WO2016145664A1 - 传输信息的方法、终端设备、网络设备和装置 - Google Patents

传输信息的方法、终端设备、网络设备和装置 Download PDF

Info

Publication number
WO2016145664A1
WO2016145664A1 PCT/CN2015/074622 CN2015074622W WO2016145664A1 WO 2016145664 A1 WO2016145664 A1 WO 2016145664A1 CN 2015074622 W CN2015074622 W CN 2015074622W WO 2016145664 A1 WO2016145664 A1 WO 2016145664A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
information
terminal devices
terminal device
modulation symbol
Prior art date
Application number
PCT/CN2015/074622
Other languages
English (en)
French (fr)
Inventor
郭文婷
卢磊
时代
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15885047.9A priority Critical patent/EP3264659B1/en
Priority to PCT/CN2015/074622 priority patent/WO2016145664A1/zh
Priority to CN201580030584.XA priority patent/CN106464455B/zh
Publication of WO2016145664A1 publication Critical patent/WO2016145664A1/zh
Priority to US15/709,019 priority patent/US10554356B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method, a terminal device, a network device, and a device for transmitting information.
  • the sparse non-orthogonal multiple access method is a new multiple access method.
  • multiple users use the same time-frequency resource block.
  • Each resource block is composed of a plurality of resource elements (REs, Resource Element), and the RE may be a subcarrier-symbol unit in Orthogonal Frequency Division Multiplex (OFDM) technology, or may be in other air interface technologies.
  • a resource unit in a domain or frequency domain.
  • the sparse non-orthogonal multiple access system is similar to the OFDM system except that the modulation coder and modulation decoder in the OFDM system are replaced with the encoder and decoder corresponding to the sparse non-orthogonal multiple access.
  • LTE Long Term Evolution
  • HARQ Hybrid Automatic Repeat Request
  • FEC Forward Error Correction
  • the FEC performs error correction, and the decoder feeds back the HARQ-ACK (HARQ Acknowledgement) information to the transmitting end; if the data error exceeds the error correction of the FEC For the range, the decoding end feeds back the HARQ Negative Acknowledgement (HARQ-NACK) information to the sender.
  • HARQ-ACK and HARQ-NACK are collectively referred to as HARQ information.
  • the user equipment implements multiplexing of HARQ information and uplink transmission data in a respective frequency band in a physical uplink shared channel (PUSCH).
  • the transmission method of the HARQ information is applicable to a frequency-free domain. Reusable system. However, for some systems, such as SCMA systems, multiple users in such systems are multiplexed in the frequency domain. If the method of the LTE system is used for the transmission of the HARQ information, the HARQ information of each user may overlap, and the base station may not decode the LTE decoding method. Therefore, for systems in which multiple users multiplex frequency domains, existing methods of transmitting HARQ information in a PUSCH channel are no longer applicable.
  • the embodiments of the present invention provide a method for transmitting information, a terminal device, a network device, and a device, which are capable of transmitting HARQ information on a PUSCH channel in a system in which multiple users multiplex frequency domains.
  • a method for transmitting information includes: the terminal device performs modulation on the encoded hybrid automatic request retransmission HARQ information according to the codebook to generate a HARQ modulation symbol, where the HARQ modulation symbol includes at least one non- a zero HARQ modulation symbol and a zero HARQ modulation symbol, the codebook including at least two codewords, the codeword being a multi-dimensional complex vector, the codeword being used to represent between the encoded HARQ information and the at least two modulation symbols Mapping relationship; transmitting the HARQ modulation symbol to a network device.
  • the HARQ modulation symbol is mapped to one or both sides of a modulation symbol of the demodulation reference signal DMRS.
  • the length of the encoded HARQ information is N ⁇ K, wherein K is an integer multiple of 2, and N is a positive integer greater than zero.
  • N 2 if the length of the HARQ information before encoding is 1 bit, N is 2.
  • N 6
  • a second aspect provides a method for transmitting information, where the method includes: the terminal device performs modulation on the encoded hybrid automatic request retransmission HARQ information to generate a HARQ modulation symbol; and the terminal device receives mapping resource indication information, where the mapping resource indication information And mapping resource information for mapping the HARQ modulation symbol to the terminal device; the terminal device performs resource mapping on the HARQ modulation symbol according to the mapping resource indication information.
  • the HARQ modulation symbol is mapped to one or both sides of a modulation symbol of the demodulation reference signal DMRS.
  • the mapping resource indication information includes an identifier of the at least two terminal devices and the at least two terminals
  • the mapping resource indication information includes: assigning to each of the at least two terminal devices a starting position information of a subcarrier for transmitting HARQ information and a number of bits of a HARQ information of a terminal device of each of the at least two terminal devices to which the HARQ information is to be transmitted, the at least two terminal devices including the terminal The device, and the data transmission of the at least two terminal devices is transmitted by using the same time-frequency resource.
  • the mapping resource indication information includes an identifier of the at least two terminal devices and the at least two terminals The number of devices and the number of bits of the HARQ signal of the terminal device of each of the at least two terminal devices to which the HARQ information is to be transmitted, the at least two terminal devices including the terminal device, and the at least two terminals The data transmission of the device is transmitted using the same time-frequency resource.
  • the method further includes: the terminal device sends data, The transmitted data is transmitted on a resource unit other than the one allocated to the at least two terminal devices for transmitting HARQ information.
  • a third aspect provides a method for transmitting information, where the method includes: the network device sends mapping resource indication information, where the mapping resource indication information is used to indicate mapping resource information that is allocated to a terminal device to map HARQ modulation symbols; The device receives the HARQ modulation symbol that the terminal device performs resource mapping according to the mapping resource indication information.
  • the HARQ modulation symbol is mapped to one or both sides of a modulation symbol of the demodulation reference signal DMRS.
  • the mapping resource indication information includes an identifier of the at least two terminal devices and the at least two terminals
  • the mapping resource indication information includes: assigning to each of the at least two terminal devices Starting position information of a subcarrier for transmitting HARQ information and a HARQ signal to be transmitted of a terminal device of each of the at least two terminal devices to which HARQ information is to be transmitted The number of bits of the information, the at least two terminal devices include the terminal device, and the data transmission of the at least two terminal devices is transmitted by using the same time-frequency resource.
  • the mapping resource indication information includes an identifier of the at least two terminal devices and the at least two terminals The number of devices and the number of bits of the HARQ signal of the terminal device of each of the at least two terminal devices to which the HARQ information is to be transmitted, the at least two terminal devices including the terminal device, and the at least two terminals The data transmission of the device is transmitted using the same time-frequency resource.
  • the method further includes: the network device receiving the terminal device The transmitted data, the transmitted data is transmitted on a resource unit allocated to the at least two terminal devices for transmitting HARQ information.
  • a fourth aspect provides a terminal device, including: a modulating unit, configured to perform modulation on a coded hybrid automatic request retransmission HARQ information according to a codebook to generate a HARQ modulation symbol, where the HARQ modulation symbol includes at least one non-zero a HARQ modulation symbol and a zero HARQ modulation symbol, the codebook including at least two codewords, the codeword being a multi-dimensional complex vector, the codeword being used to represent a mapping between the encoded HARQ information and at least two modulation symbols a sending unit, configured to send the HARQ modulation symbol to the network device.
  • a modulating unit configured to perform modulation on a coded hybrid automatic request retransmission HARQ information according to a codebook to generate a HARQ modulation symbol, where the HARQ modulation symbol includes at least one non-zero a HARQ modulation symbol and a zero HARQ modulation symbol
  • the codebook including at least two codewords, the codeword being
  • the HARQ modulation symbol generated by the modulation unit is mapped to one or both sides of a modulation symbol of the demodulation reference signal DMRS.
  • the length of the encoded HARQ information is N ⁇ K, wherein K is an integer multiple of 2, and N is a positive integer greater than zero.
  • N 2 if the length of the HARQ information before the encoding is 1 bit, N is 2.
  • N 6
  • the fifth aspect provides a terminal device, including: a modulating unit, configured to perform modulation on a coded hybrid automatic request retransmission HARQ information to generate a HARQ modulation symbol, and a receiving unit, configured to receive mapping resource indication information, where the mapping resource is used The indication information is used to indicate that the terminal device is assigned And mapping resource information for mapping the HARQ modulation symbol; and mapping unit, configured to perform resource mapping on the HARQ modulation symbol according to the mapping resource indication information.
  • the HARQ modulation symbol generated by the modulation unit is mapped to one or both sides of a modulation symbol of the demodulation reference signal DMRS.
  • the mapping resource indication information received by the receiving unit includes an identifier of the at least two terminal devices a number of bits of the HARQ information of the terminal device to which the HARQ information is to be transmitted, each of the at least two terminal devices, the at least two terminal devices including the terminal device, and the data transmission of the at least two terminal devices is the same Time-frequency resources are transmitted.
  • the mapping resource indication information received by the receiving unit is included in the at least two terminal devices At least two bits of the starting position information of the subcarrier for transmitting the HARQ information and the number of bits of the HARQ information of the terminal device of each of the at least two terminal devices to which the HARQ information is to be transmitted, the at least two The terminal device includes the terminal device, and data transmission of the at least two terminal devices is performed by using the same time-frequency resource.
  • the mapping resource indication information received by the receiving unit includes an identifier of the at least two terminal devices Number of bits of the at least two terminal devices and the number of bits of the HARQ signal of the terminal device to which the HARQ information is to be transmitted, each of the at least two terminal devices, the at least two terminal devices including the terminal device, and The data transmission of the at least two terminal devices is transmitted by using the same time-frequency resource.
  • the method further includes: a sending unit, configured to send data The transmitted data is transmitted on a resource unit that is allocated to the at least two terminal devices for transmitting HARQ information.
  • the sixth aspect provides a network device, including: a sending unit, configured to send mapping resource indication information, where the mapping resource indication information is used to indicate a mapping resource allocated to a terminal device to map a hybrid automatic request retransmission HARQ modulation symbol. And a receiving unit, configured to receive the HARQ modulation symbol that the terminal device performs resource mapping according to the mapping resource indication information.
  • the HARQ tone The symbols are mapped to one or both sides of the modulation symbols of the demodulation reference signal DMRS.
  • the mapping resource indication information that is sent by the sending unit includes an identifier of the at least two terminal devices a number of bits of the HARQ information of the terminal device to which the HARQ information is to be transmitted, each of the at least two terminal devices, the at least two terminal devices including the terminal device, and the data transmission of the at least two terminal devices is the same Time-frequency resources are transmitted.
  • the mapping resource indication information that is sent by the sending unit is included in the at least two terminal devices. At least two bits of the starting position information of the subcarrier for transmitting the HARQ information and the number of bits of the HARQ information of the terminal device of each of the at least two terminal devices to which the HARQ information is to be transmitted, the at least two The terminal device includes the terminal device, and data transmission of the at least two terminal devices is performed by using the same time-frequency resource.
  • the mapping resource indication information that is sent by the sending unit includes an identifier of the at least two terminal devices Number of bits of the at least two terminal devices and the number of bits of the HARQ signal of the terminal device to which the HARQ information is to be transmitted, each of the at least two terminal devices, the at least two terminal devices including the terminal device, and The data transmission of the at least two terminal devices is transmitted by using the same time-frequency resource.
  • the receiving unit is further configured to receive the terminal Data transmitted by the device, the transmitted data being transmitted on a resource unit allocated to the at least two terminal devices for transmitting HARQ information.
  • a device comprising: a bus; a processor connected to the bus; a memory connected to the bus; wherein the processor calls a program stored in the memory through the bus, And modulating the encoded hybrid automatic request retransmission HARQ information according to the codebook to generate a HARQ modulation symbol, where the HARQ modulation symbol includes at least one non-zero HARQ modulation symbol and a zero HARQ modulation symbol, where the codebook includes at least Two codewords, the codeword being a multi-dimensional complex vector, the codeword is used to represent a mapping relationship between the encoded HARQ information and at least two modulation symbols; and is used to send the HARQ modulation symbol to a network device.
  • the HARQ modulation symbol is mapped to one or both sides of a modulation symbol of the demodulation reference signal DMRS.
  • the length of the encoded HARQ information is N ⁇ K, wherein K is an integer multiple of 2, and N is a positive integer greater than zero.
  • N 2 if the length of the HARQ information before the encoding is 1 bit, then N is 2.
  • N 6
  • an apparatus comprising: a bus; a processor connected to the bus; a memory connected to the bus; wherein the processor calls a program stored in the memory through the bus for use in
  • the coded hybrid automatically requests retransmission of HARQ information to perform modulation to generate a HARQ modulation symbol, and is configured to receive mapping resource indication information, where the mapping resource indication information is used to indicate mapping resource information allocated to the terminal device to map the HARQ modulation symbol; And configured to perform resource mapping on the HARQ modulation symbol according to the mapping resource indication information.
  • the HARQ modulation symbol is mapped to one or both sides of a modulation symbol of the demodulation reference signal DMRS.
  • the mapping resource indication information includes an identifier of the at least two terminal devices and the at least two terminals
  • the mapping resource indication information includes: assigning to each of the at least two terminal devices a starting position information of a subcarrier for transmitting HARQ information and a number of bits of a HARQ information of a terminal device of each of the at least two terminal devices to which the HARQ information is to be transmitted, the at least two terminal devices including the terminal The device, and the data transmission of the at least two terminal devices is transmitted by using the same time-frequency resource.
  • the mapping resource indication information includes an identifier of the at least two terminal devices and the at least two terminals The number of devices and the number of bits of the HARQ signal of the terminal device of each of the at least two terminal devices to which the HARQ information is to be transmitted, the at least two terminal devices including the terminal device, and the at least two terminals The data transmission of the device uses the same time frequency Resources are transferred.
  • the processor is further configured to send data, where The transmitted data is transmitted on a resource unit other than the one allocated to the at least two terminal devices for transmitting HARQ information.
  • a device comprising: a bus; a processor connected to the bus; a memory connected to the bus; wherein the processor calls a program stored in the memory through the bus,
  • the mapping resource indication information is used to indicate mapping resource information that is allocated to the terminal device to map the hybrid automatic request retransmission HARQ modulation symbol, and is configured to receive, by the terminal device, the mapping resource indication information.
  • the HARQ modulation symbol of the resource mapping is used to indicate mapping resource information that is allocated to the terminal device to map the hybrid automatic request retransmission HARQ modulation symbol, and is configured to receive, by the terminal device, the mapping resource indication information.
  • the HARQ modulation symbol of the resource mapping is provided, comprising: a bus; a processor connected to the bus; a memory connected to the bus; wherein the processor calls a program stored in the memory through the bus,
  • the mapping resource indication information is used to indicate mapping resource information that is allocated to the terminal device to map the hybrid automatic request retransmission HARQ modulation symbol, and is configured
  • the HARQ modulation symbol is mapped to one or both sides of a modulation symbol of the demodulation reference signal DMRS.
  • the mapping resource indication information includes an identifier of the at least two terminal devices and the at least two terminals
  • the mapping resource indication information includes: assigning to each of the at least two terminal devices a starting position information of a subcarrier for transmitting HARQ information and a number of bits of a HARQ information of a terminal device of each of the at least two terminal devices to which the HARQ information is to be transmitted, the at least two terminal devices including the terminal The device, and the data transmission of the at least two terminal devices is transmitted by using the same time-frequency resource.
  • the mapping resource indication information includes an identifier of the at least two terminal devices and the at least two terminals The number of devices and the number of bits of the HARQ signal of the terminal device of each of the at least two terminal devices to which the HARQ information is to be transmitted, the at least two terminal devices including the terminal device, and the at least two terminals The data transmission of the device is transmitted using the same time-frequency resource.
  • the processor is further configured to receive data sent by the terminal device, where the sent data is used to send the HARQ information in addition to the at least two terminal devices. Sent on the resource unit.
  • the embodiment of the present invention when the encoded HARQ information is modulated according to the codebook, when multiple terminal devices use the same time-frequency resource for HARQ information transmission, the network device can perform correct decoding. Therefore, the embodiment of the present invention can transmit HARQ information in a system in which multiple terminal devices use the same time-frequency resource, thereby improving the reliability of the transmission information.
  • FIG. 1 is a schematic diagram of a communication system using the method of transmitting information of the present invention.
  • FIG. 2 is a schematic flow chart of a method for transmitting information according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of bit mapping processing of SCMA.
  • FIG. 4 is a schematic flowchart of a method for transmitting information according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of mapping processing according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a method for transmitting information according to another embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a process of transmitting information according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a process of transmitting information according to another embodiment of the present invention.
  • Figure 9 is a schematic block diagram of a terminal device in accordance with one embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of a terminal device according to another embodiment of the present invention.
  • Figure 11 is a schematic block diagram of a network device in accordance with one embodiment of the present invention.
  • Figure 12 is a schematic block diagram of an apparatus in accordance with one embodiment of the present invention.
  • Figure 13 is a schematic block diagram of an apparatus in accordance with another embodiment of the present invention.
  • Figure 14 is a schematic block diagram of an apparatus in accordance with another embodiment of the present invention.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • the present invention describes various embodiments in connection with a terminal device.
  • the terminal device may also be referred to as a User Equipment (UE) user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless communication device.
  • UE User Equipment
  • the access terminal may be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), and a wireless communication.
  • the network device may be a device for communicating with the mobile device, such as a network side device, and the network side device may be a BTS in GSM (Global System of Mobile communication) or CDMA (Code Division Multiple Access).
  • Base Transceiver Station, base station may be an NB (NodeB, base station) in WCDMA (Wideband Code Division Multiple Access), or may be an eNB in LTE (Long Term Evolution) or eNodeB (Evolutional Node B), or a relay station or an access point, or an in-vehicle device, a wearable device, and a network-side device in a future 5G network.
  • a computer readable medium can include, but It is not limited to: a magnetic storage device (for example, a hard disk, a floppy disk, or a magnetic tape), an optical disk (for example, a CD (Compact Disk), a DVD (Digital Versatile Disk), a smart card, and a flash memory device (for example, EPROM (Erasable Programmable Read-Only Memory), card, stick or key driver, etc.).
  • a magnetic storage device for example, a hard disk, a floppy disk, or a magnetic tape
  • an optical disk for example, a CD (Compact Disk), a DVD (Digital Versatile Disk), a smart card
  • a flash memory device for example, EPROM (Erasable Programmable Read-Only Memory), card, stick or key driver, etc.
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 1 is a schematic diagram of a communication system using the method of transmitting information of the present invention.
  • the communication system 100 includes a network side device 102, and the network side device 102 may include a plurality of antenna groups.
  • Each antenna group may include multiple antennas, for example, one antenna group may include antennas 104 and 106, another antenna group may include antennas 108 and 110, and an additional group may include antennas 112 and 114.
  • Two antennas are shown in Figure 1 for each antenna group, although more or fewer antennas may be used for each group.
  • Network side device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include various components associated with signal transmission and reception (eg, processors, modulators, multiplexers, Demodulator, demultiplexer or antenna, etc.).
  • the network side device 102 can communicate with a plurality of terminal devices (e.g., the terminal device 116 and the terminal device 122). However, it will be appreciated that the network side device 102 can communicate with any number of terminal devices similar to the terminal device 116 or 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link. 126 different frequency bands used.
  • FDD Frequency Division Duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band
  • a forward link. 124 and reverse link 126 can use a common frequency band.
  • Each set of antennas and/or areas designed for communication is referred to as a sector of the network side device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network side device 102 coverage area.
  • the transmit antenna of the network side device 102 can utilize beamforming to improve the signal to noise ratio of the forward links 118 and 124.
  • the neighboring cell is compared with the manner in which the network side device transmits a signal to all of its terminal devices through a single antenna. Mobile devices in the middle are subject to less interference.
  • the network side device 102, the terminal device 116, or the terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • HARQ information is transmitted between the terminal device and the network device.
  • the network device transmits information to the terminal device. If the data transmission error is within the error correction range of the FEC, and the terminal device can correctly decode, the terminal device feeds back the HARQ-ACK information to the network device; if the data transmission error is not in the FEC error correction Within the scope, the terminal device cannot correctly decode, and the terminal device feeds back the HARQ-NACK information to the network device.
  • the HARQ information may include HARQ-ACK information and HARQ-NACK information.
  • the specific encoding method for the HARQ-ACK information in the HARQ information may be as follows:
  • the HARQ-ACK information contains 1 bit Encoding according to Table 1; if the HARQ-ACK information contains 2 bits Encoding according to Table 2.
  • Q m denotes the modulation order, which can be expressed as mapping a modulation symbol including Q m bits to a time-frequency resource at the time of constellation modulation.
  • x and y represent placeholders for widening the distance between modulation symbols carrying HARQ-ACK information or HARQ-NACK information to improve the decoding rate.
  • the encoded HARQ information also needs to determine whether it needs to be scrambled, upconverted, etc. according to its transmission mode, but the total coding length does not change.
  • the HARQ information is bit-encoded to obtain the encoded HARQ information, and the terminal device further performs modulation and mapping processing on the encoded HARQ information.
  • the encoded HARQ information is constellated into HARQ modulation symbols.
  • the HARQ modulation symbols are mapped onto the allocated time-frequency resources.
  • the terminal device may encode the 1-bit HARQ information to obtain the encoded HARQ information, the coding length is Q m bits, and then perform constellation modulation on the encoded HARQ information to be one modulation symbol;
  • the terminal device may encode the 2-bit HARQ information to obtain the encoded HARQ information, the coding length is 3*Q m bits, and then perform constellation modulation on the encoded HARQ information to obtain three modulation symbols.
  • the terminal device may map the modulation symbols to the allocated time-frequency resources according to the following rules: for example, in two slots of one subframe, there are HARQ modulation symbols, and the HARQ modulation symbols may be mapped in One or both sides of the modulation symbol of the Demodulation Reference Signal (DMRS).
  • DMRS Demodulation Reference Signal
  • the order of the mapping may be that the demodulation pilot DMRSs are separately mapped in two slots of one subframe, that is, one DMRS may be mapped per slot. Then, the bit-coded uplink data is mapped on the remaining time-frequency resources, and finally the HARQ modulation symbols are sequentially mapped to both sides of the DMRS according to the multiplexing rule.
  • the above is a method of how to transmit HARQ information in an LTE system.
  • SCMA Sparse Code Multiple Access
  • SCMA Sparse Code Multiple Access
  • the technology transmits multiple numbers on the same transmission resource by means of the codebook.
  • the same data stream in which the different data streams use different codebooks, so as to improve the utilization of resources.
  • the data stream can come from the same terminal device or from different terminal devices.
  • the terminal device uses the same time-frequency resource, and the foregoing method for transmitting the HARQ information may cause the HARQ modulation symbols of each terminal device to overlap and cannot be demodulated.
  • an embodiment of the present invention provides a method for transmitting information and a terminal device, which can accurately transmit HARQ information and improve transmission reliability.
  • the method 200 is a schematic flow chart of a method for transmitting information according to an embodiment of the present invention.
  • the method 200 can be performed by a terminal device. As shown in FIG. 2, the method 200 includes:
  • the terminal device performs modulation on the encoded hybrid automatic request retransmission HARQ information according to the codebook to generate a HARQ modulation symbol, where the HARQ modulation symbol includes at least one non-zero HARQ modulation symbol and one zero HARQ modulation symbol, and the codebook includes at least two a codeword, the codeword is a multi-dimensional complex vector, and the codeword is used to represent a mapping relationship between the bit and at least two modulation symbols;
  • the embodiment of the present invention when the encoded HARQ information is modulated according to the codebook, when multiple terminal devices use the same time-frequency resource for HARQ information transmission, the network device can perform correct decoding. Therefore, the embodiment of the present invention can transmit HARQ information in a system in which multiple terminal devices use the same time-frequency resource, thereby improving the reliability of the transmission information.
  • the time-frequency resource may be a time-frequency resource block composed of multiple REs (also It may be referred to as a time-frequency resource group), and the multiple REs may be the same in the time domain (ie, corresponding to the same symbol) and different in position in the frequency domain (ie, corresponding to different subcarriers)
  • the plurality of REs may be different in position in the time domain (ie, corresponding to different symbols) and the same in the frequency domain (ie, corresponding to the same subcarrier), and the present invention is not particularly limited.
  • the modulation is a modulation performed by a codeword, where the codeword is a multi-dimensional complex vector, and is used to represent a mapping relationship between the encoded HARQ information and at least two modulation symbols, and the mapping relationship may be understood as a direct mapping relationship.
