WO2016143893A1 - Synthetic resin stent - Google Patents

Synthetic resin stent Download PDF

Info

Publication number
WO2016143893A1
WO2016143893A1 PCT/JP2016/057773 JP2016057773W WO2016143893A1 WO 2016143893 A1 WO2016143893 A1 WO 2016143893A1 JP 2016057773 W JP2016057773 W JP 2016057773W WO 2016143893 A1 WO2016143893 A1 WO 2016143893A1
Authority
WO
WIPO (PCT)
Prior art keywords
stent
biodegradable
fibers
diameter
synthetic resin
Prior art date
Application number
PCT/JP2016/057773
Other languages
French (fr)
Japanese (ja)
Inventor
修司 福瀧
Original Assignee
株式会社ジェイ・エム・エス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイ・エム・エス filed Critical 株式会社ジェイ・エム・エス
Priority to JP2017505419A priority Critical patent/JP6729552B2/en
Publication of WO2016143893A1 publication Critical patent/WO2016143893A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure

Definitions

  • the present invention relates to a synthetic resin stent such as a biodegradable stent.
  • a treatment for expanding the stenotic part by placing a stent in the stenotic part has been performed.
  • stents for example, metal or synthetic resin stents are known (see, for example, Patent Documents 1 to 3).
  • a metal stent requires a surgical operation when being extracted from the body, a great burden is placed on the patient. Therefore, the use of a metal stent is limited when it is used for a case such as a malignant tumor in which semi-permanent placement or surgery is planned. From such a background, a biodegradable stent as a synthetic resin stent has been proposed as a stent to be used for cases where a metal stent cannot be used.
  • the biodegradable stent is formed into a cylindrical shape by weaving biodegradable fibers, and is decomposed over time in blood vessels and gastrointestinal tracts, so that removal of the stent from the body is unnecessary.
  • Biodegradable stents are expected to reduce the burden on patients by using them particularly for benign stenotic diseases.
  • the stent is placed in the stenosis portion by making the stenosis portion approach the stenosis portion in a reduced diameter state and then expanding the diameter in the stenosis portion.
  • the restoring force to the expanded state is weakened due to, for example, creases in the fibers at the end of the stent.
  • an object of the present invention is to provide a synthetic resin stent that is unlikely to have a low restoring force from a reduced diameter state to an expanded diameter state.
  • the present invention relates to a stent body that is braided into a cylindrical shape by fibers made of synthetic resin and is deformable from a reduced diameter state to an expanded diameter state, and a plurality of the fibers at the end of the stent body.
  • An extension portion extending toward the axially outer side of the main body, a bent portion formed by bending a plurality of the fibers on the proximal end side of the extension portion, and a distal end side of the extension portion
  • a loop portion formed by connecting two end portions of the fibers, and the two fibers connected in the loop portion are extended from the end portion of the stent body to the extension portion.
  • the present invention relates to a synthetic resin stent that intersects at any point.
  • the length L of the extending portion and the diameter R of the stent body in the expanded state satisfy the relationship of 0.2R ⁇ L ⁇ 2R.
  • the diameter of the synthetic resin stent in the loop portion is preferably larger than the diameter of the synthetic resin stent in the main stent body.
  • the synthetic resin stent further includes an extension portion reinforcing member that reinforces the extension portion.
  • FIG. 1 is a perspective view showing a biodegradable stent according to a first embodiment of the present invention. It is an expanded view of the edge part in the state which expanded the diameter of the biodegradable stent which concerns on the said embodiment. It is an expanded view of the edge part in the state expanded after reducing the diameter of the biodegradable stent which concerns on the said embodiment. It is an expanded view of the edge part in the state which expanded the diameter of the conventional biodegradable stent. It is an expanded view of the edge part in the state expanded after reducing the diameter of the conventional biodegradable stent. It is a figure which shows an example of the extension part of the biodegradable stent which concerns on 2nd Embodiment of this invention.
  • FIG. 1 is a perspective view showing a biodegradable stent 1 as a synthetic resin stent according to this embodiment.
  • FIG. 2A is a developed view of the end of the biodegradable stent 1 in an expanded state.
  • the synthetic resin stent of the present embodiment is a biodegradable stent 1 composed of biodegradable fibers. As shown in FIG. 1, the stent body 2, the extended portion 3, the bent portion 4, and the loop portion. 5 is provided.
  • the stent body 2 is braided into a cylindrical shape by the biodegradable fiber 20 and can be deformed between a reduced diameter state and an expanded diameter state. More specifically, the stent body 2 according to the present embodiment has a large number of rhomboid holes formed by meshing the biodegradable fibers 20 in a mesh shape, and formed by the biodegradable fibers 20 on the outer periphery and regularly arranged. Have.
  • the number of biodegradable fibers forming the stent body 2 is 16 in the present embodiment, but is not particularly limited. The number of biodegradable fibers is preferably 16 to 24.
  • the size of the stent body 2 is not particularly limited. For example, in the expanded state, the diameter is 5 to 40 mm and the length is 30 to 150 mm.
  • the biodegradable fiber 20 is not particularly limited as long as it is a biodegradable fiber.
  • the biodegradable fiber 20 is synthesized from monomers such as L-lactic acid, D-lactic acid, DL-lactic acid, ⁇ -caprolactone, ⁇ -butyrolactone, ⁇ -valerolactone, glycolic acid, trimethylene carbonate, and paradioxanone. Examples include homopolymers, copolymers, and blended polymers thereof. In particular, it is preferable to use fibers made of poly-L-lactic acid (PLLA), lactic acid-caprolactone copolymer (P (LA / CL)), or a blend polymer thereof.
  • PLLA poly-L-lactic acid
  • P LA / CL
  • the biodegradable fiber 20 may be a monofilament yarn or a multifilament yarn. Moreover, the biodegradable fiber 20 may be twisted or not.
  • the biodegradable fiber 20 is preferably a monofilament yarn from the viewpoint of strengthening the repulsive force against the pressure applied from the radially outer side of the stent body 2 in the narrowed portion in the living body.
  • the diameter of the biodegradable fiber 20 is preferably 0.05 to 0.7 mm.
  • the diameter of the biodegradable fiber 20 is less than 0.05 mm, the strength of the biodegradable stent 1 tends to decrease.
  • the diameter of the biodegradable fiber 20 exceeds 0.7 mm, the diameter in the contracted state increases, so that the biodegradable stent 1 tends to be difficult to be accommodated in a thin tubular member such as a delivery system.
  • the upper limit of the diameter of the biodegradable fiber 20 is more preferably 0.3 mm from the viewpoint of being housed in a delivery system having a small inner diameter.
  • the lower limit of the diameter of the biodegradable fiber 20 is more preferably 0.2 mm from the viewpoint of maintaining high strength.
  • the extended portion 3 is formed by extending a plurality of biodegradable fibers 20 toward the axially outer side of the stent body 2 at the end of the stent body 2.
  • the extending portion 3 is formed by extending both ends of the biodegradable fiber 20 while being spaced apart from the shaft outward in the axial direction of the stent body 2.
  • the number of loop portions 5 to be formed is not particularly limited, but depends on the number of biodegradable fibers 20 that form the stent body 2 and the extension portion 3. Specifically, in the biodegradable stent 1 according to the present embodiment, since the number of biodegradable fibers 20 forming the stent body 2 is 16, eight loop portions 5 are formed at both ends, respectively.
  • the “plurality of biodegradable fibers 20” means that there are a plurality of biodegradable fibers extending in the axial direction of the stent body 2 while paying attention only to the extension portion 3.
  • the number of biodegradable fibers forming the biodegradable stent 1 may be one or plural. That is, the “plurality of biodegradable fibers 20” constituting the extending portion 3 may be derived from a single biodegradable fiber or derived from a plurality of biodegradable fibers. It may be.
  • the length L of the extension portion 3 and the diameter R of the stent body 2 in the expanded state satisfy the relationship of 0.2R ⁇ L ⁇ 2R.
  • the length L of the extending portion 3 is defined as the length from the bending point in the bending portion 4 described later to the tip of the loop portion 5. Further, the length L and the diameter R preferably satisfy the relationship of 0.5R ⁇ L ⁇ 1.5R, and more preferably satisfy the relationship of 0.8R ⁇ L ⁇ 1.5R.
  • the bent portion 4 is formed by bending the biodegradable fiber 20 on the proximal end side of the extending portion 3.
  • the bent portion 4 is formed at a plurality of locations by bending a plurality (16) of biodegradable fibers 20 forming the stent body 2.
  • the “plurality of biodegradable fibers 20” in the extending portion 3 are also bent by focusing only on the bent portions 4. This means that there are a plurality of biodegradable fibers.
  • the “plurality of biodegradable fibers 20” that respectively form the plurality of bent portions 4 may be derived from a single biodegradable fiber, or may be derived from a plurality of biodegradable fibers. It may be.
  • the loop portion 5 is formed by connecting the end portions of the two biodegradable fibers 20 on the distal end side of the extending portion. More specifically, in the biodegradable stent 1 according to this embodiment, eight loop portions 5 are formed at both ends.
  • the loop portion 5 is configured by portions where the biodegradable fibers 20 are curved at both ends of the biodegradable stent 1.
  • the “two biodegradable fibers 20” means two biodegradable fibers when only the extending portion 3 is focused, and these “two biodegradable fibers 20”. May be derived from a single biodegradable fiber.
  • the diameter of the biodegradable stent 1 in the loop portion 5 is larger than the diameter of the biodegradable stent 1 in the stent body 2. That is, both end sides of the biodegradable stent 1 in the expanded state have a flare shape. Moreover, the two biodegradable fibers 20 connected in the loop part 5 cross in the extension part 3, as shown in FIG.1 and FIG.2A.
