this embodiment of the present invention.
  • a limited bit can be used to quantize the D2D link frame number. For example, a number of 1024 radio frames of ⁇ 0, 1, ..., 1023 ⁇ can be indicated using 10 bits.
  • TDD uplink and downlink configuration information
  • the UE at the transmitting end may carry the TDD uplink and downlink configuration information in the first message of the UE sent to the receiving end.
  • the information is used to indicate the configuration ratio of the uplink subframe and the downlink subframe in the TDD system.
  • the configuration ratio is used to indicate which subframes are used for uplink transmission and which subframes are used for downlink transmission in different configurations. If the subframes used for uplink transmission are erroneously used for downlink transmission, not only mutual communication cannot be achieved, but also interference between the transmission and reception links between different TDD UEs.
  • Table 1 is a list of TDD uplink and downlink configuration information in the LTE system. Where D represents a downlink subframe, U represents an uplink subframe, and S represents a downlink to uplink handover subframe.
  • the TDD uplink and downlink configuration information in the LTE system has seven states as shown in Table 1, and the above seven states can be indicated by using three bits.
  • the UE at the transmitting end may carry indication information in the network in the first message of the UE sent to the receiving end. This information is used to indicate whether the UE at the transmitting end is within the network or is covered by the base station.
  • UE1 in the network may send indication information in the network to UE2 and UE3 outside the network, and UEs outside the network such as UE2 and UE3 may use UE1.
  • the sent indication information in the network determines whether the D2D discovery signal sent by the UE1 is from the UE in the network, and when the UE outside the network such as the UE2 and the UE3 receives a plurality of different indication information, the priority may be considered according to the network.
  • the information indicated by the UE is used to send and receive data, thereby ensuring mutual discovery of UEs within and outside the network.
  • the indication information in the network includes yes or no two states, it is preferable to use a 1-bit indication, thereby reducing the transaction cost. It is to be understood that the present invention is not limited by the specific embodiment of the present invention.
  • the first information may also contain other information, which is not specifically limited in the embodiment of the present invention.
  • the combination of one or more information in the first message may be used to implicitly indicate information not included in the first message.
  • an association relationship between information that may be included in the first message may be established.
  • the first information may include only one or more of the association relationships, and the UE for D2D communication may learn the association relationship according to the first information and the association relationship. Other items.
  • an association of the transmission probability with the bandwidth of the D2D link can be established.
  • the UE for D2D communication knows one of the transmission probability or the bandwidth of the D2D link, another piece of information can be learned according to the association relationship. For example, as shown in Table 2, if the first packet contains a transmission probability of 1, the bandwidth of the D2D link may be implicitly indicated as 6 PRB; or, if the bandwidth of the D2D link included in the first packet is 6 PRB Then, the transmission probability may be implicitly indicated as 1.
  • an association relationship between the number of retransmissions of the D2D discovery signal and the transmission power can be established.
  • the UE for D2D communication learns one of the transmission probability in the D2D discovery signal or the bandwidth of the D2D link, and another piece of information can be learned according to the association relationship.
  • Table 3 by the association relationship or, for example, if the number of retransmissions included in the first packet is 1, the transmission power may be indicated by the number of retransmissions to be 10 dBm; or, if the first signaling is in the middle When the transmission power is 10 dBm, the number of retransmissions may be indicated by the transmission power to be 1.
  • a D2D device may receive another D2D device (third UE) to transmit a first message and receive or transmit data according to the first message.
  • the first UE may also transmit a D2D synchronization signal in the D2D link.
  • the second UE receives the first message from the first UE, and may also receive or transmit data according to the first message, or receive or send a synchronization signal.
  • the first information transmitted in the UEs with different forwarding hops may be the same or different.
  • the hop count information therein may be modified.
  • the following is a description of the case where the first UE sends the first message to the second UE through the D2D link when the D2D data or the D2D synchronization signal has one or more hops.
  • the shape is as follows.
  • Figure 4 shows a multi-hop scenario for the D2D communication mode.
  • the D2D sync signal has multiple hops, while the D2D data has only one hop.
  • a solid line is used to indicate D2D synchronization signal transmission, and a broken line is used to indicate D2D data transmission.
  • the data of each UE is transmitted only between two UEs, and is not forwarded by the UE of the receiving end, so the D2D data has only one hop.
  • the data of UE1 is only transmitted between UE1 and UE5, or between UE1 and UE2. Therefore, UEs can only discover each other.
  • UE2 can discover UE3, UE1, and UE5, but cannot discover UE6 and UE4.
  • the D2D synchronization signal can be transmitted between multiple UEs, and all UEs can use the same D2D synchronization signal, except that the D2D synchronization signal has different forwarding hops. For example, if UE1 is the first UE that transmits the D2D synchronization signal, the current hop count is 0, and UE2 and UE5 respectively receive the D2D synchronization signal of UE1 and synchronize with UE1. In this case, the hop count of the D2D synchronization signal of UE2 and UE5 is 1.
  • the UE2 and the UE5 may respectively send a D2D synchronization signal to the UE3 and the UE6, and at this time, the hop count of the D2D synchronization signal of the UE3 is 2. Similarly, the number of hops of the synchronization signal of UE4 is 3. Assuming that the maximum hop count of the D2D synchronization signal is 3, the forwarding of the D2D synchronization signal to the UE4 will end, that is, the UE4 will no longer send the D2D synchronization signal according to the timing of the UE1.
  • the first message is only forwarded between UEs transmitting the D2D synchronization signal.
  • the UE needs to update the current hop information in the first message.
  • Figure 5 illustrates another multi-hop scenario for the D2D communication mode.
  • both the D2D sync signal and the D2D data have multiple hops.
  • a solid line is used to indicate D2D synchronization signal transmission
  • a broken line is used to indicate D2D data transmission.
  • the way One transmitting or forwarding the first message by one of the UE transmitting the D2D data or the UE transmitting the D2D synchronization signal.
  • Manner 2 The UE transmitting the D2D data and the UE transmitting the D2D synchronization signal are independently transmitted, and the first message sent may be the same or different.
  • the fields of the first UE sent by the different UEs may be different because the mechanisms for transmitting D2D data or D2D synchronization signals by different UEs may be different or may be different.
  • the independent configuration is not specifically limited in this embodiment of the present invention.
  • each UE since the D2D data of each UE can be forwarded, each UE is not limited to the opposite sides that can only discover each other for D2D communication. For example, UE2 can discover UE3, UE1, and UE5. In addition, since UE2 forwards the data of UE1 to UE3, UE3 may also discover UE1. Similarly, UE3 further forwards the data of UE1 to UE4, and UE4 may also discover UE1. Similarly, UE6 can also discover UE1 through the forwarding of UE5. It can be seen that in the embodiment, the coverage of the D2D discovery can be extended by forwarding the D2D data.
  • FIG. 6 illustrates yet another multi-hop scenario for the D2D communication mode.
  • the D2D sync signal has only one hop, but the D2D data has multiple hops.
  • the thick dashed line indicates the hop count of the D2D synchronization signal forwarding
  • the thin dashed line indicates the hop count of the D2D data forwarding
  • the UE 7 provides the coverage of the one-hop D2D synchronization signal for all UEs in FIG. 6.
  • the UE 7 providing the D2D synchronization signal can have greater transmission power and greater coverage.
  • the first message may be forwarded between UEs transmitting D2D data.
  • Different UEs that transmit D2D data may update the current hop count information in the first message when forwarding the first message. For example, the hop count of UE1 is 0, the hop count of UE2 is 1, and the hop count of UE3 is 2. If the predefined maximum hop count is 3, UE4 does not forward the D2D data of UE1.
  • the UE that transmits the D2D data and the UE that sends the D2D synchronization signal may perform the relay transmission.
  • the UE that sends the D2D data and the UE that sends the D2D synchronization signal may be the same UE, or may be a dedicated UE that provides the D2D synchronization signal separately, which is not specifically limited in this embodiment of the present invention.
  • the D2D synchronization signal may be used to indicate that the channel of the first message is carried in the D2D link.
  • D2D synchronization signal includes main side link synchronization signal (Primary Sidelink Synchronization Signal, PSSS for short) and Side Link Synchronization Signal (SSSS), the SideLink Synchronization Signal Identity (SideLink Synchronization Signal Identity) :SLSSID) is an integer not less than 336, wherein the SLSSID is used to identify a channel carrying the first message in the D2D link.
  • PSSS Primary Sidelink Synchronization Signal
  • SSSS Side Link Synchronization Signal
  • SideLink Synchronization Signal Identity SideLink Synchronization Signal Identity
  • a prior art SLSSID can be employed.
  • the SLSSID is instructed by the UE transmitting the D2D synchronization signal to map the SLSSID and the D2D synchronization signal one by one, and then to the UE that receives the D2D synchronization signal.
  • Table 4 shows an example of a SLSSID mapping relationship. There are two sequences for generating PSSS, the corresponding root serial numbers v are 26 and 37, respectively, and the corresponding identification PSSIDs are 0 and 1.
  • the corresponding identifier SSSSID is [0, 167]
  • the SLSSID corresponding to the PSSS and the SSSS has a value range of [0, 335]
  • a D2D synchronization signal and a SLSSID are unique. correspond.
  • the SLSSID of the D2D link is modified by increasing the number of PSSS or SSSS.
  • Table 5 shows another example of a SLSSID mapping relationship list. Relative to the example shown in Table 4, the SSSS is unchanged (ie, the value of the SSSSID is still [0, 167]), and the PSSS is extended (for example, adding a PSSS). The SLSSID corresponding to the PSSS and the SSSS are mapped one by one to [336, 503].
  • the root sequence number v2 corresponding to the sequence for generating the PSSS in Table 5 is a sequence number different from the existing root sequence numbers 26 and 37. For example, it may be one of the following values: 22, 23, 40, 41, and the like. Of course, you can use more root sequences v to extend the PSSS sequence to extend the SLSSID that can be used.
  • the embodiment of the present invention does not specifically limited.
  • Table 6 shows another example of a SLSSID mapping relationship list. Relative to the example shown in Table 4, the PSSS is unchanged and the SSSS is extended (eg, adding a new SSSS). The SLSSID corresponding to the PSSS and the SSSS are mapped one by one to [336, 671].
  • the SLSSIDs of the D2D links are mapped to one by one.
  • the dedicated control channel carrying the first information in the embodiment of the present invention may be distinguished or uniquely identified.
  • the first UE may send the first message to the second UE by using a dedicated control channel in the D2D link.
  • a physical synchronous broadcast channel (Physical Sidelink Broadcast Channel) is defined. :PSBCH).
  • a reserved field in an existing PSBCH channel may be utilized to carry the first message. This is equivalent to defining a new dedicated control channel. That is, the dedicated control channel includes a reserved field, and some or all of the bits in the reserved field are used to carry the first message. For example, some bits in the existing PSBCH channel are used as reserved fields, and the total number of bits of the reserved field is 27 bits.
  • reserved fields can be utilized to indicate the first message.
  • 4 bits are used to indicate the number of retransmissions (such as 2 bits) and the transmission probability (such as 2 bits).
  • the position of the 4 bits may be at the beginning, the middle or the end of the reserved field, which is not specifically limited in this embodiment of the present invention.
  • the dedicated control channel may also be a channel that uses a different time-frequency resource from the PSBCH, or a channel that carries content and/or is transmitted in a different manner from the PSBCH, and the present invention does not limited.
  • the dedicated control channel can be identified in multiple manners for carrying the first message:
  • the dedicated control channel may further carry a second information, where the second information is used to identify the dedicated control channel as a channel carrying the first information.
  • a second message may be carried in the dedicated control channel, the second message being used to identify the dedicated control channel as carrying the The first channel of today.
  • the second message can be indicated by 1 bit.
  • the 1 bit can be a bit of the actual state, such as an increased 1 bit.
  • the 1 bit has no actual physical meaning, and may not be filled with a value or only a fixed value (such as 0 or 1), the purpose of which is that the length of the dedicated control channel carrying the first information is not equal to the 3GPP protocol Re1.
  • the dedicated control channel may carry a DMRS, where the DMRS is used to identify that the dedicated control channel is a channel that carries the first information, and the generating parameter u corresponding to the DMRS meets:
  • n s is a non-negative integer indicating a slot number or a subframe number
  • f gh (n s ) is an integer indicating a sequence group hop
  • f ss is an integer, indicating a sequence hop
  • mod is a modulo
  • b is a non-negative An integer of zero.
  • the mechanism is the same as that of the LTE, except that the sequence group hop and the sequence hop of the DMRS generation sequence are both closed. It’s gone.
  • f ss ((SLSSID mod 30) + ⁇ ) mod30.
  • the generated DMRS carried by the dedicated control channel is different from the DMRS carried by the generated PSBCH channel, so that the dedicated control channel is different from the PSBCH defined in the D2D characteristic of the 3GPP protocol Re1-12.
  • f ss ((SLSSID mod 30) + ⁇ ) mod30;
  • SLSSID is an integer not less than 0, and ⁇ is a constant other than zero.
  • the SLSSID may be the SLSSID of the existing D2D link (ie, [0, 335]), or may be the SLSSID of the D2D link remapped in the above embodiment (ie, an integer not less than 336), which is in the embodiment of the present invention. This is not specifically limited.
