WO2016143548A1 - Vinylidene-fluoride-based resin composition, molded resin object, resin film, and protective sheet - Google Patents

Vinylidene-fluoride-based resin composition, molded resin object, resin film, and protective sheet Download PDF

Info

Publication number
WO2016143548A1
WO2016143548A1 PCT/JP2016/055769 JP2016055769W WO2016143548A1 WO 2016143548 A1 WO2016143548 A1 WO 2016143548A1 JP 2016055769 W JP2016055769 W JP 2016055769W WO 2016143548 A1 WO2016143548 A1 WO 2016143548A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
vinylidene fluoride
mass
pvdf
resin composition
Prior art date
Application number
PCT/JP2016/055769
Other languages
French (fr)
Japanese (ja)
Inventor
日高 知之
鈴木 康弘
和元 鈴木
民人 五十嵐
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Publication of WO2016143548A1 publication Critical patent/WO2016143548A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a vinylidene fluoride resin composition
  • a vinylidene fluoride resin composition comprising a vinylidene fluoride resin, a colorant, and a finely divided tetrafluoroethylene resin as a crystal nucleating agent, and a resin molded article formed from the resin composition
  • the present invention relates to a resin film and a protective sheet obtained from the resin film.
  • PVDF Vinylidene fluoride resin
  • a resin molded body formed by including PVDF for example, a resin film, an unstretched film or a stretched film is used depending on the application. Among them, the unstretched film is more flexible than the stretched film, and the elongation is also high. In recent years, the use as a back sheet for a solar cell module has increased.
  • An unstretched film is manufactured through cooling after the polymer is extruded in a molten state, so that molecular structures such as molecular chains and crystals are affected by the take-up direction (winding direction, machine direction). May be fixed.
  • mechanical property values such as strength and elongation differ in the MD direction (Machine Direction) and the TD direction (Transverse Direction) (hereinafter referred to as the width direction).
  • anisotropy of mechanical property values or “anisotropy”
  • the unstretched film is likely to change in the molecular structure fixed in the film over time, and as a result, the anisotropy may change (that is, the anisotropy increases).
  • This problem of anisotropy with time in particular, controls the quality of PVDF film after shipping, designs the performance of products using PVDF film, and ensures the reliability of the product life. Above, it is a big problem.
  • a large amount of coloring agents titanium oxide etc.
  • Patent Document 1 describes a white resin film containing titanium oxide as a colorant formed from a vinylidene fluoride resin composition containing polymethyl methacrylate.
  • a crystal nucleating agent As a general description of the product. However, the substance name and content of the crystal nucleating agent are not specifically described.
  • tetrafluoroethylene-based resin (hereinafter sometimes abbreviated as “PTFE”) powder is known to work as an internal mold release agent, lubricant or flame retardant (anti-dripping agent) as a synthetic resin additive. It has been.
  • Japanese Patent Application Laid-Open No. 7-304925 (Patent Document 2) describes that 5% by weight or more of calcined PTFE powder is added to a thermoplastic or thermosetting resin to obtain a molding material for a sliding member.
  • PVDF is not described as the resin, and the calcined PTFE powder has a relatively large average particle size of 5 to 60 ⁇ m.
  • Patent Document 2 does not describe anything about using finely powdered PTFE as a crystal nucleating agent in PVDF.
  • An object of the present invention is to contain a colorant and maintain the properties as PVDF, while the resin molded body has a small anisotropy, and the anisotropy hardly changes over time (hereinafter simply referred to as “anisotropic”). Is sometimes abbreviated as “small change with time”.) To provide a PVDF composition.
  • Another object of the present invention is to provide a PVDF resin molded article containing a colorant and having a small anisotropic change over time, in particular, a PVDF resin film, and a protective sheet using the same, and a solar cell module To provide a backsheet.
  • PVDF is originally a resin that has a low crystallization temperature and is likely to form microcrystals.
  • unstretched films include entangled amorphous and intramolecular or intermolecular microcrystals, It is considered that some degree of amorphous orientation and microcrystalline deformation are caused by the external force in the MD direction during film formation.
  • microcrystals are often non-uniform in structure, size, etc., and are therefore susceptible to changes over time despite being crystal parts. Therefore, in particular, in order to prevent the change of anisotropy over time, that is, to suppress the expression of anisotropy, the deformation of the microcrystal is not caused and the amorphous is not easily oriented. This is very important.
  • the present inventors suppress the deformation of the microcrystals over time and develop the function of suppressing the amorphous orientation, thereby causing the problem of anisotropy over time. I thought that it would be possible to solve (no change in anisotropy).
  • microcrystals For this purpose, it is important to start the formation of microcrystals at an early stage when cooling.
  • the formation and growth of microcrystals may be caused by factors such as crystallization temperature, crystal nuclei and crystal nucleating agent, crystal nucleation rate, crystal growth rate, and cooling conditions.
  • crystallization temperature crystal nuclei and crystal nucleating agent
  • crystal nucleation rate crystal growth rate
  • cooling conditions crystallization temperature
  • the present inventors have studied crystal nucleating agents (nucleating agent components, particle size, mixing amount, etc.) that influence microcrystal formation, and by blending a specific component crystal nucleating agent with PVDF, preferably into PVDF. It has been found that target microcrystals are formed by blending a specific amount of a specific component and a crystal nucleating agent having a specific particle size.
  • the base composition may be abbreviated as a methacrylate resin (for example, polymethyl methacrylate (hereinafter referred to as “PMMA”), which is known to have good compatibility with PVDF in order to improve adhesion. .)) And PVDF, and a composition blended with titanium oxide as a colorant was used.
  • a methacrylate resin for example, polymethyl methacrylate (hereinafter referred to as “PMMA”), which is known to have good compatibility with PVDF in order to improve adhesion. .)
  • PMMA polymethyl methacrylate
  • TiO titanium oxide
  • the DSC curve at lower temperature shows a slight crystallization compared to the case where no crystal nucleating agent is added. Although the temperature (peak) moved to the high temperature side, it was confirmed that there was almost no effect as a crystal nucleating agent.
  • fine powdered PTFE When fine powdered PTFE is used as a crystal nucleating agent for PVDF (including PMMA), according to the DSC curve at lower temperature (see FIG. 1), the crystallization temperature ( The peak) moved to the high temperature side even near 10 ° C., and it was confirmed that it had an effect as a crystal nucleating agent. Thus, the present inventors have found that fine powdered PTFE exhibits a high ability as a crystal nucleating agent when added in a small amount as a crystal nucleating agent.
  • the present inventors surprisingly conducted an accelerated test at 80 ° C. for 60 minutes corresponding to several months of standing at room temperature, which is a durability evaluation of the PVDF film when fine powdered PTFE is used as a crystal nucleating agent. As a result, it was found that the elongation at break in the TD direction did not decrease so much and no change in anisotropy occurred.
  • the present invention has been completed based on these findings.
  • a PVDF composition containing PVDF, a colorant, and finely powdered PTFE as a crystal nucleating agent. Further, according to the present invention, (2) when the PVDF composition is 100% by mass, the colorant is contained in an amount of 1 to 50% by mass, and the addition amount of fine powdered PTFE is contained in a proportion of 0.01 to 5% by mass.
  • the PVDF composition of (1) is provided. Moreover, according to this invention, (3) The PVDF composition of said (1) or (2) whose colorant is a titanium oxide is provided. In addition, according to the present invention, there is provided (4) the PVDF composition according to any one of (1) to (3), wherein the particle size of finely divided PTFE is 0.01 to 4 ⁇ m.
  • the present invention also provides (5) the PVDF composition according to any one of (1) to (4), further comprising a methacrylate resin.
  • a PVDF composition is provided.
  • the present invention also provides (8) the PVDF composition according to (5), wherein the methacrylate resin is PMMA.
  • the present invention also provides (9) the PVDF composition according to any one of (1) to (8), further comprising a heat stabilizer. Furthermore, according to the present invention, there is provided (10) a resin molded body formed from the PVDF composition according to any one of (1) to (9).
  • (11) the ratio (acceleration) between the TD direction breaking elongation of the resin molded body after the acceleration test (80 ° C. for 60 minutes) and the TD direction breaking elongation of the resin molded body at the beginning of formation.
  • the TD-direction breaking elongation of the resin molded body after the test (80 ° C. for 60 minutes) / the TD-direction breaking elongation of the resin molded body at the beginning of formation ⁇ 100) is in the range of 60 to 100% (10 ) Resin molded body is provided.
  • (12) The resin molded body of the said (10) which heat-processed the said resin molded body.
  • (13) a resin film obtained from the resin molded body of any one of (10) to (12) is provided.
  • the protective sheet obtained from the resin film of (14) said (13) is provided.
  • the solar cell module backsheet obtained from the protective sheet of (15) said (14) is provided.
  • the present invention provides a PVDF composition containing PVDF, a colorant, and fine powdery PTFE as a crystal nucleating agent.
  • a PVDF composition containing PVDF, a colorant, and fine powdery PTFE as a crystal nucleating agent.
  • FIG. 1 is a DSC curve at a temperature drop when a crystal nucleating agent (BN, PTFE) is used and when a crystal nucleating agent is not used.
  • BN crystal nucleating agent
  • PTFE crystal nucleating agent
  • Vinylidene fluoride resin PVDF used in the present invention means a homopolymer of vinylidene fluoride and a vinylidene fluoride copolymer mainly composed of vinylidene fluoride. That is, in the present invention, the vinylidene fluoride resin is at least one selected from the group consisting of a vinylidene fluoride homopolymer and a vinylidene fluoride copolymer.
  • the vinylidene fluoride homopolymer is a polymer using only vinylidene fluoride as a polymerizable monomer.
  • the vinylidene fluoride copolymer is a copolymer using vinylidene fluoride and a monomer copolymerizable therewith as a polymerizable monomer.
  • Examples of monomers copolymerizable with vinylidene fluoride include perfluoroalkyl such as hexafluoropropylene, tetrafluoroethylene, trifluoroethylene, chlorotrifluoroethylene, vinyl fluoride, perfluoromethyl vinyl ether, and perfluoroethyl vinyl ether. Can be mentioned. Moreover, ethylene, propylene, etc. which do not have a fluorine can also be copolymerized.
  • Examples of the vinylidene fluoride copolymer include a vinylidene fluoride-hexafluoropropylene copolymer, a vinylidene fluoride-tetrafluoroethylene copolymer, a vinylidene fluoride-chlorotrifluoroethylene copolymer, and a vinylidene fluoride-tri A fluoroethylene copolymer, a vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene terpolymer, a vinylidene fluoride-chlorotrifluoroethylene-hexafluoropropylene terpolymer, and a mixture of two or more thereof. Can be mentioned.
  • the vinylidene fluoride copolymer has a copolymerization ratio with vinylidene fluoride, that is, the copolymerization ratio of the copolymerizable monomer is 100 mol of the total amount of the copolymerizable monomer with vinylidene fluoride. %, It is usually 15 mol% or less, preferably 10 mol% or less, more preferably 5 mol% or less. When the copolymerization ratio of the copolymerizable monomer is 15 mol% or less, the vinylidene fluoride copolymer becomes a thermoplastic resin having crystallinity.
  • the lower limit of the copolymerization ratio of the copolymerizable monomer is preferably 1 mol%. If the copolymerization ratio of the copolymerizable monomer becomes too high, the vinylidene fluoride copolymer loses crystallinity and becomes an elastomer.
  • At least one selected from the group consisting of a vinylidene fluoride homopolymer and a vinylidene fluoride copolymer having a copolymerization ratio of 15 mol% or less can be used as PVDF.
  • PVDF vinylidene fluoride homopolymer and vinylidene fluoride-hexafluoropropylene copolymer having a copolymerization ratio of hexafluoropropylene units of 15 mol% or less are excellent in heat resistance, melt moldability, and mechanical properties. From the viewpoints of antifouling property, solvent resistance, secondary workability, etc., it is preferable.
  • the intrinsic viscosity of PVDF is preferably in the range of 0.7 to 1.5 dl / g, more preferably 0.8 to 1.3 dl / g.
  • the intrinsic viscosity of PVDF is a logarithmic viscosity at 30 ° C. measured using a Ubbelohde viscometer for a solution in which 4 g of PVDF is dissolved in 1 liter of N, N-dimethylformamide.
  • the melting point of PVDF is a value measured from an endothermic peak at the time of temperature rise of a differential scanning calorimeter (DSC), and is usually within a range of 130 to 185 ° C., preferably 160 to 185 ° C.
  • a methacrylate-based resin may be mixed in order to improve properties such as processability and adhesiveness of PVDF.
  • the methacrylate resin is a methacrylic acid alkyl ester homopolymer, a copolymer containing methacrylic acid alkyl ester as a main component, or a mixture of two or more of these polymers.
  • the copolymer having a methacrylic acid alkyl ester as a main component is a copolymer of a methacrylic acid alkyl ester and a monomer copolymerizable therewith.
  • the copolymerizable monomer is usually less than 50 mol%, preferably less than 40 mol%, more preferably It is less than 30 mol%.
  • alkyl methacrylate examples include methyl methacrylate, ethyl methacrylate, propyl methacrylate, etc.
  • methyl methacrylate is preferable.
  • PMMA a homopolymer of methyl methacrylate (hereinafter sometimes abbreviated as “PMMA”) uses only methyl methacrylate as a polymerizable monomer.
  • Monomers that can be copolymerized with alkyl methacrylates include alkyl methacrylates other than the principal alkyl methacrylates; alkyl alkyl esters such as methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate.
  • Styrene monomers such as styrene and ⁇ -methylstyrene; nitrile monomers such as acrylonitrile and methacrylonitrile; vinyl monomers such as vinyl acetate;
  • PMMA is preferable because it improves compatibility with PVDF and, for example, when a resin film is formed, improves adhesiveness with other resin films. If the amount of the methacrylate resin is too large, properties such as weather resistance of PVDF may be impaired. If the amount is too small, for example, the properties of the resin film may be impaired.
  • Colorant In the PVDF composition of the present invention, a colorant is added.
  • the colorant is not particularly limited as long as it does not impair the color tone and hiding power (light scattering property) of the PVDF composition, but the color tone and hiding power (light scattering property) are particularly excellent.
  • Inorganic pigments and black pigments can be preferably used. Examples of inorganic pigments include TiO 2 (titanium oxide), Al 2 O 3 .nH 2 O, [ZnS + BaSO 4 ], CaSO 4 .2H 2 O, BaSO 4 , PbCO 3 .Pb (OH) 2, etc. TiO 2 (titanium oxide) which is a white pigment is preferable.
  • the black pigment is preferably carbon black, and is not particularly limited as long as it is carbon black that is usually used for solar battery backsheets, etc., and furnace black, channel black, acetylene black, thermal black, etc. can be used. Carbon black whose surface has been modified with a carboxyl group or the like can also be used.
  • Fine powdery PTFE crystal nucleating agent In the PVDF composition of the present invention, a fine powdery PTFE crystal nucleating agent is added.
  • the fine powdery PTFE is finely powdered, and the component forming the nucleating agent is necessarily formed by including PTFE.
  • PTFE tetrafluoroethylene homopolymer, tetrafluoroethylene and copolymerizable therewith It is important that the copolymer is a copolymer with a fluorine-based monomer other than tetrafluoroethylene or a modified PTFE, and thereby the effect as the crystal nucleating agent of the present invention can be exhibited.
  • the average particle size of the primary particles is usually 0.01 to 4 ⁇ m, preferably 0.01 to 3 ⁇ m, more preferably 0.01 to 2 ⁇ m, and still more preferably 0.01 to 1 ⁇ m. Even if the fine powdery PTFE crystal nucleating agent used in the present invention is used in combination with a colorant, or is used in combination with a colorant and, if desired, a methacrylate resin or a heat stabilizer, it is suitable for PVDF. It is characterized by excellent dispersibility and sufficient effect as a crystal nucleating agent.
  • the present invention is a PVDF composition having an average particle size of PTFE of usually 0.01 to 4 ⁇ m.
  • the average particle size is measured by a laser refraction / scattering method.
  • the PVDF composition of the present invention is a PVDF composition comprising PVDF, a colorant, and finely powdered PTFE as a crystal nucleating agent.
  • a PVDF composition containing 1 to 50% by weight of a colorant and 0.01 to 5% by weight of finely divided PTFE is preferable when the PVDF composition is 100% by weight.
  • the PVDF composition of the present invention preferably contains 40 to 99.99% by mass of PVDF, assuming 100% by mass of the PVDF composition. Furthermore, the PVDF composition containing methacrylate resin may be sufficient.