  • FIG. 2B is a developed view of the end portion of the biodegradable stent 1 in a state where the diameter is expanded after being reduced.
  • FIG. 3A is a developed view of an end portion of a conventional biodegradable stent 1P in an expanded state.
  • FIG. 3B is a developed view of the end of the conventional biodegradable stent 1P in a state where the diameter is reduced after being reduced.
  • the same configuration as that of the biodegradable stent 1 is denoted by the same reference numeral as that of the biodegradable stent 1, and the description thereof is omitted.
  • the biodegradable stent 1P does not include a bent portion formed on the proximal end side of the extending portion 3P.
  • the two biodegradable fibers 20P connected at the loop portion 5P do not intersect at the extending portion 3P.
  • the biodegradable stent 1 is formed in an elongated cylindrical shape in the reduced diameter state than in the expanded diameter state.
  • the biodegradable stent 1 is accommodated in the delivery system in a reduced state.
  • the biodegradable stent 1 (stent main body 2) is arrange
  • the biodegradable stent 1 is provided with the extending part 3 having a certain length, the diameter of the loop part 5 can be reduced without strongly bending the loop part 5, so that the loop part can be stored even in the delivery system. 5 is difficult to crease at the tip. Further, in the biodegradable stent 1, the two biodegradable fibers 20 connected at the loop portion 5 intersect at the extension portion 3, so that the end of the loop portion 5 is less likely to be folded.
  • the biodegradable stent 1 has a circumferential length C1 of the stent body 2 before the crease and a circumferential length of the stent body 2 after the crease. There is almost no difference with C2.
  • the conventional biodegradable stent 1P is also strongly folded by being reduced in diameter and housed in the delivery system, and a crease is formed at the tip of the loop portion 5P.
  • the circumferential length of the stent body 2 is the length C4 after the end of the loop portion 5P is creased.
  • the length C4 is significantly shorter than the circumferential length C3 of the stent body 2 before the end of the loop portion 5P is folded. Therefore, in the conventional biodegradable stent 1P, the restoring force from the reduced diameter state to the expanded diameter state is greatly reduced by forming a crease at the tip of the loop portion 5P.
  • the manufacturing method of the biodegradable stent 1 is demonstrated.
  • the manufacturing method of the biodegradable stent 1 which concerns on this embodiment is provided with a braiding process and a bending process.
  • the biodegradable fiber 20 is braided into a shape having the stent body 2, the extension portion 3, and the loop portion 5 to obtain a cylindrical braided member.
  • the base end side of the extended portion 3 of the braided member obtained in the braiding step is bent to form the bent portion 4, and two biodegradable fibers connected at the loop portion 5. 20 crosses. In this way, the biodegradable stent 1 is obtained.
  • the biodegradable stent 1 is a stent body 2 braided into a cylindrical shape by the biodegradable fibers 20, and a plurality of biodegradable fibers 20 are formed at the end of the stent body 2.
  • An extension part 3 extending toward the axially outer side of the stent body 2, a bent part 4 formed by bending a plurality of biodegradable fibers 20 on the proximal end side of the extension part 3;
  • the two biodegradable fibers 20 connected in the loop part 5 were crossed in the extension part 3.
  • the biodegradable stent 1 is provided with the extending part 3 having a certain length, the diameter of the loop part 5 can be reduced without strongly bending, so that the loop part can be stored even in the delivery system. 5 is difficult to crease at the tip.
  • the two biodegradable fibers 20 connected at the loop portion 5 intersect at the extension portion 3, so that the end of the loop portion 5 is less likely to be folded. Further, even if the end of the loop portion 5 is creased, there is almost no change in the degree of bending of the biodegradable fiber 20 in the bent portion 4. A force is applied in the direction of increasing the length.
  • the biodegradable stent 1 has almost no difference between the circumferential length C1 of the stent body 2 before the crease and the circumferential length C2 of the stent body 2 after the crease. .
  • the length L of the extending portion 3 and the diameter R of the stent body 2 in the expanded state satisfy the relationship of 0.2R ⁇ L ⁇ 2R.
  • L is less than 0.2R, it becomes easier to crease the tip of the loop portion 5.
  • L is longer than 2R, the biodegradable fibers 20 are easily entangled with each other in the extending portion 3. Therefore, according to the present embodiment, it is possible to provide a biodegradable stent that has a higher restoring force from the reduced diameter state to the expanded diameter state and that is unlikely to be entangled with each other.
  • the diameter of the loop portion 5 is larger than the diameter of the stent body 2 in the state where the diameter of the biodegradable stent 1 is expanded.
  • the biodegradable stent of the second embodiment is different from that of the first embodiment in that it includes an extension portion reinforcing tube 6 as an extension portion reinforcing member.
  • the same components are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the extension part reinforcement tube 6 is formed in the tube shape which has a hollow part with the resin member which has a softness
  • the extension portion reinforcing tube 6 reinforces the extension portion 3 by inserting one biodegradable fiber 20 out of the biodegradable fibers 20 constituting the extension portion 3 into the hollow portion, and extending the extension portion 3. This prevents the protruding portion 3 from bending in the longitudinal direction and the extending portion 3 from spreading in the width direction.
  • the extending portion reinforcing tube 6 is configured to have a size that allows the entire extending portion 3 to be accommodated in the hollow portion, and the entire extending portion 3 is inserted through the hollow portion. May be.
  • the biodegradable stent was configured to include the extension portion reinforcing tube 6. Thereby, since the extension part 3 can prevent bending in a longitudinal direction, a biodegradable stent can be detained in a stenosis part more suitably.
  • extension part 3 can be prevented from spreading in the width direction, the braided biodegradable stent can be prevented from being unraveled in the extension part.
  • the biodegradable stent of the third embodiment is different from that of the second embodiment in that the extension portion reinforcing member is configured by a membrane member.
  • the film-like member 7 as an extension part reinforcement member is made into the extension part 3 so that the two biodegradable fibers 20 which comprise the extension part 3 may be connected. Wrapped. Thereby, the elongate oval shape of the extension part 3 is suitably hold
  • the biodegradable stent according to the fourth embodiment is different from the second embodiment in that the extending portion reinforcing member is formed of a string-like member.
  • the string-like member 8 as an extension part reinforcement member is arrange
  • the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention. included.
  • the two biodegradable fiber 20 connected in the loop part 5 shall cross in the extension part 3, this invention is not limited to this.
  • the two biodegradable fibers connected at the loop part may cross at any point from the end of the stent body to the extension part.
  • the length of the biodegradable fiber 20 extended in the extension part 3 was made uniform, this invention is not limited to this.
  • the length of the biodegradable fiber 20 extending in the extension part 3 is made random, that is, the position of the loop part 5 in the axial direction of the stent body 2 is made random. Can prevent the biodegradable fibers 20 from being entangled with each other.
  • a part of the loop portion 5 may be formed in a hook shape, and the loop portion 5 may be hooked on the mesh of the stent body 2 in a state where the diameter of the stent body 2 is expanded. When the stent body 2 is expanded in diameter, the loop portion 5 formed in a hook shape on the mesh of the stent body 2 is hooked, so that the stent body 2 can be fixed in an expanded diameter.
  • the biodegradable stent according to the present invention may be a self-expanding stent or a balloon expandable stent.
  • the biodegradable stent may be a covered stent.
  • the method of placing the biodegradable stent according to the present invention in a stenotic part in the body there is no limitation on the method of placing the biodegradable stent according to the present invention in a stenotic part in the body.
  • the balloon may assist in expanding the diameter after approaching the stenosis.
  • both end sides of the biodegradable stent in the expanded state are flared, but the present invention is not limited to this.
  • the synthetic resin stent in the expanded state may be formed in a cylindrical shape whose both end sides in the longitudinal direction are larger in diameter than the central portion.
  • the diameter of the synthetic resin stent in the expanded state may be the same in the longitudinal direction.
  • the biodegradable stent 1 is configured by disposing the extending portions 3 at both ends of the stent body 2 in the longitudinal direction.
  • the present invention is not limited thereto.
  • the synthetic resin stent may be configured by arranging an extending portion only at one end portion in the longitudinal direction of the stent body.
  • one extending portion reinforcing tube 6 is disposed in the extending portion 3, but the present invention is not limited to this. That is, each of the two biodegradable fibers may be inserted into the extending portion reinforcing tube, and the two extending portion reinforcing tubes may be disposed in the extending portion.
  • the string-like member 8 was arrange
  • the end connection part of the two fibers in the present invention is not particularly limited as long as it is a position where the extension part 3 can be formed.
  • the method for connecting the ends of the two fibers is not particularly limited, and examples thereof include connection using an adhesive and connection via a connection member.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