  • the dedicated control channel is generated by scrambling using a scrambling sequence, where the scrambling sequence is used to identify the dedicated control channel as a channel carrying the first information, the adding The initial value c init used in the generation of the scrambling sequence satisfies:
  • n RNTI , q, n s are all integers other than 0
  • SLSSID is an integer not less than 0
  • nSLSSID is an integer not less than 336.
  • the SLSSID may be the SLSSID of the existing D2D link (ie, [0, 335]), or may be the SLSSID of the D2D link remapped in the above embodiment (ie, an integer not less than 336), which is in the embodiment of the present invention. This is not specifically limited.
  • the nSLSSID is the SLSSID of the D2D link remapped in the above embodiment (i.e., an integer not less than 336).
  • the initial value of the scrambling sequence used when generating the dedicated control channel carrying the first signaling is different from the initial value of the scrambling sequence used in the PSBCH generation defined in the D2D characteristic of the 3GPP protocol Re1-12, thereby implementing the bearer.
  • the dedicated control channel of the first signaling is different from the PSBCH defined in the D2D characteristic of the 3GPP protocol Re1-12.
  • the dedicated control channel is generated by using a Cyclic Redundancy Check (CRC) mask, where the CRC mask is used to identify that the dedicated control channel is the bearer.
  • CRC Cyclic Redundancy Check
  • a 16-bit CRC is used, a CRC mask is not used, or the default CRC mask is all 0s.
  • the so-called CRC mask means that a predefined 0, 1 bit sequence of the same length as the CRC is added to the CRC field after the encoding is completed. If there is no CRC mask, the decoded information bits can be directly CRC when decoding. If the CRC result is correct, the whole process of receiving, demodulating and decoding the packet is considered correct. Otherwise, wrong.
  • the CRC mask is used in the generation of the dedicated control channel in the embodiment of the present invention, and the CRC mask is used to identify the dedicated control channel as the channel carrying the first information. That is, the CRC mask can be used to distinguish whether the channel is a PSBCH defined in the D2D characteristic of the 3GPP protocol Re1-12 or a dedicated control channel carrying the first information.
  • a 16-bit long bit string can be used for the CRC mask, for example, 1111111111111111 or 1100110011001100 or 10011001100110011001. It can be understood that the embodiments of the present invention are not enumerated here as long as they are non-all 0 bit strings.
  • the first UE may further send the first message to the second UE by using a non-control channel in the D2D link.
  • a non-control channel in the D2D link For example, it may be carried by one or a combination of the following: a CRC mask, a D2D synchronization signal, and a DMRS to carry the first message. This will be explained in detail below.
  • the D2D discovery signal occupies two physical resource blocks (PRBs), and the size of the data packet is fixed, including a 24-bit CRC, and a total of 232 bits.
  • the first message can be carried by the CRC mask. For example, using 4 different CRC masks, it is possible to carry 2 bits of information in the first message, and if 8 different CRC masks are used, it can carry 3 bits of information in the first message.
  • Table 7 gives an example of the mapping relationship between a 24-bit CRC mask and the state of information in the first message. Assume that the information status is 2 bits. For example, the number of retransmissions is indicated by 2 bits. If the CRC mask is 111100001111000011110000, as shown in Table 7, the first message received by the CRC mask indicates that the number of retransmissions is 3 (corresponding to the information state of 2 bits is 10).
  • mapping relationship between the CRC mask and the information state in the first information is only an exemplary one to provide a mapping relationship between the CRC mask and the information state in the first information.
  • mapping relationships there may be other mapping relationships, and the embodiments of the present invention are not listed here. .
  • the D2D synchronization signal can be used to carry the information of 3 bits in the first message, and each subgroup contains 21 sequences.
  • the method of grouping may be to number one by one from the beginning of the sequence, as shown in Table 8.
  • the corresponding information state is 3 bits.
  • the information state of the lower 2 bits corresponds to the number of retransmissions
  • the information state of the upper 1 bit corresponds to the indication information in the network.
  • the indication information in the network is "1”, indicating that the first UE is in the network; when the indication information in the network is "0", indicating that the first UE is outside the network.
  • the sequence index of the D2D synchronization signal is 45, as shown in Table 8, the first message from the D2D synchronization information indicates that the number of retransmissions is 3 (corresponding to the right 2 low bits being 10), and the first UE is outside the network. (corresponding to the highest bit on the left is 0).
  • the D2D discovery signal occupies two PRBs, and the length in the frequency domain is 24 subcarriers, and the length of the corresponding DMRS is 24.
  • the first message is carried by the DMRS
  • the first message is carried by a cyclic shift of different DMRSs in the D2D link, or the first message is by the D2D
  • the modulation symbols on any of the two adjacent DMRSs in the link are carried, or the first information is carried by modulation symbols on two adjacent DMRSs in the D2D link.
  • Manner 1 The first message is carried by a cyclic shift of different DMRSs in the D2D link.
  • the cyclic shift is generated by using a sequence corresponding to the DMRS and a phase rotation in the frequency domain, as follows:
  • denotes the phase value corresponding to the cyclic shift
  • r(n) denotes the sequence before the cyclic shift
  • sequence length is M.
  • the DMRS may have 8 different cyclic shift values, corresponding to a 3-bit state, which may be used to carry 3 bits of information in the first packet. Different cyclic shift values correspond to different information states, which are not enumerated here.
  • Manner 2 The first message is carried by a modulation symbol on any one of two adjacent DMRSs in the D2D link.
  • the adjacent two DMRSs are spaced apart by 0.5 ms in the time domain, and the modulation symbols may be sent on one of the two adjacent DMRSs, and the first signal is carried by the modulation symbols.
  • a Quaternary Phase Shift Keying (QPSK) symbol can indicate 2-bit information
  • a 16 Quadrature Amplitude Modulation (QAM) symbol can indicate 4 bits.
  • Information a 64QAM symbol can indicate 6 bits of information.
  • FIG. 11 it is a DMRS of a D2D discovery signal used to transmit modulation symbols.
  • the modulation symbol can be mapped to any one of adjacent DMRSs in one subframe, and the modulation can be performed in a direct expansion manner. That is, it is assumed that the DMRS on the slot n indicates that the chips are: d1, d2, .., dL, and the QAM symbol to be modulated is x, then each DMRS chip on the slot n after the modulation symbol becomes: d1*x , d2*x,...,dL*x.
  • Manner 3 The first message is carried by a modulation symbol on two adjacent DMRSs in the D2D link.
  • the DMRS on the slot n indicates that the chips are: d1, d2, .., dL, and the QAM symbol to be modulated is x, then the symbol x can also be placed in two adjacent DMRSs simultaneously.
  • the symbols x can also be placed in two adjacent DMRSs simultaneously.
  • time slot n and time slot n+1 where time slots n: d1, d2*x, d3, d4*x, ..., d(L-1), dL*x;
  • the second UE may perform demodulation by using two adjacent DMRS pairs to carry the symbol of x after modulation.
  • the embodiment of the present invention does not specifically limit this.
  • non-control channel bearer in addition to the above-mentioned manner of non-control channel bearer, there may be other ways of non-control channel bearer.
  • the foregoing provides only a single non-control channel bearer. Of course, it may also be a combination of multiple non-control channel bearer modes, such as a CRC mask bearer and a D2D sync signal bearer. No specific limitation.
  • the first message can be carried through the non-control channel, and no additional System overhead, thus saving system resources.
  • the first UE shown in FIG. 3 may be a UE in the network, and the first UE satisfies at least one condition of the conditions A and B:
  • Condition A the signal quality received by the first UE from the base station is less than the first threshold
  • Condition B The signal quality of the UE received from the outside network received by the first UE is greater than the second threshold.
  • the first UE When the first UE detects that the UE meets the condition A, it indicates that the first UE is in the edge location of the coverage area of the base station, and the first UE may limit the first user equipment to forward the first message of the first UE. , thereby limiting the number of participating UEs and improving the efficiency of the transmission of the present and the present.
  • the first UE When the first UE detects that the UE meets the condition B, it indicates that the first UE detects the D2D signal outside the network, and the first UE may trigger the sending of the first message by the event.
  • the UE When the first UE detects that the UE satisfies the condition A and the condition B, the UE is triggered to send the first message, and the number of UEs that forward the first message is limited, so that only a few or specific UEs are sent to the first. Now, we can serve the UE outside the network as much as possible.
  • the signal quality of the UE from outside the network received by the first UE in the condition B may be the signal quality of the D2D discovery signal of the UE from the network detected by the first UE, or may be the detected by the first UE.
  • the signal quality of the D2D synchronization signal of the UE outside the network; and/or the signal quality of the UE from the network received by the first UE in the condition B may be the D2D control channel outside the network measured by the first UE and And/or the signal quality of the reference signal on the control channel; and/or, the signal quality of the UE from outside the network received by the first UE in condition B may be a data packet of the D2D discovery signal measured by the first UE and/or
  • the signal quality of the reference signal on the D2D discovery signal is not specifically limited in this embodiment of the present invention.
  • the foregoing determining conditions may be applicable to a scenario in which the first UE has a Radio Resource Control (RRC) connection, and may also be applied to a scenario in which the first UE has no RRC connection.
  • RRC Radio Resource Control
  • the first UE shown in FIG. 3 may also be a UE outside the network, where the first UE satisfies the condition C: condition C: the signal quality received by the first UE from other UEs is less than a third threshold. .
  • the signal quality received by the first UE from the other UE in the condition C may be the first The signal quality of the D2D discovery signal from the UE in the network or out of the network detected by the UE may also be the signal quality of the D2D synchronization signal from the UE outside the network detected by the first UE; and/or the condition C
  • the signal quality received by the first UE from other UEs may be the signal quality of the D2D control channel and/or the reference signal on the control channel outside the network measured by the first UE; and/or the first UE in condition C
  • the received signal quality from other UEs may be the signal quality of the data packet of the D2D discovery signal from the UE in the network or outside the network and/or the reference signal on the D2D discovery signal detected by the first UE, in the embodiment of the present invention This is not specifically limited.
  • Condition C is applicable to the case of no network.
  • the first UE detects that the signal strength of the other UE is less than the third threshold, it indicates that the coverage of the necessary D2D signal is absent around the first UE, so the first UE may send the D2D related information, including the present The first letter of the present invention.
  • the signal quality may include: Reference Signal Receiving Power (RSRP), Received Signal Strength Indication (RSSI), and Reference Signal Receiving Quality (RSRQ).
  • RSRP Reference Signal Receiving Power
  • RSSI Received Signal Strength Indication
  • RSSRQ Reference Signal Receiving Quality
  • SINR Signal to interference plus noise ratio
  • the first threshold, the second threshold, or the third threshold may be predefined, or may be configured by the network to the first UE by using a message, which is not specifically limited in this embodiment of the present invention.
  • the first message can be used not only for D2D discovery, but also for D2D communication.
  • D2D communication The following briefly describes the functions of the parameters used in D2D communication in the first letter:
  • the data transfer between the two requires mutual confirmation of information.
  • the number of antenna ports and transmission mode information are the signals that must be indicated after introducing nonlinear transmission and MIMO transmission into D2D communication. Otherwise, multi-antenna and nonlinear transmission cannot be supported.
  • the current hop count is required to introduce a multi-hop relay transmission between D2D communication devices. Indicated information. With the current hop count information, when the data packets from one UE are forwarded to the second UE by different hops by different first UEs, the second UE may make a received selection or data packet according to the current hop count information. Merger.
  • Transmission probability, number of retransmissions, transmission period, CP type, transmission power, etc. can be used to optimize the transmission of D2D communication, such as controlling the use intensity of resources, reducing the number of blind detections, and reducing unnecessary interference between multiple groups of users. Wait.
  • the first message When the first message is used for D2D communication, it can be used for enhancement of D2D communication, for example, at least one aspect can be enhanced: introducing nonlinear transmission and multi-antenna MIMO transmission by indicating antenna port number and transmission mode information; by indicating retransmission The number of times information, the mechanism of configurable retransmission times is introduced; the control of the resource usage intensity is optimized by indicating the transmission probability information; the transmission power of each node is optimized by indicating the transmission power information; and the D2D is determined by indicating the current hop information.
  • the communication is extended to a relay mode that supports multiple hops; or by indicating the CP type, blind detection of the receiver is reduced, thereby reducing unnecessary computation and power consumption.
  • the transmission method of the present invention can refer to the transmission method of the present invention in the D2D discovery process, which will not be further described in the embodiment of the present invention.
  • the first message is sent to another D2D device (such as the second UE) through a D2D link by one D2D device (such as the first UE), so that D2D is sent between different D2D devices.
  • the data can be sent and received with the same parameters in the same resource pool (the set of individual user resources), thereby realizing D2D discovery between the user equipments partially covered or covered by the network; on the other hand, by a D2D
  • the device (such as the first UE) sends the first message to another D2D device (such as the second UE), so that the format of the D2D discovery signal can be limited and unified, thereby being able to adjust the transmission between multiple UEs, reducing D2D discovery.
  • the conflicts and interferences in the process improve the efficiency of transmission.
  • the embodiment of the invention further provides a user equipment UE, which comprises a module for performing the first UE behavior in the above method design.
  • the modules can be software and/or hardware.
  • FIG. 8 shows a block diagram of a design of the user equipment UE involved in the above embodiment.
  • the UE 80 can be the first UE or the second UE in the foregoing embodiment.
  • the UE 80 includes a processing unit 81 and a communication unit 82.