  • the at least two modulation symbols comprise at least one zero modulation symbol and at least one non-zero modulation symbol.
  • the terminal device modulates the encoded HARQ information according to the codebook, including:
  • the terminal device performs modulation processing on the encoded HARQ information in a sparse code division multiple access SCMA manner.
  • SCMA Sparse Code Multiple Access
  • SCMA is a non-orthogonal multiple access technology.
  • SCMA Sparse Code Multiple Access
  • the technology uses a codebook to transmit multiple different data streams on the same transmission resource, wherein different data streams use different codebooks, thereby improving resource utilization.
  • the data stream can come from the same terminal device or from different terminal devices.
  • the codebook used by the SCMA is a set of two or more codewords, and the codewords of the same codebook may be different from each other.
  • the codeword may be a multi-dimensional complex domain vector having a dimension of two or more dimensions for indicating a mapping relationship between data and two or more modulation symbols, the modulation symbol including at least one zero modulation symbol. And at least one non-zero modulation symbol, the data may be binary bit data or multi-dimensional data optional, and the relationship between the zero modulation symbol and the non-zero modulation symbol may be zero number of modulation symbols not less than the number of non-zero modulation symbols.
  • a codebook consists of two or more codewords.
  • the codebook may represent a mapping relationship between a possible data combination of a certain length of data and a codeword in the codebook, and the mapping relationship may be a direct mapping relationship.
  • the SCMA technology realizes the extended transmission of data on multiple resource units by directly mapping the data in the data stream to a code word in the codebook according to a certain mapping relationship, that is, a multi-dimensional complex vector.
  • the data here may be binary bit data or multi-dimensional data
  • multiple resource units may be resource elements in a time domain, a frequency domain, an air domain, a time-frequency domain, a spatio-temporal domain, and a time-frequency spatial domain.
  • the feature sequence in the text corresponds to the codebook, and consists of a zero element and a 1 element.
  • the zero element indicates that the codeword in the corresponding codebook has all zeros at the corresponding position of the zero element, and the 1 element indicates the corresponding codebook.
  • the elements of the codeword at the corresponding position of the 1 element are not all zero or all zero.
  • Two or more feature sequences form a feature matrix. It should be understood that SCMA is just a name, and the industry can use other names to represent the technology.
  • the codeword used by the SCMA may have a certain sparsity.
  • the number of zero elements in the codeword may be no less than the number of modulation symbols, so that the receiving end can utilize the multi-user detection technique to perform lower complexity decoding.
  • the relationship between the number of zero elements listed above and the modulation symbol is only an exemplary description of sparsity, and the present invention is not limited thereto, and the ratio of the number of zero elements to the number of non-zero elements can be arbitrarily set as needed.
  • An example of the communication system 100 is the SCMA system, in which a plurality of users multiplex the same time-frequency resource block for data transmission.
  • Each resource block is composed of a number of resource REs, where the REs may be subcarrier-symbol units in OFDM technology, or may be resource units in the time domain or frequency domain of other air interface technologies.
  • the available resources are divided into orthogonal time-frequency resource blocks, each resource block containing U REs, wherein the U REs may be in the same position in the time domain. .
  • the data to be transmitted is first divided into data blocks of S-bit size, and each data block is mapped into a group including U by searching a codebook (determined by the network device and sent to the terminal device).
  • a modulation symbol sequence of modulation symbols X#L ⁇ X#L 1 , X#L 2 , . . . , X#L U ⁇ , each modulation symbol in the sequence corresponds to one RE in the resource block, and then generates a signal waveform according to the modulation symbol .
  • each codebook contains 2S different modulation symbol groups, corresponding to 2S possible data blocks.
  • the above codebook may also be referred to as an SCMA codebook which is a SCMA codeword set, and the SCMA codeword is a mapping relationship of information bits to modulation symbols. That is, the SCMA codebook is a set of the above mapping relationships.
  • FIG. 3 is a schematic diagram showing bit mapping processing (or encoding processing) of SCMA exemplified by multiplexing 6 resource units with 6 data streams, which is a bipartite graph. As shown in FIG. 3, six data streams form one packet, and four resource units form one coding unit.
  • a resource unit can be a subcarrier, either an RE or an antenna port.
  • FIG. 3 there is a line between the data stream and the resource unit indicating that at least one data combination of the data stream is transmitted through the codeword, and a non-zero modulation symbol is transmitted on the resource unit, and the data stream and the resource unit are The absence of a connection between them means that all possible data combinations of the data stream are zero coded on the resource unit after the codeword mapping.
  • the data combination of the data streams can be understood as follows, for example, in a binary bit data stream, 00, 01, 10, 11 are all possible two-bit data combinations.
  • the data combinations to be transmitted of the six data streams in FIG. 3 are sequentially represented by s1 to s6, and the symbols transmitted on the four resource units in FIG. 3 are sequentially represented by x1 to x4.
  • the connection between the data stream and the resource unit indicates that the data of the data stream is expanded to transmit a modulation symbol on the resource unit, wherein the modulation symbol may be a zero modulation symbol (corresponding to a zero element), or A non-zero modulation symbol (corresponding to a non-zero element), the absence of a connection between the data stream and the resource unit indicates that the data of the data stream is expanded without transmitting modulation symbols on the resource unit.
  • the data of each data stream will be in two or two after codeword mapping.
  • the modulation symbols are transmitted on the resource elements, and the symbols transmitted by each resource unit are superpositions of modulation symbols from data of two or more data streams mapped by respective codewords.
  • the data combination s3 of the data stream 3 may be sent with non-zero modulation symbols on the resource unit 1 and the resource unit 2 after the codeword mapping, and the data x3 sent by the resource unit 3 is the data stream 2, the data stream 4 and The superposition of non-zero modulation symbols obtained by mapping the data combinations s2, s4 and s6 of the data stream 6 to the respective codewords. Since the number of data streams can be greater than the number of resource units, the SCMA system can effectively increase network capacity, including the number of accessible users and spectrum efficiency of the system.
  • codewords in the codebook typically have the following form:
  • the corresponding codebook usually has the following form:
  • N is a positive integer greater than 1, and can be expressed as the number of resource units included in one coding unit, and can also be understood as the length of the codeword;
  • Q m is a positive integer greater than 1, indicating the number of codewords included in the codebook. It can be understood as the modulation order, of course, those skilled in the art can be called other names, for example, Q m is 4 in 4th order modulation;
  • q is a positive integer, and 1 ⁇ q ⁇ Q m ;
  • the codebook and the element contained in the codeword c n, q is a complex number, c n, q can be expressed mathematically as:
  • ⁇ and ⁇ can be any real number, and N and Q m can be positive integers.
  • the codeword in the codebook can form a certain mapping relationship with the data.
  • the codeword in the codebook can be combined with the two-bit data of the binary data stream to form the following mapping relationship.
  • the codebook corresponding to the data stream and the codeword in the codebook should have the following characteristics: at least one codeword exists in the codebook on the corresponding resource unit. Sending a non-zero modulation symbol, for example, there is a connection between the data stream 3 and the resource unit 1, and at least one codeword corresponding to the data stream 3 satisfies c 1, q ⁇ 0, 1 ⁇ q ⁇ Q m ;
  • the codebook corresponding to the data stream 3 in FIG. 3 above may have the following forms and features:
  • the data combination is mapped to a codeword, that is, a 4-dimensional complex vector according to the foregoing mapping rule:
  • the bipartite graph can also be represented by a feature matrix.
  • the feature matrix can have the following form:
  • r n,m represents an element in the feature matrix
  • m and n are natural numbers
  • N rows respectively represent N resource units in one coding unit
  • M columns respectively Indicates the number of data streams that are multiplexed.
  • the feature matrix can be expressed in a general form, the feature matrix can have the following characteristics:
  • the number of 0 elements in the feature matrix may be not less than the number of 1 elements, thereby embodying the characteristics of sparse coding.
  • the columns in the feature matrix can be referred to as feature sequences.
  • the feature sequence can have the following expression:
  • the feature matrix can also be considered as a matrix consisting of a series of feature sequences.
  • the corresponding feature matrix can be expressed as:
  • the relationship of the signature sequence corresponding to the codebook is a one-to-one relationship, that is, one codebook uniquely corresponds to one feature sequence; and the relationship of the signature sequence corresponding to the codebook can be a one-to-many relationship, that is, one feature sequence Corresponds to one or more codebooks. Therefore, the feature sequence can be understood as: the feature sequence corresponds to the codebook, and is composed of a zero element and an element. The position of the zero element indicates that the codeword in the corresponding codebook has zero elements at the corresponding position of the zero element, and 1 element. It means that the elements of the codeword in the corresponding codebook are not all zero or all zero at the corresponding position of the 1 element.
  • the correspondence between the feature sequence and the codebook can be determined by the following two conditions:
  • the codeword in the codebook has the same total number of elements as the corresponding feature sequence
  • a codebook can be directly represented and stored, such as storing each codeword in the codebook or codebook above, or only elements in a codeword where the corresponding feature sequence element is one. Wait. Therefore, when applying the present invention, it is necessary to assume that both the base station and the user equipment in the SCMA system can store some or all of the following contents pre-designed:
  • r n,m 0,1 ⁇ ,1 ⁇ n ⁇ N,1 ⁇ m ⁇ M, M and N are integers greater than 1, where M represents the number of multiplexed data streams, and N is a positive integer greater than 1. , can be expressed as the number of resource units contained in a coding unit, and can also be understood as the length of the codeword;
  • Q m may be the modulation order corresponding to the codebook, and each codebook may correspond to a modulation order, wherein a positive integer with N greater than 1 may be represented as a resource included in one coding unit.
  • the number of units can also be understood as the length of the codeword.
  • SCMA system is only an example of a communication system to which the method and apparatus for transmitting information of the present invention are applied, and the present invention is not limited thereto. Others can enable the terminal device to multiplex the same time-frequency resource in the same period. Communication systems that transmit information are all within the scope of the present invention.
  • the process of the above modulation may be similar to the modulation process in the existing SCMA system.
  • the SCMA system requires the sparsity of the codebook, the U-symbols (corresponding to U REs) are included in the modulation symbol sequence corresponding to each terminal device generated by the modulation process of S110, and the V symbols are non- Zero symbol.
  • the time-frequency resource in the embodiment of the present invention may include L resource units, and the L resource units RE may be the same location in the time domain (ie, corresponding to the same symbol) and located in the frequency domain. Different (ie, corresponding to different subcarriers).
  • the modulating process may be performed by using a codeword, where the codeword is a multi-dimensional complex vector, and is used to represent a mapping relationship between the encoded HARQ information and the at least two modulation symbols, where the at least two modulation symbols include at least A zero modulation symbol and at least one non-zero modulation symbol.
  • the codeword is a multi-dimensional complex vector, and is used to represent a mapping relationship between the encoded HARQ information and the at least two modulation symbols, where the at least two modulation symbols include at least A zero modulation symbol and at least one non-zero modulation symbol.
  • the terminal device in the embodiment of the present invention may be a terminal device that needs to send HARQ information.
  • the target terminal device may be any one of the terminal devices that need to send the HARQ information.
  • the embodiment of the present invention describes only one target terminal device, and other terminal devices that need to send HARQ information may also perform corresponding operations. .
  • the codebook may be a codebook selected by the target terminal device from a pre-defined codebook set of the network device, or may be a codebook allocated to the target terminal device by the network device, and the embodiment of the present invention is not limited thereto. It should also be understood that during the modulation process, the generated modulation symbols are different depending on the codebook.
  • the method for performing bit coding on the HARQ information in the embodiment of the present invention may be the same as the method for bit coding in the LTE system, and other methods of bit coding may be used, and the embodiment of the present invention is not limited thereto.
  • the process of bit coding can be performed in one step based on Table 1 and Table 2, or integrated in other operations to directly obtain the encoded HARQ information.
  • the Q ACK HARQ-ACK information is bit-coded, the Q ACK group-encoded HARQ information is obtained. among them, Is a set of encoded HARQ information.
  • the HARQ modulation symbol may be mapped to the allocated time-frequency resource. In the embodiment of the present invention, it may be further divided into two parts. In the first step, the encoded HARQ information is modulated into a HARQ modulation symbol. In a second step, the HARQ modulation symbols are mapped onto the allocated time-frequency resources.
  • the method may include:
  • the encoded HARQ information is modulated into L HARQ modulation symbols according to the codebook.
  • Q ACK group encoded HARQ information Q ACK HARQ modulation information obtained after modulation
  • the L HARQ modulation symbols are in one-to-one correspondence with L REs.
  • the L HARQ modulation symbols are mapped onto the allocated time-frequency resources (ie, L REs). Different from the LTE system, the L HARQ modulation symbols are mapped one Xk at a time, that is, each time the L HARQ modulation symbols are mapped to the corresponding L REs. It should be understood that the L resource elements RE may be identical in position in the time domain (ie, corresponding to the same symbol) and different in position in the frequency domain (ie, carriers corresponding to different sub-elements).
  • the mapping rule can be similar to the mapping rule in the LTE system, that is, the mapping starts from the last L row, and the four symbols on both sides of the DMRS are sequentially mapped, and each time mapped to L REs of one symbol. If there is still no mapping of the HARQ modulation symbols, the L-line mapping is successively added upward until all HARQ modulation symbols complete the mapping.
  • the embodiment of the present invention by modulating the encoded HARQ information according to the codebook, When a plurality of terminal devices use the same time-frequency resource for HARQ information transmission, the network device can perform correct decoding. Therefore, the embodiment of the present invention can transmit HARQ information in a system in which multiple terminal devices use the same time-frequency resource, thereby improving the reliability of the transmission information.
  • the above method can also be used for modulation.
  • the embodiment of the present invention only describes one terminal device in detail.
  • the length of the encoded HARQ information is N ⁇ K, where K is an integer multiple of 2, and N is a positive integer greater than zero.
  • the name of the modulation order in the example may also be referred to as another name, and will not be described in detail in the following embodiments.
  • the method of bit coding is the same as the above method of bit coding in the LTE system.
  • the method of bit coding is an improved bit coding method. This type of bit encoding method will be described in detail below.
  • N 2 if the length of the HARQ information before encoding is 1 bit, N is 2.
  • the HARQ-ACK information contains 1 bit
  • N 6
  • Table 3 shows a case where N is 2 when the length of the HARQ-ACK information is 1 bit.
  • Table 4 shows a case where N is 2 when the length of the HARQ-ACK information is 2 bits.
  • Q m represents the modulation order, that is, one modulation symbol modulated by Q m bits is mapped onto a time-frequency resource at the time of mapping.
  • x and y represent placeholders for widening the distance between modulation symbols carrying HARQ-ACK information or HARQ-NACK information to improve the decoding rate.
  • the bit coding method in the embodiment of the present invention increases the coding length by repeated information bits, increases the coding redundancy, and increases the distance between the HARQ-ACK information bits, thereby reducing the error caused by the coding.
  • N in the embodiment of the present invention may adopt different coding lengths according to the quality of the channel environment. If the channel environment is good, fewer repetitions can be used; if the channel environment is poor, the number of repetitions can be increased to ensure the reliability of HARQ-ACK information transmission.
  • FIG. 4 is a schematic flowchart of a method for transmitting information according to another embodiment of the present invention.
  • the method 400 is applied to a communication system comprising at least two terminal devices, the at least two terminal devices transmitting information using the same time-frequency resource, the method 400 comprising:
  • the terminal device performs modulation on the encoded hybrid automatic request retransmission HARQ information to generate a HARQ modulation symbol.
  • the terminal device receives the mapping resource indication information, where the mapping resource indication information is used to indicate mapping resource information that is allocated to the terminal device to map the HARQ modulation symbol.
  • the terminal device performs resource mapping on the HARQ modulation symbol according to the mapping resource indication information.
  • the embodiment of the present invention by changing the mapping manner of the encoded HARQ information, according to the network
  • the resources indicated by the indication information of the network device perform resource mapping on the HARQ modulation symbols, so that when multiple terminal devices use the same time-frequency resource for information transmission, they can be mapped to different resources. Therefore, the embodiment of the present invention can transmit HARQ information in a system in which multiple terminal devices use the same time-frequency resource, thereby improving the reliability of the transmission information.
  • the HARQ information can be encoded before being modulated.
  • the time-frequency resource may be a time-frequency resource block composed of multiple REs (also It may be referred to as a time-frequency resource group), and the multiple REs may be the same in the time domain (ie, corresponding to the same symbol) and different in position in the frequency domain (ie, corresponding to different subcarriers)
  • the plurality of REs may be different in position in the time domain (ie, corresponding to different symbols) and the same in the frequency domain (ie, corresponding to the same subcarrier), and the present invention is not particularly limited.
  • the modulation process can be modulation by a constellation set.
  • the terminal device in the embodiment of the present invention may be a terminal device that needs to send HARQ information.
  • the terminal device may be any one of the terminal devices that need to send the HARQ information.
  • the embodiment of the present invention describes only one terminal device, and other terminal devices that need to send the HARQ information may perform corresponding operations.
  • the constellation set may be a constellation set that is predefined by the terminal device from the network device, or may be a constellation set allocated by the network device to the terminal device, and the embodiment of the present invention is not limited thereto. It should also be understood that in the embodiments of the present invention, different terminal devices may use the same constellation set.
  • the method for performing bit coding on the HARQ information in the embodiment of the present invention may be the same as the method for bit coding in the LTE system, and other methods of bit coding may be used, and the embodiment of the present invention is not limited thereto.
  • the process of bit coding can be performed in one step based on Table 1 and Table 2, or integrated in other operations to directly obtain the encoded HARQ information.
  • the Q ACK HARQ-ACK information is bit-coded, the Q ACK group-encoded HARQ information is obtained. among them, Is a set of encoded HARQ information.
  • the HARQ modulation symbol may be mapped to the allocated time-frequency resource. In the embodiment of the present invention, it may be further divided into two parts. In the first step, the encoded HARQ information is modulated into a HARQ modulation symbol. In a second step, the HARQ modulation symbols are mapped onto the allocated time-frequency resources.
  • the encoded HARQ information is constelled into at least one HARQ modulation symbol according to a preset constellation set. Specifically, as an embodiment. If the HARQ information is 1 bit, the constellation modulation may be 1 HARQ modulation symbol; if the HARQ information is 2 bits, the constellation modulation may be 3 HARQ modulation symbols. Of course, those skilled in the art may know that the modulation may also be other.
  • the modulation method is not limited to constellation modulation.
  • the at least one HARQ modulation symbol is mapped onto the allocated time-frequency resource (ie, subcarrier).
  • the subcarriers are allocated to the terminal device subcarriers.
  • the subcarrier may include at least one RE.
  • the at least one HARQ modulation symbol generated in the first step corresponds to at least one RE of the target subcarrier.
  • each terminal device allocates a fixed mapping location. In this way, the HARQ modulation symbols of different terminal devices do not overlap each other and can be correctly decoded in the network device.
  • FIG. 5 shows an example where the SCMA allows up to six terminal devices to access.
  • a fixed label on either side of the DMRS symbol indicates the mapped position of a terminal device.
  • four REs labeled 1 are assigned to the first terminal device.
  • four REs labeled 1 are also assigned to The first terminal device.
  • four REs numbered 2 are assigned to the second terminal device, and among the subcarriers corresponding to the eighth row of the last digit, four REs numbered 2 are also assigned to the second one.
  • Terminal Equipment is the subcarrier corresponding to the last row.
  • the REs labeled 3, 4, 5, and 6 correspond to the third terminal device, the fourth terminal device, the fifth terminal device, and the sixth terminal device, respectively.
  • the six terminal devices are arranged upward from the last row, mapping one modulation symbol at a time until the HARQ information of all terminal devices is mapped.
  • the terminal device may be any one of the at least two terminal devices that need to transmit HARQ information.
  • the embodiment of the present invention only describes one of the terminal devices, and may also adopt the embodiment of the present invention for other terminal devices that need to send the HARQ information.
  • the mapping resource information may be information of subcarriers allocated to the terminal device.
  • the number of subcarriers allocated to the terminal device is related to the number of bits of the transmitted HARQ information.
  • the method for mapping the resource indication information to the mapping resource information allocated to the terminal device is not limited, and only needs to be able to specify which resources need to be allocated to the terminal device.
  • mapping resource indication information is not limited in the embodiment of the present invention.
  • the embodiments of the present invention are not limited.
  • the mapping resource indication information may include an identifier of the at least two terminal devices and a number of bits of the HARQ information of the terminal device that is to send the HARQ information of the at least two terminal devices to be sent, At least two terminal devices include terminal devices, and data transmissions of at least two terminal devices are transmitted using the same time-frequency resource.
  • the mapping resource indication information may include start location information of a subcarrier allocated to each of the at least two terminal devices for transmitting the HARQ information, and at least two terminal devices.
  • the mapping resource indication information may include an identifier of the at least two terminal devices and the number information of the at least two terminal devices and the terminal device of each of the at least two terminal devices to which the HARQ information is to be sent.
  • the number of bits of the HARQ signal to be transmitted, at least two terminal devices include the terminal device, and data transmissions of at least two terminal devices are transmitted using the same time-frequency resource.
  • the embodiment of the present invention is not limited to the representation of the mapping resource indication information.
  • the terminal device that sends the HARQ information has three, and the target terminal device is one of the three terminal devices that are to send the HARQ information.
  • the indication information can be expressed as 101100.
  • the six bits of the indication information correspond to six terminal devices, namely terminal devices 0, 1, 2, 3, 4, 5, 6.
  • the terminal device 0, the terminal device 2, and the terminal device 3 in which the bit is 1 indicate that HARQ information needs to be transmitted.
  • the indication information may also include the number of bits of HARQ information of the terminal device of each HARQ information to be transmitted.
  • the indication information may include 2 bits, 1 bit, and 1 bit.
  • the HARQ information indicating that the terminal device 0 needs to be transmitted is 2 bits
  • the HARQ information that the terminal device 2 needs to transmit is 1 bit
  • the HARQ information that the terminal device 3 needs to transmit is 1 bit.
  • the mapping resource indication information may be represented as 201100.
  • the six bits of the mapping resource indication information respectively correspond to six terminal devices, namely terminal devices 0, 1, 2, 3, 4, 5, 6.
  • the terminal device 0, the terminal device 2, and the terminal device 3 in which the bit is 1 indicate that HARQ information needs to be transmitted.
  • the indication information may also include the number of bits of HARQ information of the terminal device of each HARQ information to be transmitted.
  • the indication information may include 2 bits, 1 bit, and 1 bit.
  • the first bit 2 in the indication information indicates that the HARQ information that the terminal device 0 needs to transmit is 2 ratios.
  • the third bit 1 indicates that the HARQ information that the terminal device 2 needs to transmit is 1 bit
  • the fourth bit 1 indicates that the HARQ information that the terminal device 3 needs to transmit is 1 bit.
  • the location information of the resources allocated to the terminal device may be determined according to the identifiers of the at least two terminal devices and the number of the at least two terminal devices in the mapping resource indication information.
  • the process of determining location information of resources (subcarriers) allocated to the terminal device may be as follows in the 36.212 standard:
  • the Ue_id is an identifier of at least two terminal devices
  • the UE_NUM is the number information of at least two terminal devices
  • r is a row index in the channel interleaving matrix (0, 1, 2, 3... from top to bottom).
  • R' xum is the number of rows of the channel interleaving matrix (the input sequence as input in the channel interleaving module is g 0 , g 1 , g 2 , ..., g H'-1 , with Where H' is the number of modulation symbols of the data and channel quality indication (CQI), Q' RI is the number of modulation symbols of the RANK Index, and the total modulation symbols in the subframe after multiplexing
  • the Ue_id and the UE_NUM may be represented based on the Format 1A, and may also be represented based on the Format 2B/2C, and the embodiment of the present invention is not limited thereto.
  • the Ue_id and the UE_NUM may be 4 bits or 8 bits, and the embodiment of the present invention is not limited thereto.
  • the indication information may be ACK/NACK group information, and the ACK/NACK group information may include UE_id (4 bits) and UE_NUM (4 bits).
  • the mapping resource indication information may include start location information of a subcarrier allocated to the terminal device and number information of subcarriers allocated to the terminal device.
  • the indication information may be an ACK/NACK resource, wherein the ACK/NACK resource may include start re_idx (11 bits) and total re_num (11 bits). Start re_idx indicates start position information of at least one subcarrier allocated to the target terminal device, and total re_num indicates number information of subcarriers allocated to the target terminal device.
  • the method may further include: the terminal device may further send data, where the data is sent on a resource unit that is allocated to the at least two terminal devices for transmitting the HARQ information.
  • the terminal device may avoid the resource unit used by the at least two terminal devices to send the HARQ information in the process of mapping data, or directly punch the device to send the HARQ information to the at least two terminal devices. The data on the resource unit.
  • the network device may learn, according to the scheduling information, the terminal device that needs to send the uplink HARQ information in the current uplink subframe scheduling frequency band, and send the mapping resource indication information to the terminal device.
  • the mapping resource indication information may include the number of HARQ information that the terminal device needs to send and the number of HARQ information that other terminal devices need to send.
  • the mapping resource indication information may further include an identity identifier (ID, IDentity) of the terminal device. In this way, the terminal device can determine the time-frequency resource that needs to be cleared when the current subframe is encoded.