The objective of the present invention is to provide a synthetic resin stent with which a restoring force from a diametrically contracted state to a diametrically expanded state is not liable to decrease. This synthetic resin stent is provided with: a stent main body 2 which is braided into a cylindrical shape using synthetic resin fibers 20, and which can deform from a diametrically contracted state to a diametrically expanded state; extending portions 3 in which a plurality of the fibers 20 extend at the end portions of the stent main body 2 toward the axial-direction outside of the stent main body 20; bent portions 4 in which the plurality of fibers 20 are formed bent, at the base end sides of the extending portions 3; and loop portions 5 which are formed joining the end portions of two fibers 20 at the distal end sides of the extending portions 3. The two fibers 20 joined by the loop portion 5 intersect one another at any point between the end portion of the stent main body 2 and the extending portion 3.

Description

合成樹脂ステントSynthetic resin stent
 本発明は、生分解性ステント等の合成樹脂ステントに関する。 The present invention relates to a synthetic resin stent such as a biodegradable stent.
 従来、血管や消化管等の生体管路の狭窄性疾患(腫瘍や炎症等)において、狭窄部にステントを留置して、狭窄部を拡張する治療が行われている。ステントとしては、例えば金属製や合成樹脂製のステントが知られている(例えば、特許文献1~3参照)。これらの中でも、金属製のステントは体内から抜去する際に外科手術を必要とするので、患者に多大な負担がかかる。そのため、金属製のステントは、半永久的な留置や外科手術が計画されている悪性腫瘍等の症例に対して使用する場合に用途が限定される。こうした背景から、金属製ステントが使用できない症例に対して使用するステントとして、合成樹脂ステントとしての生分解性ステントが提案されている。 Conventionally, in a stenotic disease (tumor, inflammation, etc.) of a biological tract such as a blood vessel or a digestive tract, a treatment for expanding the stenotic part by placing a stent in the stenotic part has been performed. As stents, for example, metal or synthetic resin stents are known (see, for example, Patent Documents 1 to 3). Among these, since a metal stent requires a surgical operation when being extracted from the body, a great burden is placed on the patient. Therefore, the use of a metal stent is limited when it is used for a case such as a malignant tumor in which semi-permanent placement or surgery is planned. From such a background, a biodegradable stent as a synthetic resin stent has been proposed as a stent to be used for cases where a metal stent cannot be used.
 生分解性ステントは、生分解性の繊維を編むことで円筒状に形成され、血管や消化管内で時間の経過と共に分解されるので、ステントの体内からの抜去が不要である。生分解性ステントは、特に良性の狭窄性疾患に対して用いることで、患者への負担を軽減することが期待されている。 The biodegradable stent is formed into a cylindrical shape by weaving biodegradable fibers, and is decomposed over time in blood vessels and gastrointestinal tracts, so that removal of the stent from the body is unnecessary. Biodegradable stents are expected to reduce the burden on patients by using them particularly for benign stenotic diseases.
特開平09-173469号公報JP 09-173469 A 特開2007-500065号公報JP 2007-500065 A 特開2007-536996号公報JP 2007-536996 A
 ところで、ステントは、一般的に、縮径された状態で狭窄部に接近させてから、狭窄部において拡径させることによって狭窄部に留置する。
 しかし、生分解性ステントは、一度縮径させるとステントの末端の繊維に折り癖がついてしまうこと等によって、拡径された状態への復元力が弱くなってしまう場合があった。
By the way, in general, the stent is placed in the stenosis portion by making the stenosis portion approach the stenosis portion in a reduced diameter state and then expanding the diameter in the stenosis portion.
However, once the diameter of a biodegradable stent is reduced, there is a case where the restoring force to the expanded state is weakened due to, for example, creases in the fibers at the end of the stent.
 従って、本発明は、縮径した状態から拡径した状態への復元力が低くなり難い合成樹脂ステントを提供することを目的とする。 Therefore, an object of the present invention is to provide a synthetic resin stent that is unlikely to have a low restoring force from a reduced diameter state to an expanded diameter state.
 本発明は、合成樹脂製の繊維によって円筒状に編組みされ、縮径した状態から拡径した状態に変形可能なステント本体と、前記ステント本体の端部において、複数本の前記繊維が前記ステント本体の軸方向外側に向かって延出する延出部と、前記延出部の基端側において、複数本の前記繊維が屈曲して形成された屈曲部と、前記延出部の先端側において、2本の前記繊維の端部が繋がれて形成されたループ部と、を備え、前記ループ部において繋がれた2本の前記繊維は、前記ステント本体の端部から前記延出部にかけてのいずれかの箇所において交差する合成樹脂ステントに関する。 The present invention relates to a stent body that is braided into a cylindrical shape by fibers made of synthetic resin and is deformable from a reduced diameter state to an expanded diameter state, and a plurality of the fibers at the end of the stent body. An extension portion extending toward the axially outer side of the main body, a bent portion formed by bending a plurality of the fibers on the proximal end side of the extension portion, and a distal end side of the extension portion A loop portion formed by connecting two end portions of the fibers, and the two fibers connected in the loop portion are extended from the end portion of the stent body to the extension portion. The present invention relates to a synthetic resin stent that intersects at any point.
 また、前記延出部の長さL及び拡径した状態における前記ステント本体の直径Rは、0.2R≦L≦2Rの関係を満たすことが好ましい。 Moreover, it is preferable that the length L of the extending portion and the diameter R of the stent body in the expanded state satisfy the relationship of 0.2R ≦ L ≦ 2R.
 また、拡径した状態において、前記ループ部における合成樹脂ステントの径は、前記ステント本体における合成樹脂ステントの径よりも大きいことが好ましい。 In the expanded state, the diameter of the synthetic resin stent in the loop portion is preferably larger than the diameter of the synthetic resin stent in the main stent body.
 また、合成樹脂ステントは、前記延出部を補強する延出部補強部材を更に備えることが好ましい。 Moreover, it is preferable that the synthetic resin stent further includes an extension portion reinforcing member that reinforces the extension portion.
 本発明によれば、縮径した状態から拡径した状態への復元力が低くなり難い合成樹脂ステントを提供できる。 According to the present invention, it is possible to provide a synthetic resin stent that is unlikely to have a low restoring force from a reduced diameter state to an expanded diameter state.
本発明の第1実施形態に係る生分解性ステントを示す斜視図である。1 is a perspective view showing a biodegradable stent according to a first embodiment of the present invention. 上記実施形態に係る生分解性ステントの、拡径した状態における端部の展開図である。It is an expanded view of the edge part in the state which expanded the diameter of the biodegradable stent which concerns on the said embodiment. 上記実施形態に係る生分解性ステントの、縮径させた後に拡径させた状態における端部の展開図である。It is an expanded view of the edge part in the state expanded after reducing the diameter of the biodegradable stent which concerns on the said embodiment. 従来の生分解性ステントの、拡径した状態における端部の展開図である。It is an expanded view of the edge part in the state which expanded the diameter of the conventional biodegradable stent. 従来の生分解性ステントの、縮径させた後に拡径させた状態における端部の展開図である。It is an expanded view of the edge part in the state expanded after reducing the diameter of the conventional biodegradable stent. 本発明の第2実施形態に係る生分解性ステントの延出部の一例を示す図である。It is a figure which shows an example of the extension part of the biodegradable stent which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る生分解性ステントの延出部の他の例を示す図である。It is a figure which shows the other example of the extension part of the biodegradable stent which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る生分解性ステントの延出部を示す図である。It is a figure which shows the extension part of the biodegradable stent which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る生分解性ステントの延出部を示す図である。It is a figure which shows the extension part of the biodegradable stent which concerns on 4th Embodiment of this invention.
 以下、本発明の合成樹脂ステントの好ましい各実施形態について図面を参照しながら説明する。
 図1は、本実施形態に係る合成樹脂ステントとしての生分解性ステント1を示す斜視図である。また、図2Aは、生分解性ステント1の、拡径した状態における端部の展開図である。
 本実施形態の合成樹脂ステントは、生分解性繊維により構成される生分解性ステント1であり、図1に示すように、ステント本体2と、延出部3と、屈曲部4と、ループ部5と、を備える。
Hereinafter, preferred embodiments of the synthetic resin stent of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing a biodegradable stent 1 as a synthetic resin stent according to this embodiment. FIG. 2A is a developed view of the end of the biodegradable stent 1 in an expanded state.
The synthetic resin stent of the present embodiment is a biodegradable stent 1 composed of biodegradable fibers. As shown in FIG. 1, the stent body 2, the extended portion 3, the bent portion 4, and the loop portion. 5 is provided.
 ステント本体2は、生分解性繊維20によって円筒状に編組みされ、縮径した状態と拡径した状態との間で変形可能である。より詳しくは、本実施形態に係るステント本体2は、生分解性繊維20が網目状に編み込まれて形成され、外周に生分解性繊維20によって形成され且つ規則正しく配列される菱形の空孔を多数有する。ステント本体2を形成する生分解性繊維の本数は、本実施形態においては16本であるが特に限定されない。生分解性繊維の本数は、好ましくは16~24本である。ステント本体2の大きさは特に限定されないが、例えば、拡径した状態において、直径が5~40mmであり、長さが30~150mmである。 The stent body 2 is braided into a cylindrical shape by the biodegradable fiber 20 and can be deformed between a reduced diameter state and an expanded diameter state. More specifically, the stent body 2 according to the present embodiment has a large number of rhomboid holes formed by meshing the biodegradable fibers 20 in a mesh shape, and formed by the biodegradable fibers 20 on the outer periphery and regularly arranged. Have. The number of biodegradable fibers forming the stent body 2 is 16 in the present embodiment, but is not particularly limited. The number of biodegradable fibers is preferably 16 to 24. The size of the stent body 2 is not particularly limited. For example, in the expanded state, the diameter is 5 to 40 mm and the length is 30 to 150 mm.