  • the PVDF and methacrylate resin mixing ratio of PVDF is 60 parts by mass or more and less than 100 parts by mass, preferably 65 parts by mass. 95 parts by mass or less, more preferably 70 parts by mass or more and 90 parts by mass or less, and the methacrylate resin exceeds 0 part by mass and 40 parts by mass or less, preferably 5 parts by mass or more and 35 parts by mass or less, more preferably 10 parts by mass.
  • the amount is 30 parts by mass or less. If the amount of the methacrylate resin is small, the adhesive effect cannot be obtained, and if the amount of the methacrylate resin is too large, the weather resistance and electrical characteristics, which are the characteristics of PVDF, may be deteriorated.
  • the content of the colorant of the present invention is 1 to 50% by mass, preferably 2 to 45% by mass, more preferably 3 to 40% by mass, when the PVDF composition is 100% by mass.
  • the titanium oxide is 15 to 50% by mass, preferably 20 to 50% by mass, more preferably 22 to 50% by mass. Is within the range.
  • the content of the fine powdery PTFE crystal nucleating agent of the present invention is such that when the PVDF composition is 100% by mass, the amount of PTFE added is 0.01-5% by mass, preferably 0.01-4.5% by mass. More preferably, the content is 0.05 to 3% by mass, and particularly preferably 0.1 to 2% by mass. That is, in the present invention, the PVDF composition has an addition amount of PTFE of 0.01 to 5% by mass when the PVDF composition is 100% by mass.
  • the amount of PTFE added is 0.01 to 3% by mass, preferably 0.05 to 2.7% by mass. More preferably, the content is 0.1 to 1.8% by mass. That is, in the present invention, when a methacrylate resin is used, the PVDF composition has an addition amount of PTFE of 0.01 to 3 mass% when the PVDF composition is 100 mass%.
  • the amount of fine powdered PTFE added is small, the effect as a crystal nucleating agent cannot be obtained, while if it is large, the effect as a crystal nucleating agent is saturated and meaningless, and if too much, the properties as PVDF may be impaired.
  • the crystallization temperature is measured from the exothermic peak when the temperature is lowered by a differential scanning calorimeter (DSC).
  • the crystallization temperature is usually 8 to 30 ° C. higher than the crystallization temperature of PVDF to which no crystal nucleating agent is added. Preferably, it is increased by 10 to 28 ° C, more preferably 12 to 25 ° C. That is, the present invention is a PVDF composition using PVDF in which the crystallization temperature of PVDF added with a crystal nucleating agent is 8 to 30 ° C. higher than the crystallization temperature of PVDF when no crystal nucleating agent is added.
  • the particle size and addition amount of fine powdered PTFE are adjusted so as to achieve such a crystallization temperature.
  • the temperature difference between the melting point of PVDF and the crystallization temperature is usually 45 to 15 ° C., preferably 43 to 20 ° C., more preferably 40 to 25 ° C. That is, the present invention is a PVDF composition using PVDF in which the temperature difference between the crystallization temperature and the melting point of PVDF added with a crystal nucleating agent is 45 to 15 ° C.
  • Heat Stabilizer In the PVDF composition of the present invention, a heat stabilizer is added as necessary.
  • the heat stabilizer is used to prevent a decrease in heat resistance due to the addition of a colorant such as titanium oxide.
  • a colorant such as titanium oxide.
  • a heat stabilizer is added.
  • the heat stabilizer include polyhydroxymonocarboxylic acid calcium salt, aliphatic carboxylic acid calcium salt having 5 to 30 carbon atoms, calcium carbonate, calcium hydroxide, zinc oxide, and magnesium oxide.
  • talc known as a filler is also known to have an effect as a heat stabilizer.
  • the content of the heat stabilizer of the present invention is within the range of 0 to 10% by mass, preferably 0.2 to 6% by mass, more preferably 0.3 to 3% by mass, when the PVDF composition is 100% by mass. It is.
  • the content ratio of the heat stabilizer is too small, the heat stabilization effect is reduced, and if the content ratio of the heat stabilizer is too large, the color tone and mechanical characteristics of the resin film may be adversely affected.
  • the PVDF composition of the present invention contains PVDF as a resin component and, if necessary, a methacrylate resin, in order to improve properties such as processability, impact resistance, adhesion, and heat resistance. If desired, other thermoplastic resins can be contained.
  • thermoplastic resins include polyolefins such as polyethylene and polypropylene; polyamides such as nylon 6 and nylon 66; polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; acrylic resins other than methacrylate resins; polystyrene and polyacrylonitrile , Polyvinyl chloride, polyoxymethylene, polycarbonate, polyphenylene oxide, polyester urethane, poly m-phenylene isophthalamide, poly p-phenylene terephthalamide, and the like.
  • the other thermoplastic resin is 0 to 15% by mass, preferably 0 to 12% by mass, and more preferably 0 to 10% by mass when the PVDF composition is 100% by mass. When there are too many other thermoplastic resins, there exists a possibility that characteristics, such as a weather resistance of PVDF, may be impaired.
  • the PVDF composition of the present invention may contain a pigment dispersant, an ultraviolet absorber, a light stabilizer, a matting agent, a lubricant, a color adjuster, a processing aid, a mechanical property improver (for example, an elastomer such as an acrylic elastomer). ) And other additives selected from the above. These additives are used in proportions suitable for each as desired. The amount of the additive is independently 15% by mass or less, preferably 10% by mass or less, when the PVDF composition is 100% by mass.
  • the lower limit of the content ratio is usually 0.001% by mass and in many cases 0.01% by mass, when the PVDF composition is 100% by mass.
  • the PVDF composition of the present invention is usually PVDF, a colorant, and fine powdered PTFE, and if necessary, a methacrylate resin and / or a thermal stabilizer.
  • PVDF powder or pellets are fed into an extruder together with fine powdered PTFE, colorant, and optionally a methacrylate resin and / or heat stabilizer, melt kneaded, melt extruded into strands, cut and pelleted It can also be blended by conversion.
  • additives and / or other thermoplastic resins can be contained in the blending step or the pellet step.
  • Such a blend can be fed to an extruder and melt extruded as a film (including sheets).
  • the PVDF composition of the present invention can form a resin molded body.
  • the PVDF composition of the present invention can be formed into a film by supplying it to an extruder and melt-extruding it into a film form from a T-die placed at the tip of the extruder. it can.
  • the resin film includes not only a film having a thickness of less than 250 ⁇ m but also a sheet (including a plate) having a thickness of 250 ⁇ m to 3 mm, preferably 250 ⁇ m or more and less than 2.5 mm. That is, the resin molded body is a resin molded body that is a resin film.
  • the lower limit of the thickness of the resin film is usually 2 ⁇ m, preferably 3 ⁇ m, more preferably 4 ⁇ m, and particularly preferably 5 ⁇ m.
  • the upper limit value of the thickness of the resin film is preferably 500 ⁇ m, more preferably 300 ⁇ m, still more preferably 200 ⁇ m, and particularly preferably 120 ⁇ m. If the thickness of the resin film is too thin, the mechanical properties are deteriorated. If the thickness of the resin film is too thick, flexibility may be impaired or weight reduction may be difficult.
  • the thickness of the resin film can exhibit good characteristics particularly in the range of 5 to 100 ⁇ m.
  • the resin film obtained from the PVDF composition of the present invention has abrasion resistance and weather resistance, and further has adhesiveness and, for example, when a resin molded body such as a film is formed, by heat treatment, the elongation at break etc.
  • the anisotropy of the mechanical strength is improved, and it can be used as a protective sheet for various members / equipment ranging from daily goods to electrical / electronic parts. That is, the resin film is a resin molded body that is a protective sheet.
  • a single layer or a multilayer can be used.
  • various lamination methods such as wet lamination using an adhesive, dry lamination, co-extrusion lamination, injection molding lamination injection press, and in-mold molding are possible.
  • a back sheet for a solar cell module when used as a protective sheet, a single-layer resin film comprising the PVDF composition of the present invention, the resin film and other resin films (for example, PET film), a multilayer film composed of the resin film and a moisture-proof film, a composite material composed of the resin film and a tempered glass plate, and a composite of the resin film and a metal plate
  • the composite material is used as a composite material in which the resin film is combined with two or more of other resin films, a moisture-proof film, a tempered glass plate, and the like. That is, the protective sheet is a resin molded body that is a solar cell module backsheet.
  • Multilayer films and composite materials can have an adhesive layer between each layer.
  • the moisture-proof film include a composite film in which a deposited film of an inorganic oxide such as silicon oxide or aluminum oxide is formed on one surface of a base film.
  • seat which consist of the PVDF composition of this invention can be compounded, and it can also be set as the sealing material of a photovoltaic cell.
  • Accelerated test This is a test method for evaluating anisotropy change with time, and may be abbreviated as the initial stage of production of a resin molded body or resin film obtained from the composition of the present invention (hereinafter referred to as “initial stage of formation”). ) Is a test for evaluating whether the elongation at break can be maintained at room temperature for several months (approximately three months). In this acceleration test, after performing an acceleration test at 80 ° C. for 60 minutes, the elongation at break in the TD direction and the MD direction were measured.
  • the ratio of the TD-direction breaking elongation of the resin molded article after the acceleration test at 80 ° C. for 60 minutes corresponding to standing at room temperature for several months and the TD-direction breaking elongation of the resin molded article at the beginning of formation ((80 ° C. for 60 minutes) TD-direction elongation at break of resin molded body after acceleration test) / (TD-direction elongation at break of formed resin body) ⁇ 100) (ratio:%) is usually within the range of 60 to 100%, preferably Is 70 to 100%, more preferably 80 to 100%.
  • the ratio of the TD direction breaking elongation of the resin molded article after the accelerated test (80 ° C. for 60 minutes) to the TD direction breaking elongation of the resin molded article at the beginning of formation ((accelerated test (80 ° C. for 60 minutes) TD direction breaking elongation of the later resin molded body) / (TD direction breaking elongation of the initial resin molded body) ⁇ 100) (ratio:%) is in the range of 60 to 100%. is there.
  • the ratio between the TD direction breaking elongation of the resin molded body after the acceleration test (80 ° C. for 60 minutes) and the MD direction breaking elongation of the resin molded body after the acceleration test (80 ° C. for 60 minutes) ((acceleration TD direction elongation at break of resin molded body after test (80 ° C. for 60 minutes) / (MD direction elongation at break of resin molded body after accelerated test (80 ° C. for 60 minutes)) ⁇ 100) (ratio:%)
  • it is 50 to 90%, preferably 55 to 90%, more preferably 60 to 90%.
  • PCT test a pressure cooker test (hereinafter sometimes abbreviated as "PCT test") was performed to measure long-term durability, assuming that the resin molded body was exposed to sunlight outdoors. Then, the breaking elongation of TD direction and MD direction was measured.
  • PCT test a pressure cooker tester was used, a test was conducted at a temperature of 121 ° C., a relative humidity of 100% RH, 2 atm, and 96 hours, and the elongation at break was measured.
  • the ratio of the TD rupture elongation of the resin molded product after the PCT test and the MD rupture elongation of the resin molded product after the PCT test ((TDT rupture elongation after the PCT test) / (PCT
  • the MD direction breaking elongation after test) is usually 30 to 70%, preferably 35 to 70%, more preferably 40 to 70%.
  • Heat treatment The accelerated test (80 ° C. for 60 minutes) can be said to be heat treatment. Looking at Example 1 in Table 1 to be described later, the TD after 60 minutes at 80 ° C. was measured by an accelerated test (heat treatment) at 80 ° C. for 60 minutes, even though the TD fracture elongation at the beginning of formation was 68.0%. The elongation at break is the same as 68.0%.
  • the change in anisotropy with time is less likely to occur, but further, for example, the change in anisotropy is less likely to occur by performing heat treatment after a certain period of time. The period is extended.
  • the temperature and time of the heat treatment are usually 40 to 120 ° C. and 30 to 200 minutes, preferably 50 to 110 ° C. and 40 to 150 minutes, more preferably 60 to 100 ° C. and 45 to 100 minutes.
  • the measuring method of the crystallization temperature of the resin film which consists of a PVDF composition of this invention, and breaking elongation is as follows.
  • Crystallization temperature Using a differential scanning calorimeter DSC7 manufactured by PerkinElmer Co., Ltd., using as a sample 10 mg of the melt-extruded and cooled solidified product of the blend prepared in Example 1, Comparative Example 1 and Comparative Example 2 described later, in a nitrogen gas atmosphere, The temperature was raised from 30 ° C. to 250 ° C. at a rate of 10 ° C./min, then held at 250 ° C. for 1 minute, and then lowered from 250 ° C. to 30 ° C. at a rate of 10 ° C./min, DSC curve Asked. The exothermic peak temperature in the temperature lowering process in this DSC curve was defined as the crystallization temperature (Tc2) (° C.).
  • PVDF (Kureha W # 850) 47.71% by weight, PMMA (Asahi Kasei Chemicals Delpowder-560F) 9.97% by weight, acrylic processing aid (Mitsubishi Rayon Metabrene P-530A, Metabrene S-2006) 20% by mass, cetyl 2-ethylhexanoate (Exepearl manufactured by Kao) 1.10%, titanium oxide (DuPont Taipure R101) 30.0% by mass, calcium carbonate (Takehara Chemical Industries SL2500, Shiroishi Industrial Co., Ltd., Brilliant-1500 2.50% by mass, fine powdered PTFE (KTL-500F manufactured by Kitamura Co., Ltd .: average particle diameter of 0.3 ⁇ m by laser refraction / scattering method) 0.30% by mass, calcium stearate 0.50% by mass, acetylene black 0.
  • acrylic processing aid Mitsubishi Rayon Metabrene P-530A, Metabrene S-2006
  • Example 1 In Example 1, the powdered PTFE was not added as Comparative Example 1, PVDF (Kureha W # 850) 48.01% by mass, PMMA (Asahi Kasei Chemicals Delpowder-560F) 9.97% by mass, acrylic System processing aids (Metbrene P-530A, Metabrene S-2006, manufactured by Mitsubishi Rayon) 8.20% by mass, cetyl 2-ethylhexanoate (Exepal, manufactured by Kao) 1.10%, titanium oxide (Typure R101, manufactured by DuPont) 30.
  • Example 1 from what blended 00 mass%, calcium carbonate (SL2500 made by Takehara Chemical Industry, Brilliant-1500 made by Shiroishi Kogyo Co., Ltd.) 2.50 mass%, calcium stearate 0.50 mass%, and acetylene black 0.02 mass%
  • S2500 made by Takehara Chemical Industry, Brilliant-1500 made by Shiroishi Kogyo Co., Ltd.
  • 2.50 mass% calcium stearate 0.50 mass%
  • acetylene black 0.02 mass%
  • Tables 1 and 2 show the following. When there was no crystal nucleating agent (Comparative Example 1: 30% by mass of TiO 2 ), the ratio of TD fracture elongation after acceleration test (80 ° C. for 60 minutes) / TD fracture elongation at the beginning of formation was 38.0%. there were.
  • the ratio of TD break elongation after the accelerated test (80 ° C. for 60 minutes) of Comparative Example 1 / MD break elongation after the accelerated test (80 ° C. for 60 minutes) was 24.8%.
  • the anisotropy of the resin molded body was increased by the acceleration test (it can be said that the anisotropy increased as the numerical value of the above ratio decreased).
  • the ratio of TD rupture elongation after acceleration test (80 ° C. for 60 minutes) / TD rupture elongation at the beginning of formation is 100%.
  • the ratio of the TD break elongation after the accelerated test (80 ° C. for 60 minutes) of Example 1 / MD break elongation after the accelerated test (80 ° C. for 60 minutes) is 68%.
  • the anisotropy of the molded resin did not increase so much by the accelerated test (it can be said that the anisotropy decreases as the numerical value of the ratio increases).
  • the ratio of TD fracture elongation after accelerated test (80 ° C. for 60 minutes) / TD fracture elongation at the beginning of formation is 44.9%.
  • the ratio of the TD break elongation after the accelerated test (80 ° C. for 60 minutes) of Comparative Example 2 / MD break elongation after the accelerated test (80 ° C. for 60 minutes) is 30.1%.
  • the anisotropy of the resin molding increased by the accelerated test.
  • Example 1 the ratio of TD break elongation / MD break elongation after the PCT test was 49.4% in Example 1. On the other hand, in Comparative Example 1, it was 15.3%, and in Comparative Example 2, it was 28.6%. Clearly, Example 1 is better in terms of anisotropy than Comparative Examples 1 and 2.
  • the TD fracture elongation does not decrease and the anisotropy increases so much even after the accelerated test (80 ° C./60 minutes). do not do.
  • the breaking elongation in the MD direction and the TD direction is better than that without the crystal nucleating agent and the crystal nucleating agent boron nitride. showed that.
  • the PVDF composition of the present invention improves the weather resistance, chemical resistance, abrasion resistance, electrical properties, and processability of PVDF by adding fine powdery PTFE as a coloring agent and crystal nucleating agent to PVDF.
  • fine powdery PTFE as a coloring agent and crystal nucleating agent
  • a resin molded body in which anisotropy of mechanical strength such as elongation at break is not so increased even after an acceleration test corresponding to standing at room temperature for several months (that is, after aging). It can be obtained and its utility value can be greatly expanded in industry.

