JP6310858B2 - Fluorine resin film, method for producing the same, and solar cell module - Google Patents

Fluorine resin film, method for producing the same, and solar cell module Download PDF

Info

Publication number
JP6310858B2
JP6310858B2 JP2014546934A JP2014546934A JP6310858B2 JP 6310858 B2 JP6310858 B2 JP 6310858B2 JP 2014546934 A JP2014546934 A JP 2014546934A JP 2014546934 A JP2014546934 A JP 2014546934A JP 6310858 B2 JP6310858 B2 JP 6310858B2
Authority
JP
Japan
Prior art keywords
resin
film
mass
polyvinylidene fluoride
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014546934A
Other languages
Japanese (ja)
Other versions
JPWO2014077133A1 (en
Inventor
俊介 中野
俊介 中野
小茂田 含
含 小茂田
康次 中島
康次 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Publication of JPWO2014077133A1 publication Critical patent/JPWO2014077133A1/en
Application granted granted Critical
Publication of JP6310858B2 publication Critical patent/JP6310858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

本発明は、新規なフッ素系樹脂フィルムとその製造方法、及び該フッ素系樹脂フィルムを用いて形成した太陽電池裏面保護シート、並びに該太陽電池裏面保護シートを備えた太陽電池モジュールに関する。   The present invention relates to a novel fluororesin film, a method for producing the same, a solar cell back surface protection sheet formed using the fluororesin film, and a solar cell module including the solar cell back surface protection sheet.

フッ素系樹脂フィルムはその優れた耐候性、耐熱性、耐汚染性、耐薬品性、耐溶剤性等の特徴から、長期耐久性を求められる分野に幅広く使用されている。特にフッ化ビニリデン系樹脂を主成分としてなるフィルムは薄膜化によるコストメリットを活かし、各種表面保護材料として従来から建築物の内外装用部材等や耐薬品、耐有機溶剤性が求められる容器表面材、太陽電池の表裏面材、燃料電池部材等に広く用いられている。更に近年、太陽電池モジュールの大幅な需要増加にともなって、太陽電池裏面保護シートとして広く使用されるようになってきている(特許文献1〜2)。   Fluorine-based resin films are widely used in fields that require long-term durability because of their excellent weather resistance, heat resistance, contamination resistance, chemical resistance, solvent resistance, and the like. In particular, a film mainly composed of vinylidene fluoride resin takes advantage of the cost benefits of thinning, and various surface protection materials such as materials for interior and exterior of buildings, container surface materials that have been required to have chemical resistance and organic solvent resistance, It is widely used for front and back materials of solar cells, fuel cell members and the like. Furthermore, in recent years, with a great increase in demand for solar cell modules, it has been widely used as a solar cell back surface protection sheet (Patent Documents 1 and 2).

このような太陽電池裏面保護シートとしての用途に対する長期耐久性への要求はますます厳しくなっており、過酷な条件下での使用やその長寿命化が求められている。そこで、本出願人は、フッ化ビニリデン系樹脂の結晶形態を特定の結晶形態に制御することにより、耐熱性、特に加熱したときの黄変が抑制されたフッ化ビニリデン系樹脂フィルムの作製技術を開発した(特許文献3)。すなわち、押出成形によりフィルムを形成した後に100℃以上の温度で再加熱を行うことにより、フィルム中の赤外線吸収スペクトルによる吸光度から求められるI型結晶構造(β晶)とII型結晶構造(α晶)の合計を100としたときのII型結晶成分の比率が90〜100%となるように制御することによって、黄変度の少ないフッ素系樹脂フィルムを得た。しかしながら、製品の長寿命化に伴い、長期耐久性を更に改善したフッ素系樹脂フィルムを得ることが望まれていた。   The demand for long-term durability for use as such a solar cell back surface protection sheet is becoming stricter, and the use under severe conditions and the extension of its life are required. Therefore, the present applicant has developed a technology for producing a vinylidene fluoride resin film in which the crystal form of the vinylidene fluoride resin is controlled to a specific crystal form, thereby suppressing heat resistance, particularly yellowing when heated. Developed (Patent Document 3). That is, by forming a film by extrusion and then reheating at a temperature of 100 ° C. or higher, the type I crystal structure (β crystal) and the type II crystal structure (α crystal) obtained from the absorbance of the infrared absorption spectrum in the film ) Was controlled so that the ratio of the type II crystal component was 90 to 100% when the total of 100 was 100, thereby obtaining a fluororesin film having a low degree of yellowing. However, it has been desired to obtain a fluororesin film having further improved long-term durability as the product has a longer life.

特開2011−129672号公報JP 2011-129672 A 特開2008−28294号公報JP 2008-28294 A 特開2006−273980号公報JP 2006-273980 A

本発明は、上記事情に鑑みてなされたもので、従来のフィルムよりも長期耐久性、特に耐黄変性を更に改善したフッ素系樹脂フィルムを提供することを目的とする。
また、本発明は、前記フッ素系樹脂フィルムを製造する方法、前記フッ素系樹脂フィルムを用いた太陽電池裏面保護シート、並びに該太陽電池裏面保護シートを備えた太陽電池モジュールを提供することも目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a fluororesin film that further improves long-term durability, particularly yellowing resistance, compared to conventional films.
Another object of the present invention is to provide a method for producing the fluororesin film, a solar cell back surface protection sheet using the fluororesin film, and a solar cell module provided with the solar cell back surface protection sheet. To do.

特許文献3においては、フィルム中の赤外線吸収スペクトルによる吸収強度から求められるα晶の比率が高くなるように制御されているが、かかる方法によって求められたα晶の比率では、その数値がある程度高くなると、結晶構造の差を十分に反映しないことがあることが分かった。そこで、本発明者等は、樹脂の結晶構造についての更なる指標を検討した結果、赤外線吸収スペクトルによる吸収強度からでは有意差が判別できなかった結晶構造差が、熱流束示差走査熱量測定法によりDSC曲線を解析することにより、明確に識別できることが判明した。そして、本発明者等は、かかる手法を用いて、従来よりも更にα晶比率の高いフッ素系樹脂フィルムを得るべく、鋭意研究した結果、押出成形における冷却温度を85〜120℃の範囲に設定すると、長期耐久性、特に耐黄変性を更に改善したフッ素系樹脂フィルムを得ることができることを意外にも見出した。   In Patent Document 3, the ratio of the α crystal obtained from the absorption intensity by the infrared absorption spectrum in the film is controlled to be high, but the value of the α crystal ratio obtained by such a method is somewhat high. As a result, it has been found that the difference in crystal structure may not be sufficiently reflected. Therefore, as a result of studying further indicators for the crystal structure of the resin, the present inventors found that a crystal structure difference that could not be distinguished from the absorption intensity by the infrared absorption spectrum was determined by a heat flux differential scanning calorimetry method. By analyzing the DSC curve, it was found that it could be clearly identified. And as a result of diligent research to obtain a fluorine-based resin film having a higher α crystal ratio than before, the present inventors set the cooling temperature in the extrusion molding to a range of 85 to 120 ° C. Then, it was unexpectedly found that a fluororesin film having further improved long-term durability, particularly yellowing resistance, can be obtained.

すなわち、本発明の一態様によれは、ポリフッ化ビニリデン系樹脂を主成分として含んでなるフッ素系樹脂組成物が押出成形され、85〜120℃の範囲に設定された冷却温度で冷却されて形成され、かつ熱流束示差走査熱量測定法により、10℃/分の昇温速度で室温から200℃まで加熱したときに得られるDSC曲線(first run)において、150〜190℃の範囲にあるポリフッ化ビニリデン系樹脂に固有の吸熱ピーク(固有ピーク)と、該固有ピークの低温側に1つ以上の吸熱ピークを有することを特徴とするフッ素系樹脂フィルムが提供される。   That is, according to one aspect of the present invention, a fluororesin composition comprising a polyvinylidene fluoride resin as a main component is extruded and cooled at a cooling temperature set in the range of 85 to 120 ° C. In a DSC curve (first run) obtained by heating from room temperature to 200 ° C. at a heating rate of 10 ° C./min by a heat flux differential scanning calorimetry, polyfluorination in the range of 150 to 190 ° C. An endothermic peak (inherent peak) unique to vinylidene-based resins and one or more endothermic peaks on the low temperature side of the inherent peak are provided.