 生分解性繊維20としては、生分解性の繊維であれば特に限定されない。生分解性繊維20としては、L-乳酸、D-乳酸、DL-乳酸、ε-カプロラクトン、γ-ブチロラクトン、δ―バレロラクトン、グリコール酸、トリメチレンカーボネート、パラジオキサノン等のモノマーから合成されるホモポリマー、コポリマー、及びそれらのブレンドポリマーが挙げられる。特に、ポリ-L-乳酸(PLLA)又は乳酸-カプロラクトン共重合体(P(LA/CL))、もしくはこれらのブレンドポリマーからなる繊維を用いることが好ましい。 The biodegradable fiber 20 is not particularly limited as long as it is a biodegradable fiber. The biodegradable fiber 20 is synthesized from monomers such as L-lactic acid, D-lactic acid, DL-lactic acid, ε-caprolactone, γ-butyrolactone, δ-valerolactone, glycolic acid, trimethylene carbonate, and paradioxanone. Examples include homopolymers, copolymers, and blended polymers thereof. In particular, it is preferable to use fibers made of poly-L-lactic acid (PLLA), lactic acid-caprolactone copolymer (P (LA / CL)), or a blend polymer thereof.
 生分解性繊維20は、モノフィラメント糸であってもよいし、マルチフィラメント糸であってもよい。また、生分解性繊維20は、撚りをかけていてもよいし、かけていなくてもよい。生体内の狭窄部においてステント本体2の径方向外側から加わる圧力に対する反発力を強くする観点から、生分解性繊維20は、モノフィラメント糸であることが好ましい。 The biodegradable fiber 20 may be a monofilament yarn or a multifilament yarn. Moreover, the biodegradable fiber 20 may be twisted or not. The biodegradable fiber 20 is preferably a monofilament yarn from the viewpoint of strengthening the repulsive force against the pressure applied from the radially outer side of the stent body 2 in the narrowed portion in the living body.
 生分解性繊維20の直径は、0.05~0.7mmであることが好ましい。生分解性繊維20の直径が0.05mm未満であると、生分解性ステント1の強度が低下する傾向にある。生分解性繊維20の直径が0.7mmを超えると、縮径した状態における径が大きくなることで、デリバリーシステム等の細管状の部材に生分解性ステント1を収納し難くなる傾向にある。生分解性繊維20の直径の上限は、内径が細いデリバリーシステムに収納する観点から、0.3mmであることが更に好ましい。生分解性繊維20の直径の下限は、高い強度を維持する観点から、0.2mmであることがより好ましい。 The diameter of the biodegradable fiber 20 is preferably 0.05 to 0.7 mm. When the diameter of the biodegradable fiber 20 is less than 0.05 mm, the strength of the biodegradable stent 1 tends to decrease. When the diameter of the biodegradable fiber 20 exceeds 0.7 mm, the diameter in the contracted state increases, so that the biodegradable stent 1 tends to be difficult to be accommodated in a thin tubular member such as a delivery system. The upper limit of the diameter of the biodegradable fiber 20 is more preferably 0.3 mm from the viewpoint of being housed in a delivery system having a small inner diameter. The lower limit of the diameter of the biodegradable fiber 20 is more preferably 0.2 mm from the viewpoint of maintaining high strength.
 延出部3は、ステント本体2の端部において、複数本の生分解性繊維20がステント本体2の軸方向外側に向かって延出して形成される。延出部3は、生分解性繊維20の両端側が、ステント本体2の軸方向外側に軸から離隔しつつ延びることで形成される。形成されるループ部5の数は、特に限定されないが、ステント本体2及び延出部3を形成する生分解性繊維20の数に応じて決まる。具体的には、本実施形態に係る生分解性ステント1においては、ステント本体2を形成する生分解性繊維20の数が16本であるので、両端にそれぞれ8箇所のループ部5が形成される。ここでの「複数本の生分解性繊維20」とは、延出部3のみに着目してステント本体2の軸方向に延びる生分解性繊維が複数本存在するという意味である。なお、生分解性ステント1を形成する生分解性繊維の本数は1本であっても複数本であってもよい。つまり、延出部3を構成する「複数本の生分解性繊維20」は、1本の生分解性繊維に由来するものであってもよいし、複数本の生分解性繊維に由来するものであってもよい。 The extended portion 3 is formed by extending a plurality of biodegradable fibers 20 toward the axially outer side of the stent body 2 at the end of the stent body 2. The extending portion 3 is formed by extending both ends of the biodegradable fiber 20 while being spaced apart from the shaft outward in the axial direction of the stent body 2. The number of loop portions 5 to be formed is not particularly limited, but depends on the number of biodegradable fibers 20 that form the stent body 2 and the extension portion 3. Specifically, in the biodegradable stent 1 according to the present embodiment, since the number of biodegradable fibers 20 forming the stent body 2 is 16, eight loop portions 5 are formed at both ends, respectively. The Here, the “plurality of biodegradable fibers 20” means that there are a plurality of biodegradable fibers extending in the axial direction of the stent body 2 while paying attention only to the extension portion 3. Note that the number of biodegradable fibers forming the biodegradable stent 1 may be one or plural. That is, the “plurality of biodegradable fibers 20” constituting the extending portion 3 may be derived from a single biodegradable fiber or derived from a plurality of biodegradable fibers. It may be.
 延出部3の長さL及び拡径した状態におけるステント本体2の直径Rは、0.2R≦L≦2Rの関係を満たす。延出部3の長さLとは、後述する屈曲部4における屈曲点から、ループ部5の先端までの長さとして定義される。また、長さL及び直径Rは、0.5R≦L≦1.5Rの関係を満たすことが好ましく、0.8R≦L≦1.5Rの関係を満たすことがより好ましい。 The length L of the extension portion 3 and the diameter R of the stent body 2 in the expanded state satisfy the relationship of 0.2R ≦ L ≦ 2R. The length L of the extending portion 3 is defined as the length from the bending point in the bending portion 4 described later to the tip of the loop portion 5. Further, the length L and the diameter R preferably satisfy the relationship of 0.5R ≦ L ≦ 1.5R, and more preferably satisfy the relationship of 0.8R ≦ L ≦ 1.5R.
 屈曲部4は、図1及び図2Aに示すように、延出部3の基端側において、生分解性繊維20が屈曲して形成される。屈曲部4は、ステント本体2を形成する複数本(16本)の生分解性繊維20が屈曲することで複数箇所形成される。複数の屈曲部4をそれぞれ形成する「複数本の生分解性繊維20」も、延出部3における「複数本の生分解性繊維20」と同様に、屈曲部4のみに着目して屈曲した生分解性繊維が複数本存在するという意味である。複数の屈曲部4をそれぞれ形成する「複数本の生分解性繊維20」も、1本の生分解性繊維に由来するものであってもよいし、複数本の生分解性繊維に由来するものであってもよい。 As shown in FIGS. 1 and 2A, the bent portion 4 is formed by bending the biodegradable fiber 20 on the proximal end side of the extending portion 3. The bent portion 4 is formed at a plurality of locations by bending a plurality (16) of biodegradable fibers 20 forming the stent body 2. Similarly to the “plurality of biodegradable fibers 20” in the extending portion 3, the “plurality of biodegradable fibers 20” that respectively form the plurality of bent portions 4 are also bent by focusing only on the bent portions 4. This means that there are a plurality of biodegradable fibers. The “plurality of biodegradable fibers 20” that respectively form the plurality of bent portions 4 may be derived from a single biodegradable fiber, or may be derived from a plurality of biodegradable fibers. It may be.
 ループ部5は、図1及び図2Aに示すように、延出部の先端側において、2本の生分解性繊維20の端部が繋がれて形成される。より具体的には、本実施形態に係る生分解性ステント1においては、両端にそれぞれ8箇所のループ部5が形成される。ループ部5は、生分解性ステント1の両端における、生分解性繊維20が湾曲された部分によって構成される。ここでの「2本の生分解性繊維20」とは、延出部3のみに着目した場合における2本の生分解性繊維という意味であって、これら「2本の生分解性繊維20」は1本の生分解性繊維に由来するものであってもよい。 As shown in FIGS. 1 and 2A, the loop portion 5 is formed by connecting the end portions of the two biodegradable fibers 20 on the distal end side of the extending portion. More specifically, in the biodegradable stent 1 according to this embodiment, eight loop portions 5 are formed at both ends. The loop portion 5 is configured by portions where the biodegradable fibers 20 are curved at both ends of the biodegradable stent 1. Here, the “two biodegradable fibers 20” means two biodegradable fibers when only the extending portion 3 is focused, and these “two biodegradable fibers 20”. May be derived from a single biodegradable fiber.
 生分解性ステント1を拡径した状態において、ループ部5における生分解性ステント1の径は、ステント本体2における生分解性ステント1の径よりも大きい。つまり、拡径した状態における生分解性ステント1の両端側は、フレア形状である。
 また、ループ部5において繋がれた2本の生分解性繊維20は、図1及び図2Aに示すように、延出部3において交差する。
In the state in which the diameter of the biodegradable stent 1 is expanded, the diameter of the biodegradable stent 1 in the loop portion 5 is larger than the diameter of the biodegradable stent 1 in the stent body 2. That is, both end sides of the biodegradable stent 1 in the expanded state have a flare shape.
Moreover, the two biodegradable fibers 20 connected in the loop part 5 cross in the extension part 3, as shown in FIG.1 and FIG.2A.
 続いて、図2B、図3A及び図3Bも参照しながら、生分解性ステント1の動作について説明する。図2Bは、生分解性ステント1の、縮径させた後に拡径させた状態における端部の展開図である。図3Aは、従来の生分解性ステント1Pの、拡径した状態における端部の展開図である。図3Bは、従来の生分解性ステント1Pの、縮径させた後に拡径させた状態における端部の展開図である。 Subsequently, the operation of the biodegradable stent 1 will be described with reference to FIGS. 2B, 3A, and 3B. FIG. 2B is a developed view of the end portion of the biodegradable stent 1 in a state where the diameter is expanded after being reduced. FIG. 3A is a developed view of an end portion of a conventional biodegradable stent 1P in an expanded state. FIG. 3B is a developed view of the end of the conventional biodegradable stent 1P in a state where the diameter is reduced after being reduced.
 従来の生分解性ステント1Pについては、生分解性ステント1と同様の構成には生分解性ステント1と同様の符号を付すことで説明を省略し、生分解性ステント1と異なる構成について説明する。生分解性ステント1Pは、延出部3Pの基端側に形成された屈曲部を備えない。また、ループ部5Pにおいて繋がれた2本の生分解性繊維20Pは、延出部3Pにおいて交差しない。 Regarding the conventional biodegradable stent 1P, the same configuration as that of the biodegradable stent 1 is denoted by the same reference numeral as that of the biodegradable stent 1, and the description thereof is omitted. . The biodegradable stent 1P does not include a bent portion formed on the proximal end side of the extending portion 3P. In addition, the two biodegradable fibers 20P connected at the loop portion 5P do not intersect at the extending portion 3P.
 生分解性ステント1は、縮径した状態において、拡径した状態よりも細長い円筒形状に形成される。生分解性ステント1は、縮径した状態でデリバリーシステムに収納される。
 そして、生分解性ステント1(ステント本体2)は、縮径した状態で生体内の狭窄部に配置され、復元力によって拡径する。
The biodegradable stent 1 is formed in an elongated cylindrical shape in the reduced diameter state than in the expanded diameter state. The biodegradable stent 1 is accommodated in the delivery system in a reduced state.
And the biodegradable stent 1 (stent main body 2) is arrange | positioned in the stenosis part in the living body in the state reduced in diameter, and is expanded in diameter by a restoring force.
 ところで、生分解性ステント1は、ある程度の長さを有する延出部3を備えることから、ループ部5の先端を強く折り曲げなくても縮径できるので、デリバリーシステムに収納させた場合でもループ部5の先端に折り癖がつき難い。
 また、生分解性ステント1は、ループ部5において繋がれた2本の生分解性繊維20が延出部3において交差することから、ループ部5の先端に折り癖がより付き難い。