Abstract

The present invention addresses the problem of providing a vinylidene-fluoride-based resin composition, a molded resin object, a resin film, and a protective sheet which each retain various properties inherent in vinylidene-fluoride-based resins and change little in anisotropy with the lapse of time. The vinylidene-fluoride-based resin composition according to the present invention comprises a vinylidene-fluoride-based resin, a colorant, and a finely powdered tetrafluoroethylene-based resin as a crystal nucleator.

Description

フッ化ビニリデン系樹脂組成物、樹脂成形体、樹脂フィルム、及び保護シートVinylidene fluoride resin composition, resin molded body, resin film, and protective sheet
 本発明は、フッ化ビニリデン系樹脂と、着色剤、及び結晶核剤としての微粉状のテトラフルオロエチレン系樹脂とを含むフッ化ビニリデン系樹脂組成物、該樹脂組成物から形成される樹脂成形体、樹脂フィルム及び該樹脂フィルムから得られる保護シートに関する。 The present invention relates to a vinylidene fluoride resin composition comprising a vinylidene fluoride resin, a colorant, and a finely divided tetrafluoroethylene resin as a crystal nucleating agent, and a resin molded article formed from the resin composition The present invention relates to a resin film and a protective sheet obtained from the resin film.
 フッ化ビニリデン系樹脂(以下、「PVDF」と略記することがある)は、耐候性、耐薬品性、耐摩耗性、電気特性に優れ、また、結晶性を有し、成形加工性に優れるため、フィルムやシート等の成形体に製造され、耐摩耗性と耐候性を生かして種々の部材及び機材の保護シート等として使用されている。 Vinylidene fluoride resin (hereinafter sometimes abbreviated as “PVDF”) is excellent in weather resistance, chemical resistance, abrasion resistance, electrical properties, crystallinity, and excellent moldability. It is manufactured as a molded body such as a film or a sheet, and is used as a protective sheet for various members and equipment by taking advantage of wear resistance and weather resistance.
 PVDFを含んで形成される樹脂成形体、例えば、樹脂フィルムは、用途に応じて未延伸フィルムあるいは延伸フィルムが使用され、中でも未延伸フィルムは、延伸フィルムに比べて、柔軟であり、しかも伸度等の特性に優れることから、近年、特に太陽電池モジュール用バックシートとしての使用が増大している。 A resin molded body formed by including PVDF, for example, a resin film, an unstretched film or a stretched film is used depending on the application. Among them, the unstretched film is more flexible than the stretched film, and the elongation is also high. In recent years, the use as a back sheet for a solar cell module has increased.
 未延伸フィルムは、ポリマーが溶融状態で押し出された後、冷却を経て製造されるため、分子鎖や結晶等の分子構造が、引取方向(巻取方向、機械方向)の影響を受けた状態で固定される場合がある。このような場合、分子構造の影響の程度によっては、強度や伸度等の機械的特性値が、MD方向(Machine Direction:機械方向)とTD方向(Transverse Direction:幅方向)で異なるもの(以下、「機械的特性値の異方性」または「異方性」と略記することがある)となるため、従来より、未延伸フィルムを製造する際の異方性の度合いを小さくするための検討が鋭意進められてきている。 An unstretched film is manufactured through cooling after the polymer is extruded in a molten state, so that molecular structures such as molecular chains and crystals are affected by the take-up direction (winding direction, machine direction). May be fixed. In such a case, depending on the degree of the influence of the molecular structure, mechanical property values such as strength and elongation differ in the MD direction (Machine Direction) and the TD direction (Transverse Direction) (hereinafter referred to as the width direction). , Which may be abbreviated as “anisotropy of mechanical property values” or “anisotropy”), and has been conventionally studied to reduce the degree of anisotropy when producing an unstretched film. Has been earnestly advanced.
 さらに、未延伸フィルムは、経時によっても、フィルム中に固定された分子構造が変化を生じやすく、その結果、異方性が変化する場合(すなわち、異方性が大きくなる)がある。この異方性の経時変化の問題は、特に、出荷後のPVDFフィルムの品質を管理したり、あるいはPVDFフィルムを用いた製品の性能を設計したり、製品の寿命に対する信頼性を確保したりする上で、大きな問題となっている。また、太陽電池モジュール用バックシート等に用いる場合、大量の着色剤(酸化チタン等)を用いることが多く、異方性に与える影響も懸念されている。 Furthermore, the unstretched film is likely to change in the molecular structure fixed in the film over time, and as a result, the anisotropy may change (that is, the anisotropy increases). This problem of anisotropy with time, in particular, controls the quality of PVDF film after shipping, designs the performance of products using PVDF film, and ensures the reliability of the product life. Above, it is a big problem. Moreover, when using for a solar cell module backsheet etc., a large amount of coloring agents (titanium oxide etc.) are often used, and the influence on anisotropy is also a concern.
 このような背景の中で、最近は、市場からのPVDFフィルムをはじめとする樹脂成形体等の高性能化に対する要望が大きく、製品を製造する際の異方性、およびその経時変化等の問題に対する解決・改善が強く求められている。 Against this backdrop, recently, there is a great demand from the market for high-performance resin molded products such as PVDF films, and problems such as anisotropy and aging of the products are produced. There is a strong demand for solutions and improvements.
 本発明者らは、上記の製品を製造する際の異方性、異方性の経時変化が、微結晶の状態と関連するとの認識で、結晶核剤に関する技術を基に、ブレンド技術の中から、公知技術として、以下の2件の特許文献を見出し、以下の考察を行った。 Based on the technology related to crystal nucleating agents, the present inventors have recognized that anisotropy and anisotropy change with time in manufacturing the above products are related to the state of microcrystals. From the above, the following two patent documents were found as known techniques, and the following considerations were made.
 国際公開WO2010/122936号公報(特許文献1)には、ポリメチルメタクリレートを含むフッ化ビニリデン系樹脂組成物から形成された、着色剤として酸化チタンを含む白色樹脂フィルムが、記載されており、添加物の一般的記載として結晶核剤の記載がある。しかし、結晶核剤について、その物質名も含有量も具体的に何ら記載されていない。 International Publication No. WO2010 / 122936 (Patent Document 1) describes a white resin film containing titanium oxide as a colorant formed from a vinylidene fluoride resin composition containing polymethyl methacrylate. There is a description of a crystal nucleating agent as a general description of the product. However, the substance name and content of the crystal nucleating agent are not specifically described.
 一方、テトラフルオロエチレン系樹脂(以下、「PTFE」と略記することがある)粉末は、合成樹脂使用添加剤として、内部離型剤、滑剤あるいは難燃剤(滴下防止剤)として働くことがよく知られている。特開平7-304925号公報(特許文献2)では、熱可塑性あるいは熱硬化性樹脂に、5重量%以上の焼成PTFE粉末を添加して摺動部材用の成形材料とすることが記載されている。しかしながら、ここでは、樹脂としてPVDFも記載されていないし、また焼成PTFE粉末は、平均粒径が、5~60μmと比較的大きなものである。結局、特許文献2では、PVDFにおいて、微粉状のPTFEを結晶核剤として使用することについては何も記載されていない。 On the other hand, tetrafluoroethylene-based resin (hereinafter sometimes abbreviated as “PTFE”) powder is known to work as an internal mold release agent, lubricant or flame retardant (anti-dripping agent) as a synthetic resin additive. It has been. Japanese Patent Application Laid-Open No. 7-304925 (Patent Document 2) describes that 5% by weight or more of calcined PTFE powder is added to a thermoplastic or thermosetting resin to obtain a molding material for a sliding member. . However, here, PVDF is not described as the resin, and the calcined PTFE powder has a relatively large average particle size of 5 to 60 μm. After all, Patent Document 2 does not describe anything about using finely powdered PTFE as a crystal nucleating agent in PVDF.
国際公開第2010/122936号International Publication No. 2010/122936 特開平7-304925号公報Japanese Patent Laid-Open No. 7-304925
 本発明の課題は、着色剤を含み、PVDFとしての特性を維持しながら、樹脂成形体の異方性が小さく、しかも、その異方性の経時変化が生じにくい(以下、単に「異方性の経時変化が小さい」と略記することがある。)PVDF組成物を提供することにある。 An object of the present invention is to contain a colorant and maintain the properties as PVDF, while the resin molded body has a small anisotropy, and the anisotropy hardly changes over time (hereinafter simply referred to as “anisotropic”). Is sometimes abbreviated as “small change with time”.) To provide a PVDF composition.
 本発明の他の課題は、着色剤を含み、異方性の経時変化が小さいPVDFの樹脂成形体、とりわけPVDFの樹脂フィルムを提供すること、及びそれを用いた保護シート、および太陽電池モジュール用バックシートを提供することにある。 Another object of the present invention is to provide a PVDF resin molded article containing a colorant and having a small anisotropic change over time, in particular, a PVDF resin film, and a protective sheet using the same, and a solar cell module To provide a backsheet.
 PVDFは、もともと結晶化の温度が低く、微結晶を形成しやすい樹脂であり、中でも未延伸フィルムには、絡み合った状態の非晶や分子内あるいは分子間で形成された微結晶が存在し、フィルム形成時のMD方向の外力により、ある程度の非晶の配向や微結晶の変形が生じているものと考えられる。 PVDF is originally a resin that has a low crystallization temperature and is likely to form microcrystals. In particular, unstretched films include entangled amorphous and intramolecular or intermolecular microcrystals, It is considered that some degree of amorphous orientation and microcrystalline deformation are caused by the external force in the MD direction during film formation.
 さらに、このような微結晶は、構造やサイズ等が不均一であることが多く、そのため結晶部であるにもかかわらず、経時変化を受けやすい。
 したがって、特に、異方性の経時変化を生じさせないようにする、すなわち、異方性の発現を抑制するには、微結晶の変形が生じないようにすると共に非晶が配向しにくいようにすることが重要である。
Furthermore, such microcrystals are often non-uniform in structure, size, etc., and are therefore susceptible to changes over time despite being crystal parts.
Therefore, in particular, in order to prevent the change of anisotropy over time, that is, to suppress the expression of anisotropy, the deformation of the microcrystal is not caused and the amorphous is not easily oriented. This is very important.
 本発明者らは、微結晶の構造や形体を制御することで、経時による微結晶自体の変形を抑え、非晶の配向を抑制する機能を発現させることにより、異方性の経時変化の問題(異方性の変化が生じない)が解決できるのではないかと想到した。 By controlling the structure and shape of the microcrystals, the present inventors suppress the deformation of the microcrystals over time and develop the function of suppressing the amorphous orientation, thereby causing the problem of anisotropy over time. I thought that it would be possible to solve (no change in anisotropy).
 すなわち、ポリマーが溶融状態から冷却されて固化される際に、高密度で微少な微結晶を高い濃度で、均一性よく形成させることが、異方性の経時変化を生じさせない鍵ではないかと考えた。 In other words, when the polymer is cooled from the molten state and solidified, it is considered that the formation of high-density and fine crystallites at a high concentration and high uniformity is the key to prevent anisotropy change over time. It was.
 このためには、微結晶の形成を、冷却される際の早い時期から開始させることが重要である。微結晶の形成や生長は、結晶化温度、結晶核や結晶核剤、結晶核生成速度、結晶成長速度、更には冷却条件等の要因が考えられる。
 本発明者らは、これらの要因の中で、結晶核剤とその効果を追求することで、異方性の経時変化の問題を解決できるのではないかと鋭意研究を続けた。
For this purpose, it is important to start the formation of microcrystals at an early stage when cooling. The formation and growth of microcrystals may be caused by factors such as crystallization temperature, crystal nuclei and crystal nucleating agent, crystal nucleation rate, crystal growth rate, and cooling conditions.
Among these factors, the present inventors have continued earnestly researching whether the problem of anisotropy with time can be solved by pursuing a crystal nucleating agent and its effect.
 本発明者らは、微結晶形成に影響する結晶核剤(核剤の成分、粒径、混合量等)を研究し、PVDFに特定成分の結晶核剤を配合することにより、好ましくはPVDFに特定成分、特定粒径の結晶核剤を特定量配合することにより、目標とする微結晶が形成されることを見出した。 The present inventors have studied crystal nucleating agents (nucleating agent components, particle size, mixing amount, etc.) that influence microcrystal formation, and by blending a specific component crystal nucleating agent with PVDF, preferably into PVDF. It has been found that target microcrystals are formed by blending a specific amount of a specific component and a crystal nucleating agent having a specific particle size.
 本発明者らは、最初に、無機化合物のよく知られた結晶核剤の代表として、窒化ホウ素の使用を試みた。その際、ベース組成物としては、接着性の向上のために、PVDFと相溶性の良いことが知られているメタクリレート系樹脂(例えば、ポリメチルメタクリレート(以下、「PMMA」と略記することがある。))とPVDFとのアロイとし、また着色剤として酸化チタンをブレンドした組成物を用いた。 The inventors first attempted to use boron nitride as a representative of well-known crystal nucleating agents for inorganic compounds. In this case, the base composition may be abbreviated as a methacrylate resin (for example, polymethyl methacrylate (hereinafter referred to as “PMMA”), which is known to have good compatibility with PVDF in order to improve adhesion. .)) And PVDF, and a composition blended with titanium oxide as a colorant was used.
 しかしながら、PVDF(PMMAを含む)に結晶核剤として窒化ホウ素を使用したとき、降温でのDSC曲線(図1参照)によれば、結晶核剤を添加しない場合と比較して、わずかに結晶化温度(ピーク)が高温側に移動するものの、結晶核剤としての効果はほとんどないことが確認された。 However, when boron nitride is used as a crystal nucleating agent for PVDF (including PMMA), the DSC curve at lower temperature (see FIG. 1) shows a slight crystallization compared to the case where no crystal nucleating agent is added. Although the temperature (peak) moved to the high temperature side, it was confirmed that there was almost no effect as a crystal nucleating agent.
 この結果は、無機系の結晶核剤が、PVDF(PMMAを含む)との相溶性がなく、十分に分散されなかったためと考えられる。また、有機系の結晶核剤についても検討してみたが、十分な効果が得られず、その理由はPVDF(PMMAを含む)との分散性に問題があると考えられた。 This result is presumably because the inorganic crystal nucleating agent was not compatible with PVDF (including PMMA) and was not sufficiently dispersed. In addition, an organic crystal nucleating agent was also examined, but a sufficient effect was not obtained, and the reason was considered that there was a problem in dispersibility with PVDF (including PMMA).
 そこで、耐熱性の樹脂粉末として比較的容易に手に入りやすく、また、PVDF(PMMAを含む)とも同じフッ素系樹脂であるため分散性にも優れていると考えられる微粉状のPTFEを結晶核剤として使用することを試みた。 Therefore, it is relatively easy to obtain as a heat-resistant resin powder, and since PVDF (including PMMA) is the same fluorine-based resin, fine powdery PTFE considered to be excellent in dispersibility is used as a crystal nucleus. Attempted to use as an agent.
 微粉状のPTFEをPVDF(PMMAを含む)の結晶核剤として使用したとき、降温でのDSC曲線(図1参照)によれば、結晶核剤を添加しない場合と比較して、結晶化温度(ピーク)が10℃近くも高温側に移動し、結晶核剤としての効果を有していることが確認された。このように、本発明者らは、微粉状のPTFEが結晶核剤として少量の添加で、結晶核剤としての高い能力を発揮することを見出した。 When fine powdered PTFE is used as a crystal nucleating agent for PVDF (including PMMA), according to the DSC curve at lower temperature (see FIG. 1), the crystallization temperature ( The peak) moved to the high temperature side even near 10 ° C., and it was confirmed that it had an effect as a crystal nucleating agent. Thus, the present inventors have found that fine powdered PTFE exhibits a high ability as a crystal nucleating agent when added in a small amount as a crystal nucleating agent.
 さらに、本発明者らは、驚くべきことに、微粉状のPTFEを結晶核剤とした場合は、PVDFフィルムの耐久性評価である、常温放置数ヶ月に相当する80℃60分間の加速試験を行ったところ、TD方向の破断伸度がそれほど減少せず、異方性の変化が生じないことを見出した。
 本発明は、これらの知見に基づいて完成するに至ったものである。
Furthermore, the present inventors surprisingly conducted an accelerated test at 80 ° C. for 60 minutes corresponding to several months of standing at room temperature, which is a durability evaluation of the PVDF film when fine powdered PTFE is used as a crystal nucleating agent. As a result, it was found that the elongation at break in the TD direction did not decrease so much and no change in anisotropy occurred.
The present invention has been completed based on these findings.
 本発明によれば、(1)PVDF、着色剤、及び結晶核剤としての微粉状のPTFEを含有するPVDF組成物が提供される。
 また、本発明によれば、(2)PVDF組成物100質量%としたとき、着色剤を1~50質量%、微粉状のPTFEの添加量を0.01~5質量%の割合で含む前記(1)のPVDF組成物が提供される。
 また、本発明によれば、(3)着色剤が、酸化チタンである前記(1)または(2)のPVDF組成物が提供される。
 また、本発明によれば、(4)微粉状のPTFEの粒径が0.01~4μmである前記(1)~(3)のいずれかのPVDF組成物が提供される。
According to the present invention, there is provided (1) a PVDF composition containing PVDF, a colorant, and finely powdered PTFE as a crystal nucleating agent.
Further, according to the present invention, (2) when the PVDF composition is 100% by mass, the colorant is contained in an amount of 1 to 50% by mass, and the addition amount of fine powdered PTFE is contained in a proportion of 0.01 to 5% by mass. The PVDF composition of (1) is provided.
Moreover, according to this invention, (3) The PVDF composition of said (1) or (2) whose colorant is a titanium oxide is provided.
In addition, according to the present invention, there is provided (4) the PVDF composition according to any one of (1) to (3), wherein the particle size of finely divided PTFE is 0.01 to 4 μm.
 また、本発明によれば、(5)さらに、メタクリレート系樹脂を含む前記(1)~(4)のいずれかのPVDF組成物が提供される。
 また、本発明によれば、(6)該PVDFとメタクリレート系樹脂との混合割合が、PVDFとメタクリレート系樹脂との合計質量を100質量部としたとき、PVDFが60質量部以上100質量部未満、メタクリレート系樹脂が0質量部を超えて40質量部以下である前記(5)のPVDF組成物が提供される。
The present invention also provides (5) the PVDF composition according to any one of (1) to (4), further comprising a methacrylate resin.
According to the present invention, (6) when the mixing ratio of PVDF and methacrylate resin is 100 parts by mass of PVDF and methacrylate resin, PVDF is 60 parts by mass or more and less than 100 parts by mass. The PVDF composition according to the above (5), wherein the methacrylate resin is more than 0 parts by mass and 40 parts by mass or less.
 また、本発明によれば、(7)該PVDFが、フッ化ビニリデン単独重合体及びフッ化ビニリデン共重合体からなる群より選ばれる少なくとも一種である前記(1)~(6)のいずれかのPVDF組成物が提供される。