上記において、押出成形の方法は、樹脂押出後の冷却条件が樹脂の結晶化に有意な影響をもたらす成形方法であれば、特定の方法に限るものではないが、本発明者等が特に詳細に検討した方法はTダイ成形法であり、よってTダイ成形法が好ましい。Tダイ成形法においては、押出された樹脂の冷却は、一又は複数の冷却ロールによってなされることになるが、押し出された樹脂を最初に冷却する第一冷却ロールにおける温度が、本発明における冷却温度であり、85〜120℃の範囲内の一定温度に保たれる。
このように押出成形時の冷却温度を85〜120℃に設定して、ポリフッ化ビニリデン系樹脂を主成分として含んでなるフッ素系樹脂組成物を押出成形してフィルムを形成すると、上述のような特定の条件下で熱流束示差走査熱量測定法により得たDSC曲線(first run)において、150〜190℃の範囲にポリフッ化ビニリデン系樹脂に固有の吸熱ピーク(固有ピーク)があり、該固有ピークの低温側に1つ以上の吸熱ピークが見られる新規フィルムが得られる。
該フィルムは、次の(1)式によって定まるα晶比率が80%以上であるフィルムでもある。

Figure 0006310858
In the above, the extrusion molding method is not limited to a specific method as long as the cooling condition after the resin extrusion has a significant effect on the crystallization of the resin. The studied method is the T-die molding method, and therefore the T-die molding method is preferred. In the T-die molding method, the extruded resin is cooled by one or a plurality of cooling rolls. The temperature in the first cooling roll that first cools the extruded resin is the cooling in the present invention. The temperature is maintained at a constant temperature in the range of 85-120 ° C.
Thus, when the cooling temperature at the time of extrusion molding is set to 85 to 120 ° C. and a fluororesin composition comprising a polyvinylidene fluoride resin as a main component is extruded to form a film, In the DSC curve (first run) obtained by heat flux differential scanning calorimetry under a specific condition, there is an endothermic peak (inherent peak) inherent to the polyvinylidene fluoride resin in the range of 150 to 190 ° C. A novel film having one or more endothermic peaks on the low temperature side is obtained.
The film is also a film having an α crystal ratio of 80% or more determined by the following formula (1).
Figure 0006310858

また、上記フッ素系樹脂フィルムにおいて、上記フッ素系樹脂組成物は、ポリフッ化ビニリデン系樹脂を主成分として含んでなる樹脂組成物であれば、フッ素系樹脂に一般的に含有させられる如何なる樹脂、添加剤等を含んでいてもよい。ここで、「ポリフッ化ビニリデン系樹脂を主成分として含んでなる」とは、樹脂組成物中にポリフッ化ビニリデン系樹脂が樹脂成分として50質量%以上、好ましくは60質量%以上含まれることを意味し、ポリフッ化ビニリデン系樹脂のみの場合、つまりポリフッ化ビニリデン系樹脂が100質量%である場合も包含する。よって、本発明の一実施態様では、フッ素系樹脂組成物は樹脂成分としてポリフッ化ビニリデン系樹脂のみを含有する。一方、本発明の他の実施態様では、ポリフッ化ビニリデン系樹脂との相溶性に優れるポリメタクリル酸メチル樹脂が配合され、混合されて押出成形される。例えば、押出成形される樹脂組成物は、ポリフッ化ビニリデン系樹脂50〜95質量%、好ましくは60〜95質量%と、ポリメタクリル酸メチル樹脂5〜50質量%、好ましくは5〜40質量%とを含有する。   Moreover, in the said fluororesin film, if the said fluororesin composition is a resin composition which contains a polyvinylidene fluoride resin as a main component, what kind of resin generally contained in a fluororesin, addition An agent or the like may be included. Here, “comprising polyvinylidene fluoride resin as a main component” means that the resin composition contains polyvinylidene fluoride resin as a resin component in an amount of 50% by mass or more, preferably 60% by mass or more. In addition, the case where only the polyvinylidene fluoride resin is used, that is, the case where the polyvinylidene fluoride resin is 100% by mass is also included. Therefore, in one embodiment of the present invention, the fluororesin composition contains only a polyvinylidene fluoride resin as a resin component. On the other hand, in another embodiment of the present invention, a polymethyl methacrylate resin excellent in compatibility with the polyvinylidene fluoride resin is blended, mixed, and extruded. For example, the resin composition to be extruded is a polyvinylidene fluoride resin 50 to 95% by mass, preferably 60 to 95% by mass, and a polymethyl methacrylate resin 5 to 50% by mass, preferably 5 to 40% by mass. Containing.

更に、上記フッ素系樹脂フィルムにおいて、フッ素系樹脂組成物は樹脂成分以外に様々な添加剤を含有しうるが、特に紫外線を遮蔽する目的で、酸化チタン又は紫外線吸収剤を含有させるのが好ましい。ここで、酸化チタンは樹脂組成物100質量部に対して5〜40質量部、添加され、紫外線吸収剤は樹脂組成物100質量部に対して0.1〜5質量部、好ましくは0.3〜5質量部、添加される。
また、上記フッ素系樹脂フィルムは、膜厚が10〜50μmの範囲内のものであることが好ましい。
Further, in the fluorine resin film, the fluorine resin composition may contain various additives in addition to the resin component, but it is preferable to contain titanium oxide or an ultraviolet absorber for the purpose of shielding ultraviolet rays. Here, 5 to 40 parts by mass of titanium oxide is added to 100 parts by mass of the resin composition, and the ultraviolet absorber is 0.1 to 5 parts by mass, preferably 0.3 to 100 parts by mass of the resin composition. ~ 5 parts by weight are added.
Moreover, it is preferable that the said fluorine-type resin film is a thing in the range whose film thickness is 10-50 micrometers.

本発明の他の態様によれば、ポリフッ化ビニリデン系樹脂を主成分として含んでなるフッ素系樹脂組成物からなる溶融樹脂をフィルム状に押出しする工程と、押出されたフィルム状樹脂を85〜120℃の範囲の冷却温度で、好ましくはこのような冷却温度に設定された冷却ロールによって、冷却する工程を具備し、熱流束示差走査熱量測定法により、10℃/分の昇温速度で室温から200℃まで加熱したときに得られるDSC曲線(first run)において、150〜190℃の範囲にあるポリフッ化ビニリデン系樹脂に固有の吸熱ピーク(固有ピーク)と、該固有ピークの低温側に1つ以上の吸熱ピークを有するフッ素系樹脂フィルムを製造する方法が提供される。
かかる製造方法においても、製造されるフッ素系樹脂フィルムは、(1)式によって定まるα晶比率が80%以上でもある。また、上記フッ素系樹脂組成物は、好ましい実施態様では、ポリフッ化ビニリデン系樹脂50〜95質量%、好ましくは60〜95質量%と、ポリメタクリル酸メチル樹脂5〜50質量%、好ましくは5〜40質量%とを含有する。更に、フッ素系樹脂組成物には、好ましくは、樹脂成分合計100質量部に対して、酸化チタンが5〜40質量部、又は紫外線吸収剤が0.1〜5質量部含有させられる。また、上記フッ素系樹脂フィルムは、膜厚が10〜50μmの範囲内とされるのが好ましい。
According to another aspect of the present invention, a step of extruding a molten resin comprising a fluororesin composition comprising a polyvinylidene fluoride resin as a main component into a film, and 85 to 120 of the extruded film resin. At a cooling temperature in the range of ° C., preferably by a cooling roll set at such a cooling temperature, and from a room temperature at a temperature rising rate of 10 ° C./min by a heat flux differential scanning calorimetry. In the DSC curve (first run) obtained when heated to 200 ° C., an endothermic peak (inherent peak) unique to the polyvinylidene fluoride resin in the range of 150 to 190 ° C. and one on the low temperature side of the intrinsic peak A method for producing a fluororesin film having the above endothermic peak is provided.
Also in this production method, the produced fluororesin film has an α crystal ratio determined by the formula (1) of 80% or more. In a preferred embodiment, the fluororesin composition has a polyvinylidene fluoride resin of 50 to 95% by mass, preferably 60 to 95% by mass, and a polymethyl methacrylate resin of 5 to 50% by mass, preferably 5 to 5% by mass. 40% by mass. Furthermore, the fluorine-based resin composition preferably contains 5 to 40 parts by mass of titanium oxide or 0.1 to 5 parts by mass of an ultraviolet absorber with respect to 100 parts by mass of the total resin components. Moreover, it is preferable that the said fluororesin film shall be in the range of 10-50 micrometers in film thickness.

