WO2015133399A1 - Fluorine resin film, method for producing same, laminate, and back sheet for solar cell module - Google Patents
Fluorine resin film, method for producing same, laminate, and back sheet for solar cell module Download PDFInfo
- Publication number
- WO2015133399A1 WO2015133399A1 PCT/JP2015/055856 JP2015055856W WO2015133399A1 WO 2015133399 A1 WO2015133399 A1 WO 2015133399A1 JP 2015055856 W JP2015055856 W JP 2015055856W WO 2015133399 A1 WO2015133399 A1 WO 2015133399A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- titanium oxide
- fluororesin
- fluorine
- solar cell
- Prior art date
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 151
- 239000011347 resin Substances 0.000 title claims abstract description 151
- 229910052731 fluorine Inorganic materials 0.000 title claims abstract description 112
- 239000011737 fluorine Substances 0.000 title claims abstract description 112
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 title claims abstract description 111
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 148
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 141
- 239000002033 PVDF binder Substances 0.000 claims abstract description 86
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims abstract description 86
- 229920005992 thermoplastic resin Polymers 0.000 claims description 28
- 229920001577 copolymer Polymers 0.000 claims description 21
- 238000001125 extrusion Methods 0.000 claims description 17
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 claims description 15
- 229920001519 homopolymer Polymers 0.000 claims description 11
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 10
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 7
- 238000007334 copolymerization reaction Methods 0.000 claims description 6
- 238000004381 surface treatment Methods 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 description 94
- 239000002184 metal Substances 0.000 description 94
- 239000010410 layer Substances 0.000 description 49
- 238000004049 embossing Methods 0.000 description 29
- 230000001070 adhesive effect Effects 0.000 description 28
- -1 polyethylene terephthalate Polymers 0.000 description 26
- 239000000463 material Substances 0.000 description 25
- 238000012360 testing method Methods 0.000 description 23
- 239000000853 adhesive Substances 0.000 description 20
- 230000003746 surface roughness Effects 0.000 description 19
- 238000000034 method Methods 0.000 description 18
- 239000000843 powder Substances 0.000 description 18
- 230000001681 protective effect Effects 0.000 description 17
- 239000005038 ethylene vinyl acetate Substances 0.000 description 16
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 16
- 239000003566 sealing material Substances 0.000 description 14
- 238000001816 cooling Methods 0.000 description 13
- 239000012760 heat stabilizer Substances 0.000 description 13
- 229910010413 TiO 2 Inorganic materials 0.000 description 12
- 239000002131 composite material Substances 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 10
- 239000000654 additive Substances 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 239000002998 adhesive polymer Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 229920000139 polyethylene terephthalate Polymers 0.000 description 7
- 239000005020 polyethylene terephthalate Substances 0.000 description 7
- 238000003825 pressing Methods 0.000 description 7
- 239000005341 toughened glass Substances 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 238000005299 abrasion Methods 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229920001971 elastomer Polymers 0.000 description 6
- 239000002356 single layer Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000007740 vapor deposition Methods 0.000 description 6
- 230000003373 anti-fouling effect Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000003475 lamination Methods 0.000 description 5
- 239000000049 pigment Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 229920002799 BoPET Polymers 0.000 description 4
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 4
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002985 plastic film Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 4
- 239000011112 polyethylene naphthalate Substances 0.000 description 4
- 239000005060 rubber Substances 0.000 description 4
- 238000007790 scraping Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000012756 surface treatment agent Substances 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004721 Polyphenylene oxide Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 3
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 3
- 229920002313 fluoropolymer Polymers 0.000 description 3
- 239000004811 fluoropolymer Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 229910052809 inorganic oxide Inorganic materials 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920002620 polyvinyl fluoride Polymers 0.000 description 3
- 239000011164 primary particle Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- YCGKJPVUGMBDDS-UHFFFAOYSA-N 3-(6-azabicyclo[3.1.1]hepta-1(7),2,4-triene-6-carbonyl)benzamide Chemical compound NC(=O)C1=CC=CC(C(=O)N2C=3C=C2C=CC=3)=C1 YCGKJPVUGMBDDS-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- 229920002302 Nylon 6,6 Polymers 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 2
- 239000008116 calcium stearate Substances 0.000 description 2
- 235000013539 calcium stearate Nutrition 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 238000007720 emulsion polymerization reaction Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 229920011301 perfluoro alkoxyl alkane Polymers 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 239000003505 polymerization initiator Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920006380 polyphenylene oxide Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005488 sandblasting Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- COVXBJIKNGVTNV-UHFFFAOYSA-N 1-chloro-1,2,2-trifluoroethene;1,1-difluoroethene Chemical group FC(F)=C.FC(F)=C(F)Cl COVXBJIKNGVTNV-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 238000003855 Adhesive Lamination Methods 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004129 EU approved improving agent Substances 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 239000004831 Hot glue Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical class O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 229960005069 calcium Drugs 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229940043430 calcium compound Drugs 0.000 description 1
- 150000001674 calcium compounds Chemical class 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000004227 calcium gluconate Substances 0.000 description 1
- 229960004494 calcium gluconate Drugs 0.000 description 1
- 235000013927 calcium gluconate Nutrition 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- NEEHYRZPVYRGPP-UHFFFAOYSA-L calcium;2,3,4,5,6-pentahydroxyhexanoate Chemical compound [Ca+2].OCC(O)C(O)C(O)C(O)C([O-])=O.OCC(O)C(O)C(O)C(O)C([O-])=O NEEHYRZPVYRGPP-UHFFFAOYSA-L 0.000 description 1
- ZCZLQYAECBEUBH-UHFFFAOYSA-L calcium;octadec-9-enoate Chemical compound [Ca+2].CCCCCCCCC=CCCCCCCCC([O-])=O.CCCCCCCCC=CCCCCCCCC([O-])=O ZCZLQYAECBEUBH-UHFFFAOYSA-L 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 239000003484 crystal nucleating agent Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000010556 emulsion polymerization method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010128 melt processing Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M methacrylate group Chemical group C(C(=C)C)(=O)[O-] CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 125000005487 naphthalate group Chemical group 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- YPVDWEHVCUBACK-UHFFFAOYSA-N propoxycarbonyloxy propyl carbonate Chemical compound CCCOC(=O)OOC(=O)OCCC YPVDWEHVCUBACK-UHFFFAOYSA-N 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical compound [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000010558 suspension polymerization method Methods 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000012463 white pigment Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
- H01L31/049—Protective back sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/304—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/308—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/102—Oxide or hydroxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/406—Bright, glossy, shiny surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/54—Yield strength; Tensile strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/712—Weather resistant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/12—Photovoltaic modules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08J2327/16—Homopolymers or copolymers of vinylidene fluoride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2237—Oxides; Hydroxides of metals of titanium
- C08K2003/2241—Titanium dioxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a fluororesin film, preferably a polyvinylidene fluoride resin film, a method for producing the same, a laminate including a layer made of the resin film, and a back sheet for a solar cell module.
- Fluoropolymers such as polyvinylidene fluoride resin (hereinafter sometimes referred to as “PVDF”) have excellent weather resistance, heat resistance, stain resistance, chemical resistance, solvent resistance, mechanical properties, Widely used in fields that require long-term durability by utilizing secondary processability.
- fluororesin films such as films made of PVDF (hereinafter sometimes referred to as “PVDF films”) utilize the cost merit of thinning, and are used as protective materials for various surfaces as members for interior and exterior of buildings. It is widely used as a surface material for molded products that require chemical resistance and solvent resistance, as well as a surface protection material or back surface protection material for solar cell modules in which long-term reliability is important, and a fuel cell member.
- PVDF with excellent weather resistance, heat resistance, stain resistance, chemical resistance, solvent resistance, mechanical properties, and secondary workability is a single layer or as a laminate with other thermoplastic resin layers. , It has come to be used as a surface protective material or a back surface protective material for solar cell modules used for solar power generation.
- a solar cell is a power generator that directly converts sunlight into electrical energy.
- Solar cells are broadly classified into those using silicon semiconductors and those using compound semiconductors.
- Silicon semiconductor solar cells include single crystal silicon solar cells, polycrystalline silicon solar cells, and amorphous silicon solar cells.
- a typical structure of a solar cell is composed of a surface protective material, a sealing material, a solar battery cell, a back surface protective material, and a frame.
- the main components of the solar cell are a surface protective material 1, a sealing material 2, a solar cell 3, and a back surface protective material 4, and a plurality of solar cells 3 are wired (not shown).
- a solar cell module that is, a solar cell module in which a plurality of solar cells are arranged and connected and packaged using a surface protective material, a sealing material, and a back surface protective material (hereinafter sometimes referred to as “back sheet”). That's it.
- a frame (not shown) made of metal such as aluminum is arranged at the end or peripheral edge of the solar cell module.
- the surface protective material 1 for example, a tempered glass plate, a transparent plastic plate, or a transparent plastic film is used.
- the sealing material 2 an ethylene-vinyl acetate copolymer is widely used.
- the back surface protective material 4 for example, a single-layer or multilayer plastic film, a plastic plate, a tempered glass plate, a metal plate (aluminum plate, painted steel plate, etc.) or the like is used.
- the frame for example, aluminum that is lightweight and excellent in environmental resistance is widely used.
- the solar cell module is generally installed outdoors, and then the operation state is maintained for a long time.
- the surface protection material, the sealing material, and the back surface protection material of the solar cell module are required to have a function of protecting the solar cells over a long period of time in a harsh natural environment surrounding the solar cell module. ing.
- the back sheet for solar cell modules has light resistance, weather resistance, heat resistance, moisture resistance, oxygen or water vapor barrier properties, electrical insulation, voltage resistance, mechanical properties, chemical resistance, salt resistance, anti-resistance It is required to be excellent in various properties such as dirtiness and adhesion to a sealing material.
- the solar cell module backsheet has a beautiful appearance on the surface of the solar battery cell, and also efficiently reflects sunlight incident on the backsheet. It is required to have a function to If the incident light transmitted through the gaps between the solar cells can be efficiently reflected by the back sheet, the power conversion efficiency of the solar cells is improved by the reflected light. For this reason, a back sheet containing a colorant such as titanium oxide is known.
- a plastic film used as a back sheet for a solar cell module from the viewpoint of satisfying various properties required for the back sheet for a solar cell module, there may be a fluororesin film, polyethylene terephthalate (hereinafter referred to as “PET”). ) Films, and composite films of these have been preferably used. Among these, from the viewpoints of light resistance, weather resistance, heat resistance, antifouling properties, etc., fluorine resin films or composite films of fluorine resin films have been more preferably used (Patent Documents 1 to 3).
- PVDF films are widely used because of their superior light resistance, weather resistance, antifouling properties, heat resistance, and the like.
- a back sheet for a solar cell module made of a composite film including a fluororesin film is known as having weather resistance, antifouling properties, heat resistance, mechanical properties, and the like.
- a PVDF layer and PET A back sheet for a solar cell module including a layer is known (Patent Document 3).
- Patent Documents 4 and 5 As for the back sheet for solar cell module, the demand for long-term reliability is becoming stricter, and since it is required to be used under severe conditions and to have a long life as a fluorine-based resin film, further excellent weather resistance, Heat resistance, mechanical properties, and the like are required, and a fluorine-based resin film containing titanium oxide has attracted attention (Patent Documents 4 and 5).
- Solar cell module backsheets and laminates having a layer made of a fluorine-based resin film containing titanium oxide are used in transportation work, installation work and incidental work, for example, solar cell module frames, electric wires, mounting brackets, etc.
- contact with metal such as touching, bumping, and rubbing, occurs due to accidental or necessary work.
- metal powder or metal pieces may adhere to the surface of the fluorine-containing resin film containing titanium oxide like a scratch.
- metal powder or metal pieces may adhere to the surface of the film like a scratch.
- Metal powder and metal pieces adhering to the surface of a fluorine resin film or solar cell module backsheet like scratches can be removed by just stroking lightly, so the fluorine resin after removing metal powder and metal pieces It does not remain as a rubbing trace on the surface of the film or the back sheet for the solar cell module, and there is no problem in the function of the fluororesin film or the back sheet for the solar cell module.
- metal abrasion resistance There has been a strong demand for a fluororesin film including PVDF suitable for a solar cell module backsheet, and a laminate including a layer made of the fluororesin film and a solar cell module backsheet. .
- An object of the present invention is excellent in weather resistance, mechanical properties, etc., and is adhered like a scratch due to adhesion of metal powder or metal pieces generated by contact with metal (hereinafter, simply referred to as “scratch trace”).
- the present invention provides a fluorine resin film including PVDF, a laminate including a layer made of the fluorine resin film, and a solar cell module backsheet.
- titanium oxide contained in a fluorine-based resin film including PVDF in order to improve weather resistance, heat resistance, mechanical properties, and the like.
- the Mohs hardness is about 5.5 to 6, and is harder than metals such as aluminum with a Mohs hardness of about 2 to 2.9 and copper with a Mohs hardness of about 2.5 to 3.
- a fluorine resin film containing titanium oxide and a metal come into contact with each other, a phenomenon was found in which the metal which is the other party of the contact was scraped off.
- the present inventors can easily remove the surface of the fluororesin film, but the rubbing trace in a state where the metal powder or metal pieces generated by scraping is temporarily attached is temporarily removed. I found a mechanism to be formed.
- the present inventors have controlled weatherability, heat resistance, mechanical properties by controlling the composition and surface properties of the fluorine-based resin film containing titanium oxide. It was found that a fluorine-based resin film (metal scratch resistance) that is not easily formed due to the adhesion of metal powder or metal pieces and that is excellent at the same time can be provided.
- a fluororesin film containing 15 to 50% by mass of titanium oxide, and at least one surface of the film is a total of the area of the titanium oxide from which the surface is exposed to the area of the film.
- a ratio is 3.2% or less,
- the said fluorine-type resin film characterized by the above-mentioned is provided.
- the following fluororesin films (1) to (5) are provided.
- the said fluororesin film whose fluororesin which forms a fluororesin film is PVDF.
- the above fluorine, wherein the fluororesin is at least one resin selected from the group consisting of a vinylidene fluoride homopolymer and a vinylidene fluoride copolymer having a comonomer copolymerization ratio of 15 mol% or less Resin film.
- the said fluororesin film whose titanium oxide is a titanium oxide which has a rutile type crystal form.
- the said fluororesin film which further contains another thermoplastic resin in the ratio of 25 mass% or less.
- the said fluororesin film whose other thermoplastic resin is polymethyl methacrylate.
- the fluororesin film production method described above wherein a fluororesin containing 15 to 50% by mass of titanium oxide is embossed after the film is produced by extrusion molding, or the film is obtained by extrusion molding.
- a process for producing the above-mentioned fluororesin film, which is subjected to surface processing at the same time as the production of the resin, is provided.
- a laminate comprising a layer made of the above-mentioned fluororesin film. Furthermore, according to this invention, the solar cell module backsheet provided with the layer which consists of said fluororesin film is provided.
- a fluororesin film containing 15 to 50% by mass of titanium oxide, and at least one surface of the film has a total ratio of the area of titanium oxide where the surface is exposed to the area of the film. 3.2% or less
- the above-mentioned fluorine-based resin film is excellent in weather resistance, mechanical properties, gloss, etc., and adheres to metal powder or metal fragments that are caused by contact with metal. There is an effect that a fluorine-based resin film in which a rubbing trace due to is hardly formed is obtained.
- FIG. 1 is a schematic cross-sectional view of an example of a solar cell module.
- Fluorine-based resins examples include fluorine-based resins that have been conventionally used for applications such as a back sheet for a solar cell module. Specifically, for example, a homopolymer or copolymer of tetrafluoroethylene (ETFE, PTFE, PFA, etc.), a homopolymer or copolymer of vinyl fluoride, a homopolymer or copolymer of vinylidene fluoride Since the light resistance, weather resistance, antifouling property, heat resistance and the like are more excellent, a vinylidene fluoride homopolymer or copolymer can be preferably used. These fluororesins can be prepared by a conventional method. As the fluorine resin, one kind of fluorine resin may be used alone, or two or more kinds of fluorine resins may be combined (blended) and used.
- PVDF Polyvinylidene fluoride resin
- vinylidene fluoride copolymer examples include, for example, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and vinylidene fluoride-chlorotrifluoroethylene mainly composed of vinylidene fluoride.
- the copolymerization ratio of the comonomer copolymerized with vinylidene fluoride is preferably 15 mol% or less, more preferably 10 mol% or less, and particularly preferably 5 mol% or less.
- the vinylidene fluoride copolymer becomes a thermoplastic resin having crystallinity.
- the lower limit of the comonomer copolymerization ratio is preferably 1 mol%. If the comonomer ratio becomes too high, the vinylidene fluoride copolymer loses crystallinity and becomes an elastomer.
- the vinylidene fluoride copolymer that loses crystallinity and becomes an elastomer is a PVDF film that forms a PVDF film that is preferable as the fluororesin film of the present invention (hereinafter sometimes simply referred to as “the PVDF film of the present invention”). Absent.
- the fluororesin film of the present invention is selected from the group consisting of a vinylidene fluoride homopolymer and a vinylidene fluoride copolymer having a comonomer copolymerization ratio of 15 mol% or less. More preferably, it is at least one.
- these fluororesins PVDF
- vinylidene fluoride homopolymers and vinylidene fluoride-hexafluoropropylene copolymers containing hexafluoropropylene units in a ratio of 15 mol% or less are heat resistant and melted. From the viewpoints of moldability, mechanical properties, antifouling properties, solvent resistance, secondary workability and the like, it is particularly preferable.
- PVDF can be produced by suspension polymerization or emulsion polymerization.
- a chemically stable fluorine-based emulsifier is used to emulsify vinylidene fluoride alone or vinylidene fluoride and a comonomer such as hexafluoropropylene in an aqueous medium.
- a comonomer such as hexafluoropropylene in an aqueous medium.
- a fine latex of submicron units is precipitated by an aggregating agent and aggregated, whereby PVDF can be recovered as particles of an appropriate size.
- a vinylidene fluoride or the vinylidene fluoride and a comonomer are suspended in an aqueous medium using a suspending agent such as methylcellulose.
- a suspending agent such as methylcellulose.
- an organic percarbonate eg, di-n-propyl peroxydicarbonate
- the critical temperature of vinylidene fluoride is 30.1 ° C. or lower, preferably 10 to 30
- Polymerization is started at 0 ° C., more preferably 20 to 28 ° C. to produce primary polymer particles, and the temperature is raised to 30 to 90 ° C., preferably 40 to 80 ° C. as necessary, and the polymerization reaction is continued.
- To produce secondary polymer particles To produce secondary polymer particles.
- the intrinsic viscosity of PVDF is preferably in the range of 0.70 to 1.50 dl / g, more preferably 0.80 to 1.30 dl / g.
- the intrinsic viscosity of PVDF is a logarithmic viscosity at 30 ° C. measured using a Ubbelohde viscometer for a solution in which 4 g of PVDF is dissolved in 1 liter of N, N-dimethylformamide.
- the melting point of PVDF is usually in the range of 130 to 177 ° C, and in many cases 150 to 177 ° C.
- the melting point of PVDF is a value measured by a differential scanning calorimeter (DSC).
- DSC differential scanning calorimeter
- PVDF generates HF gas and decomposes when heated to a temperature of 350 ° C. or higher.
- PVDF has a wide processing temperature range from the melting point to the decomposition point.
- the melt processing temperature of PVDF is usually in the range of 200 to 250 ° C., preferably 210 to 240 ° C.
- the PVDF in the PVDF film of the present invention is usually in the range of 30 to 85% by mass.
- the total amount of compounding ratios, such as PVDF, the titanium oxide mentioned later, another thermoplastic resin, and another additive shall be 100 mass%. That is, the fluororesin in the fluororesin film of the present invention is usually 30 to 85% by mass, preferably 40 to 80% by mass, more preferably 45 to 75% by mass.
- Titanium oxide The fluorine-based resin film of the present invention contains titanium oxide in a range of 15 to 50% by mass in addition to the fluorine-based resin such as PVDF.
- the fluorine-based resin film of the present invention is used for a solar cell module backsheet, by containing titanium oxide, improvement in concealability and reflection efficiency can be realized.
- Titanium oxide is widely used in two crystal forms, anatase and rutile. In the present invention, these two crystal forms can be used. Among these, rutile is excellent in dispersibility in fluorine-based resins such as PVDF at high temperatures and has extremely low volatility. Titanium oxide having a type crystal form is preferred.
- the average particle diameter (average primary particle diameter) of titanium oxide by image analysis of transmission electron microscope images is usually in the range of 150 to 1000 nm, preferably 180 to 700 nm, more preferably 200 to 400 nm.
- the average particle diameter of titanium oxide is too small, the hiding power is reduced. Since the average particle diameter of titanium oxide is within the above range, the refractive index is large and the light scattering property is strong, so that the hiding power as a white pigment is increased.
- Titanium oxide is generally present in the form of secondary particles in which primary particles are aggregated.
- the specific surface area of titanium oxide by the BET method is usually in the range of 1 to 15, and in many cases 5 to 15.
- Titanium oxide can be improved in properties such as dispersibility, concealability, and weather resistance by surface treatment with a surface treatment agent.
- the surface treatment agent include metal oxides such as aluminum, silicon, zirconium, tin, cerium, and bismuth; hydrated metal oxides such as zinc oxide; organometallic compounds such as organoaluminum compounds, organotitanium compounds, and organozirconium compounds; Examples thereof include organosilicon compounds such as silane coupling agents and polysiloxanes; phosphorus compounds such as aluminum phosphates and organophosphates; amine compounds.
- titanium oxide By coating titanium oxide with a surface treatment agent, the reaction between the titanium oxide surface and the surrounding environment can be suppressed.
- the surface-treated titanium oxide is excellent in dispersibility in a fluororesin.
- the surface-treated titanium oxide can be dispersed in the fluororesin at a high concentration.
- the amount of the surface treatment agent attached is extremely small. It does not have to be included in the quantity.
- the content ratio of titanium oxide in the fluororesin film of the present invention is preferably 18 to 45% by mass, more preferably 20 to 40% by mass, and still more preferably 25 to 35% by mass.
- the content ratio of titanium oxide is too small, for example, it may be difficult to obtain a fluorine-based resin film having whiteness, hiding power, and reflection efficiency that are preferable as a back sheet for a solar cell module.
- the fluororesin film of the present invention contains only a fluororesin (including one or more fluororesins) such as PVDF as a resin component. Although desirable, other thermoplastic resins may be included as desired to improve properties such as processability, impact resistance, adhesion, and heat resistance.
- thermoplastic resins include polyolefins such as polyethylene and polypropylene; polyamides such as nylon 6 and nylon 66; polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; acrylic resins such as polymethyl methacrylate; polystyrene, poly Examples include acrylonitrile, polyvinyl chloride, polyoxymethylene, polycarbonate, polyphenylene oxide, polyester urethane, poly m-phenylene isophthalamide, and poly p-phenylene terephthalamide.
- a fluorine-based resin for example, polymethyl methacrylate (hereinafter sometimes referred to as “PMMA”) compatible with PVDF is particularly preferable.
- PMMA not only has excellent compatibility with the fluorine-based resin, but also improves the adhesion of the fluorine-based resin film to other members, for example, other thermoplastic resin films.
- PMMA is, in addition to a methyl methacrylate homopolymer, a copolymer containing 50 mol% or less of a methacrylate unit and a methacrylic acid ester other than methyl methacrylate with a methyl methacrylate monomer as a structural unit, Furthermore, the mixture of 2 or more types of these polymers can be illustrated.
- acrylate ester examples include methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate
- methacrylic acid esters other than methyl methacrylate examples include ethyl methacrylate and propyl methacrylate. it can.
- the other thermoplastic resin is preferably 25% by mass or less, more preferably 0 to 22% by mass, and further preferably 3 to 20% by mass in the fluororesin film containing titanium oxide. Can be contained.
- the fluororesin film of the present invention is further desired in addition to fluororesins such as titanium oxide and PVDF, and other thermoplastic resins blended as desired as described above.
- fluororesins such as titanium oxide and PVDF, and other thermoplastic resins blended as desired as described above.
- other additives such as pigments or dyes, pigment dispersants, ultraviolet absorbers, heat stabilizers, light stabilizers, matting agents, lubricants, crystal nucleating agents, and mechanical property improving agents can be contained.
- the fluororesin film of the present invention may contain a mechanical property improver.
- the mechanical property improver can improve mechanical properties such as impact resistance, tensile strength, and elongation of the obtained fluororesin film such as PVDF film.
- a core-shell type impact resistance modifier And copolymerized acrylic flow modifiers are known.
- Kaneace registered trademark
- Metabrene registered trademark
- Paraloid registered trademark
- the mechanical property improvers can be selected alone or in combination of two or more.
- the fluororesin film of the present invention can contain a heat stabilizer.
- heat stabilizers include polyhydroxymonocarboxylic acid calcium salts such as calcium gluconate; aliphatic carboxylic acid calcium salts having 5 to 30 carbon atoms such as calcium stearate and calcium oleate; inorganic calcium such as calcium carbonate and calcium hydroxide.
- Compound: Metal oxides such as zinc oxide and magnesium oxide are listed.
- a heat stabilizer can be used individually or in combination of 2 types or more, respectively.
- the heat stabilizer is usually in the form of powder from the viewpoint of dispersibility in the fluororesin.
- an inorganic calcium compound such as calcium carbonate and a metal oxide such as zinc oxide have an average particle diameter (average primary particle diameter) in the range of 0.05 to 2 ⁇ m by image analysis of a transmission electron microscope image. Preferably there is. As the average particle size decreases, the effect of improving the thermal decomposition temperature of a fluorine-based resin such as PVDF can be exhibited.
- the content ratio of the heat stabilizer is usually smaller than the content ratio of titanium oxide.
- the mass ratio of titanium oxide to heat stabilizer is usually in the range of 100: 1 to 3: 1, preferably 80: 1 to 4: 1, more preferably 50: 1 to 5: 1.
- additives are used in proportions suitable for each, and when other additives are contained, they are each independently usually 0.01 to 10% by mass, preferably in the fluororesin film. It is in the range of 0.1 to 8% by mass, more preferably 0.5 to 5% by mass.
- the other additive is a heat stabilizer
- the content ratio of the heat stabilizer is too small, the heat stabilization effect is reduced, and the thermal decomposition temperature of the fluorine resin component in the resulting fluorine resin film is reduced. It becomes difficult to sufficiently suppress the decrease.
- the content ratio of the heat stabilizer is too large, the hiding power, color tone, mechanical properties, etc. of the fluororesin film may be adversely affected.
- Fluorine-based resin film The fluorine-based resin film of the present invention, preferably a PVDF film, is a fluorine-based resin film containing 15 to 50% by mass of titanium oxide, and at least one surface of the film is in relation to the area of the film,
- the fluorine resin film is characterized in that the total proportion of the area of titanium oxide whose surface is exposed is 3.2% or less.
- the surface-exposed titanium oxide means titanium oxide present on the surface of a fluororesin film containing 15 to 50% by mass of titanium oxide, that is, the outer surface from the plane serving as a reference for the fluororesin film.
- the fluororesin film of the present invention is characterized in that the total ratio of the area of titanium oxide whose surface is exposed to the area of the film is 3.2% or less.
- the fluorine-based resin film of the present invention is a resin as a titanium oxide present on the surface of the fluorine-based resin film, specifically, a titanium oxide whose surface is covered with a fluorine-based resin and the surface is not exposed, and a resin, Specifically, the surface is not covered with a fluorine-based resin, and the surface thereof is exposed titanium oxide.
- the surface of the fluororesin film of the present invention is not covered with the latter resin, and the total area of the titanium oxide whose surface is exposed is 3.2% with respect to the area of the fluororesin film.
- the ratio is as follows.
- Total ratio of the area of titanium oxide whose surface is exposed Of the titanium oxide present on the surface of the film, the surface exposed titanium oxide is taken using a scanning electron microscope (SEM) to capture the surface images of fluororesin films, including PVDF films containing titanium oxide. It can confirm with the SEM image obtained. For the titanium oxide exposed on the surface confirmed by the SEM image, the total ratio of the area of the titanium oxide where the surface is exposed to the area of the film can be determined by “by binarizing the SEM image by the following method.
- SEM scanning electron microscope
- the surface exposure rate obtained requires as "the surface exposure rate obtained.” That is, using a scanning electron microscope (SEM), a predetermined region of the fluororesin film containing titanium oxide (selected from a range separated from both ends of the film in the width direction by 1/4 or more of the film width). The surface image is taken (pretreatment with platinum coating, acceleration voltage 5 kV, secondary electron image photographing mode, magnification 8000 times). Using the image editing processing software, the obtained SEM image jpeg file is a portion of the titanium oxide present on the film surface in a predetermined region, where the surface of the titanium oxide is exposed (hereinafter referred to as “TiO 2 exposed portion”). ”And other parts (such as buried TiO 2 ) are binarized.
- SEM scanning electron microscope
- TiO 2 exposure rate (%) The total ratio of the area of titanium oxide whose surface is exposed to the area of the film [hereinafter referred to as “TiO 2 exposure rate (%)”. ] Can be calculated as a calculation formula: (number of pixels of the exposed portion of TiO 2 / number of pixels of the entire image) ⁇ 100. Note that the number of pixels in the entire image corresponds to the area of the film in the predetermined area.
- the fluororesin film including the PVDF film of the present invention is a fluororesin film containing 15 to 50% by mass of titanium oxide, and at least one surface of the film is exposed to the area of the film.
- the total proportion of the area of titanium oxide to be exposed [TiO 2 exposure rate (%)] is 3.2% or less, the metal scratch resistance can be obtained without impairing the weather resistance and mechanical properties.
- the total ratio of the area of titanium oxide whose surface is exposed to the area of the film [TiO 2 exposure rate (%)] is preferably 3.1% or less, more preferably 3.0% or less, and still more preferably 2. It is 8% or less, particularly preferably 2.5% or less.
- the lower limit of the total ratio of the area of titanium oxide that exposes the surface to the area of the film [TiO 2 exposure rate (%)] is 0%, but in many cases it is about 0.3%. Depending on the composition and thickness of the film, even if the above ratio is 0.5% or more, a fluororesin film having metal scratch resistance can be obtained.
- at least one surface of the fluororesin film has a total ratio of the area of titanium oxide where the surface is exposed to the area of the film [TiO 2 exposure rate (%)] is 3. If it is 2% or less, it can be said that it is a fluorine resin film provided with the surface which has metal abrasion resistance.
- both surfaces of the fluororesin film have a total ratio of the titanium oxide area where the surface is exposed to the area of the film being 3.2% or less, Both surfaces of the fluororesin film can have metal scratch resistance.
- the fluororesin film of the present invention is a film having metal scratch resistance.