 また、本発明によれば、(8)該メタクリレート系樹脂がPMMAである前記(5)のPVDF組成物が提供される。
According to the present invention, (7) any one of the above (1) to (6), wherein the PVDF is at least one selected from the group consisting of a vinylidene fluoride homopolymer and a vinylidene fluoride copolymer. A PVDF composition is provided.
The present invention also provides (8) the PVDF composition according to (5), wherein the methacrylate resin is PMMA.
 また、本発明によれば、(9)さらに熱安定剤を含有する前記(1)~(8)いずれかのPVDF組成物が提供される。
 さらにまた、本発明によれば、(10)前記(1)~(9)のいずれかのPVDF組成物から形成された樹脂成形体が提供される。
The present invention also provides (9) the PVDF composition according to any one of (1) to (8), further comprising a heat stabilizer.
Furthermore, according to the present invention, there is provided (10) a resin molded body formed from the PVDF composition according to any one of (1) to (9).
 また、本発明によれば、(11)加速試験(80℃60分間)後の前記樹脂成形体のTD方向破断伸度と形成当初の前記樹脂成形体のTD方向破断伸度との比率(加速試験(80℃60分間)後の前記樹脂成形体のTD方向破断伸度/形成当初の前記樹脂成形体のTD方向破断伸度×100)が、60~100%の範囲内である前記(10)の樹脂成形体が提供される。 Further, according to the present invention, (11) the ratio (acceleration) between the TD direction breaking elongation of the resin molded body after the acceleration test (80 ° C. for 60 minutes) and the TD direction breaking elongation of the resin molded body at the beginning of formation. The TD-direction breaking elongation of the resin molded body after the test (80 ° C. for 60 minutes) / the TD-direction breaking elongation of the resin molded body at the beginning of formation × 100) is in the range of 60 to 100% (10 ) Resin molded body is provided.
 また、本発明によれば、(12)前記樹脂成形体に、熱処理を行った前記(10)の樹脂成形体。
 また、本発明によれば、(13)前記(10)~(12)のいずれかの樹脂成形体から得られる樹脂フィルムが提供される。
 また、本発明によれば、(14)前記(13)の樹脂フィルムから得られる保護シートが提供される。
 また、本発明によれば、(15)前記(14)の保護シートから得られる太陽電池モジュール用バックシートが提供される。
Moreover, according to this invention, (12) The resin molded body of the said (10) which heat-processed the said resin molded body.
In addition, according to the present invention, (13) a resin film obtained from the resin molded body of any one of (10) to (12) is provided.
Moreover, according to this invention, the protective sheet obtained from the resin film of (14) said (13) is provided.
Moreover, according to this invention, the solar cell module backsheet obtained from the protective sheet of (15) said (14) is provided.
 本発明は、PVDF、着色剤、及び結晶核剤としての微粉状のPTFEとを含むPVDF組成物とすることによって、例えば、フィルムを形成した場合、特に、経時変化によるMD、TDの破断伸度等の機械的特性値の差異(異方性)がそれほど増大しない樹脂フィルムが得られるという効果を奏する。このように、本発明の樹脂成形体は、異方性の経時変化の問題が解消するため、樹脂フィルムや、様々な部材や、機材の保護シートとして利用でき、さらに、太陽電池モジュール用バックシートとしても使用できるという効果を奏する。 The present invention provides a PVDF composition containing PVDF, a colorant, and fine powdery PTFE as a crystal nucleating agent. For example, when a film is formed, the breaking elongation of MD and TD due to change with time Thus, there is an effect that a resin film in which a difference (anisotropy) in mechanical characteristic values such as the above does not increase so much can be obtained. As described above, the resin molded body of the present invention can be used as a protective sheet for resin films, various members, and equipment because the problem of anisotropic change with time is solved. As an effect.
図1は、結晶核剤(BN、PTFE)を使用したとき及び結晶核剤を使用しないときの降温でのDSC曲線である。FIG. 1 is a DSC curve at a temperature drop when a crystal nucleating agent (BN, PTFE) is used and when a crystal nucleating agent is not used.
1.フッ化ビニリデン系樹脂
 本発明で使用するPVDFとは、フッ化ビニリデンの単独重合体、及びフッ化ビニリデンを主成分とするフッ化ビニリデン共重合体を意味する。すなわち、本発明では、フッ化ビニリデン系樹脂が、フッ化ビニリデン単独重合体及びフッ化ビニリデン共重合体からなる群より選ばれる少なくとも一種であるフッ化ビニリデン系樹脂である。
1. Vinylidene fluoride resin PVDF used in the present invention means a homopolymer of vinylidene fluoride and a vinylidene fluoride copolymer mainly composed of vinylidene fluoride. That is, in the present invention, the vinylidene fluoride resin is at least one selected from the group consisting of a vinylidene fluoride homopolymer and a vinylidene fluoride copolymer.
 フッ化ビニリデン単独重合体は、重合性単量体として、フッ化ビニリデンのみを用いた重合体である。
 フッ化ビニリデン共重合体は、重合性単量体として、フッ化ビニリデンとそれに共重合可能な単量体とを用いた共重合体である。
The vinylidene fluoride homopolymer is a polymer using only vinylidene fluoride as a polymerizable monomer.
The vinylidene fluoride copolymer is a copolymer using vinylidene fluoride and a monomer copolymerizable therewith as a polymerizable monomer.
 フッ化ビニリデンと共重合可能な単量体としては、ヘキサフルオロプロピレン、テトラフルオロエチレン、トリフルオロエチレン、クロロトリフルオロエチレン、フッ化ビニル、パーフルオロメチルビニルエーテル、パーフルオロエチルビニルエーテル等のパーフルオロアルキルが挙げられる。また、フッ素を有しないエチレン、プロピレンなども共重合可能である。 Examples of monomers copolymerizable with vinylidene fluoride include perfluoroalkyl such as hexafluoropropylene, tetrafluoroethylene, trifluoroethylene, chlorotrifluoroethylene, vinyl fluoride, perfluoromethyl vinyl ether, and perfluoroethyl vinyl ether. Can be mentioned. Moreover, ethylene, propylene, etc. which do not have a fluorine can also be copolymerized.
 フッ化ビニリデン共重合体としては、例えば、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン三元共重合体、フッ化ビニリデン-クロロトリフルオロエチレン-ヘキサフルオロプロピレン三元共重合体、及びこれらの2種以上の混合物が挙げられる。 Examples of the vinylidene fluoride copolymer include a vinylidene fluoride-hexafluoropropylene copolymer, a vinylidene fluoride-tetrafluoroethylene copolymer, a vinylidene fluoride-chlorotrifluoroethylene copolymer, and a vinylidene fluoride-tri A fluoroethylene copolymer, a vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene terpolymer, a vinylidene fluoride-chlorotrifluoroethylene-hexafluoropropylene terpolymer, and a mixture of two or more thereof. Can be mentioned.
 フッ化ビニリデン共重合体は、フッ化ビニリデンとの共重合比率、すなわち、共重合可能な単量体の共重合比率が、フッ化ビニリデンと共重合可能な単量体との合計量を100モル%としたとき、通常15モル%以下であり、好ましくは10モル%以下、より好ましくは5モル%以下である。共重合可能な単量体の共重合比率が15モル%以下であることにより、フッ化ビニリデン共重合体は、結晶性を有する熱可塑性樹脂となる。共重合可能な単量体の共重合比率の下限値は、好ましくは1モル%である。共重合可能な単量体の共重合比率が高くなりすぎると、フッ化ビニリデン共重合体は、結晶性を喪失してエラストマーとなる。 The vinylidene fluoride copolymer has a copolymerization ratio with vinylidene fluoride, that is, the copolymerization ratio of the copolymerizable monomer is 100 mol of the total amount of the copolymerizable monomer with vinylidene fluoride. %, It is usually 15 mol% or less, preferably 10 mol% or less, more preferably 5 mol% or less. When the copolymerization ratio of the copolymerizable monomer is 15 mol% or less, the vinylidene fluoride copolymer becomes a thermoplastic resin having crystallinity. The lower limit of the copolymerization ratio of the copolymerizable monomer is preferably 1 mol%. If the copolymerization ratio of the copolymerizable monomer becomes too high, the vinylidene fluoride copolymer loses crystallinity and becomes an elastomer.
 したがって、PVDFとして、フッ化ビニリデン単独重合体、及び共重合可能な単量体の共重合比率が15モル%以下のフッ化ビニリデン共重合体からなる群より選ばれる少なくとも一種を用いることができる。PVDFの中でも、フッ化ビニリデン単独重合体、及び、ヘキサフルオロプロピレン単位の共重合比率が15モル%以下であるフッ化ビニリデン-ヘキサフルオロプロピレン共重合体が、耐熱性、溶融成形性、機械的特性、防汚性、耐溶剤性、二次加工性などの観点から、好ましい。 Therefore, at least one selected from the group consisting of a vinylidene fluoride homopolymer and a vinylidene fluoride copolymer having a copolymerization ratio of 15 mol% or less can be used as PVDF. Among PVDF, vinylidene fluoride homopolymer and vinylidene fluoride-hexafluoropropylene copolymer having a copolymerization ratio of hexafluoropropylene units of 15 mol% or less are excellent in heat resistance, melt moldability, and mechanical properties. From the viewpoints of antifouling property, solvent resistance, secondary workability, etc., it is preferable.
 PVDFの固有粘度は、好ましくは0.7~1.5dl/g、より好ましくは0.8~1.3dl/gの範囲内である。PVDFの固有粘度は、PVDF4gを1リットルのN,N-ジメチルホルムアミドに溶解させた溶液について、ウベローデ粘度計を用いて測定した30℃における対数粘度である。
 PVDFの融点は、示差走査熱量計(DSC)の昇温時の吸熱ピークより測定される値であって、通常130~185℃、好ましくは160~185℃の範囲内である。
The intrinsic viscosity of PVDF is preferably in the range of 0.7 to 1.5 dl / g, more preferably 0.8 to 1.3 dl / g. The intrinsic viscosity of PVDF is a logarithmic viscosity at 30 ° C. measured using a Ubbelohde viscometer for a solution in which 4 g of PVDF is dissolved in 1 liter of N, N-dimethylformamide.
The melting point of PVDF is a value measured from an endothermic peak at the time of temperature rise of a differential scanning calorimeter (DSC), and is usually within a range of 130 to 185 ° C., preferably 160 to 185 ° C.
2.メタクリレート系樹脂
 本発明のPVDF組成物では、PVDFの加工性、接着性等の特性を向上させるために、メタクリレート系樹脂が混合されることもある。メタクリレート系樹脂とは、メタクリル酸アルキルエステル単独重合体であるか、メタクリル酸アルキルエステルを主成分とする共重合体であるか、またはこれら重合体の2種以上の混合物である。
2. Methacrylate-based resin In the PVDF composition of the present invention, a methacrylate-based resin may be mixed in order to improve properties such as processability and adhesiveness of PVDF. The methacrylate resin is a methacrylic acid alkyl ester homopolymer, a copolymer containing methacrylic acid alkyl ester as a main component, or a mixture of two or more of these polymers.
 メタクリル酸アルキルエステルを主成分とする共重合体は、メタクリル酸アルキルエステルとそれに共重合可能な単量体との共重合体である。
 メタクリル酸アルキルエステルと共重合可能な単量体との合計量を100モル%としたとき、共重合可能な単量体が、通常、50モル%未満、好ましくは40モル%未満、より好ましくは30モル%未満である。
The copolymer having a methacrylic acid alkyl ester as a main component is a copolymer of a methacrylic acid alkyl ester and a monomer copolymerizable therewith.
When the total amount of the methacrylic acid alkyl ester and the copolymerizable monomer is 100 mol%, the copolymerizable monomer is usually less than 50 mol%, preferably less than 40 mol%, more preferably It is less than 30 mol%.
 メタクリル酸アルキルエステルには、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル等があり、中でもメタクリル酸メチルが好ましい。
 例えば、メタクリル酸メチルの単独重合体(以下、「PMMA」と略記することがある)は、重合性単量体として、メタクリル酸メチルのみを用いる。
Examples of the alkyl methacrylate include methyl methacrylate, ethyl methacrylate, propyl methacrylate, etc. Among them, methyl methacrylate is preferable.
For example, a homopolymer of methyl methacrylate (hereinafter sometimes abbreviated as “PMMA”) uses only methyl methacrylate as a polymerizable monomer.
 メタクリル酸アルキルエステルと共重合可能な単量体としては、主成分のメタクリル酸アルキルエステル以外のメタクリル酸アルキルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル等のアクリル酸アルキルエステル;スチレン、α-メチルスチレン等のスチレン系単量体;アクリロニトリル、メタクリロニトリル等のニトリル系単量体;酢酸ビニル等のビニル単量体;が挙げられる。 Monomers that can be copolymerized with alkyl methacrylates include alkyl methacrylates other than the principal alkyl methacrylates; alkyl alkyl esters such as methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate. Styrene monomers such as styrene and α-methylstyrene; nitrile monomers such as acrylonitrile and methacrylonitrile; vinyl monomers such as vinyl acetate;
 これらメタクリレート系樹脂の中でも、PMMAが、PVDFとの相溶性や、例えば樹脂フィルムを形成した場合、他の樹脂フィルムとの接着性を向上させるので好ましい。
 メタクリレート系樹脂は、多すぎると、PVDFの耐候性等の特性が損なわれるおそれがあり、少なすぎると、例えば、樹脂フィルムの特性が損なわれるおそれがある。
Among these methacrylate resins, PMMA is preferable because it improves compatibility with PVDF and, for example, when a resin film is formed, improves adhesiveness with other resin films.
If the amount of the methacrylate resin is too large, properties such as weather resistance of PVDF may be impaired. If the amount is too small, for example, the properties of the resin film may be impaired.
3.着色剤
 本発明のPVDF組成物では、着色剤が添加される。着色剤としては、PVDF組成物の色調と隠蔽力(光散乱性)を損ねることがないものであれば、特に制限はないが、色調と隠蔽力(光散乱性)が特に優れていることから、無機顔料や黒色顔料などを好ましく用いることができる。無機顔料としては、TiO2(酸化チタン)、Al23・nH2O、[ZnS+BaSO4]、CaSO4・2H2O、BaSO4、PbCO3・Pb(OH)2等が挙げられ、特に、白色顔料であるTiO2(酸化チタン)が好ましい。黒色顔料としては、カーボンブラックが好ましく、通常、太陽電池バックシート等に使用されるカーボンブラックであれば、特に限定されず、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラックなどを使用することができ、カルボキシル基等によって表面が変性されたカーボンブラックも使用することもできる。
3. Colorant In the PVDF composition of the present invention, a colorant is added. The colorant is not particularly limited as long as it does not impair the color tone and hiding power (light scattering property) of the PVDF composition, but the color tone and hiding power (light scattering property) are particularly excellent. Inorganic pigments and black pigments can be preferably used. Examples of inorganic pigments include TiO 2 (titanium oxide), Al 2 O 3 .nH 2 O, [ZnS + BaSO 4 ], CaSO 4 .2H 2 O, BaSO 4 , PbCO 3 .Pb (OH) 2, etc. TiO 2 (titanium oxide) which is a white pigment is preferable. The black pigment is preferably carbon black, and is not particularly limited as long as it is carbon black that is usually used for solar battery backsheets, etc., and furnace black, channel black, acetylene black, thermal black, etc. can be used. Carbon black whose surface has been modified with a carboxyl group or the like can also be used.
4.微粉状のPTFE結晶核剤
 本発明のPVDF組成物では、微粉状のPTFE結晶核剤が添加される。微粉状のPTFEは、微粉状であって、核剤を形成する成分がPTFEを必ず含んで形成されるものであり、例えば、テトラフルオロエチレンの単独重合体、テトラフルオロエチレンとそれと共重合可能な、テトラフルオロエチレン以外のフッ素系モノマーとの共重合体や変成されたPTFEであることが重要で、これにより本発明の結晶核剤としての効果を発現することができる。PTFEが微粉状であるためには、一次粒子の平均粒径は、通常は0.01~4μm、好ましくは0.01~3μm、より好ましくは0.01~2μm、さらに好ましくは0.01~1μmのものである。本発明で用いる微粉状のPTFE結晶核剤は、着色剤と併用して用いる場合、あるいは着色剤と所望により使用するメタクリレート系樹脂や熱安定剤との併用で用いる場合であっても、PVDFに対する分散性に優れ、結晶核剤としての効果が十分に発現できることが特徴である。
4). Fine powdery PTFE crystal nucleating agent In the PVDF composition of the present invention, a fine powdery PTFE crystal nucleating agent is added. The fine powdery PTFE is finely powdered, and the component forming the nucleating agent is necessarily formed by including PTFE. For example, tetrafluoroethylene homopolymer, tetrafluoroethylene and copolymerizable therewith It is important that the copolymer is a copolymer with a fluorine-based monomer other than tetrafluoroethylene or a modified PTFE, and thereby the effect as the crystal nucleating agent of the present invention can be exhibited. In order for PTFE to be finely divided, the average particle size of the primary particles is usually 0.01 to 4 μm, preferably 0.01 to 3 μm, more preferably 0.01 to 2 μm, and still more preferably 0.01 to 1 μm. Even if the fine powdery PTFE crystal nucleating agent used in the present invention is used in combination with a colorant, or is used in combination with a colorant and, if desired, a methacrylate resin or a heat stabilizer, it is suitable for PVDF. It is characterized by excellent dispersibility and sufficient effect as a crystal nucleating agent.
 すなわち、本発明では、PTFEの平均粒径が通常は0.01~4μmであるPVDF組成物である。平均粒径の測定は、レーザー屈折・散乱法による。 That is, in the present invention, it is a PVDF composition having an average particle size of PTFE of usually 0.01 to 4 μm. The average particle size is measured by a laser refraction / scattering method.
5.PVDF組成物
 本発明のPVDF組成物は、PVDFと、着色剤、及び結晶核剤としての微粉状のPTFEを含むPVDF組成物である。
 好ましくは、PVDF組成物100質量%としたとき、着色剤を1~50質量%、微粉状のPTFEを0.01~5質量%の割合で含むPVDF組成物である。
 本発明のPVDF組成物は、好ましくは、PVDF組成物100質量%としたとき、PVDFを40~98.99質量%含む。
 さらに、メタクリレート系樹脂を含むPVDF組成物であってもよい。
5. PVDF Composition The PVDF composition of the present invention is a PVDF composition comprising PVDF, a colorant, and finely powdered PTFE as a crystal nucleating agent.
A PVDF composition containing 1 to 50% by weight of a colorant and 0.01 to 5% by weight of finely divided PTFE is preferable when the PVDF composition is 100% by weight.
The PVDF composition of the present invention preferably contains 40 to 99.99% by mass of PVDF, assuming 100% by mass of the PVDF composition.
Furthermore, the PVDF composition containing methacrylate resin may be sufficient.
 メタクリレート系樹脂を含む場合、PVDFとメタクリレート系樹脂との合計質量を100質量部とすると、PVDFとメタクリレート系樹脂との混合割合が、PVDFが60質量部以上100質量部未満、好ましくは65質量部以上95質量部以下、より好ましくは70質量部以上90質量部以下、メタクリレート系樹脂が0質量部を超えて40質量部以下、好ましくは5質量部以上35質量部以下、より好ましくは10質量部以上30質量部以下である。メタクリレート系樹脂が少ないと接着性の効果が得られず、メタクリレート系樹脂が多すぎると、PVDFの特性である耐候性や電気特性が低下する場合がある。 When the total weight of PVDF and methacrylate resin is 100 parts by mass when the methacrylate resin is included, the PVDF and methacrylate resin mixing ratio of PVDF is 60 parts by mass or more and less than 100 parts by mass, preferably 65 parts by mass. 95 parts by mass or less, more preferably 70 parts by mass or more and 90 parts by mass or less, and the methacrylate resin exceeds 0 part by mass and 40 parts by mass or less, preferably 5 parts by mass or more and 35 parts by mass or less, more preferably 10 parts by mass. The amount is 30 parts by mass or less. If the amount of the methacrylate resin is small, the adhesive effect cannot be obtained, and if the amount of the methacrylate resin is too large, the weather resistance and electrical characteristics, which are the characteristics of PVDF, may be deteriorated.