本発明の更に他の態様によれば、上記フッ素系樹脂フィルムにより形成される太陽電池裏面用保護シート、及び該太陽電池裏面用保護シートを用いて形成される太陽電池モジュールが提供される。   According to still another aspect of the present invention, there are provided a solar cell back surface protective sheet formed of the fluororesin film, and a solar cell module formed using the solar cell back surface protective sheet.

本発明に係るフッ素系樹脂フィルムは、フッ化ビニリデン樹脂を主成分として含んでなるフッ素系樹脂から形成されているので、優れた耐候性、耐熱性、耐汚染性、耐薬品性、耐溶剤性、機械的物性及び二次加工性を有し、また熱流束示差走査熱量測定法において特定のピークパターンを有する樹脂フィルムであるので、長期耐久性、特に耐黄変性に優れる。また本発明に係るフッ素系樹脂フィルムを使用して形成される太陽電池裏面用保護シート及び太陽電池モジュールも長期耐久性、特に耐黄変性に優れる。   Since the fluororesin film according to the present invention is formed from a fluororesin comprising a vinylidene fluoride resin as a main component, it has excellent weather resistance, heat resistance, contamination resistance, chemical resistance, and solvent resistance. Since the resin film has mechanical properties and secondary workability and has a specific peak pattern in the heat flux differential scanning calorimetry, it is excellent in long-term durability, particularly yellowing resistance. Moreover, the protection sheet for solar cell back surface and solar cell module formed using the fluorine resin film according to the present invention are also excellent in long-term durability, particularly yellowing resistance.

実施例1(冷却ロール温度:85℃)、実施例2(冷却ロール温度:100℃)及び実施例3(冷却ロール温度:120℃)において形成したフッ素系樹脂フィルムに対して行った熱流束示差走査熱量測定により得られたDSC曲線を示すグラフである。Heat flux differential performed on the fluororesin film formed in Example 1 (cooling roll temperature: 85 ° C), Example 2 (cooling roll temperature: 100 ° C) and Example 3 (cooling roll temperature: 120 ° C). It is a graph which shows the DSC curve obtained by scanning calorimetry. Tダイ成形において冷却ロールの冷却温度に対して、赤外線吸収スペクトル分析によって求めたα晶比率と耐湿熱試験で求めたΔb値をプロットしたグラフで、フィルムの黄変現象に対する冷却温度の影響を表す。冷却温度を45〜75℃の間で変化させて作製したフィルムが比較例3〜6であり、冷却温度を85〜120℃の間で変化させて作製したフィルムが実施例11〜14である。A graph in which the α crystal ratio obtained by infrared absorption spectrum analysis and the Δb value obtained by the moist heat resistance test are plotted with respect to the cooling temperature of the cooling roll in T-die molding, and the influence of the cooling temperature on the yellowing phenomenon of the film is represented. . The films produced by changing the cooling temperature between 45-75 ° C are Comparative Examples 3-6, and the films produced by changing the cooling temperature between 85-120 ° C are Examples 11-14. 様々な含有量でポリメタクリル酸メチル樹脂を含有するフッ素系樹脂から作製したフィルムに対して行った赤外線吸収スペクトル分析の結果を示すスペクトル図である。樹脂組成物中のポリメタクリル酸メチル樹脂の割合を、0〜50質量%の間で変化させて作製したフィルムが実施例15〜19であり、同割合を60〜70質量%に変化させて作製したフィルムが比較例7〜8である。It is a spectrum figure which shows the result of the infrared absorption spectrum analysis performed with respect to the film produced from the fluororesin containing polymethyl methacrylate resin with various content. Films produced by changing the proportion of the polymethyl methacrylate resin in the resin composition between 0 to 50% by mass are Examples 15 to 19 and produced by changing the proportion to 60 to 70% by mass. The film which was made is Comparative Examples 7-8. 実施例15〜19及び比較例7〜8に係るフィルムついて実施したX線回折の結果を示すグラフである。It is a graph which shows the result of the X-ray diffraction implemented about the film which concerns on Examples 15-19 and Comparative Examples 7-8. 実施例15〜19及び比較例7〜8に係るフィルムついて実施したDSC分析の結果を示すグラフである。It is a graph which shows the result of the DSC analysis implemented about the film which concerns on Examples 15-19 and Comparative Examples 7-8.

以下、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明の一実施形態に係るフッ素系樹脂フィルムは、ポリフッ化ビニリデン系樹脂を主成分として含んでなるフッ素系樹脂組成物から押出成形によって形成される。   A fluororesin film according to an embodiment of the present invention is formed by extrusion molding from a fluororesin composition comprising a polyvinylidene fluoride resin as a main component.

<フッ素系樹脂組成物>
フッ素系樹脂組成物は、ポリフッ化ビニリデン系樹脂を主成分として含んでなる樹脂組成物であれば、フッ素系樹脂に一般的に含有させられる如何なる樹脂、添加剤等を含んでいてもよい。ここで、「ポリフッ化ビニリデン系樹脂を主成分として含んでなる」とは、樹脂組成物中にポリフッ化ビニリデン系樹脂が樹脂成分として50質量%以上、好ましくは60質量%以上含まれることを意味し、ポリフッ化ビニリデン系樹脂のみの場合、つまりポリフッ化ビニリデン系樹脂が100質量%である場合も包含する。
また、「ポリフッ化ビニリデン系樹脂」とは、フッ化ビニリデン単量体を主成分とし、α型、β型、γ型などの様々な結晶構造を示す結晶性樹脂であり、フッ化ビニリデンの単独重合体もしくはフッ化ビニリデンと共重合可能な単量体との共重合体をいう。共重合体としては、例えばフッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン系共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン系共重合体などがある。好ましくは、フッ化ビニリデンの単独重合体が使用される。
<Fluorine resin composition>
As long as the fluororesin composition is a resin composition comprising a polyvinylidene fluoride resin as a main component, it may contain any resin, additive, etc. that are generally contained in a fluororesin. Here, “comprising polyvinylidene fluoride resin as a main component” means that the resin composition contains polyvinylidene fluoride resin as a resin component in an amount of 50% by mass or more, preferably 60% by mass or more. In addition, the case where only the polyvinylidene fluoride resin is used, that is, the case where the polyvinylidene fluoride resin is 100% by mass is also included.
“Polyvinylidene fluoride-based resin” is a crystalline resin having a vinylidene fluoride monomer as a main component and having various crystal structures such as α-type, β-type, and γ-type. A polymer or a copolymer of a monomer copolymerizable with vinylidene fluoride. Examples of the copolymer include a vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer and a vinylidene fluoride-hexafluoropropylene copolymer. Preferably, a homopolymer of vinylidene fluoride is used.

フッ素系樹脂組成物には、ポリフッ化ビニリデン系樹脂以外の樹脂成分が含有されうるが、かかる樹脂成分としては、フッ化ビニリデン系樹脂との相溶性に優れ、フィルム押出成形の際の押出温度を低下させることにより加工性を向上させ、また他の材料と積層化する際の接着性を向上させる等の効果を奏するため、メタクリル酸エステル系樹脂が好ましい。ここで、メタクリル酸エステル系樹脂は、メタクリル酸メチル単独重合体(ポリメタクリル酸メチル)のほか、メタクリル酸メチル単量体を構成単位として所定量、例えば50モル%以上と、アクリル酸エステルやメタクリル酸メチル以外のメタクリル酸エステルを所定量、例えば50モル%未満含有する共重合体、更にはこれら重合体の2種以上の混合物などを例示することができる。上記アクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチルなどを、またメタクリル酸メチル以外のメタクリル酸エステルとしては、メタクリル酸エチル、メタクリル酸プロピルなどを例示することができる。尚、共重合体はランダムコポリマーに限られず、例えばグラフトコポリマー等も用いられ、アクリル系飽和架橋ゴムにメタクリル酸メチルを主とするモノマーをグラフト重合したものも好ましく用いられる。特に好ましいメタクリル酸エステル系樹脂は、ポリメタクリル酸メチル樹脂である。   The fluororesin composition may contain a resin component other than the polyvinylidene fluoride resin, but the resin component is excellent in compatibility with the vinylidene fluoride resin and has an extrusion temperature during film extrusion molding. A methacrylic ester resin is preferable because it can improve the workability by lowering, and can improve the adhesion when laminated with other materials. Here, the methacrylic ester resin includes a methyl methacrylate homopolymer (polymethyl methacrylate), a predetermined amount (for example, 50 mol% or more) of a methyl methacrylate monomer as a constituent unit, and an acrylic ester or methacrylic ester. Examples thereof include a copolymer containing a predetermined amount of methacrylic acid ester other than methyl acid, for example, less than 50 mol%, and a mixture of two or more of these polymers. Examples of the acrylate ester include methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate, and examples of methacrylic acid esters other than methyl methacrylate include ethyl methacrylate and propyl methacrylate. it can. The copolymer is not limited to a random copolymer. For example, a graft copolymer or the like is used, and a copolymer obtained by graft polymerization of a monomer mainly composed of methyl methacrylate on an acrylic saturated crosslinked rubber is also preferably used. A particularly preferred methacrylic ester resin is a polymethyl methacrylate resin.

