WO2016142568A1 - Análogos de ferruginol como agentes antivirales - Google Patents

Análogos de ferruginol como agentes antivirales Download PDF

Info

Publication number
WO2016142568A1
WO2016142568A1 PCT/ES2016/070164 ES2016070164W WO2016142568A1 WO 2016142568 A1 WO2016142568 A1 WO 2016142568A1 ES 2016070164 W ES2016070164 W ES 2016070164W WO 2016142568 A1 WO2016142568 A1 WO 2016142568A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
ferruginol
hhv
antiviral
Prior art date
Application number
PCT/ES2016/070164
Other languages
English (en)
French (fr)
Inventor
Miguel Ángel GONZÁLEZ CARDENETE
Liliana Amparo BETANCUR GALVIS
Original Assignee
Universitat De València Estudi General
Universidad De Antioquía
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat De València Estudi General, Universidad De Antioquía filed Critical Universitat De València Estudi General
Publication of WO2016142568A1 publication Critical patent/WO2016142568A1/es
Priority to CONC2017/0009515A priority Critical patent/CO2017009515A2/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/05Phenols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/17Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings containing other rings in addition to the six-membered aromatic rings, e.g. cyclohexylphenol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to antiviral compounds derived from abietans, specifically ferruginol analog compounds, for use against viruses of the Flaviviridae and Herpesviridae families, mainly against the various dengue virus serotypes (DENV 1-4) and human herpesviruses type 1 (HHV-1) and type 2 (HHV-2).
  • viruses of the Flaviviridae and Herpesviridae families mainly against the various dengue virus serotypes (DENV 1-4) and human herpesviruses type 1 (HHV-1) and type 2 (HHV-2).
  • Dengue virus is a virus wrapped on the surface of which is the envelope protein (E) which acts as a ligand to bind to cell receptors during cell infection. Its genome is a simple RNA chain, which codes for a single polyprotein that, after being olivized by viral and cellular proteases, will give rise to 3 structural and 7 non-structural proteins important for the replicative process. To date, four serotypes have been described (DENV-1 to DENV-4).
  • DENV is transmitted by female mosquitoes of the genus Aedes (aegypty and albopictus species). Epidemiologically it is the most abundant arbovirosis around the world, since they are circulating with less and less ecological restrictions, both the virus and the vector, in more than one hundred countries in the tropical belt and close to the tropics, both in the Old and New World; causing a wide spectrum of clinical manifestations, ranging from dengue with or without alarm signs to severe dengue, which can be fatal because it alters capillary permeability and induces plasma extravasation. In addition, there are reports of the disease with unusual manifestations, such as cardiomyopathy, liver failure and neurological disorders.
  • Human herpesviruses type 1 and type 2 (HHV-1 and HHV-2), are viruses wrapped with double-stranded DNA, which produce lesions mainly at the level of the oral and genital cavity; additionally, they exert latency in sensory neurons, causing periods of reactivation of the infection throughout the host's life. Although this disease and its recurrences are usually self-limited in immunocompetent individuals, some severe complications can occur frequently, such as keratoconjunctivitis, meningitis and encephalitis, particularly in newborns and immunocompromised individuals such as transplanted and immunodeficient individuals.
  • herpes may occur in an unusual manner and with a higher recurrence rate; In these individuals the appearance of herpetic vesicles is a cofactor for the transmission of the human immunodeficiency virus (HIV), given the exposure of the skin when the herpetic vesicles are broken. It is known that there is a synergism between HHV and HIV (Nagot et al., 2007). Of the human herpesviruses, HHV-2 is the most common causative agent of genital ulcers in the world, which is detected in 60-90% of people living with the Human Immunodeficiency Virus / Acquired Immune Deficiency Syndrome (HIV / AIDS).
  • HIV Human Immunodeficiency virus
  • HHV-2 infection may increase susceptibility to HIV-1 infection.
  • proteins encoded by HHV-2 bind to integrated HIV-1 DNA in coinfected cells and promote direct transcription of HIV-1
  • asymptomatic or symptomatic reactivation of HHV-2 causes an increase in viral load in blood and genital tract of HIV-1 (Schacker et al., 2002); Additionally, the risk of HIV-1 transmission is increased 4 times in people with symptomatic genital ulcer disease caused by HHV-2.
  • HHV-2 therapy for 8-12 weeks significantly reduces HIV-1 viral load levels by 2.5 to 5 copies / ml_ (Nagot et al., 2007).
  • CD4 T cells that infiltrate the site of the HHV lesion have a high expression of CCR5, in the proximity of dendritic cells expressing CD123, a receptor capable of transferring the HIV virus to healthy CD4 T cells. This could represent a greater local replication of HIV and a risk for its systemic dissemination, which may depend on the extent and duration of local inflammation caused by the patient's immunity.
  • the Human Immunodeficiency virus in addition, is capable of modifying the form of presentation of herpetic infections, resulting in the appearance of unclassical clinical modalities. (Nagot et al., 2007).
  • the interaction between HHV-1 and HHV-2 viruses and HIV-1 constitutes a major health problem for our countries and for the world, because they could increase the incidence of AIDS from cases infected with human herpesviruses.
  • antiherpetic treatment can accelerate the healing process, reduce pain and delay or prevent recurrent outbreaks.
  • the treatment is used only during the outbreak. This is called “episodic therapy.”
  • outbreaks are often very frequent and require long-term treatment to prevent recurrences. This is called “suppressive therapy.”
  • AISMED herpes
  • Acyclovir It has been studied and used for many years as a treatment for oral and genital herpes and has been shown to be safe and effective. Acyclovir is available in topical creams, pills and in an intravenous formulation. Most experts agree that the cream is not very effective and that the pills are better for mild to moderate outbreaks, or for long-term suppressive therapy. Intravenous acyclovir is used to treat severe outbreaks or for episodes in which internal organs are affected (especially HHV infection in the central nervous system). The oral dose used to treat outbreaks is 400 mg three to four times a day, usually for 7 to 10 days.
  • This dose can be doubled if the herpetic vesicles do not respond to treatment. Taking 400 mg of the medication three times a day or 800 mg of the medication twice a day, for longer periods of time, could prevent the reactivation of outbreaks. But usually, this is recommended only in patients who have a history of frequent reactivations. People who receive intravenous acyclovir should have renal function checked at least once a week during intravenous treatment.
  • Valaciclovir is a "pro-drug" of Acyclovir and has been specifically approved for the treatment of herpes in HIV positive people. Unlike acyclovir, valacyclovir needs to be processed in the cell by the enzyme valacyclovir hydroxylase that transforms it into acyclovir and valine, to generate its active ingredient (acyclovir) (Li et al., 2008). This causes larger amounts of acyclovir to be present at the site of action that is intracellular, thus allowing a lower oral dose (by mouth), during medication. For mild to moderate herpetic outbreaks, valacyclovir is taken by mouth only once a day (1000 mg every day).
  • valacyclovir For episodic therapy, valacyclovir is taken for 7 to 10 days. However, the medicine can be taken every day for a longer time, using half the dose needed to treat the outbreaks (500 mg every day). As with acyclovir, valacyclovir rarely causes side effects.
  • Penciclovir It is a guanosine analogue antiviral drug used for the treatment of various herpesvirus infections, it has low toxicity and good selectivity. Because penciclovir is poorly absorbed when administered orally, it is used more as a topical treatment, and is the active ingredient in cold sore medications - Denavir (NDC 0135-0315-52), Vectavir and Fenivir. Famciclovir is a prodrug of penciclovir with improved oral bioavailability. (Mansfield Dale, 2005)
  • Famciclovir (Famvir): It is an active antiviral drug by mouth. It is the 6-deoxylated analogue of penciclovir that is used topically and intravenously. Usually, 500 mg of the medication is taken orally for 7 to 10 days. The daily dose of 250 mg taken for longer periods of time is considered safe and effective as a preventive therapy for the reactivation of herpetic outbreaks (Patel, 2002; Mansfield Dale, 2005).
  • herpetic outbreaks do not respond to acyclovir, valacyclovir, or famciclovir, probably due to the development of drug-resistant forms of HHV-1 and HHV-2. It has been seen that HIV positive patients with a weakened immune system (usually with a T-cell count less than 100), who have received long-term acyclovir for the treatment and prevention of reactivation of herpetic outbreaks, develop resistance to Herpes medications Because acyclovir is similar to valacyclovir and famciclovir, simply switching to either of these two medications is generally not effective.
  • foscarnet which is the conjugate base of HOOC-PO3H2 phosphonoformic acid
  • IV intravenously
  • herpes and dengue viruses require components of the cytoskeleton, such as actin microtubules and microfilaments during various stages of their replicative cycle (mainly at the entrance, transport and release of viral particles) it is possible that the ferruginol analogs reported in The present invention 1 and 2 induce the disruption of these cellular pathways involved in viral propagation.
  • Lin et al. (Lin et al., 201 1) reported that chebulgic acid and punicalagina, two hydrolysable tannins isolated from Terminalia chebula (Combretaceae), inhibit HHV-1 cell-to-cell dissemination, verified 24 hours after treatment using a fluorescent plate assay in the presence of anti-HHV-1 neutralizing antibodies.
  • Lin et al. (Lin et al., 201 1) reported that chebulgic acid and punicalagina, two hydrolysable tannins isolated from Terminalia chebula (Combretaceae), inhibit HHV-1 cell-to-cell dissemination, verified 24 hours after treatment using a fluorescent plate assay in the presence of anti-HHV-1 neutralizing antibodies.
  • Ekblad et al. Antivir. Chem. Chemother.
  • Diterpenoid abietanos are widely distributed in the plant kingdom presenting a wide range of biological activities.
  • Ferruginol a diterpenoid phenol isolated from plants belonging to the Podocarpaceae, Cupressaceae, Lamiaceae and Verbenaceae families, exhibits a broad spectrum of biological activities, such as antibacterial, antifungal and antimicrobial, acaricidal, cardioactive, antioxidant, antiplasmodium, antileishmania and nematicide (González et al., 2012), anticancer, immunomodulator (Takei et al., 2005), anti- / Acanf 7 amoe£> a (Kuzma et al., 2015), antimalaric and antiulcer (González et al., 2014), among other.
  • the present invention describes the antiviral activity: anti-DENV and anti-herpetic activity, both in strains resistant to existing treatments such as acivlovir (ACV) and ACV sensitive; taking into account that HHV cause infection at the skin and mucous level; hence, with the abietano-type derivatives, pharmaceutical forms such as topical creams and gels with anti-herpetic activity can be prepared. Similarly, systemic pharmaceutical forms can be created to treat both viruses, specifically dengue virus.
  • the present invention aims to find new antiviral candidates that act on cellular and / or molecular targets instead of acting on virus-specific structural and non-structural viral proteins, so that their action against the virus does not depend on mutability.
  • the abietanos derivatives synthesized from dehydroabyethylamine of the invention have excellent activity against dengue serotype virus 2 (DENV-2) and against human herpesviruses type 1 (HHV-1) and 2 (HHV-2).
  • DENV-2 dengue serotype virus 2
  • HHV-1 and 2 HHV-2
  • the most active compounds have an action on the viral cycle in post-infective stages, and due to the dramatic reduction in the size of lysis plaques, its effect is considered to be related to the alteration of some cellular mechanism involved in dissemination. of infection to neighboring cells.
  • the present invention relates firstly to a compound, ferruginol analogue, of formula (I)
  • R 1 , R 2 R 3 and X can independently have the following meaning: - R 1 can be CH 2 -phthalimido, CH 2 -succinimido, CH 2 -maleimido, CH 2 -NHCOCH 3 , CH 2 - NHCOCFs, CHO, CH 2 OH, (Ci-Ce) carboxy ester, CH 3 and where R 1 can have any stereochemistry,
  • R 2 may be H, OH, F, Cl, Br, N0 2 , NH 2 , (Ci-C 6 ) alkylamino, di (Ci-C 6 ) alkylamino, (Ci-C6) alkylamide, di (Ci-C6 ) alkylamide,
  • - R 3 can be H, OH,
  • - X may be H 2 , O, OH, NOH, where X may have any stereochemistry in the appropriate case, such as when it is OH, including any stereoisomer, such as epimers and isomers in position 4, with the proviso that no the conditions that give rise to the following compounds are met:
  • the compounds, ferruginol analogs, of formula (I) are useful as an antiviral drug against enveloped viruses.
  • the compounds, ferruginol analogs, of formula (I) of the invention are especially useful against viruses of the Herpesviridae or Flaviviridae family.
  • the compounds of formula (I) are more preferably useful against herpes virus and dengue virus, and more preferably even against viral strains HHV-1 and HHV-2 and dengue virus serotype 2 (DENV-2 ).
  • the compounds, ferruginol analogs, of formula (I) of the invention are preferably used in the post-infection stage.
  • a more preferred embodiment still relates to a ferruginol analogue of formula (I) of 2, which have a formula:
  • compounds 1 and 2 are especially useful against viruses of the Herpesviridae or Flaviviridae family. Preferably among the viruses of these families, compounds 1 and 2 are useful against viruses selected from herpes virus and dengue virus.
  • compounds 1 and 2 refers to viruses selected from herpes simplex type 1 and herpes simplex type 2.
  • compounds 1 and 2 are useful against dengue virus, especially dengue virus belonging to strain DENV-2.
  • Compounds 1 and 2 of the invention are preferably used in the post-infection stage.
  • An especially preferred embodiment of the invention is a compound of formula (I) in which R 1 is phthalimido, R 2 is OH, X is H2 - for use against dengue virus type DENV-2 (compound 1).
  • a further especially preferred embodiment of the invention is a compound of formula (I) in which R 1 is -CHO, R 2 is OH, X is H2 (compound 2) for use against dengue serotype 2 virus (DENV- 2) .
  • the present invention also relates to a compound, ferruginol analog, of formula (II)
  • R 1 can be CH2-phthalimido, CH2-succinimido, CH2-maleimido, CHO, CH2OH, and where R 1 can have any stereochemistry
  • R 2 can be F, Cl, Br, NO2, NH2, (Ci-C6) alkylamino, di (Ci-C6) alkylamino, (d-C6) alkylamide, di (Ci-C6) alkylamide