- the metal scratch resistance of the fluororesin film can be evaluated by measuring the color of the film surface before and after the friction test and obtaining the color difference ( ⁇ E) by a method involving the following friction test. That is, it corresponds to the Gakushin type friction tester [Friction tester type II (Gakushin type) specified in JIS L0849 “Testing method for fastness to dyeing against friction”].
- a fluorine resin film is attached to a 20 mm long ⁇ 21 mm wide friction element (head portion), and a distance of 10 cm is applied to an aluminum tape having a width of 40 mm attached to a test piece base with a load of 600 g.
- the fluororesin film attached to the friction element is removed.
- the color difference ( ⁇ E) of the film surface before and after the friction test is obtained.
- the color difference ( ⁇ E) is measured on the surface of the film before and after the friction test in accordance with JIS Z8722 using a spectroscopic color difference meter (reflection measurement diameter 30 mm, C light source, 2 ° field of view, L * a * b * color system).
- the color difference ( ⁇ E) on the film surface before and after the friction test is based on the difference in colorimetric values ( ⁇ L * , ⁇ a * and ⁇ b * ) on the film surface.
- Equation) ⁇ E [( ⁇ L * ) 2 + ( ⁇ a * ) 2 + ( ⁇ b * ) 2 ] 1/2 (The value is one digit after the decimal point.)
- the evaluation criteria for metal scratch resistance based on the color difference ( ⁇ E) on the film surface before and after the friction test are as follows. ⁇ Evaluation criteria> ⁇ E Evaluation symbol 0 to 1.5 Excellent metal scratch resistance S 1.6 to 3.2 Good metal scratch resistance A 3.3-7 Metal abrasion resistance is slightly inferior B 7 ⁇ Poor metal scratch resistance C
- Fluorine resin film having metal scratch resistance, and a back sheet or laminate for a solar cell module comprising a layer made of the fluorine resin film such as PVDF film, for example, in carrying work, installation work or incidental work, Contact with metal such as solar cell module frames, electric wires, mounting brackets, etc. may occur due to accidental or work-related contact, bumping, or rubbing.
- the generated metal powder or metal piece does not adhere to the back sheet or laminate of the solar cell module including a layer made of the fluororesin film and the fluororesin film as in the case of scratches.
- the metal powder and the metal piece do not adhere to the surface of the film like a scratch.
- the metal powder and metal pieces adhering to the surface of the fluorine resin film and the back sheet for the solar cell module can be removed by simply stroking, so the fluorine resin film and the back sheet for the solar cell module after the removal are removed. It does not remain as a rubbing trace on the surface, and there is no problem in the function of the fluorine resin film or the back sheet for the solar cell module.
- the fluororesin film of the present invention do not attach metal powder or metal pieces as in the case of scratches. There is no concern. Furthermore, the fluororesin film of the present invention, and the back sheet and laminate for a solar cell module are designed so that metal powder and metal pieces do not adhere in various operations, or the attached metal powder and metal pieces are removed. This eliminates the need for work to be carried out, thus greatly reducing transportation and work costs.
- At least one surface of the film has a metal scraping resistance by a total ratio of the area of titanium oxide with the surface exposed to the film area being 3.2% or less. And a film having excellent weather resistance by containing 15 to 50% by mass of titanium oxide.
- the weather resistance of the fluororesin film is as follows: in an atmosphere at a temperature of 63 ° C. and 63% RH, using a metal halide lamp as a light source, an illuminance of 1000 W / m 2 and an irradiation time of 100 hours (total irradiation amount of 100 hours 360 MJ / m 2 ).
- a weather resistance test is performed, and the color difference ( ⁇ E) on the film surface before and after irradiation is measured and evaluated. If the color difference ( ⁇ E) on the film surface before and after irradiation is 1.5 or less, it can be evaluated that there is weather resistance, and if it is 1 or less, it can be said that the weather resistance is excellent. Since the fluororesin film of the present invention has excellent weather resistance, the laminate and the solar cell module backsheet having a layer made of this fluororesin film can be used even if they are exposed to the external environment for a long time. Will not be lost.
- the fluororesin film of the present invention has a metal scraping resistance by a total ratio of the area of titanium oxide with the surface exposed to the film area being 3.2% or less.
- the excellent mechanical characteristics of the fluororesin film are such that the breaking strength (maximum point stress) of the film at a temperature of 23 ° C. is 20 MPa or more, preferably 25 MPa or more, more preferably 30 MPa or more. The breaking strength (maximum point stress) of the film at a temperature of 23 ° C.
- the fluororesin film of the present invention has a metal scraping resistance by a total ratio of the area of titanium oxide with the surface exposed to the film area being 3.2% or less.
- the surface of the film can have a matte glossiness. That is, the fluorine-based resin film of the present invention is not limited in glossiness, so-called matte or may have high gloss, but conventionally, for example, as a back sheet for a solar cell module, In some cases, a high-quality film is desired by having a matte gloss without gloss.
- the gloss of the surface of the film whose total area of the titanium oxide area where the surface is exposed to the area of the film is 3.2% or less is 35% or less, preferably 32% or less, More preferably, it can be 28% or less.
- the glossiness of the film surface can be measured using a gloss meter in accordance with JIS Z8741.
- the method of making the fluororesin film of the present invention have a matte gloss without gloss is not particularly limited. For example, after the film is produced, post-treatment such as so-called mat processing is performed on the surface of the film. By performing machining, a film having a desired matte glossiness can be obtained by a method of making the matte or the like.
- the fluororesin film of the present invention may be an unstretched film or a stretched film.
- additional equipment such as a stretching apparatus (longitudinal and lateral directions) and a heat treatment apparatus are necessary, Since it is difficult to produce a thick film, an unstretched film is preferable.
- the thickness of the fluororesin film of the present invention is usually 2 to 500 ⁇ m, preferably 3 to 400 ⁇ m, more preferably 5 to 300 ⁇ m, still more preferably 8 to 250 ⁇ m, and particularly preferably 10 to 200 ⁇ m.
- the thickness of the fluororesin film is preferably 2 to 100 ⁇ m, more preferably It is 3 to 80 ⁇ m, more preferably 4 to 60 ⁇ m, particularly preferably 10 to 50 ⁇ m. If the thickness of the fluororesin film is less than 2 ⁇ m, the strength of the film is insufficient and the required mechanical properties cannot be obtained.
- the method for producing a fluororesin film of the present invention is a fluororesin film containing 15 to 50% by mass of titanium oxide, preferably a PVDF film, wherein at least one surface of the film is There is no particular limitation as long as a fluorine resin film in which the total ratio of the area of titanium oxide whose surface is exposed to the area of the film is 3.2% or less can be obtained.
- Fluorine resin containing the required amount of titanium oxide and, if necessary, other thermoplastic resin and other additives is melt-kneaded at a temperature above the melting point and then rolled (pressed) between rolls or in a mold.
- the film is sandwiched by a polytetrafluoroethylene sheet having a predetermined surface roughness (Ra) (which may have an embossed pattern) placed in a metal press die.
- Ra surface roughness
- the film is sandwiched by a polytetrafluoroethylene sheet having a predetermined surface roughness (Ra) (which may have an embossed pattern) placed in a metal press die.
- Ra surface roughness
- a fluorine-based resin for example PVDF
- the fluororesin film of the present invention can also be produced by a coating method using a known solvent or aqueous coating.
- a fluorine resin film by extrusion molding.
- a fluorine resin containing 15 to 50% by mass of titanium oxide, such as PVDF is extrusion molded.
- the fluororesin film can be produced by a method of embossing after producing a film by the method, or a method of producing a film by extrusion and simultaneously surface-treating it.
- a method for producing a fluororesin film by extrusion will be further described.
- a material containing the fluorine resin is supplied to an extrusion molding machine, and the fluorine resin
- the melt is extruded into a film (also referred to as a sheet) from a T-die disposed at the tip of the extruder, and then a cooling roll (cast roll),
- a cooling roll Use a combination of elastic rolls (such as metal or rubber), mirror rolls (such as metal or rubber) and embossing rolls (such as metal or rubber), preferably while applying pressure, and below the melting point
- a fluororesin extruded film can be produced.
- the melt kneading temperature in the extruder is usually in the range of 200 to 250 ° C., preferably 205 to 245 ° C., more preferably 210 to 240 ° C.
- the extrusion temperature from the T die is Usually, it is in the range of 195 to 235 ° C., preferably 200 to 230 ° C., more preferably 205 to 225 ° C.
- a fluororesin discharged from a T die in a film state in a molten state is placed directly under the T die and brought into contact with a metal cooling roll (cast roll) whose temperature is adjusted to a predetermined temperature.
- the film is produced by cooling to a predetermined temperature below the melting point, and then, if necessary, after passing between a mirror roll and an elastic roll whose temperature is adjusted to the predetermined temperature, the temperature is adjusted to the predetermined temperature.
- Embossing by passing between the embossed roll and the elastic roll, and ii) fluorinated resin discharged in a film from the T die in a molten state is placed directly under the T die and brought to a predetermined temperature.
- Fluorine-based resin film having a surface texture can be obtained.
- An embossing roll having a surface roughness Ra (arithmetic mean roughness) of usually 0.2 to 15 ⁇ m, preferably 0.4 to 12 ⁇ m, more preferably 0.7 to 10 ⁇ m may be used. desirable.
- the embossing roll can form a desired roughness or pattern on the film surface by sandblasting, engraving, electrolytic polishing, or the like.
- the mirror roll and the emboss roll can be used in combination, or the emboss roll and the emboss roll can be used in combination.
- a backup roll made of metal, resin, rubber, or the like can be used while facing a cooling roll (cast roll), an embossing roll, or a mirror surface roll.
- the upper limit of the surface roughness of the embossing roll is appropriately determined depending on the type of the opposing roll and the surface roughness, but is usually 50 ⁇ m and in many cases 30 ⁇ m.
- the surface roughness of the obtained fluororesin film can be adjusted.
- the temperature of the embossing roll or mirror roll varies depending on the temperature of the discharged fluororesin and the film forming speed, but is usually in the range of 50 to 160 ° C., preferably 60 to 155 ° C., more preferably 70 to 150 ° C. If the temperature of the embossing roll or mirror roll is less than 50 ° C., the fluidity of the fluororesin, for example PVDF, is insufficient, and it is difficult to completely cover the surface of titanium oxide with the fluororesin. The total proportion of the area of titanium oxide whose surface is exposed may not be 3.2% or less.
- the embossing roll, mirror roll, elastic roll, cooling roll, and / or backup roll can be adjusted by a known method such as heating / cooling with a fluid such as water or oil, heating / cooling with an electric heater, heating / cooling with a piezoelectric element. Adopt and control.
- the temperature of the embossing roll and / or mirror surface roll may be different, but is preferably the same temperature.
- the fluororesin film-like material containing titanium oxide adjusted so as to have a predetermined surface state between the embossing roll and / or the mirror-finished roll is subsequently guided to a predetermined temperature as required.
- the surface roughness (Ra) and mechanical properties of the film can be finely adjusted.
- the number of rolls of the guide roll group can be increased or decreased as necessary, and may be before the embossing roll and / or mirror roll (on the extruder side) or after (on the opposite side of the extruder side).
- the mechanical properties can be fine-tuned.
- the temperature of the rolls of the guide roll group can be selected as appropriate, and may be the same temperature, may be different temperatures, or may be room temperature without special temperature adjustment. It is good also as temperature higher than the temperature of an embossing roll and / or a mirror surface roll. As described above, the temperature adjustment of the rolls of the guide roll group can be controlled by employing a means known per se.
- a pinch roll comprising a pair of rolls may be used.
- the surface roughness (Ra), mechanical properties, etc. of the obtained fluororesin film can be obtained by using a pinch roll and carrying it while sandwiching the fluororesin film. Further fine adjustment is possible.
- the surface roughness, temperature, surface pressure, and rotation speed of the pinch roll can be adjusted as appropriate.
- the fluororesin film of the present invention is preferably an unstretched film.
- the rotation speed of the rolls and pinch rolls of the guide roll group is sequentially set.
- the film-like material of fluororesin can be stretched in the longitudinal direction.
- a known stretching means such as a tenter may be further provided.
- the surface of the fluororesin film may crystallize, and it may be difficult to control the surface roughness (Ra). Therefore, the fluororesin film of the present invention is an unstretched film. preferable.
- the fluororesin film of the present invention can be used as a single-layer film, but by laminating other thermoplastic resin films into a laminate comprising a layer made of a fluororesin film, for example, It can be used in fields where further improvement in mechanical strength such as impact resistance and flexibility is required.
- thermoplastic resin films used to form a laminate comprising a layer made of a fluororesin film include polyolefins such as polyethylene and polypropylene; polyamides such as nylon 6 and nylon 66; polyethylene terephthalate, polybutylene terephthalate, polyethylene Polyester such as naphthalate (hereinafter sometimes referred to as “PEN”); acrylic resin such as polymethyl methacrylate; polystyrene, polyacrylonitrile, polyvinyl chloride, polyoxymethylene, polycarbonate, polyphenylene oxide, polyphenylene sulfide, polyether Examples include films of ether ketone, polyester urethane, poly m-phenylene isophthalamide, poly p-phenylene terephthalamide, and the required mechanical strength.
- polyolefins such as polyethylene and polypropylene
- polyamides such as nylon 6 and nylon 66
- polyethylene terephthalate polybutylene terephthalate
- polyethylene Polyester such as
- Heat resistance, weather resistance, in consideration of light resistance may be selected one or more of these.
- a laminate including a layer made of the same kind or different kind of fluororesin film may be used.
- the laminated body provided with the layer which consists of a PVDF film, and the layer which consists of fluorine-type resins, such as PTFE or PVF, etc. are mentioned.
- thermoplastic resin films polyesters such as PET and PEN; films such as acrylic resins such as polycarbonate and PMMA are preferably used.
- a polyester film such as PET or PEN is preferable, and a PET film is most preferably used.
- a biaxially stretched PET film is preferable.
- thermoplastic resin films may further contain other thermoplastic resins and other commonly used additives such as stabilizers, ultraviolet absorbers, pigments or dyes, if necessary.
- a pigment such as titanium oxide or carbon black to be added for improving the concealability is used. You may make it contain in a thermoplastic resin film. Since the fluorine-based resin film of the present invention has a high titanium oxide content of 15 to 50% by mass, the content of titanium oxide contained in these other thermoplastic resin films can be reduced.
- the thickness of the laminate is not particularly limited, but is usually 3 to 800 ⁇ m, preferably 7 to 500 ⁇ m, more preferably 10 to 400 ⁇ m, and still more preferably 20 to 300 ⁇ m. If the thickness of the laminate is less than 3 ⁇ m, the strength of the laminate may be insufficient and required mechanical properties may not be obtained. For example, when used as a back sheet for a solar cell module, the required concealability and strength It becomes difficult to obtain characteristics such as. When the thickness exceeds 800 ⁇ m, the flexibility of the laminate may be insufficient, and weight reduction and thinning cannot be achieved.
- the thickness ratio of the fluororesin film containing titanium oxide and the other thermoplastic resin film in the laminate is not particularly limited, but is preferably 1/99 to 90/10, more preferably 5/95 to 70. / 30, more preferably 10/90 to 50/50, and particularly preferably 15/85 to 40/60.
- a laminate comprising a layer comprising a fluorine resin film containing titanium oxide is a method for producing a laminate comprising a layer comprising a fluorine resin film known per se.
- the lamination may be performed by joining a fluorine-containing resin film containing titanium oxide formed in advance and another thermoplastic resin film without using an adhesive or preferably through an adhesive layer.
- Known adhesives such as urethane adhesives and epoxy adhesives, and hot-melt adhesives can be used as adhesives for adhesive lamination, but two-component urethane adhesives are the most. preferable.
- an adhesive is applied, After heating and drying to form an adhesive layer with a predetermined thickness, bonding is performed by pressing the fluororesin film and another thermoplastic resin film while pressing them with a roll or the like, further heating as desired.
- the laminate comprising the fluororesin film of the present invention or a layer made of a fluororesin film is suitable for use as a back sheet for a solar cell module.
- the solar cell module As the solar cell module, the one having the cross-sectional structure shown in FIG. That is, as shown in FIG. 1, the solar cell module includes a surface protective material 1, a sealing material 2, a solar battery cell 3, and a back surface protective material (back sheet) 4. A plurality of solar cells 3 are connected in series by wiring (not shown) to constitute a solar cell module. A frame (not shown) is disposed at the end or peripheral edge of the solar cell module.
- Examples of the surface protective material 1 include, but are not limited to, a tempered glass plate, a transparent plastic plate, a single-layer or multilayer transparent plastic film, or a composite material obtained by combining these.
- the sealing material 2 transparent resin such as ethylene-vinyl acetate copolymer (EVA), butyral resin, silicon resin, epoxy resin, and fluorinated polyimide resin is used, but is not limited thereto. Among these sealing materials, EVA is preferable. Although the structure of the solar battery cell 3 varies depending on the type of the solar battery, various solar battery cells can be used. When EVA is used as the sealing material 2, EVA is supplied as a sheet. The solar battery cell 3 can also be sealed with EVA by sandwiching the solar battery cell 3 between the two EVA sheets and heating and pressing. Moreover, when using an EVA sheet
- EVA ethylene-vinyl acetate copolymer
- butyral resin silicon resin
- epoxy resin epoxy resin
- a fluorine resin single layer film containing titanium oxide As the back surface protective material (back sheet) 4, a fluorine resin single layer film containing titanium oxide according to the present invention, a fluorine resin film containing titanium oxide, and other thermoplastic resin films (for example, PET film) It is possible to use a laminate including a layer made of a fluorine-based resin film containing titanium oxide obtained by compounding.
- a fluorine resin film is excellent in a mechanical characteristic and a weather resistance, it is solar. It is preferable that the battery module is disposed on the rearmost surface side, that is, at a position far from the solar battery cell 3.
- the solar cell module backsheet 4 of the present invention may be a laminate further provided with a barrier layer, or a composite material further provided with a tempered glass plate, a metal plate or a metal foil.
- an adhesive layer can be disposed between the respective layers.
- the barrier layer include a vapor deposition layer of an inorganic oxide such as silicon oxide or aluminum oxide or a vapor deposition layer of a metal such as aluminum.
- These vapor deposition layers may be used in the form of an inorganic oxide vapor deposition film such as silicon oxide or aluminum oxide or a metal vapor deposition film such as aluminum formed on one side of the base film.
- the tempered glass plate, metal plate or metal foil functions as a barrier layer.
- Adhesives used for bonding need to have a barrier layer, especially a vapor-deposited layer whose adhesive strength deteriorates when used outdoors for a long period of time, does not cause peeling, etc., and that the adhesive does not turn yellow.
- An adhesive or the like can be preferably used.
- a solar cell module backsheet comprising a layer made of the fluorine resin film of the present invention
- a laminate in which the fluorine resin film of the present invention and another resin film for example, PET film
- an adhesive layer can be disposed between each layer.
- the moisture-proof film include a composite film in which a deposited film of an inorganic oxide such as silicon oxide or aluminum oxide is formed on one surface of a base film.
- Examples of commercially available moisture-proof films include CELLEL (registered trademark) T030 manufactured by Kureha Corporation.
- the back sheet having a multi-layer structure shows the surface on the side in contact with the solar cell module as the right end.
- Fluorine resin film / adhesive / EVA of the present invention (2) Fluorine resin film of the present invention / other resin film (3) Other resin film / fluorine resin film of the present invention (4) Fluorine resin film / adhesive / other resin film of the present invention (5 ) Other resin film / adhesive / fluorine resin film of the present invention (6) Fluorine resin film of the present invention / other resin film / adhesive / EVA (7) Other resin film / fluorine resin film of the present invention / adhesive / EVA (8) Fluorine resin film / adhesive / other resin film / adhesive / EVA of the present invention (9) Other resin film / adhesive / fluorinated resin film / adhesive / EVA of the present invention (10) Fluorine resin film / adhesive / other resin film / adhesive / fluorine resin film of the present invention (11) Glass plate / adhesive / fluorine resin film of the present invention (12) glass plate / Adhesive / Fluoropolymer film of the present invention
- Total ratio of the area of titanium oxide whose surface is exposed The total ratio of the area of titanium oxide whose surface is exposed to the area of the film was determined by the following method. That is, using a scanning electron microscope (SEM, SU8020 manufactured by Hitachi High-Technologies Corporation), a surface image of a fluororesin film containing titanium oxide was taken (pretreatment with platinum coating, acceleration voltage 5 kV, 2 The following electronic image shooting mode, the magnification was set to 8000 times.) The jpeg file of the SEM image (1,228,800 pixels) of the film in a predetermined area was converted into titanium oxide using image editing software Adobe Photoshop (registered trademark).
- SEM scanning electron microscope
- TiO 2 exposed portion The portion where the surface of the substrate was exposed (hereinafter sometimes referred to as “TiO 2 exposed portion”) and the other portions were binarized.
- TiO 2 exposure rate (%) The total ratio of the area of titanium oxide whose surface is exposed to the area of the film [hereinafter referred to as “TiO 2 exposure rate (%)”. ] was calculated from the calculation formula: (number of pixels of the exposed portion of TiO 2 / number of pixels of the entire image) ⁇ 100.
- the metal scratch resistance of the fluororesin film was evaluated by measuring the color of the film surface before and after the friction test and obtaining the color difference ( ⁇ E) by a method involving the following friction test. That is, using a Gakushin friction tester (Gakushin friction tester II type AB-301 manufactured by Tester Sangyo Co., Ltd.), a fluorine resin film is applied to a 20 mm long x 21 mm wide friction element (head portion). Was attached to the aluminum tape having a width of 40 mm attached to the test piece base and brought into contact with a load of 600 g and reciprocated 30 times within a distance of 10 cm, and then the fluororesin film attached to the friction element was removed.
- a Gakushin friction tester Gashin friction tester II type AB-301 manufactured by Tester Sangyo Co., Ltd.
- Color difference ( ⁇ E) on the film surface before and after the friction test was determined.
- Color difference ( ⁇ E) is measured on the film surface using a spectroscopic color difference meter (spectral color difference meter SE-2000 manufactured by Nippon Denshoku Industries Co., Ltd.) according to JIS Z8722 for the film before and after the friction test. Reflection measurement diameter 30 mm, C light source, 2 ° field of view, L * a * b * color system).
- the color difference ( ⁇ E) on the film surface before and after the friction test is based on the difference in colorimetric values ( ⁇ L * , ⁇ a * and ⁇ b * ) on the film surface.
- the weather resistance of the fluorine-based resin film is as follows: Super UV tester SUV-W161 manufactured by Iwasaki Electric Co., Ltd., using a metal halide lamp with a wavelength of 295 to 450 nm as a light source in an atmosphere of 63 ° C. and 63% RH, and an illumination intensity of 1000 W
- the weather resistance test was conducted at / m 2 and an irradiation time of 100 hours (total irradiation amount of 360 MJ / m 2 for 100 hours), and the color difference ( ⁇ E) on the film surface before and after irradiation was measured.
- the mechanical properties (breaking strength of film at a temperature of 23 ° C.) of the fluororesin film are in accordance with JIS K7127, and are longitudinal (extrusion direction, that is, MD direction) and transverse direction (extrusion direction orthogonal to) from the fluororesin film.
- Direction that is, TD direction
- a strip-shaped film with a length of 50 mm and a width of 10 mm is used as a test piece, and Tensilon RTM-100 made by Orientec Co., Ltd. The measurement was performed at a speed of 200 mm / min.
- PVDF Vinyl Powder (registered trademark) 70H manufactured by Asahi Kasei Chemicals Co., Ltd.] 12.65 parts by mass, acrylic elastomer [Rohm & Haas Paraloid (registered trademark) EXL-2315] 1.35 mass Part, 1.5 parts by mass of calcium carbonate (SL2500 manufactured by Takehara Chemical Industry Co., Ltd.) and 0.5 parts by mass of calcium stearate (manufactured by Nitto Kasei Co., Ltd.) are supplied to a twin screw extruder and melted at a temperature of 220 ° C. It knead
- the obtained pellets are supplied to a single screw extruder to be in a molten state, the molten resin is discharged from the T-shaped die downward into a film shape, and the molten resin is contact-solidified with a cast roll whose temperature is adjusted to 110 ° C.
- the film was formed into a film having a thickness of 20 ⁇ m and wound up.
- No. of Table 1 which adjusted the temperature of the wound film to the surface temperature of 140 degreeC.
- No. 1 in Table 1 with a surface roughness Ra of 0.03 ⁇ m and a surface roughness Ra of 0.03 ⁇ m. 7 was passed between the elastic rolls shown in No. 7 at a pressing force of 30 N / mm and a speed of 2 m / min.
- Example 2 The embossing roll is designated as No. 1 in Table 1.
- a PVDF film containing titanium oxide was obtained in the same manner as in Example 1 except that the embossing roll had a surface roughness Ra of 2.11 ⁇ m shown in FIG.
- Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
- Example 3 No. in Table 1 No. 1 in Table 1 and the mirror surface roll shown in Table 1.
- a PVDF film containing titanium oxide was obtained in the same manner as in Example 2 except that it did not pass between the elastic rolls shown in FIG.
- Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
- Example 4 The embossing roll is designated as No. 1 in Table 1.
- a PVDF film containing titanium oxide was obtained in the same manner as in Example 1 except that the embossing roll had a surface roughness Ra of 4.22 ⁇ m shown in FIG.
- Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
- Example 5 No. in Table 1 No. 1 in Table 1 and the mirror surface roll shown in Table 1.
- a PVDF film containing titanium oxide was obtained in the same manner as in Example 4 except that it did not pass between the elastic rolls shown in FIG.
- Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
- Example 6 The embossing roll is designated as No. 1 in Table 1.
- a PVDF film containing titanium oxide was obtained in the same manner as in Example 1 except that the embossing roll had a surface roughness Ra of 6.10 ⁇ m shown in FIG.
- Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
- Example 7 No. in Table 1 No. 1 in Table 1 and the mirror surface roll shown in Table 1.
- a PVDF film containing titanium oxide was obtained in the same manner as in Example 6 except that it did not pass between the elastic rolls shown in FIG.
- Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
- Example 8 The embossing roll is designated as No. 1 in Table 1.
- a PVDF film containing titanium oxide was obtained in the same manner as in Example 1 except that the embossing roll had a surface roughness Ra of 8.93 ⁇ m shown in FIG.
- Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
- Example 9 No. in Table 1 No. 1 in Table 1 and the mirror surface roll shown in Table 1.
- a PVDF film containing titanium oxide was obtained in the same manner as in Example 8 except that it did not pass between the elastic rolls shown in FIG.
- Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
- Example 10 The pellet used in Example 1 is supplied to a single screw extruder to be in a molten state, a molten resin is discharged from the T-shaped die downward in a film form, and a cooling roll (cast roll) whose temperature is adjusted to a surface temperature of 110 ° C.
- a film having a thickness of 20 ⁇ m was formed at a speed of 6 m / min and wound up by subjecting the surface to a nip roll (made of silicone rubber) and subjecting the molten resin to contact solidification.
- Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
- the fluororesin film of Examples 1 to 10 having an area ratio of 2% or less have a friction test color difference ( ⁇ E) of 0.7 to 2.9, and thus the evaluation of metal scratch resistance is S (excellent). Or it turned out that it is A (good). Further, the fluorine resin films of Examples 1 to 10 have weather resistance and excellent mechanical properties, and the fluorine resin films of Examples 1 to 9 have a matte shape that may be desired. It was found to have a glossiness.
- a fluororesin film containing 15 to 50% by mass of titanium oxide, and at least one surface of the film has a total ratio of the area of titanium oxide where the surface is exposed to the area of the film. 3.2% or less
- the above-mentioned fluororesin film is excellent in weather resistance, mechanical properties, and the like, and is abraded due to adhesion of metal powder or metal pieces generated by contact with metal.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Medicinal Chemistry (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Photovoltaic Devices (AREA)
Abstract
Provided are: a fluorine resin, preferably polyvinylidene fluoride resin, film that contains titanium oxide within a range of 15-50 mass%, wherein on at least one surface of the film, the total proportion of the area of titanium oxide exposed by the surface in relation to the area of the film is 3.2% or less, and a method for producing said film; and a laminate provided with a layer comprising said film, and a back sheet for a solar cell module.
Description
本発明は、フッ素系樹脂フィルム、好ましくはポリフッ化ビニリデン樹脂フィルム及びその製造方法、並びに、該樹脂フィルムからなる層を備える積層体及び太陽電池モジュール用バックシートに関する。
The present invention relates to a fluororesin film, preferably a polyvinylidene fluoride resin film, a method for producing the same, a laminate including a layer made of the resin film, and a back sheet for a solar cell module.
ポリフッ化ビニリデン樹脂(以下、「PVDF」ということがある。)を始めとするフッ素系樹脂は、その優れた耐候性、耐熱性、耐汚染性、耐薬品性、耐溶剤性、機械的特性、二次加工性を活かし長期耐久性を求められる分野に幅広く使用されている。特に、PVDFからなるフィルム(以下、「PVDFフィルム」ということがある。)を始めとするフッ素系樹脂フィルムは、薄膜化によるコストメリットを活かし、各種表面の保護材料として、建築物の内外装用部材、耐薬品性や耐溶剤性が求められる成形品の表面材、更には長期信頼性が重要となる太陽電池モジュールの表面保護材または裏面保護材、燃料電池部材等に広く用いられている。
Fluoropolymers such as polyvinylidene fluoride resin (hereinafter sometimes referred to as “PVDF”) have excellent weather resistance, heat resistance, stain resistance, chemical resistance, solvent resistance, mechanical properties, Widely used in fields that require long-term durability by utilizing secondary processability. In particular, fluororesin films such as films made of PVDF (hereinafter sometimes referred to as “PVDF films”) utilize the cost merit of thinning, and are used as protective materials for various surfaces as members for interior and exterior of buildings. It is widely used as a surface material for molded products that require chemical resistance and solvent resistance, as well as a surface protection material or back surface protection material for solar cell modules in which long-term reliability is important, and a fuel cell member.
昨今の地球温暖化対策の推進に向け、クリーンエネルギーの開発が盛んに行われ、中でも太陽光を利用した太陽光発電が欧米を中心に大きく伸張し、太陽電池の普及が進んでいる。耐候性、耐熱性、耐汚染性、耐薬品性、耐溶剤性、機械的特性、二次加工性に優れているPVDFは、単層で、または、他の熱可塑性樹脂層との積層体として、太陽光発電に使用する太陽電池モジュールの表面保護材または裏面保護材として用いられるようになってきた。
In recent years, clean energy has been actively developed for the promotion of global warming countermeasures. In particular, solar power generation using sunlight has been greatly expanded mainly in Europe and the United States, and the spread of solar cells is progressing. PVDF with excellent weather resistance, heat resistance, stain resistance, chemical resistance, solvent resistance, mechanical properties, and secondary workability is a single layer or as a laminate with other thermoplastic resin layers. , It has come to be used as a surface protective material or a back surface protective material for solar cell modules used for solar power generation.