By the way, since the biodegradable stent 1 is provided with the extending part 3 having a certain length, the diameter of the loop part 5 can be reduced without strongly bending the loop part 5, so that the loop part can be stored even in the delivery system. 5 is difficult to crease at the tip.
Further, in the biodegradable stent 1, the two biodegradable fibers 20 connected at the loop portion 5 intersect at the extension portion 3, so that the end of the loop portion 5 is less likely to be folded.
 更に、生分解性ステント1のループ部5の先端に仮に折り癖がついたとしても屈曲部4における生分解性繊維20の屈曲の程度にはほとんど変化は無く、この屈曲部4によって、ステント本体2に対して周の長さを長くする方向に力が加わる。そして、ループ部5において繋がれた2本の生分解性繊維20が交差することにより、ループ部5の先端に仮に折り癖がついたとしても、ステント本体2の端部(屈曲部4)において周の長さはほとんど変化しない。従って、生分解性ステント1は、図2A及図2Bに示すように、折り癖がつく前におけるステント本体2の周の長さC1と折り癖がついた後におけるステント本体2の周の長さC2との間に、ほとんど差はない。 Furthermore, even if the tip of the loop portion 5 of the biodegradable stent 1 is creased, there is almost no change in the degree of bending of the biodegradable fiber 20 in the bent portion 4, and the bent portion 4 allows the stent body to be bent. A force is applied in the direction of increasing the circumferential length relative to 2. Even if the two biodegradable fibers 20 connected in the loop portion 5 cross each other so that a crease is temporarily attached to the tip of the loop portion 5, the end of the stent body 2 (the bent portion 4). The length of the circumference hardly changes. Therefore, as shown in FIGS. 2A and 2B, the biodegradable stent 1 has a circumferential length C1 of the stent body 2 before the crease and a circumferential length of the stent body 2 after the crease. There is almost no difference with C2.
 一方、図3A及び図3Bに示すように、従来の生分解性ステント1Pも、縮径されてデリバリーシステムに収納されることによって強く折り曲げられて、ループ部5Pの先端に折り癖がつく。
 生分解性ステント1Pでは、ステント本体2の周の長さは、ループ部5Pの先端に折り癖がついた後には、ステント本体2の周の長さは長さC4となる。長さC4は、ループ部5Pの先端に折り癖がつく前におけるステント本体2の周の長さC3よりも大幅に短い。従って、従来の生分解性ステント1Pにおいては、ループ部5Pの先端に折り癖がつくことで、縮径した状態から拡径した状態への復元力が大幅に低下する。
On the other hand, as shown in FIG. 3A and FIG. 3B, the conventional biodegradable stent 1P is also strongly folded by being reduced in diameter and housed in the delivery system, and a crease is formed at the tip of the loop portion 5P.
In the biodegradable stent 1P, the circumferential length of the stent body 2 is the length C4 after the end of the loop portion 5P is creased. The length C4 is significantly shorter than the circumferential length C3 of the stent body 2 before the end of the loop portion 5P is folded. Therefore, in the conventional biodegradable stent 1P, the restoring force from the reduced diameter state to the expanded diameter state is greatly reduced by forming a crease at the tip of the loop portion 5P.
 続いて、生分解性ステント1の製造方法について説明する。
 本実施形態に係る生分解性ステント1の製造方法は、編組み工程と、屈曲工程と、を備える。
Then, the manufacturing method of the biodegradable stent 1 is demonstrated.
The manufacturing method of the biodegradable stent 1 which concerns on this embodiment is provided with a braiding process and a bending process.
 編組み工程では、生分解性繊維20を、ステント本体2と、延出部3と、ループ部5と、を有する形状に編み組みすることで円筒状の編組み部材を得る。
 屈曲工程では、編組み工程において得られた編組み部材の延出部3の基端側を屈曲させて屈曲部4を形成し、更に、ループ部5において繋がれた2本の生分解性繊維20を交差させる。このようにして、生分解性ステント1が得られる。
In the braiding step, the biodegradable fiber 20 is braided into a shape having the stent body 2, the extension portion 3, and the loop portion 5 to obtain a cylindrical braided member.
In the bending step, the base end side of the extended portion 3 of the braided member obtained in the braiding step is bent to form the bent portion 4, and two biodegradable fibers connected at the loop portion 5. 20 crosses. In this way, the biodegradable stent 1 is obtained.
 上記実施形態に係る生分解性ステント1によれば、以下の効果が奏される。
 (1)上記実施形態では、生分解性ステント1が、生分解性繊維20によって円筒状に編組みされたステント本体2と、ステント本体2の端部において、複数本の生分解性繊維20がステント本体2の軸方向外側に向かって延出する延出部3と、延出部3の基端側において、複数本の生分解性繊維20が屈曲して形成された屈曲部4と、延出部3の先端側において、2本の生分解性繊維20の端部が繋がれて形成されたループ部5と、を備えるものとした。更に、ループ部5において繋がれた2本の生分解性繊維20を、延出部3において交差させた。
 これにより、生分解性ステント1は、ある程度の長さを有する延出部3を備えることから、ループ部5の先端を強く折り曲げなくても縮径できるので、デリバリーシステムに収納した場合でもループ部5の先端に折り癖がつき難い。また、生分解性ステント1は、ループ部5において繋がれた2本の生分解性繊維20が延出部3において交差することから、ループ部5の先端に折り癖がより付き難い。更に、ループ部5の先端に仮に折り癖がついたとしても屈曲部4における生分解性繊維20の屈曲の程度にはほとんど変化はなく、この屈曲部4によって、ステント本体2に対して周の長さを長くする方向に力が加わる。そして、ループ部5において繋がれた2本の生分解性繊維20が交差することにより、ループ部5の先端に仮に折り癖がついたとしても、ステント本体2の端部(屈曲部4)において周の長さはほとんど変化しない。従って、生分解性ステント1は、折り癖がつく前におけるステント本体2の周の長さC1と折り癖がついた後におけるステント本体2の周の長さC2との間に、ほとんど差はない。以上より、本実施形態によれば、縮径させることによってループ部5の先端に折り癖がつき難く、縮径させることによってループ部5の先端に仮に折り癖がついたとしても、縮径した状態から拡径した状態への復元力が低くなり難い生分解性ステントを提供できる。
According to the biodegradable stent 1 which concerns on the said embodiment, the following effects are show | played.
(1) In the above embodiment, the biodegradable stent 1 is a stent body 2 braided into a cylindrical shape by the biodegradable fibers 20, and a plurality of biodegradable fibers 20 are formed at the end of the stent body 2. An extension part 3 extending toward the axially outer side of the stent body 2, a bent part 4 formed by bending a plurality of biodegradable fibers 20 on the proximal end side of the extension part 3; The loop portion 5 formed by connecting the end portions of the two biodegradable fibers 20 on the distal end side of the protruding portion 3 is provided. Furthermore, the two biodegradable fibers 20 connected in the loop part 5 were crossed in the extension part 3.
Thereby, since the biodegradable stent 1 is provided with the extending part 3 having a certain length, the diameter of the loop part 5 can be reduced without strongly bending, so that the loop part can be stored even in the delivery system. 5 is difficult to crease at the tip. Further, in the biodegradable stent 1, the two biodegradable fibers 20 connected at the loop portion 5 intersect at the extension portion 3, so that the end of the loop portion 5 is less likely to be folded. Further, even if the end of the loop portion 5 is creased, there is almost no change in the degree of bending of the biodegradable fiber 20 in the bent portion 4. A force is applied in the direction of increasing the length. Even if the two biodegradable fibers 20 connected in the loop portion 5 cross each other so that a crease is temporarily attached to the tip of the loop portion 5, the end of the stent body 2 (the bent portion 4). The length of the circumference hardly changes. Therefore, the biodegradable stent 1 has almost no difference between the circumferential length C1 of the stent body 2 before the crease and the circumferential length C2 of the stent body 2 after the crease. . As described above, according to the present embodiment, it is difficult to crease the tip of the loop part 5 by reducing the diameter, and the diameter is reduced even if a crease is temporarily attached to the tip of the loop part 5 by reducing the diameter. It is possible to provide a biodegradable stent that is unlikely to have a low restoring force from the state to the expanded state.
 (2)上記実施形態では、延出部3の長さL及び拡径した状態におけるステント本体2の直径Rが、0.2R≦L≦2Rの関係を満たすものとした。
 Lが0.2R未満の場合、ループ部5の先端に折り癖が更につきやすくなる。一方、Lが2Rよりも長い場合、延出部3において生分解性繊維20同士が絡んでしまいやすくなる。従って、本実施形態によれば、縮径した状態から拡径した状態への復元力がより高く、生分解性繊維20同士が絡み難い生分解性ステントを提供できる。
(2) In the above embodiment, the length L of the extending portion 3 and the diameter R of the stent body 2 in the expanded state satisfy the relationship of 0.2R ≦ L ≦ 2R.
When L is less than 0.2R, it becomes easier to crease the tip of the loop portion 5. On the other hand, when L is longer than 2R, the biodegradable fibers 20 are easily entangled with each other in the extending portion 3. Therefore, according to the present embodiment, it is possible to provide a biodegradable stent that has a higher restoring force from the reduced diameter state to the expanded diameter state and that is unlikely to be entangled with each other.
 (3)上記実施形態では、生分解性ステント1が拡径した状態において、ループ部5における径を、ステント本体2における径よりも大きくした。
 これにより、体内の狭窄部に生分解性ステント1が配置された際に、ループ部5が狭窄部に引っ掛かるので、生分解性ステント1が狭窄部からずれてしまうのを防ぐことができる。
(3) In the above embodiment, the diameter of the loop portion 5 is larger than the diameter of the stent body 2 in the state where the diameter of the biodegradable stent 1 is expanded.
Thereby, when the biodegradable stent 1 is arranged in the stenosis part in the body, the loop part 5 is caught by the stenosis part, so that the biodegradable stent 1 can be prevented from being displaced from the stenosis part.
 次に、本発明の生分解性ステントの第2実施形態につき、図4A及び図4Bを参照しながら説明する。
 第2実施形態の生分解性ステントは、延出部補強部材としての延出部補強チューブ6を備える点で、第1実施形態と異なる。なお、第2実施形態以降の説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
Next, a second embodiment of the biodegradable stent of the present invention will be described with reference to FIGS. 4A and 4B.
The biodegradable stent of the second embodiment is different from that of the first embodiment in that it includes an extension portion reinforcing tube 6 as an extension portion reinforcing member. In the description of the second and subsequent embodiments, the same components are denoted by the same reference numerals, and the description thereof is omitted or simplified.
 第2実施形態では、図4Aに示すように、延出部補強チューブ6は、柔軟性を有する樹脂部材により中空部分を有するチューブ状に形成される。そして、延出部補強チューブ6は、中空部分に延出部3を構成する生分解性繊維20のうちの1本の生分解性繊維20を挿通させることで延出部3を補強し、延出部3が長手方向に屈曲すること、及び延出部3が幅方向に広がってしまうことを防ぐ。 In 2nd Embodiment, as shown to FIG. 4A, the extension part reinforcement tube 6 is formed in the tube shape which has a hollow part with the resin member which has a softness | flexibility. The extension portion reinforcing tube 6 reinforces the extension portion 3 by inserting one biodegradable fiber 20 out of the biodegradable fibers 20 constituting the extension portion 3 into the hollow portion, and extending the extension portion 3. This prevents the protruding portion 3 from bending in the longitudinal direction and the extending portion 3 from spreading in the width direction.