  • R 3 can be H, OH
  • X can be H2, O, OH, NOH, where X can have any stereochemistry in the appropriate case, such as when it is OH, and including the epimers and isomers in position 4, and with the proviso that the conditions that are not met give rise to the following compounds:
  • the compounds of formula (II) of the invention can be prepared by conventional reactions, which do not represent an inventive effort for a person skilled in the art (aromatic nitration reaction, nitro to amine group reduction, Schiemann reaction and Sandmeyer reaction) .
  • R 1 is (+) - CH 2 -phthalimido, (+) - CH 2 -succinimido or (+) - CH 2 -maleimido
  • R 2 is F, Cl, Br, N0 2 , di (C-C6) alkylamino, (Ci-C6) alkylamide, di (Ci-C6) alkylamide
  • R 3 is H
  • X is H 2
  • a compound of formula (I) or (II) of the invention where X is O can be prepared from a precursor in which X is OH by a conventional oxidation reaction in organic chemistry.
  • Figure 1 shows the effect of compounds 1 and 2 on the infectivity of HHV-1, HHV-2 and DENV-2 in Vero cells.
  • Figures 1A and 1 B show the results of reducing the size of the viral plaque of compound 1 in the presence of a strain of Acyclovir-sensitive HHV-1 (CDC Atlanta)
  • Figures 1 C and 1 D show the results of reducing the size of the viral plaque of compound 2 in the presence of an HHV-2 strain sensitive to Acyclovir (VR-734).
  • Figures 1 E and 1 F show results of compound 1 on reducing the size of viral plaque against HHV-1 (strain 29R) resistant to Acyclovir.
  • Figure 1 G and 1 H show results of compound 1 on the reduction of viral plaque size against DENV-2 (New Guinea strain).
  • the results of the bars are expressed as an average of the plaque area size (in mm) of 80 plaques formed in cells treated with compounds 1 and 2 with respect to untreated viral controls.
  • the images show the representation of the image analysis using the Image-Pro Plus 6.0 software, during treatment with compounds 1 and 2. Statistically significant differences were observed in all experiments p ⁇ 0.001 (***). Two independent experiments were carried out in duplicate for each compound and for each virus.
  • DMEM Minimum Modified Essential Medium of Eagle Dulbecco
  • MTT technique 3- (4,5-dimethylthiazol-2-yl) -2,5 diphenyltetrazolium bromide
  • Bovine Fetal Serum (SFB) and the antibiotic penicillin / streptomycin / neomycin (PSN) were purchased from Invitrogen Life Technologies (Carlsbad, CA, USA).
  • Acyclovir was obtained from the Biogen laboratory. Ribavirin was obtained from Calbiochem (USA).
  • Paclitaxel, doxorubicin, amphotericin B and itraconazole were purchased from Sigma-Aldrich Chemical Co. Terbinafine was obtained from Laboratories Recalcine, Santiago, Chile.
  • Dimethylsulfoxide (DMSO) was obtained from Merck KGaA (Darmstadt, Germany).
  • Vero cells African green monkey kidney cells ATCC CCL-81 were maintained at 37 ° C in a 5% CO2 atmosphere, in the logarithmic phase of growth in DMEM, supplemented with 5% inactivated SFB, ⁇ g / mL of penicillin / streptomycin, 2 ⁇ g / mL of neomycin, vitamins (choline chloride, calcium D-pantothenate, folic acid, nicotinamide, pyridoxal hydrochloride, riboflavin, thiamine hydrochloride and i-inositol), non-essential amino acids and glutamine at 1 %. These cells were used to amplify viruses, perform cytotoxicity tests and antiviral assays.
  • the C6 / 36HT cells (A. albopictus cells), used to perform the dengue virus expansion were maintained at 34 ° C in a 10% CO2 atmosphere of SFB, in addition to the conditions described above.
  • human cervical epithelial adenocarcinoma cell lines (HeLa ATCC CCL2), acute T leukemia cells (Jurkat ATCC TIB-152) and human promonocytic cell line (U937 ATCC CRL) were used -1593.2), as well as the Vero cell line (not tumor).
  • Vero and HeLa cells were maintained in DMEM supplemented with 5% SFB.
  • Jurkat and U937 cells were maintained in RPMI-1640 medium (supplemented with 10% SFB), 100 units / mL of penicillin, 100 ⁇ g / mL of neomycin and maintained at 37 ° C in a humidified atmosphere of 5% CO2.
  • the determination of the viral titer of the herpetic strains and the dengue virus were carried out by the endpoint titration techniques (EPTT) and cytopathic effect inhibition (ICPE), respectively.
  • EPTT endpoint titration techniques
  • ICPE cytopathic effect inhibition
  • HHV-1 CDC-Atlanta and 29R
  • HHV-2 DENV-2
  • PFU plaque forming unit
  • CMC carboxymethylcellulose
  • the anti-herpetic activity was determined by the End Point Titration Technique (EPTT). For this, Vero cells (2.0 x10 4 cells / well) were used, grown in 96-well dishes at 37 ° C (5% CO2) until formation ⁇ 80% of the cell monolayer. Subsequently a viral solution of 100 DICC50 was prepared, from which five serial dilutions 1: 10 are made.
  • EPTT End Point Titration Technique
  • a virus mixture (10 DlCCsoVcomposite was made in supplemented DMEM (2% SFB) which contained 1% and 0.5% CMC for HHV-1 and HHV-2, respectively.) This mixture was incubated for 15 minutes at room temperature and was added to the cells In parallel, four serial dilutions of the compounds were added directly on the cell monolayer, in order to determine the 100% cytotoxic concentration, that is, the one that completely destroys the cell monolayer.
  • HHV-1 and HHV-2 were fixed and stained with a solution of 3.5% formaldehyde / 0.2% violet crystal and the factor of reduction of the viral titer comparing the effect of the compounds during the infection against the control of the untreated viral titer (which consisted of the five serial dilutions 1: 10 from the 100 DICC50 viral solution).
  • the compounds were evaluated in a concentration range of 6.25-50 ⁇ g / mL.
  • the controls included were: untreated cells, cells treated with the compounds and cells infected with HHV-1 or HHV-2.
  • the positive control included in this experiment was Acyclovir. Two independent quadruplicate experiments were carried out for each virus and for each compound.
  • the relevant or moderate antiviral activity of a purified natural product is one whose viral titer reduction factor (Rf) is ⁇ 1x10 3 or 1x10 2 , respectively.
  • Rf viral titer reduction factor
  • ICPE Cytopathic Effect
  • the dishes were incubated at 37 ° C for three days, then fixed and stained with a solution of 3.5% formaldehyde / 0.2% violet crystal and the ICPE was observed under an inverted microscope.
  • the compounds were evaluated at a concentration between 6.25 ⁇ g / mL and 25 ⁇ , those compounds that exerted a protective effect on the cell monolayer being considered active in the presence of infection.
  • the controls included were: untreated cells, cells treated with the compounds and cells infected with DENV-2.
  • the positive control included in this experiment was ribavirin. Two independent quadruplicate experiments were carried out for this trial.
  • PFU Plate Forming Units
  • Ferrruginol analogues 1 and 2 were evaluated in a concentration range of 0.78 ⁇ g / mL-6.25 ⁇ g / mL and 1.56 ⁇ g / mL-12.5 ⁇ g / mL, respectively for herpes tests, and in a concentration range of 0.05-1.56 ⁇ g / mL for dengue tests.
  • Dextran sulfate (DEX-S) was used as a positive control in pre-infective stages.
  • Acyclovir (ACV) and Ribavirin (RIBA) were used as a positive control in the post-infective stages of the HHV and DENV-2 strains, respectively.
  • the EC50 values for each compound were obtained by linear regression analysis of dose-response curves, using the statistical program GraphPad Prism 5.0 and was expressed as the mean ⁇ the standard deviation of three independent tests in duplicate. To define which compounds were more selective against infected cells than towards non-infected cells, the antiviral selectivity index (SI) was calculated, defined as the ratio between inhibitory concentration 50 (IC50) in Vero cells and EC50 for each virus. in Vero cells.
  • SI antiviral selectivity index
  • Vero, HeLa, Jurkat U937 cells Inhibition of cell growth and / or cytotoxicity was evaluated in Vero, HeLa, Jurkat U937 cells, using the MTT technique (3- (4,5-dimethylthiazol-2-yl) -2.5 diphenyltetrazolium bromide) (Sigma, New Jersey, USA) according to the protocol described by Zapata et al. (Zapata et al., 2013) with some modifications.
  • Vero and HeLa cells 2.0 x 10 4 cells / well
  • Jurkat and U937 cells (3.0 x 10 4 cells / well) were grown in 96-well round bottom plates.
  • IC50 concentration of the compounds that inhibit 50% growth
  • the selectivity index (IS) defined as the IC50 in Vero cells over the IC50 in HeLa, Jurkat or U937 was calculated.
  • a compound with IS ⁇ 5 was considered selective.
  • Paclitaxel and Doxorubicin were used as positive controls.
  • the filamentous fungi Fusarium oxysporum (ATCC 48112), Aspergillus fumigatus (ATCC 204305), Aspergillus flavus (ATCC 204304), Aspergillus terreus (CDC 317) and dermatophytes, Trichophyton rubrum (ATCC 28188) and Trichophyton AT 248 evaluate the antifungal activity against an inoculum of 0.2-2.5 x 10 5 CFU / mL.
  • the yeasts Candida albicans (ATCC 1023) Candida parapsilosis (ATCC 22019) and Candida tropicalis (ATCC 200956) were used to evaluate antifungal activity against an inoculum of 1-5 x 10 5 CFU / mL.
  • MIC was determined after 24 h of incubation at 35 ° C and is defined as the lowest concentration that showed 90% reduction in growth. Itraconazole was used as a positive control for this trial. . In all experiments a negative control (inoculum without treatment) was included. The MIC values were expressed as the geometric mean (MG-MIC) of the tests carried out in duplicate on three different days against each species of fungi.
  • RIBA NE NE NE NE + 30 a African green monkey kidney cell line (Cercopithecus aethiops) ATCC CCL-81.
  • the antiviral activity of compound 1 against HHV-1, HHV-2 and DENV-2 suggests a possible broad-spectrum antiviral effect against viruses enveloped with DNA and RNA genome, such as herpes and dengue.
  • Table 2 shows that compounds 1 and 2 were effective in post-infective stages.
  • EC50 50% effective antiviral concentration
  • IC50 Concentration of the compound that induces 50% inhibition of cell growth at 72 hours and 8 days
  • DS standard deviation
  • DEX-S Dextran Sulfate
  • LCA Acyclovir
  • RIBA Ribavirin.
  • NA Not active
  • NE Not evaluated. The values represent the average of three independent experiments; HHV-1 (strain CDC-Atlanta); HHV-2 (strain VR-734); DENV-2 (New Guinea strain).
  • a plaque reduction test was carried out and the concentration of compounds 1 and 2 that reduced the number of viral plaques by 50% (EC50) was interpolated from dose-response curves.
  • the antiviral selectivity index (IS) values were calculated by the ratio between the inhibitory concentration 50 (IC50) in Vero cells and EC50 of each virus (EC50 IC) (Table 2).
  • the anti-viral selectivity index is defined as the effectiveness of a product to inhibit viral replication compared to the ability to induce cell death. In addition, it is useful for making bioactivity comparisons and designing more powerful compounds. Recently it has been described that values greater than 10 (Sl> 10) are considered indicative of a potential therapeutic agent that should be subjected to biopharmaceutical and pre-clinical studies (Chattopadhyay et al., 2009; FDA-CDER, 2006).
  • FIG. 1B The morphological representation of the plates of HHV-1 (strains CDC-Atlanta and 29R) and DENV-2 after treatment with compound 1 and control without treatment are shown in figures 1 B, 1 F and 1 H, respectively.
  • Figure 1D depicts the size of the plaque after treatment with compound 2 during infection with HHV-2, as well as the viral control without treatment. In each case, the drastic reduction in plaque size during treatment with the compounds, with respect to infection control, is evident.
  • HHV-1 and HHV-2 developed in the presence of compounds 1 and 2 suggests that these granddane derivatives may prevent viral replication, HHV release, and / or cell-to-cell dispersion.
  • Table 3 shows the cytotoxic activity on Vero cells, as well as on HeLa, Jurkat and U937 tumor cells of ferruginol and compounds 1 and 2.
  • NA not applicable
  • NE not evaluated.
  • IC50 Concentration of the compound that induces 50% inhibition of cell growth at 48 hours.
  • IS selectivity index defined as the IC50 in Vero cells with respect to the IC50 in Jurkat, U937 or HeLa.
  • Jurkat ATCC TIB-152 human acute T-cell leukemia cell line
  • U937 ATCC CRL-1593.2 human promonocytic cell line
  • HeLa ATCC CRL-1958 human cervical epithelial adenocarcinoma cells
  • PXT Paclitaxel
  • DOX Doxorubicin. The values represent the average of two independent trials in quadruplicate.
  • Ferruginol produced a dose-dependent inhibition on the growth of Jurkat, U937 and HeLa tumor cell lines and the Vero cell line, with an R 2 (linear regression coefficient)> 0.8.
  • Compound 2 and ferruginol showed cytotoxic activity against at least one tumor cell line at concentrations below 25 ⁇ g / mL.
  • Compound 1 was not active against any tumor cell line and the Vero cell line.
  • MG-CMI Geometric Average-Minimum Inhibitory Concentration.
  • Fo7 ' Fusarium oxysporum ATCC 48112; Tr1: Trichophyton rubrum ATCC 28188; Tm1: Trichophyton mentagrophytes ATCC 24198: Afu8: Aspergillus fumigatus ATCC 204305; Afl6: Aspergillus flavus ATCC 204304; INM7: Aspergillus terreus CDC 317; Ca4: Candida albicans ATCC 10231; Cp2: Candida parapsilosis ATCC 22019; INM13: Candida tropicalis ATCC
  • TERB Terbinafine
  • AMB Amphotericin B
  • ITZ Itraconazole.
  • the values represent the geometric mean of three independent experiments in duplicate.
  • Compound 2 showed anti-dermatophyte activity against 7 rubrum and 7 mentagrophytes with GM-MIC values of 12.5 and 25 ⁇ g / mL, respectively.
  • Compound 1 showed no activity against the strains evaluated.
  • the results obtained in the present invention reveal that unlike the molecule 2 that presented anti-dermatophyte and cytotoxic activity on tumor-like cells, compound 1 could be a selective molecule against viruses enveloped as herpes and dengue, due to which had no cytotoxic effect on the HeLa, Jurkat and U937 tumor cell lines and showed no antifungal activity against any of the fungal strains evaluated.
  • AISMED Herpes Simplex virus oral and genital herpes.
  • Herpes simplex virus type 1 induces phylopodia in differentiated P19 neural cells to facilitate viral spread. Neuroscience Letters 440, 113-1 18.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La presente invención se refiere a un análogo de ferruginol de fórmula (I) en la que R1, R2 R3 y X tienen independientemente el significado siguiente: - R1 es CH2-ftalimido, CH2-succinimido, CH2-maleimido, CH2-NHCOCH3, CH2-NHCOCF3, CHO, CH2OH, (C1-C6)carboxiester, o CH3 y donde R1 tiene cualquier estereoquímica, - R2 es H, OH, F, Cl, Br, NO2, NH2, (C1-C6)alquilamino, di(C1-C6)alquilamino, (C1-C6)alquilamida o di(C1-C6)alquilamida, - R3 es H o OH, - X es H2, O, OH o NOH, donde X puede tener cualquier esteroquímica en el caso apropiado, como cuando es OH, incluyendo cualquier estereoisómero, para su uso como antiviral, especialmente para su uso contra virus envueltos, y de forma especialmente preferida contra el virus del dengue y herpes.