  • FIG. 6 is a schematic flowchart of a method for transmitting information according to another embodiment of the present invention.
  • the method of Figure 6 can be performed by a network device, the method 600 comprising:
  • mapping resource indication information is used to indicate mapping resource information that is allocated to the terminal device to map the hybrid automatic request retransmission HARQ modulation symbol.
  • the network device receives a HARQ modulation symbol that the terminal device performs resource mapping according to the mapping resource indication information.
  • the embodiment of the present invention by changing the mapping manner of the encoded HARQ information, resource mapping is performed on the HARQ modulation symbol according to the resource indicated by the indication information of the network device, so that when multiple terminal devices use the same time-frequency resource for information transmission, Map to different resources. Therefore, the embodiment of the present invention can transmit HARQ information in a system in which multiple terminal devices use the same time-frequency resource, thereby improving the reliability of the transmission information.
  • FIG. 6 corresponds to the method of FIG. 5. To avoid repetition, it will not be described in detail herein.
  • the HARQ modulation symbol is mapped to one side or both sides of the modulation symbol of the demodulation reference signal DMRS.
  • the mapping resource indication information includes an identifier of the at least two terminal devices and a number of bits of the HARQ information of the terminal device that is to send the HARQ information of the at least two terminal devices, at least The two terminal devices include terminal devices, and data transmissions of at least two terminal devices are transmitted using the same time-frequency resource.
  • the mapping resource indication information includes start location information of a subcarrier allocated to each of the at least two terminal devices for transmitting the HARQ information, and each of the at least two terminal devices The number of bits of the HARQ information to be transmitted of the terminal device to which the HARQ information is to be transmitted, the at least two terminal devices include the terminal device, and the data transmission of the at least two terminal devices is transmitted by using the same time-frequency resource.
  • the mapping resource indication information includes an identifier of the at least two terminal devices and the number information of the at least two terminal devices and the terminal device of each of the at least two terminal devices to which the HARQ information is to be sent.
  • the number of bits of the HARQ signal to be transmitted, the at least two terminal devices include the terminal device, and the data transmission of the at least two terminal devices is transmitted by using the same time-frequency resource.
  • the embodiment of the present invention may further include: the terminal device sends data, where the sent data is in a resource that is allocated to the at least two terminal devices for sending the HARQ information. Sent on the unit.
  • FIG. 7 is a schematic flowchart of a process of transmitting information according to an embodiment of the present invention.
  • the process of Figure 7 can be performed by a terminal device.
  • the process includes:
  • the HARQ information may include HARQ-ACK information and HARQ-NACK information.
  • the Q ACK HARQ-ACK information is bit-coded, the Q ACK group-encoded HARQ information is obtained. among them, Is a set of encoded HARQ information.
  • the length of the encoded HARQ information is N ⁇ K, where K is an integer multiple of 2, and N is a positive integer greater than zero.
  • the HARQ-ACK information contains 1 bit
  • the HARQ-ACK information contains 2 bits
  • the code length of the encoded HARQ information may also be increased in the bit coding process. Specifically, if the HARQ information is 1 bit, the encoded HARQ information may be N is a positive integer. If the HARQ information is 2 bits, the HARQ information bit may be N is a positive integer. Increasing the coding length by repeated information bits, increasing the coding redundancy, and widening the distance between the HARQ-ACK information bits can reduce the error caused by the coding.
  • N in the embodiment of the present invention may adopt different coding lengths according to the quality of the channel environment. If the channel environment is good, fewer repetitions can be used; if the channel environment is poor, To increase the number of repetitions to ensure the reliability of HARQ-ACK information transmission.
  • the HARQ-ACK information contains 1 bit
  • Q ACK group encoded HARQ information Q ACK HARQ modulation information obtained after modulation
  • the L HARQ modulation symbols are in one-to-one correspondence with L REs.
  • the L HARQ modulation symbols are mapped one X k at a time, that is, each time the L HARQ modulation symbols are mapped to the corresponding L REs.
  • the L resource elements RE may be the same in position in the time domain (i.e., corresponding to the same symbol) and different in position in the frequency domain (i.e., carriers corresponding to different sub-).
  • the mapping rule can be similar to the mapping rule in the LTE system, that is, the mapping starts from the last L row, and the four symbols on both sides of the DMRS are sequentially mapped, and each time mapped to L REs of one symbol. If there is still no mapping of the HARQ modulation symbols, the L-line mapping is sequentially added upward, and the same mapping processing as the last L-line is performed until all the HARQ modulation symbols complete the mapping.
  • the embodiment of the present invention when the encoded HARQ information is modulated according to the codebook, when multiple terminal devices use the same time-frequency resource for HARQ information transmission, the network device can perform correct decoding. Therefore, the embodiment of the present invention can transmit HARQ information in a system in which multiple terminal devices use the same time-frequency resource, thereby improving the reliability of the transmission information.
  • FIG. 8 is a schematic flowchart of a process of transmitting information according to another embodiment of the present invention.
  • the process of Figure 7 can be performed by a terminal device, the process comprising:
  • the HARQ information may include HARQ-ACK information and HARQ-NACK information.
  • the Q ACK HARQ-ACK information is bit-coded, the Q ACK group-encoded HARQ information is obtained. among them, Is a set of encoded HARQ information.
  • the length of the encoded HARQ information is N ⁇ K, where K is an integer multiple of 2, and N is a positive integer greater than zero.
  • the HARQ-ACK information contains 1 bit
  • the HARQ-ACK information contains 2 bits
  • the code length of the encoded HARQ information may also be increased in the bit coding process. Specifically, if the HARQ information is 1 bit, the encoded HARQ information may be N is a positive integer. If the HARQ information is 2 bits, the encoded HARQ information may be N is a positive integer. Increasing the coding length by repeated information bits, increasing the coding redundancy, and widening the distance between the HARQ-ACK information bits can reduce the error caused by the coding.
  • N in the embodiment of the present invention may adopt different coding lengths according to the quality of the channel environment. If the channel environment is good, fewer repetitions can be used; if the channel environment is poor, the number of repetitions can be increased to ensure the reliability of HARQ-ACK information transmission.
  • the HARQ-ACK information contains 1 bit
  • 1 HARQ information may be 1 HARQ modulation symbol after encoding and constellation modulation; if the HARQ information is 2 bits, 1 HARQ information may be encoded and constellation modulated may be 3 HARQ modulations. symbol.
  • each terminal device allocates a fixed mapping location. In this way, the HARQ modulation symbols of different terminal devices do not overlap each other and can be correctly decoded in the network device.
  • Each color on either side of the DMRS symbol indicates the mapped location of a terminal device.
  • the six terminal devices are arranged upward from the last row, mapping one modulation symbol at a time until the HARQ information of all terminal devices is mapped.
  • step 703 in the embodiment of the present invention may be described in conjunction with FIG. 5.
  • Figure 5 shows an example where the SCMA allows up to six terminal devices to access.
  • a fixed label on either side of the DMRS symbol indicates the mapped position of a terminal device.
  • four REs labeled 1 are assigned to the first terminal device.
  • four REs labeled 1 are also assigned to The first terminal device.
  • four REs numbered 2 are assigned to the second terminal device, and among the subcarriers corresponding to the eighth row of the last digit, four REs numbered 2 are also assigned to the second one.
  • the REs labeled 3, 4, 5, and 6 correspond to the third terminal device, the fourth terminal device, the fifth terminal device, and the sixth terminal device, respectively.
  • the six terminal devices are arranged upward from the last row, mapping one modulation symbol at a time until the HARQ information of all terminal devices is mapped.
  • the embodiment of the present invention when the mapping processing mode of the HARQ information bits is changed, when multiple terminal devices use the same time-frequency resource for information transmission, different sub-carriers can be used separately to ensure correct decoding on the network device side. Therefore, the embodiment of the present invention can transmit HARQ information in a system in which multiple terminal devices use the same time-frequency resource, thereby improving the reliability of the transmission information.
  • FIG. 9 is a schematic block diagram of a terminal device in accordance with one embodiment of the present invention.
  • the terminal device of FIG. 9 can implement the method and process in FIG. 2 or FIG. 7 described above. To avoid repetition, details are not described herein.
  • the terminal device 90 includes:
  • the modulating unit 91 automatically adjusts the retransmission HARQ information to the encoded hybrid according to the codebook.
  • Generating to generate HARQ modulation symbols the HARQ modulation symbols include at least one non-zero HARQ modulation symbol and one zero HARQ modulation symbol
  • the codebook includes at least two codewords, the codeword is a multi-dimensional complex vector, and the codeword is used to represent the encoded a mapping relationship between HARQ information and at least two modulation symbols;
  • the transmitting unit 92 transmits the HARQ modulation symbol to the network device.
  • the network device when the mapping processing mode of the HARQ information bits is changed, when multiple terminal devices use the same time-frequency resource for information transmission, the network device can perform correct decoding. Therefore, the embodiment of the present invention can transmit HARQ information in a system in which multiple terminal devices use the same time-frequency resource, thereby improving the reliability of the transmission information.
  • the HARQ modulation symbol generated by the modulation unit 91 in the embodiment of the present invention is mapped to one side or both sides of the modulation symbol of the demodulation reference signal DMRS.
  • the length of the encoded HARQ information is N ⁇ K, where K is an integer multiple of 2, and N is a positive integer greater than zero.
  • N 2 if the length of the HARQ information before encoding is 1 bit, N is 2.
  • N 6
  • FIG. 10 is a schematic block diagram of a terminal device according to another embodiment of the present invention.
  • the terminal device of FIG. 10 can implement the foregoing method and process in FIG. 4 or FIG. 8. To avoid repetition, details are not described herein again.
  • the terminal device 1000 includes:
  • the modulating unit 1001 modulates the encoded hybrid automatic request retransmission HARQ information to generate a HARQ modulation symbol
  • the receiving unit 1002 receives the mapping resource indication information, where the mapping resource indication information is used to indicate mapping resource information that is allocated to the terminal device to map the HARQ modulation symbol;
  • the mapping unit 1003 performs resource mapping on the HARQ modulation symbols according to the mapping resource indication information.
  • the embodiment of the present invention when the mapping processing mode of the HARQ information bits is changed, when multiple terminal devices use the same time-frequency resource for information transmission, different sub-carriers can be used separately to ensure correct decoding on the network device side. Therefore, the embodiment of the present invention can transmit HARQ information in a system in which multiple terminal devices use the same time-frequency resource, thereby improving the reliability of the transmission information.
  • the HARQ modulation symbol generated by the modulation unit is mapped to one side or both sides of the modulation symbol of the demodulation reference signal DMRS.
  • the mapping resource indication information received by the receiving unit includes an identifier of the at least two terminal devices and a bit of the HARQ information of the terminal device of each of the at least two terminal devices to which the HARQ information is to be sent.
  • the number, at least two terminal devices include terminal devices, and data transmissions of at least two terminal devices are transmitted using the same time-frequency resource.
  • the mapping resource indication information received by the receiving unit includes start location information and at least two terminals allocated to each of the at least two terminal devices for transmitting the HARQ information.
  • the mapping resource indication information received by the receiving unit includes the identifiers of the at least two terminal devices and the number information of the at least two terminal devices and each of the at least two terminal devices to be sent HARQ information.
  • the number of bits of the HARQ signal to be transmitted by the terminal device, at least two terminal devices include the terminal device, and the data transmission of at least two terminal devices is transmitted by using the same time-frequency resource.
  • the terminal device 1000 may further include
  • the transmitting unit 1004 transmits data, and the transmitted data is transmitted on a resource unit that is allocated to at least two terminal devices for transmitting HARQ information.
  • FIG. 11 is a schematic block diagram of a network device in accordance with one embodiment of the present invention.
  • the terminal device of FIG. 11 can implement the foregoing method in FIG. 6. To avoid repetition, it will not be described in detail herein.
  • the network device 1100 includes:
  • the sending unit 1101 sends mapping resource indication information, where the mapping resource indication information is used to indicate mapping resource information that is allocated to the terminal device to map the hybrid automatic request retransmission HARQ modulation symbol;
  • the receiving unit 1102 receives the HARQ modulation symbol that the terminal device performs resource mapping according to the mapping resource indication information.
  • the HARQ modulation symbol is mapped to one side or both sides of the modulation symbol of the demodulation reference signal DMRS.
  • the mapping resource indication information sent by the sending unit includes the identifier of the at least two terminal devices and the bit of the HARQ information of the terminal device of each of the at least two terminal devices that are to send the HARQ information to be sent.
  • the number, at least two terminal devices include terminal devices, and data transmissions of at least two terminal devices are transmitted using the same time-frequency resource.
  • the mapping resource indication information sent by the sending unit includes start location information of the subcarriers allocated to each of the at least two terminal devices for transmitting the HARQ information, and at least two terminals.
  • the number of bits of the HARQ information of the terminal device to which the HARQ information is to be sent, the at least two terminal devices include the terminal device, and the data transmission of the at least two terminal devices is transmitted by using the same time-frequency resource.
  • the mapping resource indication information sent by the sending unit includes the identifiers of the at least two terminal devices and the number information of the at least two terminal devices and each of the at least two terminal devices to be sent HARQ information.
  • the number of bits of the HARQ signal to be transmitted by the terminal device, at least two terminal devices include the terminal device, and the data transmission of at least two terminal devices is transmitted by using the same time-frequency resource.
  • the receiving unit 1102 is further configured to receive data sent by the terminal device, where the sent data is sent on a resource unit that is allocated to the at least two terminal devices for sending the HARQ information.
  • FIG. 12 is a schematic block diagram of an apparatus in accordance with another embodiment of the present invention. As shown in FIG. 12, the apparatus 1200 includes:
  • processor 1202 connected to the bus
  • the processor calls, by using a bus, a program stored in the memory, to perform modulation on the encoded hybrid automatic request retransmission HARQ information according to the codebook to generate a HARQ modulation symbol, where the HARQ modulation symbol includes at least one non-zero HARQ modulation. a symbol and a zero HARQ modulation symbol, the codebook includes at least two codewords, and the codeword is a multi-dimensional complex vector, and the codeword is used to indicate a mapping relationship between the encoded HARQ information and the at least two modulation symbols;
  • the HARQ modulation symbol is mapped to one side or both sides of the modulation symbol of the demodulation reference signal DMRS.
  • the length of the encoded HARQ information is N ⁇ K, where K is an integer multiple of 2, and N is a positive integer greater than zero.
  • N 2 if the length of the HARQ information before encoding is 1 bit, N is 2.
  • N 6
  • the receiver of device 1200 can include a receiving circuit, a power controller, and an antenna, and device 1200 can also include a transmitter, which can include a transmitting circuit, a power controller, and an antenna.
  • the processor can also be referred to as a CPU.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor. A portion of the memory may also include non-volatile line random access memory (NVRAM).
  • the device 1200 may be embedded or may itself be a network device such as a wireless communication device or a network side device such as a mobile phone, and may also include a carrier that houses the transmitting circuit and the receiving circuit to allow the device 1200 and the remote location. Data transmission and reception are performed between.
  • the transmit and receive circuits can be coupled to the antenna.
  • the various components of device 1200 are coupled together by a bus, wherein the bus includes a power bus, a control bus, and a status signal bus in addition to the data bus. However, for the sake of clarity, various buses are labeled as bus 1201 in the figure.
  • the components of the specific different products that implement the various functions may be integrated with the processing unit.
  • the processor may implement or perform the steps and logic blocks disclosed in the method embodiments of the present invention.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the processor 1202 may be a central processing unit (“CPU"), and the processor 1202 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 1203 can include read only memory and random access memory and provides instructions and data to the processor 1202.
  • a portion of the memory 1203 may also include a non-volatile random access memory.
  • the memory 1203 can also store information of the device type.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • a power bus may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are labeled as bus systems in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1202 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as hardware processor execution, or use hardware and software modules in the processor.
  • the combination execution is completed.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1203, and the processor 1202 reads the information in the memory 1203 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the network device when the mapping processing mode of the HARQ information bits is changed, when multiple terminal devices use the same time-frequency resource for information transmission, the network device can perform correct decoding. Therefore, the embodiment of the present invention can transmit HARQ information in a system in which multiple terminal devices use the same time-frequency resource, thereby improving the reliability of the transmission information.
  • FIG. 13 is a schematic block diagram of an apparatus in accordance with another embodiment of the present invention. As shown in FIG. 13, the apparatus 1300 includes:
  • processor 1302 connected to the bus
  • the processor by using a bus, invokes a program stored in the memory, and is configured to perform modulation on the encoded hybrid automatic request retransmission HARQ information to generate a HARQ modulation symbol;
  • mapping resource indication information is used to indicate mapping resource information that is allocated to the terminal device to map the HARQ modulation symbol
  • the HARQ modulation symbol is mapped to one side or both sides of the modulation symbol of the demodulation reference signal DMRS.
  • the mapping resource indication information includes an identifier of the at least two terminal devices and a number of bits of the HARQ information of the terminal device that is to send the HARQ information of the at least two terminal devices, at least The two terminal devices include terminal devices, and data transmissions of at least two terminal devices are transmitted using the same time-frequency resource.
  • the mapping resource indication information includes start location information of a subcarrier allocated to each of the at least two terminal devices for transmitting the HARQ information, and each of the at least two terminal devices The number of bits of the HARQ information to be transmitted of the terminal device to which the HARQ information is to be transmitted, the at least two terminal devices include the terminal device, and the data transmission of the at least two terminal devices is transmitted by using the same time-frequency resource.
  • the mapping resource indication information includes an identifier of the at least two terminal devices and the number information of the at least two terminal devices and each of the at least two terminal devices to be sent The number of bits of the HARQ signal to be transmitted of the terminal device that sends the HARQ information, the at least two terminal devices include the terminal device, and the data transmission of the at least two terminal devices is transmitted by using the same time-frequency resource.
  • the processor may be further configured to send data, where the sent data is sent on a resource unit that is allocated to the at least two terminal devices for sending the HARQ information.
  • the receiver of device 1300 can include a receiving circuit, a power controller, and an antenna, and device 1300 can also include a transmitter, which can include a transmitting circuit, a power controller, and an antenna.
  • the processor can also be referred to as a CPU.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor.
  • a portion of the memory may also include non-volatile line random access memory (NVRAM).
  • the device 1300 may be embedded or may itself be a network device such as a wireless communication device or a network side device such as a mobile phone, and may further include a carrier accommodating the transmitting circuit and the receiving circuit to allow the device 1300 and the remote location. Data transmission and reception are performed between.
  • the transmit and receive circuits can be coupled to the antenna.
  • the various components of device 1300 are coupled together by a bus, wherein the bus includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus 1301 in the figure.
  • the components of the specific different products that implement the various functions may be integrated with the processing unit.
  • the processor may implement or perform the steps and logic blocks disclosed in the method embodiments of the present invention.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor, decoder or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the processor 1302 may be a central processing unit (“CPU"), and the processor 1302 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 1303 can include read only memory and random access memory and provides instructions and data to the processor 1302.
  • a portion of the memory 1303 may also include a non-volatile random access memory.
  • the memory 1303 can also store information of a device type.
  • the bus system may include a power bus, a control bus, and a shape in addition to the data bus. State signal bus, etc. However, for the sake of clarity, the various buses are labeled as bus systems in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1302 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1303, and the processor 1302 reads the information in the memory 1303 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the embodiment of the present invention when the mapping processing mode of the HARQ information bits is changed, when multiple terminal devices use the same time-frequency resource for information transmission, different sub-carriers can be used separately to ensure correct decoding on the network device side. Therefore, the embodiment of the present invention can transmit HARQ information in a system in which multiple terminal devices use the same time-frequency resource, thereby improving the reliability of the transmission information.
  • FIG. 14 is a schematic block diagram of an apparatus in accordance with another embodiment of the present invention. As shown in FIG. 14, the apparatus 1400 includes:
  • processor 1402 connected to the bus
  • the processor by using a bus, invokes a program stored in the memory, and is used to send mapping resource indication information, where the mapping resource indication information is used to indicate mapping resource information that is allocated to the terminal device to map the hybrid automatic request retransmission HARQ modulation symbol;
  • a HARQ modulation symbol used by the receiving terminal device to perform resource mapping according to the mapping resource indication information.
  • the HARQ modulation symbol is mapped to one side or both sides of the modulation symbol of the demodulation reference signal DMRS.
  • the mapping resource indication information includes an identifier of the at least two terminal devices and a number of bits of the HARQ information of the terminal device that is to send the HARQ information of the at least two terminal devices, at least The two terminal devices include terminal devices, and data transmissions of at least two terminal devices are transmitted using the same time-frequency resource.
  • the mapping resource indication information includes start location information of a subcarrier allocated to each of the at least two terminal devices for transmitting the HARQ information, and each of the at least two terminal devices A terminal device to send HARQ information to be sent
  • the number of bits of the HARQ information, at least two terminal devices include the terminal device, and the data transmission of the at least two terminal devices is transmitted by using the same time-frequency resource.
  • the mapping resource indication information includes an identifier of the at least two terminal devices and the number information of the at least two terminal devices and the terminal device of each of the at least two terminal devices to which the HARQ information is to be sent.
  • the number of bits of the HARQ signal to be transmitted, the at least two terminal devices include the terminal device, and the data transmission of the at least two terminal devices is transmitted by using the same time-frequency resource.
  • the processor may be further configured to receive data sent by the terminal device, where the sent data is sent on a resource unit that is allocated to the at least two terminal devices for sending the HARQ information.
  • the receiver of device 1400 can include a receiving circuit, a power controller, and an antenna, and device 1400 can also include a transmitter, which can include a transmitting circuit, a power controller, and an antenna.
  • the processor can also be referred to as a CPU.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor. A portion of the memory may also include non-volatile line random access memory (NVRAM).
  • the device 1400 may be embedded or may itself be a network device such as a wireless communication device or a network side device such as a mobile phone, and may also include a carrier that houses the transmitting circuit and the receiving circuit to allow the device 1400 and the remote location. Data transmission and reception are performed between.
  • the transmit and receive circuits can be coupled to the antenna.
  • the various components of device 1400 are coupled together by a bus, wherein the bus includes a power bus, a control bus, and a status signal bus in addition to the data bus. However, for the sake of clarity, various buses are labeled as bus 1401 in the figure.
  • the components of the specific different products that implement the various functions may be integrated with the processing unit.
  • the processor may implement or perform the steps and logic blocks disclosed in the method embodiments of the present invention.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor, decoder or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the processor 1402 may be a central processing unit (“CPU"), and the processor 1402 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 1403 can include read only memory and random access memory and provides instructions and data to the processor 1302.
  • a portion of the memory 1403 may also include a non-volatile random access memory.
  • the memory 1403 can also store information of a device type.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • a power bus may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are labeled as bus systems in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1402 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1403, and the processor 1402 reads the information in the memory 1403 and completes the steps of the above method in combination with the hardware thereof. To avoid repetition, it will not be described in detail here.
  • the embodiment of the present invention when the mapping processing mode of the HARQ information bits is changed, when multiple terminal devices use the same time-frequency resource for information transmission, different sub-carriers can be used separately to ensure correct decoding on the network device side. Therefore, the embodiment of the present invention can transmit HARQ information in a system in which multiple terminal devices use the same time-frequency resource, thereby improving the reliability of the transmission information.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer. Take this as an example but Without limitation, the computer readable medium can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage device, or can be used to carry or store desired program code in the form of an instruction or data structure.
  • Any connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated media.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种传输信息的方法、终端设备、网络设备和装置。该方法包括:终端设备根据码本对编码后的混合自动请求重传HARQ信息进行调制,以生成HARQ调制符号,HARQ调制符号包括至少一个非零HARQ调制符号和一个零HARQ调制符号,码本包括至少两个码字,码字为多维复数向量,码字用于表示比特与至少两个调制符号之间的映射关系;向网络设备发送HARQ调制符号。本发明实施例中,通过根据码本对编码后的HARQ信息的进行调制,使得多个终端设备使用同一时频资源进行HARQ信息传输时,能够在网络设备侧进行正确译码。因此,本发明实施例能够在多个终端设备使用同一时频资源的系统中传输HARQ信息,提高传输信息的可靠性。