 なお、延出部補強チューブ6は、図4Bに示すように、延出部3全体を中空部分に収容できる程度の大きさに構成し、延出部3全体を中空部分に挿通させて配置してもよい。 As shown in FIG. 4B, the extending portion reinforcing tube 6 is configured to have a size that allows the entire extending portion 3 to be accommodated in the hollow portion, and the entire extending portion 3 is inserted through the hollow portion. May be.
 以上説明した第2実施形態の生分解性ステントによれば、上述の(1)~(3)の効果を奏する他、以下のような効果を奏する。 According to the biodegradable stent of the second embodiment described above, the following effects are obtained in addition to the effects (1) to (3) described above.
 (4)生分解性ステントを、延出部補強チューブ6を含んで構成した。これにより、延出部3が長手方向に屈曲することを防げるので、生分解性ステントをより好適に狭窄部に留置できる。 (4) The biodegradable stent was configured to include the extension portion reinforcing tube 6. Thereby, since the extension part 3 can prevent bending in a longitudinal direction, a biodegradable stent can be detained in a stenosis part more suitably.
 (5)延出部3が幅方向に広がってしまうことを防げるので、編み組みされた生分解性ステントが延出部においてほどけてしまうことを防げる。 (5) Since the extension part 3 can be prevented from spreading in the width direction, the braided biodegradable stent can be prevented from being unraveled in the extension part.
 次に、本発明の生分解性ステントの第3実施形態につき、図5を参照しながら説明する。第3実施形態の生分解性ステントは、延出部補強部材が膜状部材により構成される点で、第2実施形態と異なる。 Next, a third embodiment of the biodegradable stent of the present invention will be described with reference to FIG. The biodegradable stent of the third embodiment is different from that of the second embodiment in that the extension portion reinforcing member is configured by a membrane member.
 第3実施形態では、延出部補強部材としての膜状部材7は、図5に示すように、延出部3を構成する二本の生分解性繊維20をつなぐように延出部3に巻きつけられる。これにより、延出部3の長細い長円状の形状が好適に保持される。 In 3rd Embodiment, as shown in FIG. 5, the film-like member 7 as an extension part reinforcement member is made into the extension part 3 so that the two biodegradable fibers 20 which comprise the extension part 3 may be connected. Wrapped. Thereby, the elongate oval shape of the extension part 3 is suitably hold | maintained.
 第3実施形態の生分解性ステントによれば、上述の(1)~(5)の効果を奏する。 According to the biodegradable stent of the third embodiment, the effects (1) to (5) described above are exhibited.
 次に、本発明の生分解性ステントの第4実施形態につき、図6を参照しながら説明する。第4実施形態の生分解性ステントは、延出部補強部材が紐状部材により構成される点で、第2実施形態と異なる。 Next, a fourth embodiment of the biodegradable stent of the present invention will be described with reference to FIG. The biodegradable stent according to the fourth embodiment is different from the second embodiment in that the extending portion reinforcing member is formed of a string-like member.
 第4実施形態では、延出部補強部材としての紐状部材8は、図6に示すように、延出部3の基端部における二本の生分解性繊維20の交差部分に配置され、二本の生分解性繊維20を結んでいる。これにより、延出部3が幅方向に広がってしまうことを防いでいる。 In 4th Embodiment, as shown in FIG. 6, the string-like member 8 as an extension part reinforcement member is arrange | positioned in the cross | intersection part of the two biodegradable fibers 20 in the base end part of the extension part 3, Two biodegradable fibers 20 are connected. Thereby, the extension part 3 is prevented from spreading in the width direction.
 第4実施形態の生分解性ステントによれば、上述の(1)~(3)、(5)の効果を奏する。 According to the biodegradable stent of the fourth embodiment, the effects (1) to (3) and (5) described above are exhibited.
 以上、本発明の合成樹脂ステントの好ましい各実施形態につき説明したが、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 上記実施形態においては、ループ部5において繋がれた2本の生分解性繊維20が、延出部3において交差するものとしたが、本発明はこれに限定されない。本発明では、ループ部において繋がれた2本の生分解性繊維は、ステント本体の端部から延出部にかけてのいずれかの箇所において交差すればよい。
The preferred embodiments of the synthetic resin stent of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention. included.
In the said embodiment, although the two biodegradable fiber 20 connected in the loop part 5 shall cross in the extension part 3, this invention is not limited to this. In the present invention, the two biodegradable fibers connected at the loop part may cross at any point from the end of the stent body to the extension part.
 また、上記実施形態においては、延出部3において延出する生分解性繊維20の長さを均一にしたが、本発明はこれに限定されない。本発明では、延出部3において延出する生分解性繊維20の長さをランダムにする、つまり、ステント本体2の軸方向におけるループ部5の位置をランダムにすることで、延出部3において生分解性繊維20同士が絡んでしまうのを防ぐことができる。また、一部のループ部5をフック状に形成し、ステント本体2が拡径している状態で、ステント本体2の網目にループ部5が引っ掛るようにしてもよい。ステント本体2が拡径している状態で、ステント本体2の網目にフック状に形成されたループ部5が引っ掛ることで、ステント本体2の径を拡径した状態に固定できる。 Moreover, in the said embodiment, although the length of the biodegradable fiber 20 extended in the extension part 3 was made uniform, this invention is not limited to this. In the present invention, the length of the biodegradable fiber 20 extending in the extension part 3 is made random, that is, the position of the loop part 5 in the axial direction of the stent body 2 is made random. Can prevent the biodegradable fibers 20 from being entangled with each other. Further, a part of the loop portion 5 may be formed in a hook shape, and the loop portion 5 may be hooked on the mesh of the stent body 2 in a state where the diameter of the stent body 2 is expanded. When the stent body 2 is expanded in diameter, the loop portion 5 formed in a hook shape on the mesh of the stent body 2 is hooked, so that the stent body 2 can be fixed in an expanded diameter.
 また、本発明に係る生分解性ステントは、自己拡張型ステントであってもよいし、バルーン拡張型のステントであってもよい。また、生分解性ステントは、カバードステントであってもよい。 The biodegradable stent according to the present invention may be a self-expanding stent or a balloon expandable stent. The biodegradable stent may be a covered stent.
 また、本発明に係る生分解性ステントを体内の狭窄部に留置する方法についても限定されない。例えば、本発明に係る生分解性ステントは、自己拡張性を有する場合であったとしても、狭窄部に接近した後に拡径するのを、バルーンによって補助してもよい。 Also, there is no limitation on the method of placing the biodegradable stent according to the present invention in a stenotic part in the body. For example, even if the biodegradable stent according to the present invention has a self-expanding property, the balloon may assist in expanding the diameter after approaching the stenosis.
 また、上記実施形態においては、拡径した状態における生分解性ステントの両端側がフレア形状であるものとしたが、本発明はこれに限定されない。例えば、拡径した状態における合成樹脂ステントは、長手方向の両端側が中央部よりも径の大きい円筒状に形成されていてもよい。また、拡径した状態における合成樹脂ステントは、長手方向に亘って径が同じであってもよい。 In the above embodiment, both end sides of the biodegradable stent in the expanded state are flared, but the present invention is not limited to this. For example, the synthetic resin stent in the expanded state may be formed in a cylindrical shape whose both end sides in the longitudinal direction are larger in diameter than the central portion. Moreover, the diameter of the synthetic resin stent in the expanded state may be the same in the longitudinal direction.
 また、上述した各実施形態では、ステント本体2の長手方向の両端部に延出部3を配置して生分解性ステント1を構成したが、これに限らない。即ち、ステント本体の長手方向の一端部にのみ延出部を配置して合成樹脂ステントを構成してもよい。 Further, in each of the above-described embodiments, the biodegradable stent 1 is configured by disposing the extending portions 3 at both ends of the stent body 2 in the longitudinal direction. However, the present invention is not limited thereto. In other words, the synthetic resin stent may be configured by arranging an extending portion only at one end portion in the longitudinal direction of the stent body.
 また、第2実施形態では、1本の延出部補強チューブ6を延出部3に配置したが、これに限らない。即ち、2本の生分解性繊維それぞれを延出部補強チューブに挿通し、2つの延出部補強チューブを延出部に配置してもよい。 In the second embodiment, one extending portion reinforcing tube 6 is disposed in the extending portion 3, but the present invention is not limited to this. That is, each of the two biodegradable fibers may be inserted into the extending portion reinforcing tube, and the two extending portion reinforcing tubes may be disposed in the extending portion.
 また、第4実施形態では、紐状部材8を延出部3の基端部に配置したが、これに限らない。即ち、紐状部材を、例えば、延出部の長手方向の中央部に配置し、延出部が所定の幅以上に広がらないように2本の生分解性繊維を結びつけてもよい。 Moreover, in 4th Embodiment, although the string-like member 8 was arrange | positioned in the base end part of the extension part 3, it is not restricted to this. That is, for example, the string-like member may be disposed at the center in the longitudinal direction of the extending portion, and the two biodegradable fibers may be combined so that the extending portion does not expand beyond a predetermined width.
 また、本発明における2本の繊維の端部接続部は、延出部3を形成することができる位置であれば特に限定されない。2本の繊維の端部の接続方法も特に限定されず、例えば接着剤による接続、接続部材を介した接続等が挙げられる。 Further, the end connection part of the two fibers in the present invention is not particularly limited as long as it is a position where the extension part 3 can be formed. The method for connecting the ends of the two fibers is not particularly limited, and examples thereof include connection using an adhesive and connection via a connection member.
 1…生分解性ステント(合成樹脂ステント)
 2…ステント本体
 20…生分解性繊維
 3…延出部
 4…屈曲部
 5…ループ部
 6…延出部補強チューブ(延出部補強部材)
 7…膜状部材(延出部補強部材)
 8…紐状部材(延出部補強部材)
1 ... Biodegradable stent (synthetic resin stent)
DESCRIPTION OF SYMBOLS 2 ... Stent main body 20 ... Biodegradable fiber 3 ... Extension part 4 ... Bending part 5 ... Loop part 6 ... Extension part reinforcement tube (extension part reinforcement member)
7: Membrane member (extension part reinforcing member)
8 ... string-like member (extension part reinforcement member)