よって、一例では、フッ素系樹脂組成物は、樹脂成分としてポリフッ化ビニリデン系樹脂のみを含有する。また別の例では、フッ素系樹脂組成物は、樹脂成分としてポリフッ化ビニリデン系樹脂とポリメタクリル酸メチル樹脂を含有する。後者の場合、ポリフッ化ビニリデン系樹脂が主成分である限り、ポリメタクリル酸メチル樹脂の含有量は任意であるが、好ましい実施形態では、フッ素系樹脂組成物は、ポリフッ化ビニリデン系樹脂50〜95質量%、好ましくは60〜95質量%と、ポリメタクリル酸メチル樹脂5〜50質量%、好ましくは5〜40質量%を含有する。   Therefore, in one example, the fluororesin composition contains only a polyvinylidene fluoride resin as a resin component. In another example, the fluororesin composition contains a polyvinylidene fluoride resin and a polymethyl methacrylate resin as resin components. In the latter case, as long as the polyvinylidene fluoride resin is the main component, the content of the polymethyl methacrylate resin is arbitrary, but in a preferred embodiment, the fluorine resin composition is a polyvinylidene fluoride resin 50-95. It contains 5% by mass, preferably 60-95% by mass, and 5-50% by mass, preferably 5-40% by mass, of polymethyl methacrylate resin.

更に、フッ素系樹脂組成物には、紫外線遮蔽効果を付与するために顔料及び紫外線吸収剤の少なくとも一方を含有させるのが好ましい。例えば、フィルムが下地基材の保護を目的とする場合、顔料を添加しない場合がありうるが、その場合でも紫外線吸収剤は添加される。これはフィルム自身の耐候性は良好であるが、顔料を添加せず使用する場合においては、紫外線が各種基材等まで到達し、フッ化ビニリデン系樹脂フィルムは劣化しないまでも、各種基材や基材と積層するため用いる接着剤等が劣化し、ポリフッ化ビニリデン系樹脂フィルムと剥離する問題が生ずる可能性があるためである。   Furthermore, it is preferable that the fluororesin composition contains at least one of a pigment and an ultraviolet absorber in order to impart an ultraviolet shielding effect. For example, when the film is intended to protect the base substrate, there may be a case where a pigment is not added, but even in that case, an ultraviolet absorber is added. Although the weather resistance of the film itself is good, in the case where it is used without adding a pigment, various base materials such as ultraviolet rays reach various base materials and the vinylidene fluoride resin film does not deteriorate. This is because the adhesive or the like used for laminating with the base material is deteriorated and may cause a problem of peeling from the polyvinylidene fluoride resin film.

使用される顔料は、特に限定されるものではなく、無機顔料、有機顔料、真珠顔料等、任意であるが、耐候性の点からは酸化物や複合酸化物系の無機顔料が好適に使用され、特に、酸化チタンが好ましい。顔料、特に酸化チタンの添加量は、樹脂100質量部に対し5〜40質量部、好ましくは10〜30質量部である。添加量が5質量部未満の場合、フィルム中へ均質に分散することができず、部分的な色ムラが発生する場合がある。一方、40質量部を超えて添加した場合、フッ素系樹脂への分散性が著しく低下し、外観不良を引き起こす場合がある。   The pigment to be used is not particularly limited and may be any inorganic pigment, organic pigment, pearl pigment, etc., but from the viewpoint of weather resistance, oxides and complex oxide inorganic pigments are preferably used. In particular, titanium oxide is preferable. The addition amount of the pigment, particularly titanium oxide, is 5 to 40 parts by mass, preferably 10 to 30 parts by mass with respect to 100 parts by mass of the resin. When the addition amount is less than 5 parts by mass, it cannot be uniformly dispersed in the film, and partial color unevenness may occur. On the other hand, when it exceeds 40 mass parts, the dispersibility to a fluororesin will fall remarkably and an external appearance defect may be caused.

紫外線吸収剤は、フッ化ビニリデン系樹脂と相溶性のあるものであればよく、例えば、ベンゾトリアゾール系、オキザリックアシッド系、ベンゾフェノン系、ヒンダードアミン系及びその他多くの種類のものが使用できる。好ましくは、製造工程及びフィルムとして使用する際の揮散を最小限にするため、分子量が300以上の高分子量タイプの紫外線吸収剤が好適に使用される。紫外線吸収剤の添加量は、樹脂100質量部に対し0.1〜5質量部、好ましくは0.3〜5質量部である。   The ultraviolet absorber is not particularly limited as long as it is compatible with the vinylidene fluoride resin. For example, benzotriazole, oxalic acid, benzophenone, hindered amine, and many other types can be used. Preferably, a high molecular weight type ultraviolet absorber having a molecular weight of 300 or more is suitably used in order to minimize volatilization when used as a manufacturing process or film. The addition amount of a ultraviolet absorber is 0.1-5 mass parts with respect to 100 mass parts of resin, Preferably it is 0.3-5 mass parts.

本発明のフィルムには、顔料又は紫外線吸収剤のほか、使用される用途に応じて、安定化剤、分散剤、酸化防止剤、艶消し剤、界面活性剤、帯電防止剤、シリカ、アルミナといった充填材、フッ素系表面改質剤及び加工助剤等の各種添加剤をそれらの分散性が損なわれない範囲で添加することも可能である。   In addition to pigments or ultraviolet absorbers, the film of the present invention includes stabilizers, dispersants, antioxidants, matting agents, surfactants, antistatic agents, silica, alumina, etc., depending on the application used. It is also possible to add various additives such as fillers, fluorine-based surface modifiers and processing aids as long as their dispersibility is not impaired.

本発明のフィルムに、顔料、紫外線吸収剤や他の各種添加剤を混入する方法としては、樹脂と添加剤をあらかじめ混合しておき、一般に使用される単軸押出機を使用して溶融混練する方法が採用できる。また、高混練タイプの2軸押出機を使用したり、高速回転型ミキサ−を用いて高温下であらかじめプレミキシングした後、単軸押出機によって溶融混練する方法を採用することにより、添加剤の分散状態が良好で外観品質の優れたフィルムを得ることができる。   As a method of mixing a pigment, an ultraviolet absorber and other various additives into the film of the present invention, a resin and an additive are mixed in advance and melt-kneaded using a commonly used single-screw extruder. The method can be adopted. In addition, by using a high-kneading type twin-screw extruder or by premixing at a high temperature using a high-speed rotary mixer and then melt-kneading with a single-screw extruder, A film having a good dispersion state and excellent appearance quality can be obtained.

本発明のフッ素系樹脂フィルムの膜厚は50μm以下であることが好ましく、更に好ましくは10〜30μmである。10μm未満ではハンドリング性が著しく低下し、また、十分な耐久性能が得られないことがある。一方、50μmを超えると、原料費の増大等コスト的に不利になる。また本発明のフィルムを表面層とし、裏面層としてアクリル系樹脂層や、フッ化ビニリデン系樹脂とアクリル系樹脂とのブレンド物を積層し、2層以上のフィルムとすることも可能である。   The film thickness of the fluororesin film of the present invention is preferably 50 μm or less, more preferably 10 to 30 μm. If it is less than 10 μm, the handling property is remarkably lowered, and sufficient durability performance may not be obtained. On the other hand, when it exceeds 50 μm, it is disadvantageous in terms of cost such as an increase in raw material cost. The film of the present invention may be used as a surface layer, and an acrylic resin layer or a blend of a vinylidene fluoride resin and an acrylic resin may be laminated as a back layer to form a film having two or more layers.