Description

传输信息的方法、终端设备、网络设备和装置 技术领域
本发明涉及无线通信技术领域,具体地,涉及传输信息的方法、终端设备、网络设备和装置。
背景技术
稀疏性的非正交多址接入方式是一种新的多址接入方式。在该接入方式中,多个用户使用同一个时频资源块。每个资源块由若干资源单元(RE,Resource Element)组成,RE可以是正交频分复用(OFDM,Orthogonal Frequency Division Multiplex)技术中的子载波-符号单元,也可以是其他空口技术中时域或频域的资源单元。
稀疏性的非正交多址接入系统与OFDM系统相似,仅将OFDM系统中的调制编码器和调制解码器替换成稀疏性的非正交多址接入对应的编码器和译码器。在长期演进(LTE,Long Term Evolution)系统中,若译码端译码失败,则采用混合自动请求重传(HARQ,Hybrid Automatic Repeat Request)系统再次发送译码错误数据。HARQ系统即为在自动请求重传系统中引入了前向纠错码(FEC,Forward Error Correction),该FEC可以用来纠正传输过程中的数据差错。如果数据差错在FEC的纠错范围内,则FEC进行纠错,译码端反馈混合自动请求重传确认应答(HARQ-ACK,HARQ Acknowledgement)信息给发送端;如果数据差错超出了FEC的纠错范围,则译码端反馈混合自动请求重传否定应答(HARQ-NACK,HARQ Negative Acknowledgement)信息给发送端。其中,HARQ-ACK和HARQ-NACK统称为HARQ信息。
现有的LTE系统,在物理上行共享信道(PUSCH,Physical Uplink Shared Channel)内,用户设备在各自的频带内实现HARQ信息和上行传输数据的复用,该HARQ信息的传输方法适用于无频域复用的系统。但是,对于某些系统,例如SCMA系统,该类系统中多个用户在频域上是复用的。若HARQ信息的传输采用LTE系统中的方法则导致各个用户的HARQ信息会发生重叠,基站采用LTE的译码方法则无法进行译码。因此,对于多个用户复用频域的系统,现有的在PUSCH信道中传输HARQ信息的方法不再适用。
发明内容
本发明实施例提供了一种传输信息的方法、终端设备、网络设备和装置,能够在多个用户复用频域的系统中在PUSCH信道传输HARQ信息。
第一方面,提供了一种传输信息的方法,该方法包括:终端设备根据码本对编码后的混合自动请求重传HARQ信息进行调制,以生成HARQ调制符号,该HARQ调制符号包括至少一个非零HARQ调制符号和一个零HARQ调制符号,该码本包括至少两个码字,该码字为多维复数向量,该码字用于表示该编码后的HARQ信息与至少两个调制符号之间的映射关系;向网络设备发送该HARQ调制符号。
结合第一方面,在第一方面的第一种可能的实现方式中,该HARQ调制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,如果调制阶数为K,则该编码后的HARQ信息的长度为N×K,其中,K为2的整数倍,N为大于零的正整数。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,若编码前的HARQ信息的长度为1比特,则N为2。
结合第一方面的第二种可能的实现方式,在第一方面的第四种可能的实现方式中,若编码前的HARQ信息的长度为2比特,则N为6。
第二方面,提供一种传输信息的方法,该方法包括:终端设备对编码后的混合自动请求重传HARQ信息进行调制生成HARQ调制符号;该终端设备接收映射资源指示信息,该映射资源指示信息用于指示分配给该终端设备对该HARQ调制符号进行映射的映射资源信息;该终端设备根据该映射资源指示信息对该HARQ调制符号进行资源映射。
结合第二方面,在第二方面的第一种可能的实现方式中,该HARQ调制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,该映射资源指示信息包括至少两个终端设备的标识和该至少两个终端设备中的每个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,该至少两个终端设备包括该终端设备,并且该至少两个终端设备的数据传输采用相同的时频资源进行传输。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第三种可能的实现方式中,该映射资源指示信息包括分配给至少两个终端设备中的每一个终端设备用于发送HARQ信息的子载波的起始位置信息和该至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,该至少两个终端设备包括该终端设备,并且该至少两个终端设备的数据传输采用相同的时频资源进行传输。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第四种可能的实现方式中,该映射资源指示信息包括至少两个终端设备的标识和该至少两个终端设备的个数信息和该至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信号的比特个数,该至少两个终端设备包括该终端设备,并且该至少两个终端设备的数据传输采用相同的时频资源进行传输。
结合第二方面的第二种至第四种可能的实现方式中的任一种可能的实现方式,在第二方面的第五种可能的实现方式中,还包括:该终端设备发送数据,该发送的数据在除分配给该至少两个终端设备用于发送HARQ信息的资源单元上发送。
第三方面,提供了一种传输信息的方法,该方法包括:网络设备发送映射资源指示信息,该映射资源指示信息用于指示分配给终端设备对HARQ调制符号进行映射的映射资源信息;该网络设备接收该终端设备根据该映射资源指示信息进行资源映射的该HARQ调制符号。
结合第三方面,在第三方面的第一种可能的实现方式中,该HARQ调制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,该映射资源指示信息包括至少两个终端设备的标识和该至少两个终端设备中的每个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,该至少两个终端设备包括该终端设备,并且该至少两个终端设备的数据传输采用相同的时频资源进行传输。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第三种可能的实现方式中,该映射资源指示信息包括分配给至少两个终端设备中的每一个终端设备用于发送HARQ信息的子载波的起始位置信息和该至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信 息的比特个数,该至少两个终端设备包括该终端设备,并且该至少两个终端设备的数据传输采用相同的时频资源进行传输。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第四种可能的实现方式中,该映射资源指示信息包括至少两个终端设备的标识和该至少两个终端设备的个数信息和该至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信号的比特个数,该至少两个终端设备包括该终端设备,并且该至少两个终端设备的数据传输采用相同的时频资源进行传输。
结合第三方面的第二种至第四种可能的实现方式中的任一种可能的实现方式,在第三方面的第五种可能的实现方式中,还包括:该网络设备接收该终端设备发送的数据,该发送的数据在除分配给该至少两个终端设备用于发送HARQ信息的资源单元上发送。
第四方面,提供了一种终端设备,包括:调制单元,用于根据码本对编码后的混合自动请求重传HARQ信息进行调制,以生成HARQ调制符号,该HARQ调制符号包括至少一个非零HARQ调制符号和一个零HARQ调制符号,该码本包括至少两个码字,该码字为多维复数向量,该码字用于表示该编码后的HARQ信息与至少两个调制符号之间的映射关系;发送单元,用于向网络设备发送该HARQ调制符号。
结合第四方面,在第四方面的第一种可能的实现方式中,该调制单元生成的该HARQ调制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,如果调制阶数为K,则该编码后的HARQ信息的长度为N×K,其中,K为2的整数倍,N为大于零的正整数。
结合第四方面的第二种可能的实现方式,在第四方面的第三种可能的实现方式中,若编码前的HARQ信息的长度为1比特,则N为2。
结合第四方面的第二种可能的实现方式,在第四方面的第四种可能的实现方式中,若编码前的HARQ信息的长度为2比特,则N为6。
第五方面,提供了一种终端设备,包括:调制单元,用于对编码后的混合自动请求重传HARQ信息进行调制生成HARQ调制符号;接收单元,用于接收映射资源指示信息,该映射资源指示信息用于指示分配给该终端设备 对该HARQ调制符号进行映射的映射资源信息;映射单元,用于根据该映射资源指示信息对该HARQ调制符号进行资源映射。
结合第五方面,在第五方面的第一种可能的实现方式中,该调制单元生成的该HARQ调制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,该接收单元接收的该映射资源指示信息包括至少两个终端设备的标识和该至少两个终端设备中的每个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,该至少两个终端设备包括该终端设备,并且该至少两个终端设备的数据传输采用相同的时频资源进行传输。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第三种可能的实现方式中,该接收单元接收的该映射资源指示信息包括分配给至少两个终端设备中的每一个终端设备用于发送HARQ信息的子载波的起始位置信息和该至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,该至少两个终端设备包括该终端设备,并且该至少两个终端设备的数据传输采用相同的时频资源进行传输。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第四种可能的实现方式中,该接收单元接收的该映射资源指示信息包括至少两个终端设备的标识和该至少两个终端设备的个数信息和该至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信号的比特个数,该至少两个终端设备包括该终端设备,并且该至少两个终端设备的数据传输采用相同的时频资源进行传输。
结合第五方面的第二种至第四种可能的实现方式中的任一种可能的实现方式,在第五方面的第五种可能的实现方式中,还包括:发送单元,用于发送数据,该发送的数据在除分配给该至少两个终端设备用于发送HARQ信息的资源单元上发送。
第六方面,提供了一种网络设备,包括:发送单元,用于发送映射资源指示信息,该映射资源指示信息用于指示分配给终端设备对混合自动请求重传HARQ调制符号进行映射的映射资源信息;接收单元,用于接收该终端设备根据该映射资源指示信息进行资源映射的该HARQ调制符号。
结合第六方面,在第六方面的第一种可能的实现方式中,该HARQ调 制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
结合第六方面或第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,该发送单元发送的该映射资源指示信息包括至少两个终端设备的标识和该至少两个终端设备中的每个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,该至少两个终端设备包括该终端设备,并且该至少两个终端设备的数据传输采用相同的时频资源进行传输。
结合第六方面或第六方面的第一种可能的实现方式,在第六方面的第三种可能的实现方式中,该发送单元发送的该映射资源指示信息包括分配给至少两个终端设备中的每一个终端设备用于发送HARQ信息的子载波的起始位置信息和该至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,该至少两个终端设备包括该终端设备,并且该至少两个终端设备的数据传输采用相同的时频资源进行传输。
结合第六方面或第六方面的第一种可能的实现方式,在第六方面的第四种可能的实现方式中,该发送单元发送的该映射资源指示信息包括至少两个终端设备的标识和该至少两个终端设备的个数信息和该至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信号的比特个数,该至少两个终端设备包括该终端设备,并且该至少两个终端设备的数据传输采用相同的时频资源进行传输。
结合第六方面的第二种至第四种可能的实现方式中的任一种可能的实现方式,在第六方面的第五种可能的实现方式中,该接收单元,还用于接收该终端设备发送的数据,该发送的数据在除分配给该至少两个终端设备用于发送HARQ信息的资源单元上发送。
第七方面,提供了一种装置,其特征在于,包括:总线;与该总线相连的处理器;与该总线相连的存储器;其中,该处理器通过该总线,调用该存储器中存储的程序,以用于根据码本对编码后的混合自动请求重传HARQ信息进行调制,以生成HARQ调制符号,该HARQ调制符号包括至少一个非零HARQ调制符号和一个零HARQ调制符号,该码本包括至少两个码字,该码字为多维复数向量,该码字用于表示该编码后的HARQ信息与至少两个调制符号之间的映射关系;用于向网络设备发送该HARQ调制符号。
结合第七方面,在第七方面的第一种可能的实现方式中,该HARQ调制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
结合第七方面或第七方面的第一种可能的实现方式,在第七方面的第二种可能的实现方式中,如果调制阶数为K,则该编码后的HARQ信息的长度为N×K,其中,K为2的整数倍,N为大于零的正整数。
结合第七方面的第二种可能的实现方式,在第七方面的第三种可能的实现方式中,若编码前的HARQ信息的长度为1比特,则N为2。
结合第七方面的第二种可能的实现方式,在第七方面的第四种可能的实现方式中,若编码前的HARQ信息的长度为2比特,则N为6。
第八方面,提供了一种装置,包括:总线;与该总线相连的处理器;与该总线相连的存储器;其中,该处理器通过该总线,调用该存储器中存储的程序,以用于对编码后的混合自动请求重传HARQ信息进行调制生成HARQ调制符号;用于接收映射资源指示信息,该映射资源指示信息用于指示分配给该终端设备对该HARQ调制符号进行映射的映射资源信息;用于根据该映射资源指示信息对该HARQ调制符号进行资源映射。
结合第八方面,在第八方面的第一种可能的实现方式中,该HARQ调制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
结合第八方面或第八方面的第一种可能的实现方式,在第八方面的第二种可能的实现方式中,该映射资源指示信息包括至少两个终端设备的标识和该至少两个终端设备中的每个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,该至少两个终端设备包括该终端设备,并且该至少两个终端设备的数据传输采用相同的时频资源进行传输。
结合第八方面或第八方面的第一种可能的实现方式,在第八方面的第三种可能的实现方式中,该映射资源指示信息包括分配给至少两个终端设备中的每一个终端设备用于发送HARQ信息的子载波的起始位置信息和该至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,该至少两个终端设备包括该终端设备,并且该至少两个终端设备的数据传输采用相同的时频资源进行传输。
结合第八方面或第八方面的第一种可能的实现方式,在第八方面的第四种可能的实现方式中,该映射资源指示信息包括至少两个终端设备的标识和该至少两个终端设备的个数信息和该至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信号的比特个数,该至少两个终端设备包括该终端设备,并且该至少两个终端设备的数据传输采用相同的时频 资源进行传输。
结合第八方面的第二种至第四种可能的实现方式中的任一种可能的实现方式,在第八方面的第五种可能的实现方式中,该处理器还用于发送数据,该发送的数据在除分配给该至少两个终端设备用于发送HARQ信息的资源单元上发送。
第九方面,提供了一种装置,其特征在于,包括:总线;与该总线相连的处理器;与该总线相连的存储器;其中,该处理器通过该总线,调用该存储器中存储的程序,以用于发送映射资源指示信息,该映射资源指示信息用于指示分配给终端设备对混合自动请求重传HARQ调制符号进行映射的映射资源信息;用于接收该终端设备根据该映射资源指示信息进行资源映射的该HARQ调制符号。
结合第九方面,在第九方面的第一种可能的实现方式中,该HARQ调制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
结合第九方面或第九方面的第一种可能的实现方式,在第九方面的第二种可能的实现方式中,该映射资源指示信息包括至少两个终端设备的标识和该至少两个终端设备中的每个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,该至少两个终端设备包括该终端设备,并且该至少两个终端设备的数据传输采用相同的时频资源进行传输。
结合第九方面或第九方面的第一种可能的实现方式,在第九方面的第三种可能的实现方式中,该映射资源指示信息包括分配给至少两个终端设备中的每一个终端设备用于发送HARQ信息的子载波的起始位置信息和该至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,该至少两个终端设备包括该终端设备,并且该至少两个终端设备的数据传输采用相同的时频资源进行传输。
结合第九方面或第九方面的第一种可能的实现方式,在第九方面的第四种可能的实现方式中,该映射资源指示信息包括至少两个终端设备的标识和该至少两个终端设备的个数信息和该至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信号的比特个数,该至少两个终端设备包括该终端设备,并且该至少两个终端设备的数据传输采用相同的时频资源进行传输。
结合第九方面的第二种至第四种可能的实现方式中的任一种可能的实 现方式,在第九方面的第五种可能的实现方式中,该处理器还用于接收该终端设备发送的数据,该发送的数据在除分配给该至少两个终端设备用于发送HARQ信息的资源单元上发送。
本发明实施例中,通过根据码本对编码后的HARQ信息的进行调制,使得多个终端设备使用同一时频资源进行HARQ信息传输时,能够在网络设备侧进行正确译码。因此,本发明实施例能够在多个终端设备使用同一时频资源的系统中传输HARQ信息,提高传输信息的可靠性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是使用本发明的传输信息的方法的通信系统的示意图。
图2是本发明一个实施例的传输信息的方法的示意性流程图。
图3是SCMA的比特映射处理的示意图。
图4是本发明另一实施例的传输信息的方法的示意性流程图。
图5是本发明一个实施例的映射处理的示意图。
图6是本发明另一实施例的传输信息的方法的示意性流程图。
图7是本发明一个实施例的传输信息的过程的示意性流程图。
图8是本发明另一实施例的传输信息的过程的示意性流程图。
图9是本发明一个实施例的终端设备的示意框图。
图10是本发明另一实施例的终端设备的示意框图。
图11是本发明一个实施例的网络设备的示意框图。
图12是本发明一个实施例的装置的示意框图。
图13是本发明另一实施例的装置的示意框图。
图14是本发明另一实施例的装置的示意框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不 是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本发明结合终端设备描述了各个实施例。终端设备也可以称为用户设备(UE,User Equipment)用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备。
此外,本发明结合网络设备描述了各个实施例。网络设备可以是网络侧设备等用于与移动设备通信的设备,网络侧设备可以是GSM(Global System of Mobile communication,全球移动通讯)或CDMA(Code Division Multiple Access,码分多址)中的BTS(Base Transceiver Station,基站),也可以是WCDMA(Wideband Code Division Multiple Access,宽带码分多址)中的NB(NodeB,基站),还可以是LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(Evolutional Node B,演进型基站),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络侧设备。
此外,本发明的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但 不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如,EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是使用本发明的传输信息的方法的通信系统的示意图。
如图1所示,该通信系统100包括网络侧设备102,网络侧设备102可包括多个天线组。每个天线组可以包括多个天线,例如,一个天线组可包括天线104和106,另一个天线组可包括天线108和110,附加组可包括天线112和114。图1中对于每个天线组示出了2个天线,然而可对于每个组使用更多或更少的天线。网络侧设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络侧设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络侧设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(FDD,Frequency Division Duplex)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工(TDD,Time Division Duplex)系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路 124和反向链路126可使用共同频带。
被设计用于通信的每组天线和/或区域称为网络侧设备102的扇区。例如,可将天线组设计为与网络侧设备102覆盖区域的扇区中的终端设备通信。在网络侧设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络侧设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络侧设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络侧设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络侧设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
为便于理解,下面将对LTE系统中传输HARQ信息的方法进行描述。
在LTE系统的PUSCH信道中,终端设备与网络设备之间传输HARQ信息。网络设备向终端设备传输信息,若数据的传输错误在FEC的纠错范围内,终端设备能够正确译码,则终端设备反馈HARQ-ACK信息给网络设备;若数据的传输错误不在FEC的纠错范围内,终端设备不能够正确译码,则终端设备反馈HARQ-NACK信息给网络设备。
当在PUSCH信道上传输HARQ信息时,该HARQ信息需要先进行编码。HARQ信息可以包括HARQ-ACK信息和HARQ-NACK信息。具体的对于HARQ信息中的HARQ-ACK信息的编码方式可以如下:
若HARQ-ACK信息包含1比特
Figure PCTCN2015074622-appb-000001
根据表1进行编码;若HARQ-ACK信息包含2比特
Figure PCTCN2015074622-appb-000002
根据表2进行编码。
表1
Figure PCTCN2015074622-appb-000003
表2
Figure PCTCN2015074622-appb-000004
其中,
Figure PCTCN2015074622-appb-000005
Qm表示调制阶数,可以表示为在星座调制的时候将包括Qm个比特的一个调制符号映射到一个时频资源上去。x和y表示占位符,用于拉大承载了HARQ-ACK信息或HARQ-NACK信息的调制符号间的距离,以提高译码率。
编码后的HARQ信息还需要根据其传输模式决定是否需要加扰、上变频等其他计算,但总的编码长度不变。设HARQ信息进行比特编码后得到编码后的HARQ信息,终端设备进而对该编码后的HARQ信息进行调制和映射处理。第一步骤,将编码后的HARQ信息进行星座调制成HARQ调制符号。第二步骤,将HARQ调制符号映射到分配的时频资源上去。
在第一步骤中,终端设备可以将1比特的HARQ信息进行编码,得到编码后的HARQ信息,编码长度为Qm个比特,再对编码后的HARQ信息进行星座调制后为1个调制符号;终端设备可以将2比特的HARQ信息进行编码,得到编码后的HARQ信息,编码长度为3*Qm个比特,再对编码后的HARQ信息进行星座调制后为3个调制符号。
在第二步骤中,终端设备可以按照如下规则将调制符号映射到分配的时频资源上去:例如,在一个子帧的两个时隙中,均有HARQ调制符号,并且HARQ调制符号可以映射在解调参考信号(DMRS,Demodulation reference signal)的调制符号的一侧或两侧。
具体地,该映射的顺序可以是在一个子帧的两个时隙中,分别映射解调导频DMRS,即每个时隙可以映射一个DMRS。然后,在剩余的时频资源上映射比特编码后的上行数据,最后按照复用规则将HARQ调制符号依次映射到DMRS两侧。
上述为LTE系统中如何传输HARQ信息的方法。
稀疏码多址接入(SCMA,Sparse Code Multiple Access)是一种非正交的多址接入技术,当然本领域技术人员也可以不把这个技术称之为SCMA,也可以称为其他技术名称。该技术借助码本在相同的传输资源上传输多个不 同的数据流,其中不同的数据流使用的码本不同,从而达到提升资源的利用率。数据流可以来自同一个终端设备也可以来自不同的终端设备。但是,在SCMA系统中终端设备使用同一时频资源,上述传输HARQ信息的方法会导致每个终端设备的HARQ调制符号重叠在一起而无法进行解调。为解决此问题,本发明实施例提出一种传输信息的方法和终端设备,能够准确传输HARQ信息,提高传输的可靠性。
图2是本发明一个实施例的传输信息的方法的示意性流程图。该方法200可以由终端设备执行,该如图2所示,该方法200包括:
S210,终端设备根据码本对编码后的混合自动请求重传HARQ信息进行调制,以生成HARQ调制符号,HARQ调制符号包括至少一个非零HARQ调制符号和一个零HARQ调制符号,码本包括至少两个码字,码字为多维复数向量,码字用于表示比特与至少两个调制符号之间的映射关系;
S220,向网络设备发送HARQ调制符号。
本发明实施例中,通过根据码本对编码后的HARQ信息的进行调制,使得多个终端设备使用同一时频资源进行HARQ信息传输时,能够在网络设备侧进行正确译码。因此,本发明实施例能够在多个终端设备使用同一时频资源的系统中传输HARQ信息,提高传输信息的可靠性。
具体地,作为上述同一时频资源,例如,在以资源单元(RE,Resource Element)为单位的时频资源划分方式下,上述时频资源可以是由多个RE组成的时频资源块(也可以称为时频资源组),并且,该多个RE可以是在时域上的位置相同(即,对应相同的符号)且在频域上的位置相异(即,对应不同子的载波),或者,该多个RE可以是在时域上的位置相异(即,对应不同的符号)且在频域上的位置相同(即,对应相同的子载波),本发明并未特别限定。
可选地,该调制为通过码字进行的调制,该码字为多维复数向量,用于表示编码后的HARQ信息与至少两个调制符号之间的映射关系,映射关系可以理解为直接映射关系,该至少两个调制符号包括至少一个零调制符号和至少一个非零调制符号。
可选地,该终端设备根据码本对编码后的HARQ信息进行调制,包括:
终端设备以稀疏码分多址SCMA方式,对编码后的HARQ信息进行调制处理。
具体地,稀疏码多址接入(SCMA,Sparse Code Multiple Access)是一种非正交的多址接入技术,当然本领域技术人员也可以不把这个技术称之为SCMA,也可以称为其他技术名称。该技术借助码本在相同的传输资源上传输多个不同的数据流,其中不同的数据流使用的码本不同,从而达到提升资源的利用率。数据流可以来自同一个终端设备也可以来自不同的终端设备。
SCMA采用的码本为两个或两个以上码字的集合,同一个码本的码字可以互不相同。
其中,码字可以为多维复数域向量,其维数为两维或两维以上,用于表示数据与两个或两个以上调制符号之间的映射关系,该调制符号包括至少一个零调制符号和至少一个非零调制符号,数据可以为二进制比特数据或者多元数据可选的,零调制符号和非零调制符号的关系可以为零调制符号个数不少于非零调制符号个数。
码本由两个或两个以上的码字组成。码本可以表示一定长度的数据的可能的数据组合与码本中码字的映射关系,映射关系可以是直接的映射关系。
SCMA技术通过将数据流中的数据按照一定的映射关系直接映射为码本中的码字即多维复数向量,实现数据在多个资源单元上的扩展发送。这里的数据可以是二进制比特数据也可以是多元数据,多个资源单元可以是时域、频域、空域、时频域、时空域、时频空域的资源单元。
文中的特征序列与码本相对应,由零元素和1元素组成,零元素表示所对应的码本中码字在该零元素相应位置的元素全为零,1元素表示所对应的码本中码字在该1元素相应位置的元素不全为零或全不为零。两个或两个以上的特征序列组成特征矩阵。应理解,SCMA只是一个名称,业界也可以用其他名称来表示该技术。
SCMA采用的码字可以具有一定稀疏性,比如说码字中的零元素数量可以不少于调制符号数量,以便于接收端可以利用多用户检测技术来进行较低复杂度的译码。这里,以上列举的零元素数量与调制符号的关系仅为稀疏性一个示例性说明,本发明并不限定于此,零元素数量与非零元素数量的比例可以根据需要任意设定。