 本発明の着色剤の含有量は、PVDF組成物100質量%としたとき、1~50質量%、好ましくは2~45質量%、より好ましくは3~40質量%の範囲内である。とりわけ、太陽電池モジュール用バックシートの着色フィルムとして使用されるため、酸化チタンを用いる場合、酸化チタンは、15~50質量%、好ましくは、20~50質量%、より好ましくは22~50質量%の範囲内である。 The content of the colorant of the present invention is 1 to 50% by mass, preferably 2 to 45% by mass, more preferably 3 to 40% by mass, when the PVDF composition is 100% by mass. In particular, since it is used as a colored film for a back sheet for a solar cell module, when titanium oxide is used, the titanium oxide is 15 to 50% by mass, preferably 20 to 50% by mass, more preferably 22 to 50% by mass. Is within the range.
 本発明の微粉状PTFE結晶核剤の含有量は、PVDF組成物100質量%としたとき、PTFEの添加量が0.01~5質量%であり、好ましくは0.01~4.5質量%、より好ましくは0.05~3質量%であり、特に好ましくは0.1~2質量%である。
 すなわち、本発明では、PVDF組成物100質量%としたとき、PTFEの添加量が0.01~5質量%であるPVDF組成物である。
The content of the fine powdery PTFE crystal nucleating agent of the present invention is such that when the PVDF composition is 100% by mass, the amount of PTFE added is 0.01-5% by mass, preferably 0.01-4.5% by mass. More preferably, the content is 0.05 to 3% by mass, and particularly preferably 0.1 to 2% by mass.
That is, in the present invention, the PVDF composition has an addition amount of PTFE of 0.01 to 5% by mass when the PVDF composition is 100% by mass.
 とりわけ、メタクリレート系樹脂を用いた場合は、PVDF組成物100質量%としたとき、PTFEの添加量が0.01~3質量%であり、好ましくは0.05~2.7質量%であり、より好ましくは0.1~1.8質量%である。
 すなわち、本発明では、メタクリレート系樹脂を用いた場合は、PVDF組成物100質量%としたとき、PTFEの添加量が、0.01~3質量%であるPVDF組成物である。
In particular, when a methacrylate resin is used, when the PVDF composition is 100% by mass, the amount of PTFE added is 0.01 to 3% by mass, preferably 0.05 to 2.7% by mass. More preferably, the content is 0.1 to 1.8% by mass.
That is, in the present invention, when a methacrylate resin is used, the PVDF composition has an addition amount of PTFE of 0.01 to 3 mass% when the PVDF composition is 100 mass%.
 微粉状のPTFEの添加量が少ないと結晶核剤としての効果が得られず、多いと結晶核剤としての効果が飽和して意味がなく、多過ぎるとPVDFとしての特性が損なわれるおそれがある。
 微粉状のPTFEを、PVDFに、結晶核剤として添加した場合、結晶化温度が、示差走査熱量計(DSC)の降温時の発熱ピークから測定される。
If the amount of fine powdered PTFE added is small, the effect as a crystal nucleating agent cannot be obtained, while if it is large, the effect as a crystal nucleating agent is saturated and meaningless, and if too much, the properties as PVDF may be impaired. .
When fine powdery PTFE is added to PVDF as a crystal nucleating agent, the crystallization temperature is measured from the exothermic peak when the temperature is lowered by a differential scanning calorimeter (DSC).
 結晶化温度は、通常、結晶核剤を添加していないPVDFの結晶化温度から8~30℃高くなる。好ましくは、10~28℃高くなり、より好ましくは12~25℃高くなる。
 すなわち、本発明では、結晶核剤を添加したPVDFの結晶化温度が、結晶核剤を添加しない場合のPVDFの結晶化温度より8~30℃高いPVDFを用いたPVDF組成物である。
The crystallization temperature is usually 8 to 30 ° C. higher than the crystallization temperature of PVDF to which no crystal nucleating agent is added. Preferably, it is increased by 10 to 28 ° C, more preferably 12 to 25 ° C.
That is, the present invention is a PVDF composition using PVDF in which the crystallization temperature of PVDF added with a crystal nucleating agent is 8 to 30 ° C. higher than the crystallization temperature of PVDF when no crystal nucleating agent is added.
 このような、結晶化温度となるよう、微粉状のPTFEの粒径、添加量を調整する。
 また、PVDFの融点と結晶化温度との温度差は、通常45~15℃、好ましくは、43~20℃、より好ましくは40~25℃である。
 すなわち、本発明では、結晶核剤を添加したPVDFの結晶化温度と融点の温度差が、45~15℃であるPVDFを用いたPVDF組成物である。
The particle size and addition amount of fine powdered PTFE are adjusted so as to achieve such a crystallization temperature.
Further, the temperature difference between the melting point of PVDF and the crystallization temperature is usually 45 to 15 ° C., preferably 43 to 20 ° C., more preferably 40 to 25 ° C.
That is, the present invention is a PVDF composition using PVDF in which the temperature difference between the crystallization temperature and the melting point of PVDF added with a crystal nucleating agent is 45 to 15 ° C.
5-1.熱安定剤
 本発明のPVDF組成物では、必要に応じて熱安定剤が添加される。熱安定剤は、特に酸化チタンなどの着色剤の添加による耐熱性の低下を防ぐために用いられる。着色剤と熱安定剤を併用することによって、成形加工や経時による熱分解や熱変色もない着色フィルムが得られる。
5-1. Heat Stabilizer In the PVDF composition of the present invention, a heat stabilizer is added as necessary. The heat stabilizer is used to prevent a decrease in heat resistance due to the addition of a colorant such as titanium oxide. By using a colorant and a heat stabilizer in combination, a colored film free from molding processing, thermal decomposition and thermal discoloration over time can be obtained.
 太陽電池モジュール用バックシートとして、酸化チタン等の着色剤を大量に使用した場合、PVDFの耐熱性が低下することが知られており、その場合、熱安定剤が添加される。熱安定剤としては、ポリヒドロキシモノカルボン酸カルシウム塩、炭素数5~30の脂肪族カルボン酸カルシウム塩、炭酸カルシウム、水酸化カルシウム、酸化亜鉛、及び酸化マグネシウムなどが挙げられる。また、充填剤と知られるタルクも、熱安定剤としての効果を有することが知られている。 It is known that when a large amount of a colorant such as titanium oxide is used as a back sheet for a solar cell module, the heat resistance of PVDF is lowered. In that case, a heat stabilizer is added. Examples of the heat stabilizer include polyhydroxymonocarboxylic acid calcium salt, aliphatic carboxylic acid calcium salt having 5 to 30 carbon atoms, calcium carbonate, calcium hydroxide, zinc oxide, and magnesium oxide. In addition, talc known as a filler is also known to have an effect as a heat stabilizer.
 本発明の熱安定剤の含有割合は、PVDF組成物100質量%としたとき、0~10質量%、好ましくは0.2~6質量%、より好ましくは0.3~3質量%の範囲内である。 The content of the heat stabilizer of the present invention is within the range of 0 to 10% by mass, preferably 0.2 to 6% by mass, more preferably 0.3 to 3% by mass, when the PVDF composition is 100% by mass. It is.
 熱安定剤の含有割合が小さすぎると、熱安定化効果が小さくなり、熱安定剤の含有割合が大きすぎると、樹脂フィルムの色調、機械的特性などに悪影響を及ぼすおそれがある。 If the content ratio of the heat stabilizer is too small, the heat stabilization effect is reduced, and if the content ratio of the heat stabilizer is too large, the color tone and mechanical characteristics of the resin film may be adversely affected.
5-2.他の熱可塑性樹脂
 本発明のPVDF組成物は、樹脂成分としてPVDF、必要に応じてメタクリレート系樹脂を含有するが、加工性、耐衝撃性、接着性、耐熱性等の特性を改善するために、所望により他の熱可塑性樹脂を含有することができる。
5-2. Other Thermoplastic Resins The PVDF composition of the present invention contains PVDF as a resin component and, if necessary, a methacrylate resin, in order to improve properties such as processability, impact resistance, adhesion, and heat resistance. If desired, other thermoplastic resins can be contained.
 他の熱可塑性樹脂としては、ポリエチレン、ポリプロピレン等のポリオレフィン;ナイロン6、ナイロン66等のポリアミド;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;メタクリレート系樹脂以外のアクリル樹脂;ポリスチレン、ポリアクリロニトリル、ポリ塩化ビニル、ポリオキシメチレン、ポリカーボネート、ポリフェニレンオキシド、ポリエステルウレタン、ポリm-フェニレンイソフタルアミド、ポリp-フェニレンテレフタルアミドなどが挙げられる。
 他の熱可塑性樹脂は、PVDF組成物100質量%としたとき、0~15質量%、好ましくは0~12質量%、より好ましくは0~10質量%である。
 他の熱可塑性樹脂は、多すぎると、PVDFの耐候性等の特性が損なわれるおそれがある。
Other thermoplastic resins include polyolefins such as polyethylene and polypropylene; polyamides such as nylon 6 and nylon 66; polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; acrylic resins other than methacrylate resins; polystyrene and polyacrylonitrile , Polyvinyl chloride, polyoxymethylene, polycarbonate, polyphenylene oxide, polyester urethane, poly m-phenylene isophthalamide, poly p-phenylene terephthalamide, and the like.
The other thermoplastic resin is 0 to 15% by mass, preferably 0 to 12% by mass, and more preferably 0 to 10% by mass when the PVDF composition is 100% by mass.
When there are too many other thermoplastic resins, there exists a possibility that characteristics, such as a weather resistance of PVDF, may be impaired.
 本発明のPVDF組成物には、所望により、顔料分散剤、紫外線吸収剤、光安定剤、つや消し剤、滑剤、色味調整剤、加工助剤、機械物性改良剤(例えば、アクリルエラストマーなどのエラストマー)などから選ばれる他の添加剤を含有させることができる。これらの添加剤は、所望により、それぞれに適した割合で用いられる。
 添加剤の量は、PVDF組成物100質量%としたとき、各々独立して、15質量%以下、好ましくは10質量%以下である。
If desired, the PVDF composition of the present invention may contain a pigment dispersant, an ultraviolet absorber, a light stabilizer, a matting agent, a lubricant, a color adjuster, a processing aid, a mechanical property improver (for example, an elastomer such as an acrylic elastomer). ) And other additives selected from the above. These additives are used in proportions suitable for each as desired.
The amount of the additive is independently 15% by mass or less, preferably 10% by mass or less, when the PVDF composition is 100% by mass.
 これらの添加剤を用いる場合、その含有割合の下限は、PVDF組成物100質量%としたとき、各々独立して、通常0.001質量%、多くの場合0.01質量%である。 When these additives are used, the lower limit of the content ratio is usually 0.001% by mass and in many cases 0.01% by mass, when the PVDF composition is 100% by mass.
6.樹脂成形体、樹脂フィルム、保護シート、太陽電池モジュール用バックシート
 本発明のPVDF組成物は、通常、PVDF、着色剤、及び微粉状のPTFE、必要に応じてメタクリレート系樹脂および/または熱安定剤をドライブレンドする方法により調製することができる。PVDFの粉末またはペレットを、微粉状のPTFE、着色剤、必要に応じてメタクリレート系樹脂および/または熱安定剤とともに、押出機に供給して溶融混練し、ストランド状に溶融押出し、カットしてペレット化によりブレンドすることもできる。他の添加剤及び/または他の熱可塑性樹脂を用いる場合には、前記のブレンド工程やペレット工程で含有させることもできる。
6). Resin molded body, resin film, protective sheet, back sheet for solar cell module The PVDF composition of the present invention is usually PVDF, a colorant, and fine powdered PTFE, and if necessary, a methacrylate resin and / or a thermal stabilizer. Can be prepared by a dry blending method. PVDF powder or pellets are fed into an extruder together with fine powdered PTFE, colorant, and optionally a methacrylate resin and / or heat stabilizer, melt kneaded, melt extruded into strands, cut and pelleted It can also be blended by conversion. When other additives and / or other thermoplastic resins are used, they can be contained in the blending step or the pellet step.
 このようなブレンド物は、押出成形機に供給して、フィルム(シートを含む)として溶融押出成形することができる。
 このようにして、本発明のPVDF組成物は、樹脂成形体を形成することができる。
Such a blend can be fed to an extruder and melt extruded as a film (including sheets).
In this manner, the PVDF composition of the present invention can form a resin molded body.
6-1.樹脂フィルム
 樹脂成形体として、とりわけ、本発明のPVDF組成物は、押出成形機に供給し、押出成形機の先端に配置したTダイからフィルム状に溶融押出することにより、フィルムに成形することができる。本発明において、樹脂フィルムとは、厚みが250μm未満のフィルムだけではなく、厚みが250μm~3mm、好ましくは250μm以上2.5mm未満のシート(板を含む)まで含むものとする。すなわち、樹脂成形体が、樹脂フィルムである樹脂成形体である。
6-1. Resin film As a resin molded body, the PVDF composition of the present invention can be formed into a film by supplying it to an extruder and melt-extruding it into a film form from a T-die placed at the tip of the extruder. it can. In the present invention, the resin film includes not only a film having a thickness of less than 250 μm but also a sheet (including a plate) having a thickness of 250 μm to 3 mm, preferably 250 μm or more and less than 2.5 mm. That is, the resin molded body is a resin molded body that is a resin film.
 樹脂フィルムの厚みの下限値は、通常2μm、好ましくは3μm、より好ましくは4μm、特に好ましくは5μmである。樹脂フィルムの厚みの上限値は、好ましくは500μm、より好ましくは300μm、さらに好ましくは200μm、特に好ましくは120μmである。樹脂フィルムの厚みが薄すぎると、機械的特性が低下する。樹脂フィルムの厚みが厚すぎると、柔軟性が損なわれたり、軽量化が困難になったりする。樹脂フィルムの厚みは、特に5~100μmの範囲内で良好な特性を発揮することができる。 The lower limit of the thickness of the resin film is usually 2 μm, preferably 3 μm, more preferably 4 μm, and particularly preferably 5 μm. The upper limit value of the thickness of the resin film is preferably 500 μm, more preferably 300 μm, still more preferably 200 μm, and particularly preferably 120 μm. If the thickness of the resin film is too thin, the mechanical properties are deteriorated. If the thickness of the resin film is too thick, flexibility may be impaired or weight reduction may be difficult. The thickness of the resin film can exhibit good characteristics particularly in the range of 5 to 100 μm.
6-2.保護シート
 本発明のPVDF組成物から得られる樹脂フィルムは、耐摩耗性と耐候性を有し、さらに接着性及び、例えば、フィルム等の樹脂成形体を形成した場合、熱処理によって、破断伸度等の機械的強度の異方性が改善されており、日用雑貨から電気電子部品まで種々の部材・機材の保護シートとして使用することができる。すなわち、樹脂フィルムが、保護シートである樹脂成形体である。
6-2. Protective sheet The resin film obtained from the PVDF composition of the present invention has abrasion resistance and weather resistance, and further has adhesiveness and, for example, when a resin molded body such as a film is formed, by heat treatment, the elongation at break etc. The anisotropy of the mechanical strength is improved, and it can be used as a protective sheet for various members / equipment ranging from daily goods to electrical / electronic parts. That is, the resin film is a resin molded body that is a protective sheet.
 その場合、単層でも、多層でも用いることができる。多層とする場合は、接着剤を使用するウエットラミネート、ドライラミネート、共押出ラミネートの他、射出成形のラミネーションインジェクションプレス、インモールド成形など種々のラミネート方法が可能である。 In that case, a single layer or a multilayer can be used. In the case of multi-layers, various lamination methods such as wet lamination using an adhesive, dry lamination, co-extrusion lamination, injection molding lamination injection press, and in-mold molding are possible.
6-3.太陽電池モジュール用バックシート
 本発明において、保護シートとして、太陽電池モジュール用バックシートとする場合は、本発明のPVDF組成物からなる単層の樹脂フィルム、該樹脂フィルムと他の樹脂フィルム(例えば、PETフィルム)とを複合化した多層フィルム、該樹脂フィルムと防湿フィルムとを複合化した多層フィルム、該樹脂フィルムと強化ガラス板とを複合化した複合材料、該樹脂フィルムと金属板とを複合化した複合材料、該樹脂フィルムと他の樹脂フィルム、防湿フィルム、強化ガラス板などの2種以上とを複合化した複合材料などとして用いられる。すなわち、保護シートが、太陽電池モジュール用バックシートである樹脂成形体である。多層フィルムや複合材料は、各層間に接着剤層を配置することができる。防湿フィルムとしては、基材フィルムの片面に、酸化ケイ素や酸化アルミニウムなどの無機酸化物の蒸着膜を形成した複合フィルムなどが挙げられる。また、本発明のPVDF組成物からなる樹脂フィルムとEVAシートを複合化し、太陽電池セルの封止材とすることもできる。
6-3. Back sheet for solar cell module In the present invention, when a back sheet for a solar cell module is used as a protective sheet, a single-layer resin film comprising the PVDF composition of the present invention, the resin film and other resin films (for example, PET film), a multilayer film composed of the resin film and a moisture-proof film, a composite material composed of the resin film and a tempered glass plate, and a composite of the resin film and a metal plate The composite material is used as a composite material in which the resin film is combined with two or more of other resin films, a moisture-proof film, a tempered glass plate, and the like. That is, the protective sheet is a resin molded body that is a solar cell module backsheet. Multilayer films and composite materials can have an adhesive layer between each layer. Examples of the moisture-proof film include a composite film in which a deposited film of an inorganic oxide such as silicon oxide or aluminum oxide is formed on one surface of a base film. Moreover, the resin film and EVA sheet | seat which consist of the PVDF composition of this invention can be compounded, and it can also be set as the sealing material of a photovoltaic cell.
6-4.加速試験
 異方性の経時変化を評価するための試験方法であるとともに、本発明の組成物から得られる樹脂成形体や樹脂フィルム等の製造当初(以下、「形成当初」と略記することがある)の破断伸度が、常温、数ヶ月(概ね3月程度)は保持可能かどうかを評価するための試験でもある。
 この加速試験は、80℃60分間の加速試験を行った後、TD方向とMD方向の破断伸度を測定した。
6-4. Accelerated test This is a test method for evaluating anisotropy change with time, and may be abbreviated as the initial stage of production of a resin molded body or resin film obtained from the composition of the present invention (hereinafter referred to as “initial stage of formation”). ) Is a test for evaluating whether the elongation at break can be maintained at room temperature for several months (approximately three months).
In this acceleration test, after performing an acceleration test at 80 ° C. for 60 minutes, the elongation at break in the TD direction and the MD direction were measured.
 この場合、常温数ヶ月放置に相当する80℃60分間の加速試験後の樹脂成形体のTD方向破断伸度と形成当初の樹脂成形体のTD方向破断伸度の比率((80℃60分間の加速試験後の樹脂成形体のTD方向破断伸度)/(形成当初の樹脂成形体のTD方向破断伸度)×100)(比率:%)が、通常、60~100%の範囲内、好ましくは、70~100%、より好ましくは80~100%である。 In this case, the ratio of the TD-direction breaking elongation of the resin molded article after the acceleration test at 80 ° C. for 60 minutes corresponding to standing at room temperature for several months and the TD-direction breaking elongation of the resin molded article at the beginning of formation ((80 ° C. for 60 minutes) TD-direction elongation at break of resin molded body after acceleration test) / (TD-direction elongation at break of formed resin body) × 100) (ratio:%) is usually within the range of 60 to 100%, preferably Is 70 to 100%, more preferably 80 to 100%.