太陽電池は、太陽光を直接電気エネルギーに変換する発電装置である。太陽電池には、シリコン半導体を材料にするものと、化合物半導体を材料にするものとに大別される。シリコン半導体太陽電池には、単結晶シリコン太陽電池、多結晶シリコン太陽電池、及びアモルファスシリコン太陽電池がある。
A solar cell is a power generator that directly converts sunlight into electrical energy. Solar cells are broadly classified into those using silicon semiconductors and those using compound semiconductors. Silicon semiconductor solar cells include single crystal silicon solar cells, polycrystalline silicon solar cells, and amorphous silicon solar cells.
太陽電池の代表的な構造は、表面保護材、封止材、太陽電池セル、裏面保護材、及びフレームから構成されるものである。図1に示すように、太陽電池の主要な構成要素は、表面保護材1、封止材2、太陽電池セル3、及び裏面保護材4であり、複数の太陽電池セル3を配線(図示せず)により直列に接続し、太陽電池モジュールを構成する。すなわち、複数の太陽電池セルを配列して接続し、表面保護材、封止材、及び裏面保護材(以下、「バックシート」ということがある。)を用いてパッケージにしたものを太陽電池モジュールという。太陽電池モジュールの端部または周縁部には、通常アルミニウム等金属製のフレーム(図示せず)が配置されている。
A typical structure of a solar cell is composed of a surface protective material, a sealing material, a solar battery cell, a back surface protective material, and a frame. As shown in FIG. 1, the main components of the solar cell are a surface protective material 1, a sealing material 2, a solar cell 3, and a back surface protective material 4, and a plurality of solar cells 3 are wired (not shown). To make a solar cell module. That is, a solar cell module in which a plurality of solar cells are arranged and connected and packaged using a surface protective material, a sealing material, and a back surface protective material (hereinafter sometimes referred to as “back sheet”). That's it. Usually, a frame (not shown) made of metal such as aluminum is arranged at the end or peripheral edge of the solar cell module.
表面保護材1としては、例えば、強化ガラス板、透明プラスチック板、透明プラスチックフィルムが用いられている。封止材2としては、エチレン-酢酸ビニル共重合体が汎用されている。裏面保護材4としては、例えば、単層または多層のプラスチックフィルム、プラスチック板、強化ガラス板、金属板(アルミニウム板、塗装鋼板など)等が用いられている。フレームとしては、例えば、軽量で耐環境性に優れるアルミニウムが汎用されている。
As the surface protective material 1, for example, a tempered glass plate, a transparent plastic plate, or a transparent plastic film is used. As the sealing material 2, an ethylene-vinyl acetate copolymer is widely used. As the back surface protective material 4, for example, a single-layer or multilayer plastic film, a plastic plate, a tempered glass plate, a metal plate (aluminum plate, painted steel plate, etc.) or the like is used. As the frame, for example, aluminum that is lightweight and excellent in environmental resistance is widely used.
太陽電池モジュールは、一般に屋外に設置され、その後、長期間にわたって稼動状態が維持される。太陽電池モジュールが屋外で長期間にわたって満足に稼動するには、苛酷な環境下で優れた耐久性を有する必要がある。このため、太陽電池モジュールの表面保護材、封止材、及び裏面保護材には、該太陽電池モジュールを取り巻く苛酷な自然環境下で長期間にわたって太陽電池セルを保護する機能を有することが求められている。
The solar cell module is generally installed outdoors, and then the operation state is maintained for a long time. In order for the solar cell module to operate satisfactorily outdoors over a long period of time, it is necessary to have excellent durability in a harsh environment. For this reason, the surface protection material, the sealing material, and the back surface protection material of the solar cell module are required to have a function of protecting the solar cells over a long period of time in a harsh natural environment surrounding the solar cell module. ing.
太陽電池モジュール用バックシートは、その太陽電池セルから遠い表面(最外面)が屋外に直接暴露される。太陽電池モジュール用バックシートの太陽電池セルに近い表面(封止材との隣接面)は、各太陽電池セルの間隙等で太陽光に曝される。このため、太陽電池モジュール用バックシートには、耐光性、耐候性、耐熱性、耐湿性、酸素または水蒸気バリア性、電気絶縁性、耐電圧性、機械的特性、耐薬品性、耐塩性、防汚性、封止材との接着性などの諸特性に優れることが求められている。
The surface (outermost surface) far from the solar battery cell of the back sheet for the solar battery module is directly exposed to the outdoors. The surface close to the solar battery cell (adjacent surface with the sealing material) of the solar cell module backsheet is exposed to sunlight through the gaps between the solar battery cells. For this reason, the back sheet for solar cell modules has light resistance, weather resistance, heat resistance, moisture resistance, oxygen or water vapor barrier properties, electrical insulation, voltage resistance, mechanical properties, chemical resistance, salt resistance, anti-resistance It is required to be excellent in various properties such as dirtiness and adhesion to a sealing material.
太陽電池モジュール用バックシートには、上記諸特性に優れることに加えて、その太陽電池セル側の表面の外観が美麗であること、更には、該バックシートに入射した太陽光を効率的に反射する機能を有することが求められている。各太陽電池セルの間隙を透過した入射光をバックシートにより効率的に反射することができれば、反射光により太陽電池セルの電力変換効率が向上する。このため酸化チタン等の着色剤を含有させたバックシートが知られている。
In addition to being excellent in the above characteristics, the solar cell module backsheet has a beautiful appearance on the surface of the solar battery cell, and also efficiently reflects sunlight incident on the backsheet. It is required to have a function to If the incident light transmitted through the gaps between the solar cells can be efficiently reflected by the back sheet, the power conversion efficiency of the solar cells is improved by the reflected light. For this reason, a back sheet containing a colorant such as titanium oxide is known.
太陽電池モジュール用バックシートとして使用されるプラスチックフィルムとしては、太陽電池モジュール用バックシートに求められる諸特性を満足させる観点から、フッ素系樹脂フィルム、ポリエチレンテレフタレート(以下、「PET」ということがある。)フィルム、及びこれらの複合フィルムが好ましく使用されてきた。中でも、耐光性、耐候性、耐熱性、防汚性などの観点から、フッ素系樹脂フィルムまたはフッ素系樹脂フィルムの複合フィルムがより好ましく使用されてきた(特許文献1~3)。
As a plastic film used as a back sheet for a solar cell module, from the viewpoint of satisfying various properties required for the back sheet for a solar cell module, there may be a fluororesin film, polyethylene terephthalate (hereinafter referred to as “PET”). ) Films, and composite films of these have been preferably used. Among these, from the viewpoints of light resistance, weather resistance, heat resistance, antifouling properties, etc., fluorine resin films or composite films of fluorine resin films have been more preferably used (Patent Documents 1 to 3).
太陽電池モジュール用バックシートのフッ素系樹脂フィルムとしては、エチレン-テトラフルオロエチレン共重合体(ETFE)フィルム、ポリテトラフルオロエチレン樹脂(PTFE)フィルム、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)フィルム、ポリフッ化ビニル樹脂(PVF)フィルム、PVDFフィルムなどが挙げられ、前記耐光性、耐候性、防汚性、耐熱性などが一層優れていることから、PVDFフィルムが広く使用されている。
As the fluorine resin film for the back sheet for the solar cell module, an ethylene-tetrafluoroethylene copolymer (ETFE) film, a polytetrafluoroethylene resin (PTFE) film, a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) ) Film, polyvinyl fluoride resin (PVF) film, PVDF film, and the like. PVDF films are widely used because of their superior light resistance, weather resistance, antifouling properties, heat resistance, and the like.
また、フッ素系樹脂フィルムを備える複合フィルムからなる太陽電池モジュール用バックシートが、耐候性、防汚性、耐熱性、機械的特性などを併せ備えるものとして知られており、例えば、PVDF層とPET層を備える太陽電池モジュール用バックシートが知られている(特許文献3)。
In addition, a back sheet for a solar cell module made of a composite film including a fluororesin film is known as having weather resistance, antifouling properties, heat resistance, mechanical properties, and the like. For example, a PVDF layer and PET A back sheet for a solar cell module including a layer is known (Patent Document 3).
太陽電池モジュール用バックシートについては、長期信頼性に対する要求がますます厳しくなっており、フッ素系樹脂フィルムとして過酷な条件下での使用や超寿命化が求められることから、一層優れた耐候性、耐熱性、機械的特性などが要請されており、酸化チタンを含有するフッ素系樹脂フィルムが、注目されている(特許文献4、5)。
As for the back sheet for solar cell module, the demand for long-term reliability is becoming stricter, and since it is required to be used under severe conditions and to have a long life as a fluorine-based resin film, further excellent weather resistance, Heat resistance, mechanical properties, and the like are required, and a fluorine-based resin film containing titanium oxide has attracted attention (Patent Documents 4 and 5).
太陽電池の普及に伴い、取り扱う太陽電池モジュール用バックシートの数が飛躍的に増加し、また、太陽電池を設置する屋根等としては、種々の複雑な形態や種類のものが増加している。酸化チタンを含有するフッ素系樹脂フィルムからなる層を備える太陽電池モジュール用バックシートや積層体などは、運搬作業、設置作業や付随作業において、例えば、太陽電池モジュールのフレーム、電線類、取付金具類などの諸部材の金属と、偶然にまたは作業の必要上から、触れたり、ぶつかったり、こすれ合ったりするなど、金属との接触が起きることがある。酸化チタンを含有するフッ素系樹脂フィルムと金属とが接触すると、酸化チタンを含有するフッ素系樹脂フィルムの表面に金属粉や金属片が、擦過跡のように付着することがある。フッ素系樹脂フィルムからなる層を備える積層体の形成や太陽電池モジュールの組立作業においても、フィルムの表面に金属粉や金属片が、擦過跡のように付着することがある。フッ素系樹脂フィルムや太陽電池モジュール用バックシートの表面に擦過跡のように付着した金属粉や金属片は、軽くなでるだけで除去することができるので、金属粉や金属片除去後のフッ素系樹脂フィルムや太陽電池モジュール用バックシートの表面に、擦過跡として残るものではなく、また、フッ素系樹脂フィルムや太陽電池モジュール用バックシートの機能上も支障はない。しかし、表面に、金属粉や金属片が、擦過跡のように付着していると、フッ素系樹脂フィルムや太陽電池モジュール用バックシートの外観が損なわれるために、商品や製品として不良品とみられる原因ともなる。そこで、優れた耐候性や機械的性質を有するとともに、金属との接触で生じる金属粉や金属片の付着による擦過跡のような付着が形成されにくい(以下、「耐金属擦過性」ということがある。)、太陽電池モジュール用バックシートに適したPVDFを始めとするフッ素系樹脂フィルム、並びに、該フッ素系樹脂フィルムからなる層を備える積層体及び太陽電池モジュール用バックシートが強く望まれていた。
With the widespread use of solar cells, the number of solar cell module backsheets to be handled has increased dramatically, and various complex forms and types of roofs on which solar cells are installed have increased. Solar cell module backsheets and laminates having a layer made of a fluorine-based resin film containing titanium oxide are used in transportation work, installation work and incidental work, for example, solar cell module frames, electric wires, mounting brackets, etc. There are cases in which contact with metal, such as touching, bumping, and rubbing, occurs due to accidental or necessary work. When the fluorine-based resin film containing titanium oxide comes into contact with the metal, metal powder or metal pieces may adhere to the surface of the fluorine-containing resin film containing titanium oxide like a scratch. Even in the formation of a laminate including a layer made of a fluorine-based resin film or the assembling work of a solar cell module, metal powder or metal pieces may adhere to the surface of the film like a scratch. Metal powder and metal pieces adhering to the surface of a fluorine resin film or solar cell module backsheet like scratches can be removed by just stroking lightly, so the fluorine resin after removing metal powder and metal pieces It does not remain as a rubbing trace on the surface of the film or the back sheet for the solar cell module, and there is no problem in the function of the fluororesin film or the back sheet for the solar cell module. However, if metal powder or metal pieces adhere to the surface like scratches, the appearance of the fluororesin film or the back sheet for solar cell module is impaired, so it is considered as a defective product or product. It can also be a cause. Therefore, it has excellent weather resistance and mechanical properties, and it is difficult to form an adhesion such as an abrasion mark due to adhesion of metal powder or metal pieces caused by contact with metal (hereinafter referred to as “metal abrasion resistance”). There has been a strong demand for a fluororesin film including PVDF suitable for a solar cell module backsheet, and a laminate including a layer made of the fluororesin film and a solar cell module backsheet. .
本発明の課題は、耐候性や機械的特性等に優れ、かつ、金属との接触で生じる金属粉や金属片の付着による擦過跡のような付着(以下、単に「擦過跡」ということがある。)が形成されにくいPVDFを始めとするフッ素系樹脂フィルム、該フッ素系樹脂フィルムからなる層を備える積層体及び太陽電池モジュール用バックシートを提供することにある。
An object of the present invention is excellent in weather resistance, mechanical properties, etc., and is adhered like a scratch due to adhesion of metal powder or metal pieces generated by contact with metal (hereinafter, simply referred to as “scratch trace”). The present invention provides a fluorine resin film including PVDF, a laminate including a layer made of the fluorine resin film, and a solar cell module backsheet.
本発明者らは、前記課題を解決するために鋭意研究を行ったところ、耐候性、耐熱性、機械的特性などを改善するためにPVDFを始めとするフッ素系樹脂フィルムに含有される酸化チタンのモース硬度は5.5~6程度であって、モース硬度が2~2.9程度であるアルミニウムや、モース硬度が2.5~3程度である銅などの金属よりも硬いものであるために、酸化チタンを含有するフッ素系樹脂フィルムと金属とが接触すると、接触の相手方である金属をこすり取ってしまうという現象を見いだした。本発明者らは、この現象の結果、フッ素系樹脂フィルムの表面に、容易に除去できるものであるが、こすり取られて生じた金属粉や金属片が付着した状態の擦過跡が一時的に形成されるという機構を見いだした。
The inventors of the present invention have made extensive studies to solve the above-mentioned problems. As a result, titanium oxide contained in a fluorine-based resin film including PVDF in order to improve weather resistance, heat resistance, mechanical properties, and the like. The Mohs hardness is about 5.5 to 6, and is harder than metals such as aluminum with a Mohs hardness of about 2 to 2.9 and copper with a Mohs hardness of about 2.5 to 3. In addition, when a fluorine resin film containing titanium oxide and a metal come into contact with each other, a phenomenon was found in which the metal which is the other party of the contact was scraped off. As a result of this phenomenon, the present inventors can easily remove the surface of the fluororesin film, but the rubbing trace in a state where the metal powder or metal pieces generated by scraping is temporarily attached is temporarily removed. I found a mechanism to be formed.
本発明者らは、更に前記課題を解決するために鋭意研究を重ねた結果、酸化チタンを含有するフッ素系樹脂フィルムの組成や表面性状を制御することにより、耐候性、耐熱性、機械的特性等に優れると同時に、金属粉や金属片の付着による擦過跡が形成されにくい(耐金属擦過性の)フッ素系樹脂フィルムを提供することができることを見いだした。
As a result of intensive research to further solve the above problems, the present inventors have controlled weatherability, heat resistance, mechanical properties by controlling the composition and surface properties of the fluorine-based resin film containing titanium oxide. It was found that a fluorine-based resin film (metal scratch resistance) that is not easily formed due to the adhesion of metal powder or metal pieces and that is excellent at the same time can be provided.
すなわち、本発明によれば、酸化チタンを15~50質量%含有するフッ素系樹脂フィルムであって、該フィルムの少なくとも一方の表面は、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合が3.2%以下であることを特徴とする前記のフッ素系樹脂フィルムが提供される。
That is, according to the present invention, there is provided a fluororesin film containing 15 to 50% by mass of titanium oxide, and at least one surface of the film is a total of the area of the titanium oxide from which the surface is exposed to the area of the film. A ratio is 3.2% or less, The said fluorine-type resin film characterized by the above-mentioned is provided.
また、本発明の実施の態様として、以下(1)~(5)のフッ素系樹脂フィルムが提供される。
(1)フッ素系樹脂フィルムを形成するフッ素系樹脂がPVDFである前記のフッ素系樹脂フィルム。
(2)フッ素系樹脂が、フッ化ビニリデン単独重合体、及び、コモノマーの共重合比率が15モル%以下であるフッ化ビニリデン共重合体からなる群より選ばれる少なくとも一種の樹脂である前記のフッ素系樹脂フィルム。
(3)酸化チタンが、ルチル型結晶形を有する酸化チタンである前記のフッ素系樹脂フィルム。
(4)他の熱可塑性樹脂を、25質量%以下の割合で更に含有する前記のフッ素系樹脂フィルム。
(5)他の熱可塑性樹脂が、ポリメタクリル酸メチルである前記のフッ素系樹脂フィルム。 As embodiments of the present invention, the following fluororesin films (1) to (5) are provided.
(1) The said fluororesin film whose fluororesin which forms a fluororesin film is PVDF.
(2) The above fluorine, wherein the fluororesin is at least one resin selected from the group consisting of a vinylidene fluoride homopolymer and a vinylidene fluoride copolymer having a comonomer copolymerization ratio of 15 mol% or less Resin film.
(3) The said fluororesin film whose titanium oxide is a titanium oxide which has a rutile type crystal form.
(4) The said fluororesin film which further contains another thermoplastic resin in the ratio of 25 mass% or less.
(5) The said fluororesin film whose other thermoplastic resin is polymethyl methacrylate.
(1)フッ素系樹脂フィルムを形成するフッ素系樹脂がPVDFである前記のフッ素系樹脂フィルム。
(2)フッ素系樹脂が、フッ化ビニリデン単独重合体、及び、コモノマーの共重合比率が15モル%以下であるフッ化ビニリデン共重合体からなる群より選ばれる少なくとも一種の樹脂である前記のフッ素系樹脂フィルム。
(3)酸化チタンが、ルチル型結晶形を有する酸化チタンである前記のフッ素系樹脂フィルム。
(4)他の熱可塑性樹脂を、25質量%以下の割合で更に含有する前記のフッ素系樹脂フィルム。
(5)他の熱可塑性樹脂が、ポリメタクリル酸メチルである前記のフッ素系樹脂フィルム。 As embodiments of the present invention, the following fluororesin films (1) to (5) are provided.
(1) The said fluororesin film whose fluororesin which forms a fluororesin film is PVDF.
(2) The above fluorine, wherein the fluororesin is at least one resin selected from the group consisting of a vinylidene fluoride homopolymer and a vinylidene fluoride copolymer having a comonomer copolymerization ratio of 15 mol% or less Resin film.
(3) The said fluororesin film whose titanium oxide is a titanium oxide which has a rutile type crystal form.
(4) The said fluororesin film which further contains another thermoplastic resin in the ratio of 25 mass% or less.
(5) The said fluororesin film whose other thermoplastic resin is polymethyl methacrylate.
また、本発明によれば、酸化チタンを15~50質量%含有するフッ素系樹脂を、押出成形によってフィルムを製造した後にエンボス加工する前記のフッ素系樹脂フィルムの製造方法、または、押出成形によってフィルムを製造すると同時に表面加工する前記のフッ素系樹脂フィルムの製造方法が提供される。
Further, according to the present invention, the fluororesin film production method described above, wherein a fluororesin containing 15 to 50% by mass of titanium oxide is embossed after the film is produced by extrusion molding, or the film is obtained by extrusion molding. A process for producing the above-mentioned fluororesin film, which is subjected to surface processing at the same time as the production of the resin, is provided.
さらに、本発明によれば、前記のフッ素系樹脂フィルムからなる層を備える積層体が提供される。さらにまた、本発明によれば、前記のフッ素系樹脂フィルムからなる層を備える太陽電池モジュール用バックシートが提供される。
Furthermore, according to the present invention, there is provided a laminate comprising a layer made of the above-mentioned fluororesin film. Furthermore, according to this invention, the solar cell module backsheet provided with the layer which consists of said fluororesin film is provided.
本発明によれば、酸化チタンを15~50質量%含有するフッ素系樹脂フィルムであって、該フィルムの少なくとも一方の表面は、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合が3.2%以下であることを特徴とする前記のフッ素系樹脂フィルムであることにより、耐候性や機械的特性及び光沢等に優れ、かつ、金属との接触で生じる金属粉や金属片の付着による擦過跡が形成されにくいフッ素系樹脂フィルムが得られるという効果が奏される。また、該フッ素系樹脂フィルムからなる層を備える積層体または太陽電池モジュール用バックシートであることより、太陽電池モジュール用バックシート等に適した積層体、及び、長期の信頼性に富む太陽電池モジュール用バックシートが得られるという効果を奏する。
According to the present invention, there is provided a fluororesin film containing 15 to 50% by mass of titanium oxide, and at least one surface of the film has a total ratio of the area of titanium oxide where the surface is exposed to the area of the film. 3.2% or less The above-mentioned fluorine-based resin film is excellent in weather resistance, mechanical properties, gloss, etc., and adheres to metal powder or metal fragments that are caused by contact with metal. There is an effect that a fluorine-based resin film in which a rubbing trace due to is hardly formed is obtained. Moreover, since it is a laminated body provided with the layer which consists of this fluororesin film, or a solar cell module backsheet, the laminated body suitable for a solar cell module backsheet etc., and a solar cell module which is rich in long-term reliability There is an effect that a back sheet for use is obtained.
1.フッ素系樹脂
本発明のフッ素系樹脂フィルムを形成するために使用するフッ素系樹脂としては、従来太陽電池モジュール用バックシート等の用途に使用されてきたフッ素系樹脂が挙げられる。具体的には、例えば、テトラフルオロエチレンの単独重合体または共重合体(ETFE、PTFE、PFA等)、フッ化ビニルの単独重合体または共重合体、フッ化ビニリデンの単独重合体または共重合体などが挙げられ、前記耐光性、耐候性、防汚性、耐熱性などが一層優れていることから、フッ化ビニリデンの単独重合体または共重合体を好ましく使用することができる。これらのフッ素系樹脂は、常法によって調製することができる。フッ素系樹脂としては、1種のフッ素系樹脂を単独で使用してもよいし、2種以上のフッ素系樹脂を組み合わせて(ブレンドして)、使用してもよい。 1. Fluorine-based resin Examples of the fluorine-based resin used for forming the fluorine-based resin film of the present invention include fluorine-based resins that have been conventionally used for applications such as a back sheet for a solar cell module. Specifically, for example, a homopolymer or copolymer of tetrafluoroethylene (ETFE, PTFE, PFA, etc.), a homopolymer or copolymer of vinyl fluoride, a homopolymer or copolymer of vinylidene fluoride Since the light resistance, weather resistance, antifouling property, heat resistance and the like are more excellent, a vinylidene fluoride homopolymer or copolymer can be preferably used. These fluororesins can be prepared by a conventional method. As the fluorine resin, one kind of fluorine resin may be used alone, or two or more kinds of fluorine resins may be combined (blended) and used.
本発明のフッ素系樹脂フィルムを形成するために使用するフッ素系樹脂としては、従来太陽電池モジュール用バックシート等の用途に使用されてきたフッ素系樹脂が挙げられる。具体的には、例えば、テトラフルオロエチレンの単独重合体または共重合体(ETFE、PTFE、PFA等)、フッ化ビニルの単独重合体または共重合体、フッ化ビニリデンの単独重合体または共重合体などが挙げられ、前記耐光性、耐候性、防汚性、耐熱性などが一層優れていることから、フッ化ビニリデンの単独重合体または共重合体を好ましく使用することができる。これらのフッ素系樹脂は、常法によって調製することができる。フッ素系樹脂としては、1種のフッ素系樹脂を単独で使用してもよいし、2種以上のフッ素系樹脂を組み合わせて(ブレンドして)、使用してもよい。 1. Fluorine-based resin Examples of the fluorine-based resin used for forming the fluorine-based resin film of the present invention include fluorine-based resins that have been conventionally used for applications such as a back sheet for a solar cell module. Specifically, for example, a homopolymer or copolymer of tetrafluoroethylene (ETFE, PTFE, PFA, etc.), a homopolymer or copolymer of vinyl fluoride, a homopolymer or copolymer of vinylidene fluoride Since the light resistance, weather resistance, antifouling property, heat resistance and the like are more excellent, a vinylidene fluoride homopolymer or copolymer can be preferably used. These fluororesins can be prepared by a conventional method. As the fluorine resin, one kind of fluorine resin may be used alone, or two or more kinds of fluorine resins may be combined (blended) and used.
2.ポリフッ化ビニリデン樹脂(PVDF)
本発明のフッ素系樹脂フィルムを形成するために好ましく使用されるのは、PVDF(ポリフッ化ビニリデン樹脂)、すなわちフッ化ビニリデンの単独重合体または共重合体であり、より具体的には、フッ化ビニリデンの単独重合体、及び、フッ化ビニリデンを主成分とするフッ化ビニリデン共重合体を意味する。 2. Polyvinylidene fluoride resin (PVDF)
What is preferably used for forming the fluororesin film of the present invention is PVDF (polyvinylidene fluoride resin), that is, a homopolymer or copolymer of vinylidene fluoride. It means a homopolymer of vinylidene and a vinylidene fluoride copolymer mainly composed of vinylidene fluoride.
本発明のフッ素系樹脂フィルムを形成するために好ましく使用されるのは、PVDF(ポリフッ化ビニリデン樹脂)、すなわちフッ化ビニリデンの単独重合体または共重合体であり、より具体的には、フッ化ビニリデンの単独重合体、及び、フッ化ビニリデンを主成分とするフッ化ビニリデン共重合体を意味する。 2. Polyvinylidene fluoride resin (PVDF)
What is preferably used for forming the fluororesin film of the present invention is PVDF (polyvinylidene fluoride resin), that is, a homopolymer or copolymer of vinylidene fluoride. It means a homopolymer of vinylidene and a vinylidene fluoride copolymer mainly composed of vinylidene fluoride.
フッ化ビニリデン共重合体としては、例えば、フッ化ビニリデンを主成分とする、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン三元共重合体、フッ化ビニリデン-クロロトリフルオロエチレン-ヘキサフルオロプロピレン三元共重合体、及びこれらの2種以上の混合物などが挙げられる。
Examples of the vinylidene fluoride copolymer include, for example, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and vinylidene fluoride-chlorotrifluoroethylene mainly composed of vinylidene fluoride. Copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene terpolymer, vinylidene fluoride-chlorotrifluoroethylene-hexafluoropropylene terpolymer, And a mixture of two or more of these.
これらのフッ化ビニリデン共重合体は、フッ化ビニリデンと共重合するコモノマーの共重合比率が好ましくは15モル%以下、より好ましくは10モル%以下、特に好ましくは5モル%以下である。コモノマーの共重合比率が15モル%以下であることにより、フッ化ビニリデン共重合体は、結晶性を有する熱可塑性樹脂となる。コモノマーの共重合比率の下限値は、好ましくは1モル%である。コモノマーの比率が高くなりすぎると、フッ化ビニリデン共重合体は、結晶性を喪失してエラストマーとなる。結晶性を喪失してエラストマーとなるフッ化ビニリデン共重合体は、本発明のフッ素系樹脂フィルムとして好ましいPVDFフィルム(以下、単に「本発明のPVDFフィルム」ということがある。)を形成するPVDFではない。
In these vinylidene fluoride copolymers, the copolymerization ratio of the comonomer copolymerized with vinylidene fluoride is preferably 15 mol% or less, more preferably 10 mol% or less, and particularly preferably 5 mol% or less. When the copolymerization ratio of the comonomer is 15 mol% or less, the vinylidene fluoride copolymer becomes a thermoplastic resin having crystallinity. The lower limit of the comonomer copolymerization ratio is preferably 1 mol%. If the comonomer ratio becomes too high, the vinylidene fluoride copolymer loses crystallinity and becomes an elastomer. The vinylidene fluoride copolymer that loses crystallinity and becomes an elastomer is a PVDF film that forms a PVDF film that is preferable as the fluororesin film of the present invention (hereinafter sometimes simply referred to as “the PVDF film of the present invention”). Absent.
したがって、本発明のフッ素系樹脂フィルムとしては、フッ素系樹脂が、フッ化ビニリデン単独重合体、及び、コモノマーの共重合比率が15モル%以下であるフッ化ビニリデン共重合体からなる群より選ばれる少なくとも一種であることがより好ましい。これらのフッ素系樹脂(PVDF)の中でも、フッ化ビニリデン単独重合体、及び、ヘキサフルオロプロピレン単位を15モル%以下の比率で含有するフッ化ビニリデン-ヘキサフルオロプロピレン共重合体が、耐熱性、溶融成形性、機械的特性、防汚性、耐溶剤性、二次加工性などの観点から、特に好ましい。
Therefore, as the fluororesin film of the present invention, the fluororesin is selected from the group consisting of a vinylidene fluoride homopolymer and a vinylidene fluoride copolymer having a comonomer copolymerization ratio of 15 mol% or less. More preferably, it is at least one. Among these fluororesins (PVDF), vinylidene fluoride homopolymers and vinylidene fluoride-hexafluoropropylene copolymers containing hexafluoropropylene units in a ratio of 15 mol% or less are heat resistant and melted. From the viewpoints of moldability, mechanical properties, antifouling properties, solvent resistance, secondary workability and the like, it is particularly preferable.
PVDFは、懸濁重合法または乳化重合法により製造することができる。乳化重合法では、化学的に安定なフッ素系乳化剤を使用して、フッ化ビニリデン単独またはフッ化ビニリデンとヘキサフルオロプロピレンなどのコモノマーとを水系媒体中に乳化させる。次いで、重合開始剤として、無機過酸化物、有機過酸化物、有機パーカーボネート化合物などを使用して、重合を行う。乳化重合後、サブミクロン単位の微小なラテックスを凝集剤により析出し、凝集させると、PVDFを適当な大きさの粒子として回収することができる。
PVDF can be produced by suspension polymerization or emulsion polymerization. In the emulsion polymerization method, a chemically stable fluorine-based emulsifier is used to emulsify vinylidene fluoride alone or vinylidene fluoride and a comonomer such as hexafluoropropylene in an aqueous medium. Subsequently, it superposes | polymerizes using an inorganic peroxide, an organic peroxide, an organic percarbonate compound etc. as a polymerization initiator. After emulsion polymerization, a fine latex of submicron units is precipitated by an aggregating agent and aggregated, whereby PVDF can be recovered as particles of an appropriate size.