  • the processing unit 81 is configured to perform control management on the action of the UE, and is used to perform processing performed by the first UE or the second UE in the foregoing embodiment. For example, use To determine the first letter for D2D discovery.
  • the communication unit 82 is configured to support communication between the UE 80 and other network elements. For example, for communicating with other UEs or base stations, transmitting and/or receiving data.
  • For the actions of the first message and the UE refer to the description in the foregoing embodiment, and details are not described herein again.
  • Fig. 9 is a block diagram showing another design of the user equipment UE involved in the above embodiment.
  • Encoder 906 receives the traffic data and the message to be transmitted on the uplink. Encoder 906 processes (eg, formats, encodes, and interleaves) the traffic data and the message. Modulator 907 further processes (e.g., symbol maps and modulates) the encoded traffic data and the message to the present message and provides output samples.
  • the transmitter 901 conditions (eg, analog conversion, filtering, amplifying, upconverting, etc.) the output samples and generates an uplink signal or a D2D link signal that is transmitted via an antenna to the base station described in the above embodiments. Or a D2D device (such as a second UE).
  • the antenna receives the downlink signal transmitted by the base station in the above embodiment and the D2D link signal from other D2D devices.
  • Receiver 902 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) the signals received from the antenna and provides input samples.
  • Demodulator 909 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 908 processes (e.g., deinterleaves and decodes) the symbol estimate and provides decoded data and message to the UE.
  • Encoder 906, modulator 907, demodulator 909, and decoder 908 may be implemented by modem processor 905. These units are processed according to the radio access technology adopted by the radio access network (for example, access technologies of LTE and other evolved systems, and technologies such as D2D communication).
  • the controller/processor 903 performs control management on the actions of the UE for performing the processing performed by the UE in the above embodiment. For example, other processes for controlling the UE to determine the first message to be transmitted and/or the techniques described herein. As an example, the controller/processor 903 is configured to support the UE in performing processes S 302 and S304 in FIG.
  • the memory 904 is used to store program codes and data for the UE.
  • the controller/processor for performing the above-described UE function of the present invention may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and a field programmable gate array ( FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It can be implemented or performed in conjunction with the disclosure of the present disclosure. Various exemplary logical blocks, modules and circuits.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the steps of a method or algorithm described in connection with the present disclosure may be embodied directly in hardware, a software module executed by a processor, or a combination of both.
  • the software modules can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the user equipment.
  • the processor and the storage medium may also reside as discrete components in the user equipment.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Abstract

本发明实施例提供一种设备到设备D2D通信方法及装置,以至少解决现有技术中用户设备之间发现的成功率低的问题。方法包括:第一用户设备UE确定待发送的第一信今,所述第一信今包括以下信息之一或者组合:发送概率、重传次数、发送周期、循环前缀CP类型、发送功率、当前跳数、天线端口数、传输模式、D2D链路的带宽、D2D链路帧号、时分双工TDD上下行配置信息、以及所述第一UE是否在网络内的指示信息;所述第一UE通过D2D链路向第二UE发送所述第一信今。本发明适用于无线通信领域。

Description

一种设备到设备D2D通信方法及装置 技术领域
本发明涉及无线通信领域,尤其涉及一种设备到设备(Device to Device,简称:D2D)通信方法及装置。
背景技术
随着无线通信系统技术的不断发展,为了实现通信,除了可以使用传统的蜂窝通信模式外,还可以使用D2D通信模式。在蜂窝模式中,用户设备(User Equipment,简称:UE)经由基站与另一个UE通信。而在D2D通信模式中,UE与另一UE直接通信。对于UE来说,D2D通信不但节省了无线资源频谱资源,而且降低了核心网的压力。因此,D2D技术成为目前在第三代合作伙伴计划(3rd Generation Patnership Project,简称:3GPP)标准中正在被标准化的一个可以面向第五代(5rd Generation,简称:5G)的重要技术。
在D2D通信模式中,一项技术是设备发现(discovery)。设备发现是指参与D2D通信的设备在实施D2D信息传输之前,确定互相存在的一个过程。在现有技术中,参与D2D通信的设备是在核心网设备的调度下实现设备发现的,这里的核心网设备可以是蜂窝通信网的基站或者类似的设备。
但是在某些D2D通信被频繁应用的场景下,例如当参与D2D通信的设备处在诸如地下室、电梯井等无法与核心网设备建立无线连接、或者与核心网设备建立的无线连接不稳定的位置时,参与D2D通信的设备在进行设备发现时的成功概率低,从而影响了进行D2D通信。
发明内容
本发明实施例提供一种设备到设备D2D通信方法及装置,以至少解决现有技术中用户设备之间发现的成功率低的问题。
一方面,本发明实施例提供一种设备到设备D2D通信方法,该方法包括:
第一用户设备UE确定待发送的第一信今。所述第一信今包括以下信息之一或者组合:发送概率、重传次数、发送周期、循环前缀CP类型、发送功率、当前跳数、天线端口数、传输模式、D2D链路的带宽、D2D链路帧号、时分双工TDD上下行配置信息、以及是否在网络内的指示信息。所述第一UE通过D2D链路向第二UE发送所述第一信今。
在一个可能的设计中,所述第一UE可以根据预定规则自行确定所述第一信今。在另一个设计中,所述第一UE也可以接收第三UE通过所述D2D链路发送的第一信今,并根据所述第三UE发送的第一信今确定待发送的第一信今。所述第一UE确定的待发送的第一信今可以与第三UE发送的第一信今在格式或者内容上可以相同,也可以不同。在又一个设计中,可以由基站为第一UE配置第一信今,并将配置的第一信今发给第一UE。所述第一UE接收基站发送的第一信今,并根据所述基站发送的第一信今确定待发送的第一信今。第一UE确定的待发送的第一信今,可以与基站配置的第一信今在格式或者内容上可以相同,也可以不同。
在一个可能的设计中,所述第一UE接收第三UE通过所述D2D链路发送的所述第一信今之后,所述第一UE可以根据所述第三UE发送的第一信今接收或发送数据。
在一个可能的设计中,所述第一信今中包含的至少一个信息中的第一信息还用于隐式指示所述第一信今中包含的至少一个信息中的第二信息。例如,上述第一UE确定的待发送第一信今中可能包含的信息之间具有关联关系。第一UE可以在待发送的第一信今中携带部分的信息。第二UE接收第一UE发送的部分信息,根据关联关系,即可获知,与所述部分信息相关联的其他信息。通过这样设计,可以节约第一信今所占用的资源。
在一个可能的设计中,所述第一UE可以在所述D2D链路中传输D2D同步信号。可选的,所述D2D同步信号包括主边链路同步信号PSSS和从边链路同步信号SSSS,所述PSSS和所述SSSS对应的边链路信号标识SLSSID为不小于336的整数,其中,所述SLSSID用于标识所述D2D链路 中承载所述第一信今的信道。
在一个可能的设计中,所述第一UE通过所述D2D链路中的专用控制信道或者非控制信道向所述第二UE发送所述第一信今。例如,可以利用专用控制信道中包含的预留字段,将所述预留字段中的部分或全部比特用于承载所述第一信今。
在一个可能的设计中,所述专用控制信道还可以承载第二信今,所述第二信今用于标识所述专用控制信道为承载所述第一信今的信道。
在另一个可能的设计中,所述专用控制信道可以承载解调参考信号DMRS,所述DMRS用于标识所述专用控制信道为承载所述第一信今的信道,所述DMRS对应的生成参数u满足:u=(fgh(ns)+fss)mod 30+b;其中,ns为一个非负整数,表示时隙号或子帧号;fgh(ns)为整数,表示序列组跳;fss为整数,表示序列跳;mod表示取模;b为非零的整数。较佳的,所述fss满足:fss=((SLSSID mod 30)+Δ)mod 30;其中,SLSSID为不小于0的整数,Δ为非零的常数。
在一个可能的设计中,所述专用控制信道生成时使用加扰序列来加扰,所述加扰序列用于标识所述专用控制信道为承载所述第一信今的信道,所述加扰序列生成时使用的初始值cinit满足:cinit=nSLSSID,或者
Figure PCTCN2015074630-appb-000001
其中,nRNTI,q,ns均为非0的整数,SLSSID为不小于0的整数,nSLSSID为不小于336的整数。
在一个可能的设计中,所述专用控制信道生成时使用循环冗余校验CRC掩码,所述CRC掩码用于标识所述专用控制信道为承载所述第一信今的信道。
在一个可能的设计中,所述第一UE发送给第二UE的第一信今通过以下方式中一种或者组合来承载:CRC掩码,D2D同步信号,以及DMRS。
当所述第一信今由所述D2D同步信号承载时,所述D2D同步信号的不同序列被分成M个子组,所述M个子组用于承载不超过n=floor(log2(M)比特的信息,其中,floor函数表示向下取整。
当所述第一信今由所述DMRS承载时,所述第一信今由所述D2D链路中相邻的两个DMRS上的调制符号承载;或者,所述第一信今由所述D2D 链路中相邻的两个DMRS中的任一DMRS上的调制符号承载;或者,所述第一信今由所述D2D链路中不同的DMRS的循环移位承载。
在一个可能的设计中,若所述第一UE为网络内的UE,所述第一UE满足条件A、B中的至少一个条件:条件A:第一UE接收到的来自基站的信号质量小于第一阈值;条件B:第一UE接收到的来自网络外的D2D UE的信号质量大于第二阈值。
若所述第一UE为网络外的UE,所述第一UE满足条件C:第一UE接收到的来自其它UE的信号质量小于第三阈值。
另一方面,本发明实施例还提供了一种用户设备UE,其包含用于执行上述方法设计中第一UE行为相对应的模块。所述模块可以是软件和/或硬件。
在一个可能的设计中,用户设备UE包括处理器可存储器,所述处理器被配置为支持UE执行上述方法中相应的功能。所述存储器用于与处理器耦合,其保存UE必要的程序指令和数据。
又一方面,本发明实施例还提供了一种通信系统,该系统包括上述方面所述的第一UE和第二UE。所述系统也可以包括上述方面所上述的第三UE或者基站。