<フッ素系樹脂フィルムの製造>
フッ素系樹脂フィルムは、一般に、T型ダイスを用いて製膜する方法や、インフレーションダイスを用いて製膜する方法で押出成形することができるが、本発明においては、T型ダイスを用いて製膜する方法が好適に採用される。押出条件は特に限定されるものではなく、フッ化ビニリデン系樹脂フィルムを形成するのに常套的に用いられている条件を使用できるが、本発明においては、押出後の冷却温度を85〜120℃、好ましくは90〜120℃、より好ましくは100〜120℃の範囲に設定する必要がある。すなわち、Tダイ成形機を用いて製膜する場合、T型ダイスから押し出された高温の樹脂は、T型ダイス下に配された金属冷却ロールによって冷却固化されてフィルムとされるが、その金属冷却ロールの温度が85〜120℃、好ましくは90〜120℃、より好ましくは100〜120℃の範囲に設定される。尚、押出成形機に複数の冷却ロールが配設されている場合は、最初の冷却ロール(第一冷却ロール)の温度が85〜120℃、好ましくは90〜120℃、より好ましくは100〜120℃の範囲に設定される。またT型ダイス下に金属冷却ロールとゴムロールが対で配設されているのが通例であるが、ゴムロールの使用の有無やゴムロールの設定温度は任意である。上記冷却温度が85℃未満に設定されていると、所望の長期耐久性、特に耐黄変性を有するフィルムが得られない。一方、上記冷却温度が120℃よりも高く設定されている場合には、ロールからの剥離不良によりフィルムがうまく製膜できない。
<Manufacture of fluororesin film>
In general, the fluororesin film can be extrusion-molded by a method of forming a film using a T-type die or a method of forming a film using an inflation die, but in the present invention, it is manufactured using a T-type die. A film forming method is preferably employed. Extrusion conditions are not particularly limited, and conditions conventionally used for forming a vinylidene fluoride resin film can be used. In the present invention, the cooling temperature after extrusion is 85 to 120 ° C. It is necessary to set in the range of preferably 90 to 120 ° C, more preferably 100 to 120 ° C. That is, when forming a film using a T-die molding machine, the high-temperature resin extruded from the T-shaped die is cooled and solidified by a metal cooling roll disposed under the T-shaped die, and the metal The temperature of a cooling roll is set to 85-120 degreeC, Preferably it is 90-120 degreeC, More preferably, it is set to the range of 100-120 degreeC. In addition, when the some cooling roll is arrange | positioned at the extruder, the temperature of the 1st cooling roll (1st cooling roll) is 85-120 degreeC, Preferably it is 90-120 degreeC, More preferably, it is 100-120. It is set in the range of ° C. In addition, a metal cooling roll and a rubber roll are usually arranged in pairs under the T-die, but the presence or absence of the rubber roll and the set temperature of the rubber roll are arbitrary. When the cooling temperature is set to less than 85 ° C., a film having desired long-term durability, particularly yellowing resistance cannot be obtained. On the other hand, when the cooling temperature is set higher than 120 ° C., the film cannot be successfully formed due to poor peeling from the roll.

尚、原料の供給は、各原料を予め溶融混練して作製した樹脂組成物を用いてもよいが、個々の原料を直接単軸又は二軸の押出機に供給して、通常150〜260℃の温度で溶融し、フィルム用Tダイを通して押出すことで製膜することができる。   The raw material may be supplied by using a resin composition prepared by previously melting and kneading each raw material, but each raw material is directly supplied to a single-screw or twin-screw extruder, and usually 150 to 260 ° C. The film can be formed by melting at a temperature of 1 mm and extruding through a T-die for film.

<フッ素系樹脂フィルム>
上述のフッ素系樹脂組成物を上述の条件下で押出成形したフッ素系樹脂フィルムは、前記(1)式によって定まるα晶比率が80%以上であるフィルムとなるが、(1)式によって定まるα晶比率は一定数値を超えると飽和状態となり、フィルムの結晶構造変化を反映しなくなる。しかし、かかる状態変化は、熱流束示差走査熱量測定法を使用した分析により、把握できる。すなわち、フッ素系樹脂フィルムでは、冷却温度を85〜120℃の範囲に設定するか否かにかかわらず、熱流束示差走査熱量測定法により10℃/分の昇温速度で室温から200℃まで加熱したときに得られるDSC曲線(first run)において、170℃付近にポリフッ化ビニリデン系樹脂に固有の吸熱ピークがみられる。しかし、冷却温度を85〜120℃の範囲に設定して製膜した本発明に係るフッ素系樹脂フィルムには、前記ポリフッ化ビニリデン系樹脂に固有の吸熱ピークの低温側に1つ以上のα晶に由来する吸熱ピーク温度がみられる。そして、この低温側の吸熱ピークが顕著になればなるほど、α晶の割合が増大しており、フィルムの長期耐久性、特に耐黄変性が改善される。例えば、本発明に係るフッ素系樹脂フィルムでは、フィルム製造直後の色相b値は、−2.5〜−0.5程度であるが、後述する耐湿熱性試験後においても有意に黄変することはなく、試験前後のΔb値は2以下に抑えられる。
尚、本発明の条件下で形成したフッ素系樹脂フィルムでは、ポリフッ化ビニリデン系樹脂に固有の吸熱ピークの低温側にみられる吸熱ピークは常にα晶に由来するものであるが、本発明の冷却温度範囲以外の温度範囲等、本発明の条件以外の条件でフィルムを形成した場合、ポリフッ化ビニリデン系樹脂に固有の吸熱ピークの低温側に吸熱ピークがみられる場合がある。しかし、かかる吸熱ピークはα晶由来の吸熱ピークではなく、β晶由来の吸熱ピークであり、そのことは例えばX線回折法により確認可能である。よって、本発明の範囲内の条件で形成される所望のDSC曲線を示すフッ素系樹脂フィルムは、本発明の範囲外の条件下で形成されたフッ素系樹脂フィルムに比して、優れた耐候性、特に耐黄変性を有する。
<Fluorine resin film>
The fluororesin film obtained by extruding the fluororesin composition described above under the above-described conditions becomes a film having an α crystal ratio of 80% or more determined by the formula (1), but is determined by the formula (1). When the crystal ratio exceeds a certain value, it becomes saturated and does not reflect the change in the crystal structure of the film. However, such state change can be grasped by analysis using a heat flux differential scanning calorimetry. That is, in the fluororesin film, regardless of whether or not the cooling temperature is set in the range of 85 to 120 ° C., it is heated from room temperature to 200 ° C. at a heating rate of 10 ° C./min by the heat flux differential scanning calorimetry. In the DSC curve (first run) obtained at this time, an endothermic peak unique to the polyvinylidene fluoride resin is observed at around 170 ° C. However, the fluororesin film according to the present invention formed by setting the cooling temperature in the range of 85 to 120 ° C. includes one or more α crystals on the low temperature side of the endothermic peak inherent in the polyvinylidene fluoride resin. An endothermic peak temperature derived from is observed. As the endothermic peak on the low temperature side becomes more prominent, the proportion of α crystals increases and the long-term durability of the film, particularly yellowing resistance, is improved. For example, in the fluororesin film according to the present invention, the hue b value immediately after film production is about −2.5 to −0.5, but it can be significantly yellowed even after the moisture and heat resistance test described later. The Δb value before and after the test is suppressed to 2 or less.
In the fluororesin film formed under the conditions of the present invention, the endothermic peak seen on the low temperature side of the endothermic peak inherent to the polyvinylidene fluoride resin is always derived from the α crystal. When a film is formed under conditions other than the conditions of the present invention, such as a temperature range other than the temperature range, an endothermic peak may be seen on the low temperature side of the endothermic peak inherent to the polyvinylidene fluoride resin. However, this endothermic peak is not an endothermic peak derived from the α crystal but an endothermic peak derived from the β crystal, and this can be confirmed by, for example, an X-ray diffraction method. Therefore, the fluororesin film showing a desired DSC curve formed under the conditions within the scope of the present invention has superior weather resistance compared to the fluororesin film formed under conditions outside the scope of the present invention. In particular, it has yellowing resistance.