作为上述通信系统100的一例,可以列举该SCMA系统,在该系统100中,多个用户复用同一个时频资源块进行数据传输。每个资源块由若干资源RE组成,这里的RE可以是OFDM技术中的子载波-符号单元,也可以是其 它空口技术中时域或频域的资源单元。例如,在一个包含L个终端设备的SCMA系统中,可用资源分成若干正交的时频资源块,每个资源块含有U个RE,其中,该U个RE可以是在时域上的位置相同。当终端设备#L发送数据时,首先将待发送数据分成S比特大小的数据块,通过查找码本(由网络设备确定并下发给该终端设备)将每个数据块映射成一组包括U个调制符号的调制符号序列X#L={X#L1,X#L2,…,X#LU},序列中的每个调制符号对应资源块中一个RE,然后根据调制符号生成信号波形。对于S比特大小的数据块,每个码本含有2S个不同的调制符号组,对应2S种可能的数据块。
上述码本也可以称为SCMA码本是SCMA码字集合,SCMA码字是一种信息比特到调制符号的映射关系。即,SCMA码本为上述映射关系的集合。
另外,在SCMA中,每个终端设备所对应的组调制符号X#k={X#k1,X#k2,…,X#kL}中,至少一个符号为零符号,并且,至少一个符号为非零符号。即,针对一个终端设备的数据,在L个RE中,只有部分RE(至少一个RE)承载有该终端设备的数据。
图3示出了以6个数据流复用4个资源单元作为举例的SCMA的比特映射处理(或者说,编码处理)的示意图,该示意图为二分图。如图3所示,6个数据流组成一个分组,4个资源单元组成一个编码单元。一个资源单元可以为一个子载波,或者为一个RE,或者为一个天线端口。
在图3中,数据流和资源单元之间有连线表示至少存在该数据流的一种数据组合经码字映射后会在该资源单元上发送非零的调制符号,而数据流和资源单元之间没有连线则表示该数据流的所有可能的数据组合经码字映射后在该资源单元上发送的调制符号都为零。数据流的数据组合可以按照如下阐述进行理解,例如,二进制比特数据流中,00、01、10、11为所有可能的两比特数据组合。
为了描述方便,用s1至s6依次表示图3中6个数据流待发送的数据组合,用x1至x4依次表示图3中4个资源单元上发送的符号。数据流和资源单元之间的连线表示该数据流的数据经扩展后会在该资源单元上发送调制符号,其中,该调制符号可以为零调制符号(与零元素相对应),也可以为非零调制符号(与非零元素相对应),数据流和资源单元之间没有连线则表示该数据流的数据经扩展后不会在该资源单元上发送调制符号。
从图3中可以看出,每个数据流的数据经码字映射后会在两个或两个以 上的资源单元上发送调制符号,同时,每个资源单元发送的符号是来自两个或两个以上的数据流的数据经各自码字映射后的调制符号的叠加。例如数据流3的待发送数据组合s3经码字映射后可能会在资源单元1和资源单元2上发送非零的调制符号,而资源单元3发送的数据x3是数据流2、数据流4和数据流6的待发送数据组合s2、s4和s6分别经各自码字映射后得到的非零调制符号的叠加。由于数据流的数量可以大于资源单元的数量,因而该SCMA系统可以有效地提升网络容量,包括系统的可接入用户数和频谱效率等。
结合以上关于码本和图3的描述,码本中的码字通常具有如下形式:
Figure PCTCN2015074622-appb-000006
而且,相对应的码本通常具有如下形式:
Figure PCTCN2015074622-appb-000007
其中,N为大于1的正整数,可以表示为一个编码单元所包含的资源单元数量,也可以理解为码字的长度;Qm为大于1的正整数,表示码本中包含的码字数量,可以理解为调制阶数,当然本领域技术人员可以叫做其他名称,例如4阶调制时Qm为4;q正整数,且1≤q≤Qm;码本和码字所包含的元素cn,q为复数,cn,q数学上可以表示为:
cn,q∈{0,α*exp(j*β)},1≤n≤N,1≤q≤Qm
α和β可以为任意实数,N和Qm可以为正整数。
码本中的码字可以和数据形成一定映射关系,例如码本中的码字可以与二进制数据流的两比特数据组合形成如下映射关系。
例如,“00”可以对应码字1,即
Figure PCTCN2015074622-appb-000008
“01”可以对应码字2,即
Figure PCTCN2015074622-appb-000009
“10”可以对应码字3,即
Figure PCTCN2015074622-appb-000010
“11”可以对应码字4,即
Figure PCTCN2015074622-appb-000011
结合上述图3,当数据流与资源单元之间有连线时,数据流对应的码本和码本中的码字应具有如下特点:码本中至少存在一个码字在相应的资源单元上发送非零的调制符号,例如,数据流3和资源单元1之间有连线,则数据流3对应的码本至少有一个码字满足c1,q≠0,1≤q≤Qm
当数据流与资源单元之间没有连线时,数据流对应的码本和码本中的码字应具有如下特征:码本中所有码字在相应的资源单元上发送为零的调制符号,例如,数据流3和资源单元3之间没有连线,则数据流3对应的码本中的任意码字满足c3,q=0,1≤q≤Qm
综上,当调制阶数为4时,上述图3中数据流3对应的码本可以具有如下形式和特征:
Figure PCTCN2015074622-appb-000012
其中,cn,q=α*exp(j*β),1≤n≤2,1≤q≤4,α和β可以为任意实数,对任意q,1≤q≤4,c1,q和c2,q不同时为零,且至少存在一组q1和q2,1≤q1,q2≤4,使得
Figure PCTCN2015074622-appb-000013
Figure PCTCN2015074622-appb-000014
举例地,如果数据流3的数据s3为“10”,则根据前述映射规则,该数据组合映射为码字即4维复数向量:
Figure PCTCN2015074622-appb-000015
进一步地,在SCMA系统中,二分图也可以用特征矩阵来表示。特征矩阵可以具有如下形式:
Figure PCTCN2015074622-appb-000016
其中,rn,m表示该特征矩阵中的元素,m和n为自然数,且1≤n≤N,1≤m≤M,N行分别表示一个编码单元中的N个资源单元,M列分别表示复用的数据流数量。虽然特征矩阵可以用通用的形式表达,但是特征矩阵可以具有如下特征:
(1)特征矩阵中的元素rn,m∈{0,1},1≤n≤N,1≤m≤M,其中,rn,m=1可以表示以对应的二分图解释,第m个数据流与资源单元n之间有连线,也可以理解该第m个数据流至少存在一种数据组合经码字映射为非零的调制符号;rn,m=0可以表示以对应的二分图解释,第m个数据流与资源单元n之间没有连线,也可以理解该第m个数据流的所有可能的数据组合经码字都映射为零调制符号;
(2)进一步可选的,特征矩阵中的0元素的数目可以不少于1元素的数目,从而体现稀疏编码的特性。
同时,特征矩阵中的列可以称为特征序列。并且该特征序列可以具有如下表达形式:
Figure PCTCN2015074622-appb-000017
因此,特征矩阵也可以认为是由一系列特征序列组成的矩阵。
结合上述对特征矩阵的特征描述,对于图3中给出的示例,相应的特征矩阵可以表示为:
Figure PCTCN2015074622-appb-000018
而图3中的数据流3使用的码本
Figure PCTCN2015074622-appb-000019
对应的特征序列可以表示为:
Figure PCTCN2015074622-appb-000020
由此可以认为,码本对应特征序列的关系是一对一的关系,即一个码本唯一地对应一个特征序列;而特征序列对应码本的关系可以是一对多的关系,即一个特征序列对应一个或一个以上的码本。因此特征序列可以理解为:特征序列与码本相对应,由零元素和1元素组成,零元素的位置表示所对应的码本中码字在该零元素相应位置的元素全为零,1元素表示所对应的码本中码字在该1元素相应位置的元素不全为零或全不为零。特征序列和码本之间的对应关系可以由以下两个条件确定:
(1)码本中的码字与对应的特征序列具有的总元素数量相同;
(2)对于特征序列中任何一个数值为1的元素位置,都能在对应的码本中至少找到一个码字,使得该码字在相同位置上的元素不为零;对于特征序列中任何一个数值为零的元素位置,对应的码本中所有码字在相同位置上的元素都为零.
还应理解,在SCMA系统中,可以直接表示和存储码本,例如存储上文中的码本或码本中的各个码字,或者仅存储码字中对应特征序列元素为1的位置上的元素等。因而,在应用本发明时,需要假设SCMA系统中的基站和用户设备都可以存储预先设计的以下部分或全部内容:
(1)一个或多个SCMA特征矩阵:
Figure PCTCN2015074622-appb-000021
其中rn,m∈{0,1},1≤n≤N,1≤m≤M,M和N均为大于1的整数,其中M表示复用的数据流数量,N大于1的正整数,可以表示为一个编码单元所含有的资源单元的数量,也可以理解表示为码字的长度;
(2)一个或多个SCMA特征序列:
Figure PCTCN2015074622-appb-000022
其中1≤m≤M;
(3)一个或多个SCMA码本:
Figure PCTCN2015074622-appb-000023
其中Qm≥2,Qm可以为该码本对应的调制阶数,每个码本可以对应一种调制阶数,其中,N大于1的正整数,可以表示为一个编码单元所含有的资源单元的数量,也可以理解表示为码字的长度。
应理解,以上列举的SCMA系统仅为适用本发明的传输信息的方法和装置的通信系统的一例,本发明并不限定于此,其他的能够使终端设备在同一时段复用相同的时频资源进行传输信息的通信系统均落入本发明的保护范围内。
为了便于理解和说明,在以下实施例中,在未特别说明的情况下,以在该SCMA系统中的应用为例,对本发明实施例的数据处理的方法进行说明。
另外,在本发明实施例中,上述调制的过程可以和现有的SCMA系统中的调制过程类似,这里,为了避免赘述,省略其详细说明。由于SCMA系统对于码本的稀疏性要求,因此,在经S110的调制过程而生成的各终端设备所对应的调制符号序列中共包括U个符号(对应U个RE),其中的V个符号为非零符号。
为方便描述,本发明实施例中的时频资源可以包括L个资源单元,该L个资源单元RE可以是在时域上的位置相同(即,对应相同的符号)且在频域上的位置相异(即,对应不同子的载波)。
可选地,该调制过程可以为通过码字进行,该码字为多维复数向量,用于表示编码后的HARQ信息与至少两个调制符号之间的映射关系,该至少两个调制符号包括至少一个零调制符号和至少一个非零调制符号。
应理解,本发明实施例中的终端设备可以为需要发送HARQ信息的终端设备。该目标终端设备可以为多个需要发送HARQ信息的终端设备中的任一个,为方便描述,本发明实施例仅对一个目标终端设备进行描述,其他需要发送HARQ信息的终端设备也可以进行相应操作。
可选地,码本可以为目标终端设备从网络设备预先定义的码本集中选择的码本,也可以为网络设备分配给目标终端设备的码本,本发明实施例并不限于此。还应理解,在调制过程中,根据的码本不同,生成的调制符号也不相同。
可选地,本发明实施例中对HARQ信息进行比特编码的方法可以与LTE系统中的比特编码的方法相同,也可以采用其他比特编码的方法,本发明实施例并不限于此。该比特编码的过程可以基于表1和表2进行一步编码,也可以集成在其他操作中完成,直接得到编码后的HARQ信息。
具体地,以HARQ-ACK信息为例,若QACK个HARQ-ACK信息进行比特编码,得到QACK组编码后的HARQ信息
Figure PCTCN2015074622-appb-000024
其中,
Figure PCTCN2015074622-appb-000025
为一组编码后的HARQ信息。
应理解,终端设备向网络设备发送HARQ调制符号时,可以将HARQ调制符号进行映射到分配的时频资源上去。本发明实施例中可以进一步划分为两部分。第一步骤,将编码后的HARQ信息进行调制成HARQ调制符号。第二步骤,将HARQ调制符号映射到分配的时频资源上去。
具体地,若系统中的多个终端共用L个RE时,本发明实施例中在发送HARQ调制符号之前,可以包括:
第一步骤,将编码后的HARQ信息根据码本进行调制成L个HARQ调制符号。QACK组编码后的HARQ信息
Figure PCTCN2015074622-appb-000026
调制后得到的QACK个HARQ调制信息
Figure PCTCN2015074622-appb-000027
其中,Xk={Xk,1,Xk,1,...,Xk,L}为按照该用户的码本Ck调制后得到的L个HARQ调制符号。L个HARQ调制符号与L个RE一一对应。
第二步骤,将L个HARQ调制符号映射到分配的时频资源(即L个RE)上。与LTE系统不同的是,L个HARQ调制符号每次映射一个Xk,即每次映射L个HARQ调制符号到对应的L个RE上。应理解,该L个资源单元RE可以是在时域上的位置相同(即,对应相同的符号)且在频域上的位置相异(即,对应不同子的载波)。该映射的规则可以与LTE系统中的映射规则类似,即从最后L行开始映射,对于DMRS两侧的4个符号,依次映射,每次映射到一个符号的L个RE。若还有HARQ调制符号没有映射完成,则向上依次递加L行映射,直到所有HARQ调制符号完成映射。
本发明实施例中,通过根据码本对编码后的HARQ信息的进行调制, 使得多个终端设备使用同一时频资源进行HARQ信息传输时,能够在网络设备侧进行正确译码。因此,本发明实施例能够在多个终端设备使用同一时频资源的系统中传输HARQ信息,提高传输信息的可靠性。
相应地,对于其他需要发送HARQ信息的终端设备,也可以采用上述方法进行调制。本发明实施例仅对其中一个终端设备进行详细描述。
可选地,作为另一实施例,如果调制阶数为K,则编码后的HARQ信息的长度为N×K,其中,K为2的整数倍,N为大于零的正整数,本发明实施例中调制阶数这个名称也可以被称为其他名称,下面不再每个实施例赘述。
具体地,当N=1时,该比特编码的方法与LTE系统中的上述比特编码的方法相同。当N>1时,该比特编码的方法为一种改进的比特编码方法。下面详细描述该种比特编码方法。
可选地,作为另一实施例,若编码前的HARQ信息的长度为1比特,则N为2。
例如,若HARQ-ACK信息包含1比特
Figure PCTCN2015074622-appb-000028
调制阶数K为2,则编码后得到的HARQ-ACK信息可以为4比特
Figure PCTCN2015074622-appb-000029
即N=2;调制阶数K为4,则编码后得到的HARQ-ACK信息可以为8比特
Figure PCTCN2015074622-appb-000030
即N=2;调制阶数K为6,则对HARQ-ACK信息进行编码后得到的HARQ-ACK信息可以为12比特
Figure PCTCN2015074622-appb-000031
即N=2。
可选地,作为另一实施例,若编码前的HARQ信息的长度为2比特,则N为6。
若HARQ-ACK信息包含2比特
Figure PCTCN2015074622-appb-000032
调制阶数K为2,则对HARQ-ACK信息进行编码后得到的编码后的HARQ-ACK信息可以为12比特
Figure PCTCN2015074622-appb-000033
即N=6;若调制阶数K为4时,则对HARQ-ACK信息进行编码后得到24比特
Figure PCTCN2015074622-appb-000034
即N=6;若调制阶数K为6时,则对HARQ-ACK信息进行编码后得到36比特
Figure PCTCN2015074622-appb-000035
即N=6。
与上文中的表1和表2类型,该比特编码的方法可以基于表3和表4进行比特编码。表3为HARQ-ACK信息的长度为1比特时,N为2的情况。 表4为HARQ-ACK信息的长度为2比特时,N为2的情况。
表3
Figure PCTCN2015074622-appb-000036
表4
Figure PCTCN2015074622-appb-000037
其中,
Figure PCTCN2015074622-appb-000038
Qm表示调制阶数,即在映射的时候将Qm个比特调制成的一个调制符号映射到一个时频资源上去。x和y表示占位符,用于拉大承载了HARQ-ACK信息或HARQ-NACK信息的调制符号间的距离,以提高译码率。
本发明实施例中的比特编码方法通过重复的信息比特增加编码长度,增加编码冗余量,拉大HARQ-ACK信息比特之间的距离,能够降低编码带来的误差。
应理解,本发明实施例中N的取值可以根据信道环境的好坏,采用不同的编码长度。若信道环境好,可以采用较少的重复次数;若信道环境差,可以增加重复的次数,以保证HARQ-ACK信息的传输可靠性。
图4是本发明另一实施例的传输信息的方法的示意性流程图。该方法400应用于包括至少两个终端设备的通信系统,该至少两个终端设备使用同一时频资源进行信息传输,该方法400包括:
S410,终端设备对编码后的混合自动请求重传HARQ信息进行调制生成HARQ调制符号;
S420,终端设备接收映射资源指示信息,映射资源指示信息用于指示分配给终端设备对HARQ调制符号进行映射的映射资源信息;
S430,终端设备根据映射资源指示信息对HARQ调制符号进行资源映射。
本发明实施例中,通过改变编码后的HARQ信息的映射方式,根据网 络设备的指示信息指示的资源对HARQ调制符号进行资源映射,使得多个终端设备使用同一时频资源进行信息传输时,能够映射到不同的资源上去。因此,本发明实施例能够在多个终端设备使用同一时频资源的系统中传输HARQ信息,提高传输信息的可靠性。
在S410的实现过程中,HARQ信息在调制之前可以进行编码处理。
具体地,作为上述同一时频资源,例如,在以资源单元(RE,Resource Element)为单位的时频资源划分方式下,上述时频资源可以是由多个RE组成的时频资源块(也可以称为时频资源组),并且,该多个RE可以是在时域上的位置相同(即,对应相同的符号)且在频域上的位置相异(即,对应不同子的载波),或者,该多个RE可以是在时域上的位置相异(即,对应不同的符号)且在频域上的位置相同(即,对应相同的子载波),本发明并未特别限定。
可选地,该调制过程可以为通过星座集进行的调制。
应理解,本发明实施例中的终端设备可以为需要发送HARQ信息的终端设备。该终端设备可以为多个需要发送HARQ信息的终端设备中的任一个,为方便描述,本发明实施例仅对一个终端设备进行描述,其他需要发送HARQ信息的终端设备也可以进行相应操作。
可选地,星座集可以为终端设备从网络设备预先定义的星座集,也可以为网络设备分配给终端设备的星座集,本发明实施例并不限于此。还应理解,在本发明实施例中,不同终端设备可以使用相同的星座集。
可选地,本发明实施例中对HARQ信息进行比特编码的方法可以与LTE系统中的比特编码的方法相同,也可以采用其他比特编码的方法,本发明实施例并不限于此。该比特编码的过程可以基于表1和表2进行一步编码,也可以集成在其他操作中完成,直接得到编码后的HARQ信息。
具体地,以HARQ-ACK信息为例,若QACK个HARQ-ACK信息进行比特编码,得到QACK组编码后的HARQ信息
Figure PCTCN2015074622-appb-000039
其中,
Figure PCTCN2015074622-appb-000040
为一组编码后的HARQ信息。
应理解,终端设备向网络设备发送HARQ调制符号时,可以将HARQ调制符号进行映射到分配的时频资源上去。本发明实施例中可以进一步划分为两部分。第一步骤,将编码后的HARQ信息进行调制成HARQ调制符号。第二步骤,将HARQ调制符号映射到分配的时频资源上去。
第一步骤,将编码后的HARQ信息根据预设的星座集进行星座调制成至少一个HARQ调制符号。具体地,作为一个实施例。若HARQ信息为1比特,则星座调制后可以为1个HARQ调制符号;若HARQ信息为2比特,则星座调制后可以为3个HARQ调制符号,当然本领域技术人员可以知道调制也可以为其他调制方式,不局限于星座调制。
第二步骤,将该至少一个HARQ调制符号映射到分配的时频资源(即子载波)上。应理解,子载波为分配给终端设备子载波。该子载波可以包括至少一个RE。在第一步骤生成的至少一个HARQ调制符号对应目标子载波的至少一个RE。
应理解,不同的终端设备分配的子载波不相同。即每个终端设备分配固定的映射位置。这样,不同的终端设备的HARQ调制符号互相不重叠,能够在网络设备正确解码。
本发明实施例中的第二步骤可以结合图5进行描述。图5以SCMA最大容许六个终端设备接入为例。DMRS符号两侧的固定标号表示一个终端设备的映射位置。例如,在最后一行对应的子载波中,标号为1的四个RE分配给第一个终端设备,同样的,在倒数第7行对应的子载波中,标号为1的四个RE也分配给第一个终端设备。在倒数第二行对应的子载波中,标号为2的四个RE分配给第二个终端设备,在倒数第8行对应的子载波中,标号为2的四个RE也分配给第二个终端设备。以此类推,标号为3、4、5、6的RE分别对应第三个终端设备、第四个终端设备、第五个终端设备和第六个终端设备。六个终端设备从最后一行一次向上排列,每次映射1个调制符号,直至所有终端设备的HARQ信息映射完毕。
应理解,终端设备可以为至少两个终端设备中的需要发送HARQ信息的终端设备中的任一个终端设备。本发明实施例仅对其中一个终端设备进行描述,对于其他需要发送HARQ信息的终端设备也可以采用本发明实施例。
映射资源信息可以为分配给终端设备的子载波的信息。分配给终端设备的子载波的个数与发送的HARQ信息的比特数相关。可选地,作为另一实施例,本发明实施例对映射资源指示信息如何指示分配给终端设备的映射资源信息的方法不做限定,只需要能够指定哪些资源需要分配给终端设备即可。
还应理解,终端设备进行编码的过程和接收映射资源指示信息的过程的先后顺序,本发明实施例并不做限定。对于映射资源指示信息的表现形式, 本发明实施例并不做限定。
可选地,作为另一实施例,映射资源指示信息可以包括至少两个终端设备的标识和至少两个终端设备中的每个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,至少两个终端设备包括终端设备,并且至少两个终端设备的数据传输采用相同的时频资源进行传输。
可选地,作为另一实施例,映射资源指示信息可以包括分配给至少两个终端设备的中的每一个终端设备用于发送HARQ信息的子载波的起始位置信息和至少两个终端设备的中的每一个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,至少两个终端设备包括终端设备,并且至少两个终端设备的数据传输采用相同的时频资源进行传输。
可选地,作为另一实施例,映射资源指示信息可以包括至少两个终端设备的标识和至少两个终端设备的个数信息和至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信号的比特个数,至少两个终端设备包括终端设备,并且至少两个终端设备的数据传输采用相同的时频资源进行传输。
具体地,对于该映射资源指示信息的表现形式,本发明实施例并不做限定。可选地,作为一个实施例,若系统中包括6个终端设备,待发送HARQ信息的终端设备有3个,目标终端设备即为该3个待发送HARQ信息的终端设备中的一个终端设备。指示信息可以表示为101100。指示信息的六个比特位分别对应六个终端设备,即终端设备0、1、2、3、4、5、6。其中比特位为1的终端设备0、终端设备2和终端设备3表示需要发送HARQ信息。指示信息还可以包括每个待发送HARQ信息的终端设备的HARQ信息的比特个数。例如,指示信息可以包括2比特,1比特和1比特。表示终端设备0需要发送的HARQ信息为2比特,终端设备2需要发送的HARQ信息为1比特,终端设备3需要发送的HARQ信息为1比特。
可选地,作为另一实施例,映射资源指示信息可以表示为201100。映射资源指示信息的六个比特位分别对应六个终端设备,即终端设备0、1、2、3、4、5、6。其中比特位为1的终端设备0、终端设备2和终端设备3表示需要发送HARQ信息。指示信息还可以包括每个待发送HARQ信息的终端设备的HARQ信息的比特个数。例如,指示信息可以包括2比特,1比特和1比特。指示信息中的第一位2表示终端设备0需要发送的HARQ信息为2比 特,第三位1表示终端设备2需要发送的HARQ信息为1比特,第四位1表示终端设备3需要发送的HARQ信息为1比特。
根据映射资源指示信息中的至少两个终端设备的标识和至少两个终端设备的个数信息,可以确定分配给终端设备的资源的位置信息。
具体地,根据映射资源指示信息,确定分配给终端设备的资源(子载波)的位置信息的过程在36.212标准中可以如下:
Figure PCTCN2015074622-appb-000041
其中,Ue_id为至少两个终端设备的标识,UE_NUM为至少两个终端设备的个数信息,r为信道交织矩阵中的行索引(从上往下依次为0,1,2,3…),R′xum为信道交织矩阵的行个数(信道交织模块中作为输入的输入序列为g 0,g 1,g 2,...,g H′-1,
Figure PCTCN2015074622-appb-000042
Figure PCTCN2015074622-appb-000043
其中,H′为数据和信道质量指示(Channel Quality Indication,CQI)的调制符号个数,Q'RI为RANK Index(秩指示)的调制符号个数,复用后该子帧内总的调制符号个数为H"=H′+Q'RI,定义
Figure PCTCN2015074622-appb-000044
为信道交织矩阵的列数,矩阵从左往右索引依次为0,1,2,…,Cmux-1,其中,
Figure PCTCN2015074622-appb-000045
为该子帧中PUSCH信道可用的符号个数),Q′KCA为输入的ACK/NACK调制符号个数,cACK为信道交织矩阵的列索引,即为ACK/NACK信息应该放置的列的位置,
Figure PCTCN2015074622-appb-000046
为信道交织矩阵中的第r行第cACK列的调制符号,ColumnSet(j)如表5所示,表示第j列的列索引。
表5 插入HARQ-ACK信息的列设置(Column set for Insertion of rank information)
循环前缀配置 列设置
标准 {2,3,8,9}
扩展 {1,2,6,7}
可选地,作为另一实施例,Ue_id和UE_NUM可以基于Format 1A进行表示,也可以基于Format 2B/2C进行表示,本发明实施例并不限于此。
可选地,作为另一实施例,Ue_id和UE_NUM可以为4比特,也可以为8比特,本发明实施例并不限于此。
例如,基于Format 1A的修改,指示信息可以为ACK/NACK组信息(group information),ACK/NACK group information可以包括UE_id(4比特)和UE_NUM(4比特)。
可选地,作为另一实施例,映射资源指示信息可以包括分配给终端设备的子载波的起始位置信息和分配给终端设备的子载波的个数信息。
例如,基于Format 1A的修改,指示信息可以为ACK/NACK资源(resource),其中,ACK/NACK resource可以包括start re_idx(11比特)和total re_num(11比特)。start re_idx表示分配给目标终端设备的至少一个子载波的起始位置信息,total re_num表示分配给目标终端设备的子载波的个数信息。
可选地,作为另一实施例,该方法还可以包括:终端设备还可以发送数据,该数据在除分配给至少两个终端设备用于发送HARQ信息的资源单元上发送。在实现过程中,终端设备在映射数据过程中,可以避开给至少两个终端设备用于发送HARQ信息的资源单元,或者,直接打孔打掉给至少两个终端设备用于发送HARQ信息的资源单元上的数据。
应理解,本发明实施例中网络设备可以根据调度信息获知当前上行子帧调度频带内需要发送上行HARQ信息的终端设备,并向终端设备发送映射资源指示信息。该映射资源指示信息可以包括该终端设备需要发送的HARQ信息的个数和其他终端设备需要发送的HARQ信息的个数。可选地,作为另一实施例,该映射资源指示信息还可以包括终端设备的身份识别号码(ID,IDentity)。这样,终端设备可以确定在当前子帧进行编码时需要清空的时频资源。
图6是本发明另一实施例的传输信息的方法的示意性流程图。图6的方法可以由网络设备执行,该方法600包括:
S610,网络设备发送映射资源指示信息,映射资源指示信息用于指示分配给终端设备对混合自动请求重传HARQ调制符号进行映射的映射资源信息;
S620,网络设备接收终端设备根据映射资源指示信息进行资源映射的HARQ调制符号。
本发明实施例中,通过改变编码后的HARQ信息的映射方式,根据网络设备的指示信息指示的资源对HARQ调制符号进行资源映射,使得多个终端设备使用同一时频资源进行信息传输时,能够映射到不同的资源上去。因此,本发明实施例能够在多个终端设备使用同一时频资源的系统中传输HARQ信息,提高传输信息的可靠性。
图6所示的方法与图5的方法相对应,为避免重复,此处不再详细描述。
可选地,作为另一实施例,HARQ调制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
可选地,作为另一实施例,映射资源指示信息包括至少两个终端设备的标识和至少两个终端设备中的每个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,至少两个终端设备包括终端设备,并且至少两个终端设备的数据传输采用相同的时频资源进行传输。
可选地,作为另一实施例,映射资源指示信息包括分配给至少两个终端设备中的每一个终端设备用于发送HARQ信息的子载波的起始位置信息和至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,至少两个终端设备包括终端设备,并且至少两个终端设备的数据传输采用相同的时频资源进行传输。
可选地,作为另一实施例,映射资源指示信息包括至少两个终端设备的标识和至少两个终端设备的个数信息和至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信号的比特个数,至少两个终端设备包括终端设备,并且至少两个终端设备的数据传输采用相同的时频资源进行传输。
可选地,作为另一实施例,本发明实施例还可以包括:终端设备发送数据,发送的数据在除分配给至少两个终端设备用于发送HARQ信息的资源 单元上发送。
图7是本发明一个实施例的传输信息的过程的示意性流程图。图7的过程可以由终端设备执行。该过程包括:
701,将HARQ信息进行比特编码,得到编码后的HARQ信息。
当在PUSCH信道上传输HARQ信息时,该HARQ信息需要先进行编码。HARQ信息可以包括HARQ-ACK信息和HARQ-NACK信息。
具体地,以HARQ-ACK信息为例,若QACK个HARQ-ACK信息进行比特编码,得到QACK组编码后的HARQ信息
Figure PCTCN2015074622-appb-000047
其中,
Figure PCTCN2015074622-appb-000048
为一组编码后的HARQ信息。
如果调制阶数为K,则编码后的HARQ信息的长度为N×K,其中,K为2的整数倍,N为大于零的正整数。
例如,若HARQ-ACK信息包含1比特
Figure PCTCN2015074622-appb-000049