懸濁重合法では、メチルセルロースなどの懸濁剤を用いて、フッ化ビニリデンまたは該フッ化ビニリデンとコモノマーとを水系媒体中に懸濁させる。例えば、重合開始剤として、低温で活性を示す有機パーカーボネート(例えば、ジn-プロピルパーオキシジカーボネート)を用いて、フッ化ビニリデンの臨界温度30.1℃以下の温度、好ましくは10~30℃、より好ましくは20~28℃で重合を開始して一次重合体粒子を生成させ、必要に応じて、温度を30~90℃、好ましくは40~80℃に上昇させて、重合反応を継続し、二次重合体粒子を生成させる。
In the suspension polymerization method, a vinylidene fluoride or the vinylidene fluoride and a comonomer are suspended in an aqueous medium using a suspending agent such as methylcellulose. For example, an organic percarbonate (eg, di-n-propyl peroxydicarbonate) that exhibits activity at a low temperature is used as a polymerization initiator, and the critical temperature of vinylidene fluoride is 30.1 ° C. or lower, preferably 10 to 30 Polymerization is started at 0 ° C., more preferably 20 to 28 ° C. to produce primary polymer particles, and the temperature is raised to 30 to 90 ° C., preferably 40 to 80 ° C. as necessary, and the polymerization reaction is continued. To produce secondary polymer particles.
PVDFの固有粘度は、好ましくは0.70~1.50dl/g、より好ましくは0.80~1.30dl/gの範囲内である。PVDFの固有粘度は、PVDF4gを1リットルのN,N-ジメチルホルムアミドに溶解させた溶液について、ウベローデ粘度計を用いて測定した30℃における対数粘度である。
The intrinsic viscosity of PVDF is preferably in the range of 0.70 to 1.50 dl / g, more preferably 0.80 to 1.30 dl / g. The intrinsic viscosity of PVDF is a logarithmic viscosity at 30 ° C. measured using a Ubbelohde viscometer for a solution in which 4 g of PVDF is dissolved in 1 liter of N, N-dimethylformamide.
PVDFの融点は、通常130~177℃、多くの場合150~177℃の範囲内である。ここで、PVDFの融点は、示差走査熱量計(DSC)により測定される値である。PVDFは、350℃以上の温度に加熱すると、HFガスを発生して分解する。PVDFは、融点と分解点までの加工可能な温度領域が広い。PVDFの溶融加工温度は、通常、200~250℃、好ましくは210~240℃の範囲内である。
* The melting point of PVDF is usually in the range of 130 to 177 ° C, and in many cases 150 to 177 ° C. Here, the melting point of PVDF is a value measured by a differential scanning calorimeter (DSC). PVDF generates HF gas and decomposes when heated to a temperature of 350 ° C. or higher. PVDF has a wide processing temperature range from the melting point to the decomposition point. The melt processing temperature of PVDF is usually in the range of 200 to 250 ° C., preferably 210 to 240 ° C.
本発明のPVDFフィルム中のPVDFは、通常30~85質量%の範囲である。なお、本発明のPVDFフィルムにおいては、PVDF、後述する酸化チタン、他の熱可塑性樹脂及び他の添加剤などの配合割合の合計量を、100質量%とする。すなわち、本発明のフッ素系樹脂フィルム中のフッ素系樹脂は、通常30~85質量%であり、好ましくは40~80質量%、より好ましくは45~75質量%の範囲である。
The PVDF in the PVDF film of the present invention is usually in the range of 30 to 85% by mass. In addition, in the PVDF film of this invention, the total amount of compounding ratios, such as PVDF, the titanium oxide mentioned later, another thermoplastic resin, and another additive, shall be 100 mass%. That is, the fluororesin in the fluororesin film of the present invention is usually 30 to 85% by mass, preferably 40 to 80% by mass, more preferably 45 to 75% by mass.
3.酸化チタン
本発明のフッ素系樹脂フィルムは、PVDFを始めとするフッ素系樹脂に加えて、酸化チタンを15~50質量%の範囲で含有するものである。特に、本発明のフッ素系樹脂フィルムを太陽電池モジュール用バックシートに用いる場合、酸化チタンを含有することによって、隠蔽性及び反射効率の向上等を実現することができる。 3. Titanium oxide The fluorine-based resin film of the present invention contains titanium oxide in a range of 15 to 50% by mass in addition to the fluorine-based resin such as PVDF. In particular, when the fluorine-based resin film of the present invention is used for a solar cell module backsheet, by containing titanium oxide, improvement in concealability and reflection efficiency can be realized.
本発明のフッ素系樹脂フィルムは、PVDFを始めとするフッ素系樹脂に加えて、酸化チタンを15~50質量%の範囲で含有するものである。特に、本発明のフッ素系樹脂フィルムを太陽電池モジュール用バックシートに用いる場合、酸化チタンを含有することによって、隠蔽性及び反射効率の向上等を実現することができる。 3. Titanium oxide The fluorine-based resin film of the present invention contains titanium oxide in a range of 15 to 50% by mass in addition to the fluorine-based resin such as PVDF. In particular, when the fluorine-based resin film of the present invention is used for a solar cell module backsheet, by containing titanium oxide, improvement in concealability and reflection efficiency can be realized.
酸化チタンは、アナタース型とルチル型の2種類の結晶形のものが広く利用されている。本発明では、これら2種類の結晶形のものを用いることができるが、これらの中でも、高温でのPVDFを始めとするフッ素系樹脂への分散性に優れ、揮発性が極めて小さいことから、ルチル型結晶形を有する酸化チタンが好ましい。
Titanium oxide is widely used in two crystal forms, anatase and rutile. In the present invention, these two crystal forms can be used. Among these, rutile is excellent in dispersibility in fluorine-based resins such as PVDF at high temperatures and has extremely low volatility. Titanium oxide having a type crystal form is preferred.
酸化チタンとしては、顔料用グレードのものを好ましく用いることができる。透過型電子顕微鏡撮影画像の画像解析による酸化チタンの平均粒子径(平均一次粒子径)は、通常150~1000nm、好ましくは180~700nm、より好ましくは200~400nmの範囲内である。酸化チタンの平均粒子径が小さすぎると、隠蔽力が低下する。酸化チタンは、その平均粒子径が前記範囲内にあることによって、屈折率が大きく光散乱性が強いため、白色顔料としての隠蔽力が高くなる。酸化チタンは、一般に、一次粒子が凝集した二次粒子の形態で存在している。酸化チタンのBET法による比表面積は、通常1~15、多くの場合5~15の範囲内である。
As the titanium oxide, pigment grades can be preferably used. The average particle diameter (average primary particle diameter) of titanium oxide by image analysis of transmission electron microscope images is usually in the range of 150 to 1000 nm, preferably 180 to 700 nm, more preferably 200 to 400 nm. When the average particle diameter of titanium oxide is too small, the hiding power is reduced. Since the average particle diameter of titanium oxide is within the above range, the refractive index is large and the light scattering property is strong, so that the hiding power as a white pigment is increased. Titanium oxide is generally present in the form of secondary particles in which primary particles are aggregated. The specific surface area of titanium oxide by the BET method is usually in the range of 1 to 15, and in many cases 5 to 15.
酸化チタンは、表面処理剤で表面処理することにより、分散性、隠蔽性、耐候性などの特性を向上させることができる。表面処理剤としては、アルミニウム、ケイ素、ジルコニウム、錫、セリウム、ビスマスなどの金属酸化物;酸化亜鉛などの水和金属酸化物;有機アルミニウム化合物、有機チタニウム化合物、有機ジルコニウム化合物などの有機金属化合物;シランカップリング剤やポリシロキサンなどの有機ケイ素化合物;リン酸アルミニウム、有機リン酸エステルなどのリン化合物;アミン化合物;などが挙げられる。
Titanium oxide can be improved in properties such as dispersibility, concealability, and weather resistance by surface treatment with a surface treatment agent. Examples of the surface treatment agent include metal oxides such as aluminum, silicon, zirconium, tin, cerium, and bismuth; hydrated metal oxides such as zinc oxide; organometallic compounds such as organoaluminum compounds, organotitanium compounds, and organozirconium compounds; Examples thereof include organosilicon compounds such as silane coupling agents and polysiloxanes; phosphorus compounds such as aluminum phosphates and organophosphates; amine compounds.
酸化チタンを表面処理剤で被覆することにより、酸化チタン表面と周囲環境との間の反応を抑制することができる。表面処理した酸化チタンは、フッ素系樹脂への分散性に優れている。表面処理した酸化チタンは、高濃度でフッ素系樹脂中に分散させることができる。なお、後述の熱安定剤として用いるのと同じ物質で表面処理した酸化チタンを用いる場合には、表面処理剤の付着量が極めて少ないため、該表面処理剤の量を本発明の熱安定剤の量に含めなくてよい。
By coating titanium oxide with a surface treatment agent, the reaction between the titanium oxide surface and the surrounding environment can be suppressed. The surface-treated titanium oxide is excellent in dispersibility in a fluororesin. The surface-treated titanium oxide can be dispersed in the fluororesin at a high concentration. In the case of using titanium oxide surface-treated with the same substance as used as a heat stabilizer described later, the amount of the surface treatment agent attached is extremely small. It does not have to be included in the quantity.
本発明のフッ素系樹脂フィルムにおける酸化チタンの含有比率は、好ましくは18~45質量%、より好ましくは20~40質量%、更に好ましくは25~35質量%の範囲である。酸化チタンの含有比率が小さすぎると、例えば、太陽電池モジュール用バックシートとして好ましい白色度と隠蔽力、及び反射効率を有するフッ素系樹脂フィルムを得ることが困難になることがある。酸化チタンの含有比率が大きすぎると、押出加工によるフッ素系樹脂フィルムの製造が困難になるうえ、フッ素系樹脂フィルムの機械的特性が低下するうえ、フッ素系樹脂フィルム表面の平滑性を制御することが困難となり、金属の擦過跡の形成が増加することがある。
The content ratio of titanium oxide in the fluororesin film of the present invention is preferably 18 to 45% by mass, more preferably 20 to 40% by mass, and still more preferably 25 to 35% by mass. When the content ratio of titanium oxide is too small, for example, it may be difficult to obtain a fluorine-based resin film having whiteness, hiding power, and reflection efficiency that are preferable as a back sheet for a solar cell module. If the content ratio of titanium oxide is too large, it becomes difficult to produce a fluororesin film by extrusion, the mechanical properties of the fluororesin film deteriorate, and the smoothness of the fluororesin film surface is controlled. May become difficult and the formation of metal scratches may increase.
4.他の熱可塑性樹脂
本発明のフッ素系樹脂フィルムは、樹脂成分としてPVDFを始めとするフッ素系樹脂(1種または2種以上のフッ素系樹脂を含有してもよい。)のみを含有するものでよいが、加工性、耐衝撃性、接着性、耐熱性等の特性を改善するために、所望により他の熱可塑性樹脂を含有することができる。 4). Other Thermoplastic Resins The fluororesin film of the present invention contains only a fluororesin (including one or more fluororesins) such as PVDF as a resin component. Although desirable, other thermoplastic resins may be included as desired to improve properties such as processability, impact resistance, adhesion, and heat resistance.
本発明のフッ素系樹脂フィルムは、樹脂成分としてPVDFを始めとするフッ素系樹脂(1種または2種以上のフッ素系樹脂を含有してもよい。)のみを含有するものでよいが、加工性、耐衝撃性、接着性、耐熱性等の特性を改善するために、所望により他の熱可塑性樹脂を含有することができる。 4). Other Thermoplastic Resins The fluororesin film of the present invention contains only a fluororesin (including one or more fluororesins) such as PVDF as a resin component. Although desirable, other thermoplastic resins may be included as desired to improve properties such as processability, impact resistance, adhesion, and heat resistance.
他の熱可塑性樹脂としては、ポリエチレン、ポリプロピレン等のポリオレフィン;ナイロン6、ナイロン66等のポリアミド;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリメタクリル酸メチル等のアクリル樹脂;ポリスチレン、ポリアクリロニトリル、ポリ塩化ビニル、ポリオキシメチレン、ポリカーボネート、ポリフェニレンオキシド、ポリエステルウレタン、ポリm-フェニレンイソフタルアミド、ポリp-フェニレンテレフタルアミドなどが挙げられる。
Other thermoplastic resins include polyolefins such as polyethylene and polypropylene; polyamides such as nylon 6 and nylon 66; polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; acrylic resins such as polymethyl methacrylate; polystyrene, poly Examples include acrylonitrile, polyvinyl chloride, polyoxymethylene, polycarbonate, polyphenylene oxide, polyester urethane, poly m-phenylene isophthalamide, and poly p-phenylene terephthalamide.
他の熱可塑性樹脂としては、フッ素系樹脂、例えばPVDFと相溶性のあるポリメタクリル酸メチル(以下、「PMMA」ということがある。)が特に好ましい。PMMAは、フッ素系樹脂と相溶性に優れるだけでなく、フッ素系樹脂フィルムの、他の部材、例えば、他の熱可塑性樹脂のフィルムに対する接着性を向上させる。PMMAは、メタクリル酸メチル単独重合体のほか、メタクリル酸メチル単量体を構成単位として50モル%以上とアクリル酸エステル、メタクリル酸メチル以外のメタクリル酸エステルを50モル%以下含有する共重合体、更にこれら重合体の2種以上の混合物などを例示することができる。上記アクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチルなどを、またメタクリル酸メチル以外のメタクリル酸エステルとしては、メタクリル酸エチル、メタクリル酸プロピルなどを例示することができる。
As the other thermoplastic resin, a fluorine-based resin, for example, polymethyl methacrylate (hereinafter sometimes referred to as “PMMA”) compatible with PVDF is particularly preferable. PMMA not only has excellent compatibility with the fluorine-based resin, but also improves the adhesion of the fluorine-based resin film to other members, for example, other thermoplastic resin films. PMMA is, in addition to a methyl methacrylate homopolymer, a copolymer containing 50 mol% or less of a methacrylate unit and a methacrylic acid ester other than methyl methacrylate with a methyl methacrylate monomer as a structural unit, Furthermore, the mixture of 2 or more types of these polymers can be illustrated. Examples of the acrylate ester include methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate, and examples of methacrylic acid esters other than methyl methacrylate include ethyl methacrylate and propyl methacrylate. it can.
他の熱可塑性樹脂は、酸化チタンを含有するフッ素系樹脂フィルムにおいて、好ましくは25質量%以下、より好ましくは0~22質量%、更に好ましくは3~20質量%の範囲内の量となるように含有させることができる。
The other thermoplastic resin is preferably 25% by mass or less, more preferably 0 to 22% by mass, and further preferably 3 to 20% by mass in the fluororesin film containing titanium oxide. Can be contained.
5.他の添加剤
本発明のフッ素系樹脂フィルムには、酸化チタン、PVDFを始めとするフッ素系樹脂、及び、先に述べたように、所望により配合する他の熱可塑性樹脂に加えて、更に所望により、顔料または染料、顔料分散剤、紫外線吸収剤、熱安定剤、光安定剤、つや消し剤、滑剤、結晶核剤、機械物性改良剤などの他の添加剤を含有させることができる。 5. Other Additives The fluororesin film of the present invention is further desired in addition to fluororesins such as titanium oxide and PVDF, and other thermoplastic resins blended as desired as described above. According to the present invention, other additives such as pigments or dyes, pigment dispersants, ultraviolet absorbers, heat stabilizers, light stabilizers, matting agents, lubricants, crystal nucleating agents, and mechanical property improving agents can be contained.
本発明のフッ素系樹脂フィルムには、酸化チタン、PVDFを始めとするフッ素系樹脂、及び、先に述べたように、所望により配合する他の熱可塑性樹脂に加えて、更に所望により、顔料または染料、顔料分散剤、紫外線吸収剤、熱安定剤、光安定剤、つや消し剤、滑剤、結晶核剤、機械物性改良剤などの他の添加剤を含有させることができる。 5. Other Additives The fluororesin film of the present invention is further desired in addition to fluororesins such as titanium oxide and PVDF, and other thermoplastic resins blended as desired as described above. According to the present invention, other additives such as pigments or dyes, pigment dispersants, ultraviolet absorbers, heat stabilizers, light stabilizers, matting agents, lubricants, crystal nucleating agents, and mechanical property improving agents can be contained.
例えば、本発明のフッ素系樹脂フィルムは、機械物性改良剤を含有するものでもよい。機械物性改良剤は、得られるPVDFフィルム等のフッ素系樹脂フィルムの耐衝撃性、引張強度、伸度などの機械的特性を向上させることができるものであり、例えば、コアシェル型耐衝撃改質剤や共重合アクリル系流動改質剤が知られている。市販品としては、株式会社カネカ製のカネエース(登録商標)、三菱レイヨン株式会社製のメタブレン(登録商標)、ローム・アンド・ハース社製のパラロイド(登録商標)などの中から選択することができる。機械物性改良剤は、単独で、または2種以上を組み合わせて使用することができる。
For example, the fluororesin film of the present invention may contain a mechanical property improver. The mechanical property improver can improve mechanical properties such as impact resistance, tensile strength, and elongation of the obtained fluororesin film such as PVDF film. For example, a core-shell type impact resistance modifier And copolymerized acrylic flow modifiers are known. As commercial products, Kaneace (registered trademark) manufactured by Kaneka Co., Ltd., Metabrene (registered trademark) manufactured by Mitsubishi Rayon Co., Ltd., Paraloid (registered trademark) manufactured by Rohm and Haas, etc. can be selected. . The mechanical property improvers can be used alone or in combination of two or more.
また、本発明のフッ素系樹脂フィルムは、熱安定剤を含有するものとすることができる。熱安定剤としては、グルコン酸カルシウム等のポリヒドロキシモノカルボン酸カルシウム塩;ステアリン酸カルシウム、オレイン酸カルシウム等の炭素数5~30の脂肪族カルボン酸カルシウム塩;炭酸カルシウム、水酸化カルシウム等の無機カルシウム化合物;酸化亜鉛、酸化マグネシウム等の金属酸化物などが挙げられる。熱安定剤は、それぞれ単独で、または2種以上を組み合わせて使用することができる。熱安定剤は、フッ素系樹脂中への分散性の観点から、通常、粉末の形状のものが用いられる。例えば、炭酸カルシウムなどの無機カルシウム化合物、及び酸化亜鉛などの金属酸化物は、透過型電子顕微鏡撮影画像の画像解析による平均粒子径(平均一次粒子径)が、0.05~2μmの範囲内にあることが好ましい。この平均粒子径が小さくなるほど、フッ素系樹脂、例えばPVDFの熱分解温度を向上させる効果を発揮することができる。熱安定剤による熱安定化効果を効率的に高めるために、PVDFフィルム等のフッ素系樹脂フィルム中の酸化チタンの含有割合に応じて、熱安定剤の含有割合を調整することが好ましい。熱安定剤の含有割合は、通常、酸化チタンの含有割合よりも小さくする。酸化チタンと熱安定剤の質量比は、通常100:1~3:1、好ましくは80:1~4:1、より好ましくは50:1~5:1の範囲内である。
Further, the fluororesin film of the present invention can contain a heat stabilizer. Examples of heat stabilizers include polyhydroxymonocarboxylic acid calcium salts such as calcium gluconate; aliphatic carboxylic acid calcium salts having 5 to 30 carbon atoms such as calcium stearate and calcium oleate; inorganic calcium such as calcium carbonate and calcium hydroxide. Compound: Metal oxides such as zinc oxide and magnesium oxide are listed. A heat stabilizer can be used individually or in combination of 2 types or more, respectively. The heat stabilizer is usually in the form of powder from the viewpoint of dispersibility in the fluororesin. For example, an inorganic calcium compound such as calcium carbonate and a metal oxide such as zinc oxide have an average particle diameter (average primary particle diameter) in the range of 0.05 to 2 μm by image analysis of a transmission electron microscope image. Preferably there is. As the average particle size decreases, the effect of improving the thermal decomposition temperature of a fluorine-based resin such as PVDF can be exhibited. In order to efficiently enhance the heat stabilization effect by the heat stabilizer, it is preferable to adjust the content ratio of the heat stabilizer according to the content ratio of titanium oxide in the fluorine-based resin film such as a PVDF film. The content ratio of the heat stabilizer is usually smaller than the content ratio of titanium oxide. The mass ratio of titanium oxide to heat stabilizer is usually in the range of 100: 1 to 3: 1, preferably 80: 1 to 4: 1, more preferably 50: 1 to 5: 1.
これら他の添加剤は、それぞれに適した割合で用いられ、他の添加剤を含有させる場合には、フッ素系樹脂フィルム中において、各々独立して、通常0.01~10質量%、好ましくは0.1~8質量%、より好ましくは0.5~5質量%の範囲内である。特に、他の添加剤が熱安定剤である場合、熱安定剤の含有割合が小さすぎると、熱安定化効果が小さくなり、得られるフッ素系樹脂フィルム中のフッ素系樹脂成分の熱分解温度の低下を十分に抑制することが困難になる。熱安定剤の含有割合が大きすぎると、フッ素系樹脂フィルムの隠蔽力や色調、機械的特性などに悪影響を及ぼすおそれがある。
These other additives are used in proportions suitable for each, and when other additives are contained, they are each independently usually 0.01 to 10% by mass, preferably in the fluororesin film. It is in the range of 0.1 to 8% by mass, more preferably 0.5 to 5% by mass. In particular, when the other additive is a heat stabilizer, if the content ratio of the heat stabilizer is too small, the heat stabilization effect is reduced, and the thermal decomposition temperature of the fluorine resin component in the resulting fluorine resin film is reduced. It becomes difficult to sufficiently suppress the decrease. When the content ratio of the heat stabilizer is too large, the hiding power, color tone, mechanical properties, etc. of the fluororesin film may be adversely affected.
6.フッ素系樹脂フィルム
本発明のフッ素系樹脂フィルム、好ましくはPVDFフィルムは、酸化チタンを15~50質量%含有するフッ素系樹脂フィルムであって、該フィルムの少なくとも一方の表面は、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合が3.2%以下であることを特徴とする前記のフッ素系樹脂フィルムである。本発明において、表面が露出する酸化チタンとは、酸化チタンを15~50質量%含有するフッ素系樹脂フィルムの表面に存在する酸化チタン、すなわち、該フッ素系樹脂フィルムの基準となる平面より外表面に突出している酸化チタンであって、該酸化チタンの表面が樹脂、具体的にはフッ素系樹脂で被覆されず、その表面が露出している酸化チタンを意味する。本発明のフッ素系樹脂フィルムは、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合が3.2%以下であることを特徴とする。本発明のフッ素系樹脂フィルムは、フッ素系樹脂フィルムの表面に存在する酸化チタンとして、樹脂、具体的にはフッ素系樹脂で表面が被覆され、その表面が露出していない酸化チタンと、樹脂、具体的にはフッ素系樹脂で表面が被覆されず、その表面が露出している酸化チタンとを有する。本発明のフッ素系樹脂フィルムは、後者の樹脂で表面が被覆されず、その表面が露出している酸化チタンの面積の合計が、前記のフッ素系樹脂フィルムの面積に対して、3.2%以下の割合である。 6). Fluorine-based resin film The fluorine-based resin film of the present invention, preferably a PVDF film, is a fluorine-based resin film containing 15 to 50% by mass of titanium oxide, and at least one surface of the film is in relation to the area of the film, The fluorine resin film is characterized in that the total proportion of the area of titanium oxide whose surface is exposed is 3.2% or less. In the present invention, the surface-exposed titanium oxide means titanium oxide present on the surface of a fluororesin film containing 15 to 50% by mass of titanium oxide, that is, the outer surface from the plane serving as a reference for the fluororesin film. This means that the surface of the titanium oxide is exposed to the surface, and the surface of the titanium oxide is not coated with a resin, specifically, a fluororesin, and the surface thereof is exposed. The fluororesin film of the present invention is characterized in that the total ratio of the area of titanium oxide whose surface is exposed to the area of the film is 3.2% or less. The fluorine-based resin film of the present invention is a resin as a titanium oxide present on the surface of the fluorine-based resin film, specifically, a titanium oxide whose surface is covered with a fluorine-based resin and the surface is not exposed, and a resin, Specifically, the surface is not covered with a fluorine-based resin, and the surface thereof is exposed titanium oxide. The surface of the fluororesin film of the present invention is not covered with the latter resin, and the total area of the titanium oxide whose surface is exposed is 3.2% with respect to the area of the fluororesin film. The ratio is as follows.
本発明のフッ素系樹脂フィルム、好ましくはPVDFフィルムは、酸化チタンを15~50質量%含有するフッ素系樹脂フィルムであって、該フィルムの少なくとも一方の表面は、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合が3.2%以下であることを特徴とする前記のフッ素系樹脂フィルムである。本発明において、表面が露出する酸化チタンとは、酸化チタンを15~50質量%含有するフッ素系樹脂フィルムの表面に存在する酸化チタン、すなわち、該フッ素系樹脂フィルムの基準となる平面より外表面に突出している酸化チタンであって、該酸化チタンの表面が樹脂、具体的にはフッ素系樹脂で被覆されず、その表面が露出している酸化チタンを意味する。本発明のフッ素系樹脂フィルムは、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合が3.2%以下であることを特徴とする。本発明のフッ素系樹脂フィルムは、フッ素系樹脂フィルムの表面に存在する酸化チタンとして、樹脂、具体的にはフッ素系樹脂で表面が被覆され、その表面が露出していない酸化チタンと、樹脂、具体的にはフッ素系樹脂で表面が被覆されず、その表面が露出している酸化チタンとを有する。本発明のフッ素系樹脂フィルムは、後者の樹脂で表面が被覆されず、その表面が露出している酸化チタンの面積の合計が、前記のフッ素系樹脂フィルムの面積に対して、3.2%以下の割合である。 6). Fluorine-based resin film The fluorine-based resin film of the present invention, preferably a PVDF film, is a fluorine-based resin film containing 15 to 50% by mass of titanium oxide, and at least one surface of the film is in relation to the area of the film, The fluorine resin film is characterized in that the total proportion of the area of titanium oxide whose surface is exposed is 3.2% or less. In the present invention, the surface-exposed titanium oxide means titanium oxide present on the surface of a fluororesin film containing 15 to 50% by mass of titanium oxide, that is, the outer surface from the plane serving as a reference for the fluororesin film. This means that the surface of the titanium oxide is exposed to the surface, and the surface of the titanium oxide is not coated with a resin, specifically, a fluororesin, and the surface thereof is exposed. The fluororesin film of the present invention is characterized in that the total ratio of the area of titanium oxide whose surface is exposed to the area of the film is 3.2% or less. The fluorine-based resin film of the present invention is a resin as a titanium oxide present on the surface of the fluorine-based resin film, specifically, a titanium oxide whose surface is covered with a fluorine-based resin and the surface is not exposed, and a resin, Specifically, the surface is not covered with a fluorine-based resin, and the surface thereof is exposed titanium oxide. The surface of the fluororesin film of the present invention is not covered with the latter resin, and the total area of the titanium oxide whose surface is exposed is 3.2% with respect to the area of the fluororesin film. The ratio is as follows.
〔表面が露出する酸化チタンの面積の合計割合〕
フィルムの表面に存在する酸化チタンのうち、表面が露出する酸化チタンは、走査型電子顕微鏡(SEM)を使用して酸化チタンを含有するPVDFフィルムを始めとするフッ素系樹脂フィルムの表面画像を撮影して得られるSEM画像により確認することができる。SEM画像で確認される表面露出している酸化チタンについての、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合は、以下の方法により、「SEM画像を二値化処理することにより得られる表面露出率」として、求めることができる。すなわち、走査型電子顕微鏡(SEM)を使用して、酸化チタンを含有するフッ素系樹脂フィルムの所定領域(フィルムの幅方向両端部からフィルムの幅の1/4以上離隔する範囲から選択する。)の表面画像を撮影する(プラチナコーティングで前処理、加速電圧5kV、2次電子像撮影モード、倍率8000倍とする。)。得られるSEM画像のjpegファイルを、画像編集加工ソフトを使用して、所定領域のフィルム表面に存在する酸化チタンについて、そのうちの酸化チタンの表面が露出している部分(以下、「TiO2露出部分」ということがある。)とそれ以外の部分(埋没しているTiO2等)とを二値化処理する。フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合〔以下、「TiO2の露出率(%)」ということがある。〕は、計算式:(TiO2露出部分のピクセル数/画像全体のピクセル数)×100として算出することができる。なお、画像全体のピクセル数は、前記の所定領域のフィルムの面積に相当する。 [Total ratio of the area of titanium oxide whose surface is exposed]
Of the titanium oxide present on the surface of the film, the surface exposed titanium oxide is taken using a scanning electron microscope (SEM) to capture the surface images of fluororesin films, including PVDF films containing titanium oxide. It can confirm with the SEM image obtained. For the titanium oxide exposed on the surface confirmed by the SEM image, the total ratio of the area of the titanium oxide where the surface is exposed to the area of the film can be determined by “by binarizing the SEM image by the following method. It can obtain | require as "the surface exposure rate obtained." That is, using a scanning electron microscope (SEM), a predetermined region of the fluororesin film containing titanium oxide (selected from a range separated from both ends of the film in the width direction by 1/4 or more of the film width). The surface image is taken (pretreatment with platinum coating, acceleration voltage 5 kV, secondary electron image photographing mode, magnification 8000 times). Using the image editing processing software, the obtained SEM image jpeg file is a portion of the titanium oxide present on the film surface in a predetermined region, where the surface of the titanium oxide is exposed (hereinafter referred to as “TiO 2 exposed portion”). ”And other parts (such as buried TiO 2 ) are binarized. The total ratio of the area of titanium oxide whose surface is exposed to the area of the film [hereinafter referred to as “TiO 2 exposure rate (%)”. ] Can be calculated as a calculation formula: (number of pixels of the exposed portion of TiO 2 / number of pixels of the entire image) × 100. Note that the number of pixels in the entire image corresponds to the area of the film in the predetermined area.