Description

ANÁLOGOS DE FERRUGINOL COMO AGENTES ANTIVIRALES
Campo de la invención
La presente invención se refiere a compuestos antivirales derivados de abietanos, específicamente compuestos análogos de ferruginol, para su uso contra virus de las familias Flaviviridae y Herpesviridae, principalmente contra los diversos serotipos del virus del dengue (DENV 1-4) y los herpesvirus humanos tipo 1 (HHV-1) y tipo 2 (HHV- 2).
Antecedentes de la invención
El virus dengue (DENV), es un virus envuelto en cuya superficie se encuentra la proteína de envoltura (E) la cual actúa como ligando para unirse a los receptores celulares durante la infección celular. Su genoma es una cadena sencilla de RNA, la cual codifica para una única poliproteína que tras ser olivada por proteasas virales y celulares dará lugar a 3 proteínas estructurales y 7 no estructurales importantes para el proceso replicativo. Hasta la fecha se han descrito cuatro serotipos (DENV-1 a DENV-4).
El DENV es transmitido por mosquitos hembra del género Aedes (especies aegypty y albopictus). Epidemiológicamente es la arbovirosis más abundante alrededor del mundo, ya que se encuentran circulando cada vez con menos restricciones ecológicas, tanto el virus como el vector, en más de cien países del cinturón tropical y cercanos al trópico, tanto del Viejo como del Nuevo Mundo; causando un amplio espectro de manifestaciones clínicas, que van desde dengue con o sin signos de alarma hasta dengue severo, el cual puede ser mortal debido a que altera la permeabilidad capilar e induce extravasación del plasma. Además, existen reportes de la enfermedad con manifestaciones inusuales, tales como cardiomiopatía, insuficiencia hepática y trastornos neurológicos. El impacto en la salud pública de esta enfermedad aumenta, ya que en la actualidad no existen medicamentos aprobados para su tratamiento en humanos, no hay vacuna disponible para la profilaxis y al ser un virus con genoma de RNA, con una elevada tasa de mutación, no resulta ser una buena alternativa la creación de medicamentos antivirales contra genes o proteínas virales específicas, puesto que frecuentemente se seleccionarían mutantes virales con resistencia a los fármacos. En este contexto, resulta necesario buscar en las células hospedadoras infectadas, blancos celulares y/o moleculares importantes en el proceso de replicación viral que sean modulables por fármacos, agentes o principios activos que sean efectivos, no tóxicos a bajas dosis y eviten la aparición de resistencia. Por tal motivo, recientemente se ha planteado una estrategia en la búsqueda de nuevos antivirales, dirigida específicamente hacia proteínas celulares empleadas específicamente por el virus durante su ciclo replicativo, importantes y claves dentro de éste, que no afecten de manera directa el metabolismo celular de células no infectadas, con una baja tasa de mutación y resistencia a nuevos fármacos (Martínez- Gutiérrez et al., 201 1).
Los herpesvirus humanos tipo 1 y tipo 2 (HHV-1 y HHV-2), son virus envueltos con DNA de cadena doble, los cuales producen lesiones principalmente a nivel de la cavidad oral y genital; adicionalmente, ejercen latencia en neuronas sensoriales, causando periodos de reactivación de la infección durante toda la vida del hospedador. Si bien esta enfermedad y sus recidivas, suelen ser autolimitadas en individuos inmunocompetentes, algunas complicaciones severas pueden ocurrir de manera frecuente, tales como, queratoconjuntivitis, meningitis y encefalitis, particularmente en recién nacidos y en personas inmunocomprometidas tales como individuos trasplantados e inmunodeficientes.
Aunque en la actualidad se disponen de medicamentos para el tratamiento de las infecciones herpéticas primarias y recurrentes, como el aciclovir (ACV) y sus análogos, aún no hay vacuna disponible para prevenir la infección por estos virus. Adicionalmente, mutaciones en las enzimas virales timidina quinasa y DNA polimerasa, pueden generar cepas resistentes a los antivirales de uso común. Como consecuencia, la prevalencia de cepas resistentes al ACV en pacientes inmunocomprometidos (4-7%) y trasplantados (14-30%), ha complicado su manejo clínico (Stranska et al., 2005; Bacon et al., 2003).
En pacientes inmunocomprometidos el herpes puede manifestarse de manera poco habitual y con mayor índice de recurrencias; en estos individuos la aparición de vesículas herpéticas es un cofactor para la transmisión del virus de la inmunodeficiencia humana (HIV), dada la exposición de la piel cuando se rompen las vesículas herpéticas. Es conocido que existe un sinergismo entre el HHV y HIV (Nagot et al., 2007). De los herpesvirus humanos, el HHV-2 es el agente causal más común de ulceras genitales en el mundo, el cual se detecta en el 60-90% de las personas que viven con el virus de Inmunodeficiencia Humana/Síndrome de Inmunodeficiencia Adquirida (HIV/AIDS). Las manifestaciones clínicas en individuos HIV-1 positivos pueden variar desde síntomas genitales leves hasta ulceras genitales severas. Estudios de laboratorio y epidemiológicos sugieren que la infección por el HHV-2 puede incrementar la susceptibilidad a la infección por el HIV-1. De hecho, proteínas codificadas por el HHV-2 se unen al DNA integrado del HIV-1 en células coinfectadas y promueven la transcripción directa del HIV-1 , además, la reactivación asintomática o sintomática del HHV-2 produce un aumento de la carga viral en sangre y en tracto genital del HIV-1 (Schacker et al., 2002); adicionalmente, el riesgo de trasmisión del HIV-1 se aumenta 4 veces en personas con enfermedad de ulcera genital sintomática causada por HHV-2. Así mismo, es de notar que la terapia para HHV-2 durante 8-12 semanas reduce significativamente los niveles de carga viral del HIV-1 en 2.5 a 5 copias/ml_ (Nagot et al., 2007).
En cuanto a lo anterior, a partir de las evidencias científicas dadas por diversos casos clínicos, Bermejo et al., Dermatol. Argent. 17(1):52-56 (2011) describe las observaciones clínicas de pacientes inmunocomprometidos, ya sea por HIV o por el uso de terapias supresoras para el tratamiento de enfermedades ampollares autoinmunes, que se asocian con HHV, hasta concluir que los complejos cambios que conllevan a la inmunodepresión a partir del HIV tales como la reducción del número de linfocitos T CD4, entre otras, favorecen la replicación del HHV (Nagot et al., 2007). Esto se traduce en un aumento del número de recidivas, la duración de las mismas y la posibilidad de diseminación. Aunque parece que la inmunidad mediada por células T es esencial para mantener bajo control al HHV, la infiltración y persistencia de los linfocitos T CD4, así como de otras células inflamatorias en el sitio de inflamación causada por las vesículas herpéticas, brinda, de hecho, el medio ideal para sobreinfectar a los linfocitos T CD4 con diversos genotipos del HIV y mejorar así la replicación del HIV. Las células T CD4 que infiltran el sitio de la lesión por HHV tienen una alta expresión de CCR5, en la proximidad de células dendríticas que expresan CD123, receptor capaz de transferir el virus del HIV a las células T CD4 sanas. Esto podría representar una mayor replicación local del HIV y un riesgo para la diseminación sistémica del mismo, lo que tal vez depende de la extensión y duración de la inflamación local provocada por la inmunidad del paciente. El virus de Inmunodeficiencia Humana, además, es capaz de modificar la forma de presentación de las infecciones herpéticas, dando lugar a la aparición de modalidades clínicas poco clásicas. (Nagot et al., 2007). La interacción entre los virus del HHV- 1 y HHV- 2 y el HIV-1 constituye un importante problema de salud para nuestros países y para el mundo, debido a que podrían aumentar la incidencia del SIDA a partir de casos infectados con herpesvirus humanos. Estos hallazgos en conjunto sugieren que en individuos seropositivos para HIV, la coinfección HIV/HHV-2 es muy común y que el control de la infección por el HHV-2 a través de antivirales antiherpéticos, puede reducir la susceptibilidad a la transmisión de la infección por el HIV-1 contribuyendo así con la disminución de la pandemia del HIV/SIDA.
Dado lo anterior, el tratamiento antiherpético puede acelerar el proceso de curación, reducir el dolor y retrasar o prevenir brotes recurrentes. Habitualmente, el tratamiento se utiliza sólo durante el brote. Esto se llama "terapia episódica." En las personas con el sistema inmunológico debilitado e inmunocomprometido, los brotes suelen ser muy frecuentes y requieren de un tratamiento a largo plazo para prevenir las recurrencias. Esto se llama "terapia supresiva". Actualmente, hay diversas terapias disponibles para el tratamiento del herpes (AISMED, 2013) entre estas:
1. 2-amino-9-(2-hidroxietoximetil)-1 H-purin-6-ona. (Aciclovir): Ha sido estudiado y usado durante muchos años como tratamiento para el herpes oral y genital y ha mostrado ser seguro y efectivo. El Aciclovir está disponible en cremas tópicas, pastillas y en formulación intravenosa. La mayoría de los expertos acuerdan que la crema no es muy efectiva y que las pastillas son mejores para los brotes leves a moderados, o para la terapia supresiva a largo plazo. El Aciclovir intravenoso se usa para tratar los brotes severos o para los episodios en que los órganos internos están afectados (especialmente, la infección del HHV en el sistema nervioso central). La dosis oral usada para tratar los brotes es de 400 mg tres a cuatro veces al día, generalmente por 7 a 10 días. Esta dosis se puede duplicar si las vesículas herpéticas no responden al tratamiento. Tomar 400 mg del medicamento tres veces al día ó 800 mg del medicamento dos veces por día, por períodos más prolongados de tiempo, podría prevenir las reactivaciones de los brotes. Pero por lo general, esto se recomienda sólo en pacientes que tienen historia de reactivaciones frecuentes. A las personas que reciben aciclovir intravenoso se le debe controlar la función renal al menos una vez por semana durante el tratamiento intravenoso.
2. Valaciclovir (Valtrex): Valaciclovir es una "pro-droga" de Aciclovir y ha sido específicamente aprobada para el tratamiento del herpes en las personas HIV positivas. A diferencia de aciclovir, el valaciclovir necesita ser procesado en la célula por la enzima valaciclovir hidroxilasa que lo transforma en aciclovir y valina, para generar su ingrediente activo (aciclovir) (Li et al., 2008). Esto hace que cantidades mayores de aciclovir estén presentes en el sitio de acción que es intracelular, permitiendo de este modo una menor dosis oral (por boca), durante la medicación. Para brotes herpéticos leves a moderados, valaciclovir se medica por vía oral solamente una vez al día (1000 mg todos los días). Para la terapia episódica, valaciclovir se toma durante 7 a 10 días. Sin embargo, el medicamento se puede tomar todos los días por un tiempo más prolongado, utilizando la mitad de la dosis que se necesita para tratar los brotes (500 mg todos los días). Tal como ocurre con aciclovir, valaciclovir raramente causa efectos secundarios.
3. 2-amino-9-[4-hydroxy-3-(hydroxymethyl)butyl]-1 H-purin-6(9H)-one
(Penciclovir): Es un fármaco antiviral análogo de guanosina utilizado para el tratamiento de diversas infecciones por herpesvirus, presenta baja toxicidad y buena selectividad. Debido a que el penciclovir se absorbe mal cuando se administra por vía oral, se usa más como un tratamiento tópico, y es el ingrediente activo en los medicamentos de herpes labial- Denavir (NDC 0135-0315-52), Vectavir y Fenivir. El famciclovir es un profármaco de penciclovir con una biodisponibilidad oral mejorada. (Mansfield Dale, 2005)
4. Famciclovir (Famvir): Es un fármaco antiviral activo por vía oral. Es el análogo 6-deoxilado del penciclovir que se utiliza por vía tópica e intravenosa. Habitualmente, se toma por vía oral 500 mg del medicamento durante 7 a 10 días. La dosis de 250 mg diarios que se toma por períodos más prolongados de tiempo, se considera segura y efectiva como terapia preventiva para las reactivaciones de los brotes herpéticos (Patel, 2002; Mansfield Dale, 2005).
5. 1 -[4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-(trifluoromethyl) pyrimidine- 2,4-dione (Trifluridine): En gotas se usa para el tratamiento de la infección del HHV en los ojos. Se coloca una gota en el ojo afectado, cada dos horas, durante 21 días. No se puede usar para tratar o prevenir la enfermedad del HHV en otras partes del cuerpo.