 すなわち、本発明では、加速試験(80℃60分間)後の樹脂成形体のTD方向破断伸度と形成当初の樹脂成形体のTD方向破断伸度の比率((加速試験(80℃60分間)後の樹脂成形体のTD方向破断伸度)/(形成当初の樹脂成形体のTD方向破断伸度)×100)(比率:%)が、60~100%の範囲内である樹脂成形体である。 That is, in the present invention, the ratio of the TD direction breaking elongation of the resin molded article after the accelerated test (80 ° C. for 60 minutes) to the TD direction breaking elongation of the resin molded article at the beginning of formation ((accelerated test (80 ° C. for 60 minutes) TD direction breaking elongation of the later resin molded body) / (TD direction breaking elongation of the initial resin molded body) × 100) (ratio:%) is in the range of 60 to 100%. is there.
 また、本発明では、加速試験(80℃60分間)後の樹脂成形体のTD方向破断伸度と加速試験(80℃60分間)後の樹脂成形体のMD方向破断伸度の比率((加速試験(80℃60分間)後の樹脂成形体のTD方向破断伸度)/(加速試験(80℃60分間)後の樹脂成形体のMD方向破断伸度)×100)(比率:%)が、通常50~90%、好ましくは55~90%、より好ましくは60~90%である。 In the present invention, the ratio between the TD direction breaking elongation of the resin molded body after the acceleration test (80 ° C. for 60 minutes) and the MD direction breaking elongation of the resin molded body after the acceleration test (80 ° C. for 60 minutes) ((acceleration TD direction elongation at break of resin molded body after test (80 ° C. for 60 minutes) / (MD direction elongation at break of resin molded body after accelerated test (80 ° C. for 60 minutes)) × 100) (ratio:%) In general, it is 50 to 90%, preferably 55 to 90%, more preferably 60 to 90%.
6-5.プレッシャークッカー試験
 さらに、樹脂成形体を屋外の日光に暴露された場合等を想定して行う、長期耐久性を測定するプレッシャークッカー試験(以下、「PCT試験」と略記することがある)を行った後、TD方向とMD方向の破断伸度を測定した。
 このPCT試験は、プレッシャークッカー試験機を用い、温度121℃、相対湿度100%RH、2気圧、96時間の試験を行い、破断伸度を測定した。
6-5. Pressure cooker test Further, a pressure cooker test (hereinafter sometimes abbreviated as "PCT test") was performed to measure long-term durability, assuming that the resin molded body was exposed to sunlight outdoors. Then, the breaking elongation of TD direction and MD direction was measured.
In this PCT test, a pressure cooker tester was used, a test was conducted at a temperature of 121 ° C., a relative humidity of 100% RH, 2 atm, and 96 hours, and the elongation at break was measured.
 本発明では、PCT試験後、PCT試験後の樹脂成形体のTD方向破断伸度とPCT試験後の樹脂成形体MD方向破断伸度の比率((PCT試験後TD方向破断伸度)/(PCT試験後MD方向破断伸度))が、通常30~70%、好ましくは35~70%、より好ましくは、40~70%である。 In the present invention, after the PCT test, the ratio of the TD rupture elongation of the resin molded product after the PCT test and the MD rupture elongation of the resin molded product after the PCT test ((TDT rupture elongation after the PCT test) / (PCT The MD direction breaking elongation after test) is usually 30 to 70%, preferably 35 to 70%, more preferably 40 to 70%.
7.熱処理
 前記加速試験(80℃60分間)は、熱処理とも言える。後述する表1の実施例1を見ると、80℃60分間の加速試験(熱処理)によって、形成当初のTD破断伸度が68.0%であるにもかかわらず、80℃60分間後のTD破断伸度が68.0%と同じである。
7). Heat treatment The accelerated test (80 ° C. for 60 minutes) can be said to be heat treatment. Looking at Example 1 in Table 1 to be described later, the TD after 60 minutes at 80 ° C. was measured by an accelerated test (heat treatment) at 80 ° C. for 60 minutes, even though the TD fracture elongation at the beginning of formation was 68.0%. The elongation at break is the same as 68.0%.
 これに対して、比較例1(核剤無し)の場合、形成当初のTD破断伸度が79.0%であるにもかかわらず、80℃60分間後のTD破断伸度が30.0%と大幅に低下している。また、比較例2(核剤BN)の場合、形成当初のTD破断伸度が69.0%であるにもかかわらず、80℃60分間後のTD破断伸度が31.0%と大幅に低下している。
 これらの結果から、結晶核剤として微粉状のPTFEを用いた場合、加速試験(熱処理)によって、TD破断伸度の低下が抑制されていることがわかる。
On the other hand, in the case of Comparative Example 1 (without nucleating agent), the TD breaking elongation after 60 minutes at 80 ° C. was 30.0% even though the initial TD breaking elongation was 79.0%. And has fallen significantly. Further, in the case of Comparative Example 2 (nucleating agent BN), the TD breaking elongation after 80 minutes at 80 ° C. was greatly increased to 31.0% even though the initial TD breaking elongation was 69.0%. It is falling.
From these results, it is understood that when fine powdery PTFE is used as the crystal nucleating agent, a decrease in the TD fracture elongation is suppressed by the acceleration test (heat treatment).
 このことは、結晶核剤として微粉状のPTFEを用いた場合、異方性の経時変化が生じにくいが、例えば、さらに、一定経時後に加熱処理を行うことにより、異方性の変化が生じにくい期間が延長される。
 熱処理の温度・時間は、通常40~120℃、30~200分間、好ましくは50~110℃、40~150分間、より好ましくは、60~100℃、45~100分間である。
This means that when fine powdered PTFE is used as the crystal nucleating agent, the change in anisotropy with time is less likely to occur, but further, for example, the change in anisotropy is less likely to occur by performing heat treatment after a certain period of time. The period is extended.
The temperature and time of the heat treatment are usually 40 to 120 ° C. and 30 to 200 minutes, preferably 50 to 110 ° C. and 40 to 150 minutes, more preferably 60 to 100 ° C. and 45 to 100 minutes.
 以下、本発明について、実施例及び比較例を挙げてより具体的に説明するが、本発明は、これら実施例に限定されない。本発明のPVDF組成物からなる樹脂フィルムの結晶化温度、破断伸度の測定方法は、次のとおりである。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. The measuring method of the crystallization temperature of the resin film which consists of a PVDF composition of this invention, and breaking elongation is as follows.
 (結晶化温度)
 パーキンエルマー社製の示差走査熱量計DSC7を用いて、後述する実施例1、比較例1及び比較例2で調製したブレンド物の溶融押出・冷却固化物10mgを試料として、窒素ガス雰囲気中で、温度30℃から10℃/分の昇温速度で250℃まで一旦昇温し、ついで250℃で1分間保持した後、250℃から10℃/分の降温速度で30℃まで降温してDSC曲線を求めた。このDSC曲線における降温過程における発熱ピーク温度を結晶化温度(Tc2)(℃)とした。
(Crystallization temperature)
Using a differential scanning calorimeter DSC7 manufactured by PerkinElmer Co., Ltd., using as a sample 10 mg of the melt-extruded and cooled solidified product of the blend prepared in Example 1, Comparative Example 1 and Comparative Example 2 described later, in a nitrogen gas atmosphere, The temperature was raised from 30 ° C. to 250 ° C. at a rate of 10 ° C./min, then held at 250 ° C. for 1 minute, and then lowered from 250 ° C. to 30 ° C. at a rate of 10 ° C./min, DSC curve Asked. The exothermic peak temperature in the temperature lowering process in this DSC curve was defined as the crystallization temperature (Tc2) (° C.).
(破断伸度の測定)
 引張り試験機(東洋ボールドウィン社製「RTM-100」)を使用して、温度23℃、相対湿度50%の雰囲気中で初期試料長100mm、クロスヘッド速度300mm/分の条件下で測定した。
(Measurement of elongation at break)
Using a tensile tester (“RTM-100” manufactured by Toyo Baldwin Co., Ltd.), the measurement was performed under the conditions of an initial sample length of 100 mm and a crosshead speed of 300 mm / min in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50%.
(加速試験)
 80℃60分間の熱処理を行った後、破断伸度を測定した。
(PCT試験)
 プレッシャークッカー試験機を使用して、温度121℃、相対湿度100%RH、2気圧、96時間の試験を行い、環境対応を促進した後、破断伸度を測定した。
(Accelerated test)
After heat treatment at 80 ° C. for 60 minutes, the elongation at break was measured.
(PCT test)
Using a pressure cooker tester, a test at a temperature of 121 ° C., a relative humidity of 100% RH, 2 atm, and 96 hours was conducted to promote environmental measures, and then the elongation at break was measured.
[実施例1]
 PVDF(クレハ製W♯850)47.71質量%、PMMA(旭化成ケミカルズ製デルパウダ-560F)9.97質量%、アクリル系加工助剤(三菱レーヨン製メタブレンP-530A、メタブレンS-2006)8.20質量%、2-エチルヘキサン酸セチル(花王製エキセパール)1.10%、酸化チタン(デュポン製タイピュアR101)30.0質量%、炭酸カルシウム(竹原化学工業製SL2500、白石工業社製Brilliant-1500)2.50質量%、微粉状のPTFE(喜多村社製KTL-500F:レーザー屈折・散乱法による平均粒径0.3μm)0.30質量%、ステアリン酸カルシウム0.50質量%、アセチレンブラック0.02質量%をブレンドし、シリンダー温度190℃で、二軸押出機(東芝製)でコンパウンドを作製後、単軸押出機(プラ技研製)で、樹脂温度230℃で溶融押出し、90℃の冷却ロールで冷却して、20μm厚のフィルムを作製した。
 このフィルムを用いて、形成当初の未処理品のフィルム、加速し堅固のフィルム及びPCTし堅固のフィルムの破断伸度を測定した。
 フィルムの破断伸度は、MD方向とTD方向でそれぞれ測定した。測定結果を表1、2に示す。
[Example 1]
PVDF (Kureha W # 850) 47.71% by weight, PMMA (Asahi Kasei Chemicals Delpowder-560F) 9.97% by weight, acrylic processing aid (Mitsubishi Rayon Metabrene P-530A, Metabrene S-2006) 20% by mass, cetyl 2-ethylhexanoate (Exepearl manufactured by Kao) 1.10%, titanium oxide (DuPont Taipure R101) 30.0% by mass, calcium carbonate (Takehara Chemical Industries SL2500, Shiroishi Industrial Co., Ltd., Brilliant-1500 2.50% by mass, fine powdered PTFE (KTL-500F manufactured by Kitamura Co., Ltd .: average particle diameter of 0.3 μm by laser refraction / scattering method) 0.30% by mass, calcium stearate 0.50% by mass, acetylene black 0. Blended 02% by mass, cylinder temperature 190 ° C, twin screw extruder (Toshiba ) After making the compounds, a single-screw extruder (manufactured by Pla Giken), molten at a resin temperature of 230 ° C. extruded, and cooled with a cooling roll of 90 ° C., to produce a 20μm thick film.
Using this film, the elongation at break of the untreated film at the beginning of formation, the accelerated and firm film and the PCT and firm film was measured.
The breaking elongation of the film was measured in the MD direction and the TD direction, respectively. The measurement results are shown in Tables 1 and 2.
[比較例1]
 実施例1において、前記微粉状のPTFEを加えないものを比較例1とし、PVDF(クレハ製W♯850)48.01質量%、PMMA(旭化成ケミカルズ製デルパウダ-560F)9.97質量%、アクリル系加工助剤(三菱レーヨン製メタブレンP-530A、メタブレンS-2006)8.20質量%、2-エチルヘキサン酸セチル(花王製エキセパール)1.10%、酸化チタン(デュポン製タイピュアR101)30.00質量%、炭酸カルシウム(竹原化学工業製SL2500、白石工業社製Brilliant-1500)2.50質量%、ステアリン酸カルシウム0.50質量%、アセチレンブラック0.02質量%をブレンドしたものから実施例1と同じ条件で作製したフィルムの破断伸度を、実施例1と同じ条件で測定した。測定結果を表1、2に示す。
[比較例2]
 実施例1において、前記微粉状のPTFEの代わりに、結晶核剤としてPTFEを窒化ホウ素(独ESK社製SCPI)に置き換えたものを比較例2とし、PVDF(クレハ製W♯850)47.71質量%、PMMA(旭化成ケミカルズ製デルパウダ-560F)9.97質量%、アクリル系加工助剤(三菱レーヨン製メタブレンP-530A、メタブレンS-2006)8.20質量%、2-エチルヘキサン酸セチル(花王製エキセパール)1.10%、酸化チタン(デュポン製タイピュアR101)30.00質量%、炭酸カルシウム(竹原化学工業製SL2500、白石工業社製Brilliant-1500)2.50質量%、窒化ホウ素(独ESK社製SCP1)0.30質量%、ステアリン酸カルシウム0.50質量%、アセチレンブラック0.02質量%をブレンドしたものから、実施例1と同じ条件で作製したフィルムの破断伸度を、実施例1と同じ条件で測定した。
測定結果を表1、2に示す。
[Comparative Example 1]
In Example 1, the powdered PTFE was not added as Comparative Example 1, PVDF (Kureha W # 850) 48.01% by mass, PMMA (Asahi Kasei Chemicals Delpowder-560F) 9.97% by mass, acrylic System processing aids (Metbrene P-530A, Metabrene S-2006, manufactured by Mitsubishi Rayon) 8.20% by mass, cetyl 2-ethylhexanoate (Exepal, manufactured by Kao) 1.10%, titanium oxide (Typure R101, manufactured by DuPont) 30. Example 1 from what blended 00 mass%, calcium carbonate (SL2500 made by Takehara Chemical Industry, Brilliant-1500 made by Shiroishi Kogyo Co., Ltd.) 2.50 mass%, calcium stearate 0.50 mass%, and acetylene black 0.02 mass% The breaking elongation of the film produced under the same conditions as in Example 1 was measured under the same conditions as in Example 1. It was. The measurement results are shown in Tables 1 and 2.
[Comparative Example 2]
In Example 1, instead of the fine powdered PTFE, PTFE was replaced with boron nitride (SCPI manufactured by ESK) as a crystal nucleating agent in Comparative Example 2, and PVDF (Kureha W # 850) 47.71. % By mass, PMMA (Del powder 560F manufactured by Asahi Kasei Chemicals), 9.97% by mass, acrylic processing aids (Metbrene P-530A, Metabrene S-2006 manufactured by Mitsubishi Rayon), 8.20% by mass, cetyl 2-ethylhexanoate ( Exopearl made by Kao) 1.10%, titanium oxide (DuPont Taipure R101) 30.00% by mass, calcium carbonate (SL2500 made by Takehara Chemical Industry, Brilliant-1500 made by Shiroishi Industrial Co., Ltd.) 2.50% by mass, boron nitride (Germany) ESK Company SCP1) 0.30% by mass, calcium stearate 0.50% by mass, AS From a blend of polyphenylene black 0.02% by mass, the elongation at break of the film prepared under the same conditions as in Example 1 was measured under the same conditions as in Example 1.
The measurement results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[考察]
 表1、2により、以下のことがわかる。
 結晶核剤がない場合(比較例1:TiO230質量%)は、加速試験(80℃60分間)後のTD破断伸度/形成当初のTD破断伸度の比率は、38.0%であった。
[Discussion]
Tables 1 and 2 show the following.
When there was no crystal nucleating agent (Comparative Example 1: 30% by mass of TiO 2 ), the ratio of TD fracture elongation after acceleration test (80 ° C. for 60 minutes) / TD fracture elongation at the beginning of formation was 38.0%. there were.
 比較例1の加速試験(80℃60分間)後のTD破断伸度/加速試験(80℃60分間)後のMD破断伸度の比率は、24.8%であった。
 このように加速試験によって、樹脂成形体の異方性は増大した(上記比率の数値が小さいほど異方性が増大したと言える)。
The ratio of TD break elongation after the accelerated test (80 ° C. for 60 minutes) of Comparative Example 1 / MD break elongation after the accelerated test (80 ° C. for 60 minutes) was 24.8%.
As described above, the anisotropy of the resin molded body was increased by the acceleration test (it can be said that the anisotropy increased as the numerical value of the above ratio decreased).
 結晶核剤が微粉状のPTFEの場合(実施例1)は、加速試験(80℃60分間)後のTD破断伸度/形成当初のTD破断伸度の比率は、100%である。
 実施例1の加速試験(80℃60分間)後のTD破断伸度/加速試験(80℃60分間)後のMD破断伸度の比率は、68%である。このように加速試験によって、樹脂成形体の異方性はそれほど増大しなかった(上記比率の数値が大きいほど異方性が減少していると言える)。
 結晶核剤が窒化ホウ素の場合(比較例2)は、加速試験(80℃60分間)後のTD破断伸度/形成当初のTD破断伸度の比率は、44.9%である。
When the crystal nucleating agent is finely powdered PTFE (Example 1), the ratio of TD rupture elongation after acceleration test (80 ° C. for 60 minutes) / TD rupture elongation at the beginning of formation is 100%.
The ratio of the TD break elongation after the accelerated test (80 ° C. for 60 minutes) of Example 1 / MD break elongation after the accelerated test (80 ° C. for 60 minutes) is 68%. As described above, the anisotropy of the molded resin did not increase so much by the accelerated test (it can be said that the anisotropy decreases as the numerical value of the ratio increases).
When the crystal nucleating agent is boron nitride (Comparative Example 2), the ratio of TD fracture elongation after accelerated test (80 ° C. for 60 minutes) / TD fracture elongation at the beginning of formation is 44.9%.
 比較例2の加速試験(80℃60分間)後のTD破断伸度/加速試験(80℃60分間)後のMD破断伸度の比率は、30.1%である。
 このように加速試験によって、樹脂成形体の異方性は増大した。
The ratio of the TD break elongation after the accelerated test (80 ° C. for 60 minutes) of Comparative Example 2 / MD break elongation after the accelerated test (80 ° C. for 60 minutes) is 30.1%.
Thus, the anisotropy of the resin molding increased by the accelerated test.
 さらに、過酷なPCT試験後において、結晶核剤として微粉状のPTFEを用いた場合(実施例1)は、MD方向、TD方向の破断伸度が、結晶核剤無し(比較例1)、結晶核剤窒化ホウ素の場合(比較例2)より、よい数値を示した。 Furthermore, after a severe PCT test, when fine powdery PTFE was used as the crystal nucleating agent (Example 1), the elongation at break in the MD direction and the TD direction was no crystal nucleating agent (Comparative Example 1), A better numerical value was shown than in the case of the nucleating agent boron nitride (Comparative Example 2).
 すなわち、PCT試験後のTD破断伸度/MD破断伸度の比率は、実施例1では、49.4%であった。これに対して、比較例1では、15.3%、比較例2では、28.6%であった。明らかに、実施例1の方が比較例1、2より異方性の点で良好である。 That is, the ratio of TD break elongation / MD break elongation after the PCT test was 49.4% in Example 1. On the other hand, in Comparative Example 1, it was 15.3%, and in Comparative Example 2, it was 28.6%. Clearly, Example 1 is better in terms of anisotropy than Comparative Examples 1 and 2.
 このように、本発明の微粉状のPTFEを結晶核剤として添加した場合、加速試験(80℃・60分間)後であっても、TD破断伸度が減少せず、異方性がそれほど増大しない。また、温度121℃、相対湿度100%RH、2気圧、96時間というPCT試験後においても、MD方向、TD方向の破断伸度は、結晶核剤無し、結晶核剤窒化ホウ素の場合よりよい数値を示した。 Thus, when the fine powdery PTFE of the present invention is added as a crystal nucleating agent, the TD fracture elongation does not decrease and the anisotropy increases so much even after the accelerated test (80 ° C./60 minutes). do not do. Even after the PCT test at a temperature of 121 ° C., a relative humidity of 100% RH, 2 atm, and 96 hours, the breaking elongation in the MD direction and the TD direction is better than that without the crystal nucleating agent and the crystal nucleating agent boron nitride. showed that.
 本発明のPVDF組成物は、PVDFに、着色剤、及び結晶核剤としての微粉状のPTFEを添加することによって、PVDFのもつ耐候性、耐薬品性、耐摩耗性、電気特性及び加工性に優れるとともに、樹脂成形体を形成した場合、常温数ヶ月放置に相当する加速試験後(すなわち、経時変化後)も、破断伸度等の機械的強度の異方性がそれほど増大しない樹脂成形体が得られ、産業上その利用価値を大きく広げることができる。 The PVDF composition of the present invention improves the weather resistance, chemical resistance, abrasion resistance, electrical properties, and processability of PVDF by adding fine powdery PTFE as a coloring agent and crystal nucleating agent to PVDF. In addition to being excellent, when a resin molded body is formed, a resin molded body in which anisotropy of mechanical strength such as elongation at break is not so increased even after an acceleration test corresponding to standing at room temperature for several months (that is, after aging). It can be obtained and its utility value can be greatly expanded in industry.