フィルムの表面に存在する酸化チタンのうち、表面が露出する酸化チタンは、走査型電子顕微鏡(SEM)を使用して酸化チタンを含有するPVDFフィルムを始めとするフッ素系樹脂フィルムの表面画像を撮影して得られるSEM画像により確認することができる。SEM画像で確認される表面露出している酸化チタンについての、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合は、以下の方法により、「SEM画像を二値化処理することにより得られる表面露出率」として、求めることができる。すなわち、走査型電子顕微鏡(SEM)を使用して、酸化チタンを含有するフッ素系樹脂フィルムの所定領域(フィルムの幅方向両端部からフィルムの幅の1/4以上離隔する範囲から選択する。)の表面画像を撮影する(プラチナコーティングで前処理、加速電圧5kV、2次電子像撮影モード、倍率8000倍とする。)。得られるSEM画像のjpegファイルを、画像編集加工ソフトを使用して、所定領域のフィルム表面に存在する酸化チタンについて、そのうちの酸化チタンの表面が露出している部分(以下、「TiO2露出部分」ということがある。)とそれ以外の部分(埋没しているTiO2等)とを二値化処理する。フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合〔以下、「TiO2の露出率(%)」ということがある。〕は、計算式:(TiO2露出部分のピクセル数/画像全体のピクセル数)×100として算出することができる。なお、画像全体のピクセル数は、前記の所定領域のフィルムの面積に相当する。 [Total ratio of the area of titanium oxide whose surface is exposed]
Of the titanium oxide present on the surface of the film, the surface exposed titanium oxide is taken using a scanning electron microscope (SEM) to capture the surface images of fluororesin films, including PVDF films containing titanium oxide. It can confirm with the SEM image obtained. For the titanium oxide exposed on the surface confirmed by the SEM image, the total ratio of the area of the titanium oxide where the surface is exposed to the area of the film can be determined by “by binarizing the SEM image by the following method. It can obtain | require as "the surface exposure rate obtained." That is, using a scanning electron microscope (SEM), a predetermined region of the fluororesin film containing titanium oxide (selected from a range separated from both ends of the film in the width direction by 1/4 or more of the film width). The surface image is taken (pretreatment with platinum coating, acceleration voltage 5 kV, secondary electron image photographing mode, magnification 8000 times). Using the image editing processing software, the obtained SEM image jpeg file is a portion of the titanium oxide present on the film surface in a predetermined region, where the surface of the titanium oxide is exposed (hereinafter referred to as “TiO 2 exposed portion”). ”And other parts (such as buried TiO 2 ) are binarized. The total ratio of the area of titanium oxide whose surface is exposed to the area of the film [hereinafter referred to as “TiO 2 exposure rate (%)”. ] Can be calculated as a calculation formula: (number of pixels of the exposed portion of TiO 2 / number of pixels of the entire image) × 100. Note that the number of pixels in the entire image corresponds to the area of the film in the predetermined area.
本発明のPVDFフィルムを始めとするフッ素系樹脂フィルムは、酸化チタンを15~50質量%含有するフッ素系樹脂フィルムであって、該フィルムの少なくとも一方の表面は、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合〔TiO2の露出率(%)〕が3.2%以下であることにより、耐候性や機械的特性を損なうことなく、耐金属擦過性を有することができる。フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合〔TiO2の露出率(%)〕は、好ましくは3.1%以下、より好ましくは3.0%以下、更に好ましくは2.8%以下、特に好ましくは2.5%以下である。フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合〔TiO2の露出率(%)〕の下限は、0%であるが、多くの場合0.3%程度であり、フッ素系樹脂フィルムの組成や厚みによっては、上記の割合が0.5%以上であっても耐金属擦過性を有するフッ素系樹脂フィルムとすることができる。本発明のフッ素系樹脂フィルムは、該フッ素系樹脂フィルムの少なくとも一方の表面が、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合〔TiO2の露出率(%)〕が3.2%以下であれば、耐金属擦過性を有する表面を備えるフッ素系樹脂フィルムであるということができる。さらに、フッ素系樹脂フィルムの用途によっては、フッ素系樹脂フィルムの両方の表面がいずれも、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合が3.2%以下であることにより、フッ素系樹脂フィルムの両方の表面を耐金属擦過性を有するものとすることができる。
The fluororesin film including the PVDF film of the present invention is a fluororesin film containing 15 to 50% by mass of titanium oxide, and at least one surface of the film is exposed to the area of the film. When the total proportion of the area of titanium oxide to be exposed [TiO 2 exposure rate (%)] is 3.2% or less, the metal scratch resistance can be obtained without impairing the weather resistance and mechanical properties. The total ratio of the area of titanium oxide whose surface is exposed to the area of the film [TiO 2 exposure rate (%)] is preferably 3.1% or less, more preferably 3.0% or less, and still more preferably 2. It is 8% or less, particularly preferably 2.5% or less. The lower limit of the total ratio of the area of titanium oxide that exposes the surface to the area of the film [TiO 2 exposure rate (%)] is 0%, but in many cases it is about 0.3%. Depending on the composition and thickness of the film, even if the above ratio is 0.5% or more, a fluororesin film having metal scratch resistance can be obtained. In the fluororesin film of the present invention, at least one surface of the fluororesin film has a total ratio of the area of titanium oxide where the surface is exposed to the area of the film [TiO 2 exposure rate (%)] is 3. If it is 2% or less, it can be said that it is a fluorine resin film provided with the surface which has metal abrasion resistance. Furthermore, depending on the use of the fluororesin film, both surfaces of the fluororesin film have a total ratio of the titanium oxide area where the surface is exposed to the area of the film being 3.2% or less, Both surfaces of the fluororesin film can have metal scratch resistance.
〔耐金属擦過性〕
本発明のフッ素系樹脂フィルムは、耐金属擦過性を有するフィルムである。フッ素系樹脂フィルムの耐金属擦過性は、以下の摩擦試験を伴う方法によって、摩擦試験前後のフィルム表面を測色し、色差(ΔE)を求めることにより評価することができる。すなわち、学振型摩擦試験機〔JIS L0849「摩擦に対する染色堅牢度試験方法」に規定されている摩擦試験機II形(学振形)に相当する。〕を使用して、縦20mm×横21mmの摩擦子(ヘッド部)に、フッ素系樹脂フィルムを取り付け、試験片台に取り付けた幅40mmのアルミニウムテープに対して、荷重600gで接触させて距離10cm間を30回往復移動させた後、摩擦子に取り付けたフッ素系樹脂フィルムを取り外す。次いで、摩擦試験前後のフィルム表面の色差(ΔE)を求める。色差(ΔE)は、摩擦試験前後のフィルムについて、JIS Z8722に準拠し、分光式色差計を使用して、フィルム表面を測色(反射測定径30mm、C光源、2°視野、L*a*b*表色系)する。摩擦試験前後のフィルム表面の色差(ΔE)は、フィルム表面の測色値の差(ΔL*、Δa*及びΔb*)を基にして、
(式) ΔE=〔(ΔL*)2+(Δa*)2+(Δb*)2〕1/2
により算出する(小数点以下1桁の値とする。)。 [Metal scratch resistance]
The fluororesin film of the present invention is a film having metal scratch resistance. The metal scratch resistance of the fluororesin film can be evaluated by measuring the color of the film surface before and after the friction test and obtaining the color difference (ΔE) by a method involving the following friction test. That is, it corresponds to the Gakushin type friction tester [Friction tester type II (Gakushin type) specified in JIS L0849 “Testing method for fastness to dyeing against friction”]. ], A fluorine resin film is attached to a 20 mm long × 21 mm wide friction element (head portion), and a distance of 10 cm is applied to an aluminum tape having a width of 40 mm attached to a test piece base with a load of 600 g. After reciprocating 30 times, the fluororesin film attached to the friction element is removed. Next, the color difference (ΔE) of the film surface before and after the friction test is obtained. The color difference (ΔE) is measured on the surface of the film before and after the friction test in accordance with JIS Z8722 using a spectroscopic color difference meter (reflection measurement diameter 30 mm, C light source, 2 ° field of view, L * a * b * color system). The color difference (ΔE) on the film surface before and after the friction test is based on the difference in colorimetric values (ΔL * , Δa * and Δb * ) on the film surface.
(Equation) ΔE = [(ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 ] 1/2
(The value is one digit after the decimal point.)
本発明のフッ素系樹脂フィルムは、耐金属擦過性を有するフィルムである。フッ素系樹脂フィルムの耐金属擦過性は、以下の摩擦試験を伴う方法によって、摩擦試験前後のフィルム表面を測色し、色差(ΔE)を求めることにより評価することができる。すなわち、学振型摩擦試験機〔JIS L0849「摩擦に対する染色堅牢度試験方法」に規定されている摩擦試験機II形(学振形)に相当する。〕を使用して、縦20mm×横21mmの摩擦子(ヘッド部)に、フッ素系樹脂フィルムを取り付け、試験片台に取り付けた幅40mmのアルミニウムテープに対して、荷重600gで接触させて距離10cm間を30回往復移動させた後、摩擦子に取り付けたフッ素系樹脂フィルムを取り外す。次いで、摩擦試験前後のフィルム表面の色差(ΔE)を求める。色差(ΔE)は、摩擦試験前後のフィルムについて、JIS Z8722に準拠し、分光式色差計を使用して、フィルム表面を測色(反射測定径30mm、C光源、2°視野、L*a*b*表色系)する。摩擦試験前後のフィルム表面の色差(ΔE)は、フィルム表面の測色値の差(ΔL*、Δa*及びΔb*)を基にして、
(式) ΔE=〔(ΔL*)2+(Δa*)2+(Δb*)2〕1/2
により算出する(小数点以下1桁の値とする。)。 [Metal scratch resistance]
The fluororesin film of the present invention is a film having metal scratch resistance. The metal scratch resistance of the fluororesin film can be evaluated by measuring the color of the film surface before and after the friction test and obtaining the color difference (ΔE) by a method involving the following friction test. That is, it corresponds to the Gakushin type friction tester [Friction tester type II (Gakushin type) specified in JIS L0849 “Testing method for fastness to dyeing against friction”]. ], A fluorine resin film is attached to a 20 mm long × 21 mm wide friction element (head portion), and a distance of 10 cm is applied to an aluminum tape having a width of 40 mm attached to a test piece base with a load of 600 g. After reciprocating 30 times, the fluororesin film attached to the friction element is removed. Next, the color difference (ΔE) of the film surface before and after the friction test is obtained. The color difference (ΔE) is measured on the surface of the film before and after the friction test in accordance with JIS Z8722 using a spectroscopic color difference meter (reflection measurement diameter 30 mm, C light source, 2 ° field of view, L * a * b * color system). The color difference (ΔE) on the film surface before and after the friction test is based on the difference in colorimetric values (ΔL * , Δa * and Δb * ) on the film surface.
(Equation) ΔE = [(ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 ] 1/2
(The value is one digit after the decimal point.)
摩擦試験前後のフィルム表面の色差(ΔE)が3.2以下であれば、フッ素系樹脂フィルムの耐金属擦過性が良好であるということができ、1.5以下であれば耐金属擦過性が優れるということができる。すなわち、摩擦試験前後のフィルム表面の色差(ΔE)に基づく耐金属擦過性の評価基準は以下のとおりである。
<評価基準>
ΔE 評 価 記号
0~1.5 耐金属擦過性が優れる S
1.6~3.2 耐金属擦過性が良好である A
3.3~7 耐金属擦過性がやや劣る B
7~ 耐金属擦過性が悪い C If the color difference (ΔE) on the film surface before and after the friction test is 3.2 or less, it can be said that the metal-rubbing resistance of the fluororesin film is good, and if it is 1.5 or less, the metal-rubbing resistance is good. It can be said that it is excellent. That is, the evaluation criteria for metal scratch resistance based on the color difference (ΔE) on the film surface before and after the friction test are as follows.
<Evaluation criteria>
ΔE Evaluation symbol 0 to 1.5 Excellent metal scratch resistance S
1.6 to 3.2 Good metal scratch resistance A
3.3-7 Metal abrasion resistance is slightly inferior B
7 ~ Poor metal scratch resistance C
<評価基準>
ΔE 評 価 記号
0~1.5 耐金属擦過性が優れる S
1.6~3.2 耐金属擦過性が良好である A
3.3~7 耐金属擦過性がやや劣る B
7~ 耐金属擦過性が悪い C If the color difference (ΔE) on the film surface before and after the friction test is 3.2 or less, it can be said that the metal-rubbing resistance of the fluororesin film is good, and if it is 1.5 or less, the metal-rubbing resistance is good. It can be said that it is excellent. That is, the evaluation criteria for metal scratch resistance based on the color difference (ΔE) on the film surface before and after the friction test are as follows.
<Evaluation criteria>
ΔE Evaluation symbol 0 to 1.5 Excellent metal scratch resistance S
1.6 to 3.2 Good metal scratch resistance A
3.3-7 Metal abrasion resistance is slightly inferior B
7 ~ Poor metal scratch resistance C
耐金属擦過性を有するフッ素系樹脂フィルム、並びに、PVDFフィルム等の該フッ素系樹脂フィルムからなる層を備える太陽電池モジュール用バックシートや積層体は、運搬作業、設置作業や付随作業に際して、例えば、太陽電池モジュールのフレーム、電線類、取付金具類などの諸部材の金属と、偶然にまたは作業の必要上から、触れたり、ぶつかったり、こすれ合ったりするなど、金属との接触が起きることがあっても、発生した金属粉や金属片が、擦過跡のように、フッ素系樹脂フィルム、並びに、フッ素系樹脂フィルムからなる層を備える太陽電池モジュール用バックシートや積層体に付着することがない。また、フッ素系樹脂フィルムからなる層を備える積層体の形成や太陽電池モジュールの組立作業においても、フィルムの表面に金属粉や金属片が、擦過跡のように付着することがない。もとより、フッ素系樹脂フィルムや太陽電池モジュール用バックシートの表面に付着した金属粉や金属片は、軽くなでるだけで除去することができるので、除去後のフッ素系樹脂フィルムや太陽電池モジュール用バックシートの表面に、擦過跡として残るものではなく、また、フッ素系樹脂フィルムや太陽電池モジュール用バックシートの機能上も支障はないものである。本発明のフッ素系樹脂フィルム、並びに、太陽電池モジュール用バックシートや積層体は、金属粉や金属片が、擦過跡のように付着しないので、外観が損なわれ、商品や製品として不良品とみられる懸念がないものである。さらに、本発明のフッ素系樹脂フィルム、並びに、太陽電池モジュール用バックシートや積層体は、諸作業において、金属粉や金属片が付着しないように配慮したり、付着した金属粉や金属片を除去する作業が不要となるので、運搬や作業のコストを大幅に軽減することができる。
Fluorine resin film having metal scratch resistance, and a back sheet or laminate for a solar cell module comprising a layer made of the fluorine resin film such as PVDF film, for example, in carrying work, installation work or incidental work, Contact with metal such as solar cell module frames, electric wires, mounting brackets, etc. may occur due to accidental or work-related contact, bumping, or rubbing. However, the generated metal powder or metal piece does not adhere to the back sheet or laminate of the solar cell module including a layer made of the fluororesin film and the fluororesin film as in the case of scratches. Further, even in the formation of a laminate including a layer made of a fluororesin film and the assembly operation of the solar cell module, the metal powder and the metal piece do not adhere to the surface of the film like a scratch. Of course, the metal powder and metal pieces adhering to the surface of the fluorine resin film and the back sheet for the solar cell module can be removed by simply stroking, so the fluorine resin film and the back sheet for the solar cell module after the removal are removed. It does not remain as a rubbing trace on the surface, and there is no problem in the function of the fluorine resin film or the back sheet for the solar cell module. The fluororesin film of the present invention, as well as the back sheet and laminate for solar cell modules, do not attach metal powder or metal pieces as in the case of scratches. There is no concern. Furthermore, the fluororesin film of the present invention, and the back sheet and laminate for a solar cell module are designed so that metal powder and metal pieces do not adhere in various operations, or the attached metal powder and metal pieces are removed. This eliminates the need for work to be carried out, thus greatly reducing transportation and work costs.
〔耐候性〕
本発明のフッ素系樹脂フィルムは、該フィルムの少なくとも一方の表面は、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合が3.2%以下であることにより、耐金属擦過性を有するフィルムであると同時に、酸化チタンを15~50質量%含有することによって優れた耐候性を有するフィルムである。フッ素系樹脂フィルムの耐候性は、温度63℃、63%RHの雰囲気中で、メタルハライドランプを光源とし、照度1000W/m2、照射時間100時間(100時間の総照射量360MJ/m2)にて耐候性試験を行い、照射前後のフィルム表面の色差(ΔE)を測定して評価する。照射前後のフィルム表面の色差(ΔE)が、1.5以下であれば耐候性があると評価することができ、1以下であれば耐候性が優れているということができる。本発明のフッ素系樹脂フィルムは、優れた耐候性を有するので、このフッ素系樹脂フィルムからなる層を備える積層体や太陽電池モジュール用バックシートは、長期間、外部環境に触れても、その性能が失われることがない。 〔Weatherability〕
In the fluororesin film of the present invention, at least one surface of the film has a metal scraping resistance by a total ratio of the area of titanium oxide with the surface exposed to the film area being 3.2% or less. And a film having excellent weather resistance by containing 15 to 50% by mass of titanium oxide. The weather resistance of the fluororesin film is as follows: in an atmosphere at a temperature of 63 ° C. and 63% RH, using a metal halide lamp as a light source, an illuminance of 1000 W / m 2 and an irradiation time of 100 hours (total irradiation amount of 100 hours 360 MJ / m 2 ). A weather resistance test is performed, and the color difference (ΔE) on the film surface before and after irradiation is measured and evaluated. If the color difference (ΔE) on the film surface before and after irradiation is 1.5 or less, it can be evaluated that there is weather resistance, and if it is 1 or less, it can be said that the weather resistance is excellent. Since the fluororesin film of the present invention has excellent weather resistance, the laminate and the solar cell module backsheet having a layer made of this fluororesin film can be used even if they are exposed to the external environment for a long time. Will not be lost.
本発明のフッ素系樹脂フィルムは、該フィルムの少なくとも一方の表面は、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合が3.2%以下であることにより、耐金属擦過性を有するフィルムであると同時に、酸化チタンを15~50質量%含有することによって優れた耐候性を有するフィルムである。フッ素系樹脂フィルムの耐候性は、温度63℃、63%RHの雰囲気中で、メタルハライドランプを光源とし、照度1000W/m2、照射時間100時間(100時間の総照射量360MJ/m2)にて耐候性試験を行い、照射前後のフィルム表面の色差(ΔE)を測定して評価する。照射前後のフィルム表面の色差(ΔE)が、1.5以下であれば耐候性があると評価することができ、1以下であれば耐候性が優れているということができる。本発明のフッ素系樹脂フィルムは、優れた耐候性を有するので、このフッ素系樹脂フィルムからなる層を備える積層体や太陽電池モジュール用バックシートは、長期間、外部環境に触れても、その性能が失われることがない。 〔Weatherability〕
In the fluororesin film of the present invention, at least one surface of the film has a metal scraping resistance by a total ratio of the area of titanium oxide with the surface exposed to the film area being 3.2% or less. And a film having excellent weather resistance by containing 15 to 50% by mass of titanium oxide. The weather resistance of the fluororesin film is as follows: in an atmosphere at a temperature of 63 ° C. and 63% RH, using a metal halide lamp as a light source, an illuminance of 1000 W / m 2 and an irradiation time of 100 hours (total irradiation amount of 100 hours 360 MJ / m 2 ). A weather resistance test is performed, and the color difference (ΔE) on the film surface before and after irradiation is measured and evaluated. If the color difference (ΔE) on the film surface before and after irradiation is 1.5 or less, it can be evaluated that there is weather resistance, and if it is 1 or less, it can be said that the weather resistance is excellent. Since the fluororesin film of the present invention has excellent weather resistance, the laminate and the solar cell module backsheet having a layer made of this fluororesin film can be used even if they are exposed to the external environment for a long time. Will not be lost.
〔機械的特性〕
本発明のフッ素系樹脂フィルムは、該フィルムの少なくとも一方の表面は、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合が3.2%以下であることにより、耐金属擦過性を有するフィルムであると同時に、酸化チタンを15~50質量%含有することによって優れた機械的特性を有するフィルムである。フッ素系樹脂フィルムの優れた機械的特性は、具体的には、温度23℃におけるフィルムの破断強度(最大点応力)が、20MPa以上、好ましくは25MPa以上、より好ましくは30MPa以上である。温度23℃におけるフィルムの破断強度(最大点応力)は、JIS K7127に準拠し、フッ素系樹脂フィルムから縦方向(押出フィルムの場合は、押出方向、すなわちMD方向)及び横方向(押出フィルムの場合は、押出方向と直交する方向、すなわちTD方向)に平行に切り出した長さ50mm、幅10mmの短冊状フィルムを試験片として、温度23℃(常温)で、引張速度200mm/分にて測定する。 (Mechanical properties)
In the fluororesin film of the present invention, at least one surface of the film has a metal scraping resistance by a total ratio of the area of titanium oxide with the surface exposed to the film area being 3.2% or less. A film having excellent mechanical properties by containing 15 to 50% by mass of titanium oxide. Specifically, the excellent mechanical characteristics of the fluororesin film are such that the breaking strength (maximum point stress) of the film at a temperature of 23 ° C. is 20 MPa or more, preferably 25 MPa or more, more preferably 30 MPa or more. The breaking strength (maximum point stress) of the film at a temperature of 23 ° C. is in accordance with JIS K7127, from the fluororesin film in the longitudinal direction (extrusion direction in the case of an extruded film, that is, MD direction) and in the lateral direction (in the case of an extruded film). Is a strip-like film having a length of 50 mm and a width of 10 mm cut out in parallel to the direction orthogonal to the extrusion direction, that is, the TD direction, and measured at a temperature of 23 ° C. (normal temperature) and a pulling speed of 200 mm / min. .
本発明のフッ素系樹脂フィルムは、該フィルムの少なくとも一方の表面は、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合が3.2%以下であることにより、耐金属擦過性を有するフィルムであると同時に、酸化チタンを15~50質量%含有することによって優れた機械的特性を有するフィルムである。フッ素系樹脂フィルムの優れた機械的特性は、具体的には、温度23℃におけるフィルムの破断強度(最大点応力)が、20MPa以上、好ましくは25MPa以上、より好ましくは30MPa以上である。温度23℃におけるフィルムの破断強度(最大点応力)は、JIS K7127に準拠し、フッ素系樹脂フィルムから縦方向(押出フィルムの場合は、押出方向、すなわちMD方向)及び横方向(押出フィルムの場合は、押出方向と直交する方向、すなわちTD方向)に平行に切り出した長さ50mm、幅10mmの短冊状フィルムを試験片として、温度23℃(常温)で、引張速度200mm/分にて測定する。 (Mechanical properties)
In the fluororesin film of the present invention, at least one surface of the film has a metal scraping resistance by a total ratio of the area of titanium oxide with the surface exposed to the film area being 3.2% or less. A film having excellent mechanical properties by containing 15 to 50% by mass of titanium oxide. Specifically, the excellent mechanical characteristics of the fluororesin film are such that the breaking strength (maximum point stress) of the film at a temperature of 23 ° C. is 20 MPa or more, preferably 25 MPa or more, more preferably 30 MPa or more. The breaking strength (maximum point stress) of the film at a temperature of 23 ° C. is in accordance with JIS K7127, from the fluororesin film in the longitudinal direction (extrusion direction in the case of an extruded film, that is, MD direction) and in the lateral direction (in the case of an extruded film). Is a strip-like film having a length of 50 mm and a width of 10 mm cut out in parallel to the direction orthogonal to the extrusion direction, that is, the TD direction, and measured at a temperature of 23 ° C. (normal temperature) and a pulling speed of 200 mm / min. .
〔光沢(艶消し)〕
本発明のフッ素系樹脂フィルムは、該フィルムの少なくとも一方の表面は、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合が3.2%以下であることにより、耐金属擦過性を有するフィルムであると同時に、該フィルムの表面が、艶消し状の光沢度を有するものとすることができる。すなわち、本発明のフッ素系樹脂フィルムは、光沢度が限定されるものではなく、いわゆる艶消し状でもよいし、高い光沢を有するものでもよいが、従来、例えば太陽電池モジュール用バックシートとしては、テカリのない艶消し状の光沢度を有することにより、高級感を有するフィルムが望まれる場合もあった。その場合、本発明によれば、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合が3.2%以下であるフィルムの表面の光沢度を35%以下、好ましくは32%以下、より好ましくは28%以下とすることができる。フィルムの表面の光沢度は、JIS Z8741に準拠して、光沢計を用いて測定することができる。本発明のフッ素系樹脂フィルムを、テカリのない艶消し状の光沢度を有するものとする方法は、特に限定されず、例えば、フィルムを製造した後に、フィルムの表面にいわゆるマット加工等の後処理機械加工を施すことによって、艶消し状とする方法等によって、所望による艶消し状の光沢度を有するフィルムを得ることができる。 [Gloss (matte)]
In the fluororesin film of the present invention, at least one surface of the film has a metal scraping resistance by a total ratio of the area of titanium oxide with the surface exposed to the film area being 3.2% or less. At the same time, the surface of the film can have a matte glossiness. That is, the fluorine-based resin film of the present invention is not limited in glossiness, so-called matte or may have high gloss, but conventionally, for example, as a back sheet for a solar cell module, In some cases, a high-quality film is desired by having a matte gloss without gloss. In that case, according to the present invention, the gloss of the surface of the film whose total area of the titanium oxide area where the surface is exposed to the area of the film is 3.2% or less is 35% or less, preferably 32% or less, More preferably, it can be 28% or less. The glossiness of the film surface can be measured using a gloss meter in accordance with JIS Z8741. The method of making the fluororesin film of the present invention have a matte gloss without gloss is not particularly limited. For example, after the film is produced, post-treatment such as so-called mat processing is performed on the surface of the film. By performing machining, a film having a desired matte glossiness can be obtained by a method of making the matte or the like.
本発明のフッ素系樹脂フィルムは、該フィルムの少なくとも一方の表面は、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合が3.2%以下であることにより、耐金属擦過性を有するフィルムであると同時に、該フィルムの表面が、艶消し状の光沢度を有するものとすることができる。すなわち、本発明のフッ素系樹脂フィルムは、光沢度が限定されるものではなく、いわゆる艶消し状でもよいし、高い光沢を有するものでもよいが、従来、例えば太陽電池モジュール用バックシートとしては、テカリのない艶消し状の光沢度を有することにより、高級感を有するフィルムが望まれる場合もあった。その場合、本発明によれば、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合が3.2%以下であるフィルムの表面の光沢度を35%以下、好ましくは32%以下、より好ましくは28%以下とすることができる。フィルムの表面の光沢度は、JIS Z8741に準拠して、光沢計を用いて測定することができる。本発明のフッ素系樹脂フィルムを、テカリのない艶消し状の光沢度を有するものとする方法は、特に限定されず、例えば、フィルムを製造した後に、フィルムの表面にいわゆるマット加工等の後処理機械加工を施すことによって、艶消し状とする方法等によって、所望による艶消し状の光沢度を有するフィルムを得ることができる。 [Gloss (matte)]
In the fluororesin film of the present invention, at least one surface of the film has a metal scraping resistance by a total ratio of the area of titanium oxide with the surface exposed to the film area being 3.2% or less. At the same time, the surface of the film can have a matte glossiness. That is, the fluorine-based resin film of the present invention is not limited in glossiness, so-called matte or may have high gloss, but conventionally, for example, as a back sheet for a solar cell module, In some cases, a high-quality film is desired by having a matte gloss without gloss. In that case, according to the present invention, the gloss of the surface of the film whose total area of the titanium oxide area where the surface is exposed to the area of the film is 3.2% or less is 35% or less, preferably 32% or less, More preferably, it can be 28% or less. The glossiness of the film surface can be measured using a gloss meter in accordance with JIS Z8741. The method of making the fluororesin film of the present invention have a matte gloss without gloss is not particularly limited. For example, after the film is produced, post-treatment such as so-called mat processing is performed on the surface of the film. By performing machining, a film having a desired matte glossiness can be obtained by a method of making the matte or the like.
本発明のフッ素系樹脂フィルムは、未延伸フィルムでも、延伸フィルムでもよいが、延伸を行う場合は延伸装置(縦方向及び横方向)及び熱処理装置などの付帯設備が必要になることと、比較的厚いフィルムの作製が困難であることなどから、未延伸フィルムであることが好ましい。
The fluororesin film of the present invention may be an unstretched film or a stretched film. However, when stretching is performed, additional equipment such as a stretching apparatus (longitudinal and lateral directions) and a heat treatment apparatus are necessary, Since it is difficult to produce a thick film, an unstretched film is preferable.
本発明のフッ素系樹脂フィルムの厚みは、通常2~500μmであり、好ましくは3~400μm、より好ましくは5~300μm、更に好ましくは8~250μmであり、特に好ましくは10~200μmである。本発明のフッ素系樹脂フィルムを、該フッ素系樹脂フィルムからなる層を備える積層体や太陽電池モジュール用バックシートとする場合は、フッ素系樹脂フィルムの厚みは、好ましくは2~100μm、より好ましくは3~80μm、更に好ましくは4~60μm、特に好ましくは10~50μmである。フッ素系樹脂フィルムの厚みが2μm未満では、フィルムの強度が不足し、所要の機械的特性が得られず、その結果、例えば、積層体を製造する工程において、他の層への熱ラミネートに際して熱シワが発生することがあり、また、太陽電池モジュール用バックシートとして用いる場合は、所要の隠蔽性や強度などの特性を得ることが難しくなる。フッ素系樹脂フィルムの厚みが500μmを超えると、フィルムの柔軟性が不足したり、異方性が上昇したりすることがあり、また、軽量化や薄肉化を図ることができない。
The thickness of the fluororesin film of the present invention is usually 2 to 500 μm, preferably 3 to 400 μm, more preferably 5 to 300 μm, still more preferably 8 to 250 μm, and particularly preferably 10 to 200 μm. When the fluororesin film of the present invention is used as a laminate having a layer composed of the fluororesin film or a back sheet for a solar cell module, the thickness of the fluororesin film is preferably 2 to 100 μm, more preferably It is 3 to 80 μm, more preferably 4 to 60 μm, particularly preferably 10 to 50 μm. If the thickness of the fluororesin film is less than 2 μm, the strength of the film is insufficient and the required mechanical properties cannot be obtained. As a result, for example, in the process of producing a laminate, heat is applied during heat lamination to other layers. Wrinkles may occur, and when used as a back sheet for a solar cell module, it is difficult to obtain required properties such as concealment and strength. When the thickness of the fluororesin film exceeds 500 μm, the flexibility of the film may be insufficient or the anisotropy may be increased, and the weight and thickness cannot be reduced.