调制阶数K为2,则编码后得到的HARQ-ACK信息可以为2比特
Figure PCTCN2015074622-appb-000050
即N=1;调制阶数K=4,则编码后得到的HARQ-ACK信息可以为4比特
Figure PCTCN2015074622-appb-000051
即N=1;调制阶数K为6,则编码后得到的HARQ-ACK信息可以为6比特
Figure PCTCN2015074622-appb-000052
即N=1。
若HARQ-ACK信息包含2比特
Figure PCTCN2015074622-appb-000053
调制阶数K为2,则编码后得到的HARQ-ACK信息可以为6比特
Figure PCTCN2015074622-appb-000054
即N=3;若调制阶数K为4时,则对HARQ-ACK信息进行编码后得到的编码后的HARQ-ACK信息可以为12比特
Figure PCTCN2015074622-appb-000055
即N=3;若调制阶数K为6,则对HARQ-ACK信息进行编码后得到的编码后的HARQ-ACK信息为18比特
Figure PCTCN2015074622-appb-000056
即N=3。
可选地,作为另一实施例,该比特编码过程中还可以增加编码后的HARQ信息的编码长度。具体地,若HARQ信息为1比特,编码后的HARQ信息可以为
Figure PCTCN2015074622-appb-000057
N为正整数。若HARQ信息为2比特,HARQ信息比特可以为
Figure PCTCN2015074622-appb-000058
N为正整数。通过重复的信息比特增加编码长度,增加编码冗余量,拉大HARQ-ACK信息比特之间的距离,能够降低编码带来的误差。
应理解,本发明实施例中N的取值可以根据信道环境的好坏,采用不同的编码长度。若信道环境好,可以采用较少的重复次数;若信道环境差,可 以增加重复的次数,以保证HARQ-ACK信息的传输可靠性。
例如,若HARQ-ACK信息包含1比特
Figure PCTCN2015074622-appb-000059
调制阶数K为2,则编码后得到的HARQ-ACK信息可以为4比特
Figure PCTCN2015074622-appb-000060
即N=2;调制阶数K为4,则编码后得到的HARQ-ACK信息可以为8比特
Figure PCTCN2015074622-appb-000061
即N=2;调制阶数K为6,则对HARQ-ACK信息进行编码后得到的HARQ-ACK信息可以为12比特
Figure PCTCN2015074622-appb-000062
即N=2。
若HARQ-ACK信息包含2比特
Figure PCTCN2015074622-appb-000063
调制阶数K为2,则对HARQ-ACK信息进行编码后得到的编码后的HARQ-ACK信息可以为8比特
Figure PCTCN2015074622-appb-000064
即N=4;若调制阶数K为4时,则对HARQ-ACK信息进行编码后得到的编码后的HARQ-ACK信息可以为16比特
Figure PCTCN2015074622-appb-000065
即N=4;若调制阶数K为6时,则对HARQ-ACK信息进行编码后得到的编码后的HARQ-ACK信息可以为24比特
Figure PCTCN2015074622-appb-000066
即N=4。
若HARQ-ACK信息包含2比特
Figure PCTCN2015074622-appb-000067
调制阶数K为2,则对HARQ-ACK信息进行编码后得到的编码后的HARQ-ACK信息可以为12比特
Figure PCTCN2015074622-appb-000068
即N=6;若调制阶数K为4时,则对HARQ-ACK信息进行编码后得到24比特
Figure PCTCN2015074622-appb-000069
即N=6;若调制阶数K为6时,则对HARQ-ACK信息进行编码后得到36比特
Figure PCTCN2015074622-appb-000070
即N=6。
702,对编码后的HARQ信息进行星座调制,得到L个HARQ调制符号。
QACK组编码后的HARQ信息
Figure PCTCN2015074622-appb-000071
调制后得到的QACK个HARQ调制信息
Figure PCTCN2015074622-appb-000072
其中,Xk={Xk,1,Xk,1,...,Xk,L}为按照该用户的码本Ck调制后的到的L个HARQ调制符号。L个HARQ调制符号与L个RE一一对应。
703,将L个HARQ调制符号映射到分配的L个资源单元上。
具体地,与LTE系统不同的是,L个HARQ调制符号每次映射一个Xk,即每次映射L个HARQ调制符号到对应的L个RE上。应理解,该L个资源单元RE可以是在时域上的位置相同(即,对应相同的符号)且在频域上 的位置相异(即,对应不同子的载波)。该映射的规则可以与LTE系统中的映射规则类似,即从最后L行开始映射,对于DMRS两侧的4个符号,依次映射,每次映射到一个符号的L个RE。若还有HARQ调制符号没有映射完成,则向上依次递加L行映射,进行与最后L行相同的映射处理,直到所有HARQ调制符号完成映射。
704,向网络设备发送L个调制符号。
本发明实施例中,通过根据码本对编码后的HARQ信息的进行调制,使得多个终端设备使用同一时频资源进行HARQ信息传输时,能够在网络设备侧进行正确译码。因此,本发明实施例能够在多个终端设备使用同一时频资源的系统中传输HARQ信息,提高传输信息的可靠性。
图8是本发明另一实施例的传输信息的过程的示意性流程图。图7的过程可以由终端设备执行,该过程包括:
801,将HARQ信息进行比特编码,得到编码后的HARQ信息。
当在PUSCH信道上传输HARQ信息时,该HARQ信息需要先进行编码。HARQ信息可以包括HARQ-ACK信息和HARQ-NACK信息。
具体地,以HARQ-ACK信息为例,若QACK个HARQ-ACK信息进行比特编码,得到QACK组编码后的HARQ信息
Figure PCTCN2015074622-appb-000073
其中,
Figure PCTCN2015074622-appb-000074
为一组编码后的HARQ信息。
如果调制阶数为K,则编码后的HARQ信息的长度为N×K,其中,K为2的整数倍,N为大于零的正整数。
例如,若HARQ-ACK信息包含1比特
Figure PCTCN2015074622-appb-000075
调制阶数K为2,则编码后得到的HARQ-ACK信息可以为2比特
Figure PCTCN2015074622-appb-000076
即N=1;调制阶数K=4,则编码后得到的HARQ-ACK信息可以为4比特
Figure PCTCN2015074622-appb-000077
即N=1;调制阶数K为6,则编码后得到的HARQ-ACK信息可以为6比特
Figure PCTCN2015074622-appb-000078
即N=1。
若HARQ-ACK信息包含2比特
Figure PCTCN2015074622-appb-000079
调制阶数K为2,则编码后得到的HARQ-ACK信息可以为6比特
Figure PCTCN2015074622-appb-000080
即N=3;若调制阶数K为4时,则对HARQ-ACK信息进行编码后得到的编码后的HARQ-ACK信息可以为12比特
Figure PCTCN2015074622-appb-000081
即N=3;若调制阶数K为6,则对HARQ-ACK信息进行编码后得到的编码后的HARQ-ACK信息为18比特
Figure PCTCN2015074622-appb-000082
即N=3。
可选地,作为另一实施例,该比特编码过程中还可以增加编码后的HARQ信息的编码长度。具体地,若HARQ信息为1比特,编码后的HARQ信息可以为
Figure PCTCN2015074622-appb-000083
N为正整数。若HARQ信息为2比特,编码后的HARQ信息可以为
Figure PCTCN2015074622-appb-000084
N为正整数。通过重复的信息比特增加编码长度,增加编码冗余量,拉大HARQ-ACK信息比特之间的距离,能够降低编码带来的误差。
应理解,本发明实施例中N的取值可以根据信道环境的好坏,采用不同的编码长度。若信道环境好,可以采用较少的重复次数;若信道环境差,可以增加重复的次数,以保证HARQ-ACK信息的传输可靠性。
例如,例如,若HARQ-ACK信息包含1比特
Figure PCTCN2015074622-appb-000085
调制阶数K为2,则编码后得到的HARQ-ACK信息可以为4比特
Figure PCTCN2015074622-appb-000086
即N=2;调制阶数K为4,则编码后得到的HARQ-ACK信息可以为8比特
Figure PCTCN2015074622-appb-000087
即N=2;调制阶数K为6,则对HARQ-ACK信息进行编码后得到的HARQ-ACK信息可以为12比特
Figure PCTCN2015074622-appb-000088
即N=2。
若HARQ-ACK信息包含2比特
Figure PCTCN2015074622-appb-000089
调制阶数K为2,则对HARQ-ACK信息进行编码后得到的编码后的HARQ-ACK信息可以为8比特
Figure PCTCN2015074622-appb-000090
即N=4;若调制阶数K为4时,则对HARQ-ACK信息进行编码后得到的编码后的HARQ-ACK信息可以为16比特
Figure PCTCN2015074622-appb-000091
即N=4;若调制阶数K为6时,则对HARQ-ACK信息进行编码后得到的编码后的HARQ-ACK信息可以为24比特
Figure PCTCN2015074622-appb-000092
即N=4。
若HARQ-ACK信息包含2比特
Figure PCTCN2015074622-appb-000093
调制阶数K为2,则对HARQ-ACK信息进行编码后得到的编码后的HARQ-ACK信息可以为12比特
Figure PCTCN2015074622-appb-000094
即N=6;若调制阶数K为4时,则对HARQ-ACK信息进行编码后得到24比特
Figure PCTCN2015074622-appb-000095
即N=6;若调制阶数K为6时,则对HARQ-ACK信息进行编码后得到36比特
Figure PCTCN2015074622-appb-000096
即N=6。
802,对编码后的HARQ信息进行星座调制,得到HARQ调制符号。
若HARQ信息为1比特,则1个HARQ信息进行编码和星座调制后可以为1个HARQ调制符号;若HARQ信息为2比特,则1个HARQ信息进行编码和星座调制后可以为3个HARQ调制符号。
803,将HARQ调制符号映射到分配给该终端设备的子载波上。
应理解,不同的终端设备分配的子载波不相同。即每个终端设备分配固定的映射位置。这样,不同的终端设备的HARQ调制符号互相不重叠,能够在网络设备正确解码。
以SCMA最大容许六个终端设备接入为例。DMRS符号两侧每个颜色表示一个终端设备的映射位置。六个终端设备从最后一行一次向上排列,每次映射1个调制符号,直至所有终端设备的HARQ信息映射完毕。
具体地,本发明实施例中的步骤703可以结合图5进行描述。图5以SCMA最大容许六个终端设备接入为例。DMRS符号两侧的固定标号表示一个终端设备的映射位置。例如,在最后一行对应的子载波中,标号为1的四个RE分配给第一个终端设备,同样的,在倒数第7行对应的子载波中,标号为1的四个RE也分配给第一个终端设备。在倒数第二行对应的子载波中,标号为2的四个RE分配给第二个终端设备,在倒数第8行对应的子载波中,标号为2的四个RE也分配给第二个终端设备。以此类推,标号为3、4、5、6的RE分别对应第三个终端设备、第四个终端设备、第五个终端设备和第六个终端设备。六个终端设备从最后一行一次向上排列,每次映射1个调制符号,直至所有终端设备的HARQ信息映射完毕。
804,向网络设备发送HARQ调制符号。
本发明实施例中,通过改变HARQ信息比特的映射处理方式,使得多个终端设备使用同一时频资源进行信息传输时,能够分别使用不同的子载波以保证在网络设备侧进行正确译码。因此,本发明实施例能够在多个终端设备使用同一时频资源的系统中传输HARQ信息,提高传输信息的可靠性。
图9是本发明一个实施例的终端设备的示意框图。图9的终端设备可以实现上述图2或图7中的方法和过程,为避免重复,此处不再详细描述。该终端设备90包括:
调制单元91根据码本对编码后的混合自动请求重传HARQ信息进行调 制,以生成HARQ调制符号,HARQ调制符号包括至少一个非零HARQ调制符号和一个零HARQ调制符号,码本包括至少两个码字,码字为多维复数向量,码字用于表示编码后的HARQ信息与至少两个调制符号之间的映射关系;
发送单元92向网络设备发送HARQ调制符号。
本发明实施例中,通过改变HARQ信息比特的映射处理方式,使得多个终端设备使用同一时频资源进行信息传输时,能够在网络设备侧进行正确译码。因此,本发明实施例能够在多个终端设备使用同一时频资源的系统中传输HARQ信息,提高传输信息的可靠性。
可选地,作为另一实施例,本发明实施例中调制单元91生成的HARQ调制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
可选地,作为另一实施例,如果调制阶数为K,则编码后的HARQ信息的长度为N×K,其中,K为2的整数倍,N为大于零的正整数。
可选地,作为另一实施例,若编码前的HARQ信息的长度为1比特,则N为2。
可选地,作为另一实施例,若编码前的HARQ信息的长度为2比特,则N为6。
图10是本发明另一实施例的终端设备的示意框图。图10的终端设备可以实现上述图4或图8中的方法和过程,为避免重复,此处不再详细描述。终端设备1000包括:
调制单元1001对编码后的混合自动请求重传HARQ信息进行调制生成HARQ调制符号;
接收单元1002接收映射资源指示信息,映射资源指示信息用于指示分配给终端设备对HARQ调制符号进行映射的映射资源信息;
映射单元1003根据映射资源指示信息对HARQ调制符号进行资源映射。
发本发明实施例中,通过改变HARQ信息比特的映射处理方式,使得多个终端设备使用同一时频资源进行信息传输时,能够分别使用不同的子载波以保证在网络设备侧进行正确译码。因此,本发明实施例能够在多个终端设备使用同一时频资源的系统中传输HARQ信息,提高传输信息的可靠性。
可选地,作为另一实施例,调制单元生成的HARQ调制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
可选地,作为另一实施例,接收单元接收的映射资源指示信息包括至少两个终端设备的标识和至少两个终端设备中的每个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,至少两个终端设备包括终端设备,并且至少两个终端设备的数据传输采用相同的时频资源进行传输。
可选地,作为另一实施例,接收单元接收的映射资源指示信息包括分配给至少两个终端设备中的每一个终端设备用于发送HARQ信息的子载波的起始位置信息和至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,至少两个终端设备包括终端设备,并且至少两个终端设备的数据传输采用相同的时频资源进行传输。
可选地,作为另一实施例,接收单元接收的映射资源指示信息包括至少两个终端设备的标识和至少两个终端设备的个数信息和至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信号的比特个数,至少两个终端设备包括终端设备,并且至少两个终端设备的数据传输采用相同的时频资源进行传输。
可选地,作为另一实施例,该终端设备1000还可以包括
发送单元1004发送数据,发送的数据在除分配给至少两个终端设备用于发送HARQ信息的资源单元上发送。
图11是本发明一个实施例的网络设备的示意框图。图11的终端设备可以实现上述图6中的方法,为避免重复,此处不再详细描述。网络设备1100包括:
发送单元1101发送映射资源指示信息,映射资源指示信息用于指示分配给终端设备对混合自动请求重传HARQ调制符号进行映射的映射资源信息;
接收单元1102接收终端设备根据映射资源指示信息进行资源映射的HARQ调制符号。
可选地,作为另一实施例,HARQ调制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
可选地,作为另一实施例,发送单元发送的映射资源指示信息包括至少两个终端设备的标识和至少两个终端设备中的每个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,至少两个终端设备包括终端设备,并且至少两个终端设备的数据传输采用相同的时频资源进行传输。
可选地,作为另一实施例,发送单元发送的映射资源指示信息包括分配给至少两个终端设备中的每一个终端设备用于发送HARQ信息的子载波的起始位置信息和至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,至少两个终端设备包括终端设备,并且至少两个终端设备的数据传输采用相同的时频资源进行传输。
可选地,作为另一实施例,发送单元发送的映射资源指示信息包括至少两个终端设备的标识和至少两个终端设备的个数信息和至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信号的比特个数,至少两个终端设备包括终端设备,并且至少两个终端设备的数据传输采用相同的时频资源进行传输。
可选地,作为另一实施例,接收单元1102还用于接收终端设备发送的数据,发送的数据在除分配给至少两个终端设备用于发送HARQ信息的资源单元上发送。
图12是本发明另一实施例的装置的示意框图。如图12所示,装置1200包括:
总线1201;
与总线相连的处理器1202;
与总线相连的存储器1203;
其中,处理器通过总线,调用存储器中存储的程序,以用于根据码本对编码后的混合自动请求重传HARQ信息进行调制,以生成HARQ调制符号,HARQ调制符号包括至少一个非零HARQ调制符号和一个零HARQ调制符号,码本包括至少两个码字,码字为多维复数向量,码字用于表示编码后的HARQ信息与至少两个调制符号之间的映射关系;
用于向网络设备发送HARQ调制符号。
可选地,作为另一实施例,HARQ调制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
可选地,作为另一实施例,如果调制阶数为K,则编码后的HARQ信息的长度为N×K,其中,K为2的整数倍,N为大于零的正整数。
可选地,作为另一实施例,若编码前的HARQ信息的长度为1比特,则N为2。
可选地,作为另一实施例,若编码前的HARQ信息的长度为2比特, 则N为6。
装置1200的接收机可以包括接收电路、功率控制器及天线,并且,装置1200还可以包括发射机,接收机可以包括发射电路、功率控制器及天线。
处理器还可以称为CPU。存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失行随机存取存储器(NVRAM)。具体的应用中,装置1200可以嵌入或者本身可以就是例如移动电话之类的无线通信设备或者网络侧设备等网络设备,还可以包括容纳发射电路和接收电路的载体,以允许装置1200和远程位置之间进行数据发射和接收。发射电路和接收电路可以耦合到天线。装置1200的各个组件通过总线耦合在一起,其中,总线除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚明起见,在图中将各种总线都标为总线1201。具体的不同产品中实现各功能的部件可能与处理单元集成为一体。
处理器可以实现或者执行本发明方法实施例中的公开的各步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。
应理解,在本发明实施例中,该处理器1202可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器1202还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器1203可以包括只读存储器和随机存取存储器,并向处理器1202提供指令和数据。存储器1203的一部分还可以包括非易失性随机存取存储器。例如,存储器1203还可以存储设备类型的信息。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器1202中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块 组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1203,处理器1202读取存储器1203中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本发明实施例中,通过改变HARQ信息比特的映射处理方式,使得多个终端设备使用同一时频资源进行信息传输时,能够在网络设备侧进行正确译码。因此,本发明实施例能够在多个终端设备使用同一时频资源的系统中传输HARQ信息,提高传输信息的可靠性。
图13是本发明另一实施例的装置的示意框图。如图13所示,该装置1300包括:
总线1301;
与总线相连的处理器1302;
与总线相连的存储器1303;
其中,处理器通过总线,调用存储器中存储的程序,以用于对编码后的混合自动请求重传HARQ信息进行调制生成HARQ调制符号;
用于接收映射资源指示信息,映射资源指示信息用于指示分配给终端设备对HARQ调制符号进行映射的映射资源信息;
用于根据映射资源指示信息对HARQ调制符号进行资源映射。
可选地,作为另一实施例,HARQ调制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
可选地,作为另一实施例,映射资源指示信息包括至少两个终端设备的标识和至少两个终端设备中的每个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,至少两个终端设备包括终端设备,并且至少两个终端设备的数据传输采用相同的时频资源进行传输。
可选地,作为另一实施例,映射资源指示信息包括分配给至少两个终端设备中的每一个终端设备用于发送HARQ信息的子载波的起始位置信息和至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,至少两个终端设备包括终端设备,并且至少两个终端设备的数据传输采用相同的时频资源进行传输。
可选地,作为另一实施例,映射资源指示信息包括至少两个终端设备的标识和至少两个终端设备的个数信息和至少两个终端设备中的每一个待发 送HARQ信息的终端设备的待发送HARQ信号的比特个数,至少两个终端设备包括终端设备,并且至少两个终端设备的数据传输采用相同的时频资源进行传输。
可选地,作为另一实施例,处理器还可以用于发送数据,发送的数据在除分配给至少两个终端设备用于发送HARQ信息的资源单元上发送。
装置1300的接收机可以包括接收电路、功率控制器及天线,并且,装置1300还可以包括发射机,接收机可以包括发射电路、功率控制器及天线。
处理器还可以称为CPU。存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失行随机存取存储器(NVRAM)。具体的应用中,装置1300可以嵌入或者本身可以就是例如移动电话之类的无线通信设备或者网络侧设备等网络设备,还可以包括容纳发射电路和接收电路的载体,以允许装置1300和远程位置之间进行数据发射和接收。发射电路和接收电路可以耦合到天线。装置1300的各个组件通过总线耦合在一起,其中,总线除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚明起见,在图中将各种总线都标为总线1301。具体的不同产品中实现各功能的部件可能与处理单元集成为一体。
处理器可以实现或者执行本发明方法实施例中的公开的各步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器,解码器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用解码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。
应理解,在本发明实施例中,该处理器1302可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器1302还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器1303可以包括只读存储器和随机存取存储器,并向处理器1302提供指令和数据。存储器1303的一部分还可以包括非易失性随机存取存储器。例如,存储器1303还可以存储设备类型的信息。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状 态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器1302中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1303,处理器1302读取存储器1303中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本发明实施例中,通过改变HARQ信息比特的映射处理方式,使得多个终端设备使用同一时频资源进行信息传输时,能够分别使用不同的子载波以保证在网络设备侧进行正确译码。因此,本发明实施例能够在多个终端设备使用同一时频资源的系统中传输HARQ信息,提高传输信息的可靠性。
图14是本发明另一实施例的装置的示意框图。如图14所示,该装置1400包括:
总线1401;
与总线相连的处理器1402;
与总线相连的存储器1403;
其中,处理器通过总线,调用存储器中存储的程序,以用于发送映射资源指示信息,映射资源指示信息用于指示分配给终端设备对混合自动请求重传HARQ调制符号进行映射的映射资源信息;
用于接收终端设备根据映射资源指示信息进行资源映射的HARQ调制符号。
可选地,作为另一实施例,HARQ调制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
可选地,作为另一实施例,映射资源指示信息包括至少两个终端设备的标识和至少两个终端设备中的每个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,至少两个终端设备包括终端设备,并且至少两个终端设备的数据传输采用相同的时频资源进行传输。
可选地,作为另一实施例,映射资源指示信息包括分配给至少两个终端设备中的每一个终端设备用于发送HARQ信息的子载波的起始位置信息和至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送 HARQ信息的比特个数,至少两个终端设备包括终端设备,并且至少两个终端设备的数据传输采用相同的时频资源进行传输。
可选地,作为另一实施例,映射资源指示信息包括至少两个终端设备的标识和至少两个终端设备的个数信息和至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信号的比特个数,至少两个终端设备包括终端设备,并且至少两个终端设备的数据传输采用相同的时频资源进行传输。
可选地,作为另一实施例,处理器还可以用于接收终端设备发送的数据,发送的数据在除分配给至少两个终端设备用于发送HARQ信息的资源单元上发送。
装置1400的接收机可以包括接收电路、功率控制器及天线,并且,装置1400还可以包括发射机,接收机可以包括发射电路、功率控制器及天线。
处理器还可以称为CPU。存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失行随机存取存储器(NVRAM)。具体的应用中,装置1400可以嵌入或者本身可以就是例如移动电话之类的无线通信设备或者网络侧设备等网络设备,还可以包括容纳发射电路和接收电路的载体,以允许装置1400和远程位置之间进行数据发射和接收。发射电路和接收电路可以耦合到天线。装置1400的各个组件通过总线耦合在一起,其中,总线除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚明起见,在图中将各种总线都标为总线1401。具体的不同产品中实现各功能的部件可能与处理单元集成为一体。
处理器可以实现或者执行本发明方法实施例中的公开的各步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器,解码器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用解码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。
应理解,在本发明实施例中,该处理器1402可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器1402还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器1403可以包括只读存储器和随机存取存储器,并向处理器1302提供指令和数据。存储器1403的一部分还可以包括非易失性随机存取存储器。例如,存储器1403还可以存储设备类型的信息。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器1402中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1403,处理器1402读取存储器1403中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本发明实施例中,通过改变HARQ信息比特的映射处理方式,使得多个终端设备使用同一时频资源进行信息传输时,能够分别使用不同的子载波以保证在网络设备侧进行正确译码。因此,本发明实施例能够在多个终端设备使用同一时频资源的系统中传输HARQ信息,提高传输信息的可靠性。
以上实施例的技术特征可以互相适用,比如某一实施例中的技术特征和描述,为了使申请文件简洁清楚,可以理解适用于其他实施例,在其他实施例不再一一赘述。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但 不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (51)