Claims (15)

  1.  フッ化ビニリデン系樹脂、着色剤、及び結晶核剤としての微粉状のテトラフルオロエチレン系樹脂を含有するフッ化ビニリデン系樹脂組成物。 A vinylidene fluoride resin composition containing a fine powdery tetrafluoroethylene resin as a vinylidene fluoride resin, a colorant, and a crystal nucleating agent.
  2.  フッ化ビニリデン系樹脂組成物100質量%としたとき、着色剤を1~50質量%、微粉状のテトラフルオロエチレン系樹脂を0.01~5質量%の割合で含む請求項1記載のフッ化ビニリデン系樹脂組成物。 2. The fluoride according to claim 1, which contains 1 to 50% by weight of a colorant and 0.01 to 5% by weight of a finely divided tetrafluoroethylene resin when the vinylidene fluoride resin composition is 100% by weight. Vinylidene resin composition.
  3.  着色剤が、酸化チタンである請求項1または2記載のフッ化ビニリデン系樹脂組成物。 The vinylidene fluoride resin composition according to claim 1 or 2, wherein the colorant is titanium oxide.
  4.  微粉状のテトラフルオロエチレン系樹脂の平均粒径が、0.01~4μmである請求項1乃至3のいずれか1項に記載のフッ化ビニリデン系樹脂組成物。 The vinylidene fluoride resin composition according to any one of claims 1 to 3, wherein the fine powdery tetrafluoroethylene resin has an average particle diameter of 0.01 to 4 µm.
  5.  さらに、メタクリレート系樹脂を含む請求項1乃至4のいずれか1項に記載のフッ化ビニリデン系樹脂組成物。 The vinylidene fluoride resin composition according to any one of claims 1 to 4, further comprising a methacrylate resin.
  6.  フッ化ビニリデン系樹脂とメタクリレート系樹脂との混合割合が、フッ化ビニリデン系樹脂とメタクリレート系樹脂との合計質量を100質量部としたとき、フッ化ビニリデン系樹脂が60質量部以上100質量部未満、メタクリレート系樹脂が0質量部を超えて40質量部以下である請求項5に記載のフッ化ビニリデン系樹脂組成物。 The mixing ratio of the vinylidene fluoride resin and the methacrylate resin is such that when the total mass of the vinylidene fluoride resin and the methacrylate resin is 100 parts by mass, the vinylidene fluoride resin is 60 parts by mass or more and less than 100 parts by mass. The vinylidene fluoride resin composition according to claim 5, wherein the methacrylate resin is more than 0 parts by mass and 40 parts by mass or less.
  7.  フッ化ビニリデン系樹脂が、フッ化ビニリデン単独重合体及びフッ化ビニリデン共重合体からなる群より選ばれる少なくとも一種である請求項1乃至6のいずれか1項に記載のフッ化ビニリデン系樹脂組成物。 The vinylidene fluoride resin composition according to any one of claims 1 to 6, wherein the vinylidene fluoride resin is at least one selected from the group consisting of a vinylidene fluoride homopolymer and a vinylidene fluoride copolymer. .
  8.  メタクリレート系樹脂がポリメチルメタクリレートである請求項5に記載のフッ化ビニリデン系樹脂組成物。 The vinylidene fluoride resin composition according to claim 5, wherein the methacrylate resin is polymethyl methacrylate.
  9.  さらに熱安定剤を含有する請求項1乃至8のいずれか1項に記載のフッ化ビニリデン系樹脂組成物。 The vinylidene fluoride resin composition according to any one of claims 1 to 8, further comprising a heat stabilizer.
  10.  請求項1乃至9のいずれか1項に記載のフッ化ビニリデン系樹脂組成物から形成された樹脂成形体。 A resin molded body formed from the vinylidene fluoride resin composition according to any one of claims 1 to 9.
  11.  加速試験(80℃60分間)後の前記樹脂成形体のTD方向破断伸度と形成当初の前記樹脂成形体のTD方向破断伸度との比率(加速試験(80℃60分間)後の前記樹脂成形体のTD方向破断伸度/形成当初の前記樹脂成形体のTD方向破断伸度×100)が、60~100%の範囲内である請求項10記載の樹脂成形体。 Ratio between the TD direction breaking elongation of the resin molded body after the acceleration test (80 ° C. for 60 minutes) and the TD direction breaking elongation of the resin molded body at the beginning of formation (the resin after the accelerated test (80 ° C. for 60 minutes) The resin molded article according to claim 10, wherein the TD-direction breaking elongation of the molded article / TD-shaped elongation at break at the beginning of formation x 100) is in the range of 60 to 100%.
  12.  前記樹脂成形体に、熱処理を行った請求項10に記載の樹脂成形体。 The resin molded body according to claim 10, wherein the resin molded body is heat-treated.
  13.  請求項10乃至12のいずれか1項に記載の前記樹脂成形体から得られる樹脂フィルム。 A resin film obtained from the resin molded body according to any one of claims 10 to 12.
  14.  請求項13記載の樹脂フィルムから得られる保護シート。 A protective sheet obtained from the resin film according to claim 13.
  15.  請求項14記載の保護シートから得られる太陽電池モジュール用バックシート。 A back sheet for a solar cell module obtained from the protective sheet according to claim 14.
PCT/JP2016/055769 2015-03-09 2016-02-26 Vinylidene-fluoride-based resin composition, molded resin object, resin film, and protective sheet WO2016143548A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-046097 2015-03-09
JP2015046097 2015-03-09