再一方面,本发明实施例提供了一种计算机存储介质,用于包含执行上述方面所涉及的程序。
基于本发明实施例提供的D2D通信方法,用户设备及系统,一方面,通过由一D2D设备(第一UE)通过D2D链路向另一D2D设备(第二UE)发送第一信今,使得不同D2D设备之间在发送D2D发现信号时能够在相同的资源池(各个用户资源的集合)中以相同的参数来收发数据,进而实现部分覆盖或网络外覆盖的用户设备之间的D2D发现;另一方面,通过由一D2D设备(第一UE)向另一D2D设备(第二UE)发送第一信今,使得可以限制和统一D2D发现信号的格式,从而能够调整多个UE之间的发送,减少了D2D发现过程中的相互冲突和干扰,提高了传输的效率。
附图说明
图1为本发明实施例提供的一种通信系统示意图;
图2为本发明实施例提供的另一种通信系统示意图;
图3为本发明实施例提供的D2D通信方法流程示意图;
图4为本发明实施例提供的一种D2D链路示意图;
图5为本发明实施例提供另一种D2D链路示意图;
图6为本发明实施例提供的又一种D2D链路示意图;
图7为本发明实施例提供的一种通过DMRS承载第一信今的示意图;
图8为本发明实施例提供的一种UE结构示意图;
图9为本发明实施例提供的另一种UE结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。在下文描述中,处于解释而非限定的目的,阐述了一些特定细节以便清楚理解。在一些实施例中,省略了公知的装置、电路和方法的详细描述,以免因不必要的细节使得描述模糊。通篇描述中,相同的引用数字和相同的名称指代相同或相似的元素。
图1和图2以示意图形式示出了本发明实施例的可能应用的场景环境。场景中即包括以基站为调度核心、以用户设备作为被调度对象的蜂窝通信模式,也包括用户设备之间进行直接通信的D2D通信模式。蜂窝通信模式中,用户设备(UE)以常规方式经过基站与另一UE通信。在D2D通信模式中,UE与UE直接通信。图1中的D2D UE之间无多跳D2D数据或信今的相互转发。图2中的D2D UE之间可以存在多跳D2D数据或信今的相互转发。
图1和图2中示出的D2D通信模式中,均有两种不同的应用场景。图1和图2中的左侧部分示出了有部分网络覆盖的D2D通信模式,即进行D2D通信的UE中有一部分UE(例如UE1)在蜂窝网络基站的覆盖范围内,而进行D2D通信的另一部分UE(例如UE2,UE3)在基站的覆盖范围外。在基站覆盖范围内的UE(如UE1)可以与基站建立无线连接,也可叫做网络内的UE。而在基站覆盖范围外的UE,也可以叫做网络外的UE。可以理解的 是网络内的UE可以是一个或多个,网络外的UE也可以是一个或多个。图1和图2中的右侧部分示出的无网络覆盖场景的D2D通信模式,即所有进行D2D通信的UE(例如UE4,UE5等)均位于所述基站的覆盖范围外。
在图1示出的场景中,UE1处在基站的覆盖范围内,能够与基站建立无线链接,因此UE1处于网络内;UE2、UE3、UE4、UE5、UE6、UE7、UE8、UE9、UE10处在基站的覆盖范围外,因此这些UE处于网络外。值得注意的是,在如图1示出的场景中,尽管UE4、UE5、UE6、UE7、UE8之间可以通过例如自组网的形式建立起相互的无线连接,但是由于没有蜂窝网中基站的参与,即处在基站的覆盖范围外,因此依然认为这些UE处于网络外。
为了更清楚的对本发明实施例进行说明,本文中采用了“第一”、“第二”、“第三”等字样对功能和作用基本相同的相同或相似项进行区分,本领域技术人员可以理解“第一”、“第二”、“第三”等字样并不对数量和执行次序进行限定。在D2D通信模式中,D2D设备也可以称为D2D UE或者UE,本文中第一UE、第二UE和第三UE是相对的概念。D2D设备既可以作为一个D2D链路中的接收端,也可以在另一个D2D链路中作为发送端。
本发明实施例提供一种D2D通信方法,D2D设备以及通信系统。本发明实施例提供的方案可以应用于基于3GPP LTE系统的场景下的D2D通信(例如如上述图1和图2所示场景),也可以应用于基于其他通信系统下的D2D通信以及基于后续演进系统下的D2D通信。
图3示出了一种D2D通信方法流程示意图,方法流程包括以下步骤:
S302,D2D设备(例如,第一UE)确定待发送的第一信今。所述第一信今可用于D2D发现。
例如,第一UE可以根据预配置的信息自己确定所述第一信今。也可以根据从基站或者其他D2D设备获取的信息来确定所述第一信今。在一个示例中,第一UE可以接收其他D2D设备(如第三UE)发送的第一信今,并根据接收到的第一信今,确定自己待发送的第一信今。这时,第一UE相当于进行了中继传输。在另一个示例中,可以由基站对第一UE的第一 信今进行配置,并发送给第一UE。
所述第一UE的待发送第一信今,或者所述其他D2D设备(如第三UE)发送到第一信今,或者基站配置的第一信今可以包括以下信今之一或者任意组合:发送概率、重传次数、发送周期、循环前缀(Cyclic Prefix,简称:CP)类型、发送功率、当前跳数、天线端口数、传输模式、D2D链路的带宽、D2D链路帧号、时分双工(Time Division Duplexing,简称:TDD)上行与下行配置信息、以及是否在网络内的指示信息。
在具体的实施过程中,UE之间通过第一信今,协调统一了发送D2D发现信号时的标准,为后续UE之间发送D2D发现信号提供了参考的标准,从而在D2D发现过程中提高了D2D发现的成功概率。
S304、所述第一UE向第二UE发送所述第一信今,例如第一UE可通过D2D链路中的专用控制信道或者非控制信道向第二UE发送所述第一信令。
具体的,本发明实施例中,可以由一D2D设备(第一UE)向另一D2D设备(第二UE)发送第一信今,该第一信今可以包括上述列举的信息中的任意一个或多个信息。比如,第一信今包括发送概率;或者,第一信今包括发送概率、重传次数、以及发送周期等,本发明实施例对此不作具体限定。下面分别对上述列举的信息进行简要说明:
发送概率:
D2D发现分为类型1(type1)和类型2(type2),其中type1是指D2D发现时,作为发送端的UE使用的发送资源是在一个预定义或预配置的资源池中配置给一组UE的,每个UE在该资源池中选择自己的发送资源;而type2则是指D2D发现时,作为发送端的UE使用的发送资源是每次由网络配置的,此处的网络可以是例如基站的网络设备。当本发明实施例用于type1的D2D发现时,作为发送端的UE,即第一UE在预定义或预配置的资源池中按一定的发送概率Pb来随机选择发送资源,也可以在发送给接收端的UE、即第二UE的第一信今中承载发送概率Pb的信息。
示例性的,如图1和图2左侧的部分覆盖场景,网络内的UE1可以把发送概率Pb发送给网络外的UE2和UE3,UE2和UE3等网络外的UE可 以使用UE1发送的发送概率Pb在相应的资源上随机选择发送资源,从而根据随机选择获得的发送资源发送它的D2D发现信号。其中,网络内的UE发送发送概率给网络外的UE,相当于网络内的UE控制了网络外的UE资源的使用强度(比如,概率越大,资源的使用强度越高),进而还保证了网络内与网络外的UE在相互发现时具有相同的发现机会,有利于网络内与网络外的UE的相互发现。
示例性的,如图1和图2的右侧的无网络覆盖场景,网络外的UE4可以把发送概率Pb发送给网络外的UE5和UE6,UE5和UE6等网络外的UE可以使用UE4发送的发送概率Pb在相应的资源上随机选择发送资源,从而根据获得的发送资源发送它的D2D发现信号。即,网络外的第一UE发送发送概率给网络外的第二UE,相当于网络外的第一UE控制了网络外的第二UE资源的使用强度(比如,概率越大,资源的使用强度越高),进而还保证了网络外的UE在相互发现时具有相同的发现机会,有利于网络外的UE的相互发现。
可以理解的是,为了减少发送概率Pb在第一信今中占用的比特数,可以使用有限比特来量化该发送概率Pb。比如,使用2比特来指示Pb,Pb可以量化成以下4个值:{0.25,0.50,0.75,1}。
重传次数:
与发送概率类似,第一UE可以在发送给第二UE的第一信今中承载重传次数的信息,用于指示第二UE根据重传次数来接收或发送数据。例如当第一UE发送D2D发现信号时,它按照一定的重传次数来发送自身的D2D发现信号,而第二UE则需要根据第一UE在第一信今中指示的重传次数来接收第一UE发送的D2D发现信号,否则有可能不能正确的接收第一UE发送的D2D发现信号。又例如,当第二UE作为中继(Relay)UE,开始向外发送自身的D2D发现信号时,也可以按自身接收到的第一信今中指示的重传次数来发送D2D发现信号,这样可以保证它的接收UE也能按该重传次数来接收第二UE所发送的D2D发现信号。
在具体的实施过程中,多次重传中重传的数据包可以是同一数据包的相同版本,也可以是承载着相同的信息但是采用不同的频率、编码方式、 调制方式或者传输速率的不同版本。
可以理解的是,针对不同的重传次数,可以使用尽量少的比特数来指示以节省信今开销。示例性的,使用2比特来指示重传次数,重传次数可以量化成以下4个值:{1,2,3,4}。当然可以理解,可以通过1个或多个比特来指示,本发明实施例对此不作具体限定
发送周期:
由于D2D发现信号为D2D设备的特定格式的发现信号,因此该D2D发现信号的发送可以有一定的时延。考虑到更大的时延可以支持更多的用户并行发送,因此,可以定义一个D2D发现信号的发送周期,在该发送周期内,一个D2D发现信号仅发送一次。若适当延长D2D发现信号的发送周期,还可以减少D2D设备因发送D2D发现信号而带来的功耗的影响。其中,与重传次数类似,发送周期可以承载在D2D设备发送的第一信今中。
可以理解的是,为了减少发现周期在第一信今中占用的比特数,可以使用有限比特来量化该发现周期。比如,使用3比特来指示发现周期,发现周期可以量化成以下6个值:{32,64,128,256,512,1024},其单位可以是无线帧(比如,每个无线帧占用时长为10ms)或无线子帧(比如,每个无线子帧占用时长为1ms),本发明实施例对此不作具体限定。
CP类型:
CP类型包括长CP或短CP。其中,长CP占有的样点数较多,比如,以长期演进(Long Term Evolution,简称:LTE)系统的参数为例,对应20MHz带宽时的采样点数是512,对应的时间长度是16.7μs;短CP占有的样点数较少,比如,以LTE系统的参数为例,对应20MHz带宽时的采样点数是160(对应每个子帧上的第一个正交频分复用(Orthogonal Frequency Division Multiplexing,简称:OFDM)符号)或144(对应每个子帧上的除第一个OFDM符号外的符号),对应的时间长度分别为5.2μs和4.7μs。
示例性的,所述第一UE可以在发送给所述第二UE的第一信今中携 带指示信息用于指示第一UE的CP类型。所述第二UE接收所述第一信今,便可获知所述CP类型。因此第二UE无需按照不同的CP类型进行盲检,从而可以降低接收复杂度。此外,在一个D2D发现组内,可以避免多个UE因使用不同的CP类型所造成的相互干扰。
可以理解的是,由于CP类型包含长CP或短CP两种状态,因此优选的可以使用1比特指示,从而减少信今开销。当然可以理解的是,也可以以多个比特来指示,本发明实施例对此不作具体限定。
发送功率:
第一UE可以在发送给第二UE的第一信今中携带发送功率信息。对于D2D发现信号的发送功率,如果发送功率太大,可能造成不必要的干扰;发送功率太小,则可能影响D2D发现信号的覆盖范围。示例性的,所述发送功率可以是当前发送功率,或者是最大发送功率,又或者是最小发送功率,又或者发送功率的门限区间,本发明实施例对此不作具体限定。
可以理解的是,所述第二UE可以使用所述第一UE发送的第一信今中所指示的发送功率。所述第二UE也可以自己确定发送功率,所述第二UE自己确定的发送功率值满足所述第一UE指示的发送功率要求,如,不超过最大发送功率,或不小于最小发送功率,或位于发送功率门限区间内。
示例性的,如图1和图2左侧的部分覆盖场景,网络内的UE1可以向网络外的UE2和UE3指示发送功率,如当前发送功率,或最大发送功率,或最小发送功率,或发送功率的门限区间等。因此,所述第一UE可以控制网络外的UE2和UE3的发送功率或发送功率范围,进而保证D2D发现信号的质量,同时也能避免或降低与网络内其它UE间的潜在干扰。
示例性的,如图1和图2右侧的无网络覆盖场景,网络外UE4可以向网络外的UE5和UE6指示发送功率,如当前发送功率,或最大发送功率,或最小发送功率,或发送功率的门限区间等。因此,所述UE4可以控制网络外的某个特定的D2D发现组内的发送功率或发送功率范围,进而在保证覆盖的条件下,避免或降低网络外不同D2D发现组间的潜在干扰。
可以理解的是,为了减少发送功率在第一信今中占用的比特数,可 以使用有限比特来量化该发送功率。比如,使用2比特来指示发送功率,发送功率可以量化成以下4个值:{10,16,23,31}dBm。其中,具体量化成哪个值,取决于最终系统支持的最大发送功率值的上限值和下限值。
当前跳数:
当前跳数用来指示D2D数据被转发的当前跳数,或者接收到D2D同步信号的当前跳数。在允许有多跳D2D数据或信今转发时,可以扩展一个D2D发现信号组的覆盖范围,而不增加各个UE的发送功率。
示例性的,当某个UE的D2D同步信号定时被多个中间的UE转发时,接收端的UE可以根据各中间的UE发送的当前跳数信息来做出同步源选择的判断。
示例性的,当D2D数据被多次转发时,第二UE可能会接收到来自多个第一UE转发的同一个UE的数据包,此时第二UE可以根据多个第一UE发送的当前跳数信息确定接收哪个第一UE发送的数据包;或者,多个第一UE发送的当前跳数信息可以为该多个第一UE发送的数据包的合并提供参考指示。
需要说明的是,当前跳数结合最大转发跳数的信息,可以限制D2D数据或信今被允许转发的次数,从而可以把D2D发现信号的覆盖范围控制在适当的范围内。
可以理解的是,为了减少当前跳数在第一信今中占用的比特数,可以使用有限比特来量化该当前跳数。比如,若最大允许的跳数定义(信今指示或预配置)为3,则可以使用2比特来指示当前跳数。
天线端口数:
在D2D通信模式中,第一UE可以在发送给第二UE的第一信今中承载天线端口数的信息,以使得所述第二UE根据该天线端口数的信息接收或发送数据。
示例性的,当天线端口数为1时,指示所述第一UE当前使用的是单天线模式,相应的,所述第二UE按单天线模式接收数据即可。又例如,当天线端口数为2时,指示所述第一UE当前使用的是多输入多输出 (Multiple-Input Multiple-Output,简称:MIMO)模式。作为一个例子,所述第一UE还可以通过第一信今或其他信今指示当前第一UE具体使用哪种MIMO模式。例如通过MIMO传输模式的信今指示具体使用哪种MIMO模式,本发明实施例在此不作具体阐述。
可以理解的是,可以使用一个或多个比特来指示天线端口数。例如为了减少天线端口数在第一信今中占用的比特数,可以使用尽量少的比特来量化该天线端口数。如,使用2比特来指示天线端口数,天线端口数可以量化成以下4个值:{1,2,4,8}。
传输模式:
传输模式用来区分各种具体的传输方式,不同的传输方式对应不同的发送机和接收机结构,也对应不同的传输效果。具体的,本发明实施例提供的传输模式可以包括下述传输模式中的至少一种传输模式:
非线性传输模式、以及MIMO传输模式。