以下、本発明を実施例により更に具体的に説明するが、本発明はこれらに限定されるものではない。尚、実施例において使用した原料と、作成したフィルムの各サンプルの特性の評価方法は次の通りである。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In addition, the raw material used in the Example and the evaluation method of the characteristic of each sample of the produced film are as follows.

<使用原料>
・フッ化ビニリデン樹脂:カイナーK720(アルケマ社製),結晶性ポリマーでフッ素含有量約59%、融点約170℃のポリフッ化ビニリデン系樹脂,MFR(条件:230℃、3.8kg加重)5〜29(g/10min)
・メタクリル酸エステル系樹脂:アクリペットIR−S404(三菱レーヨン社製),アクリル酸ブチル(n−BA)とメタクリル酸ブチル(BMA)のゴム成分を含むメクリル酸エステル系樹脂,MFR(条件:230℃、37.3N)7.8(g/10min)
・酸化チタン:タイピュアR960(デュポン社製),(粒子径:約0.35μm、純チタン分:約89%)
<Raw materials>
-Vinylidene fluoride resin: Kyner K720 (manufactured by Arkema), a crystalline polymer with a fluorine content of about 59% and a melting point of about 170 ° C, a polyvinylidene fluoride resin, MFR (conditions: 230 ° C, 3.8 kg load) 5 29 (g / 10min)
Methacrylic ester resin: Acrypet IR-S404 (Mitsubishi Rayon Co., Ltd.), methacrylic ester resin containing rubber components of butyl acrylate (n-BA) and butyl methacrylate (BMA), MFR (condition: 230 ° C, 37.3 N) 7.8 (g / 10 min)
Titanium oxide: Taipure R960 (manufactured by DuPont), (particle size: about 0.35 μm, pure titanium content: about 89%)

<評価方法>
(1)α晶比率
NICOLET380 FT−IR(サーモフィッシャーサイエンティフィック社製)によって赤外線吸収スペクトルの測定を行った。赤外線吸収スペクトルにおけるポリフッ化ビニリデン系樹脂のβ型結晶の特性吸収は波数840cm−1にあり、α型結晶の特性吸収は波数765cm−1に存在するため、α晶比率は、得られたスペクトルの各ピーク強度から以下の(1)式を用いてα晶比率を算出した(花田朋美、安藤穰、ポリフッ化ビニリデンとポリ酢酸ビニル及びポリエチルメタクリレートブレンド系におけるポリフッ化ビニリデンの結晶化」、東京家政学院大学紀要、1992年7月、No.32、5−12頁を参照)。

Figure 0006310858
(2)耐湿熱性試験後の色相
耐湿熱性試験は、試験機としてプレッシャークッカーSPY−4016(アルプ社製)を用いて行った。EVAと貼り合せたフィルムサンプルを、日本電色工業社製の測色色差計ZE−2000を使用してそのEVAとの貼り合せ面の色差測定を行なった後、試験機に投入し、下記条件で耐久試験を実施した。
温度:125℃
湿度:100%
圧力:2.3atm
時間:50hr
試験後、フィルムのEVAとの貼り合せ面の色差測定を再び行ない、試験前後のΔb値を算出した。評価基準は、Δb値が2以下で黄変が少ないと判断した。
(3)UV透過率
日立分光光度計U−3310(日立ハイテクフィールディング株式会社製)を用いてフィルムの波長340nmにおけるUV透過率を測定した。
(4)熱流束示差走査熱量測定
示差走査熱量測定装置DSC3100SA(ブルカー・エイエックスエス社製)を用いて下記条件下で測定を行った。
温度:室温→200℃
昇温速度:10℃/分
サンプル質量:1.5mg
(5)X線回折
X線回折装置Ultima IV(リガク社)を用いて下記条件下で測定を行った。
X線源:Cu封入管
印加電圧/電流:40kV/40mA
検出器:高速検出器D/teX Ultra<Evaluation method>
(1) α crystal ratio The infrared absorption spectrum was measured by NICOLET380 FT-IR (manufactured by Thermo Fisher Scientific). In the infrared absorption spectrum, the characteristic absorption of the β-type crystal of the polyvinylidene fluoride resin is at a wave number of 840 cm −1 , and the characteristic absorption of the α-type crystal is at the wave number of 765 cm −1 . The α crystal ratio was calculated from each peak intensity using the following formula (1) (Tatsumi Hanada, Satoshi Ando, crystallization of polyvinylidene fluoride in a polyvinylidene fluoride / polyvinyl acetate / polyethyl methacrylate blend system), Tokyo Kasei (See Gakuin University Bulletin, July 1992, No. 32, pages 5-12).
Figure 0006310858
(2) Hue after heat and humidity resistance test The moisture and heat resistance test was performed using a pressure cooker SPY-4016 (manufactured by Alp) as a testing machine. The film sample bonded with EVA was subjected to color difference measurement on the bonding surface with EVA using a colorimetric color difference meter ZE-2000 manufactured by Nippon Denshoku Industries Co., Ltd. The endurance test was carried out.
Temperature: 125 ° C
Humidity: 100%
Pressure: 2.3 atm
Time: 50hr
After the test, the color difference measurement of the bonding surface of the film with EVA was performed again, and Δb values before and after the test were calculated. The evaluation criterion was that the Δb value was 2 or less and yellowing was small.
(3) UV transmittance The UV transmittance at a wavelength of 340 nm of the film was measured using a Hitachi spectrophotometer U-3310 (manufactured by Hitachi High-Tech Fielding Co., Ltd.).
(4) Heat flux differential scanning calorimetry Measurement was performed under the following conditions using a differential scanning calorimeter DSC3100SA (manufactured by Bruker AXS).
Temperature: Room temperature → 200 ° C
Rate of temperature increase: 10 ° C./min Sample mass: 1.5 mg
(5) X-ray diffraction Measurement was performed under the following conditions using an X-ray diffractometer Ultima IV (Rigaku).
X-ray source: Cu sealed tube Applied voltage / current: 40 kV / 40 mA
Detector: High-speed detector D / teX Ultra

<実施例1〜10及び比較例1〜2>
フッ化ビニリデン系樹脂、ポリメタクリル酸メチル樹脂、酸化チタンを、表1に示すPMMA比率(フッ化ビニリデン系樹脂とポリメタクリル酸メチル樹脂との合計100質量%に対するポリメタクリル酸メチル樹脂の質量%)及び酸化チタン量(樹脂100質量部に対する酸化チタンの質量部)に調整して、φ65mm単軸押出機に投入して混練後、同押出機から押出温度240℃でT型ダイスを通して押出しし、表1に示す冷却温度に設定された第一冷却ロールを通して、冷却固化させてフィルム成形し、表1に示す厚みの実施例1〜10及び比較例1〜2に係るフィルムを得た。
作製されたフィルムについて、前述の評価方法に従って、α晶比率、耐湿熱性試験後の色相、UV透過率、熱流束示差走査熱量を評価した。結果を表1に併せて示す。また、代表的な実施例1〜3に係るフィルムについて、熱流束示差走査熱量測定により得られたDSC曲線を図1に示す。尚、比較例2では、冷却ロールからフィルムが円滑に剥離せず、特性評価に供しうるフィルムは作製できなかった。
<Examples 1-10 and Comparative Examples 1-2>
The PMMA ratio shown in Table 1 for vinylidene fluoride resin, polymethyl methacrylate resin, and titanium oxide (mass% of polymethyl methacrylate resin relative to 100 mass% in total of vinylidene fluoride resin and polymethyl methacrylate resin) And the amount of titanium oxide (mass part of titanium oxide with respect to 100 parts by mass of resin), put into a φ65 mm single screw extruder, kneaded, and then extruded from the extruder through a T-die at an extrusion temperature of 240 ° C. Through the first cooling roll set to the cooling temperature shown in 1, it was cooled and solidified to form a film, and the films according to Examples 1 to 10 and Comparative Examples 1 and 2 having the thicknesses shown in Table 1 were obtained.
About the produced film, according to the above-mentioned evaluation method, the alpha crystal ratio, the hue after the heat and humidity resistance test, the UV transmittance, and the heat flux differential scanning calorie were evaluated. The results are also shown in Table 1. Moreover, about the film which concerns on typical Examples 1-3, the DSC curve obtained by heat flux differential scanning calorimetry is shown in FIG. In Comparative Example 2, the film did not peel smoothly from the cooling roll, and a film that could be used for property evaluation could not be produced.