En algunos casos, los brotes herpéticos no responden al aciclovir, valaciclovir, o famciclovir, probablemente debido al desarrollo de formas del HHV-1 y HHV-2 resistentes a los medicamentos. Se ha visto que los pacientes HIV positivos con un sistema inmunológico debilitado (habitualmente con un recuento de células T menor a 100), que han recibido aciclovir a largo plazo para el tratamiento y prevención de las reactivaciones de los brotes herpéticos, desarrollan resistencia a los medicamentos para el herpes. Debido a que aciclovir es similar a valaciclovir y famciclovir, el simple hecho de cambiar a cualquiera de estos dos medicamentos generalmente no es efectivo. Actualmente, foscarnet (Foscavir) que es la base conjugada del ácido fosfonoformico HOOC-PO3H2, es el tratamiento más común para la resistencia herpética a aciclovir. El medicamento se suministra por vía intravenosa (IV), usualmente tres veces al día, a menudo en un medio hospitalario o bajo la estrecha supervisión de una enfermera a domicilio.
Las personas que tienen aumentos significativos en su recuento de CD4 debido a la terapia antirretroviral para HIV, a veces tienen menos brotes herpéticos y los brotes se resuelven más rápidamente, sin embargo la eliminación viral ("shedding") puede continuar (Stranska et al., 2005). A través de la presente invención se busca a futuro poder contar con una o varias moléculas análogas del ferruginol con actividad antiherpética que puedan ser postuladas para su estudio y uso ya sea en la terapia episódica o supresiva. Múltiples y convergentes vías mediante las cuales diversos virus (Vaccinia HHV, HBV, HCV, HIV, HTLV, MLV, entre otros) causan alteración del citoesqueleto con diferentes propósitos durante el ciclo viral, han sido reportadas por Taylor et al., Nat. Rev. Microbio!. 9(6):427-39 (2011). El citoesqueleto de actina es reorganizado por estos virus que lo utilizan durante el proceso de entrada, morfogénesis y salida de nuevas partículas virales.
Las estructuras con contenido de actina y tubulina inducidas durante la infección por herpesvirus, tienen la capacidad de transportar viriones hacia las células adyacentes. De acuerdo con las conclusiones de Dixit et al., Neuroscience Letters. 440(2), 113-118 (2008), el HHV-1 promueve reordenamientos del citoesqueleto, lo cual facilita la propagación viral en cultivos de neuronas, incluyendo un aumento dramático en los filopodios. Así mismo, ensayos in vitro han permitido identificar las diversas formas en que el virus dengue interactúa con el citoesqueleto de actina. Wang et al., PLOS Neglected Tropical Diseases. 4, 1-11 (2010) demostraron que la dinámica del citoesqueleto es necesaria para los eventos de entrada, producción y liberación de partículas virales, lo que indica un efecto directo de la proteína E sobre las modificaciones estructurales del citoesqueleto de actina.
Considerando que los virus herpes y dengue requieren componentes del citoesqueleto, como los microtúbulos y microfilamentos de actina durante diversas etapas de su ciclo replicativo (principalmente en la entrada, el transporte y la liberación de partículas virales) es posible que los análogos del ferruginol reportados en la presente invención 1 y 2 induzcan la interrupción de estas vías celulares involucradas en la propagación viral.
Aunque no es posible asegurar que algún componente celular o viral participa en nuestros hallazgos, su estudio será un instrumento importante para diseccionar los complejos procesos celulares y moleculares que intervienen durante las infecciones virales por herpesvirus humanos y dengue. Esta invención permitirá la comprensión de algunos de los mecanismos celulares y moleculares donde dos virus muy diferentes como herpes y dengue, posiblemente convergen en una vía evolutiva conservada durante la infección celular, afectando elementos del citoesqueleto, el sistema de endomembranas y cascadas de señalización involucradas en la liberación de partículas virales y en la diseminación de la infección hacia células vecinas.
En los últimos años, diversos estudios han reportado el efecto de algunos compuestos de origen natural en la diseminación célula a célula durante la infección por herpesvirus. Lin et al. (Lin et al., 201 1) informaron que el ácido chebulágico y la punicalagina, dos taninos hidrolizables aislados a partir de Terminalia chebula (Combretaceae), inhiben la diseminación célula a célula de HHV-1 , hecho verificado 24 horas después del tratamiento usando un ensayo de placas fluorescentes en presencia de anticuerpos neutralizantes anti-HHV-1. Por otra parte, Ekblad et al., Antivir. Chem. Chemother. 17, 97-106 (2006) reportaron que PI-88, una mezcla de mañosa altamente sulfatada que contiene oligosacáridos, redujo el área de las placas de lisis con valores de IC50 de 0,7 μg/mL y 2 μg/mL para HHV-1 y HHV-2, respectivamente.
No obstante, reportes encontrados por nuestro equipo de trabajo de la evidente reducción en el tamaño de la placa viral durante la infección in vitro de los virus herpes y dengue por parte de diterpenos, entre estos, el ferruginol y sus análogos, constituye el primer reporte de este tipo de efecto antiviral hasta la fecha.
Los abietanos diterpenoides están ampliamente distribuidos en el reino vegetal presentando un amplio rango de actividades biológicas. El ferruginol, un fenol diterpenoide aislado a partir de plantas pertenecientes a las familias Podocarpaceae, Cupressaceae, Lamiaceae y Verbenaceae, exhibe un amplio espectro de actividades biológicas, tales como antibacteriana, antifúngica y antimicrobiana, acaricida, cardioactiva, antioxidante, antiplasmodio, antileishmania y nematicida (González et al., 2012), anticancerígeno, inmunomodulador (Takei et al., 2005), anti-/Acanf 7amoe£>a (Kuzma et al., 2015), antimalarico y antiulcerosa (González et al., 2014), entre otras.
Como antecedentes de la invención, el artículo de González et al., Tetrahedron. 68, 9612-9615 (2012) divulga la síntesis del compuesto de fórmula (I) mostrado en esta memoria, en la que R1 es -CHO, R2 es -OH y X es H2 (compuesto 2 de la presente invención).
El artículo de Malkowsky et al., Synthesis. 5: 0773-0778 (2007) divulga derivados abietanos desde el punto de vista de aspectos químicos, en concreto se describe la síntesis del compuesto de fórmula (I) en la que R1 es un grupo ftalimido, R2 es -OH y X es H2 (compuesto 1 de la invención), sin mencionar ningún tipo de aplicación terapéutica ni actividad biológica de los compuestos análogos de ferruginol.
La actividad antiviral de estos compuestos no ha sido ampliamente investigada en la actualidad, ya que sólo existe un estudio realizado en 2007, donde se demuestra el potencial antiviral de ciertos derivados diterpenoides, entre ellos el ferruginol, durante la infección por un virus RNA envuelto, el Coronavirus (Chih-Chun et al., 2007). Así mismo hasta la fecha, no se ha publicado la actividad antiviral y la eficacia terapéutica del ferruginol y derivados de éste frente a virus DNA y otros RNA, entre éstos no se ha demostrado el potencial antiherpético y anti-DENV.
En la actualidad al no existir tratamiento efectivo para el dengue, se realiza a nivel clínico el seguimiento y manejo de los síntomas causados por éste virus. Es por lo tanto un objeto de la presente invención encontrar nuevos compuestos efectivos en el tratamiento de enfermedades víricas, especialmente frente a los diversos serotipos del virus dengue (DENV1-4). Y en el caso de las infecciones causadas por herpesvirus, se pretende a largo plazo disminuir las dosis actuales de aciclovir en pacientes, y por ende la aparición de cepas resistentes a los análogos de nucleósidos, impactar positivamente en la severidad y frecuencia de recidivas en pacientes inmunocomprometidos, y reducir de manera indirecta la susceptibilidad a la transmisión de la infección por el HIV-1 ; lo cual se puede conseguir con los derivados abietanos de la invención. A continuación, se muestra el esquema de la fórmula química del ferruginol.
Figure imgf000009_0001
Ferruginol
La presente invención describe la actividad antiviral: anti-DENV y actividad anti- herpética, tanto en cepas resistentes a los tratamientos existentes como el acivlovir (ACV) como sensibles al ACV; teniendo en cuenta que los HHV causan infección a nivel de la piel y mucosas; de allí que con los derivados tipo abietano, se podrán preparar formas farmacéuticas como cremas tópicas y geles con actividad anti- herpética. De igual manera, se pueden crear formas farmacéuticas sistémicas para tratar ambos virus, específicamente el virus dengue. Además, la presente invención tiene como objeto encontrar nuevos candidatos antivirales que actúen sobre dianas celulares y/o moleculares en lugar de actuar en proteínas virales estructurales y no estructurales específicas de los virus, de modo que su acción contra el virus no dependa de la mutabilidad de estas proteínas, especialmente en virus con genoma de RNA como el DENV. Los derivados abietanos sintetizados a partir de deshidroabietilamina de la invención presentan excelente actividad contra el virus dengue serotipo 2 (DENV-2) y frente a los herpesvirus humanos tipo 1 (HHV-1) y 2 (HHV-2). Los compuestos más activos tienen una acción sobre el ciclo viral en etapas post-infectivas, y debido a la dramática reducción en el tamaño de las placas de lisis, se considera que su efecto está relacionado con la alteración de algún mecanismo celular implicado en la diseminación de la infección hacia células vecinas.
Descripción de la invención
La presente invención se refiere en primer lugar a un compuesto, análogo de ferruginol, de fórmula (I)
Figure imgf000009_0002
(I)
en la que R1 , R2 R3 y X pueden tener independientemente el significado siguiente: - R1 puede ser CH2-ftalimido, CH2-succinimido, CH2-maleimido, CH2-NHCOCH3, CH2- NHCOCFs, CHO, CH2OH, (Ci-Ce)carboxiester, CH3 y donde R1 puede tener cualquier estereoquímica,
- R2 puede ser H, OH, F, Cl, Br, N02, NH2, (Ci-C6)alquilamino, di(Ci-C6)alquilamino, (Ci-C6)alquilamida, di(Ci-C6)alquilamida,
- R3 puede ser H, OH,
- X puede ser H2, O, OH, NOH, donde X puede tener cualquier esteroquímica en el caso apropiado, como cuando es OH, incluyendo cualquier estereoisómero, tales como los epímeros e isómeros en la posición 4, con la condición de que no se cumplen las condiciones que den lugar a los compuestos siguientes:
- compuesto de fórmula (I) en la que R1 es CH2OH, R2 es OH, R3 es OH y X es
H2,
- compuesto de fórmula (I) en la que R1 es CH3, R2 es OH, R3 es H y X es O,
- compuesto de fórmula (I) en la que R1 es CH3, R2 es OH, R3 es OH y X es H2 - compuesto de fórmula (I) en la que R1 es CH3, R2 es OH, R3 es OH y X es O, para su uso como antiviral.
De manera preferente los compuestos, análogos de ferruginol, de fórmula (I) son útiles como medicamento antiviral contra virus envueltos.
Entre los virus envueltos, los compuestos, análogos de ferruginol, de fórmula (I) de la invención son especialmente útiles contra virus de la familia Herpesviridae o Flaviviridae. Entre estas familias, los compuestos de fórmula (I) son útiles más preferentemente contra virus de herpes y virus del dengue, y de forma más preferente aún contra las cepas virales HHV-1 y HHV-2 y virus dengue serotipo 2 (DENV-2).
Los compuestos, análogos de ferruginol, de fórmula (I) de la invención se utilizan de forma preferente en la etapa de post-infección.
Una realización más preferente aún se refiere a un análogo de ferruginol de fórmula (I) s mpuesto 2, que tienen una fórmula:
Figure imgf000010_0001
compuesto 1 compuesto 2,
para su uso como antivirales, de modo preferente contra virus envueltos. Entre los virus envueltos, los compuestos 1 y 2 son especialmente útiles contra virus de la familia Herpesviridae o Flaviviridae. Preferentemente entre los virus de estas familias, los compuestos 1 y 2 son útiles contra virus seleccionados entre virus de herpes y virus del dengue.
De manera especialmente preferida el uso como antiviral de los compuestos 1 y 2 se refiere a virus seleccionados entre herpes simplex tipo 1 y herpes simplex tipo 2. Según una realización adicional especialmente preferida los compuestos 1 y 2 son útiles contra el virus del dengue, especialmente el virus del dengue que pertenece a la cepa DENV-2.
Los compuestos 1 y 2 de la invención se utilizan de forma preferente en la etapa de post-infección.
Una realización especialmente preferida de la invención es un compuesto de fórmula (I) en la que R1 es ftalimido, R2 es OH , X es H2 - para su uso contra el virus del dengue de tipo DENV-2 (compuesto 1).