其中,非线性传输模式是除MIMO传输模式等线性传输模式之外的模式,包括非正交非线性的传输模式,例如单用户重叠编码,多用户的非正交传输等。单用户重叠编码针对单个UE,可以是第一UE将不同的数据符号以不同的功率叠加在相同的发送资源上发送给第二UE,也可以是第一UE将不同的数据包编码后的码字按不同的功率叠加后在相同的发送资源上发送给第二UE。第二UE则可以使用串并干扰消除等方法来分别在同一个发送资源上解调出两份不同的数据。多用户的非正交传输针对多个UE,当两个第一UE的数据,在资源(时间、频率、码字或空间)不正交时,则同时给多个第二UE发送数据。比如,当两个第一UE在空间上不正交时,可以使用相同或部分相同的时频资源来给不同的第二UE发送数据,不同的第二UE则可以根据串行干扰消除的方法,先解调出功率更大的第一UE的信号,然后再解调出更弱的第一UE的信号。总之,不论是哪一种非线性传输模式,其特点都在于在同一份资源上传输多份数据,从而能够大幅度地提高传输的效率,并且非线性传输不限于多天线,也就是说,单个天线的UE,也可以使用非线性传输。
MIMO传输模式包括发送分集或空间复用。其中,发送分集包括:空 频分组码(Space Frequency Block Code,简称:SFBC)模式,空时分组码(Space Time Block Code,简称:STBC)模式,大延时循环延时分集(Cyclic Delay Diversity,简称:CDD)模式等。空间复用通过空域资源在同一个时频资源上传输多份数据,其需要指示的信息有:码字数(如单码字,双码字),空间层数(如1层,2层,3层,4层)等信息。不同的MIMO模式支持不同的应用场景,总的来说发送分集可以提高无线链路的鲁棒性,在相同的发送功率下,能够提高第二UE的等效接收信噪比;而空间复用则在相同的发送功率下,可以提高单位时频资源传输的效率,即单个时频资源可以传输更多的数据。第一UE可以根据当前传输的需要(是需要提高覆盖、链路的可靠性,还是需要提高传输的效率)选择适当地MIMO传输模式。
需要说明的是,MIMO空间复用在空间上通常是正交或接近正交的,并且接收机也是使用线性均衡接收机来接收和解调数据,这是与非线性传输的关键区别。
可以理解的是,可以使用一个或多个比特来指示来指示传输模式。例如,为了减少传输模式在第一信今中占用的比特数,可以使用尽可能少的比特来量化该传输模式。比如使用2比特来指示空间层数,分别对应{1,2,3,4}层;使用2比特来指示发分集的模式,分别对应{SFBC,STBC,CDD)。
D2D链路的带宽:
D2D链路的带宽用于指示D2D链路发送时的最大带宽。
若第一UE在发送给第二UE的第一信今中指示D2D链路的带宽,则第二UE可以仅在该D2D链路的带宽指示的频域范围内进行D2D发现信号的收发,从而限定了D2D发送和接收的带宽范围,便于不同的UE都在该指定的带宽上收发数据,从而有利于设备间的相互发现。
可以理解的是,为了减少D2D链路的带宽在第一信今中占用的比特数,可以使用有限比特来量化该D2D链路的带宽。比如,使用3比特6个状态来指示D2D链路的带宽,D2D链路的带宽可以量化成{6,15,25,75,100}物理资源块(Physical Resource Block,PRB)。
D2D链路帧号:
在D2D通信中,发送端的UE可以在发送给接收端UE的第一信今中承载D2D链路帧号的信息。D2D链路帧号用于统一组内的UE间的相对定时参考关系,以便各个UE的收发在时域上对齐。有了D2D链路帧号的信息,D2D发现信号的发送周期才有实际的意义和作用。其中,D2D链路帧号具体可以为D2D链路的子无线帧号和帧索引,本发明实施例对此不作具体限定。
可以理解的是,为了减少D2D链路帧号在第一信今中占用的比特数,可以使用有限比特来量化该D2D链路帧号。比如,使用可以使用10比特来指示{0,1,......,1023}共1024个无线帧的编号。
TDD上行与下行配置信息:
在D2D通信中,发送端的UE可以在发送给接收端的UE的第一信今中承载TDD上行与下行配置信息。该信息用于指示TDD系统中上行子帧和下行子帧的配置比例,该配置比例用来指示在不同的配置下,哪几个子帧用于上行传输,哪几个子帧用于下行传输。如果错误地将用于上行传输的子帧用于下行传输,则非但不能实现相互间的通信,还会造成不同TDD UE间收发链路间的干扰。表一为LTE系统中TDD上行与下行配置信息列表。其中,D表示下行子帧,U表示上行子帧,S表示下行到上行的切换子帧。
表一
Figure PCTCN2015074630-appb-000002
需要说明的是,目前,LTE系统中TDD上行与下行配置信息有如表一所示的7种状态,上述7种状态可以使用3比特来指示。
是否在网络内的指示信息:
发送端的UE可以在发送给接收端的UE的第一信今中承载是否在网络内的指示信息。该信息用于指示发送端的UE是否在网络内或者是否被基站覆盖。
示例性的,如图1和图2左侧的部分覆盖场景,网络内的UE1可以将是否在网络内的指示信息发送给网络外的UE2和UE3,UE2和UE3等网络外的UE可以使用UE1发送的是否在网络内的指示信息确定UE1发送的D2D发现信号是否来自于网络内的UE,进而当UE2和UE3等网络外的UE接收到多个不同的指示信息时,可以考虑优先按照网络内的UE指示的信息来收发数据,从而确保网络内和网络外UE的相互发现。
可以理解的是,由于是否在网络内的指示信息包含是或否两种状态,因此优选的可以使用1比特指示,从而减少信今开销。当然可以理解的是,也可以以多个比特来指示,本发明实施例对此不作具体限定。
需要说明的是,以上仅是简要的对第一信今中可能包含的信息进行说明。当然,除了上述列举的信息,第一信今中还可能包含其它信息,本发明实施例对此不作具体限定。
可选的,所述第一信今中的一项或多项信息组合,可以用来隐含指示第一信今中未包含的信息。例如,可以建立上述第一信今中可能包含的信息之间的关联关系。所述第一信今中可仅包含所述关联关系中的一项或多项,用于D2D通信的UE,根据所述第一信今及所述关联关系,便可获知所述关联关系中的其他项。
在一个示例中,可以建立发送概率与D2D链路的带宽的关联关系。当用于D2D通信的UE获知发送概率或D2D链路的带宽中的一项,便可根据所述关联关系获知另外一项信息。例如,如表二所示,若第一信今中包含发送概率为1,则可隐式的指示D2D链路的带宽为6PRB;或者,若第一信今中包含D2D链路的带宽为6PRB,则可隐式的指示所述发送概率为1。
表二
带宽值(PRB) 发送概率值
6 1
15 0.75
25 0.5
50 0.5
75 0.25
100 0.25
在另一个示例中,类似的,可以建立D2D发现信号的重传次数与发送功率之间的关联关系。用于D2D通信的UE获知D2D发现信号中的发送概率或D2D链路的带宽中的一项,便可根据所述关联关系获知另外一项信息。如表三所示,通过所述关联关系或例如若第一信今中包含重传次数为1,则可以由所述重传次数指示所述发送功率为10dBm;或者,若第一信今中包含发送功率为10dBm,则可以由所述发送功率指示所述重传次数为1。
表三
重传次数 发送功率(dBm)
1 10
2 16
3 23
4 31
在一个示例中,一D2D设备(第一UE)可以接收另一D2D设备(第三UE)发送第一信今,并根据该第一信今接收或发送数据。也所述第一UE也可以在D2D链路中传输D2D同步信号。例如图3中,第二UE接收到来自第一UE的第一信今,也可以根据所述第一信今接收或发送数据,或者接收或发送同步信号。
需要说明的是,在第一UE进行中继传输时,在不同转发跳数的UE中传输的第一信今可能相同,也可能不同。例如,当第一UE在转发第一信今时,可以修改其中的跳数信息。下面给出有关在D2D数据或D2D同步信号有一跳或多跳时,第一UE通过D2D链路发送第一信今给第二UE的情 形如下。
情形一:
图4示出了D2D通信模式的一种多跳场景。在图4所示的场景中,D2D同步信号有多跳,而D2D数据仅有一跳。在图4中,实线用于表示D2D同步信号传输,虚线用于表示D2D数据传输。
如图4所示,各个UE的数据仅在两个UE之间传输,而并没有被接收端的UE转发,因此D2D数据仅有一跳。例如,UE1的数据仅仅在UE1与UE5,或者UE1与UE2之间传输。因此UE之间只能相互发现对方。比如,UE2可以发现UE3、UE1和UE5,但不能发现UE6和UE4
图4所示的场景下,D2D同步信号可以在多个UE之间传输,所有的UE可以使用相同的D2D同步信号,只是D2D同步信号的转发跳数不同而已。例如,假设UE1为发送D2D同步信号的第一个UE,其所在的当前跳数为0,UE2和UE5分别接收UE1的D2D同步信号,并与UE1同步。这种情况下,UE2和UE5的D2D同步信号的跳数为1。UE2和UE5可以分别向UE3和UE6发送D2D同步信号,这时,UE3的D2D同步信号的跳数为2。类似的,UE4的同步信号跳数为3。假设D2D同步信号的最大跳数为3时,D2D同步信号的转发到UE4就会结束,即UE4不会再按UE1的定时来向外发送D2D同步信号。
在本发明的一个示例中,第一信今仅在发送D2D同步信号的UE之间转发。所述UE在转发该第一信今时,需要更新第一信今中的当前跳数信息。
作为一个示例,图4中的所有UE认为在一个D 2D的发现组内,虽然它们的D2D数据仅有一跳,但是通过发送第一信今,仍能控制这个组内的相互干扰,协调相应的发送资源。
情形二:
图5示出了D2D通信模式的另一种多跳场景。在图5所示的场景中,D2D同步信号和D2D数据都有多跳。在图5中,实线用于表示D2D同步信号传输,虚线用于表示D2D数据传输。
图5所示的场景中,有两种可能的发送方式来发送第一信今。方式 一:由发送D2D数据的UE或发送D2D同步信号的UE中的其中一个发送或/转发第一信今。方式二:由发送D2D数据的UE以及发送D2D同步信号的UE各自独立的发送,发送的第一信今可以相同,也可以不同。在方式二中,由于不同的UE发送D2D数据或者D2D同步信号的机制或者可能不相同,而且转发的当前跳数也可能不同,因此所述不同的UE发送的第一信今中的字段可以各自独立的配置,本发明实施例对此不作具体限定。
在图5所示的场景中,由于各个UE的D2D数据可以被转发,因此各个UE不限于只能相互发现D2D通信的相对双方。比如,UE2可以发现UE3、UE1和UE5。此外,由于UE2转发了UE1的数据给UE3,UE3也可以发现UE1。类似的,UE3进一步向UE4转发了UE1的数据,UE4也可以发现UE1。类似的,UE6通过UE5的转发,也可以发现UE1。由此可见,在本实施例中,通过对D2D数据的转发,可以扩展D2D发现的覆盖范围。
情形三:
图6示出了D2D通信模式的又一种多跳场景。在该场景中,D2D同步信号仅有一跳,但D2D数据有多跳。其中,粗虚线表示D2D同步信号转发的跳数,细虚线表示D2D数据转发的跳数,UE7为图6中的所有的UE提供一跳D2D同步信号的覆盖。在该场景中,提供D2D同步信号的UE7可以有更大的发送功率和更大的覆盖范围。
在图6所示出的场景中,第一信今可以在发送D2D数据的UE之间被转发。不同的发送D2D数据的UE在转发该第一信今时,可以更新第一信今中的当前跳数信息。比如,UE1的跳数为0,UE2的跳数为1,UE3的跳数为2,如果预定义的最大跳数为3,则UE4则不再向外转发UE1的D2D数据。
需要说明的是,上述三种情形下,发送D2D数据的UE与发送D2D同步信号的UE可以进行中继传输。其中,该发送D2D数据的UE与发送D2D同步信号的UE可以是同一个UE,也可以是单独提供D2D同步信号的专用UE,本发明实施例对此不作具体限定。
在具体的实施过程中,可选的,D2D同步信号可以用来指示在D2D链路中承载所述第一信今的信道。D2D同步信号包括主边链路同步信号 (Primary Sidelink Synchronization Signal,简称:PSSS)和从边链路同步信号(Secondary Sidelink Synchronization Signal,简称:SSSS),所述PSSS和所述SSSS对应的边链路同步信号标识(SideLink Synchronization Signal Identity,简称:SLSSID)为不小于336的整数,其中,所述SLSSID用于标识D2D链路中承载所述第一信今的信道。
在一个示例中,可以采用现有技术中的SLSSID。SLSSID是由发送D2D同步信号的UE将SLSSID与D2D同步信号进行一一映射后向接收D2D同步信号的UE指示的。表四示出了一种SLSSID映射关系示例。有两个用于生成PSSS的序列,对应的根序列号v分别为26和37,对应的标识PSSID为0和1。有168个生成SSSS的从同步序列,对应的标识SSSSID为[0,167],所述PSSS和所述SSSS对应的SLSSID的取值范围为[0,335],一个D2D同步信号与一个SLSSID唯一对应。
表四
PSSS根序列号v PSSSID SSSSID SLSSID
26 0 [0,167] [0,167]
37 1 [0,167] [168,335]
在另一个示例中,通过增加PSSS或SSSS的数量来修改所述D2D链路的SLSSID。比如:
表五示出了另一种SLSSID映射关系列表示例。相对于表四示出的示例,SSSS不变(即SSSSID的取值仍然是[0,167]),而对PSSS进行扩展(例如,增加一个PSSS)。该PSSS与SSSS对应的SLSSID分别一一映射到[336,503]中。
表五
PSSS根序列号v PSSSID SSSSID SLSSID
v2 2 [0,167] [336,503]
需要说明的是,表五中用于生成PSSS的序列对应的根序列号v2是一个不同于现有的根序列号26和37的一个序列号。例如,可以是以下取值中的一个:22,23,40,41等。当然,还可以使用更多的根序列v来扩展PSSS序列,从而扩展可使用的SLSSID。本发明实施例对此不作具体 限定。
表六示出了又一种SLSSID映射关系列表示例。相对于表四示出的示例,PSSS不变,而对SSSS进行扩展(例如增加新的SSSS)。该PSSS与SSSS对应的SLSSID分别一一映射到[336,671]中。
表六
PSSS根序列号u PSSSID SSSSID SLSSID
26 0 [168,335] [336,503]
37 1 [168,335] [504,671]
可以理解的是,扩展的SSSS及其对应的SSSSID的范围可以不限于表六中给出的数值,本发明实施例对此不作具体限定。
由于承载第一信今的专用控制信道的加扰序列以及解调参考信号(Demodulation Reference Signal,简称:DMRS)序列的生成都与SLSSID有关,因此通过将D2D链路的SLSSID分别一一映射到不小于336的整数中,可以区分或唯一地标识本发明实施例中承载第一信今的专用控制信道。
在一个示例中,在上述S304中、所述第一UE可以通过D2D链路中的专用控制信道向所述第二UE发送所述第一信今。
在第三代合作伙伴计划(英文全称:The 3rd Generation Partnership Project,英文缩写:3GPP)协议版本(Release,简称:Rel)12的D2D特性中,定义了物理同步广播信道(Physical Sidelink Broadcast Channel,简称:PSBCH)。在本发明的一个示例中,可以利用现有的PSBCH信道中的预留字段,以承载所述第一信今。这相当于定义了一个新的专用控制信道。即,所述专用控制信道包含预留字段,所述预留字段中的部分或全部比特用于承载所述第一信今。例如,在现有的PSBCH信道中有部分比特用作预留字段,该预留字段的总比特数为27比特。因此,可以利用这些预留字段中的部分或全部比特来指示所述第一信今。例如,使用4比特分别来指示重传次数(如2比特)和发送概率(如2比特)。这4比特的位置可以在预留字段的开头、中间或结尾,本发明实施例对此不作具体限定。
在本发明的另一个示例中,所述专用控制信道也可以是与PSBCH使用不同的时频资源的信道,或者是承载的内容和/或传输的方式与PSBCH不同的信道,本发明对此不作限定。
在具体的实施过程中,可以通过多种方式来标识该专用控制信道用于承载上述第一信今:
一种可能的实现方式中,所述专用控制信道还可以承载第二信今,所述第二信今用于标识所述专用控制信道为承载所述第一信今的信道。
例如,当所述第一信今在一个独立的专用控制信道中传输时,可以在该专用控制信道中承载第二信今,该第二信今用于标识所述专用控制信道为承载所述第一信今的信道。优选的,该第二信今可以用1比特指示。这1比特可以是实际状态的比特,比如增加的1比特,当其值为1时,表示是承载第一信今的专用控制信道,否则不是。或者,这1比特没有实际的物理意义,也可以不填充值或仅填一个固定的值(比如0或1),其目的是使得承载第一信今的专用控制信道的长度不等于3GPP协议Re1-12的D2D特性中定义的PSBCH的长度。
一种可能的实现方式中,所述专用控制信道可以承载DMRS,所述DMRS用于标识所述专用控制信道为承载所述第一信今的信道,所述DMRS对应的生成参数u满足:
u=(fgh(ns)+fss)mod 30+b;
其中,ns为一个非负整数,表示时隙号或子帧号;fgh(ns)为整数,表示序列组跳,fss为整数,表示序列跳,mod表示取模,b为非零的整数。
具体的,现有技术中,3GPP协议Re1-12的D2D特性中定义的PSBCH的DMRS的根序列选择时,其机制与LTE的机制相同,只是将DMRS生成序列的序列组跳和序列跳都关掉了而已。
对于生成所述DMRS的参数u=(fgh(ns)+fss)mod 30,当关掉序列组跳时,fgh(ns)=0;当关掉序列跳时,fss=SLSSID mod 30。
本发明实施例的该实现方式中,生成所述DMRS的参数u=(fgh(ns)+fss)mod 30+b,b为非零的整数;
或者,不关掉序列组跳,fgh(ns)≠0;
或者,不关掉序列跳,fss=((SLSSID mod 30)+Δ)mod30。
这样可使得生成的专用控制信道承载的DMRS与生成的PSBCH信道承载的DMRS不同,进而使得所述专用控制信道不同于3GPP协议Re1-12的D2D特性中定义的PSBCH。
进一步的,所述DMRS对应的生成参数u=(fgh(ns)+fss)mod 30中的fss满足:fss=((SLSSID mod 30)+Δ)mod30;
其中,SLSSID为不小于0的整数,Δ为非零的常数。
即,SLSSID可以是现有D2D链路的SLSSID(即[0,335]),也可以是上述实施例中重新映射的D2D链路的SLSSID(即不小于336的整数),本发明实施例对此不作具体限定。
一种可能的实现方式中,所述专用控制信道生成时使用加扰序列来加扰,所述加扰序列用于标识所述专用控制信道为承载所述第一信今的信道,所述加扰序列生成时使用的初始值cinit满足:
cinit=nSLSSID,或者
Figure PCTCN2015074630-appb-000003
其中,nRNTI,q,ns均为非0的整数,SLSSID为不小于0的整数,nSLSSID为不小于336的整数。
即,SLSSID可以是现有D2D链路的SLSSID(即[0,335]),也可以是上述实施例中重新映射的D2D链路的SLSSID(即不小于336的整数),本发明实施例对此不作具体限定。nSLSSID是上述实施例中重新映射的D2D链路的SLSSID(即不小于336的整数)。
具体的,现有的3GPP协议Re1-12的D2D特性中定义的PSBCH中,加扰序列生成时的初始值公式为:cinit=SLSSID,SLSSID为[0,335]之间的整数;而本发明实施例中,在承载第一信今的专用控制信道中,加扰序列生成时的初始值公式cinit满足:cinit=nSLSSID,或者
Figure PCTCN2015074630-appb-000004
nSLSSID为不小于336的整数。因此,该承载第一信今的专用控制信道生成时使用的加扰序列的初始值与3GPP协议Re1-12的D2D特性中定义的PSBCH生成时使用的加扰序列的初始值不同,进而实现承载第一信今的专用控制信道不同于3GPP协议Re1-12的D2D特性中定义的PSBCH。
一种可能的实现方式中,所述专用控制信道生成时使用循环冗余校验(Cyclic Redundancy Check,简称:CRC)掩码,所述CRC掩码用于标识所述专用控制信道为承载所述第一信今的信道。
具体的,在现有的3GPP协议Re1-12的D2D特性中定义的PSBCH中,使用了16比特的CRC,未使用CRC掩码,或者说缺省的CRC掩码是全0。所谓CRC掩码,是指用一个预定义的与CRC长度相同的0、1比特序列加在编码完成后的CRC字段上面。若没有CRC掩码,则译码时,译码出来的信息比特直接做CRC即可,若CRC结果正确,则认为这个数据包的接收、解调与译码的全过程是正确的,否则是错误的。
若在CRC上加上了CRC掩码,则在做CRC前,需要先把这个CRC掩码去掉,然后再做CRC,这样得到的结果才是预期的校验结果。否则CRC基本上是错误的。本发明实施例中的专用控制信道生成时使用CRC掩码,所述CRC掩码用于标识所述专用控制信道为承载所述第一信今的信道。即,可以通过CRC掩码区分该信道是3GPP协议Re1-12的D2D特性中定义的PSBCH,还是承载第一信今的专用控制信道。
示例性的,可以使用长为16比特的比特串来做CRC掩码,例如,1111111111111111或者,1100110011001100或者,10011001100110011001。可以理解的是,只要是非全0的比特串即可,本发明实施例在此不一一列举。
在另一个示例中,在上述S304中,所述第一UE还可以通过D2D链路中的非控制信道向所述第二UE发送所述第一信今。例如可以通过以下方式中一种或者组合来承载:CRC掩码,D2D同步信号,以及DMRS来承载所述第一信今。下面将对此进行详细说明。
(a)CRC掩码:
具体的,以LTE系统为例,D2D发现信号占用2个物理资源块(PRBs),数据包的大小是固定的,包括24比特CRC,共232比特。利用CRC掩码可以承载第一信今。例如,使用4个不同的CRC掩码,可以承载第一信今中2比特的信息,又如,使用8个不同的CRC掩码,则可以承载第一信今中3比特的信息。
表7给出了一个24比特CRC掩码与第一信今中信息状态的映射关系示例。假设信息状态为2比特。例如通过2比特来指示重传次数,若CRC掩码为111100001111000011110000,则由表七可知,该CRC掩码承载的第一信今指示重传次数为3(对应2比特的信息状态为10)。
表七
24比特的CRC掩码 信息状态
000011110000111100001111 00
000000000000111111111111 01
111100001111000011110000 10
111111111111000000000000 11
需要说明的是,上述仅是示例性的提供一种CRC掩码与第一信今中信息状态的映射关系,当然,还可能存在其它的映射关系,本发明实施例在此不再一一列举。
(b)D2D同步信号:
具体的,当所述第一信今由所述D2D同步信号承载时,所述D2D同步信号的不同序列被分成M个子组,所述M个子组用于承载不超过n=floor(log2(M)比特的信息,其中,floor函数表示向下取整。
示例性的,假设将D2D同步信号的168个序列,一共分成8个子组,则利用D2D同步信号可以承载第一信今中3比特的信息,每个子组包含21个序列。分组的方法可以是从序列开始一一编号,如表八所示。
假设对应的信息状态为3比特。其中低位2比特的信息状态对应重传次数,高位1比特的信息状态对应是否在网络内的指示信息。当该是否在网络内的指示信息为“1”,指示第一UE在网络内;当该是否在网络内的指示信息为“0”,指示第一UE在网络外。若D2D同步信号的序列索引为45,则由表八可知,该D2D同步信息承载的第一信今指示重传次数为3(对应右边2个低比特位为10)、第一UE在网络外(对应左边最高比特位为0)。
表八
D2D同步信号的序列索引 信息状态
0-20 000
21-41 001
42-62 010
63-83 011
84-104 100
105-125 101
126-146 110
147-167 111
需要说明的是,上述仅是示例性的提供一种D2D同步信号的不同序列分组映射关系,当然,还可能存在其它的分组映射关系,本发明实施例在此不再一一列举。
(c)DMRS:
具体的,以LTE系统为例,D2D发现信号占用2个PRBs,对应在频域上的长度为24个子载波,对应的DMRS的长度为24。其中,当所述第一信今由所述DMRS承载时,所述第一信今由所述D2D链路中不同的DMRS的循环移位承载,或者,所述第一信今由所述D2D链路中相邻的两个DMRS中的任一DMRS上的调制符号承载,或者,所述第一信今由所述D2D链路中相邻的两个DMRS上的调制符号承载。
下面分别对上述三种第一信今由所述DMRS承载的方式进行简要说明。
方式一、第一信今由所述D2D链路中不同的DMRS的循环移位承载。
具体的,所述循环移位是通过在频域上使用DMRS对应的序列加一个相位的旋转而生成,如下:
r(α)(n)=ejαnr(n),0≤n<M
其中,α表示循环移位对应的相位值,r(n)表示循环移位前的序列,序列长为M。
示例性的,DMRS可以有8个不同的循环移位值,对应3比特的状态,可以用来承载第一信今中3比特的信息。不同的循环移位值对应不同的信息状态,此处不再一一列举。
方式二、所述第一信今由所述D2D链路中相邻的两个DMRS中的任一DMRS上的调制符号承载。
具体地,相邻的两个DMRS之间在时域上间隔0.5ms,可以在相邻的两个DMRS当中的一个上面发送调制符号,进而由这个调制符号来承载第一信今。比如,一个四相移相键控(Quaternary Phase Shift Keying,简称:QPSK)符号,则能指示2比特的信息;一个16正交调幅(Quadrature Amplitude Modulation,简称:QAM)符号,则可以指示4比特的信息;一个64QAM的符号,则能指示6比特的信息。
如图11所示,为用来传输调制符号的D2D发现信号的DMRS。调制符号可以映射到一个子帧中相邻的DMRS中的任意一个,调制的方式可以采用直扩的方式进行。即,假设时隙n上的DMRS表示码片为:d1,d2,..,dL,待调制的QAM符号为x,则调制符号后时隙n上的各个DMRS码片变为:d1*x,d2*x,...,dL*x。
方式三、所述第一信今由所述D2D链路中相邻的两个DMRS上的调制符号承载。
在图11中,假设时隙n上的DMRS表示码片为:d1,d2,..,dL,待调制的QAM符号为x,则还可以把这个符号x同时放在两个相邻DMRS的不同码片上。比如,等间隔地放在时隙n和时隙n+1的不同码片上,其中,时隙n:d1,d2*x,d3,d4*x,...,d(L-1),dL*x;
时隙n+1:d1*x,d2,d3*x,d4,...,d(L-1)*x,dL。
需要说明的是,在上述方式二与方式三中,第二UE接收到第一UE发送的第一信今之后,可以用相邻的两个DMRS对调制后承载了x的符号来进行解调,本发明实施例对此不作具体限定
需要说明的是,以上仅是简要的对非控制信道承载的方式进行说明。当然,除了上述列举的非控制信道承载的方式,还可能存在其它非控制信道承载的方式。并且,上述仅是提供了单独一种非控制信道承载的方式,当然,也可以是多种非控制信道承载的方式的联合,比如CRC掩码承载和D2D同步信号承载,本发明实施例对此不作具体限定。
可以理解的是,通过非控制信道承载第一信今,可以不增加额外的 系统开销,因此节省了系统资源。
可选的,附图3中示出的第一UE可以为网络内的UE,所述第一UE满足条件A、B中的至少一个条件:
条件A:第一UE接收到的来自基站的信号质量小于第一阈值;
条件B:第一UE接收到的来自网络外的UE的信号质量大于第二阈值。
其中,当第一UE检测到该UE满足条件A,则表明第一UE处在该基站覆盖区域的边缘位置,此时第一UE可以限定部分用户设备转发所述第一UE的第一信今,从而限制了参与UE的数量,提高了信今传输的效率。
其中,当第一UE检测到该UE满足条件B,则表明第一UE检测到网络外的D2D信号,第一UE可以由此事件触发发送第一信今。
当第一UE检测到该UE同时满足条件A和条件B,则触发该UE发送第一信今,并限定转发此第一信今的UE数量,从而既保证只有少数或者特定的UE发送第一信今,又可以尽可能的为网络外的UE服务。
所述条件B中第一UE接收到的来自网络外的UE的信号质量可以是第一UE检测到的来自网络外的UE的D2D发现信号的信号质量,也可以是第一UE检测到的来自网络外的UE的D2D同步信号的信号质量;和/或,所述条件B中第一UE接收到的来自网络外的UE的信号质量可以是第一UE测量到的网络外的D2D控制信道和/或控制信道上的参考信号的信号质量;和/或,条件B中第一UE接收到的来自网络外的UE的信号质量可以是第一UE测量到的D2D发现信号的数据包和/或D2D发现信号上的参考信号的信号质量,本发明实施例对此不作具体限定。
上述判断条件既可以适用于第一UE有无线资源控制(Radio Resource Control,RRC)连接的情景,也可适用于第一UE无RRC连接的情景。
可选的,附图3中示出的第一UE也可以为网络外的UE,所述第一UE满足条件C:条件C:第一UE接收到的来自其它UE的信号质量小于第三阈值。
所述条件C中第一UE接收到的来自其它UE的信号质量可以是第一 UE检测到的来自网络内或网络外的UE的D2D发现信号的信号质量,也可以是第一UE检测到的来自网络外的UE的D2D同步信号的信号质量;和/或,所述条件C中第一UE接收到的来自其它UE的信号质量可以是第一UE测量到的网络外的D2D控制信道和/或控制信道上的参考信号的信号质量;和/或,条件C中第一UE接收到的来自其它UE的信号质量可以是第一UE检测到的来自网络内或网络外的UE的D2D发现信号的数据包和/或D2D发现信号上的参考信号的信号质量,本发明实施例对此不作具体限定。
需要说明的是,条件C适用于无网络的情形。此时,若第一UE检测到另一个UE的信号强度小于第三阈值,则表明该第一UE周围缺少必要的D2D信号的覆盖,因此该第一UE可以发送D2D相关的信今,包括本发明实施例中的第一信今。
所述信号质量可以包括:参考信号接收功率(Reference Signal Receiving Power,简称:RSRP)、接收信号强度指示(Received Signal Strength Indication,简称:RSSI)、参考信号接收质量(Reference Signal Receiving Quality,简称:RSRQ)、信号与干扰加噪声比(Signal to Interference plus Noise Ratio,简称:SINR)等,本发明实施例对此不作具体限定。
所述第一阈值,第二阈值或第三阈值可以是预定义的,也可以是网络通过信今向第一UE配置的,本发明实施例对此不作具体限定。
作为一个示例,所述第一信今不仅可以用于D2D发现,所述第一信今还可以用于D2D通信。下面对第一信今用于D2D通信时各参数的作用简要说明如下:
D2D链路的带宽,D2D链路帧号,TDD上行与下行配置信息,是否在网络内的指示信息等信息是指示D2D通信所必要的信息,是D2D通信过程中,为实现发射机和接收机之间的数据传输需要双方互相确认的信息。
天线端口数,传输模式信息,是将非线性传输以及MIMO传输引入到D2D通信中后必须指示的信今,否则无法支持多天线和非线性的传输。
当前跳数,是将D2D通信设备之间引入支持多跳的中继传输时需要 指示的信息。有了当前跳数信息,当来自一个UE的数据包被不同的第一UE经过不同的跳数转发到第二UE时,第二UE可以根据该当前跳数信息来做接收的选择或数据包的合并。
发送概率,重传次数,发送周期,CP类型,发送功率等信息,可以用来优化D2D通信的传输,比如控制资源的使用强度,减少盲检测次数,减少不必要的多组用户之间的干扰等。