表1の結果から、実施例1〜10に係るフィルムは、高いα晶比率に加えて、固有ピークの低温側に吸熱ピークを有しており、耐湿熱性試験後の色差Δbは十分に少ない値となり、耐黄変性に優れることが分かる。これに対して、比較例1では、α晶比率が低く、耐黄変性が悪化していることが分かる。尚、比較例1でも吸熱ピークがみられるが、このピークは、X線回折により、β晶に由来するピークであることが分かった。また、図1の結果から、実施例1〜3に係るフッ素系樹脂フィルムにおいて、ポリフッ化ビニリデン系樹脂の固有ピークの低温側に吸熱ピークが見られ、冷却ロール温度がより高温になるに従ってその吸熱ピークは顕著になることが分かった。   From the results in Table 1, the films according to Examples 1 to 10 have an endothermic peak on the low temperature side of the intrinsic peak in addition to the high α crystal ratio, and the color difference Δb after the moist heat resistance test is a sufficiently small value. Thus, it is understood that the yellowing resistance is excellent. On the other hand, in Comparative Example 1, it can be seen that the α crystal ratio is low and the yellowing resistance is deteriorated. In addition, although the endothermic peak is seen also in the comparative example 1, it turned out that this peak is a peak derived from (beta) crystal | crystallization by X-ray diffraction. Moreover, from the result of FIG. 1, in the fluororesin films according to Examples 1 to 3, an endothermic peak is observed on the low temperature side of the intrinsic peak of the polyvinylidene fluoride resin, and the endotherm increases as the cooling roll temperature becomes higher. The peak was found to be prominent.

Figure 0006310858
Figure 0006310858

<実施例11〜14、比較例3〜6>
フィルムの黄変現象に対する金属冷却ロールの設定温度の影響を調べるために、PMMA比率25%、酸化チタン量22質量部とし、金属冷却ロールの設定冷却温度を、45℃、55℃、65℃、75℃、85℃、100℃、110℃、120℃と変化させて、比較例3〜6及び実施例11〜14に係るフッ素系樹脂フィルムを作製した。得られたフィルムについてα晶比率を求めると共に、Δb値を測定した。結果を図2に示す。
図2から、冷却温度が低いとα晶比率が低く、その結果、黄変現象が顕著となるが、冷却温度が80℃までは冷却温度が高くなるとα晶比率も増大していき、黄変現象は十分には低減されないものの、徐々に低減されていくことが分かる。しかし、冷却温度が85℃程度に達すると、α晶比率が飽和状態に達してそれ以上増大していかないが、黄変現象は尚も徐々に低減されていくことが分かる。すなわち、この実験結果から、赤外線吸収スペクトル分析に基づくα晶比率による解析に基づく黄変現象の低減化手法には限界があったことが理解される。
<Examples 11-14, Comparative Examples 3-6>
In order to investigate the influence of the setting temperature of the metal cooling roll on the yellowing phenomenon of the film, the PMMA ratio is 25%, the titanium oxide amount is 22 parts by mass, and the setting cooling temperature of the metal cooling roll is 45 ° C, 55 ° C, 65 ° C, The fluororesin films according to Comparative Examples 3 to 6 and Examples 11 to 14 were produced by changing the temperature to 75 ° C, 85 ° C, 100 ° C, 110 ° C, and 120 ° C. The α crystal ratio of the obtained film was determined and the Δb value was measured. The results are shown in FIG.
From FIG. 2, the α crystal ratio is low when the cooling temperature is low, and as a result, the yellowing phenomenon becomes remarkable. However, the α crystal ratio increases as the cooling temperature increases until the cooling temperature reaches 80 ° C. It can be seen that although the phenomenon is not sufficiently reduced, it is gradually reduced. However, it can be seen that when the cooling temperature reaches about 85 ° C., the α crystal ratio reaches a saturated state and does not increase any more, but the yellowing phenomenon is still gradually reduced. That is, it can be understood from this experimental result that there is a limit to the method for reducing the yellowing phenomenon based on the analysis by the α crystal ratio based on the infrared absorption spectrum analysis.

<実施例15〜19、比較例7〜8>
フッ素系樹脂フィルムの結晶構造に対するPMMA比率の影響を調べるために、金属冷却ロールの設定温度を85℃、酸化チタン量を22質量部とし、PMMA比率を0質量%から10質量%、20質量%、30質量%、40質量%、50質量%、60質量%、70質量%と増加させて、実施例15〜19及び比較例7〜8に係るフッ素系樹脂フィルムを作製した。得られたフッ素系樹脂フィルムの結晶構造を、赤外線吸収スペクトル法、X線回折法、熱流束示差走査熱量測定法によって分析した。結果を図3〜5に示す。図3の赤外線吸収スペクトル法による分析結果から、PMMA比率の増加に伴い、α晶、β晶由来のピークが小さくなっていることが分かる。また図4のX線回折法による分析結果から、PMMA比率が50質量%を越えると、PVDFの結晶化が抑制されることが分かる。更に、図5の熱流束示差走査熱量測定法による分析の結果から、PMMA比率が増加するにつれて、融点Tmが約170℃(PMMA比率:0質量%)から次第に減少していることが分かる。また、PMMA比率が50質量%を越えると、固有の吸熱ピーク強度が弱くなり、PVDFとPMMAが相溶していることが分かる。
<Examples 15 to 19 and Comparative Examples 7 to 8>
In order to investigate the influence of the PMMA ratio on the crystal structure of the fluororesin film, the set temperature of the metal cooling roll is 85 ° C., the amount of titanium oxide is 22 parts by mass, and the PMMA ratio is 0% by mass to 10% by mass, 20% by mass. , 30% by mass, 40% by mass, 50% by mass, 60% by mass, and 70% by mass to produce fluorine-based resin films according to Examples 15 to 19 and Comparative Examples 7 to 8. The crystal structure of the obtained fluororesin film was analyzed by infrared absorption spectrum method, X-ray diffraction method, and heat flux differential scanning calorimetry. The results are shown in FIGS. From the analysis result by the infrared absorption spectrum method of FIG. 3, it can be seen that the peaks derived from the α crystal and the β crystal become smaller as the PMMA ratio increases. Moreover, from the analysis result by the X-ray diffraction method of FIG. 4, when the PMMA ratio exceeds 50 mass%, it is understood that crystallization of PVDF is suppressed. Furthermore, from the result of the analysis by the heat flux differential scanning calorimetry method of FIG. 5, it can be seen that the melting point Tm gradually decreases from about 170 ° C. (PMMA ratio: 0 mass%) as the PMMA ratio increases. Further, when the PMMA ratio exceeds 50% by mass, the inherent endothermic peak intensity becomes weak, and it is understood that PVDF and PMMA are compatible.

Claims (8)

ポリフッ化ビニリデン系樹脂を主成分とする樹脂成分を含んでなるフッ素系樹脂組成物が押出成形され、100〜120℃の範囲に設定された冷却温度で冷却されて形成され、かつ熱流束示差走査熱量測定法により、10℃/分の昇温速度で室温から200℃まで加熱したときに得られるDSC曲線(first run)において、150〜190℃の範囲にあるポリフッ化ビニリデン系樹脂に固有の吸熱ピーク(固有ピーク)と、該固有ピークの低温側に1つ以上の吸熱ピークを有し、
フッ素系樹脂組成物が、樹脂成分100質量部に対して、酸化チタンを5〜40質量部含有することを特徴とするフッ素系樹脂フィルム。
Fluorine resin composition comprising a resin component mainly composed of polyvinylidene fluoride resin is formed by extrusion molding, cooled at a cooling temperature set in the range of 100 to 120 ° C., and heat flux differential scanning In the DSC curve (first run) obtained by heating from room temperature to 200 ° C. at a rate of temperature increase of 10 ° C./min by calorimetry, the endothermic characteristic of polyvinylidene fluoride resin in the range of 150 to 190 ° C. peak and (intrinsic peak), possess one or more endothermic peaks on the low temperature side of said intrinsic peaks,
The fluorine-based resin composition contains 5 to 40 parts by mass of titanium oxide with respect to 100 parts by mass of the resin component .
Figure 0006310858