Una realización adicional especialmente preferida de la invención es un compuesto de fórmula (I) en la que R1 es -CHO, R2 es OH, X es H2 (compuesto 2) para su uso contra el virus del dengue serotipo 2 (DENV-2) .
Además, la presente invención tiene también por objeto un compuesto, análogo de ferruginol, de fórmula (II)
Figure imgf000011_0001
en la que:
R1 puede ser CH2-ftalimido, CH2-succinimido, CH2-maleimido, CHO, CH2OH, y donde R1 puede tener cualquier estereoquímica
R2 puede ser F, Cl, Br, NO2, NH2, (Ci-C6)alquilamino, di(Ci-C6)alquilamino, (d- C6)alquilamida, di(Ci-C6)alquilamida
R3 puede ser H, OH
X puede ser H2, O, OH, NOH, donde X puede tener cualquier esteroquímica en el caso apropiado, como cuando es OH, e incluyendo los epímeros e isómeros en la posición 4, y con la condición de que no se cumplen las condiciones que den lugar a los compuestos siguientes:
- compuesto de fórmula (I I) en la que R1 es CH2OH, R2 es OH, R3 es OH y X compuesto de fórmula (I I) en la que R1 es CH2OH, R2 es Br, R3 es H y X es H2
compuesto de fórmula (I I) en la que R1 es CH2OH, R2 es Br, R3 es H y X es OH
compuesto de fórmula (I I) en la que R1 es CH2OH, R2 es NH2 O N(CH3)2, R3
Figure imgf000011_0002
Los compuestos de fórmula (II) de la invención se pueden preparar mediante reacciones convencionales, que no representan un esfuerzo inventivo para un experto en la materia (reacción de nitración de aromáticos, reducción grupos nitro a amina, reacción de Schiemann y reacción de Sandmeyer). A modo de ejemplo para preparar un compuesto de fórmula (I), en la que: R1 es (+)- CH2-ftalimido, (+)-CH2-succinimido o (+)-CH2-maleimido, R2 es F, Cl, Br, N02, di(Ci- C6)alquilamino, (Ci-C6)alquilamida, di(Ci-C6)alquilamida, R3 es H, y X es H2 se puede hacer reaccionar un precursor de fórmula (I) en la que: R1 es (+)-CH2-NH2, R2 es F, Cl, Br, N02, (Ci-C6)alquilamino, di(Ci-C6)alquilamino, (Ci-C6)alquilamida, di(d- C6)alquilamida, R3 es H, y X es H2 con anhídrido ftálico, succínico o anhídrido maleico.
A modo de ejemplo adicional, un compuesto de fórmula (I) o (II) de la invención donde X es O se puede preparar a partir de un precursor en el que X es OH por una reacción de oxidación convencional en química orgánica.
Breve descripción de las figuras.
En general, la Figura 1 muestra el efecto de los compuestos 1 y 2 sobre la infectividad de HHV-1 , HHV-2 y DENV-2 en células Vero.
Las Figuras 1A y 1 B muestran los resultados de reducción del tamaño de la placa viral del compuesto 1 en presencia de una cepa de HHV-1 sensible al Aciclovir (CDC Atlanta)
Las Figuras 1 C y 1 D muestran los resultados de reducción del tamaño de la placa viral del compuesto 2 en presencia de una cepa de HHV-2 sensible al Aciclovir (VR-734).
Las Figuras 1 E y 1 F muestran resultados del compuesto 1 sobre la reducción del tamaño de placa viral frente a HHV-1 (cepa 29R) resistente al Aciclovir.
La Figura 1 G y 1 H muestra resultados del compuesto 1 sobre la reducción del tamaño de placa viral frente a DENV-2 (cepa Nueva guinea).
Los resultados de las barras se expresan como un promedio del tamaño de área de la placa (en mm) de 80 placas formadas en células tratadas con los compuestos 1 y 2 respecto a los controles virales sin tratamiento. Las imágenes muestran la representación del análisis de imágenes usando el software Image-Pro Plus 6.0, durante el tratamiento con los compuestos 1 y 2. Diferencias estadísticamente significativas se observaron en todos los experimentos p <0,001 (***). Dos experimentos independientes se llevaron a cabo por duplicado para cada compuesto y para cada virus.
Métodos
Reactivos y compuestos
El Medio Esencial Mínimo Modificado de Eagle Dulbecco (DMEM) y el reactivo para la técnica del MTT (bromuro de 3-(4,5-dimetiltiazol-2-yl)-2,5 difeniltetrazolio) fueron obtenidos de Sigma-Aldrich Chemical Co. (Nueva Jersey, EE.UU.). El Suero Fetal Bovino (SFB) y el antibiótico penicilina/estreptomicina/neomicina (PSN) se adquirieron de Invitrogen Life Technologies (Carlsbad, CA, EE.UU.). El aciclovir se obtuvo del laboratorio Biogen. La ribavirina fue obtenida de Calbiochem (EE.UU.). El paclitaxel, doxorubicina, anfotericina B e itraconazol fueron adquiridos de Sigma-Aldrich Chemical Co. La terbinafina se obtuvo de Laboratorios Recalcine, Santiago de Chile. El dimetilsulfóxido (DMSO) se obtuvo de Merck KGaA (Darmstadt, Alemania).
Cultivos celulares y virus Para el cribado y los ensayos de inhibición se emplearon: un aislado de herpesvirus humano tipo 1 (HHV-1) sensible a Aciclovir, donado por el grupo de Inmunovirología de la Universidad de Antioquia (cepa viral CDC Atlanta: comprada al "Center for Disease Control-Atlanta", GA, USA), una cepa de Herpesvirus humano tipo 2 (HHV-2) sensible a Aciclovir (Cepa G, ATCC: VR-734) y el virus dengue tipo 2 (DENV-2) cepa Nueva Guinea, obtenido de Eva Harris (Instituto de Ciencias Sostenibles y de la Universidad de California en Berkeley), el cual se amplificó en células C6/36HT de Aedes albopictus (Martínez-Gutiérrez et al., 201 1). Además, para los ensayos de reducción del tamaño de la placa se incluyó una cepa de HHV-1 29R (cepa resistente a Aciclovir) donada por Claudia Oliveira (Universidad de Santa Catarina-Brasil).
Las células Vero (células de riñon de mono verde africano ATCC CCL-81) fueron mantenidas a 37°C en atmósfera de CO2 al 5%, en fase logarítmica de crecimiento en DMEM, suplementado con 5% de SFB inactivado, ^g/mL de penicilina/estreptomicina, 2μg/mL de neomicina, vitaminas (cloruro de colina, D- pantotenato de calcio, ácido fólico, nicotinamida, hidrocloruro de piridoxal, riboflavina, hidrocloruro de tiamina e i-inositol), aminoácidos no esenciales y glutamina al 1 %. Estas células se emplearon para amplificar los virus, realizar los ensayos de citotoxicidad y los ensayos antivirales. Las células C6/36HT (células de A. albopictus), empleadas para realizar la expansión del virus dengue fueron mantenidas a 34°C en atmósfera de CO2 al 10% de SFB, además de las condiciones anteriormente descritas.
Para la evaluación de la actividad citotóxica, se emplearon las líneas celulares de células de adenocarcinoma epitelial de cuello de útero humano (HeLa ATCC CCL2), células de leucemia T aguda (Jurkat ATCC TIB-152) y línea celular promonocítica humana (U937 ATCC CRL-1593.2), así como la línea celular Vero (no tumoral). Las células Vero y HeLa se mantuvieron en DMEM suplementado al 5% de SFB. Las células Jurkat y U937 se mantuvieron en medio RPMI-1640 (suplementado con 10% de SFB), 100 unidades/mL de penicilina, 100 μg/mL de neomicina y mantenido a 37°C en atmósfera humidificada del 5% de CO2.
Actividad antiviral
Cuantificación viral
Para los ensayos de cribado primario, la determinación del título viral de las cepas herpéticas y del virus dengue se llevaron a cabo las técnicas de titulación de punto final (EPTT) e inhibición del efecto citopático (ICPE), respectivamente. Para la titulación del cribado primario se prepararon siete diluciones dobles seriadas 1 : 10 de la suspensión viral a titular; luego, se inoculó cada una de las diluciones en la monocapa de células Vero formada en un 80% en platos de 96 pozos. Los platos se incubaron por 48h (HHV-1) y 72h (HHV-2 y DENV-2) en atmósfera de C02 al 5%, posteriormente se fijaron y tiñeron con una solución de 3,5% de formaldehído/cristal violeta al 0,2%. Finalmente se determinó observando bajo el microscopio invertido la dilución en la que se produjo un efecto sobre el 50% de la monocapa celular infectada, la cual corresponde a 1 Dosis Infecciosa de Cultivo Celular 50 (I DICC50).
Para los ensayos de inhibición, la cuantificación de las partículas virales de HHV-1 (CDC-Atlanta y 29R), HHV-2 y DENV-2 se realizó en células Vero mediante el ensayo de unidades formadoras de placas (PFU). En este ensayo se sembraron 250.000 células/pozo (Cepas de herpes) y 90.000 células/pozo (DENV-2) en platos de 24 pozos los cuales se incubaron a 37°C en atmósfera de CO2 al 5%. A las 24 horas se inocularon las células con 3 réplicas de diluciones seriadas del stock viral desde 10"1 hasta 10"7 en DMEM sin SFB. Pasada 1 h de incubación se retiró el inoculo viral y se adicionó carboximetilcelulosa (CMC) al 1 , 0,75 y 2%, para HHV-1 , HHV-2 y DENV-2; respectivamente. Luego de 72 horas (HHV) y 8 días (DENV) de incubación, los platos se fijaron y tiñeron con una solución de 3,5% de formaldehído/cristal violeta al 0,2%.
En todos los casos, el virus titulado para la realización de los diferentes ensayos se conservó en alícuotas a -80°C hasta su posterior uso. Cribado de la actividad de derivados abietanos contra HHV-1 y HHV-2
La actividad anti-herpética se determinó mediante la Técnica de Titulación de Punto Final (EPTT). Para ello se utilizaron células Vero (2.0 x104 células/pozo), cultivadas en platos de 96 pozos a 37°C (5% de CO2) hasta la formación≥ 80% de la monocapa celular. Posteriormente se preparó una solución viral de 100 DICC50, a partir de la cual se realizan cinco diluciones seriadas 1 :10. Una mezcla virus (10 DlCCsoVcompuesto se realizó en DMEM suplementado (2% SFB) el cual contenía CMC al 1 % y 0,5% para HHV-1 y HHV-2, respectivamente. Dicha mezcla se incubó durante 15 minutos a temperatura ambiente y se añadió a las células. En paralelo, se agregaron cuatro diluciones seriadas de los compuestos directamente sobre la monocapa celular, con el fin de determinar la concentración citotóxica del 100%, es decir, aquella que destruye en su totalidad la monocapa celular.
Luego de 48 horas (HHV-1) y 72 horas (HHV-2) de incubación, los platos se fijaron y tiñeron con una solución de 3,5% de formaldehído/cristal violeta al 0,2% y se determinó el factor de reducción del título viral comparando el efecto de los compuestos durante la infección frente al control del título viral sin tratamiento (que consistió de las cinco diluciones seriadas 1 : 10 a partir de la solución viral de 100 DICC50). Los compuestos se evaluaron en un rango de concentración de 6,25-50 μg/mL. Los controles incluidos fueron: células no tratadas, células tratadas con los compuestos y células infectadas con HHV-1 o HHV-2. El control positivo incluido en este experimento fue el Aciclovir. Dos experimentos independientes por cuadruplicado se llevaron a cabo para cada virus y para cada compuesto. De acuerdo con los parámetros establecidos por Vlietinck et ai, J. Ethnopharm. 46: 31-47 (1995), la actividad antiviral relevante o moderada de un producto natural purificado, es aquella cuyo factor de reducción (Rf) de título viral es≥ a 1x103 o 1x102, respectivamente. En este estudio el mismo criterio de actividad fue tenido en cuenta.
Cribado de la actividad de derivados abietanos contra DENV-2
Para determinar la actividad anti-DENV, se determinó la Inhibición del Efecto Citopático (ICPE) de acuerdo al protocolo descrito previamente por Tang et al., BMC Complementar/ and Alternative Medicine. 12, 1-10 (2012) con algunas modificaciones. Células Vero (2.0x104 células/pozo) se cultivaron en platos de 96 pozos a 37°C (5% de CO2) hasta la formación≥ 80% de la monocapa celular. Después de 24 horas se retiró el medio de las células y 50 de cada dilución (compuesto/DENV-2) fueron añadidos; en dicha mezcla, se pusieron en contacto cuatro diluciones seriadas dobles del virus DENV-2 con una concentración constante no citotóxica previamente definida del compuesto a evaluar. Los platos se incubaron a 37°C durante tres días, posteriormente se fijaron y tiñeron con una solución de formaldehido al 3,5%/cristal violeta al 0.2% y la ICPE se observó bajo microscopio invertido. Los compuestos se evaluaron a una concentración entre 6,25 μg/mL y 25 μςΛηί, considerándose activos aquellos compuestos que ejercieron un efecto protector sobre la monocapa celular en presencia de la infección. Los controles incluidos fueron: células no tratadas, células tratadas con los compuestos y células infectadas con DENV-2. El control positivo incluido en este experimento fue la ribavirina. Dos experimentos independientes por cuadruplicado se llevaron a cabo para este ensayo.
Ensayos para las etapas pre- y post-infectivas de HHV-1, HHV-2 y DENV-2.