当第一信今用于D2D通信时,可用于D2D通信的增强,例如可以增强一下至少一个方面:通过指示天线端口数和传输模式信息,引入非线性传输和多天线MIMO传输;通过指示重传次数信息,引入重传次数可配置的机制;通过指示发送概率信息,优化对资源使用强度的控制;通过指示发送功率信息,来优化各个节点的发射功率;通过指示当前跳数信息,来将D2D通信扩展到支持多跳的中继模式;或通过指示CP类型,减少接收机的盲检测,从而减少不必要的计算和功率消耗。
当所述第一信今用于D2D通信时,信今的传输方法可参考上述D2D发现过程中信今的传输方法,本发明实施例对此不再一一赘述。
本发明实施例提供的方案中,通过由一个D2D设备(如第一UE)通过D2D链路向另一个D2D设备(如第二UE)发送第一信今,使得不同D2D设备之间在发送D2D发现信号时能够在相同的资源池(各个用户资源的集合)中以相同的参数来收发数据,进而实现部分覆盖或网络外覆盖的用户设备之间的D2D发现;另一方面,通过由一个D2D设备(如第一UE)向另一个D2D设备(如第二UE)发送第一信今,使得可以限制和统一D2D发现信号的格式,从而能够调整多个UE之间的发送,减少了D2D发现过程中的相互冲突和干扰,提高了传输的效率。
本发明实施例还提供了一种用户设备UE,其包含用于执行上述方法设计中第一UE行为相对应的模块。所述模块可以是软件和/或硬件。
图8示出了上述实施例中所涉及的用户设备UE的一种设计方框图。该UE 80可以作为上述实施例中的第一UE或者第二UE。所述UE80包括:处理单元81和通信单元82。所述处理单元81用于对UE的动作进行控制管理,用于执行上述实施例中由第一UE或第二UE进行的处理。例如,用 于确定用于D2D发现的第一信今。所述通信单元82,用于支持UE80与其他网元的通信。例如,用于与其他UE或者基站进行通信,发送和/或接收数据。关于第一信今及所述UE的动作,参照前述实施例中的描述,在此不再赘述。
图9示出了上述实施例中所涉及的用户设备UE的另一种设计方框图。
编码器906接收要在上行链路上发送的业务数据和信今消息。编码器906对业务数据和信今消息进行处理(例如,格式化、编码和交织)。调制器907进一步处理(例如,符号映射和调制)编码后的业务数据和信今消息并提供输出采样。发射器901调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号或者D2D链路信号,该上行链路信号经由天线发射给上述实施例中所述的基站或者D2D设备(如第二UE)。天线接收上述实施例中基站发射的下行链路信号以及来自其他D2D设备的D2D链路信号。接收器902调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。解调器909处理(例如,解调)该输入采样并提供符号估计。解码器908处理(例如,解交织和解码)该符号估计并提供发送给UE的已解码的数据和信今消息。编码器906、调制器907、解调器909和解码器908可以由调制解调处理器905来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术,又如D2D通信的技术)来进行处理。
控制器/处理器903对UE的动作进行控制管理,用于执行上述实施例中由UE进行的处理。例如用于控制UE确定待发送的第一信今和/或本发明所描述的技术的其他过程。作为示例,控制器/处理器903用于支持UE执行图3中的过程S 302和S304。存储器904用于存储用于UE的程序代码和数据。
所述用于执行本发明上述UE功能的控制器/处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述 的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本发明公开内容所描述的方法或者算法的步骤可直接体现为硬件、由处理器执行的软件模块或两者的组合。软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于用户设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种设备到设备D2D的通信方法,其特征在于,所述方法包括:
    第一用户设备UE确定待发送的第一信今,所述第一信今包括以下信息之一或者组合:
    发送概率、重传次数、发送周期、循环前缀CP类型、发送功率、当前跳数、天线端口数、传输模式、D2D链路的带宽、D2D链路帧号、时分双工TDD上下行配置信息、以及所述第一UE是否在网络内的指示信息;
    所述第一UE通过D2D链路向第二UE发送所述第一信今。
  2. 根据权利要求1所述的方法,其特征在于,所述第一UE确定待发送的第一信今包括:
    所述第一UE根据预配置的信息确定所述第一信今;或者
    所述第一UE接收第三UE通过所述D2D链路发送的第一信今,并根据所述第三UE发送的第一信今确定待发送的所述第一信今;或者
    所述第一UE接收基站发送的第一信今,并根据所述基站发送的第一信今确定待发送的所述第一信今。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一信今中包含的至少一个信息中的第一信息还用于隐式指示所述第一信今中包含的至少一个信息中的第二信息。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,该方法还包括,所述第一UE在D2D链路中传输D2D同步信号,所述D2D同步信号包括主边链路同步信号PSSS和从边链路同步信号SSSS,所述PSSS和所述SSSS对应的边链路信号标识SLSSID为不小于336的整数,其中,所述SLSSID用于标识所述D2D链路中承载所述第一信今的信道。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述第一UE通过D2D链路向第二UE发送所述第一信今,包括:
    所述第一UE通过所述D2D链路中的专用控制信道向所述第二UE发送所述第一信今。
  6. 根据权利要求5所述的方法,其特征在于,所述专用控制信道包含预留字段,所述预留字段中的部分或全部比特用于承载所述第一信今。
  7. 根据权利要求5或6所述的方法,其特征在于,所述专用控制信道还承载第二信今,所述第二信今用于标识所述专用控制信道为承载所述第一信今的信道。
  8. 根据权利要求5至7任一项所述的方法,其特征在于,所述专用控制信道还承载解调参考信号DMRS,所述DMRS用于标识所述专用控制信道为承载所述第一信今的信道,所述DMRS对应的生成参数u满足:
    u=(fgh(ns)+fss)mod 30+b;
    其中,ns为一个非负整数,表示时隙号或子帧号;fgh(ns)为整数,表示序列组跳;fss为整数,表示序列跳;mod表示取模;b为非零的整数。
  9. 根据权利要求8所述的方法,其特征在于,所述fss满足:
    fss=((SLSSID mod 30)+Δ)mod30;
    其中,SLSSID为不小于0的整数,Δ为非零的常数。
  10. 根据权利要求5至9任一项所述的方法,其特征在于,所述专用控制信道生成时使用加扰序列来加扰,所述加扰序列用于标识所述专用控制信道为承载所述第一信今的信道,所述加扰序列生成时使用的初始值cinit满足:
    cinit=nSLSSID,或者
    Figure PCTCN2015074630-appb-100001
    其中,nRNTI,q,ns均为非0的整数,SLSSID为不小于0的整数,nSLSSID为不小于336的整数。
  11. 根据权利要求5或10任一项所述的方法,其特征在于,所述专用控制信道生成时使用循环冗余校验CRC掩码,所述CRC掩码用于标识所述专用控制信道为承载所述第一信今的信道。
  12. 根据权利要求1至4任一项所述的方法,其特征在于,所述第一UE通过D2D链路向第二UE发送所述第一信今,包括:
    所述第一UE通过所述D2D链路向所述第二UE发送所述第一信今,所述第一信今通过以下方式中一种或者组合来承载:
    CRC掩码,D2D同步信号,以及DMRS。
  13. 根据权利要求12所述的方法,其特征在于,当所述第一信今由所述D2D同步信号承载时,所述D2D同步信号的不同序列被分成M个子 组,所述M个子组用于承载不超过n=floor(log2(M)比特的信息,其中,floor函数表示向下取整。
  14. 根据权利要求12所述的方法,其特征在于,当所述第一信今由所述DMRS承载时,所述第一信今由所述D2D链路中相邻的两个DMRS上的调制符号承载;
    或者,所述第一信今由所述D2D链路中相邻的两个DMRS中的任一DMRS上的调制符号承载;
    或者,所述第一信今由所述D2D链路中不同的DMRS的循环移位承载。
  15. 一种用户设备UE,用于设备到设备D2D通信,包括:处理单元和通信单元;
    所述处理单元,用于确定待发送的第一信今,所述第一信今包括以下信息之一或者组合:
    发送概率、重传次数、发送周期、循环前缀CP类型、发送功率、当前跳数、天线端口数、传输模式、D2D链路的带宽、D2D链路帧号、时分双工TDD上行与下行配置信息、以及是否在网络内的指示信息;
    所述通信单元,用于通过D2D链路向第二UE发送所述第一信今。
  16. 根据权利要求15所述的UE,其特征在于,
    所述处理单元根据预配置的信息确定所述第一信今;或者
    所述通信单元用于接收第三UE通过所述D2D链路发送的第一信今,所述处理单元用于确定待发送的第一信今包括:所述处理单元用于根据所述通信单元接收的第三UE发送的第一信今确定待发送的第一信今;或者
    所述通信单元接收基站发送的第一信今,所述处理单元用于确定待发送的第一信今包括:所述处理单元根据所述通信单元接收的所述基站发送的第一信今确定待发送的第一信今。
  17. 根据权利要求15或16所述的UE,其特征在于,所述第一信今中包含的至少一个信息中的第一信息还用于隐式指示所述第一信今中包含的至少一个信息中的第二信息。
  18. 根据权利要求15至17任一项所述的UE,其特征在于,所述通信 单元还用于在D2D链路中传输D2D同步信号,所述D2D同步信号包括主边链路同步信号PSSS和从边链路同步信号SSSS,所述PSSS和所述SSSS对应的边链路信号标识SLSSID为不小于336的整数,其中,所述SLSSID用于标识所述D2D链路中承载所述第一信今的信道。
  19. 根据权利要求15至18任一项所述的UE,其特征在于,所述通信单元用于通过D2D链路向第二UE发送所述第一信今包括:
    所述通信单元用于通过所述D2D链路中的专用控制信道或者非控制信道发送所述第一信今。
  20. 根据权利要求15至18任一项所述的UE,其特征在于,所述处理单元用于控制UE执行如权利要求6至14所述的方法。
PCT/CN2015/074630 2015-03-19 2015-03-19 一种设备到设备d2d通信方法及装置 WO2016145665A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020177027402A KR20170121263A (ko) 2015-03-19 2015-03-19 D2d 통신 방법 및 장치
KR1020197013825A KR102043761B1 (ko) 2015-03-19 2015-03-19 D2d 통신 방법 및 장치
JP2017548905A JP6522776B2 (ja) 2015-03-19 2015-03-19 デバイス・トゥ・デバイス(d2d)通信方法及び装置
EP15885048.7A EP3258731A4 (en) 2015-03-19 2015-03-19 Device to device communication method and device
PCT/CN2015/074630 WO2016145665A1 (zh) 2015-03-19 2015-03-19 一种设备到设备d2d通信方法及装置
CN201580058747.5A CN107079508B (zh) 2015-03-19 2015-03-19 一种设备到设备d2d通信方法及装置
US15/707,420 US10638529B2 (en) 2015-03-19 2017-09-18 Device to device communication method and apparatus
US16/836,576 US20200229252A1 (en) 2015-03-19 2020-03-31 Device to device communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/074630 WO2016145665A1 (zh) 2015-03-19 2015-03-19 一种设备到设备d2d通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/707,420 Continuation US10638529B2 (en) 2015-03-19 2017-09-18 Device to device communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2016145665A1 true WO2016145665A1 (zh) 2016-09-22

Family

ID=56918305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074630 WO2016145665A1 (zh) 2015-03-19 2015-03-19 一种设备到设备d2d通信方法及装置

Country Status (6)

Country Link
US (2) US10638529B2 (zh)
EP (1) EP3258731A4 (zh)
JP (1) JP6522776B2 (zh)
KR (2) KR20170121263A (zh)
CN (1) CN107079508B (zh)
WO (1) WO2016145665A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186636A1 (en) * 2017-04-03 2018-10-11 Samsung Electronics Co., Ltd. Electronic device and method for controlling transmit power in device-to-device communication
CN110536261A (zh) * 2018-09-28 2019-12-03 中兴通讯股份有限公司 V2x通信方法及设备、计算机可读存储介质
CN111064690A (zh) * 2019-12-31 2020-04-24 展讯通信(上海)有限公司 通信同步方法及装置、计算机设备、存储介质
CN112383491A (zh) * 2020-11-06 2021-02-19 北京升哲科技有限公司 广播时隙的确定方法、装置、设备及存储介质
CN114124635A (zh) * 2017-04-27 2022-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167635A1 (ko) * 2015-04-17 2016-10-20 엘지전자 주식회사 무선 통신 시스템에서 d2d 신호의 측정/릴레이 선택 방법 및 장치