によって定まるα晶比率が80%以上である、請求項1に記載のフッ素系樹脂フィルム。
Figure 0006310858

The fluorine resin film according to claim 1, wherein the α crystal ratio determined by is 80% or more.
樹脂成分が、50〜95質量%のポリフッ化ビニリデン系樹脂と、5〜50質量%のポリメタクリル酸メチル樹脂を含有する、請求項1又は2に記載のフッ素系樹脂フィルム。 Resin component contains 50 to 95 wt% of a polyvinylidene fluoride resin, from 5 to 50 mass% of polymethyl methacrylate resin, a fluorine resin film according to claim 1 or 2. フッ素系樹脂組成物が、樹脂成分合計100質量部に対して、紫外線吸収剤を0.1〜5質量部含有する請求項3に記載のフッ素系樹脂フィルム。 Fluorine-based resin composition, fluorine-based resin film according to claim 3, the resin component 100 parts by weight of the total, the ultraviolet absorbent containing 0.1 to 5 parts by weight. 膜厚が10〜50μmの範囲内であることを特徴とする請求項1から4の何れか一項に記載のフッ素系樹脂フィルム。   The fluororesin film according to any one of claims 1 to 4, wherein the film thickness is within a range of 10 to 50 µm. ポリフッ化ビニリデン系樹脂を主成分とする樹脂成分を含んでなるフッ素系樹脂組成物からなる溶融樹脂をフィルム状に押出しする工程と、押出されたフィルム状樹脂を100〜120℃の範囲の冷却温度で冷却する工程を具備し、熱流束示差走査熱量測定法により、10℃/分の昇温速度で室温から200℃まで加熱したときに得られるDSC曲線(first run)において、150〜190℃の範囲にあるポリフッ化ビニリデン系樹脂に固有の吸熱ピーク(固有ピーク)と、該固有ピークの低温側に1つ以上の吸熱ピークを有し、
フッ素系樹脂組成物が、樹脂成分100質量部に対して、酸化チタンを5〜40質量部含有するフッ素系樹脂フィルムを製造する方法。
A step of extruding a molten resin comprising a fluororesin composition comprising a resin component comprising a polyvinylidene fluoride resin as a main component into a film, and a cooling temperature of the extruded film resin within a range of 100 to 120 ° C. In a DSC curve (first run) obtained by heating from room temperature to 200 ° C. at a rate of temperature increase of 10 ° C./min by a heat flux differential scanning calorimetry method. possess the polyvinylidene fluoride resin in the range and specific endothermic peak (intrinsic peak), one or more endothermic peaks on the low temperature side of said intrinsic peaks,
A method for producing a fluororesin film in which the fluororesin composition contains 5 to 40 parts by mass of titanium oxide with respect to 100 parts by mass of the resin component .
請求項1から5の何れか一項に記載のフッ素系樹脂フィルムにより形成される太陽電池裏面用保護シート。   The protection sheet for solar cell back surfaces formed with the fluorine resin film as described in any one of Claims 1-5. 請求項7に記載の太陽電池裏面用保護シートを用いて形成される太陽電池モジュール。   A solar cell module formed using the solar cell back surface protective sheet according to claim 7.
JP2014546934A 2012-11-15 2013-10-30 Fluorine resin film, method for producing the same, and solar cell module Active JP6310858B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012251620 2012-11-15
JP2012251620 2012-11-15
PCT/JP2013/079440 WO2014077133A1 (en) 2012-11-15 2013-10-30 Fluorinated resin film, method for producing same, and solar cell module

Publications (2)

Publication Number Publication Date
JPWO2014077133A1 JPWO2014077133A1 (en) 2017-01-05
JP6310858B2 true JP6310858B2 (en) 2018-04-11

Family

ID=50731051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014546934A Active JP6310858B2 (en) 2012-11-15 2013-10-30 Fluorine resin film, method for producing the same, and solar cell module

Country Status (4)

Country Link
JP (1) JP6310858B2 (en)
KR (1) KR102181433B1 (en)
CN (1) CN104812810B (en)
WO (1) WO2014077133A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015166427A (en) * 2014-03-04 2015-09-24 株式会社クレハ Fluororesin film, production method of the same, laminate, and back sheet for solar cell module
JP6407918B2 (en) * 2016-05-30 2018-10-17 住友化学株式会社 Resin laminate, display device and polarizing plate
CN108051136A (en) * 2017-12-08 2018-05-18 马鞍山合力仪表有限责任公司 A kind of preparation method of diaphragm pressure gage isolation diaphragm

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808352A (en) * 1985-10-03 1989-02-28 Minnesota Mining And Manufacturing Company Crystalline vinylidene fluoride
JP2006273980A (en) 2005-03-29 2006-10-12 Denki Kagaku Kogyo Kk Vinylidene fluoride resin film and method for producing it
JP5125012B2 (en) 2006-07-25 2013-01-23 凸版印刷株式会社 Solar cell backside sealing sheet
CN101661962B (en) * 2008-08-29 2012-05-09 苏州中来光伏新材股份有限公司 Solar battery back film with high cohesiveness and processing process
WO2011065234A1 (en) * 2009-11-30 2011-06-03 電気化学工業株式会社 Polyvinylidene fluoride resin composition, film, back sheet, and solar cell module
JP5415247B2 (en) 2009-12-17 2014-02-12 電気化学工業株式会社 Surface protection sheet for solar cells
JP5628054B2 (en) * 2011-01-18 2014-11-19 株式会社クレハ Polyvinylidene fluoride resin composition, colored resin film, and back sheet for solar cell module
CN102167836B (en) * 2011-03-01 2012-11-14 宜兴市高拓高分子材料有限公司 Preparation method of polyvinylidene fluoride thin film
WO2012172876A1 (en) * 2011-06-15 2012-12-20 株式会社クレハ Polyvinylidene fluoride resin film, multilayer film, backsheet for solar cell module, and film manufacturing process

Also Published As

Publication number Publication date
KR102181433B1 (en) 2020-11-23
WO2014077133A1 (en) 2014-05-22
JPWO2014077133A1 (en) 2017-01-05
CN104812810B (en) 2018-07-10
KR20150085024A (en) 2015-07-22
CN104812810A (en) 2015-07-29

Similar Documents

Publication Publication Date Title
EP2513220B1 (en) Photovoltaic backsheet
JP5763548B2 (en) Polyvinylidene fluoride resin composition, film, back sheet and solar cell module
KR101659280B1 (en) Vinylidene fluoride-based resin film
JP5937075B2 (en) Vinylidene fluoride resin composition, resin film, solar cell backsheet, and solar cell module
WO2012172876A1 (en) Polyvinylidene fluoride resin film, multilayer film, backsheet for solar cell module, and film manufacturing process
JP7232770B2 (en) Vinylidene fluoride resin multilayer film
JP6310858B2 (en) Fluorine resin film, method for producing the same, and solar cell module
EP2703446B1 (en) Vinylidene fluoride-based resin film, solar cell back sheet, and solar cell module
JP2013545831A (en) Fluoropolymer-based film for photovoltaic applications
WO2014057933A1 (en) Vinylidene fluoride resin composition, resin film, solar cell backsheet, and solar cell module
TWI550010B (en) Fluororesin film and solar cell module
KR101399422B1 (en) MONO-LAYER PVdF FILM AND PREPARATION METHOD THEREOF
CN103102621B (en) Fluorine resin film and solar cell module
JP2006273980A (en) Vinylidene fluoride resin film and method for producing it
KR101275850B1 (en) MONO-LAYER PVdF FILM AND PREPARATION METHOD THEREOF
KR102050603B1 (en) Fluorine type resin film and solar battery module
JP2015093894A (en) Solar cell backside protective sheet, method for producing the same, and solar cell module
WO2024113168A1 (en) Building panel
WO2021039533A1 (en) Vinylidene fluoride resin multilayer film, automobile interior/exterior film, automobile component, and automobile
JP2012219199A (en) Pressure-sensitive adhesive film
JP2017047530A (en) Agricultural fluorine-containing laminate film and agricultural coating material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180319

R150 Certificate of patent or registration of utility model

Ref document number: 6310858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250