  1. 一种传输信息的方法,其特征在于,包括:
    终端设备根据码本对编码后的混合自动请求重传HARQ信息进行调制,以生成HARQ调制符号,所述HARQ调制符号包括至少一个非零HARQ调制符号和一个零HARQ调制符号,所述码本包括至少两个码字,所述码字为多维复数向量,所述码字用于表示所述编码后的HARQ信息与至少两个调制符号之间的映射关系;
    向网络设备发送所述HARQ调制符号。
  2. 根据权利要求1所述的方法,其特征在于,所述HARQ调制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
  3. 根据权利要求1或2所述的方法,其特征在于,如果调制阶数为K,则所述编码后的HARQ信息的长度为N×K,其中,K为2的整数倍,N为大于零的正整数。
  4. 根据权利要求3所述的方法,其特征在于,若编码前的HARQ信息的长度为1比特,则N为2。
  5. 根据权利要求3所述的方法,其特征在于,若编码前的HARQ信息的长度为2比特,则N为6。
  6. 一种传输信息的方法,其特征在于,包括:
    终端设备对编码后的混合自动请求重传HARQ信息进行调制生成HARQ调制符号;
    所述终端设备接收映射资源指示信息,所述映射资源指示信息用于指示分配给所述终端设备对所述HARQ调制符号进行映射的映射资源信息;
    所述终端设备根据所述映射资源指示信息对所述HARQ调制符号进行资源映射。
  7. 根据权利要求6所述的方法,其特征在于,所述HARQ调制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
  8. 根据权利要求6或7所述的方法,其特征在于,
    所述映射资源指示信息包括至少两个终端设备的标识和所述至少两个终端设备中的每个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,所述至少两个终端设备包括所述终端设备,并且所述至少两个终端设备的数据传输采用相同的时频资源进行传输。
  9. 根据权利要求6或7所述的方法,其特征在于,
    所述映射资源指示信息包括分配给至少两个终端设备中的每一个终端设备用于发送HARQ信息的子载波的起始位置信息和所述至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,所述至少两个终端设备包括所述终端设备,并且所述至少两个终端设备的数据传输采用相同的时频资源进行传输。
  10. 根据权利要求6或7所述的方法,其特征在于,
    所述映射资源指示信息包括至少两个终端设备的标识和所述至少两个终端设备的个数信息和所述至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信号的比特个数,所述至少两个终端设备包括所述终端设备,并且所述至少两个终端设备的数据传输采用相同的时频资源进行传输。
  11. 根据权利要求8-10中任一项所述的方法,其特征在于,还包括:
    所述终端设备发送数据,所述发送的数据在除分配给所述至少两个终端设备用于发送HARQ信息的资源单元上发送。
  12. 一种传输信息的方法,其特征在于,包括:
    网络设备发送映射资源指示信息,所述映射资源指示信息用于指示分配给终端设备对混合自动请求重传HARQ调制符号进行映射的映射资源信息;
    所述网络设备接收所述终端设备根据所述映射资源指示信息进行资源映射的所述HARQ调制符号。
  13. 根据权利要求12所述的方法,其特征在于,所述HARQ调制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
  14. 根据权利要求12或13所述的方法,其特征在于,
    所述映射资源指示信息包括至少两个终端设备的标识和所述至少两个终端设备中的每个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,所述至少两个终端设备包括所述终端设备,并且所述至少两个终端设备的数据传输采用相同的时频资源进行传输。
  15. 根据权利要求12或13所述的方法,其特征在于,
    所述映射资源指示信息包括分配给至少两个终端设备中的每一个终端设备用于发送HARQ信息的子载波的起始位置信息和所述至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信息的比特个 数,所述至少两个终端设备包括所述终端设备,并且所述至少两个终端设备的数据传输采用相同的时频资源进行传输。
  16. 根据权利要求12或13所述的方法,其特征在于,
    所述映射资源指示信息包括至少两个终端设备的标识和所述至少两个终端设备的个数信息和所述至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信号的比特个数,所述至少两个终端设备包括所述终端设备,并且所述至少两个终端设备的数据传输采用相同的时频资源进行传输。
  17. 根据权利要求14-16中任一项所述的方法,其特征在于,还包括:
    所述网络设备接收所述终端设备发送的数据,所述发送的数据在除分配给所述至少两个终端设备用于发送HARQ信息的资源单元上发送。
  18. 一种终端设备,其特征在于,包括:
    调制单元,用于根据码本对编码后的混合自动请求重传HARQ信息进行调制,以生成HARQ调制符号,所述HARQ调制符号包括至少一个非零HARQ调制符号和一个零HARQ调制符号,所述码本包括至少两个码字,所述码字为多维复数向量,所述码字用于表示所述编码后的HARQ信息与至少两个调制符号之间的映射关系;
    发送单元,用于向网络设备发送所述HARQ调制符号。
  19. 根据权利要求18所述的终端设备,其特征在于,所述调制单元生成的所述HARQ调制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
  20. 根据权利要求18或19所述的终端设备,其特征在于,如果调制阶数为K,则所述编码后的HARQ信息的长度为N×K,其中,K为2的整数倍,N为大于零的正整数。
  21. 根据权利要求20所述的终端设备,其特征在于,若编码前的HARQ信息的长度为1比特,则N为2。
  22. 根据权利要求20所述的终端设备,其特征在于,若编码前的HARQ信息的长度为2比特,则N为6。
  23. 一种终端设备,其特征在于,包括:
    调制单元,用于对编码后的混合自动请求重传HARQ信息进行调制生成HARQ调制符号;
    接收单元,用于接收映射资源指示信息,所述映射资源指示信息用于指示分配给所述终端设备对所述HARQ调制符号进行映射的映射资源信息;
    映射单元,用于根据所述映射资源指示信息对所述HARQ调制符号进行资源映射。
  24. 根据权利要求23所述的终端设备,其特征在于,所述调制单元生成的所述HARQ调制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
  25. 根据权利要求23或24所述的终端设备,其特征在于,
    所述接收单元接收的所述映射资源指示信息包括至少两个终端设备的标识和所述至少两个终端设备中的每个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,所述至少两个终端设备包括所述终端设备,并且所述至少两个终端设备的数据传输采用相同的时频资源进行传输。
  26. 根据权利要求23或24所述的终端设备,其特征在于,
    所述接收单元接收的所述映射资源指示信息包括分配给至少两个终端设备中的每一个终端设备用于发送HARQ信息的子载波的起始位置信息和所述至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,所述至少两个终端设备包括所述终端设备,并且所述至少两个终端设备的数据传输采用相同的时频资源进行传输。
  27. 根据权利要求23或24所述的终端设备,其特征在于,
    所述接收单元接收的所述映射资源指示信息包括至少两个终端设备的标识和所述至少两个终端设备的个数信息和所述至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信号的比特个数,所述至少两个终端设备包括所述终端设备,并且所述至少两个终端设备的数据传输采用相同的时频资源进行传输。
  28. 根据权利要求25-27中任一项所述的终端设备,其特征在于,还包括:
    发送单元,用于发送数据,所述发送的数据在除分配给所述至少两个终端设备用于发送HARQ信息的资源单元上发送。
  29. 一种网络设备,其特征在于,包括:
    发送单元,用于发送映射资源指示信息,所述映射资源指示信息用于指示分配给终端设备对混合自动请求重传HARQ调制符号进行映射的映射资 源信息;
    接收单元,用于接收所述终端设备根据所述映射资源指示信息进行资源映射的所述HARQ调制符号。
  30. 根据权利要求29所述的网络设备,其特征在于,所述HARQ调制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
  31. 根据权利要求29或30所述的网络设备,其特征在于,
    所述发送单元发送的所述映射资源指示信息包括至少两个终端设备的标识和所述至少两个终端设备中的每个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,所述至少两个终端设备包括所述终端设备,并且所述至少两个终端设备的数据传输采用相同的时频资源进行传输。
  32. 根据权利要求29或30所述的网络设备,其特征在于,
    所述发送单元发送的所述映射资源指示信息包括分配给至少两个终端设备中的每一个终端设备用于发送HARQ信息的子载波的起始位置信息和所述至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,所述至少两个终端设备包括所述终端设备,并且所述至少两个终端设备的数据传输采用相同的时频资源进行传输。
  33. 根据权利要求29或30所述的网络设备,其特征在于,
    所述发送单元发送的所述映射资源指示信息包括至少两个终端设备的标识和所述至少两个终端设备的个数信息和所述至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信号的比特个数,所述至少两个终端设备包括所述终端设备,并且所述至少两个终端设备的数据传输采用相同的时频资源进行传输。
  34. 根据权利要求31-33中任一项所述的网络设备,其特征在于,所述接收单元,还用于接收所述终端设备发送的数据,所述发送的数据在除分配给所述至少两个终端设备用于发送HARQ信息的资源单元上发送。
  35. 一种装置,其特征在于,包括:
    总线;
    与所述总线相连的处理器;
    与所述总线相连的存储器;
    其中,所述处理器通过所述总线,调用所述存储器中存储的程序,以用于根据码本对编码后的混合自动请求重传HARQ信息进行调制,以生成 HARQ调制符号,所述HARQ调制符号包括至少一个非零HARQ调制符号和一个零HARQ调制符号,所述码本包括至少两个码字,所述码字为多维复数向量,所述码字用于表示所述编码后的HARQ信息与至少两个调制符号之间的映射关系;
    用于向网络设备发送所述HARQ调制符号。
  36. 根据权利要求35所述的装置,其特征在于,所述HARQ调制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
  37. 根据权利要求35或36所述的装置,其特征在于,如果调制阶数为K,则所述编码后的HARQ信息的长度为N×K,其中,K为2的整数倍,N为大于零的正整数。
  38. 根据权利要求37所述的装置,其特征在于,若编码前的HARQ信息的长度为1比特,则N为2。
  39. 根据权利要求37所述的装置,其特征在于,若编码前的HARQ信息的长度为2比特,则N为6。
  40. 一种装置,其特征在于,包括:
    总线;
    与所述总线相连的处理器;
    与所述总线相连的存储器;
    其中,所述处理器通过所述总线,调用所述存储器中存储的程序,以用于对编码后的混合自动请求重传HARQ信息进行调制生成HARQ调制符号;
    用于接收映射资源指示信息,所述映射资源指示信息用于指示分配给所述终端设备对所述HARQ调制符号进行映射的映射资源信息;
    用于根据所述映射资源指示信息对所述HARQ调制符号进行资源映射。
  41. 根据权利要求40所述的装置,其特征在于,所述HARQ调制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
  42. 根据权利要求40或41所述的装置,其特征在于,
    所述映射资源指示信息包括至少两个终端设备的标识和所述至少两个终端设备中的每个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,所述至少两个终端设备包括所述终端设备,并且所述至少两个终端设备的数据传输采用相同的时频资源进行传输。
  43. 根据权利要求40或41所述的装置,其特征在于,
    所述映射资源指示信息包括分配给至少两个终端设备中的每一个终端设备用于发送HARQ信息的子载波的起始位置信息和所述至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,所述至少两个终端设备包括所述终端设备,并且所述至少两个终端设备的数据传输采用相同的时频资源进行传输。
  44. 根据权利要求40或41所述的装置,其特征在于,
    所述映射资源指示信息包括至少两个终端设备的标识和所述至少两个终端设备的个数信息和所述至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信号的比特个数,所述至少两个终端设备包括所述终端设备,并且所述至少两个终端设备的数据传输采用相同的时频资源进行传输。
  45. 根据权利要求42-44中任一项所述的装置,其特征在于,所述处理器还用于发送数据,所述发送的数据在除分配给所述至少两个终端设备用于发送HARQ信息的资源单元上发送。
  46. 一种装置,其特征在于,包括:
    总线;
    与所述总线相连的处理器;
    与所述总线相连的存储器;
    其中,所述处理器通过所述总线,调用所述存储器中存储的程序,以用于发送映射资源指示信息,所述映射资源指示信息用于指示分配给终端设备对混合自动请求重传HARQ调制符号进行映射的映射资源信息;
    用于接收所述终端设备根据所述映射资源指示信息进行资源映射的所述HARQ调制符号。
  47. 根据权利要求46所述的装置,其特征在于,所述HARQ调制符号被映射到解调参考信号DMRS的调制符号一侧或两侧。
  48. 根据权利要求46或47所述的装置,其特征在于,
    所述映射资源指示信息包括至少两个终端设备的标识和所述至少两个终端设备中的每个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,所述至少两个终端设备包括所述终端设备,并且所述至少两个终端设备的数据传输采用相同的时频资源进行传输。
  49. 根据权利要求46或47所述的装置,其特征在于,
    所述映射资源指示信息包括分配给至少两个终端设备中的每一个终端设备用于发送HARQ信息的子载波的起始位置信息和所述至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信息的比特个数,所述至少两个终端设备包括所述终端设备,并且所述至少两个终端设备的数据传输采用相同的时频资源进行传输。
  50. 根据权利要求46或47所述的装置,其特征在于,
    所述映射资源指示信息包括至少两个终端设备的标识和所述至少两个终端设备的个数信息和所述至少两个终端设备中的每一个待发送HARQ信息的终端设备的待发送HARQ信号的比特个数,所述至少两个终端设备包括所述终端设备,并且所述至少两个终端设备的数据传输采用相同的时频资源进行传输。
  51. 根据权利要求48-50中任一项所述的装置,其特征在于,所述处理器还用于接收所述终端设备发送的数据,所述发送的数据在除分配给所述至少两个终端设备用于发送HARQ信息的资源单元上发送。
PCT/CN2015/074622 2015-03-19 2015-03-19 传输信息的方法、终端设备、网络设备和装置 WO2016145664A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15885047.9A EP3264659B1 (en) 2015-03-19 2015-03-19 Information transmission method, terminal device, network device and device
PCT/CN2015/074622 WO2016145664A1 (zh) 2015-03-19 2015-03-19 传输信息的方法、终端设备、网络设备和装置
CN201580030584.XA CN106464455B (zh) 2015-03-19 2015-03-19 传输信息的方法、终端设备、网络设备和装置
US15/709,019 US10554356B2 (en) 2015-03-19 2017-09-19 Hybrid automatic repeat request (HARQ) information transmission method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/074622 WO2016145664A1 (zh) 2015-03-19 2015-03-19 传输信息的方法、终端设备、网络设备和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/709,019 Continuation US10554356B2 (en) 2015-03-19 2017-09-19 Hybrid automatic repeat request (HARQ) information transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2016145664A1 true WO2016145664A1 (zh) 2016-09-22