Posteriormente, el potencial antiviral de los compuestos se evaluó mediante el ensayo de Inhibición de Unidades Formadoras de Placas (PFU) como se ha descrito previamente por Cardozo et al, Antiviral Research. 1-7 (2011). Para la evaluación de las etapas pre-infectivas, una mezcla de 100 PFU/pozo de virus y compuesto se agregó a la monocapa de células Vero (2.5 x104 células/pozo) previamente sembrada en platos de 24 pozos y se incubó durante 1 hora a 37°C (5% de CO2). Después de la incubación se realizó un lavado con PBS (pH=7.0) y se agregó CMC al 1 % ,0.75% y 2% para HHV-1 , HHV-2 y DENV-2, respectivamente. Para los ensayos post-infección, 100 PFU/pozo de virus se agregaron a la monocapa celular y se incubaron durante 1 hora a 37°C (5% de CO2). Luego se realizó un lavado con PBS (pH=7.0) y se agregaron los compuestos previamente preparados en CMC al 1 %, 0.75% y 2% para HHV-1 , HHV-2 y DENV-2, respectivamente. Tanto para el ensayo pre y post-infección, los platos se dejaron incubar durante 72 horas (herpesvirus) y 8 días (DENV-2) se fijaron, se tiñeron y se realizó el conteo de placas con el fin de determinar la concentración que inhibe en un 50 % el número de placas (EC50).
Los análogos del ferrruginol 1 y 2 se evaluaron en un rango de concentración de 0,78 μg/mL-6,25 μg/mL y 1 ,56 μg/mL-12,5μg/mL, respectivamente para los ensayos con herpes, y en un rango de concentración de 0.05-1.56 μg/mL para los ensayos con dengue. El Dextran sulfato (DEX-S) se utilizó como control positivo en etapas pre- infectivas. Aciclovir (ACV) y Ribavirina (RIBA) se usaron como control positivo en las etapas post-infectivas de las cepas de HHV y DENV-2, respectivamente. Los valores de EC50 para cada compuesto fueron obtenidos por análisis de regresión lineal de curvas de dosis-respuesta, empleando el programa estadístico GraphPad Prisma 5.0 y fue expresada como la media ± la desviación estándar de tres ensayos independientes por duplicado. Para definir qué compuestos fueron más selectivos contra las células infectadas que hacia las células no infectadas, se calculó el índice de selectividad antiviral (SI), definido como la relación entre la concentración inhibitoria 50 (IC50) en células Vero y la EC50 para cada virus en células Vero.
Ensayo de reducción del tamaño de placa viral
Adicionalmente al efecto dependiente de la dosis presentado por los compuestos 1 y 2 en etapas post-infectivas se observó una reducción del tamaño de la placa viral. Para confirmar este efecto se realizó un ensayo de PFU donde se añadieron los compuestos sobre las células Vero (2.5 x104 células/pozo) 2h después de la infección con 100 PFU/pozo de los virus (Ekblad et al., 2006). Los compuestos preparados previamente en CMC se añadieron a concentraciones desde 1 ,56 μg/mL hasta 12,5 μς/Γηί. para el compuesto 1 y de 0,78 μς/ηΐ-. hasta 6,25 μς/ηΐ-. en el caso del compuesto 2, tanto para HHV-1 (CDC-Atlanta y 29R) como para HHV-2. Para determinar el efecto contra DENV-2 los compuestos se añadieron en un intervalo de concentración de 0,05 a 1 ,56 μςΛη... Finalmente, los platos se incubaron durante 72 horas (cepas de HHV) y 8 días (DENV-2) se fijaron y tiñeron con una solución de 3,5% de formaldehído/0,2% de cristal violeta. Las imágenes de 20 placas por cada concentración del compuesto y cada pozo de las respectivas réplicas, se capturaron usando una cámara Nikon digital vista DS-L1 unida a un microscopio invertido Nikon. El área en milímetros de cada placa se determinó utilizando el software Image-Pro Plus 6.0 ®. Dos ensayos independientes se realizaron por duplicado.
Actividad citotóxica:
La inhibición del crecimiento celular y/o citotoxicidad se evaluó en células Vero, HeLa, Jurkat U937, usando la técnica del MTT (bromuro de 3-(4,5-dimetiltiazol-2-yl)-2,5 difeniltetrazolio) (Sigma, New Jersey, USA) según el protocolo descrito por Zapata et al. (Zapata et al., 2013) con algunas modificaciones. Células Vero y HeLa (2,0 x 104 células/pozo) se sembraron en platos de 96 pozos y se incubaron 24 h a 37°C. Las células Jurkat y U937 (3,0 x 104 células/pozo), se cultivaron en platos de 96 pozos fondo redondo. Después las diluciones de los compuestos se agregaron y las placas se incubaron otras 48 h adicionales a 37 °C (5% CO2). Finalmente, se agregó el reactivo del MTT y se realizó la lectura en espectrofotométrica 570 nm para determinar la concentración de los compuestos que inhibe el 50% del crecimiento (IC50). Los valores de IC50, para cada compuesto fueron obtenidos por análisis de regresión lineal de curvas de dosis-respuesta a partir de las absorbancias obtenidas utilizando el programa estadístico GraphPad Prisma 5.0 y fueron expresados como la Media ± la Desviación Estándar de dos ensayos independientes por cuadruplicado (M ± SD). Para definir qué compuestos fueron más selectivos frente las líneas celulares de tipo tumoral que hacia las células no tumorales se calculó el índice de selectividad (IS) definido como la IC50 en células Vero sobre la IC50 en HeLa, Jurkat o U937. Un compuesto con IS≥ 5 se consideró selectivo. Paclitaxel y Doxorubicina se usaron como controles positivos.
Actividad antifúngica
La actividad antifúngica in vitro de los compuestos se evaluó siguiendo el protocolo M38-A del Clinical and Laboratory Standards Institute (CLSI 2008) para hongos filamentosos con ligeras modificaciones y el método estándard propuesto por el Antifungal Susceptibility Testing Subcommittee del European Committee on Antibiotic Susceptibility Testing (AFST-EUCAST) para levaduras (Cuenca-Estrella et al., 2003). Los hongos filamentosos Fusarium oxysporum (ATCC 48112), Aspergillus fumigatus (ATCC 204305), Aspergillus flavus (ATCC 204304), Aspergillus terreus (CDC 317) y los dermatofitos, Trichophyton rubrum (ATCC 28188) y Trichophyton mentagrophytes (ATCC 24198) se emplearon para evaluar la actividad antifúngica frente a un inoculo de 0,2-2,5 x 105 UFC/mL. Las levaduras Candida albicans (ATCC 1023) Candida parapsilosis (ATCC 22019) y Candida tropicalis (ATCC 200956) se usaron para evaluar la actividad antifúngica frente a un inoculo de 1-5 x 105 CFU/mL. Diferentes diluciones de los compuestos se agregaron en platos de 96 pozos fondo plano por duplicado a concentraciones finales entre 3,125 y 50 μg/mL. Los compuestos fueron considerados activos si muestran valores de concentración inhibitoria mínima (CMI≤ 50 μς/Γηί.) MIC. Para el método CLSI M38-A, la CMI se definió como la dilución más baja que resultó en un 80% de inhibición del crecimiento visible del hongo después de 48 horas de incubación a 28°C para F. oxysporum y seis días para los dermatofitos. Como controles positivos, la anfotericina B se evaluó contra las cepas de A. fumigatus (ATCC 204305) y A. flavus (ATCC 204304), y la terbinafina frente a los dos dermatofitos. . Para el método de AFST-EUCAST, la CMI se determinó después de 24 h de incubación a 35°C y se define como la concentración más baja que mostró reducción del 90% del crecimiento. El itraconazol se utilizó como control positivo a para este ensayo. . En todos los experimentos se incluyó un control negativo (inoculo sin tratamiento). Los valores de CMI se expresaron como la media geométrica (MG- CMI) de los ensayos realizados por duplicado en tres días distintos frente a cada especie de hongos.
Resultados
Actividad biológica
Los compuestos sintetizados 1 y 2 se evaluaron para la actividad antiviral. Los resultados del cribado se muestran en la Tabla 1.
Tabla 1. Reducción de título viral, inhibición del efecto citopático y actividad antiviral contra HHV-1 , HHV-2 y DENV-2 de los derivados abietanos 1 y 2.
Línea celular Vero1
HHV-1 HHV-2 DENV-2
Actividad Actividad Actividad
Inhibición
Compuesto Rf b antiviral Rf b antiviral antiviral
del CPEd
(Mg/mL)c (Mg/mL)c (Mg/mL) c
1 102 6.25 103 12.5 + 12.5
2 NA NA 103 12.5 + 12.5
Aciclovir 104 1 .5 103 1 .5 NE NE
RIBA NE NE NE NE + 30 a Línea celular de riñon de mono verde africano (Cercopithecus aethiops) ATCC CCL- 81.
b Factor de reducción del título viral
c Máxima concentración no citotóxica que muestra reducción del título viral o inhibición del efecto citopático.
d Inhibición del efecto citopático (+). ACV: Aciclovir; RIBA: Ribavirina; NA: No activo; NE: No evaluado; HHV-1 (cepa CDC-Atlanta); HHV-2 (cepa VR-734); DENV-2 (cepa Nueva Guinea). Los resultados muestran que el compuesto 1 presenta actividad moderada frente HHV-1 (Rf=1x102) a una concentración de 6,25 μςΛη..; actividad relevante frente HHV- 2 (Rf=1x103) y un efecto protector sobre la monocapa celular infectada con DENV-2 a una concentración de 12,5 μςΛη... Durante la infección con DENV-2, el efecto protector durante el tratamiento con la molécula 1 fue comparable con la integridad celular observada en el control de células no infectadas. Por su parte, el compuesto 2 presentó actividad relevante contra HHV-2 (Rf=1x103) a una concentración de 12,5 μςΛτΐ-. y un efecto protector notable sobre la monocapa celular infectada con DENV-2, aunque menor que el ejercido por el compuesto 1 en la misma concentración ensayada (12,5 μς/ηΐ-.). Sin embargo, el compuesto 2 no mostró ser activo para HHV- 1. Es de notar que la concentración a la cual los anólogos del ferruginol ejercen actividad anti-dengue, es menor e igual de efectiva a la del control positivo empleado para este ensayo (ribavirina).
Por tanto, la actividad antiviral del compuesto 1 contra HHV-1 , HHV-2 y DENV-2 sugiere un posible efecto antiviral de amplio espectro contra virus envueltos con genoma de DNA y RNA, tales como herpes y dengue.
Actividad antiviral de los compuestos 1 y 2 en etapas pre y post-infectivas.
La Tabla 2 muestra que los compuestos 1 y 2 fueron eficaces en etapas post- infectivas.
Tabla 2. Actividad antiviral de los compuestos 1 y 2 en etapas pre y post-infección.
ECso (Mg/mL)
IC50 IC50 ECso (Mg/mL)
Compuest (IS)
Mg/mL Mg/mL (IS)
0
Tratamiento Pre-
72h 8 dias Tratamiento Post- infección infeccion
HHV-1 HHV-2 DENV-2 HHV-1 HHV-2 DENV-2
8,3 0,6
1 82,3 34,9 NA NA NA NA *
(10) (58,1) *
2 29,4 15.7 NA NA NA 5,9 5,0 1 ,5
(4,9) (5,9) * (10,4)
>400 NE 0,6 0,5 NE NE NE NE
DEX-S
ACV >400 NE NE NE NE 0,5 0,06 NE
RIBA NE NE NE NE NE NE NE 3.3
EC50: Concentración antiviral efectiva del 50%; IC50: Concentración del compuesto que induce 50% de inhibición del crecimiento celular a las 72 horas y 8 días; DS: desviación estándar; DEX-S: Dextrán sulfato; ACV: Aciclovir; RIBA: Ribavirina. En paréntesis: valores de índice de selectividad antiviral (IS = IC50/EC50), *Reducción del tamaño de las placas virales. NA: No activo; NE: No evaluado. Los valores representan la media de tres experimentos independientes; HHV-1 (cepa CDC- Atlanta); HHV-2 (cepa VR-734); DENV-2 (cepa Nueva Guinea).
En ambos tratamientos, se llevó a cabo un ensayo de reducción de placa y la concentración de los compuestos 1 y 2 que redujo el número de placas virales en un 50% (EC50) fue interpolada a partir de curvas de dosis-respuesta. Además los valores del índice de selectividad (IS) antiviral se calcularon mediante la relación entre la concentración inhibidora 50 (IC50) en células Vero y EC50 de cada virus (IC EC50) (Tabla 2).
El compuesto 1 reduce el 50% de las unidades formadoras de placa a una concentración de 8,3 g/mL contra HHV-2 y mostró un índice de selectividad antiviral mayor (Sl=10), mientras que el compuesto 2 redujo el número de placas en un 50% a concentraciones de 5,9 g/mL y 5,0 μςΛηί, para HHV-1 y HHV-2, respectivamente. Los controles usados DEX-S y ACV, mostraron actividad antiviral en pre y posttratamiento, respectivamente.
Se evaluó también la actividad anti-dengue para los análogos de ferruginol a los 8 días post-infección (d.p.i), siendo los compuestos 1 y 2 activos a una EC50 de 0,6 μg/mL (IS=58, 1) y 1 ,5 μg/mL, (IS = 10,4), respectivamente.
El índice de selectividad anti-viral se define como la efectividad de un producto para inhibir la replicación viral comparado con la capacidad de inducir la muerte celular. Además, es útil para hacer comparaciones de bioactividad y diseñar compuestos más potentes. Recientemente se ha descrito que valores mayores de 10 (Sl>10) se consideran indicativos de un agente terapéutico potencial que debería ser sometido a estudios biofarmacéuticos y pre-clínicos (Chattopadhyay et al., 2009; FDA-CDER, 2006).
Estudios previos han mostrado que derivados dehidroabietanos muestran una actividad moderada contra HHV-1 Y HHV-2 con valores por debajo de 100 μg/mL (González et al. 2010; Agudelo-Gómez et al., 2012). Los resultados de esta invención, sin embargo, muestran una actividad antiviral relevante a concentraciones más bajas (entre 6,25 μg/mL y 12,5 μg/mL).
Además del efecto dependiente de la dosis previamente descrito durante el tratamiento post-infección, se observó que los compuestos 1 y 2 inducen una reducción en el tamaño de la placa viral. Para determinar el promedio de reducción del tamaño de la placa durante el tratamiento con los compuestos en relación con el control viral sin tratamiento, se realizó el ensayo de PFU y posteriormente un análisis de imágenes utilizando el software Image-Pro Plus 6.0 (Figura 1 ). El área de las placas se midió en milímetros y diferencias estadísticamente significativas (p<0,001) se observaron en todos los casos. Los porcentajes de reducción reportados a continuación para cada virus, hacen referencia a la reducción del tamaño de la placa viral durante el tratamiento con los compuestos, comparado con el control viral sin tratamiento (100%).