Claims (4)

  1.  合成樹脂製の繊維によって円筒状に編組みされ、縮径した状態から拡径した状態に変形可能なステント本体と、
     前記ステント本体の端部において、複数本の前記繊維が前記ステント本体の軸方向外側に向かって延出する延出部と、
     前記延出部の基端側において、複数本の前記繊維が屈曲して形成された屈曲部と、
     前記延出部の先端側において、2本の前記繊維の端部が繋がれて形成されたループ部と、を備え、
     前記ループ部において繋がれた2本の前記繊維は、前記ステント本体の端部から前記延出部にかけてのいずれかの箇所において交差する合成樹脂ステント。
    A stent body that is braided into a cylindrical shape by fibers made of synthetic resin and deformable from a reduced diameter state to an expanded diameter state;
    At the end of the stent body, an extension part in which a plurality of the fibers extend outward in the axial direction of the stent body;
    A bent portion formed by bending a plurality of the fibers on the base end side of the extending portion;
    A loop portion formed by connecting the end portions of the two fibers on the distal end side of the extension portion, and
    A synthetic resin stent in which the two fibers connected in the loop part intersect at any point from the end of the stent body to the extension part.
  2.  前記延出部の長さL及び拡径した状態における前記ステント本体の直径Rは、0.2R≦L≦2Rの関係を満たす請求項1記載の合成樹脂ステント。 The synthetic resin stent according to claim 1, wherein the length L of the extending portion and the diameter R of the stent body in the expanded state satisfy a relationship of 0.2R ≦ L ≦ 2R.
  3.  拡径した状態において、前記ループ部における径は、前記ステント本体における径よりも大きい請求項1又は2記載の合成樹脂ステント。 The synthetic resin stent according to claim 1 or 2, wherein in the expanded state, the diameter of the loop portion is larger than the diameter of the stent body.
  4.  前記延出部を補強する延出部補強部材を更に備える請求項1~3のいずれかに記載の合成樹脂ステント。 The synthetic resin stent according to any one of claims 1 to 3, further comprising an extension portion reinforcing member that reinforces the extension portion.
PCT/JP2016/057773 2015-03-12 2016-03-11 Synthetic resin stent WO2016143893A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017505419A JP6729552B2 (en) 2015-03-12 2016-03-11 Synthetic resin stent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015049514 2015-03-12
JP2015-049514 2015-03-12