Family

ID=56918248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074622 WO2016145664A1 (zh) 2015-03-19 2015-03-19 传输信息的方法、终端设备、网络设备和装置

Country Status (4)

Country Link
US (1) US10554356B2 (zh)
EP (1) EP3264659B1 (zh)
CN (1) CN106464455B (zh)
WO (1) WO2016145664A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023632A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 数据处理方法和发送设备

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10547427B2 (en) * 2015-12-24 2020-01-28 Lg Electronics Inc. Method for transmitting demodulation reference signal in wireless communication system that supports narrow band IoT and apparatus for supporting the same
CN110547011B (zh) * 2017-05-03 2024-06-07 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
KR102337012B1 (ko) * 2017-05-04 2021-12-10 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 신호 전송 방법, 네트워크 장치 및 단말기 장치
MX2019014853A (es) * 2017-06-15 2020-02-12 Guangdong Oppo Mobile Telecommunications Corp Ltd Procedimiento para transmitir señal, dispositivo de red y dispositivo terminal.
EP4061073A1 (en) * 2017-07-24 2022-09-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for data transmission, terminal device and network device
CN117914665A (zh) * 2017-08-25 2024-04-19 华为技术有限公司 一种信号传输的方法、设备及系统
SG11201911746YA (en) * 2017-09-30 2020-01-30 Guangdong Oppo Mobile Telecommunications Corp Ltd Channel resource set indication method, terminal device and network device
CN110324123B (zh) * 2018-03-29 2021-09-07 北京紫光展锐通信技术有限公司 Pusch的时域资源分配方法及装置、存储介质、终端
CN110831214B (zh) 2018-08-10 2023-10-13 华为技术有限公司 通信方法和装置
CN110881220B (zh) * 2018-09-06 2022-09-30 大唐移动通信设备有限公司 多传输点trp数据处理的方法、基站、终端及存储介质
CN110933706A (zh) * 2019-12-12 2020-03-27 惠州Tcl移动通信有限公司 一种网络通信设置方法、装置、存储介质及终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404096A (zh) * 2010-09-13 2012-04-04 中兴通讯股份有限公司 混合自动重传请求信息的反馈方法及终端
CN102714580A (zh) * 2009-11-09 2012-10-03 Lg电子株式会社 用于支持多天线传输技术的有效控制信息传输方法和装置
CN103516487A (zh) * 2012-06-18 2014-01-15 中兴通讯股份有限公司 混合自动重传请求确认应答信息的传输方法和终端

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI465085B (zh) * 2006-02-14 2014-12-11 Interdigital Tech Corp Wlan服務中提供可靠多播服務方法及系統
BRPI0708174A2 (pt) * 2006-02-22 2011-05-17 Qualcomm Inc método e equipamento para enviar informações de sinalização por meio de indentificadores de canal
JP4923161B1 (ja) * 2010-09-29 2012-04-25 シャープ株式会社 移動通信システム、移動局装置、基地局装置、通信方法および集積回路
KR101771550B1 (ko) * 2010-10-15 2017-08-29 주식회사 골드피크이노베이션즈 Ack/nack 신호 송수신 방법 및 장치
EP2490362B1 (en) 2011-02-15 2018-04-04 LG Electronics Inc. Method and apparatus for transmitting channel quality control information in wireless access system
US9240853B2 (en) * 2012-11-16 2016-01-19 Huawei Technologies Co., Ltd. Systems and methods for sparse code multiple access
US9635621B2 (en) * 2014-01-17 2017-04-25 Samsung Electronics Co., Ltd. Adaptations of dual connectivity operation to UE capability
US10051617B2 (en) * 2015-03-17 2018-08-14 Motorola Mobility Llc Method and apparatus for scheduling user equipment uplink transmissions on an unlicensed carrier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102714580A (zh) * 2009-11-09 2012-10-03 Lg电子株式会社 用于支持多天线传输技术的有效控制信息传输方法和装置
CN102404096A (zh) * 2010-09-13 2012-04-04 中兴通讯股份有限公司 混合自动重传请求信息的反馈方法及终端
CN103516487A (zh) * 2012-06-18 2014-01-15 中兴通讯股份有限公司 混合自动重传请求确认应答信息的传输方法和终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023632A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 数据处理方法和发送设备

Also Published As

Publication number Publication date
US20180006786A1 (en) 2018-01-04
EP3264659A1 (en) 2018-01-03
US10554356B2 (en) 2020-02-04
EP3264659A4 (en) 2018-08-15
CN106464455A (zh) 2017-02-22
CN106464455B (zh) 2019-11-29
EP3264659B1 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
US11265899B2 (en) Uplink data transmission method and apparatus
WO2016145664A1 (zh) 传输信息的方法、终端设备、网络设备和装置
US11212036B2 (en) Data communication method, device, and system
CN107835063B (zh) 信息传输的方法、发送端设备和接收端设备
US10158404B2 (en) Data transmission method, transmit end device, and receive end device
WO2017000291A1 (zh) 传输上行数据的方法和设备
JP2019506023A (ja) アップリンク制御情報送信の方法およびデバイス
WO2017124844A1 (zh) 确定极化码传输块大小的方法和通信设备
EP3407516B1 (en) Information transmission method and apparatus
WO2016090587A1 (zh) 数据处理的方法、装置和设备
WO2016078082A1 (zh) 传输信息的方法、装置和设备
JP6423790B2 (ja) フィードバック情報を送受信するためのデバイス
WO2016134528A1 (zh) 传输下行控制信息的方法和装置
JP6310459B2 (ja) フィードバック情報を送受信するためのデバイス
WO2017193932A1 (zh) 通信方法及其网络设备、用户设备
WO2017121416A1 (zh) 上行控制信息的发送方法及装置
JP7162024B2 (ja) アップリンクデータ伝送の方法および装置
CN114070529A (zh) 上行控制信息的传输方法、终端、网络设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015885047

Country of ref document: EP