7.フッ素系樹脂フィルムの製造方法
本発明のフッ素系樹脂フィルムの製造方法は、酸化チタンを15~50質量%含有するフッ素系樹脂フィルム、好ましくはPVDFフィルムであって、該フィルムの少なくとも一方の表面は、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合が3.2%以下であるフッ素系樹脂フィルムを得ることができる限り、特に限定されない。所要量の酸化チタン、更に必要に応じて、他の熱可塑性樹脂や他の添加剤を含有するフッ素系樹脂を、融点以上の温度で溶融混練した後、ロール間または型内で圧延(プレス)してフィルム状に成形する方法、例えば、金属製のプレス型内に載置した、所定の表面粗さ(Ra)のポリテトラフルオロエチレンシート(エンボス模様を有するものでもよい。)により挟持して圧延する方法によって、製造することができる。また、フッ素系樹脂、例えばPVDFを融点以上の温度で溶融混練した後、Tダイやインフレーションダイ等からフィルム状に押出成形し、必要に応じてエンボス加工や表面加工する方法によって、製造することができる。さらに、それ自体公知の溶剤または水系コーティングによる塗工法によっても、本発明のフッ素系樹脂フィルムを製造することができる。生産性及び品質の均一性の観点から、押出成形によってフッ素系樹脂フィルムを成形することが好ましく、具体的には、酸化チタンを15~50質量%含有するフッ素系樹脂、例えばPVDFを、押出成形によってフィルムを製造した後にエンボス加工する方法、または、押出成形によってフィルムを製造すると同時に表面加工する方法などにより、フッ素系樹脂フィルムを製造することができる。以下、押出成形によってフッ素系樹脂フィルムを製造する方法について更に説明する。 7). Method for Producing Fluoropolymer Film The method for producing a fluororesin film of the present invention is a fluororesin film containing 15 to 50% by mass of titanium oxide, preferably a PVDF film, wherein at least one surface of the film is There is no particular limitation as long as a fluorine resin film in which the total ratio of the area of titanium oxide whose surface is exposed to the area of the film is 3.2% or less can be obtained. Fluorine resin containing the required amount of titanium oxide and, if necessary, other thermoplastic resin and other additives is melt-kneaded at a temperature above the melting point and then rolled (pressed) between rolls or in a mold. Then, the film is sandwiched by a polytetrafluoroethylene sheet having a predetermined surface roughness (Ra) (which may have an embossed pattern) placed in a metal press die. It can manufacture by the method of rolling. In addition, after melt-kneading a fluorine-based resin, for example PVDF, at a temperature equal to or higher than the melting point, it is extruded into a film from a T die or an inflation die, and can be manufactured by a method of embossing or surface processing as necessary. it can. Furthermore, the fluororesin film of the present invention can also be produced by a coating method using a known solvent or aqueous coating. From the viewpoint of productivity and quality uniformity, it is preferable to form a fluorine resin film by extrusion molding. Specifically, a fluorine resin containing 15 to 50% by mass of titanium oxide, such as PVDF, is extrusion molded. The fluororesin film can be produced by a method of embossing after producing a film by the method, or a method of producing a film by extrusion and simultaneously surface-treating it. Hereinafter, a method for producing a fluororesin film by extrusion will be further described.
本発明のフッ素系樹脂フィルムの製造方法は、酸化チタンを15~50質量%含有するフッ素系樹脂フィルム、好ましくはPVDFフィルムであって、該フィルムの少なくとも一方の表面は、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合が3.2%以下であるフッ素系樹脂フィルムを得ることができる限り、特に限定されない。所要量の酸化チタン、更に必要に応じて、他の熱可塑性樹脂や他の添加剤を含有するフッ素系樹脂を、融点以上の温度で溶融混練した後、ロール間または型内で圧延(プレス)してフィルム状に成形する方法、例えば、金属製のプレス型内に載置した、所定の表面粗さ(Ra)のポリテトラフルオロエチレンシート(エンボス模様を有するものでもよい。)により挟持して圧延する方法によって、製造することができる。また、フッ素系樹脂、例えばPVDFを融点以上の温度で溶融混練した後、Tダイやインフレーションダイ等からフィルム状に押出成形し、必要に応じてエンボス加工や表面加工する方法によって、製造することができる。さらに、それ自体公知の溶剤または水系コーティングによる塗工法によっても、本発明のフッ素系樹脂フィルムを製造することができる。生産性及び品質の均一性の観点から、押出成形によってフッ素系樹脂フィルムを成形することが好ましく、具体的には、酸化チタンを15~50質量%含有するフッ素系樹脂、例えばPVDFを、押出成形によってフィルムを製造した後にエンボス加工する方法、または、押出成形によってフィルムを製造すると同時に表面加工する方法などにより、フッ素系樹脂フィルムを製造することができる。以下、押出成形によってフッ素系樹脂フィルムを製造する方法について更に説明する。 7). Method for Producing Fluoropolymer Film The method for producing a fluororesin film of the present invention is a fluororesin film containing 15 to 50% by mass of titanium oxide, preferably a PVDF film, wherein at least one surface of the film is There is no particular limitation as long as a fluorine resin film in which the total ratio of the area of titanium oxide whose surface is exposed to the area of the film is 3.2% or less can be obtained. Fluorine resin containing the required amount of titanium oxide and, if necessary, other thermoplastic resin and other additives is melt-kneaded at a temperature above the melting point and then rolled (pressed) between rolls or in a mold. Then, the film is sandwiched by a polytetrafluoroethylene sheet having a predetermined surface roughness (Ra) (which may have an embossed pattern) placed in a metal press die. It can manufacture by the method of rolling. In addition, after melt-kneading a fluorine-based resin, for example PVDF, at a temperature equal to or higher than the melting point, it is extruded into a film from a T die or an inflation die, and can be manufactured by a method of embossing or surface processing as necessary. it can. Furthermore, the fluororesin film of the present invention can also be produced by a coating method using a known solvent or aqueous coating. From the viewpoint of productivity and quality uniformity, it is preferable to form a fluorine resin film by extrusion molding. Specifically, a fluorine resin containing 15 to 50% by mass of titanium oxide, such as PVDF, is extrusion molded. The fluororesin film can be produced by a method of embossing after producing a film by the method, or a method of producing a film by extrusion and simultaneously surface-treating it. Hereinafter, a method for producing a fluororesin film by extrusion will be further described.
フッ素系樹脂、例えばPVDF、酸化チタン、及び、所望により他の熱可塑性樹脂、他の添加剤の所定量を混合した後、該フッ素系樹脂を含む材料を押出成形機に供給し、フッ素系樹脂、例えばPVDFの融点以上に加熱して溶融混練し、該押出成形機の先端に配置したTダイから溶融物をフィルム状(シート状ともいう。)に押し出した後、冷却ロール(キャストロール)、弾性ロール(金属製またはゴム製など)、鏡面ロール(金属製またはゴム製など)やエンボスロール(金属製またはゴム製など)等を組み合わせて使用して、好ましくは圧力を付与しながら、融点以下の温度に冷却することにより、フッ素系樹脂押出成形フィルムを製造することができる。押出成形機中での溶融混練温度は、例えばPVDFフィルムを得る場合、通常200~250℃、好ましくは205~245℃、より好ましくは210~240℃の範囲であり、Tダイからの押出温度は、通常195~235℃、好ましくは200~230℃、より好ましくは205~225℃の範囲である。
After mixing a predetermined amount of fluorine resin, such as PVDF, titanium oxide, and optionally other thermoplastic resin and other additives, a material containing the fluorine resin is supplied to an extrusion molding machine, and the fluorine resin For example, after being melted and kneaded by heating to a melting point of PVDF or more, the melt is extruded into a film (also referred to as a sheet) from a T-die disposed at the tip of the extruder, and then a cooling roll (cast roll), Use a combination of elastic rolls (such as metal or rubber), mirror rolls (such as metal or rubber) and embossing rolls (such as metal or rubber), preferably while applying pressure, and below the melting point By cooling to this temperature, a fluororesin extruded film can be produced. For example, when obtaining a PVDF film, the melt kneading temperature in the extruder is usually in the range of 200 to 250 ° C., preferably 205 to 245 ° C., more preferably 210 to 240 ° C. The extrusion temperature from the T die is Usually, it is in the range of 195 to 235 ° C., preferably 200 to 230 ° C., more preferably 205 to 225 ° C.
より具体的には、i)Tダイから溶融状態でフィルム状に吐出されたフッ素系樹脂を、Tダイ直下に置かれ、所定温度に温度調節された金属製の冷却ロール(キャストロール)に接触させて融点以下の所定温度に冷却することによりフィルムを製造し、次いで、必要に応じて、所定温度に温度調節された鏡面ロールと弾性ロールとの間を通過させた後に、所定温度に温度調節されたエンボスロールと弾性ロールとの間を通過させることによってエンボス加工を行う方法、ii)Tダイから溶融状態でフィルム状に吐出されたフッ素系樹脂を、Tダイ直下に置かれ、所定温度に温度調節された金属製の冷却ロール(キャストロール)と弾性ロール(ニップロール)との間に挟んでフィルム製造と同時に表面加工を行う方法などによって、所期の表面性状を有するフッ素系樹脂フィルムを得ることができる。
More specifically, i) A fluororesin discharged from a T die in a film state in a molten state is placed directly under the T die and brought into contact with a metal cooling roll (cast roll) whose temperature is adjusted to a predetermined temperature. The film is produced by cooling to a predetermined temperature below the melting point, and then, if necessary, after passing between a mirror roll and an elastic roll whose temperature is adjusted to the predetermined temperature, the temperature is adjusted to the predetermined temperature. Embossing by passing between the embossed roll and the elastic roll, and ii) fluorinated resin discharged in a film from the T die in a molten state is placed directly under the T die and brought to a predetermined temperature. Depending on the method of surface processing at the same time as film production by sandwiching between temperature-controlled metal cooling roll (cast roll) and elastic roll (nip roll), etc. Fluorine-based resin film having a surface texture can be obtained.
エンボスロールは、表面粗度が、Ra(算術平均粗さ)で通常0.2~15μm、好ましくは0.4~12μm、より好ましくは0.7~10μmの範囲であるものを使用することが望ましい。エンボスロールは、サンドブラスト、彫刻、電解研磨等によって、フィルム表面に所望の粗さや模様を形成することができる。鏡面ロールは、表面粗度が、Ra(算術平均粗さ)で通常0.1μm以下、好ましくは0.07μm以下、より好ましくは0.05μm以下であるものを使用することが望ましい。
An embossing roll having a surface roughness Ra (arithmetic mean roughness) of usually 0.2 to 15 μm, preferably 0.4 to 12 μm, more preferably 0.7 to 10 μm may be used. desirable. The embossing roll can form a desired roughness or pattern on the film surface by sandblasting, engraving, electrolytic polishing, or the like. It is desirable to use a mirror roll having a surface roughness of Ra (arithmetic mean roughness) of usually 0.1 μm or less, preferably 0.07 μm or less, more preferably 0.05 μm or less.
所望によっては、鏡面ロールとエンボスロールとを組み合わせて使用することに代えて、鏡面ロールと鏡面ロールとを組み合わせて使用することや、エンボスロールとエンボスロールとを組み合わせて使用することもできる。さらに、先に説明したように、冷却ロール(キャストロール)、エンボスロールまたは鏡面ロールのいずれかに対向させて金属製、樹脂製またはゴム製等のバックアップロールを使用することができる。エンボスロールの表面粗度の上限は、対向するロールの種類や表面粗度によって適宜定められるが、通常50μm、多くの場合30μmである。
If desired, instead of using the mirror roll and the emboss roll in combination, the mirror roll and the mirror roll can be used in combination, or the emboss roll and the emboss roll can be used in combination. Furthermore, as described above, a backup roll made of metal, resin, rubber, or the like can be used while facing a cooling roll (cast roll), an embossing roll, or a mirror surface roll. The upper limit of the surface roughness of the embossing roll is appropriately determined depending on the type of the opposing roll and the surface roughness, but is usually 50 μm and in many cases 30 μm.
エンボスロール、鏡面ロール、弾性ロール、冷却ロール及び/またはバックアップロールの表面粗度、硬度、温度、押し付け力(面圧及び/または線圧)、及び、フィルムの製膜速度などを調整することにより、得られるフッ素系樹脂フィルムの表面粗度を調整することができる。
By adjusting the surface roughness, hardness, temperature, pressing force (surface pressure and / or linear pressure), film forming speed of the embossing roll, mirror surface roll, elastic roll, cooling roll and / or backup roll, etc. The surface roughness of the obtained fluororesin film can be adjusted.
エンボスロールや鏡面ロールの温度は、吐出されたフッ素系樹脂の温度や製膜速度により異なるが、通常50~160℃、好ましくは60~155℃、より好ましくは70~150℃の範囲である。エンボスロールや鏡面ロールの温度が50℃未満であると、フッ素系樹脂、例えばPVDFの流動性が不足して酸化チタンの表面をフッ素系樹脂で完全に被覆することができにくいため、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合が3.2%以下とならないことがある。エンボスロールや鏡面ロールの温度が160℃を超えると、得られるフッ素系樹脂フィルム中に粗大なフッ素系樹脂結晶、例えばPVDF結晶が生成されたりするため、上記の割合が大きくなりすぎたり、また、耐金属擦過性が得られなかったりすることがある。
The temperature of the embossing roll or mirror roll varies depending on the temperature of the discharged fluororesin and the film forming speed, but is usually in the range of 50 to 160 ° C., preferably 60 to 155 ° C., more preferably 70 to 150 ° C. If the temperature of the embossing roll or mirror roll is less than 50 ° C., the fluidity of the fluororesin, for example PVDF, is insufficient, and it is difficult to completely cover the surface of titanium oxide with the fluororesin. The total proportion of the area of titanium oxide whose surface is exposed may not be 3.2% or less. When the temperature of the embossing roll or mirror surface roll exceeds 160 ° C., a coarse fluorine resin crystal, for example, PVDF crystal is generated in the resulting fluorine resin film, and the above ratio becomes too large. Metal scratch resistance may not be obtained.
エンボスロール、鏡面ロール、弾性ロール、冷却ロール及び/またはバックアップロールの温度調節は、水や油等の流体による加熱冷却、電気ヒータによる加熱冷却、圧電素子による加熱冷却など、それ自体公知の手段を採用して、制御を行えばよい。エンボスロール及び/または鏡面ロールの温度は、異なってもよいが、同一の温度とすることが好ましい。
The embossing roll, mirror roll, elastic roll, cooling roll, and / or backup roll can be adjusted by a known method such as heating / cooling with a fluid such as water or oil, heating / cooling with an electric heater, heating / cooling with a piezoelectric element. Adopt and control. The temperature of the embossing roll and / or mirror surface roll may be different, but is preferably the same temperature.
エンボスロール及び/または鏡面ロールの間で所定の表面状態となるように調整された酸化チタンを含有するフッ素系樹脂のフィルム状物は、続いて、必要に応じて所定温度に温度調節されたガイドロール群を通過させることによって、フィルムの表面粗さ(Ra)や機械的性質等を微調整することもできる。ガイドロール群のロール数は必要に応じて増減することができ、エンボスロール及び/または鏡面ロールの前(押出機の側)でも後(押出機の側の反対側)でもよい。また、ガイドロール群のロールの回転速度を調節することによっても、得られるフッ素系樹脂フィルムの表面粗さ(Ra)や、MD(機械方向)とTD(直交方向)の配向状態や残留歪み、機械的性質を微調整することができる。ガイドロール群のロールの温度は適宜選定することができ、同一の温度としてもよいし、異なる温度としてもよく、また、特段の温度調節を行わず常温としてもよい。エンボスロール及び/または鏡面ロールの温度より高い温度としてもよい。ガイドロール群のロールの温度調節は、前述のように、それ自体公知の手段を採用して、制御をすることができる。
The fluororesin film-like material containing titanium oxide adjusted so as to have a predetermined surface state between the embossing roll and / or the mirror-finished roll is subsequently guided to a predetermined temperature as required. By passing the roll group, the surface roughness (Ra) and mechanical properties of the film can be finely adjusted. The number of rolls of the guide roll group can be increased or decreased as necessary, and may be before the embossing roll and / or mirror roll (on the extruder side) or after (on the opposite side of the extruder side). Also, by adjusting the rotation speed of the rolls of the guide roll group, the surface roughness (Ra) of the resulting fluororesin film, the orientation state of MD (machine direction) and TD (orthogonal direction) and residual strain, The mechanical properties can be fine-tuned. The temperature of the rolls of the guide roll group can be selected as appropriate, and may be the same temperature, may be different temperatures, or may be room temperature without special temperature adjustment. It is good also as temperature higher than the temperature of an embossing roll and / or a mirror surface roll. As described above, the temperature adjustment of the rolls of the guide roll group can be controlled by employing a means known per se.
本発明のフッ素系樹脂フィルム、例えばPVDFフィルムを製造するためには、更に一対のロールからなるピンチロールを使用してもよい。ガイドロール群に加えて、ピンチロールを使用して、フッ素系樹脂のフィルム状物を挟圧しながら、搬送することによって、得られるフッ素系樹脂フィルムの表面粗さ(Ra)や機械的性質等を更に微調整することができる。ピンチロールの表面粗度、温度、面圧、及び、回転速度は適宜調整することができる。
In order to produce the fluorine resin film of the present invention, for example, a PVDF film, a pinch roll comprising a pair of rolls may be used. In addition to the guide roll group, the surface roughness (Ra), mechanical properties, etc. of the obtained fluororesin film can be obtained by using a pinch roll and carrying it while sandwiching the fluororesin film. Further fine adjustment is possible. The surface roughness, temperature, surface pressure, and rotation speed of the pinch roll can be adjusted as appropriate.
本発明のフッ素系樹脂フィルムは、先に述べたように、未延伸フィルムが好ましいが、必要に応じて延伸フィルムを製造する場合は、前記のガイドロール群のロールやピンチロールの回転速度を順次変更することによって、フッ素系樹脂のフィルム状物を縦方向に延伸させることができる。横方向にも延伸する場合には、テンターなどそれ自体公知の延伸手段を更に設ければよい。ただし、延伸フィルムを製造する場合、フッ素系樹脂フィルムの表面が結晶化して、表面粗さ(Ra)の制御が難しくなる場合があることから、本発明のフッ素系樹脂フィルムは、未延伸フィルムが好ましい。
As described above, the fluororesin film of the present invention is preferably an unstretched film. However, when producing a stretched film as necessary, the rotation speed of the rolls and pinch rolls of the guide roll group is sequentially set. By changing, the film-like material of fluororesin can be stretched in the longitudinal direction. In the case of stretching in the transverse direction, a known stretching means such as a tenter may be further provided. However, when producing a stretched film, the surface of the fluororesin film may crystallize, and it may be difficult to control the surface roughness (Ra). Therefore, the fluororesin film of the present invention is an unstretched film. preferable.
8.積層体
本発明のフッ素系樹脂フィルムは、単層フィルムとして使用することができるが、他の熱可塑性樹脂フィルムを積層して、フッ素系樹脂フィルムからなる層を備える積層体とすることによって、例えば、耐衝撃性や柔軟性等の機械的強度の一層の向上が求められる分野などに使用することができる。 8). Laminate The fluororesin film of the present invention can be used as a single-layer film, but by laminating other thermoplastic resin films into a laminate comprising a layer made of a fluororesin film, for example, It can be used in fields where further improvement in mechanical strength such as impact resistance and flexibility is required.
本発明のフッ素系樹脂フィルムは、単層フィルムとして使用することができるが、他の熱可塑性樹脂フィルムを積層して、フッ素系樹脂フィルムからなる層を備える積層体とすることによって、例えば、耐衝撃性や柔軟性等の機械的強度の一層の向上が求められる分野などに使用することができる。 8). Laminate The fluororesin film of the present invention can be used as a single-layer film, but by laminating other thermoplastic resin films into a laminate comprising a layer made of a fluororesin film, for example, It can be used in fields where further improvement in mechanical strength such as impact resistance and flexibility is required.
フッ素系樹脂フィルムからなる層を備える積層体を形成するために用いる他の熱可塑性樹脂フィルムとしては、ポリエチレン、ポリプロピレン等のポリオレフィン;ナイロン6、ナイロン66等のポリアミド;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート(以下、「PEN」ということがある。)等のポリエステル;ポリメタクリル酸メチル等のアクリル樹脂;ポリスチレン、ポリアクリロニトリル、ポリ塩化ビニル、ポリオキシメチレン、ポリカーボネート、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリエステルウレタン、ポリm-フェニレンイソフタルアミド、ポリp-フェニレンテレフタルアミドなどのフィルムが挙げられ、所要の機械的強度、耐熱性、耐候性、耐光性などを考慮して、これらの1種または2種以上を選択すればよい。所望によっては、同種または異種のフッ素系樹脂フィルムからなる層を備える積層体とすることもできる。例えば、PVDFフィルムからなる層と、PTFEまたはPVF等のフッ素系樹脂からなる層とを備える積層体などが挙げられる。
Other thermoplastic resin films used to form a laminate comprising a layer made of a fluororesin film include polyolefins such as polyethylene and polypropylene; polyamides such as nylon 6 and nylon 66; polyethylene terephthalate, polybutylene terephthalate, polyethylene Polyester such as naphthalate (hereinafter sometimes referred to as “PEN”); acrylic resin such as polymethyl methacrylate; polystyrene, polyacrylonitrile, polyvinyl chloride, polyoxymethylene, polycarbonate, polyphenylene oxide, polyphenylene sulfide, polyether Examples include films of ether ketone, polyester urethane, poly m-phenylene isophthalamide, poly p-phenylene terephthalamide, and the required mechanical strength. , Heat resistance, weather resistance, in consideration of light resistance, may be selected one or more of these. If desired, a laminate including a layer made of the same kind or different kind of fluororesin film may be used. For example, the laminated body provided with the layer which consists of a PVDF film, and the layer which consists of fluorine-type resins, such as PTFE or PVF, etc. are mentioned.
フッ素系樹脂フィルムからなる層を備える積層体を太陽電池モジュール用バックシートとして使用する場合は、耐衝撃性、柔軟性等の機械的強度、耐候性、隠蔽性、封止材との接着性など該バックシートに求められる特性の観点から、他の熱可塑性樹脂フィルムとしては、PETやPEN等のポリエステル;ポリカーボネート、PMMA等のアクリル樹脂などのフィルムが好ましく用いられる。特に、PETやPEN等のポリエステルフィルムが好ましく、最も好ましくはPETフィルムが用いられ、中でも二軸延伸PETフィルムが好ましい。
When using a laminate comprising a layer made of a fluororesin film as a back sheet for a solar cell module, mechanical strength such as impact resistance and flexibility, weather resistance, concealment, adhesion to a sealing material, etc. From the viewpoint of the characteristics required for the back sheet, as other thermoplastic resin films, polyesters such as PET and PEN; films such as acrylic resins such as polycarbonate and PMMA are preferably used. In particular, a polyester film such as PET or PEN is preferable, and a PET film is most preferably used. Among them, a biaxially stretched PET film is preferable.
これら他の熱可塑性樹脂フィルムには、必要に応じて、更に他の熱可塑性樹脂や、安定剤、紫外線吸収剤、顔料または染料などの慣用される添加剤を含有させることができる。特に、酸化チタンを含有するフッ素系樹脂フィルムからなる層を備える積層体を太陽電池モジュール用バックシートとして使用する場合は、隠蔽性向上のために加える酸化チタンやカーボンブラック等の顔料を、他の熱可塑性樹脂フィルムに含有させてもよい。本発明のフッ素系樹脂フィルムは、酸化チタンの含有量が15~50質量%と大きいので、これら他の熱可塑性樹脂フィルムに含有させる酸化チタンの含有量を小さくすることができる。
These other thermoplastic resin films may further contain other thermoplastic resins and other commonly used additives such as stabilizers, ultraviolet absorbers, pigments or dyes, if necessary. In particular, when using a laminate including a layer made of a fluorine-based resin film containing titanium oxide as a back sheet for a solar cell module, a pigment such as titanium oxide or carbon black to be added for improving the concealability is used. You may make it contain in a thermoplastic resin film. Since the fluorine-based resin film of the present invention has a high titanium oxide content of 15 to 50% by mass, the content of titanium oxide contained in these other thermoplastic resin films can be reduced.
積層体の厚みは、特に限定されないが、通常3~800μmであり、好ましくは7~500μm、より好ましくは10~400μm、更に好ましくは20~300μmである。積層体の厚みが3μm未満では、該積層体の強度が不足し、所要の機械的特性が得られないおそれがあり、例えば、太陽電池モジュール用バックシートとして用いる場合は、所要の隠蔽性や強度などの特性を得ることが難しくなる。厚みが800μmを超えると、積層体の柔軟性が不足するおそれがあり、また、軽量化や薄肉化を図ることができない。積層体における、酸化チタンを含有するフッ素系樹脂フィルムと他の熱可塑性樹脂フィルムとの厚みの比率は、特に限定されないが、好ましくは1/99~90/10、より好ましくは5/95~70/30、更に好ましくは10/90~50/50、特に好ましくは15/85~40/60の比率である。
The thickness of the laminate is not particularly limited, but is usually 3 to 800 μm, preferably 7 to 500 μm, more preferably 10 to 400 μm, and still more preferably 20 to 300 μm. If the thickness of the laminate is less than 3 μm, the strength of the laminate may be insufficient and required mechanical properties may not be obtained. For example, when used as a back sheet for a solar cell module, the required concealability and strength It becomes difficult to obtain characteristics such as. When the thickness exceeds 800 μm, the flexibility of the laminate may be insufficient, and weight reduction and thinning cannot be achieved. The thickness ratio of the fluororesin film containing titanium oxide and the other thermoplastic resin film in the laminate is not particularly limited, but is preferably 1/99 to 90/10, more preferably 5/95 to 70. / 30, more preferably 10/90 to 50/50, and particularly preferably 15/85 to 40/60.
9.フッ素系樹脂フィルムからなる層を備える積層体の製造方法
酸化チタンを含有するフッ素系樹脂フィルムからなる層を備える積層体は、それ自体公知のフッ素系樹脂フィルムからなる層を備える積層体の製造方法によって製造することができる。すなわち、共押出法、押出ラミネート法、熱溶着法、接着積層法、塗工法などを採用することができるが、簡便な接着積層法によって積層体を製造することが好ましい。 9. Method for producing a laminate comprising a layer comprising a fluorine resin film A laminate comprising a layer comprising a fluorine resin film containing titanium oxide is a method for producing a laminate comprising a layer comprising a fluorine resin film known per se. Can be manufactured by. That is, a co-extrusion method, an extrusion lamination method, a heat welding method, an adhesion lamination method, a coating method, and the like can be adopted, but it is preferable to produce a laminate by a simple adhesion lamination method.
酸化チタンを含有するフッ素系樹脂フィルムからなる層を備える積層体は、それ自体公知のフッ素系樹脂フィルムからなる層を備える積層体の製造方法によって製造することができる。すなわち、共押出法、押出ラミネート法、熱溶着法、接着積層法、塗工法などを採用することができるが、簡便な接着積層法によって積層体を製造することが好ましい。 9. Method for producing a laminate comprising a layer comprising a fluorine resin film A laminate comprising a layer comprising a fluorine resin film containing titanium oxide is a method for producing a laminate comprising a layer comprising a fluorine resin film known per se. Can be manufactured by. That is, a co-extrusion method, an extrusion lamination method, a heat welding method, an adhesion lamination method, a coating method, and the like can be adopted, but it is preferable to produce a laminate by a simple adhesion lamination method.
積層は、あらかじめ形成した酸化チタンを含有するフッ素系樹脂フィルムと他の熱可塑性樹脂フィルムとを、接着剤を用いず、または、好ましくは接着剤層を介して、接合すればよい。接着積層に用いる接着剤としては、ウレタン系接着剤、エポキシ系接着剤等の公知の接着剤や、ホットメルト型接着剤などを使用することができるが、2液型のウレタン系接着剤が最も好ましい。接着剤による接着を行うには、酸化チタンを含有するフッ素系樹脂フィルムまたは他の熱可塑性樹脂フィルムの一方または両方に対して、所望により表面活性化処理を行った後、接着剤を塗布し、加熱乾燥を行って所定厚みの接着剤層を形成してから、フッ素系樹脂フィルムと他の熱可塑性樹脂フィルムとを、ロール等により加圧しながら、所望により更に加熱しながら、圧着することによって接合させる。
The lamination may be performed by joining a fluorine-containing resin film containing titanium oxide formed in advance and another thermoplastic resin film without using an adhesive or preferably through an adhesive layer. Known adhesives such as urethane adhesives and epoxy adhesives, and hot-melt adhesives can be used as adhesives for adhesive lamination, but two-component urethane adhesives are the most. preferable. In order to perform adhesion with an adhesive, after performing surface activation treatment on one or both of a fluorine-based resin film or other thermoplastic resin film containing titanium oxide as desired, an adhesive is applied, After heating and drying to form an adhesive layer with a predetermined thickness, bonding is performed by pressing the fluororesin film and another thermoplastic resin film while pressing them with a roll or the like, further heating as desired. Let
10.太陽電池モジュール及び太陽電池モジュール用バックシート
本発明のフッ素系樹脂フィルムまたはフッ素系樹脂フィルムからなる層を備える積層体は、太陽電池モジュール用バックシートとして使用するのに適したものである。 10. Solar cell module and back sheet for solar cell module The laminate comprising the fluororesin film of the present invention or a layer made of a fluororesin film is suitable for use as a back sheet for a solar cell module.
本発明のフッ素系樹脂フィルムまたはフッ素系樹脂フィルムからなる層を備える積層体は、太陽電池モジュール用バックシートとして使用するのに適したものである。 10. Solar cell module and back sheet for solar cell module The laminate comprising the fluororesin film of the present invention or a layer made of a fluororesin film is suitable for use as a back sheet for a solar cell module.
太陽電池モジュールとしては、既に述べた図1に示す断面構造のものを例示することができる。すなわち、図1に示すように、太陽電池モジュールは、表面保護材1、封止材2、太陽電池セル3、及び裏面保護材(バックシート)4から構成される。複数の太陽電池セル3を配線(図示せず)により直列に接続し、太陽電池モジュールを構成する。太陽電池モジュールの端部または周縁部には、フレーム(図示せず)が配置されている。
As the solar cell module, the one having the cross-sectional structure shown in FIG. That is, as shown in FIG. 1, the solar cell module includes a surface protective material 1, a sealing material 2, a solar battery cell 3, and a back surface protective material (back sheet) 4. A plurality of solar cells 3 are connected in series by wiring (not shown) to constitute a solar cell module. A frame (not shown) is disposed at the end or peripheral edge of the solar cell module.
表面保護材1としては、例えば、強化ガラス板、透明プラスチック板、単層若しくは多層の透明プラスチックフィルム、または、これらを複合化した複合材料などが用いられるが、これらに限定されない。
Examples of the surface protective material 1 include, but are not limited to, a tempered glass plate, a transparent plastic plate, a single-layer or multilayer transparent plastic film, or a composite material obtained by combining these.