El análisis de imagen muestra que el compuesto 1 reduce dramáticamente el tamaño de la placa viral de HHV-1 (CDC-Atlanta) equivalente a un 93,7%, a una concentración de 12,5 μg/mL (Figura 1A). En cuanto a HHV-2, el compuesto 2 redujo en un 68,2% el tamaño de las placas virales respecto al control viral sin tratamiento, a una concentración de 6,25 μg/mL (Figura 1 C). Durante el tratamiento con el compuesto 1 en células infectadas con HHV-1 (cepa 29R-resistente a aciclovir, con una mutación en la timidina quinasa) se observó un efecto similar al encontrado para la cepa de HHV- 1 (CDC-Atlanta-sensible a aciclovir), ya que esta molécula reduce el tamaño de la placa viral en un 87, 1 %, a una concentración de 12,5 μg/mL (Figura 1 E). Esto sugiere que no se requiere la fosforilación por la timidina quinasa viral para que este compuesto ejerza su acción, por lo que es posible que la actividad anti-herpética de este compuesto difiera de la de otros análogos de nucleósidos. Así mismo, se observó reducción del 77,9% en el tamaño de la placa viral cuando células infectadas con DENV-2 fueron tratadas con el compuesto 1 a una concentración de 1 ,56 μg/mL (Figura 1 G).
La representación morfológica de las placas de HHV-1 (cepas CDC-Atlanta y 29R) y DENV-2 después del tratamiento con el compuesto 1 y el control sin tratamiento se muestra en las figuras 1 B, 1 F y 1 H, respectivamente. La figura 1 D representa el tamaño de la placa posterior al tratamiento con el compuesto 2 durante la infección con HHV-2, al igual que el control viral sin tratamiento. En cada caso se nota de manera evidente la drástica reducción del tamaño de la placa durante el tratamiento con los compuestos, respecto al control de la infección.
La reducción en el tamaño de la placa de HHV-1 y HHV-2 desarrollado en presencia de los compuestos 1 y 2 sugiere que estos derivados abietanos pueden impedir replicación viral, la liberación de HHV, y/o dispersión célula a célula.
Es de destacar como ventaja de los compuestos de la invención, que el uso de la ribavirina como control positivo frente a la infección por DENV-2 ha permitido demostrar que el compuesto 1 es cinco veces más potente que aquélla, mientras que el compuesto 2 es dos veces más potente que la ribavirina, teniendo por lo tanto que usar la mitad de la dosis que en el caso del uso de ribavirina para conseguir el mismo efecto.
En la Tabla 3 se muestra la actividad citotóxica sobre las células Vero, así como sobre células tumorales HeLa, Jurkat and U937 del ferruginol y de los compuestos 1 y 2.
Tabla 3. Citotoxicidad (ICso- g/mL) del ferruginol y compuestos 1 y 2 sobre líneas celulares HeLa, Jurkat, U937 y Vero.
Líneas celulares
HeLa Jurkat U937 Vero
Compuestos
IC50 IC50 IC50 IC50
IS IS IS
(Mg/mL) (Mg/mL) (Mg/mL) (Mg/mL)
Ferruginol 18,6 1 .4 13,8 1 ,9 6,1 4, .2 25,9
1 >25 NA >25 NA >25 NA NE
2 18,0 1 ,5 6,5 4.2 10,0 2.7 27,3
0,085 0,0004 0,005
PXT NA NA NA 0,55
0,484 0,007 0,045
DOX NA NA NA 1 ,12
NA: no aplicable; NE: no evaluado.
IC50: Concentración del compuesto que induce 50% de inhibición del crecimiento celular a las 48 horas. IS: índice de selectividad definido como la IC50 en células Vero respecto a la IC50 en Jurkat, U937 o a HeLa. Jurkat: Línea celular de leucemia de células T aguda humana ATCC TIB-152; U937: Línea celular promonocitica humana ATCC CRL-1593.2; HeLa: Células de adenocarcinoma epitelial de cuello uterino humano ATCC CRL-1958; PXT: Paclitaxel; DOX: Doxorubicina. Los valores representan la media de dos ensayos independientes por cuadruplicado.
El ferruginol produjo una inhibición dependiente de la dosis sobre el crecimiento de las líneas celulares tumorales Jurkat, U937 y HeLa y la línea celular Vero, con un R2 (coeficiente de regresión linear) > 0,8. El compuesto 2 y el ferruginol, mostraron actividad citotóxica contra al menos una línea celular tumoral a concentraciones por debajo de 25 μg/mL. El compuesto 1 no fue activo contra ninguna línea celular tumoral y la línea celular Vero.
Adicionalmente, se determinó la actividad antifúngica de los compuestos contra dos dermatofitos (T. rubrum y 7. mentagrophytes) y los hongos filamentosos F. oxysporum, A. fumigatus A. flavus y A. terreus. En la Tabla 4 se muestra la actividad antimicótica de los análogos del ferruginol 1 y 2 contra levaduras y hongos filamentosos.
Tabla 4. Actividad antimicótica de los derivados del ferruginol 1 y 2 contra levaduras y hongos filamentosos.
Figure imgf000022_0001
Fo7 Tr1 Tm1 Afu8 Afl6 INM7 Ca4 Cp2 INM13
1 >50 >50 >50 >50 >50 >50 >50 >50 >50
2 >50 12,5 25 >50 >50 >50 >50 >50 >50
TERB <0.0078 <0.0078 - - - - - -
AMB - - 0.5 0.25 - - - -
ITZ - - - - - - 0.25 -
MG-CMI: Media Geométrica-Concentración Mínima Inhibitoria.
Fo7 ': Fusarium oxysporum ATCC 48112; Tr1 : Trichophyton rubrum ATCC 28188; Tm1 : Trichophyton mentagrophytes ATCC 24198: Afu8: Aspergillus fumigatus ATCC 204305; Afl6: Aspergillus flavus ATCC 204304; INM7: Aspergillus terreus CDC 317; Ca4: Candida albicans ATCC 10231 ; Cp2: Candida parapsilosis ATCC 22019; INM13: Candida tropicalis ATCC
200956. TERB: Terbinafina; AMB: Anfotericina B; ITZ: Itraconazol. Los valores representan la media geométrica de tres experimentos independientes por duplicado. El compuesto 2 mostró actividad anti-dermatofitos contra 7 rubrum y 7 mentagrophytes con valores GM-MIC de 12,5 y 25 μg/mL, respectivamente. El compuesto 1 no presentó actividad frente a las cepas evaluadas.
Como conclusión, los resultados obtenidos en la presente invención revelan que a diferencia de la molécula 2 que presentó actividad anti-dermatofitos y citotóxica sobre células de tipo tumoral, el compuesto 1 podría ser una molécula selectiva contra virus envueltos como herpes y dengue, debido a que no presentó efecto citotóxico sobre las líneas celulares de tipo tumoral HeLa, Jurkat y U937 y no mostró actividad antifúngica ante ninguna de las cepas micóticas evaluadas.
Bibliografía.
Martínez-Gutiérrez M., Castellanos J., Gallego-Gómez J.C. Statins reduce dengue virus production via decreased virion assembly. Intervirology. 201 1 ;54(4):202-216.
Stranska R, Schuurman R, Nienhuis E, Goedegebuure IW, Polman M, Weel JF, Wertheim-Van Dillen PM, Berkhout RJ, Van Loon AM. Survey of acyclovir-resistant herpes simplex virus in the Netherlands: prevalence and characterization. J. Clin. Virol. 2005, 32:7-18.
Bacon TH, Levin MJ, Leary JJ, et al. Herpes simplex virus resistance to acyclovir and penciclovir after two decades of antiviral therapy. Clin. Microbiol. Rev. 2003, 16: 114— 128.
Nagot N, Ouédraogo A, Foulongne V,et al. Reduction of HIV-1 RNA levéis with therapy to suppress herpes simplex virus. N. Engl. J. Med. 2007;356: 790-9.
Schacker T, Zeh J, Hu H, Shaughnessy M, Corey L. Changes in plasma human immunodeficiency virus type 1 RNA associated with herpes simplex virus reactivation and suppression. J. Infect. Dis. 2002; 186: 1718-25.
Bermejo A, Uranga Al, D'Atri G, Deane L, Olivares L, Pizzariello G, Forero O, Coringrato M, Maronna E. Herpes simplex en paciente inmunocomprometidos por VIH y terapia esteroidea en dermatosis ampollares. Dermatol. Argent. 201 1 ; 17(1):52-56.
AISMED. Virus Herpes Simple (herpes oral y genital).
http://www.aidsmeds.com/articles/herpes_6787.shtml (consultado: 20-12-2013).
Li F, Maag H, Alfredson T. Prodrugs of nucleoside analogues for improved oral absorption and tissue targeting. J. Pharm. Sci. 2008; 97(3): 1109-34.
Mansfield Dales JR. Novartis International Pharmaceutical Ltd. "Multistep synthesis of penciclovir or famciclovir starting with 2-amino-6-chloropurine". U.S. Patent 6,846,927, Ene 25, 2005
Taylor, M.P., Koyuncu, O.O. , Enquist,L.W.,201 1. Subversión of the actin cytoskeleton during viral infection. Nature Reviews Microbiology. 9, 427-439 (2011).
Dixit, R., Tiwari.V., Shukla, Deepak., 2008. Herpes simplex virus type 1 induces filopodia in differentiated P19 neural cells to facilítate viral spread. Neuroscience Letters 440, 113-1 18.
Wang.J.L, Zhang.J.L, Chen.W., Xu, X.F., Gao, N., Fan.D.Y., An,J., 2010. Roles of Small GTPase Rac1 in the Regulation of Actin Cytoskeleton during Dengue Virus Infection. PLOS Neglected Tropical Diseases. 4, 1-1 1.
Lin, L.T., Chen.T.Y., Chung.C.Y., Noyce, R.S., Grindley T. B., McCormick, C.,Lin, T.C.,Wang,G.H., Lin.C.C., Richardson.C.D., 201 1. Hydrolyzable Tannins (Chebulagic Acid and Punicalagin) Target Viral Glycoprotein-Glycosaminoglycan Interactions To Inhibit Herpes Simplex Virus 1 Entry and Cell-to-Cell Spread. Journal of virology. 4386-4398.
Ekblad.M., Bergstróm, T., Banwell, M.G., Bonnet, M., Renner, J., Ferro, V., Trybala, E., 2006. Anti-herpes simplex virus activities of two novel disulphated cyclitols. Antivir. Chem. Chemother. 17, 97-106.
Takei M, Umeyama A, Arihara S. Epicubenol and Ferruginol induce DC from human monocytes and differentiate IL-10-producing regulatory T cells in vitro. Biochem. Biophys. Res. Commun. 2005;337(2):730-8. Kuzma t, Derda M, Hadas E, Wysokihska H. Abietane diterpenoids from Salvia sclarea transformed roots as growth inhibitors of pathogenic Acanthamoeba spp. Parasitol. Res. 2015; 114(1):323-7. doi: 10.1007/s00436-014-421 1-3. Epub 2014 Nov 1 1.
González MA, Clark J, Connelly M, Rivas F. Antimalarial activity of abietane ferruginol analogues possessing a phthalimide group. Bioorg. Med. Chem. Lett. 2014;24(22):5234-7. doi: 10.1016/j.bmcl.2014.09.061.
González, M. A. and Pérez-Guaita, D., 2012. Short syntheses of (+)-ferruginol from (+)- dehydroabietylamine. Tetrahedron. 68, 9612-9615.
Malkowsky, I.M., Nieger, M., Kataeva, O., Waldvogel, S. R. Synthesis and properties of optically puré phenols derived from (+)-dehydroabietylamine. Synthesis 2007, No. 5, pp. 0773-0778.
Chih-Chun W, Yueh-Hsiung K, Jia-Tsrong J, Po-Huang, Sheng-Yang W, Hong-Gi L, Ching-Kuo L, Shang-Tzen C, et al. Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus. J. Med. Chem. 2007, 50: 4087-4095.
Vlietinck A.J., Van Hoof L, Totté J., Lasure A., Vanden Berghe D., Rwangabo P.C., et al., 1995. Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties. J. Ethnopharm. 46, 31-47.
Tang, L, Ling, A., Koh, R., Chye S., and Voon K., 2012. Screening of anti-dengue activity in methanolic extracts of medicinal plants. BMC Complementary and Alternative Medicine. 12, 1-10.
Cardozo, F.T., Camelini C. M., Mascarello, A., Rossi, M.J., Nunes, R.J., Monte Barardi, C.R., Mendonca. M., Oliveira Simóes, C.M., Antiherpetic activity of a sulfated polysaccharide from Agaricus brasiliensis mycelia. Antiviral Research. 201 1 : 1-7.
Zapata, B., Rojas, M., Betancur-Galvis, L, Mesa-Arango, A.C., Pérez-Guaita, D., González, M.A., 2013. Cytotoxic, immunomodulatory, antimycotic, and antiviral activities of semisynthetic 14-hydroxyabietane derivatives and triptoquinone C-4 epimers. Med. Chem. Commun. 4, 1239-1246.
Cuenca-Estrella, C.B., Moore, F., Barchiesi, J., Bille, E., Chryssanthou, D.W., Denning D.W. et al., 2003. Multicenter evaluation of the reproducibility of the proposed antifungal susceptibility testing method for fermentative yeasts of the Antifungal Susceptibility Testing Subcommittee of the European Committee on Antimicrobial Susceptibility Testing (AFST-EUCAST), Clin. Microbiol. Infect. 9, 467^174.
CLSI. Reference method for broth dilution antifungal susceptibility testing of filamentous fungí; approved standard-Second Edition. CLSI document M38-A2, 28 (16). Clinical and Laboratory Standards Institute, Wayne, USA: 2008.
Chattopadhyay D, Chawla- Sarkar M, Chatterjee T, Sharma Dey R, Bag P, Chakraborti S, Hassan Khan MT. Recent advancements for the evaluation of anti-viral activities of natural producís. New Biotechnology 2009 25, 5: 347-368.
(FDA- CDER) Food and Drug Administration.Center for Drug Evaluation and Research. Guidance for Industry, Antiviral Product Development-Conducting and Submitting Virology Studies to the Agency. U.S. Department of Health and Human Services. 2006. González, M.A., Pérez-Guaita, D., Correa-Royero, J., Zapata. B., Agudelo, L., Mesa- Arango, A., Betancur-Galvis, L., 2010. Synthesis and biological evaluation of dehydroabietic acid derivatives. Eur. J. Med. Chem. 45,811-816.
Agudelo-Gómez, L. S., Betancur-Galvis.L. A..González .M.A., 2012. Anti HHV-1 and HHV-2 activity in vitro of abietic and dehydroabietic acid derivatives. PharmacologyOnLine. 1 , 36- 42.