Publications (1)

Publication Number Publication Date
WO2016143893A1 true WO2016143893A1 (en) 2016-09-15

Family

ID=56880032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057773 WO2016143893A1 (en) 2015-03-12 2016-03-11 Synthetic resin stent

Country Status (2)

Country Link
JP (1) JP6729552B2 (en)
WO (1) WO2016143893A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007536996A (en) * 2004-05-14 2007-12-20 ボストン サイエンティフィック リミテッド Method for reducing stent weld profile, stent with reduced weld profile, and closed wire configuration
JP2009000523A (en) * 2007-06-20 2009-01-08 Lab Perouse Tubular prosthesis and associated kit
US20130245745A1 (en) * 2012-03-16 2013-09-19 Microvention, Inc. Stent and stent delivery device
US20140277573A1 (en) * 2013-03-15 2014-09-18 Merit Medical Systems, Inc. Esophageal stent

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066730A (en) * 1996-08-28 1998-03-10 Sumitomo Bakelite Co Ltd Luminal stent and its manufacture
FR2847155B1 (en) * 2002-11-20 2005-08-05 Younes Boudjemline METHOD FOR MANUFACTURING A MEDICAL IMPLANT WITH ADJUSTED STRUCTURE AND IMPLANT OBTAINED THEREBY
DE102014115337A1 (en) * 2014-10-21 2016-04-21 Nasib Dlaikan-Campos Stent for splinting a vein and system for placing a stent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007536996A (en) * 2004-05-14 2007-12-20 ボストン サイエンティフィック リミテッド Method for reducing stent weld profile, stent with reduced weld profile, and closed wire configuration
JP2009000523A (en) * 2007-06-20 2009-01-08 Lab Perouse Tubular prosthesis and associated kit
US20130245745A1 (en) * 2012-03-16 2013-09-19 Microvention, Inc. Stent and stent delivery device
US20140277573A1 (en) * 2013-03-15 2014-09-18 Merit Medical Systems, Inc. Esophageal stent

Also Published As

Publication number Publication date
JP6729552B2 (en) 2020-07-22
JPWO2016143893A1 (en) 2017-12-21

Similar Documents

Publication Publication Date Title
US10092426B2 (en) Non-foreshortening, axial tension constrainable stent
JP5559063B2 (en) Stent design for use with one or more trigger wires
JP6479493B2 (en) High flexibility stent
JP6806090B2 (en) Synthetic resin stent
EP3189816B1 (en) Synthetic resin stent
EP2777642B1 (en) Braided stent with expansion ring
EP2301486B1 (en) Vascular stent
RU2314759C2 (en) Implant for occluding blood circulation
JP6543948B2 (en) Biodegradable stent
JP4920274B2 (en) Vascular stent
WO2016143893A1 (en) Synthetic resin stent
JP2019063522A (en) Stent
JP2017029387A (en) Biodegradable stent
JP7039957B2 (en) Stent
JP7451876B2 (en) stent
WO2011132634A1 (en) Stent
EP3677227B1 (en) Stent and medical device comprising same
US20230233346A1 (en) Stent with multiple knitting patterns
JP6880976B2 (en) Stent
JP2017169818A (en) Stent and stent delivery system
JP6734097B2 (en) Highly flexible stent
JP2021078620A (en) Stent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505419

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761858

Country of ref document: EP

Kind code of ref document: A1