封止材2としては、エチレン-酢酸ビニル共重合体(EVA)、ブチラール樹脂、シリコン樹脂、エポキシ樹脂、フッ素化ポリイミド樹脂などの透明な樹脂が用いられるが、これらに限定されない。これらの封止材の中でも、EVAが好ましい。太陽電池セル3の構造は、太陽電池の種類によって異なるが、各種太陽電池セルを用いることができる。封止材2としてEVAを用いる場合、EVAはシートとして供給される。太陽電池セル3を2枚のEVAシートで挟んで、加熱加圧することにより、太陽電池セルをEVAで封止することもできる。また、封止材2としてEVAシートを用いる場合は、本発明によるPVDF単層フィルムや積層体とあらかじめ複合化して供給することができる。
As the sealing material 2, transparent resin such as ethylene-vinyl acetate copolymer (EVA), butyral resin, silicon resin, epoxy resin, and fluorinated polyimide resin is used, but is not limited thereto. Among these sealing materials, EVA is preferable. Although the structure of the solar battery cell 3 varies depending on the type of the solar battery, various solar battery cells can be used. When EVA is used as the sealing material 2, EVA is supplied as a sheet. The solar battery cell 3 can also be sealed with EVA by sandwiching the solar battery cell 3 between the two EVA sheets and heating and pressing. Moreover, when using an EVA sheet | seat as the sealing material 2, it can compound and supply beforehand with the PVDF single layer film and laminated body by this invention.
裏面保護材(バックシート)4としては、本発明による酸化チタンを含有するフッ素系樹脂単層フィルムや、酸化チタンを含有するフッ素系樹脂フィルムと他の熱可塑性樹脂フィルム(例えば、PETフィルム)とを複合化した酸化チタンを含有するフッ素系樹脂フィルムからなる層を備える積層体を使用することができる。本発明の太陽電池モジュール用バックシート4として、酸化チタンを含有するフッ素系樹脂フィルムからなる層を備える積層体を使用する場合、フッ素系樹脂フィルムは、機械的特性や耐候性に優れるので、太陽電池モジュールの最裏面側、すなわち太陽電池セル3から遠い位置に配置されることが好ましい。
As the back surface protective material (back sheet) 4, a fluorine resin single layer film containing titanium oxide according to the present invention, a fluorine resin film containing titanium oxide, and other thermoplastic resin films (for example, PET film) It is possible to use a laminate including a layer made of a fluorine-based resin film containing titanium oxide obtained by compounding. When using the laminated body provided with the layer which consists of a fluorine resin film containing a titanium oxide as the back sheet 4 for solar cell modules of this invention, since a fluorine resin film is excellent in a mechanical characteristic and a weather resistance, it is solar. It is preferable that the battery module is disposed on the rearmost surface side, that is, at a position far from the solar battery cell 3.
本発明の太陽電池モジュール用バックシート4は、バリア層を更に備える積層体であってもよいし、強化ガラス板、金属板または金属箔を更に備える複合材料であってもよい。これらの積層体や複合材料においては、各層間に接着剤層を配置することができる。バリア層としては、酸化ケイ素や酸化アルミニウム等の無機酸化物の蒸着層またはアルミニウム等の金属の蒸着層が挙げられる。これらの蒸着層は、基材フィルムの片面に形成した、酸化ケイ素や酸化アルミニウム等の無機酸化物の蒸着膜またはアルミニウム等の金属の蒸着膜の形態で用いてもよい。なお、前記の強化ガラス板、金属板または金属箔がバリア層の機能を果たすことはいうまでもない。蒸着層の形成や金属箔の貼付によるバリア層の形成は、公知の方法により適宜実施することができる。接着に使用する接着剤は、バリア層、特に蒸着層の接着強度が長期間の屋外使用で劣化し、剥離などを生じないこと、更に接着剤が黄変しないことなどが必要であり、ポリウレタン系接着剤などが好ましく使用できる。
The solar cell module backsheet 4 of the present invention may be a laminate further provided with a barrier layer, or a composite material further provided with a tempered glass plate, a metal plate or a metal foil. In these laminates and composite materials, an adhesive layer can be disposed between the respective layers. Examples of the barrier layer include a vapor deposition layer of an inorganic oxide such as silicon oxide or aluminum oxide or a vapor deposition layer of a metal such as aluminum. These vapor deposition layers may be used in the form of an inorganic oxide vapor deposition film such as silicon oxide or aluminum oxide or a metal vapor deposition film such as aluminum formed on one side of the base film. Needless to say, the tempered glass plate, metal plate or metal foil functions as a barrier layer. Formation of a vapor deposition layer and formation of a barrier layer by sticking a metal foil can be appropriately performed by a known method. Adhesives used for bonding need to have a barrier layer, especially a vapor-deposited layer whose adhesive strength deteriorates when used outdoors for a long period of time, does not cause peeling, etc., and that the adhesive does not turn yellow. An adhesive or the like can be preferably used.
したがって、本発明のフッ素系樹脂フィルムからなる層を備える太陽電池モジュール用バックシートとしては、本発明のフッ素系樹脂フィルムと他の樹脂フィルム(例えば、PETフィルム)とを複合化した積層体、該フッ素系樹脂フィルムと防湿フィルムとを複合化した積層体、該フッ素系樹脂フィルムと強化ガラス板とを複合化した複合材料、該フッ素系樹脂フィルムと金属板とを複合化した複合材料、該フッ素系樹脂フィルムと他の樹脂フィルム、防湿フィルム、強化ガラス板などの2種以上とを複合化した複合材料などが用いられる。フッ素系樹脂フィルムからなる層を備える積層体や複合材料は、各層間に接着剤層を配置することができる。防湿フィルムとしては、基材フィルムの片面に、酸化ケイ素や酸化アルミニウムなどの無機酸化物の蒸着膜を形成した複合フィルムなどが挙げられる。市販の防湿フィルムとしては、例えば、株式会社クレハ製セレール(CELLEL)(登録商標)T030が挙げられる。
Therefore, as a solar cell module backsheet comprising a layer made of the fluorine resin film of the present invention, a laminate in which the fluorine resin film of the present invention and another resin film (for example, PET film) are combined, A laminate in which a fluorine resin film and a moisture-proof film are combined, a composite material in which the fluorine resin film and a tempered glass plate are combined, a composite material in which the fluorine resin film and a metal plate are combined, the fluorine The composite material etc. which compounded 2 or more types, such as a resin resin film, another resin film, a moisture-proof film, and a tempered glass board, are used. In a laminate or a composite material having a layer made of a fluororesin film, an adhesive layer can be disposed between each layer. Examples of the moisture-proof film include a composite film in which a deposited film of an inorganic oxide such as silicon oxide or aluminum oxide is formed on one surface of a base film. Examples of commercially available moisture-proof films include CELLEL (registered trademark) T030 manufactured by Kureha Corporation.
本発明の太陽電池モジュール用バックシートの好ましい層構成としては、例えば、以下のようなものを例示することができるが、これらに限定されない。複数層の層構成を有するバックシートは、太陽電池モジュールに当接する側の面を右端として示す。
As a preferable layer configuration of the solar cell module backsheet of the present invention, for example, the following can be exemplified, but the invention is not limited thereto. The back sheet having a multi-layer structure shows the surface on the side in contact with the solar cell module as the right end.
(1)本発明のフッ素系樹脂フィルム/接着剤/EVA
(2)本発明のフッ素系樹脂フィルム/他の樹脂フィルム
(3)他の樹脂フィルム/本発明のフッ素系樹脂フィルム
(4)本発明のフッ素系樹脂フィルム/接着剤/他の樹脂フィルム
(5)他の樹脂フィルム/接着剤/本発明のフッ素系樹脂フィルム
(6)本発明のフッ素系樹脂フィルム/他の樹脂フィルム/接着剤/EVA
(7)他の樹脂フィルム/本発明のフッ素系樹脂フィルム/接着剤/EVA
(8)本発明のフッ素系樹脂フィルム/接着剤/他の樹脂フィルム/接着剤/EVA
(9)他の樹脂フィルム/接着剤/本発明のフッ素系樹脂フィルム/接着剤/EVA
(10)本発明のフッ素系樹脂フィルム/接着剤/他の樹脂フィルム/接着剤/本発明のフッ素系樹脂フィルム
(11)ガラス板/接着剤/本発明のフッ素系樹脂フィルム
(12)ガラス板/接着剤/本発明のフッ素系樹脂フィルム/接着剤/EVA
(13)金属板/接着剤/本発明のフッ素系樹脂フィルム
(14)金属板/接着剤/本発明のフッ素系樹脂フィルム/接着剤/EVA
(15)上記層構成に防湿フィルムを付加した層構成 (1) Fluorine resin film / adhesive / EVA of the present invention
(2) Fluorine resin film of the present invention / other resin film (3) Other resin film / fluorine resin film of the present invention (4) Fluorine resin film / adhesive / other resin film of the present invention (5 ) Other resin film / adhesive / fluorine resin film of the present invention (6) Fluorine resin film of the present invention / other resin film / adhesive / EVA
(7) Other resin film / fluorine resin film of the present invention / adhesive / EVA
(8) Fluorine resin film / adhesive / other resin film / adhesive / EVA of the present invention
(9) Other resin film / adhesive / fluorinated resin film / adhesive / EVA of the present invention
(10) Fluorine resin film / adhesive / other resin film / adhesive / fluorine resin film of the present invention (11) Glass plate / adhesive / fluorine resin film of the present invention (12) glass plate / Adhesive / Fluoropolymer film of the present invention / Adhesive / EVA
(13) Metal plate / adhesive / fluorine resin film of the present invention (14) Metal plate / adhesive / fluorine resin film of the present invention / adhesive / EVA
(15) Layer structure in which a moisture-proof film is added to the above layer structure
(2)本発明のフッ素系樹脂フィルム/他の樹脂フィルム
(3)他の樹脂フィルム/本発明のフッ素系樹脂フィルム
(4)本発明のフッ素系樹脂フィルム/接着剤/他の樹脂フィルム
(5)他の樹脂フィルム/接着剤/本発明のフッ素系樹脂フィルム
(6)本発明のフッ素系樹脂フィルム/他の樹脂フィルム/接着剤/EVA
(7)他の樹脂フィルム/本発明のフッ素系樹脂フィルム/接着剤/EVA
(8)本発明のフッ素系樹脂フィルム/接着剤/他の樹脂フィルム/接着剤/EVA
(9)他の樹脂フィルム/接着剤/本発明のフッ素系樹脂フィルム/接着剤/EVA
(10)本発明のフッ素系樹脂フィルム/接着剤/他の樹脂フィルム/接着剤/本発明のフッ素系樹脂フィルム
(11)ガラス板/接着剤/本発明のフッ素系樹脂フィルム
(12)ガラス板/接着剤/本発明のフッ素系樹脂フィルム/接着剤/EVA
(13)金属板/接着剤/本発明のフッ素系樹脂フィルム
(14)金属板/接着剤/本発明のフッ素系樹脂フィルム/接着剤/EVA
(15)上記層構成に防湿フィルムを付加した層構成 (1) Fluorine resin film / adhesive / EVA of the present invention
(2) Fluorine resin film of the present invention / other resin film (3) Other resin film / fluorine resin film of the present invention (4) Fluorine resin film / adhesive / other resin film of the present invention (5 ) Other resin film / adhesive / fluorine resin film of the present invention (6) Fluorine resin film of the present invention / other resin film / adhesive / EVA
(7) Other resin film / fluorine resin film of the present invention / adhesive / EVA
(8) Fluorine resin film / adhesive / other resin film / adhesive / EVA of the present invention
(9) Other resin film / adhesive / fluorinated resin film / adhesive / EVA of the present invention
(10) Fluorine resin film / adhesive / other resin film / adhesive / fluorine resin film of the present invention (11) Glass plate / adhesive / fluorine resin film of the present invention (12) glass plate / Adhesive / Fluoropolymer film of the present invention / Adhesive / EVA
(13) Metal plate / adhesive / fluorine resin film of the present invention (14) Metal plate / adhesive / fluorine resin film of the present invention / adhesive / EVA
(15) Layer structure in which a moisture-proof film is added to the above layer structure
以下、本発明を、更に実施例及び比較例を挙げて具体的に説明するが、本発明は実施例に限定されるものではない。実施例及び比較例における物性または特性の評価方法は、次のとおりである。
Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but the present invention is not limited to the examples. Evaluation methods for physical properties or characteristics in Examples and Comparative Examples are as follows.
〔表面が露出する酸化チタンの面積の合計割合〕
フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合は、以下の方法によって求めた。すなわち、走査型電子顕微鏡(SEM。株式会社日立ハイテクノロジーズ製のSU8020)を使用して、酸化チタンを含有するフッ素系樹脂フィルムの表面画像を撮影し(プラチナコーティングで前処理、加速電圧5kV、2次電子像撮影モード、倍率8000倍とした。)、所定領域のフィルムのSEM画像(1,228,800ピクセル)のjpegファイルを画像編集加工ソフトAdobe Photoshop(登録商標)を使用して、酸化チタンの表面が露出している部分(以下、「TiO2露出部分」ということがある。)とそれ以外の部分とを二値化処理した。フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合〔以下、「TiO2の露出率(%)」ということがある。〕は、計算式:(TiO2露出部分のピクセル数/画像全体のピクセル数)×100から算出した。 [Total ratio of the area of titanium oxide whose surface is exposed]
The total ratio of the area of titanium oxide whose surface is exposed to the area of the film was determined by the following method. That is, using a scanning electron microscope (SEM, SU8020 manufactured by Hitachi High-Technologies Corporation), a surface image of a fluororesin film containing titanium oxide was taken (pretreatment with platinum coating, acceleration voltage 5 kV, 2 The following electronic image shooting mode, the magnification was set to 8000 times.) The jpeg file of the SEM image (1,228,800 pixels) of the film in a predetermined area was converted into titanium oxide using image editing software Adobe Photoshop (registered trademark). The portion where the surface of the substrate was exposed (hereinafter sometimes referred to as “TiO 2 exposed portion”) and the other portions were binarized. The total ratio of the area of titanium oxide whose surface is exposed to the area of the film [hereinafter referred to as “TiO 2 exposure rate (%)”. ] Was calculated from the calculation formula: (number of pixels of the exposed portion of TiO 2 / number of pixels of the entire image) × 100.
フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合は、以下の方法によって求めた。すなわち、走査型電子顕微鏡(SEM。株式会社日立ハイテクノロジーズ製のSU8020)を使用して、酸化チタンを含有するフッ素系樹脂フィルムの表面画像を撮影し(プラチナコーティングで前処理、加速電圧5kV、2次電子像撮影モード、倍率8000倍とした。)、所定領域のフィルムのSEM画像(1,228,800ピクセル)のjpegファイルを画像編集加工ソフトAdobe Photoshop(登録商標)を使用して、酸化チタンの表面が露出している部分(以下、「TiO2露出部分」ということがある。)とそれ以外の部分とを二値化処理した。フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合〔以下、「TiO2の露出率(%)」ということがある。〕は、計算式:(TiO2露出部分のピクセル数/画像全体のピクセル数)×100から算出した。 [Total ratio of the area of titanium oxide whose surface is exposed]
The total ratio of the area of titanium oxide whose surface is exposed to the area of the film was determined by the following method. That is, using a scanning electron microscope (SEM, SU8020 manufactured by Hitachi High-Technologies Corporation), a surface image of a fluororesin film containing titanium oxide was taken (pretreatment with platinum coating, acceleration voltage 5 kV, 2 The following electronic image shooting mode, the magnification was set to 8000 times.) The jpeg file of the SEM image (1,228,800 pixels) of the film in a predetermined area was converted into titanium oxide using image editing software Adobe Photoshop (registered trademark). The portion where the surface of the substrate was exposed (hereinafter sometimes referred to as “TiO 2 exposed portion”) and the other portions were binarized. The total ratio of the area of titanium oxide whose surface is exposed to the area of the film [hereinafter referred to as “TiO 2 exposure rate (%)”. ] Was calculated from the calculation formula: (number of pixels of the exposed portion of TiO 2 / number of pixels of the entire image) × 100.
〔耐金属擦過性〕
フッ素系樹脂フィルムの耐金属擦過性は、以下の摩擦試験を伴う方法によって、摩擦試験前後のフィルム表面を測色し、色差(ΔE)を求めることにより評価した。すなわち、学振型摩擦試験機(テスター産業株式会社製の学振型摩擦試験機II型AB-301)を使用して、縦20mm×横21mmの摩擦子(ヘッド部)に、フッ素系樹脂フィルムを取り付け、試験片台に取り付けた幅40mmのアルミニウムテープに対して、荷重600gで接触させて距離10cm間を30回往復移動させた後、摩擦子に取り付けたフッ素系樹脂フィルムを取り外した。次いで、摩擦試験前後のフィルム表面の色差(ΔE)を求めた。色差(ΔE)は、摩擦試験前後のフィルムについて、JIS Z8722に準拠し、分光式色差計(日本電色工業株式会社製の分光色差計SE-2000)を使用して、フィルム表面を測色(反射測定径30mm、C光源、2°視野、L*a*b*表色系)した。摩擦試験前後のフィルム表面の色差(ΔE)は、フィルム表面の測色値の差(ΔL*、Δa*及びΔb*)を基にして、
(式) ΔE=〔(ΔL*)2+(Δa*)2+(Δb*)2〕1/2
により算出した(小数点以下1桁の値とした。)。摩擦試験前後のフィルム表面の色差(ΔE)に基づく耐金属擦過性の評価基準は以下のとおりとした。
<評価基準>
ΔE 評 価 記号
0~1.5 耐金属擦過性が優れる S
1.6~3.2 耐金属擦過性が良好である A
3.3~7 耐金属擦過性がやや劣る B
7~ 耐金属擦過性が悪い C [Metal scratch resistance]
The metal scratch resistance of the fluororesin film was evaluated by measuring the color of the film surface before and after the friction test and obtaining the color difference (ΔE) by a method involving the following friction test. That is, using a Gakushin friction tester (Gakushin friction tester II type AB-301 manufactured by Tester Sangyo Co., Ltd.), a fluorine resin film is applied to a 20 mm long x 21 mm wide friction element (head portion). Was attached to the aluminum tape having a width of 40 mm attached to the test piece base and brought into contact with a load of 600 g and reciprocated 30 times within a distance of 10 cm, and then the fluororesin film attached to the friction element was removed. Next, the color difference (ΔE) on the film surface before and after the friction test was determined. Color difference (ΔE) is measured on the film surface using a spectroscopic color difference meter (spectral color difference meter SE-2000 manufactured by Nippon Denshoku Industries Co., Ltd.) according to JIS Z8722 for the film before and after the friction test. Reflection measurement diameter 30 mm, C light source, 2 ° field of view, L * a * b * color system). The color difference (ΔE) on the film surface before and after the friction test is based on the difference in colorimetric values (ΔL * , Δa * and Δb * ) on the film surface.
(Equation) ΔE = [(ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 ] 1/2
(The value was set to one digit after the decimal point.) The evaluation criteria for metal scratch resistance based on the color difference (ΔE) on the film surface before and after the friction test were as follows.
<Evaluation criteria>
ΔE Evaluation symbol 0 to 1.5 Excellent metal scratch resistance S
1.6 to 3.2 Good metal scratch resistance A
3.3-7 Metal abrasion resistance is slightly inferior B
7 ~ Poor metal scratch resistance C
フッ素系樹脂フィルムの耐金属擦過性は、以下の摩擦試験を伴う方法によって、摩擦試験前後のフィルム表面を測色し、色差(ΔE)を求めることにより評価した。すなわち、学振型摩擦試験機(テスター産業株式会社製の学振型摩擦試験機II型AB-301)を使用して、縦20mm×横21mmの摩擦子(ヘッド部)に、フッ素系樹脂フィルムを取り付け、試験片台に取り付けた幅40mmのアルミニウムテープに対して、荷重600gで接触させて距離10cm間を30回往復移動させた後、摩擦子に取り付けたフッ素系樹脂フィルムを取り外した。次いで、摩擦試験前後のフィルム表面の色差(ΔE)を求めた。色差(ΔE)は、摩擦試験前後のフィルムについて、JIS Z8722に準拠し、分光式色差計(日本電色工業株式会社製の分光色差計SE-2000)を使用して、フィルム表面を測色(反射測定径30mm、C光源、2°視野、L*a*b*表色系)した。摩擦試験前後のフィルム表面の色差(ΔE)は、フィルム表面の測色値の差(ΔL*、Δa*及びΔb*)を基にして、
(式) ΔE=〔(ΔL*)2+(Δa*)2+(Δb*)2〕1/2
により算出した(小数点以下1桁の値とした。)。摩擦試験前後のフィルム表面の色差(ΔE)に基づく耐金属擦過性の評価基準は以下のとおりとした。
<評価基準>
ΔE 評 価 記号
0~1.5 耐金属擦過性が優れる S
1.6~3.2 耐金属擦過性が良好である A
3.3~7 耐金属擦過性がやや劣る B
7~ 耐金属擦過性が悪い C [Metal scratch resistance]
The metal scratch resistance of the fluororesin film was evaluated by measuring the color of the film surface before and after the friction test and obtaining the color difference (ΔE) by a method involving the following friction test. That is, using a Gakushin friction tester (Gakushin friction tester II type AB-301 manufactured by Tester Sangyo Co., Ltd.), a fluorine resin film is applied to a 20 mm long x 21 mm wide friction element (head portion). Was attached to the aluminum tape having a width of 40 mm attached to the test piece base and brought into contact with a load of 600 g and reciprocated 30 times within a distance of 10 cm, and then the fluororesin film attached to the friction element was removed. Next, the color difference (ΔE) on the film surface before and after the friction test was determined. Color difference (ΔE) is measured on the film surface using a spectroscopic color difference meter (spectral color difference meter SE-2000 manufactured by Nippon Denshoku Industries Co., Ltd.) according to JIS Z8722 for the film before and after the friction test. Reflection measurement diameter 30 mm, C light source, 2 ° field of view, L * a * b * color system). The color difference (ΔE) on the film surface before and after the friction test is based on the difference in colorimetric values (ΔL * , Δa * and Δb * ) on the film surface.
(Equation) ΔE = [(ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 ] 1/2
(The value was set to one digit after the decimal point.) The evaluation criteria for metal scratch resistance based on the color difference (ΔE) on the film surface before and after the friction test were as follows.
<Evaluation criteria>
ΔE Evaluation symbol 0 to 1.5 Excellent metal scratch resistance S
1.6 to 3.2 Good metal scratch resistance A
3.3-7 Metal abrasion resistance is slightly inferior B
7 ~ Poor metal scratch resistance C
〔耐候性〕
フッ素系樹脂フィルムの耐候性は、岩崎電気株式会社製スーパーUVテスターSUV-W161を使用して、温度63℃、63%RHの雰囲気中で、波長295~450nmのメタルハライドランプを光源とし、照度1000W/m2、照射時間100時間(100時間の総照射量360MJ/m2)にて耐候性試験を行い、照射前後のフィルム表面の色差(ΔE)を測定した。 〔Weatherability〕
The weather resistance of the fluorine-based resin film is as follows: Super UV tester SUV-W161 manufactured by Iwasaki Electric Co., Ltd., using a metal halide lamp with a wavelength of 295 to 450 nm as a light source in an atmosphere of 63 ° C. and 63% RH, and an illumination intensity of 1000 W The weather resistance test was conducted at / m 2 and an irradiation time of 100 hours (total irradiation amount of 360 MJ / m 2 for 100 hours), and the color difference (ΔE) on the film surface before and after irradiation was measured.
フッ素系樹脂フィルムの耐候性は、岩崎電気株式会社製スーパーUVテスターSUV-W161を使用して、温度63℃、63%RHの雰囲気中で、波長295~450nmのメタルハライドランプを光源とし、照度1000W/m2、照射時間100時間(100時間の総照射量360MJ/m2)にて耐候性試験を行い、照射前後のフィルム表面の色差(ΔE)を測定した。 〔Weatherability〕
The weather resistance of the fluorine-based resin film is as follows: Super UV tester SUV-W161 manufactured by Iwasaki Electric Co., Ltd., using a metal halide lamp with a wavelength of 295 to 450 nm as a light source in an atmosphere of 63 ° C. and 63% RH, and an illumination intensity of 1000 W The weather resistance test was conducted at / m 2 and an irradiation time of 100 hours (total irradiation amount of 360 MJ / m 2 for 100 hours), and the color difference (ΔE) on the film surface before and after irradiation was measured.
〔機械的特性(温度23℃におけるフィルムの破断強度)〕
フッ素系樹脂フィルムの機械的特性(温度23℃におけるフィルムの破断強度)は、JIS K7127に準拠し、フッ素系樹脂フィルムから縦方向(押出方向、すなわちMD方向)及び横方向(押出方向と直交する方向、すなわちTD方向)に平行に切り出した長さ50mm、幅10mmの短冊状フィルムを試験片として、株式会社オリエンテック製のテンシロンRTM-100を使用して、温度23℃(常温)で、引張速度200mm/分にて測定した。 [Mechanical properties (breaking strength of film at a temperature of 23 ° C.)]
The mechanical properties (breaking strength of the film at a temperature of 23 ° C.) of the fluororesin film are in accordance with JIS K7127, and are longitudinal (extrusion direction, that is, MD direction) and transverse direction (extrusion direction orthogonal to) from the fluororesin film. Direction, that is, TD direction), a strip-shaped film with a length of 50 mm and a width of 10 mm is used as a test piece, and Tensilon RTM-100 made by Orientec Co., Ltd. The measurement was performed at a speed of 200 mm / min.
フッ素系樹脂フィルムの機械的特性(温度23℃におけるフィルムの破断強度)は、JIS K7127に準拠し、フッ素系樹脂フィルムから縦方向(押出方向、すなわちMD方向)及び横方向(押出方向と直交する方向、すなわちTD方向)に平行に切り出した長さ50mm、幅10mmの短冊状フィルムを試験片として、株式会社オリエンテック製のテンシロンRTM-100を使用して、温度23℃(常温)で、引張速度200mm/分にて測定した。 [Mechanical properties (breaking strength of film at a temperature of 23 ° C.)]
The mechanical properties (breaking strength of the film at a temperature of 23 ° C.) of the fluororesin film are in accordance with JIS K7127, and are longitudinal (extrusion direction, that is, MD direction) and transverse direction (extrusion direction orthogonal to) from the fluororesin film. Direction, that is, TD direction), a strip-shaped film with a length of 50 mm and a width of 10 mm is used as a test piece, and Tensilon RTM-100 made by Orientec Co., Ltd. The measurement was performed at a speed of 200 mm / min.
〔光沢度〕
フッ素系樹脂フィルムの表面の光沢度は、JIS Z8741に準拠して、光沢計(日本電色工業株式会社製のVG2000)を用いて測定した。 [Glossiness]
The glossiness of the surface of the fluororesin film was measured using a gloss meter (VG2000 manufactured by Nippon Denshoku Industries Co., Ltd.) in accordance with JIS Z8741.
フッ素系樹脂フィルムの表面の光沢度は、JIS Z8741に準拠して、光沢計(日本電色工業株式会社製のVG2000)を用いて測定した。 [Glossiness]
The glossiness of the surface of the fluororesin film was measured using a gloss meter (VG2000 manufactured by Nippon Denshoku Industries Co., Ltd.) in accordance with JIS Z8741.
[実施例1]
PVDF〔株式会社クレハ製KF(登録商標)#850〕54質量部に対して、酸化チタン〔デユポン社製TI-PURE(登録商標)R101;ルチル型酸化チタン、平均粒径0.29μm、表面処理品〕30質量部、PMMA〔旭化成ケミカルズ株式会社製のデルパウダー(登録商標)70H〕12.65質量部、アクリル系エラストマー〔ローム&ハース社製パラロイド(登録商標)EXL-2315〕1.35質量部、炭酸カルシウム(竹原化学工業株式会社製のSL2500)1.5質量部、及び、ステアリン酸カルシウム(日東化成株式会社製)0.5質量部を二軸押出機に供給し、温度220℃で溶融混練し、ダイスからストランド状に溶融押出し、冷却後、カットして製膜用ペレットを得た。酸化チタンの含有量は、30質量%である。 [Example 1]
PVDF [Kureha Co., Ltd. KF (registered trademark) # 850] 54 parts by mass, titanium oxide [Dyupon TI-PURE (registered trademark) R101; rutile titanium oxide, average particle size 0.29 μm, surface treatment Product] 30 parts by mass, PMMA [Dell Powder (registered trademark) 70H manufactured by Asahi Kasei Chemicals Co., Ltd.] 12.65 parts by mass, acrylic elastomer [Rohm & Haas Paraloid (registered trademark) EXL-2315] 1.35 mass Part, 1.5 parts by mass of calcium carbonate (SL2500 manufactured by Takehara Chemical Industry Co., Ltd.) and 0.5 parts by mass of calcium stearate (manufactured by Nitto Kasei Co., Ltd.) are supplied to a twin screw extruder and melted at a temperature of 220 ° C. It knead | mixed, melt-extruded from the die | dye to the strand form, and after cooling, it cut and obtained the pellet for film forming. The content of titanium oxide is 30% by mass.
PVDF〔株式会社クレハ製KF(登録商標)#850〕54質量部に対して、酸化チタン〔デユポン社製TI-PURE(登録商標)R101;ルチル型酸化チタン、平均粒径0.29μm、表面処理品〕30質量部、PMMA〔旭化成ケミカルズ株式会社製のデルパウダー(登録商標)70H〕12.65質量部、アクリル系エラストマー〔ローム&ハース社製パラロイド(登録商標)EXL-2315〕1.35質量部、炭酸カルシウム(竹原化学工業株式会社製のSL2500)1.5質量部、及び、ステアリン酸カルシウム(日東化成株式会社製)0.5質量部を二軸押出機に供給し、温度220℃で溶融混練し、ダイスからストランド状に溶融押出し、冷却後、カットして製膜用ペレットを得た。酸化チタンの含有量は、30質量%である。 [Example 1]
PVDF [Kureha Co., Ltd. KF (registered trademark) # 850] 54 parts by mass, titanium oxide [Dyupon TI-PURE (registered trademark) R101; rutile titanium oxide, average particle size 0.29 μm, surface treatment Product] 30 parts by mass, PMMA [Dell Powder (registered trademark) 70H manufactured by Asahi Kasei Chemicals Co., Ltd.] 12.65 parts by mass, acrylic elastomer [Rohm & Haas Paraloid (registered trademark) EXL-2315] 1.35 mass Part, 1.5 parts by mass of calcium carbonate (SL2500 manufactured by Takehara Chemical Industry Co., Ltd.) and 0.5 parts by mass of calcium stearate (manufactured by Nitto Kasei Co., Ltd.) are supplied to a twin screw extruder and melted at a temperature of 220 ° C. It knead | mixed, melt-extruded from the die | dye to the strand form, and after cooling, it cut and obtained the pellet for film forming. The content of titanium oxide is 30% by mass.