Claims

REIVINDICACIONES
1. Un análogo de ferruginol de fórmula (I)
Figure imgf000026_0001
(i)
en la que R1 , R2 R3 y X tienen independientemente el significado siguiente:
- R1 es CH2-ftalimido, CH2-succinimido, CH2-maleimido, CH2-NHCOCH3, CH2- NHCOCFs, CHO, CH2OH, (Ci-C6)carboxiester, o CH3 y donde R1 tiene cualquier estereoquímica,
- R2 es H, OH, F, Cl, Br, N02, NH2, (Ci-C6)alquilamino, di(Ci-C6)alquilamino, (Ci- C6)alquilamida o di(Ci-C6)alquilamida,
- R3 es H o OH,
- X es H2, O, OH o NOH, donde X puede tener cualquier esteroquímica en el caso apropiado, como cuando es OH,
incluyendo cualquier estereoisómero, y con la condición de que no se cumplen las condiciones que den lugar a los compuestos siguientes:
- compuesto de fórmula (I) en la que R1 es CH2OH, R2 es OH, R3 es OH y X es
H2,
- compuesto de fórmula (I) en la que R1 es CH3, R2 es OH, R3 es H y X es O,
- compuesto de fórmula (I) en la que R1 es CH3, R2 es OH, R3 es OH y X es H2 - compuesto de fórmula (I) en la que R1 es CH3, R2 es OH, R3 es OH y X es O, para su uso como antiviral.
2. Un análogo de ferruginol de fórmula (I), según la reivindicación 1 , que tiene una fórmula seleccionada entre
Figure imgf000026_0002
compuesto 1 compuesto 2
3. Un análogo de ferruginol de fórmula (I) según la reivindicación 1 ó 2, para su uso como antiviral contra virus envueltos.
4. Un análogo de ferruginol de fórmula (I), según la reivindicación 3, para su uso como antiviral contra virus de la familia Herpesviridae o Flaviviridae.
5. Un análogo de ferruginol de fórmula (I), según la reivindicación 4, para su uso como antiviral contra virus seleccionados entre virus de herpes y virus del dengue.
6. Un análogo de ferruginol de fórmula (I), según la reivindicación 5, para su uso como antiviral contra virus seleccionados entre herpes simplex tipo 1 y herpes simplex tipo 2.
7. Un análogo de ferruginol de fórmula (I) según la reivindicación 5, en el que el virus del dengue pertenece a la cepa DENV-2.
8. Un análogo de ferruginol de fórmula (I) según una de las reivindicaciones 1 a 7, caracterizado porque el compuesto de fórmula (I) se utiliza en la etapa de postinfección.
9. Un análogo de ferruginol de fórmula (I) según una de las reivindicaciones 1 a 8, que tiene una fórmula seleccionada entre:
Figure imgf000027_0001
compuesto 1 compuesto 2 para su uso contra el virus del dengue.
10. Un análogo de ferruginol de fórmula (I) según la reivindicación 9 para su uso contra el virus del dengue de la cepa DENV-2.
1 1. Un análogo de ferruginol de fórmula (II)
Figure imgf000027_0002
en la que:
R1 es CH2-ftalimido, CH2-succinimido, CH2-maleimido, CHO, CH2OH, y donde R1 puede tener cualquier estereoquímica,
R2 es F, Cl, Br, N02, NH2, (Ci-C6)alquilamino, di(Ci-C6)alquilamino, (Ci-C6)alquilamida, di(Ci-C6)alquilamida,
R3 es H, OH,
X es H2, O, OH, NOH, donde X puede tener cualquier esteroquímica en el caso apropiado, incluyendo sus esteroisómeros, y
con la condición de que no se cumplen las condiciones que den lugar a los compuestos siguientes:
- compuesto de fórmula (II) en la que R1 es CH2OH, R2 es OH, R3 es OH y X
- compuesto de fórmula (II) en la que R1 es CH2OH, R2 es Br, R3 es H y X es H2
- compuesto de fórmula (II) en la que R1 es CH2OH, R2 es Br, R3 es H y X es OH
- compuesto de fórmula (II) en la que R1 es CH2OH, R2 es NH2 O N(CH3)2, R3 es H y X es H2.
PCT/ES2016/070164 2015-03-12 2016-03-14 Análogos de ferruginol como agentes antivirales WO2016142568A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CONC2017/0009515A CO2017009515A2 (es) 2015-03-12 2017-09-20 Análogos de ferruginol como agentes antivirales

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201530320A ES2586505B1 (es) 2015-03-12 2015-03-12 Análogos de ferruginol como agentes antivirales
ESP201530320 2015-03-12

Publications (1)

Publication Number Publication Date
WO2016142568A1 true WO2016142568A1 (es) 2016-09-15

Family

ID=56879247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070164 WO2016142568A1 (es) 2015-03-12 2016-03-14 Análogos de ferruginol como agentes antivirales

Country Status (3)

Country Link
CO (1) CO2017009515A2 (es)
ES (1) ES2586505B1 (es)
WO (1) WO2016142568A1 (es)

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GONZALEZ MIGUEL A ET AL.: "Antimalarial activity of abietane ferruginol analogues possessing a phthalimide group.", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 24, no. 22, 28 September 2014 (2014-09-28), AMSTERDAM, NL, pages 5234 - 5237, XP029088714, ISSN: 0960-894X *
GONZALEZ MIGUEL A ET AL.: "Short syntheses of ()-ferruginol from ()-dehydroabietylamine.", TETRAHEDRON, vol. 68, no. 47, AMSTERDAM, NL, pages 9612 - 9615, XP028945141, ISSN: 0040-4020 *
GONZÁLEZ MIGUEL: "A Synthetic derivatives of aromatic abietane diterpenoids and their biological activities.", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 87, 13 October 2014 (2014-10-13), PARIS, FR, pages 834 - 842, XP029019123, ISSN: 0223-5234 *
MALKOWSKY I M ET AL.: "Synthesis and properties of optically pure phenols derived from ( )-dehydroabietylamine.", SYNTHESIS, vol. 5, 1 March 2007 (2007-03-01), pages 773 - 778, XP055309815, ISSN: 0039-7881 *
ROA-LINARES VICKY C ET AL.: "Anti-herpetic and anti-dengue activity of abietane ferruginol analogues synthesized from ()-dehydroabietylamine..", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY FRANCE, vol. 108, 27 January 2016 (2016-01-27), pages 79 - 88, XP029383465, ISSN: 1768-3254 *
WEN CHIH-CHUN ET AL.: "Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus..", JOURNAL OF MEDICINAL CHEMISTRY UNITED STATES, vol. 50, no. 17, 23 August 2007 (2007-08-23), pages 4087 - 4095, XP055309833, ISSN: 0022-2623 *

Also Published As

Publication number Publication date
ES2586505B1 (es) 2017-07-13
ES2586505A1 (es) 2016-10-14
CO2017009515A2 (es) 2018-01-16

Similar Documents

Publication Publication Date Title
RU2769317C2 (ru) Способы лечения гриппа
Memariani et al. Melittin: a venom-derived peptide with promising anti-viral properties
Mehrbod et al. The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections
Hashem et al. Therapeutic use of chloroquine and hydroxychloroquine in COVID-19 and other viral infections: A narrative review
KR102265798B1 (ko) 코로나 바이러스에 연관된 감염의 치료를 위한 항바이러스 조성물
Biswas et al. Candidate antiviral drugs for COVID-19 and their environmental implications: a comprehensive analysis
Mattio et al. Natural and nature-inspired stilbenoids as antiviral agents
Al-Khikani Amphotericin B as antiviral drug: Possible efficacy against COVID-19
Du et al. The antiviral activity of arbidol hydrochloride against herpes simplex virus type II (HSV-2) in a mouse model of vaginitis
Superti et al. New advances in anti-HSV chemotherapy
Salinas et al. Imiquimod suppresses respiratory syncytial virus (RSV) replication via PKA pathway and reduces RSV induced-inflammation and viral load in mice lungs
CN115968375A (zh) SARS-CoV-2蛋白与宿主细胞的分子和细胞机制的相互作用以及治疗COVID-19的制剂
JP2023123440A (ja) 合成リジンアナログ及び模倣物の抗ウイルス用途のための方法及び組成物
ES2272689T3 (es) Dihidro-triterpenos en el tratamiento de infecciones virales, enfermedad cardiovascular, inflamacion, hipersensibilidad o dolor.
Chattopadhyay et al. Validation of antiviral potential of herbal ethnomedicine
US20240350659A1 (en) Compositions and methods for bimodal anti-viral combination therapy
ES2586505B1 (es) Análogos de ferruginol como agentes antivirales
CN118574614A (zh) 治疗sars-cov-2感染的方法
US20230210866A1 (en) Composition comprising diltiazem for treating a viral infection caused by sars-cov-2 viruses
US11197912B2 (en) Prevention and treatment of viral infection and viral infection-induced organ failure
US20160244453A1 (en) Treatment of viral and infectious diseases using an inhibitor of cbp/catenin
A Marathe et al. Herbal cocktail as anti-infective: promising therapeutic for the treatment of viral diseases
KR20040050924A (ko) 바이러스 감염 예방ㆍ치료제
RU2798659C1 (ru) Средство, обладающее противовирусным действием в отношении герпесвируса человека I типа и энтеровируса В
Ayipo et al. Silver nanoparticles for treatment of COVID-19 and other viral diseases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: NC2017/0009515

Country of ref document: CO

122 Ep: pct application non-entry in european phase

Ref document number: 16761137

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 03/07/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16761137

Country of ref document: EP

Kind code of ref document: A1