KR20180072746A (ko) * 2016-01-20 2018-06-29 후아웨이 테크놀러지 컴퍼니 리미티드 동기화 정보 송신 방법 및 장치
EP3446534A4 (en) * 2016-04-20 2019-11-27 Telefonaktiebolaget LM Ericsson (PUBL) UE-UE CONFIGURATION FRAMEWORK WITHOUT NW SUPPORT
WO2018174543A1 (ko) * 2017-03-21 2018-09-27 엘지전자 주식회사 무선 통신 시스템에서 참조 신호 자원 할당 방법 및 이를 위한 장치
CN112272080B (zh) * 2017-04-27 2022-03-29 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111095985A (zh) * 2017-12-27 2020-05-01 Oppo广东移动通信有限公司 传输数据的方法、终端设备和网络设备
US11252675B2 (en) 2018-05-03 2022-02-15 Lg Electronics Inc. Method for transmitting sidelink signals through plurality of carriers in wireless communication system
US10834708B2 (en) 2018-07-06 2020-11-10 Samsung Electronics Co., Ltd. Method and apparatus for NR sidelink SS/PBCH block
WO2020017891A1 (ko) * 2018-07-20 2020-01-23 엘지전자 주식회사 무선 통신 시스템에서 tti 번들링에 기반한 v2x 동작 방법 및 상기 방법을 이용하는 단말
WO2020032764A1 (ko) * 2018-08-10 2020-02-13 엘지전자 주식회사 무선통신시스템에서 사이드 링크 단말이 복수의 패킷을 전송하는 방법 및 장치
CN113228759A (zh) * 2019-01-07 2021-08-06 索尼集团公司 通信装置及通信方法
CN111565447B (zh) * 2019-02-14 2022-09-09 大唐移动通信设备有限公司 一种同步广播信息的发送方法、接收方法及设备
WO2021029723A1 (ko) * 2019-08-15 2021-02-18 엘지전자 주식회사 Nr v2x에서 s-ssb를 전송하는 방법 및 장치
CN113271567A (zh) * 2020-02-14 2021-08-17 大唐移动通信设备有限公司 信息发送、接收方法、装置及终端
CN113194434B (zh) * 2020-02-14 2023-05-12 华为技术有限公司 一种配置信息的指示方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011015250A1 (en) * 2009-08-07 2011-02-10 Nokia Siemens Networks Oy Scheduling in radio telecommunication system
CN103582069A (zh) * 2012-07-26 2014-02-12 中兴通讯股份有限公司 设备到设备d2d设备的发现方法及装置
CN104244449A (zh) * 2013-06-20 2014-12-24 华为技术有限公司 设备到设备的通信方法及用户设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108405B (zh) * 2011-11-15 2017-09-08 中兴通讯股份有限公司 无线通信方法和系统
JP5855280B2 (ja) * 2011-12-29 2016-02-09 テレフオンアクチーボラゲット エル エム エリクソン(パブル) ユーザ装置および無線ネットワークノード、およびその方法
KR101514646B1 (ko) * 2012-09-17 2015-04-23 최장권 족욕 겸용 좌욕기
CN104770049A (zh) * 2012-11-05 2015-07-08 诺基亚技术有限公司 用于网络控制的邻近设备到设备发现和通信的方法和装置
WO2014113537A1 (en) * 2013-01-16 2014-07-24 Interdigital Patent Holdings, Inc. Discovery signal generation and reception
KR102019716B1 (ko) * 2013-03-08 2019-09-09 삼성전자 주식회사 무선통신 시스템에서 장치 간 직접통신 방법 및 장치
KR102045339B1 (ko) * 2013-04-26 2019-11-15 삼성전자 주식회사 기기 대 기기 무선 통신에서의 발견 신호 자원 지시 방법
US10111267B2 (en) 2013-06-28 2018-10-23 Samsung Electronics Co., Ltd. Method and apparatus for performing device-to-device communication
US9326122B2 (en) * 2013-08-08 2016-04-26 Intel IP Corporation User equipment and method for packet based device-to-device (D2D) discovery in an LTE network
EP3133848B1 (en) * 2013-08-08 2022-03-09 Apple Inc. User equipment for packet based device-to-device (d2d) discovery in an lte network
US9456330B2 (en) * 2013-08-09 2016-09-27 Alcatel Lucent Two-stage device-to-device (D2D) discovery procedures
KR102083322B1 (ko) * 2013-08-22 2020-03-03 삼성전자주식회사 이동 통신 시스템에서 고립 사용자 단말기에 대한 디바이스-투-디바이스 통신 기반 서비스 제공 장치 및 방법
EP3107230B1 (en) 2014-02-13 2020-06-24 LG Electronics Inc. Method for transmitting/receiving synchronization signal for d2d communication in wireless communication system, and apparatus therefor
JP6419846B2 (ja) * 2014-04-29 2018-11-07 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて装置対装置端末のデータ伝送方法及び装置
EP3208631A4 (en) * 2014-10-17 2018-03-28 Ntt Docomo, Inc. User device and distance estimation method
US10624049B2 (en) * 2015-02-19 2020-04-14 Telefonaktiebolaget Lm Ericsson (Publ) Measurement of candidates synchronization references by device-to-device user equipment
US10548123B2 (en) * 2015-05-15 2020-01-28 Sharp Kabushiki Kaisha Terminal device, base station device, and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011015250A1 (en) * 2009-08-07 2011-02-10 Nokia Siemens Networks Oy Scheduling in radio telecommunication system
CN103582069A (zh) * 2012-07-26 2014-02-12 中兴通讯股份有限公司 设备到设备d2d设备的发现方法及装置
CN104244449A (zh) * 2013-06-20 2014-12-24 华为技术有限公司 设备到设备的通信方法及用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3258731A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186636A1 (en) * 2017-04-03 2018-10-11 Samsung Electronics Co., Ltd. Electronic device and method for controlling transmit power in device-to-device communication
US10959195B2 (en) 2017-04-03 2021-03-23 Samsung Electronics Co., Ltd. Electronic device and method for controlling transmit power in device-to-device communication
CN114124635A (zh) * 2017-04-27 2022-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110536261A (zh) * 2018-09-28 2019-12-03 中兴通讯股份有限公司 V2x通信方法及设备、计算机可读存储介质
CN110536261B (zh) * 2018-09-28 2023-06-30 中兴通讯股份有限公司 V2x通信方法及设备、计算机可读存储介质
CN111064690A (zh) * 2019-12-31 2020-04-24 展讯通信(上海)有限公司 通信同步方法及装置、计算机设备、存储介质
CN112383491A (zh) * 2020-11-06 2021-02-19 北京升哲科技有限公司 广播时隙的确定方法、装置、设备及存储介质
CN112383491B (zh) * 2020-11-06 2024-02-06 北京升哲科技有限公司 广播时隙的确定方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN107079508B (zh) 2021-07-09
KR20170121263A (ko) 2017-11-01
CN107079508A (zh) 2017-08-18
US20200229252A1 (en) 2020-07-16
KR102043761B1 (ko) 2019-11-12
JP6522776B2 (ja) 2019-05-29
KR20190053980A (ko) 2019-05-20
EP3258731A1 (en) 2017-12-20
EP3258731A4 (en) 2018-02-21
JP2018509843A (ja) 2018-04-05
US10638529B2 (en) 2020-04-28
US20180007726A1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
WO2016145665A1 (zh) 一种设备到设备d2d通信方法及装置
KR102386723B1 (ko) 웨이크-업 무선 기술
EP3641182B1 (en) Base station device, terminal device, and communication method therefor
CN107736064B (zh) 用于在终端之间发送信号的方法及其设备
CN108028740B (zh) 在无线通信系统中从v2x终端收发消息的方法和装置
US20180234829A1 (en) Ue-based d2d discovery
CN107534546B (zh) 在无线通信系统中发送和接收多个d2d信号的方法和设备
TWI451792B (zh) 提供增強發信號的方法及裝置
JP5591927B2 (ja) 送信ダイバーシティを用いた物理アップリンク制御チャネル(pucch)リソース・マッピングのための方法および装置
JP5714591B2 (ja) 無線通信システムのためのue−rsシーケンスの初期化
EP2795935B1 (en) A method implemented in a user equipment ue for use in a wireless system
WO2015115454A1 (ja) 端末装置、基地局装置、および、通信方法
WO2015115465A1 (ja) 端末装置、基地局装置、および、通信方法
EP3179824B1 (en) User terminal and processor
CN113364562B (zh) 无线通信系统中收发d2d通信终端的信号的方法和设备
CN105637772A (zh) 用于信道状态信息反馈的方法和装置
CN105451211A (zh) 用于设备到设备通信的方法及装置
WO2020225692A1 (en) Dynamic indication of multi-trp pdsch transmission schemes
US11368243B2 (en) Codeword adaptation for non-orthogonal coded access
WO2014187260A1 (zh) 公有消息发送、接收方法、装置及系统
CN107113109A (zh) 用于确认多用户上行链路传输的方法和装置
AU2015339668A1 (en) Methods and systems for multi-user transmissions during a transmission opportunity
WO2017000900A1 (zh) 传输信息的方法和设备
TW201342970A (zh) 處理下行鏈路控制資訊格式大小的方法及裝置
CN118018154A (zh) 侧行链路通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885048

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015885048

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017548905

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177027402

Country of ref document: KR

Kind code of ref document: A