得られたペレットを単軸押出機に供給して溶融状態にし、T型ダイから溶融樹脂を下方にフィルム状に吐出し、表面温度110℃に温度調整したキャストロールで溶融樹脂を接触固化させて厚み20μmのフィルム状に製膜して巻き取った。続いて、巻き取ったフィルムを表面温度140℃に温度調整した表1のNo.1に示すφ10cmの表面粗度Ra0.03μmの鏡面ロールと、表1のNo.7に示す弾性ロールとの間を押し付け力30N/mm、速度2m/分で通過させた。次いで、表面温度140℃に温度調整した表1のNo.2に示すφ10cmの表面粗度Ra0.89μm(サンドブラストで形成)のエンボスロールと、表1のNo.7に示す弾性ロールとの間を、押し付け力30N/mm、速度2m/分で通過させることにより、厚み20μmの酸化チタンを含有するPVDFフィルムを製造して紙管に巻き取った。巻き取りに際して、PVDFフィルムの巻き乱れや巻き崩れはみられなかった。得られた酸化チタンを含有するPVDFフィルムについて、エンボスロールと接触させた側のフィルムの表面について、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合〔TiO2の露出率(%)〕、摩擦試験前後のフィルム表面の色差(ΔE)〔以下、「摩擦試験色差(ΔE)」ということがある。〕、耐金属擦過性の評価結果(以下、「耐金属擦過性」ということがある。)、耐候性〔以下、「耐候性色差(ΔE)」ということがある。〕、機械的特性(温度23℃におけるフィルムの破断強度。以下、単に「破断強度」ということがある。)及び光沢度を測定した結果〔以下、これらを総称して、「諸特性」ということがある。〕を、ロールの組合せ(鏡面ロールとエンボスロールについて表示する。以下同様である。)とともに表2に示す。
The obtained pellets are supplied to a single screw extruder to be in a molten state, the molten resin is discharged from the T-shaped die downward into a film shape, and the molten resin is contact-solidified with a cast roll whose temperature is adjusted to 110 ° C. The film was formed into a film having a thickness of 20 μm and wound up. Then, No. of Table 1 which adjusted the temperature of the wound film to the surface temperature of 140 degreeC. No. 1 in Table 1 with a surface roughness Ra of 0.03 μm and a surface roughness Ra of 0.03 μm. 7 was passed between the elastic rolls shown in No. 7 at a pressing force of 30 N / mm and a speed of 2 m / min. Subsequently, No. of Table 1 which adjusted the surface temperature to 140 degreeC. No. 2 in Table 1 and an embossing roll having a surface roughness Ra of 0.89 μm (formed by sandblasting) of φ10 cm shown in FIG. A PVDF film containing titanium oxide having a thickness of 20 μm was produced by winding between an elastic roll shown in FIG. 7 at a pressing force of 30 N / mm and a speed of 2 m / min, and wound around a paper tube. During winding, the PVDF film was not disturbed or collapsed. About the PVDF film containing the obtained titanium oxide, the total ratio of the area of the titanium oxide where the surface is exposed to the area of the film with respect to the surface of the film on the side brought into contact with the embossing roll [TiO 2 exposure rate (%) ], Color difference (ΔE) on the film surface before and after the friction test [hereinafter, referred to as “friction test color difference (ΔE)”. ], Evaluation results of metal scratch resistance (hereinafter sometimes referred to as “metal scratch resistance”), weather resistance [hereinafter also referred to as “weather resistance color difference (ΔE)”. ], Mechanical properties (breaking strength of the film at a temperature of 23 ° C .; hereinafter, simply referred to as “breaking strength”) and results of measurement of gloss [hereinafter, these are collectively referred to as “characteristics”. There is. ] Are shown in Table 2 together with a combination of rolls (displayed with respect to a mirror surface roll and an embossing roll. The same applies hereinafter).
[実施例2]
エンボスロールを、表1のNo.3に示す表面粗度Ra2.11μmのエンボスロールに変更したことを除いて、実施例1と同様にして、酸化チタンを含有するPVDFフィルムを得た。得られた酸化チタンを含有するPVDFフィルムについての諸特性を、ロールの組合せとともに表2に示す。 [Example 2]
The embossing roll is designated as No. 1 in Table 1. A PVDF film containing titanium oxide was obtained in the same manner as in Example 1 except that the embossing roll had a surface roughness Ra of 2.11 μm shown in FIG. Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
エンボスロールを、表1のNo.3に示す表面粗度Ra2.11μmのエンボスロールに変更したことを除いて、実施例1と同様にして、酸化チタンを含有するPVDFフィルムを得た。得られた酸化チタンを含有するPVDFフィルムについての諸特性を、ロールの組合せとともに表2に示す。 [Example 2]
The embossing roll is designated as No. 1 in Table 1. A PVDF film containing titanium oxide was obtained in the same manner as in Example 1 except that the embossing roll had a surface roughness Ra of 2.11 μm shown in FIG. Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
[実施例3]
表1のNo.1に示す鏡面ロールと表1のNo.7に示す弾性ロールとの間を通過させなかったことを除いて、実施例2と同様にして、酸化チタンを含有するPVDFフィルムを得た。得られた酸化チタンを含有するPVDFフィルムについての諸特性を、ロールの組合せとともに表2に示す。 [Example 3]
No. in Table 1 No. 1 in Table 1 and the mirror surface roll shown in Table 1. A PVDF film containing titanium oxide was obtained in the same manner as in Example 2 except that it did not pass between the elastic rolls shown in FIG. Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
表1のNo.1に示す鏡面ロールと表1のNo.7に示す弾性ロールとの間を通過させなかったことを除いて、実施例2と同様にして、酸化チタンを含有するPVDFフィルムを得た。得られた酸化チタンを含有するPVDFフィルムについての諸特性を、ロールの組合せとともに表2に示す。 [Example 3]
No. in Table 1 No. 1 in Table 1 and the mirror surface roll shown in Table 1. A PVDF film containing titanium oxide was obtained in the same manner as in Example 2 except that it did not pass between the elastic rolls shown in FIG. Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
[実施例4]
エンボスロールを、表1のNo.4に示す表面粗度Ra4.22μmのエンボスロールに変更したことを除いて、実施例1と同様にして、酸化チタンを含有するPVDFフィルムを得た。得られた酸化チタンを含有するPVDFフィルムについての諸特性を、ロールの組合せとともに表2に示す。 [Example 4]
The embossing roll is designated as No. 1 in Table 1. A PVDF film containing titanium oxide was obtained in the same manner as in Example 1 except that the embossing roll had a surface roughness Ra of 4.22 μm shown in FIG. Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
エンボスロールを、表1のNo.4に示す表面粗度Ra4.22μmのエンボスロールに変更したことを除いて、実施例1と同様にして、酸化チタンを含有するPVDFフィルムを得た。得られた酸化チタンを含有するPVDFフィルムについての諸特性を、ロールの組合せとともに表2に示す。 [Example 4]
The embossing roll is designated as No. 1 in Table 1. A PVDF film containing titanium oxide was obtained in the same manner as in Example 1 except that the embossing roll had a surface roughness Ra of 4.22 μm shown in FIG. Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
[実施例5]
表1のNo.1に示す鏡面ロールと表1のNo.7に示す弾性ロールとの間を通過させなかったことを除いて、実施例4と同様にして、酸化チタンを含有するPVDFフィルムを得た。得られた酸化チタンを含有するPVDFフィルムについての諸特性を、ロールの組合せとともに表2に示す。 [Example 5]
No. in Table 1 No. 1 in Table 1 and the mirror surface roll shown in Table 1. A PVDF film containing titanium oxide was obtained in the same manner as in Example 4 except that it did not pass between the elastic rolls shown in FIG. Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
表1のNo.1に示す鏡面ロールと表1のNo.7に示す弾性ロールとの間を通過させなかったことを除いて、実施例4と同様にして、酸化チタンを含有するPVDFフィルムを得た。得られた酸化チタンを含有するPVDFフィルムについての諸特性を、ロールの組合せとともに表2に示す。 [Example 5]
No. in Table 1 No. 1 in Table 1 and the mirror surface roll shown in Table 1. A PVDF film containing titanium oxide was obtained in the same manner as in Example 4 except that it did not pass between the elastic rolls shown in FIG. Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
[実施例6]
エンボスロールを、表1のNo.5に示す表面粗度Ra6.10μmのエンボスロールに変更したことを除いて、実施例1と同様にして、酸化チタンを含有するPVDFフィルムを得た。得られた酸化チタンを含有するPVDFフィルムについての諸特性を、ロールの組合せとともに表2に示す。 [Example 6]
The embossing roll is designated as No. 1 in Table 1. A PVDF film containing titanium oxide was obtained in the same manner as in Example 1 except that the embossing roll had a surface roughness Ra of 6.10 μm shown in FIG. Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
エンボスロールを、表1のNo.5に示す表面粗度Ra6.10μmのエンボスロールに変更したことを除いて、実施例1と同様にして、酸化チタンを含有するPVDFフィルムを得た。得られた酸化チタンを含有するPVDFフィルムについての諸特性を、ロールの組合せとともに表2に示す。 [Example 6]
The embossing roll is designated as No. 1 in Table 1. A PVDF film containing titanium oxide was obtained in the same manner as in Example 1 except that the embossing roll had a surface roughness Ra of 6.10 μm shown in FIG. Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
[実施例7]
表1のNo.1に示す鏡面ロールと表1のNo.7に示す弾性ロールとの間を通過させなかったことを除いて、実施例6と同様にして、酸化チタンを含有するPVDFフィルムを得た。得られた酸化チタンを含有するPVDFフィルムについての諸特性を、ロールの組合せとともに表2に示す。 [Example 7]
No. in Table 1 No. 1 in Table 1 and the mirror surface roll shown in Table 1. A PVDF film containing titanium oxide was obtained in the same manner as in Example 6 except that it did not pass between the elastic rolls shown in FIG. Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
表1のNo.1に示す鏡面ロールと表1のNo.7に示す弾性ロールとの間を通過させなかったことを除いて、実施例6と同様にして、酸化チタンを含有するPVDFフィルムを得た。得られた酸化チタンを含有するPVDFフィルムについての諸特性を、ロールの組合せとともに表2に示す。 [Example 7]
No. in Table 1 No. 1 in Table 1 and the mirror surface roll shown in Table 1. A PVDF film containing titanium oxide was obtained in the same manner as in Example 6 except that it did not pass between the elastic rolls shown in FIG. Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
[実施例8]
エンボスロールを、表1のNo.6に示す表面粗度Ra8.93μmのエンボスロールに変更したことを除いて、実施例1と同様にして、酸化チタンを含有するPVDFフィルムを得た。得られた酸化チタンを含有するPVDFフィルムについての諸特性を、ロールの組合せとともに表2に示す。 [Example 8]
The embossing roll is designated as No. 1 in Table 1. A PVDF film containing titanium oxide was obtained in the same manner as in Example 1 except that the embossing roll had a surface roughness Ra of 8.93 μm shown in FIG. Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
エンボスロールを、表1のNo.6に示す表面粗度Ra8.93μmのエンボスロールに変更したことを除いて、実施例1と同様にして、酸化チタンを含有するPVDFフィルムを得た。得られた酸化チタンを含有するPVDFフィルムについての諸特性を、ロールの組合せとともに表2に示す。 [Example 8]
The embossing roll is designated as No. 1 in Table 1. A PVDF film containing titanium oxide was obtained in the same manner as in Example 1 except that the embossing roll had a surface roughness Ra of 8.93 μm shown in FIG. Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
[実施例9]
表1のNo.1に示す鏡面ロールと表1のNo.7に示す弾性ロールとの間を通過させなかったことを除いて、実施例8と同様にして、酸化チタンを含有するPVDFフィルムを得た。得られた酸化チタンを含有するPVDFフィルムについての諸特性を、ロールの組合せとともに表2に示す。 [Example 9]
No. in Table 1 No. 1 in Table 1 and the mirror surface roll shown in Table 1. A PVDF film containing titanium oxide was obtained in the same manner as in Example 8 except that it did not pass between the elastic rolls shown in FIG. Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
表1のNo.1に示す鏡面ロールと表1のNo.7に示す弾性ロールとの間を通過させなかったことを除いて、実施例8と同様にして、酸化チタンを含有するPVDFフィルムを得た。得られた酸化チタンを含有するPVDFフィルムについての諸特性を、ロールの組合せとともに表2に示す。 [Example 9]
No. in Table 1 No. 1 in Table 1 and the mirror surface roll shown in Table 1. A PVDF film containing titanium oxide was obtained in the same manner as in Example 8 except that it did not pass between the elastic rolls shown in FIG. Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
[実施例10]
実施例1において使用したペレットを単軸押出機に供給して溶融状態にし、T型ダイから溶融樹脂を下方にフィルム状に吐出し、表面温度110℃に温度調整した冷却ロール(キャストロール)とニップロール(シリコーンゴム製)との間に挟んで溶融樹脂を接触固化させながら表面加工することによって、厚み20μmのフィルムを速度6m/分で製膜して巻き取った。得られた酸化チタンを含有するPVDFフィルムについての諸特性を、ロールの組合せとともに表2に示す。 [Example 10]
The pellet used in Example 1 is supplied to a single screw extruder to be in a molten state, a molten resin is discharged from the T-shaped die downward in a film form, and a cooling roll (cast roll) whose temperature is adjusted to a surface temperature of 110 ° C. A film having a thickness of 20 μm was formed at a speed of 6 m / min and wound up by subjecting the surface to a nip roll (made of silicone rubber) and subjecting the molten resin to contact solidification. Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
実施例1において使用したペレットを単軸押出機に供給して溶融状態にし、T型ダイから溶融樹脂を下方にフィルム状に吐出し、表面温度110℃に温度調整した冷却ロール(キャストロール)とニップロール(シリコーンゴム製)との間に挟んで溶融樹脂を接触固化させながら表面加工することによって、厚み20μmのフィルムを速度6m/分で製膜して巻き取った。得られた酸化チタンを含有するPVDFフィルムについての諸特性を、ロールの組合せとともに表2に示す。 [Example 10]
The pellet used in Example 1 is supplied to a single screw extruder to be in a molten state, a molten resin is discharged from the T-shaped die downward in a film form, and a cooling roll (cast roll) whose temperature is adjusted to a surface temperature of 110 ° C. A film having a thickness of 20 μm was formed at a speed of 6 m / min and wound up by subjecting the surface to a nip roll (made of silicone rubber) and subjecting the molten resin to contact solidification. Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
[比較例1]
T型ダイから吐出し、キャストロールで溶融樹脂を接触固化させてフィルム状に製膜して巻き取った酸化チタンを含有するPVDFフィルムを、鏡面ロールとエンボスロールを使用することなく、そのまま巻き出した酸化チタンを含有するPVDFフィルムについての諸特性を表2に示す。 [Comparative Example 1]
A PVDF film containing titanium oxide, discharged from a T-die and contacted and solidified with a cast roll, formed into a film and wound up, is unwound as it is without using a mirror roll and an emboss roll. Table 2 shows various properties of the PVDF film containing titanium oxide.
T型ダイから吐出し、キャストロールで溶融樹脂を接触固化させてフィルム状に製膜して巻き取った酸化チタンを含有するPVDFフィルムを、鏡面ロールとエンボスロールを使用することなく、そのまま巻き出した酸化チタンを含有するPVDFフィルムについての諸特性を表2に示す。 [Comparative Example 1]
A PVDF film containing titanium oxide, discharged from a T-die and contacted and solidified with a cast roll, formed into a film and wound up, is unwound as it is without using a mirror roll and an emboss roll. Table 2 shows various properties of the PVDF film containing titanium oxide.
[比較例2]
表1のNo.1に示す鏡面ロールと、表1のNo.7に示す弾性ロールとの間を通過させた後に、表1のNo.2に示すエンボスロールと表1のNo.7に示す弾性ロールとの間を通過させなかったことを除いて、実施例1と同様にして、酸化チタンを含有するPVDFフィルムを得た。得られた酸化チタンを含有するPVDFフィルムについての諸特性を、ロールの組合せとともに表2に示す。 [Comparative Example 2]
No. in Table 1 No. 1 in the mirror surface roll shown in Table 1 and Table 1. After passing between the elastic rolls shown in FIG. No. 2 in Table 1 and the embossing roll shown in Table 1. A PVDF film containing titanium oxide was obtained in the same manner as in Example 1 except that it did not pass between the elastic rolls shown in FIG. Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
表1のNo.1に示す鏡面ロールと、表1のNo.7に示す弾性ロールとの間を通過させた後に、表1のNo.2に示すエンボスロールと表1のNo.7に示す弾性ロールとの間を通過させなかったことを除いて、実施例1と同様にして、酸化チタンを含有するPVDFフィルムを得た。得られた酸化チタンを含有するPVDFフィルムについての諸特性を、ロールの組合せとともに表2に示す。 [Comparative Example 2]
No. in Table 1 No. 1 in the mirror surface roll shown in Table 1 and Table 1. After passing between the elastic rolls shown in FIG. No. 2 in Table 1 and the embossing roll shown in Table 1. A PVDF film containing titanium oxide was obtained in the same manner as in Example 1 except that it did not pass between the elastic rolls shown in FIG. Various characteristics of the obtained PVDF film containing titanium oxide are shown in Table 2 together with combinations of rolls.
表2から、酸化チタンを15~50質量%含有するフッ素系樹脂フィルムであって、該フィルムの少なくとも一方の表面は、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合が3.2%以下(面積比)である実施例1~10のフッ素系樹脂フィルムは、摩擦試験色差(ΔE)が0.7~2.9であることから耐金属擦過性の評価がS(優れる)またはA(良好)であることが分かった。また、実施例1~10のフッ素系樹脂フィルムは、耐候性があり優れた機械的特性を有し、更に実施例1~9のフッ素系樹脂フィルムは、所望される場合がある艶消し状の光沢度を有することが分かった。
From Table 2, it is a fluororesin film containing 15 to 50% by mass of titanium oxide, and at least one surface of the film has a total ratio of the area of titanium oxide with the surface exposed to the area of the film of 3. The fluororesin films of Examples 1 to 10 having an area ratio of 2% or less have a friction test color difference (ΔE) of 0.7 to 2.9, and thus the evaluation of metal scratch resistance is S (excellent). Or it turned out that it is A (good). Further, the fluorine resin films of Examples 1 to 10 have weather resistance and excellent mechanical properties, and the fluorine resin films of Examples 1 to 9 have a matte shape that may be desired. It was found to have a glossiness.
これに対して、酸化チタンを15~50質量%含有するフッ素系樹脂フィルムであって、該フィルムの表面は、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合が5.4%(面積比)または3.3%(面積比)である比較例1と比較例2のフッ素系樹脂フィルムは、摩擦試験色差(ΔE)が14.1または5.7であることから耐金属擦過性の評価がC(悪い)またはB(やや劣る)であることが分かった。
On the other hand, it is a fluororesin film containing 15 to 50% by mass of titanium oxide, and the surface of the film has a total ratio of 5.4% of the area of titanium oxide to which the surface is exposed to the area of the film. Since the fluororesin films of Comparative Example 1 and Comparative Example 2 having an area ratio of 3.3% (area ratio) have a friction test color difference (ΔE) of 14.1 or 5.7, they are resistant to metal abrasion. It was found that the evaluation of sex was C (bad) or B (slightly inferior).
本発明によれば、酸化チタンを15~50質量%含有するフッ素系樹脂フィルムであって、該フィルムの少なくとも一方の表面は、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合が3.2%以下であることを特徴とする前記のフッ素系樹脂フィルムであることにより、耐候性や機械的特性等に優れ、かつ、金属との接触で生じる金属粉や金属片の付着による擦過跡が形成されにくい、太陽電池モジュール用バックシートに適したPVDFフィルムを始めとするフッ素系樹脂フィルム、並びに、該フッ素系樹脂フィルムからなる層を備える積層体、及び、太陽電池モジュール用バックシートが提供されるので、産業上の利用可能性が高い。
According to the present invention, there is provided a fluororesin film containing 15 to 50% by mass of titanium oxide, and at least one surface of the film has a total ratio of the area of titanium oxide where the surface is exposed to the area of the film. 3.2% or less The above-mentioned fluororesin film is excellent in weather resistance, mechanical properties, and the like, and is abraded due to adhesion of metal powder or metal pieces generated by contact with metal. A fluorine resin film including a PVDF film suitable for a back sheet for a solar cell module, in which traces are hardly formed, a laminate including a layer made of the fluorine resin film, and a back sheet for a solar cell module Since it is provided, the industrial applicability is high.
1: 表面保護材
2: 封止材
3: 太陽電池セル
4: 裏面保護材(バックシート) 1: Surface protective material 2: Sealing material 3: Solar cell 4: Back surface protective material (back sheet)
2: 封止材
3: 太陽電池セル
4: 裏面保護材(バックシート) 1: Surface protective material 2: Sealing material 3: Solar cell 4: Back surface protective material (back sheet)
Claims (10)
- 酸化チタンを15~50質量%含有するフッ素系樹脂フィルムであって、
該フィルムの少なくとも一方の表面は、フィルムの面積に対する、表面が露出する酸化チタンの面積の合計割合が3.2%以下であることを特徴とする
前記のフッ素系樹脂フィルム。 A fluorine-based resin film containing 15 to 50% by mass of titanium oxide,
At least one surface of the film is characterized in that the total proportion of the area of the titanium oxide from which the surface is exposed to the area of the film is 3.2% or less. - フッ素系樹脂フィルムを形成するフッ素系樹脂がポリフッ化ビニリデン樹脂である請求項1記載のフッ素系樹脂フィルム。 The fluororesin film according to claim 1, wherein the fluororesin forming the fluororesin film is a polyvinylidene fluoride resin.
- フッ素系樹脂が、フッ化ビニリデン単独重合体、及び、コモノマーの共重合比率が15モル%以下であるフッ化ビニリデン共重合体からなる群より選ばれる少なくとも一種の樹脂である請求項1または2記載のフッ素系樹脂フィルム。 The fluororesin is at least one resin selected from the group consisting of a vinylidene fluoride homopolymer and a vinylidene fluoride copolymer having a comonomer copolymerization ratio of 15 mol% or less. Fluorine-based resin film.
- 酸化チタンが、ルチル型結晶形を有する酸化チタンである請求項1乃至3のいずれか1項に記載のフッ素系樹脂フィルム。 The fluorine resin film according to any one of claims 1 to 3, wherein the titanium oxide is a titanium oxide having a rutile crystal form.
- 他の熱可塑性樹脂を、25質量%以下の割合で更に含有する請求項1記載のフッ素系樹脂フィルム。 2. The fluororesin film according to claim 1, further comprising another thermoplastic resin in a proportion of 25% by mass or less.
- 他の熱可塑性樹脂が、ポリメタクリル酸メチルである請求項5記載のフッ素系樹脂フィルム。 6. The fluororesin film according to claim 5, wherein the other thermoplastic resin is polymethyl methacrylate.
- 酸化チタンを15~50質量%含有するフッ素系樹脂を、押出成形によってフィルムを製造した後にエンボス加工する請求項1乃至6のいずれか1項に記載のフッ素系樹脂フィルムの製造方法。 The method for producing a fluororesin film according to any one of claims 1 to 6, wherein a fluororesin containing 15 to 50% by mass of titanium oxide is embossed after the film is produced by extrusion molding.
- 酸化チタンを15~50質量%含有するフッ素系樹脂を、押出成形によってフィルムを製造すると同時に表面加工する請求項1乃至6のいずれか1項に記載のフッ素系樹脂フィルムの製造方法。 The method for producing a fluorine resin film according to any one of claims 1 to 6, wherein the fluorine resin containing 15 to 50% by mass of titanium oxide is subjected to surface treatment at the same time as the film is produced by extrusion molding.
- 請求項1乃至6のいずれか1項に記載のフッ素系樹脂フィルムからなる層を備える積層体。 A laminate comprising a layer made of the fluororesin film according to any one of claims 1 to 6.
- 請求項1乃至6のいずれか1項に記載のフッ素系樹脂フィルムからなる層を備える太陽電池モジュール用バックシート。 A solar cell module backsheet comprising a layer made of the fluororesin film according to any one of claims 1 to 6.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-041341 | 2014-03-04 | ||
JP2014041341A JP2015166427A (en) | 2014-03-04 | 2014-03-04 | Fluororesin film, production method of the same, laminate, and back sheet for solar cell module |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015133399A1 true WO2015133399A1 (en) | 2015-09-11 |
Family
ID=54055206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/055856 WO2015133399A1 (en) | 2014-03-04 | 2015-02-27 | Fluorine resin film, method for producing same, laminate, and back sheet for solar cell module |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015166427A (en) |
WO (1) | WO2015133399A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022093318A (en) * | 2020-12-11 | 2022-06-23 | グンゼ株式会社 | Fluororesin film and method for producing fluororesin film |
WO2024049291A1 (en) | 2022-08-31 | 2024-03-07 | Optimus Sorter Holding B.V. | A conveyor system for transporting items from a receiving section to an outlet section |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001072779A (en) * | 1999-09-06 | 2001-03-21 | Denki Kagaku Kogyo Kk | Fluororesin film for stainproofing |
WO2010067803A1 (en) * | 2008-12-08 | 2010-06-17 | 旭硝子株式会社 | Fluorine resin film and use thereof |
WO2010122936A1 (en) * | 2009-04-20 | 2010-10-28 | 株式会社クレハ | Polyvinylidene fluoride resin composition, white resin film, and backsheet for solar cell module |
WO2012172876A1 (en) * | 2011-06-15 | 2012-12-20 | 株式会社クレハ | Polyvinylidene fluoride resin film, multilayer film, backsheet for solar cell module, and film manufacturing process |
WO2013069493A1 (en) * | 2011-11-10 | 2013-05-16 | 電気化学工業株式会社 | Fluorine-containing resin film and solar cell module |
WO2014021436A1 (en) * | 2012-08-02 | 2014-02-06 | 旭硝子株式会社 | Resin film, backsheet for solar cell module, and solar cell module |
WO2014077133A1 (en) * | 2012-11-15 | 2014-05-22 | 電気化学工業株式会社 | Fluorinated resin film, method for producing same, and solar cell module |
-
2014
- 2014-03-04 JP JP2014041341A patent/JP2015166427A/en active Pending
-
2015
- 2015-02-27 WO PCT/JP2015/055856 patent/WO2015133399A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001072779A (en) * | 1999-09-06 | 2001-03-21 | Denki Kagaku Kogyo Kk | Fluororesin film for stainproofing |
WO2010067803A1 (en) * | 2008-12-08 | 2010-06-17 | 旭硝子株式会社 | Fluorine resin film and use thereof |
WO2010122936A1 (en) * | 2009-04-20 | 2010-10-28 | 株式会社クレハ | Polyvinylidene fluoride resin composition, white resin film, and backsheet for solar cell module |
WO2012172876A1 (en) * | 2011-06-15 | 2012-12-20 | 株式会社クレハ | Polyvinylidene fluoride resin film, multilayer film, backsheet for solar cell module, and film manufacturing process |
WO2013069493A1 (en) * | 2011-11-10 | 2013-05-16 | 電気化学工業株式会社 | Fluorine-containing resin film and solar cell module |
WO2014021436A1 (en) * | 2012-08-02 | 2014-02-06 | 旭硝子株式会社 | Resin film, backsheet for solar cell module, and solar cell module |
WO2014077133A1 (en) * | 2012-11-15 | 2014-05-22 | 電気化学工業株式会社 | Fluorinated resin film, method for producing same, and solar cell module |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022093318A (en) * | 2020-12-11 | 2022-06-23 | グンゼ株式会社 | Fluororesin film and method for producing fluororesin film |
JP7350413B2 (en) | 2020-12-11 | 2023-09-26 | グンゼ株式会社 | Fluororesin film and method for producing fluororesin film |
WO2024049291A1 (en) | 2022-08-31 | 2024-03-07 | Optimus Sorter Holding B.V. | A conveyor system for transporting items from a receiving section to an outlet section |
NL2032921B1 (en) | 2022-08-31 | 2024-03-15 | Optimus Sorter Holding B V | A conveyor system for transporting items from a receiving section to an outlet section |
Also Published As
Publication number | Publication date |
---|---|
JP2015166427A (en) | 2015-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5871922B2 (en) | Polyvinylidene fluoride resin film, multilayer film, back sheet for solar cell module, and method for producing film | |
JP5593309B2 (en) | Polyvinylidene fluoride resin composition, white resin film, and back sheet for solar cell module | |
JP5482661B2 (en) | Back sheet for solar cell module | |
JP5628054B2 (en) | Polyvinylidene fluoride resin composition, colored resin film, and back sheet for solar cell module | |
TWI554399B (en) | Environmentally friendly backsheet for solar cell and method of manufacturing the same | |
CN103958192A (en) | Back-protective sheet for solar cell module and solar cell module using same | |
KR20100119879A (en) | High efficiency photovoltaic modules | |
CN102027050B (en) | Polychlorotrifluoroethylene film and backside protective sheet for solar cell | |
WO2015114983A1 (en) | Fluorine-based resin composition, resin film, laminate and back sheet for solar cell modules | |
WO2015133399A1 (en) | Fluorine resin film, method for producing same, laminate, and back sheet for solar cell module | |
JP6200131B2 (en) | Polymer sheet, back surface protection sheet for solar cell, and solar cell module | |
KR101293898B1 (en) | Backsheet for solar cell having high reflectivity | |
CN113905888B (en) | Fluorine-containing sheet and laminated steel sheet comprising same | |
TWI550010B (en) | Fluororesin film and solar cell module | |
KR20140059185A (en) | Polymer sheet for solar cells and solar cell module | |
KR101399422B1 (en) | MONO-LAYER PVdF FILM AND PREPARATION METHOD THEREOF | |
KR101275850B1 (en) | MONO-LAYER PVdF FILM AND PREPARATION METHOD THEREOF | |
JP5562889B2 (en) | LAMINATED FILM, SOLAR CELL BACK SHEET, AND METHOD FOR PRODUCING LAMINATED FILM | |
JP2016167506A (en) | Vinylidene fluoride polymer composition for back sheet of solar cell module, resin film, laminate, and back sheet of solar cell module | |
WO2016143549A1 (en) | Vinylidene fluoride polymer composition, polymer film, layered body, and back sheet for solar cell module | |
WO2021215402A1 (en) | Film and method for manufacturing same | |
KR101521614B1 (en) | Colored polyvinylidene fluoride-based film having an improved chemical-resistance and opacity property | |
WO2023099974A1 (en) | Semi-fluorinated thermoplastic copolymers and passive cooling articles including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15759036 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15759036 Country of ref document: EP Kind code of ref document: A1 |