Publications (1)

Publication Number Publication Date
WO2016143548A1 true WO2016143548A1 (en) 2016-09-15

Family

ID=56880133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055769 WO2016143548A1 (en) 2015-03-09 2016-02-26 Vinylidene-fluoride-based resin composition, molded resin object, resin film, and protective sheet

Country Status (1)

Country Link
WO (1) WO2016143548A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019044066A (en) * 2017-09-01 2019-03-22 三菱鉛筆株式会社 Thermoplastic resin composition and fiber material and film material each using the same
WO2019207832A1 (en) * 2018-04-26 2019-10-31 株式会社クレハ Resin composition and molded body
CN114292479A (en) * 2022-01-28 2022-04-08 嘉兴高正新材料科技股份有限公司 Special material for wear-resistant polyvinylidene fluoride decorative film and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834956A (en) * 1971-09-10 1973-05-23
JPS62187032A (en) * 1986-02-13 1987-08-15 三洋電機株式会社 Tube for drink
JPH08193197A (en) * 1994-08-12 1996-07-30 Ntn Corp V ring
JP2000239321A (en) * 1999-02-23 2000-09-05 Ausimont Spa Fluoroelastomer compositions
JP2002363368A (en) * 2001-05-22 2002-12-18 Ausimont Spa Fluoroelastomer composition
JP2003501507A (en) * 1999-05-31 2003-01-14 アトフィナ Polymer composition comprising semi-crystalline fluorinated polymer, acrylic polymer and nucleating agent, and blends and coatings obtained from the composition
JP2009533515A (en) * 2006-04-14 2009-09-17 アルケマ フランス PVDF-based conductive composition
WO2012172876A1 (en) * 2011-06-15 2012-12-20 株式会社クレハ Polyvinylidene fluoride resin film, multilayer film, backsheet for solar cell module, and film manufacturing process
JP5593309B2 (en) * 2009-04-20 2014-09-17 株式会社クレハ Polyvinylidene fluoride resin composition, white resin film, and back sheet for solar cell module

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834956A (en) * 1971-09-10 1973-05-23
JPS62187032A (en) * 1986-02-13 1987-08-15 三洋電機株式会社 Tube for drink
JPH08193197A (en) * 1994-08-12 1996-07-30 Ntn Corp V ring
JP2000239321A (en) * 1999-02-23 2000-09-05 Ausimont Spa Fluoroelastomer compositions
JP2003501507A (en) * 1999-05-31 2003-01-14 アトフィナ Polymer composition comprising semi-crystalline fluorinated polymer, acrylic polymer and nucleating agent, and blends and coatings obtained from the composition
JP2002363368A (en) * 2001-05-22 2002-12-18 Ausimont Spa Fluoroelastomer composition
JP2009533515A (en) * 2006-04-14 2009-09-17 アルケマ フランス PVDF-based conductive composition
JP5593309B2 (en) * 2009-04-20 2014-09-17 株式会社クレハ Polyvinylidene fluoride resin composition, white resin film, and back sheet for solar cell module
WO2012172876A1 (en) * 2011-06-15 2012-12-20 株式会社クレハ Polyvinylidene fluoride resin film, multilayer film, backsheet for solar cell module, and film manufacturing process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019044066A (en) * 2017-09-01 2019-03-22 三菱鉛筆株式会社 Thermoplastic resin composition and fiber material and film material each using the same
JP7027072B2 (en) 2017-09-01 2022-03-01 三菱鉛筆株式会社 Each manufacturing method of thermoplastic resin composition and fiber material and film material using it
WO2019207832A1 (en) * 2018-04-26 2019-10-31 株式会社クレハ Resin composition and molded body
CN114292479A (en) * 2022-01-28 2022-04-08 嘉兴高正新材料科技股份有限公司 Special material for wear-resistant polyvinylidene fluoride decorative film and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5871922B2 (en) Polyvinylidene fluoride resin film, multilayer film, back sheet for solar cell module, and method for producing film
JP4791490B2 (en) Solar cell backsheet
JP5593309B2 (en) Polyvinylidene fluoride resin composition, white resin film, and back sheet for solar cell module
EP3046964B1 (en) Polymer processing additive, compositions, and methods
JP5641081B2 (en) Polychlorotrifluoroethylene film and solar cell back surface protective sheet
WO2016143548A1 (en) Vinylidene-fluoride-based resin composition, molded resin object, resin film, and protective sheet
JP2014518326A (en) Melt-processable composition and production method
WO2015114983A1 (en) Fluorine-based resin composition, resin film, laminate and back sheet for solar cell modules
JP2015067756A (en) Film and laminate for controlling light ray
KR20070007189A (en) Polymer melt additive composition and use thereof
JPWO2013069493A1 (en) Fluorine resin film and solar cell module
KR101848942B1 (en) Vdf polymer composition
CN107418097A (en) High temperature resistant polyvinyl chloride modifying material and preparation method
JP6310858B2 (en) Fluorine resin film, method for producing the same, and solar cell module
JP2017071751A (en) Crystalline resin composition and molding
KR20120086081A (en) MONO-LAYER PVdF ORIENTED FILM AND SOLAR CELL BACK SHEET USING THE SAME
WO2015133399A1 (en) Fluorine resin film, method for producing same, laminate, and back sheet for solar cell module
WO2016143549A1 (en) Vinylidene fluoride polymer composition, polymer film, layered body, and back sheet for solar cell module
JP2002146070A (en) Polypropylene-based porous film and method for producing the same
JP2016163963A (en) Vinylidene fluoride resin extrusion molded body and extrusion molding method
WO2016159360A1 (en) Vinylidene fluoride resin composition, molded article, method for producing vinylidene fluoride resin composition, and method for producing molded article
WO2022048938A1 (en) Fluoropolymer composition
EP4353778A1 (en) Vinylidene fluoride-based resin composition, molded article, and multilayer body
JP2015174936A (en) Resin composition, kneaded matter, and molded body
JP2015093894A (en) Solar cell backside protective sheet, method for producing the same, and solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP