WO2016140428A1 - Coal briquette, method for manufacturing same, device for manufacturing same, ingot iron manufacturing method, and ingot iron manufacturing device - Google Patents

Coal briquette, method for manufacturing same, device for manufacturing same, ingot iron manufacturing method, and ingot iron manufacturing device Download PDF

Info

Publication number
WO2016140428A1
WO2016140428A1 PCT/KR2015/014010 KR2015014010W WO2016140428A1 WO 2016140428 A1 WO2016140428 A1 WO 2016140428A1 KR 2015014010 W KR2015014010 W KR 2015014010W WO 2016140428 A1 WO2016140428 A1 WO 2016140428A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
coal briquettes
mixture
briquettes
manufacturing
Prior art date
Application number
PCT/KR2015/014010
Other languages
French (fr)
Korean (ko)
Other versions
WO2016140428A8 (en
Inventor
류진호
이상호
박우일
박석인
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150030614A external-priority patent/KR101739859B1/en
Priority claimed from KR1020150137117A external-priority patent/KR101696628B1/en
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201580077215.6A priority Critical patent/CN107406782A/en
Priority to EP15884094.2A priority patent/EP3266855A4/en
Publication of WO2016140428A1 publication Critical patent/WO2016140428A1/en
Publication of WO2016140428A8 publication Critical patent/WO2016140428A8/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • C10L5/10Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders
    • C10L5/14Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders with organic binders
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • C10L5/10Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders
    • C10L5/22Methods of applying the binder to the other compounding ingredients; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/26After-treatment of the shaped fuels, e.g. briquettes
    • C10L5/28Heating the shaped fuels, e.g. briquettes; Coking the binders
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/361Briquettes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/02Combustion or pyrolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/06Heat exchange, direct or indirect
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/08Drying or removing water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/14Injection, e.g. in a reactor or a fuel stream during fuel production
    • C10L2290/146Injection, e.g. in a reactor or a fuel stream during fuel production of water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/24Mixing, stirring of fuel components
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/32Molding or moulds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/36Applying radiation such as microwave, IR, UV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/52Hoppers

Definitions

  • the present invention relates to coal briquettes, a production method thereof, a production apparatus, a molten iron production method, and a molten iron production apparatus. More specifically, the present invention relates to coal briquettes using a powdered cellulose ether compound as a binder, a production method thereof, a production apparatus, a molten iron production method, and a molten iron production apparatus.
  • iron ore is used as a reducing furnace and a molten gasifier for melting the reduced iron ore.
  • a melt gasifier coal briquettes are charged into a melt gasifier as a heat source for melting iron ore.
  • the reduced iron is melted in the molten gasifier, converted to molten iron and slag and then discharged to the outside.
  • the coal briquettes charged into the melt gasifier form a coal filling layer.
  • Oxygen is blown through the tuyere installed in the melt gasifier and then burns the coal packed bed to produce combustion gas. Combustion gas is converted into hot reducing gas while rising through the coal-filled bed.
  • the high temperature reducing gas is discharged to the outside of the melt gasification furnace and supplied to the reduction furnace as reducing gas.
  • Coal briquettes are prepared by mixing pulverized coal and a binder. In order to use molten iron, it is necessary to manufacture coal briquettes having excellent cold strength and hot strength. Therefore, coal briquettes are manufactured using a binder having excellent viscosity such as molasses.
  • the present invention provides a coal briquette having excellent hot strength and cold strength by using a cellulose ether compound or the like as a binder. Moreover, the manufacturing method of the coal briquettes mentioned above is provided. And to provide a molten iron manufacturing method including the above-described method for producing coal briquettes.
  • Coal briquettes according to an embodiment of the present invention is charged into the dome portion of the molten gasifier in the molten iron manufacturing apparatus comprising a reducing gas which is i) a molten gasifier to which iron is charged, and ii) a molten gasifier, and providing a reduced iron. It is heated rapidly.
  • the process for producing coal briquettes includes i) providing pulverized coal, ii) mixing the powdered cellulose ether compound with pulverized coal to provide a mixture, iii) adding water to the mixture and mixing the mixture, and iv) mixing the mixture. Shaping to provide coal briquettes. In the providing of the coal briquettes, the amount of the cellulose ether compound included in the coal briquettes is 0.7 wt% to 2.0 wt%.
  • the amount of cellulose ether compound may be 0.8 wt% to 1.5 wt%.
  • the amount of water contained in the coal briquettes may be 5wt% to 15wt%. More preferably, the amount of water contained in the coal briquettes may be 7wt% to 12wt%.
  • the ratio of the amount of water contained in the coal briquettes to the amount of the cellulose ether compound contained in the coal briquettes may be 5 to 40. In addition, the ratio of the amount of water contained in the coal briquettes to the amount of the cellulose ether compound contained in the coal briquettes may be 7 to 20.
  • the average particle size of the cellulose ether compound may be 50 ⁇ m to 100 ⁇ m. More preferably, in the step of providing the mixture, the ratio of the average particle size of the pulverized coal to the average particle size of the cellulose ether compound may be 7 to 30. The ratio of the average particle size of the pulverized coal to the average particle size of the cellulose ether compound may be 10 to 20.
  • the mixing time in providing the mixture is less than the mixing time in adding water to the mixture and mixing, and the mixing time in providing the mixture to the mixing time in adding water to the mixture and mixing.
  • the ratio of may be 2 to 5.
  • the cellulose ether compound is at least 1 selected from the group consisting of methyl cellulose (MC), hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), hydroxypropyl methyl cellulose (HPMC) and hydroxyethyl methyl cellulose (HEMC). Species of the compound may be included.
  • the cellulose ether compound may not include carboxymethyl cellulose (CMC).
  • the viscosity of the cellulose ether compound may be between 4,000 cps and 80,000 cps.
  • Method for producing coal briquettes according to an embodiment of the present invention may further comprise the step of drying the mixture after the step of mixing by adding water to the mixture.
  • the pulverized coal may be further mixed with one or more binders selected from polyvinyl alcohol (PVA), lignin, and starch.
  • PVA polyvinyl alcohol
  • the amount of water contained in the coal briquettes may be 5wt% to 15wt%.
  • the coal briquettes are heated at 80 ° C. to 150 ° C. for 1 hour to 24 hours to adjust the amount of moisture contained in the coal briquettes to 5 wt% or less, and the compression load of the coal briquettes is 100 kgf or more. It may further comprise the step of adjusting to.
  • the coal briquettes are hot air, steam, near infrared, microwave, liquid natural gas (LNG), liquid propane gas (LPG), FIG off gas (FOG), and coke oven gas (cokes oven).
  • gas, COG) and blast furnace gas (BFG) may be heated by one or more heat sources selected from the group consisting of.
  • the method for producing molten iron includes the steps of i) providing coal briquettes prepared according to the above method, ii) providing reduced iron from iron ore in a reduction furnace, and iii) melting the coal briquettes and reduced iron. Charging the gasifier to provide molten iron.
  • the reduction furnace may be a fluidized bed reduction furnace or a packed bed reduction furnace.
  • Coal briquettes according to an embodiment of the present invention is charged into the dome portion of the molten gasifier in the molten iron manufacturing apparatus comprising a reducing gas which is i) a molten gasifier to which iron is charged, and ii) a molten gasifier, and providing a reduced iron. It is heated rapidly.
  • the coal briquettes comprise 0.7 wt% to 2.0 wt% of cellulose ether compounds, 5 wt% to 15 wt% of water, and the remaining fine coal. More preferably, the amount of cellulose ether compound may be 0.8 wt% to 1.5 wt%.
  • the coal briquette manufacturing apparatus includes: i) pulverized coal hopper for storing pulverized coal, ii) binder hopper for storing water-soluble binder, iii) pulverized coal is supplied from pulverized coal hopper, and water-soluble binder is supplied from the binder hopper.
  • a mixer for preparing a mixture of pulverized coal and a water-soluble binder iv) a water supply unit for supplying water to the mixer, v) a molding apparatus for manufacturing coal briquettes by receiving a mixture from the mixer, and vi) a coal briquette provided from a molding apparatus.
  • the molten iron manufacturing apparatus is i) a coal briquette manufacturing apparatus described above, ii) a reducing furnace for providing reduced iron, and iii) a reduced iron connected to a reducing furnace, and is connected to a coal briquette manufacturing apparatus to obtain coal briquettes. It includes a molten gasifier for supplying molten iron.
  • the reduction furnace may be a fluidized bed reduction furnace or a packed bed reduction furnace.
  • a cellulose ether compound as a binder it can greatly improve the hot strength and cold strength of the coal briquettes.
  • a cellulose ether compound can be used to prevent alkali from being deposited in the fluidized-bed reduction furnace.
  • heat-treating the coal briquettes to increase the compressive load of the coal briquettes can greatly improve the hot strength and cold strength of the coal briquettes manufactured using a water-soluble binder or water.
  • the compression load of the coal briquettes can be increased in a short time through rapid and efficient heat treatment.
  • FIG. 1 is a schematic flowchart of a method of manufacturing coal briquettes according to an exemplary embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an apparatus for manufacturing coal briquettes using the method of manufacturing coal briquettes of FIG. 1.
  • FIG. 3 is a schematic view of a molten iron manufacturing apparatus including the coal briquette manufacturing apparatus of FIG. 2.
  • FIG. 4 is a schematic view of another molten iron manufacturing apparatus including the coal briquette manufacturing apparatus of FIG.
  • 5 to 8 are graphs showing experimental results according to Experimental Examples 10 to 13 of the present invention, respectively.
  • first, second, and third are used to describe various parts, components, regions, layers, and / or sections, but are not limited to these. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, the first portion, component, region, layer or section described below may be referred to as the second portion, component, region, layer or section without departing from the scope of the invention.
  • FIG. 1 schematically shows a flow chart of a method for producing coal briquettes according to an embodiment of the present invention.
  • the flowchart of the manufacturing method of the coal briquette of FIG. 1 is only for illustration of this invention, Comprising: This invention is not limited to this. Therefore, the manufacturing method of the coal briquettes can be variously modified. Meanwhile, the structure of the coal briquette manufacturing apparatus for implementing the method of manufacturing coal briquettes of FIG. 1 may be easily understood by those skilled in the art, and thus detailed description thereof will be omitted.
  • the method of manufacturing coal briquettes includes providing fine coal (S10), mixing a powdered cellulose ether compound to provide a mixture (S20), and adding water to the mixture to mix it. (S30), and forming a mixture to provide coal briquettes (S40).
  • the method of manufacturing coal briquettes may further include other steps.
  • step S10 pulverized coal is provided.
  • pulverized coal raw materials containing carbon such as bituminous coal, subbituminous coal, anthracite and coke may be used.
  • the particle size of pulverized coal can be adjusted to 4mm or less.
  • step S20 a cellulose ether compound is mixed with pulverized coal to provide a mixture. That is, the cellulose ether compound is added to the pulverized coal and then the mixture is mixed well so as to be uniformly mixed.
  • a powdered cellulose ether compound is used rather than the liquid phase.
  • a carboxymethyl cellulose (CMC) solution having a low viscosity of the binder itself may be used to improve flowability.
  • CMC carboxymethyl cellulose
  • the binder in the form of a solution is difficult to maintain the binder component uniformly due to the separation of the layer, the transport cost is high because a special transport vehicle such as tank lorry is required during the transfer.
  • the binder solution freezes during the winter months, so storage is not easy.
  • the powdered cellulose ether compound when used as the binder, the coal briquettes having excellent strength can be produced because the viscosity of the cellulose ether compound itself is high.
  • the cellulose ether compound since the cellulose ether compound is used in a powder form, it is easy to store by minimizing its volume, and there is an advantage of easy transportation. Furthermore, there is no need to worry about freezing during the winter season. It is therefore suitable to use powdered cellulose ether compounds.
  • the viscosity of the cellulose ether compound may be between 4,000 cps and 80,000 cps.
  • the viscosity of the cellulose ether compound refers to a value obtained by measuring the viscosity of an aqueous solution of a cellulose ether compound having a concentration of 2% by weight at 20 ⁇ 0.1 ° C. using Brookfield's DV-II + Pro (spindle HA).
  • Brookfield's DV-II + Pro spindle HA
  • the cellulose ether compound may include methyl cellulose (MC), hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), hydroxypropyl methyl cellulose (HPMC) or hydroxyethyl methyl cellulose (HEMC).
  • Methyl cellulose (MC) has a methyl group substitution degree of 18 to 32wt%
  • hydroxyethyl cellulose (HEC) has a hydroxyethyl group substitution degree of 20 to 80wt%.
  • hydroxypropyl cellulose has a hydroxypropyl group substitution degree of 20 to 80wt%
  • hydroxypropyl methyl cellulose HPMC
  • HPMC hydroxypropyl methyl cellulose
  • HEMC hydroxyethyl methyl cellulose
  • HEMC hydroxyethyl methyl cellulose
  • the average particle size of the powdered cellulose ether compound may be 50 ⁇ m to 100 ⁇ m.
  • the particle size of the powdered cellulose ether compound is too small, the production process cost increases.
  • the particle size of the cellulose ether compound is too large, the specific surface area of the cellulose ether compound is small, its water solubility is lowered, and the strength of the coal briquettes manufactured using the cellulose ether compound may be lowered. Therefore, it is preferable to adjust the particle size of the powdered cellulose ether compound to the above-mentioned range.
  • the average particle size of the powdered cellulose ether compound may be 78 ⁇ m. In this case, the particle size of the powdered cellulose ether compound may be 97% or more in 0.18 mm or less.
  • the ratio of the average particle size of the pulverized coal to the average particle size of the cellulose ether compound may be 7 to 30. More specifically, the ratio of the average particle size of the pulverized coal to the average particle size of the cellulose ether compound may be 10 to 20. If the ratio of the average particle size is too large or too small, the cellulose ether compound may not sufficiently express the binding capacity in the pulverized coal as a binder. Therefore, it is preferable to keep the ratio of average particle size in the above-mentioned range.
  • step S30 water is added to the mixture and mixed.
  • the cellulose ether compound dispersed in the pulverized coal is dissolved in water.
  • the dissolved cellulose ether compound can exhibit the bonding force with the pulverized coal and can greatly improve the strength of the coal briquettes produced in the subsequent process.
  • the coal briquettes having excellent strength and minimizing the process cost are separated by mixing water with a mixture of a powdered cellulose ether compound and pulverized coal without first mixing the liquid binder with pulverized coal. It can manufacture.
  • the mixing time in step S30 is greater than the mixing time in step S20. That is, in step (S20), since the pulverized coal and the cellulose ether compound of the powder type are used, uniform mixing is possible even for a short time by mixing the solid and the solid. On the other hand, in step (S30) it is necessary to dissolve in powdered pulverized coal uniformly by contacting the powdered cellulose ether compound mixed with pulverized coal in the step (S20), so mixing for a long time than the step (S20) in terms of process efficiency desirable. More preferably, the ratio of the mixing time in step S30 to the mixing time in step S20 may be 2-5.
  • the powdered cellulose ether compound mixed with the pulverized coal may not be in sufficient contact with water, and thus the strength of the coal briquettes may be lowered.
  • the above ratio is too large, it is not preferable in terms of process efficiency. Therefore, it is desirable to adjust the above ratio appropriately.
  • the step (S30) it may be added after the step (S30) to dry the mixture. That is, when it is necessary to control the moldability of the mixture containing the pulverized coal, the powdered cellulose ether compound and the water, the mixture may be dried to remove some moisture. As a result, the strength of the coal briquettes produced in a subsequent step can be greatly improved.
  • step S40 the mixture is molded to provide coal briquettes.
  • coal briquettes in the form of pockets or strips can be produced by charging and compressing the mixture between a pair of rollers.
  • the amount of the cellulose ether compound contained in the coal briquettes may be 0.7wt% to 2.0wt%. More preferably, the amount of cellulose ether compound may be 0.8 wt% to 1.5 wt%. If the amount of cellulose ether compound is too large, the cost of manufacturing coal briquettes rises.
  • the amount of the cellulose ether compound is too small, the sufficient binding force is not expressed and the strength of the coal briquettes is lowered. Therefore, it is preferable to adjust the amount of the cellulose ether compound in the above-mentioned range.
  • the amount of water contained in the coal briquettes may be 5wt% to 15wt%. More preferably, the amount of moisture may be 7 wt% to 12 wt%. If the amount of water is too large, there is a problem that the molding of the mixture is difficult. In addition, when the amount of moisture is too small, the cold strength of the coal briquettes may be lowered. Therefore, the amount of moisture is adjusted to the above range.
  • the coal briquettes prepared by the above-described method include 0.7 wt% to 2.0 wt% of cellulose ether compounds, 5 wt% to 15 wt% of water, and the remaining fine coal. More specifically, the amount of cellulose ether compound may be 0.8wt% to 1.5wt%.
  • the amount of the cellulose ether compound is too large, the production cost of coal briquettes is greatly increased.
  • the amount of the cellulose ether compound is too small, the strength of the coal briquettes is lowered. Therefore, it is preferable to adjust the amount of the cellulose ether compound in the above-mentioned range.
  • the amount of water is too large, the formability of the coal briquettes is lowered.
  • the amount of moisture is too small, the cold strength of the coal briquettes may be lowered. Therefore, the moisture content of the coal briquettes is adjusted to the above range.
  • a binder such as PVA (polyvinyl alcohol, polyvinyl alcohol), lignin, or starch may be further mixed in addition to the cellulose ether compound described above in step S20. These binders have the same water solubility as the cellulose ether compound.
  • the amount of water contained in the coal briquettes manufactured using the binder may be 5 wt% to 15 wt%. Since water is used or water is added in step S30, after the coal briquettes are manufactured, the coal briquettes may be heated to reduce the amount of moisture contained in the coal briquettes. That is, the coal briquettes are heated at 80 ° C. to 150 ° C. for 1 to 24 hours to adjust the amount of moisture contained in the coal briquettes to 5 wt% or less.
  • Heat treatment conditions may be enhanced or moderated depending on the moisture content of the coal briquettes. If the heating temperature of the coal briquettes is too low, the moisture contained in the coal briquettes are not evaporated well, the heat treatment effect is lowered, the heat treatment time is increased, the productivity is lowered. In addition, when the heating temperature of the coal briquettes is too high, the volatiles contained in the coal briquettes may be lost while cracking in the coal briquettes, and the compressive load is rather lowered because only the moisture content is lowered due to exposure to high temperatures. Therefore, the heating temperature of coal briquettes is adjusted to the above-mentioned range.
  • the higher the coal briquette heating temperature can shorten the heat treatment time, but in order to shorten the heating time to less than 1 hour, a high temperature hot air must be applied to the volatile matter contained in the coal briquettes. Moreover, when heat processing time is too long, productivity will fall. Therefore, the heating time of the coal briquettes is adjusted to the above-mentioned range. On the other hand, the compression load of the coal briquettes can be adjusted to 100kgf or more.
  • the heating unit of the coal briquettes, etc. will be described in more detail with reference to FIG. 2.
  • FIG. 2 schematically shows a coal briquette manufacturing apparatus 60 to which the coal briquette manufacturing method of FIG. 1 is applied.
  • the structure of the coal briquette manufacturing apparatus 60 of FIG. 2 is merely for illustrating the present invention, and the present invention is not limited thereto. Therefore, the coal briquette manufacturing apparatus may be modified differently.
  • the coal briquette manufacturing apparatus 60 includes a pulverized coal hopper 61, a binder hopper 62, a water supply unit 63, a mixer 64, a molding apparatus 65, and a heat treatment unit 66. Include. In addition, the coal briquette manufacturing apparatus 60 may further include other devices as necessary. Pulverized coal is stored in the pulverized coal hopper 61, and a binder is stored in the binder hopper 62. Examples of the binder include the above-described cellulose ether compound, PVA (polyvinyl alcohol, polyvinyl alcohol), lignin or starch.
  • PVA polyvinyl alcohol, polyvinyl alcohol
  • the mixer 64 prepares a mixture by mixing the pulverized coal and a binder supplied from the pulverized coal hopper 61 and the binder hopper 62, respectively.
  • the water supply unit 63 is connected to the mixer 64 to supply water to the mixer 64.
  • the molding apparatus 65 receives the mixture from the mixer 64 to form the coal briquettes by molding the mixture.
  • the molding apparatus 65 uses a pair of rolls that rotate in opposite directions to charge the mixture therebetween, compress it, and discharge it downward.
  • the heat treatment unit 66 dries the coal briquettes to improve the compression load of the coal briquettes.
  • the heat treatment unit 66 includes a storage bin 661, a blower 663, a heat source 665, and a dust collector 667.
  • the heat treatment unit 66 may further include other devices.
  • the storage bin 661 stores the coal briquettes discharged from the forming apparatus 65 to the lower portion, and discharges the dried coal briquettes to the lower portion thereof.
  • the level of coal briquettes stored in the storage bin 661 is maintained at an appropriate level so that coal briquettes are not destroyed by the heat treatment time or the compression load thereof.
  • the storage bin 661 has a funnel shape to increase the contact area between hot air and coal briquettes.
  • the blower 663 receives heat from the heat source 667 that generates thermal energy and forcibly transfers the heat to the storage bin 661.
  • Hot air can be produced using steam, near infrared rays or microwaves as a heat source.
  • the hot air can also be produced using commercialized fuels such as liquid natural gas (LNG) or liquid propane gas (LPG).
  • LNG liquid natural gas
  • LPG liquid propane gas
  • FOG molten iron manufacturing exhaust gas
  • COG coke oven gas
  • BFG blast furnace gas
  • the heat source 67 may be directly heated like an electric heater, or may recover and use waste heat generated in an ironworks, such as slag sensible heat and waste heat generated when oxidation of reduced iron of fine powder occurs.
  • the storage bin 661 has a structure in which its cross-sectional area gradually widens from the bottom to the top. Therefore, since hot air rises from the lower part of the storage bin 661 toward the upper part, the coal briquettes can be efficiently dried while removing the moisture contained in the coal briquettes. The dried coal briquettes are discharged to the lower portion of the storage bin 661.
  • a discharge device may be provided below the storage bin 661.
  • the discharge device constantly discharges the coal briquettes at a speed within 50 t / h. Meanwhile, steam of the coal briquettes discharged from the storage bin 661 is discharged to the outside after the dust is filtered while passing through the dust collector 667. If the temperature of the water vapor is lowered above the saturated water vapor pressure, condensed water may be produced. Therefore, although not shown in FIG. 2, a thermostat can be provided so that condensed water does not flow back into the storage bin 661.
  • the cold strength of the coal briquettes can be secured within a short time by heating the coal briquettes even when the binder and water are used together or the coal briquettes in which the binder itself has a high water content as a water-soluble and sufficient strength is not initially secured.
  • FIG. 3 schematically illustrates an apparatus for manufacturing molten iron 200 including the apparatus for manufacturing coal briquettes of FIG. 2.
  • the structure of the apparatus for manufacturing molten iron 200 of FIG. 3 is merely for illustrating the present invention, and the present invention is not limited thereto. Therefore, the apparatus for manufacturing molten iron 200 of FIG. 3 may be modified in various forms.
  • the apparatus for manufacturing molten iron 200 includes a molten gasifier 60 and a packed-bed reduction reactor 20. In addition, other devices may be included as needed.
  • iron ore is charged and reduced.
  • the iron ore charged in the packed-bed reduction furnace 20 is made of reduced iron while passing through the packed-bed reduction furnace 20 after being pre-dried.
  • the packed-bed reduction furnace 20 is a packed-bed reduction furnace, receives a reducing gas from the melt gasifier 60 to form a packed bed therein.
  • the coal briquettes manufactured by the manufacturing method of FIG. 1 are charged into the molten gasifier 60, a coal filling layer is formed inside the molten gasifier 60.
  • the dome part 601 is formed in the upper part of the melt gasifier 60. That is, a wider space is formed than the other parts of the melt gasifier 60, where a high temperature reducing gas exists. Therefore, the coal briquettes charged into the dome part 601 by the high temperature reducing gas are converted into char by a pyrolysis reaction.
  • the char generated by the pyrolysis reaction of the coal briquettes moves to the lower portion of the molten gasifier 60 to exothermicly react with oxygen supplied through the tuyere 30.
  • the coal briquettes can be used as a heat source for keeping the molten gasifier 60 at a high temperature.
  • a large amount of gas generated in the lower portion of the melt gasifier 60 and reduced iron supplied from the packed-bed reduction reactor 20 makes the coal-filled layer in the melt gasifier 60 more easily and uniformly. Can pass.
  • a bulk coal material or coke may be charged into the melt gasifier 60 as necessary.
  • a tuyere 30 On the outer wall of the molten gasifier 60 is provided with a tuyere 30 to blow oxygen. Oxygen is blown into the coal packed bed to form a combustion zone.
  • the coal briquettes may be burned in a combustion zone to generate reducing gas.
  • FIG. 4 schematically shows another apparatus for manufacturing molten iron 300 including the apparatus for manufacturing coal briquettes of FIG. 2.
  • the structure of the apparatus for manufacturing molten iron 300 of FIG. 4 is merely for illustrating the present invention, and the present invention is not limited thereto. Therefore, the apparatus for manufacturing molten iron 300 of FIG. 4 may be modified in various forms. Since the structure of the apparatus for manufacturing molten iron 300 of FIG. 4 is similar to that of the apparatus for manufacturing molten iron 200 of FIG. 3, the same reference numerals are used for the same parts, and a detailed description thereof will be omitted.
  • the apparatus for manufacturing molten iron 300 includes a molten gasifier 60, a fluidized bed reduction furnace 22, a reduced iron compression device 40, and a compressed reduced iron storage tank 50.
  • the reduced reduced iron storage tank 50 can be omitted.
  • the manufactured coal briquettes are charged into a molten gasifier 60.
  • the coal briquettes generate a reducing gas in the melt gasifier 60, and the generated reducing gas is supplied to the fluidized-bed reduction furnace 22.
  • the iron ore is supplied to the plurality of reducing furnaces 22 having a fluidized bed, and is made of reduced iron while flowing by the reducing gas supplied from the melt gasifier 60 to the fluidized bed reducing furnace 22.
  • the reduced iron is compressed by the reduced iron compression device 40 and then stored in the reduced reduced iron storage tank (50).
  • the compressed reduced iron is charged together with the coal briquettes from the compressed reduced iron storage tank 50 together with the coal briquettes and melted in the molten gasifier 60.
  • coal briquettes are supplied to the molten gasifier 60 and changed into air permeable, a large amount of gas and compressed reduced iron generated in the lower part of the molten gasifier 60 make the coal filling layer in the molten gasifier 60 easier and more uniform. It can be passed through to provide high quality molten iron.
  • the coal briquettes use a cellulose ether compound other than molasses as a binder, so that the alkali component can be significantly reduced. Therefore, the phenomenon in which an alkali such as potassium is deposited on the dispersion plate (not shown) or the cyclone (not shown) in the fluidized-bed reduction furnace 22 by the molasses containing a high alkali component can be prevented in advance.
  • Fine powder of less than 3.4mm and cellulose ether compound powder of 0.2mm or less were uniformly mixed for 1 minute, and then mixed with water for 3 minutes to prepare a mixture.
  • Pulverized coal was used as a mixture of strong coking coal, fine coal and powdered coke, and cellulose ether compound was used as hydroxypropyl methyl cellulose (HPMC, Mecelose ® ) manufactured by Samsung Fine Chemicals.
  • HPMC hydroxypropyl methyl cellulose
  • Mecelose ® hydroxypropyl methyl cellulose
  • the mixture was charged between a pair of rolls to produce coal briquettes. In this case, the pair of rolls pressurized the mixture at a pressure of 20 kN / cm to produce a pillow-shaped coal briquette having a size of 64.5 mm x 25.4 mm x 19.1 mm.
  • Detailed manufacturing process of the remaining coal briquettes can be easily understood by those skilled in the art, and detailed description thereof will be omitted.
  • Drop strength and compression load of the coal briquettes manufactured according to Experimental Examples 1 to 6 described above were measured.
  • the drop strength of the coal briquettes was determined from the ratio of coal briquettes having a particle size of +20 mm or more after 2 kg of coal briquettes were freely dropped four times at a height of 5 m.
  • the compression load of the coal briquettes was measured at the maximum load until the coal briquettes were destroyed by applying a constant speed pressure, and measured by the average value of 20 coal briquette samples, and the results are shown in Table 1 below.
  • the coal briquettes prepared according to Experimental Example 1 were crushed into fine powder, and about 7 g of finely divided coal briquettes were put into a 30 ml porcelain crucible, and burned by heating at 850 ° C. Box Furnace for 10 hours. Since the rest of the experimental procedure can be easily understood by those skilled in the art, detailed description thereof will be omitted.
  • HPMC and CMC solution was uniformly mixed with pulverized coal to prepare a mixture.
  • HPMC hydroxypropyl methyl cellulose
  • CMC carboxymethyl cellulose
  • the pair of rolls pressurized the mixture at a pressure of 20 kN / cm to produce a pillow-shaped coal briquette having a size of 64.5 mm x 25.4 mm x 19.1 mm.
  • the coal briquettes thus prepared were crushed into fine powder, and about 7 g of finely divided coal briquettes were put into a 30 ml porcelain crucible and burned by heating at 850 ° C. Box Furnace for 10 hours.
  • the rest of the experimental procedure was the same as in Experimental Example 8 described above.
  • Na 2 O content in the alkali contained in the ash was low as 0.39 in Experimental Example 8, but Na 2 O content was very high as 2.64 in Comparative Example 5.
  • the Na 2 O content was 1.59. This is because the Na ions are bonded to the functional group of the CMC, it can be seen that when the coal briquettes are manufactured using the CMC solution, alkali may be included in the reducing gas, which may adversely affect the operation of the fluidized bed reduction furnace.
  • a fine coal for coal briquettes having an average property used for molten reduced iron and a binder were prepared and mixed.
  • Pulverized coal had a particle size of 3.4 mm or less.
  • the pulverized coal was further mixed with a carbon source additive.
  • As a cellulose ether compound binder Ferrobine TM binder provided by Samsung Fine Chemicals Co., Ltd. was used. 1 part by weight of the binder was added to 100 parts by weight of pulverized coal, and 7 parts by weight of water was added and mixed uniformly. Then, the mixture was charged between a pair of rolls to produce coal briquettes.
  • the pair of rolls pressurized the mixture at a pressure of 20 kN / cm to produce pillow shaped coal briquettes having a size of 64.5 mm x 25.4 mm x 19.1 mm.
  • the coal briquettes prepared were heat-treated in a well-heated oven to evaporate moisture. Water and compression loads were measured using 20 coal briquettes manufactured. The compression load of the coal briquettes was measured by the maximum load until the coal briquettes were destroyed by applying a constant pressure and obtained from an average value of 20 coal briquette samples. The rest of the experimental procedure can be easily understood by those skilled in the art, and detailed description thereof will be omitted.
  • coal briquettes having an initial moisture content of 8.8 wt% and a compression load of 40 kgf were heat-treated at a temperature of 80 ° C. for 24 hours in a heat treatment oven to dry coal briquettes.
  • coal briquettes having an initial moisture content of 10.1 wt% and a compressive load of 51 kgf were heat-treated for 5 hours at a temperature of 100 ° C. in a heat treatment oven to dry coal briquettes.
  • coal briquettes having an initial moisture content of 9.7 wt% and a compressive load of 52 kgf were heat-treated in a heat treatment oven at a temperature of 120 ° C. for 5 hours to dry coal briquettes.
  • coal briquettes having an initial moisture content of 9.2 wt% and a compressive load of 51 kgf were heat-treated in a heat treatment oven at a temperature of 150 ° C. for 5 hours to dry coal briquettes.
  • Coal briquettes prepared in the same manner as in Comparative Example 6 described above were heat treated at 60 ° C.
  • Comparative Example 6 which was not subjected to heat treatment, the coal briquettes initially showed a compression load of 40 kgf, and after 24 hours at room temperature, the compression load was 70 kgf. Even when the coal briquettes were heat treated at 60 ° C. as in Comparative Example 7, sufficient compressive load was not obtained. Even in Comparative Example 8, which was heat-treated at a high temperature of 200 ° C., cracks occurred, and thus the appearance of the coal briquettes was not maintained.
  • the compressive load of the coal briquettes was excellent as 294kgf in Experimental Example 10, 217kgf in Experimental Example 11, 3491kgf in Experimental Example 12, and 307kgf in Experimental Example 13, respectively.
  • the compressive load of the coal briquettes slightly decreased over time, it was found that it is preferable to adjust the heat treatment conditions of the coal briquettes to the above-mentioned ranges.

Abstract

Provided are a coal briquette, a method for manufacturing the same, a device for manufacturing the same, an ingot iron manufacturing method, and an ingot iron manufacturing device. The coal briquette is inserted into a domed portion of a melting gas brazier of an ingot iron manufacturing device and is heated rapidly, the ingot iron manufacturing device comprising: i) a melting gas brazier, into which reduced iron is inserted; and ii) a reducing furnace, which is connected to the melting gas brazier, and which provides reduced iron. A coal briquette manufacturing method comprises the steps of: i) providing pulverized coal; ii) mixing the pulverized coal with a powder-type cellulose ether compound, thereby providing a mixture; iii) adding water to the mixture and mixing the same; and iv) providing a coal briquette by molding the mixture. In the step of providing a coal briquette, the amount of cellulose ether compound included in the coal briquette is 0.7wt% to 2.0wt%.

Description

성형탄, 그 제조 방법, 제조 장치, 용철 제조 방법 및 용철 제조 장치Coal briquettes, the manufacturing method, a manufacturing apparatus, a molten iron manufacturing method, and a molten iron manufacturing apparatus
본 발명은 성형탄, 그 제조 방법, 제조 장치, 용철 제조 방법 및 용철 제조 장치에 관한 것이다. 좀더 상세하게는, 본 발명은 분말형의 셀룰로오스 에테르 화합물을 바인더로 사용한 성형탄, 그 제조 방법, 제조 장치, 용철 제조 방법 및 용철 제조 장치에 관한 것이다.The present invention relates to coal briquettes, a production method thereof, a production apparatus, a molten iron production method, and a molten iron production apparatus. More specifically, the present invention relates to coal briquettes using a powdered cellulose ether compound as a binder, a production method thereof, a production apparatus, a molten iron production method, and a molten iron production apparatus.
용융환원제철법에서는 철광석을 환원로와 환원된 철광석을 용융하는 용융가스화로를 사용한다. 용융가스화로에서 철광석을 용융하는 경우, 철광석을 용융할 열원으로서 성형탄을 용융가스화로에 장입한다. 여기서, 환원철은 용융가스화로에서 용융된 후, 용철 및 슬래그로 전환된 후 외부로 배출된다. 용융가스화로에 장입된 성형탄은 석탄충전층을 형성한다. 산소는 용융가스화로에 설치된 풍구를 통하여 취입된 후 석탄충전층을 연소시켜서 연소 가스를 생성한다. 연소가스는 석탄충전층을 통하여 상승하면서 고온의 환원 가스로 전환된다. 고온의 환원가스는 용융가스화로의 외부로 배출되어 환원가스로서 환원로에 공급된다.In the molten iron reduction method, iron ore is used as a reducing furnace and a molten gasifier for melting the reduced iron ore. When iron ore is melted in a melt gasifier, coal briquettes are charged into a melt gasifier as a heat source for melting iron ore. Here, the reduced iron is melted in the molten gasifier, converted to molten iron and slag and then discharged to the outside. The coal briquettes charged into the melt gasifier form a coal filling layer. Oxygen is blown through the tuyere installed in the melt gasifier and then burns the coal packed bed to produce combustion gas. Combustion gas is converted into hot reducing gas while rising through the coal-filled bed. The high temperature reducing gas is discharged to the outside of the melt gasification furnace and supplied to the reduction furnace as reducing gas.
성형탄은 미분탄과 바인더를 혼합한 후 압축하여 제조한다. 용철 제조에 사용하기 위해서는 우수한 냉간 강도와 열간 강도를 가진 성형탄을 제조할 필요가 있다. 따라서 당밀 등의 우수한 점도를 가지는 바인더를 사용하여 성형탄을 제조한다.Coal briquettes are prepared by mixing pulverized coal and a binder. In order to use molten iron, it is necessary to manufacture coal briquettes having excellent cold strength and hot strength. Therefore, coal briquettes are manufactured using a binder having excellent viscosity such as molasses.
셀룰로오스 에테르 화합물 등을 바인더로 사용하여 우수한 열간 강도와 냉간 강도를 가지는 성형탄을 제공하고자 한다. 또한, 전술한 성형탄의 제조 방법을 제공하고 한다. 그리고 전술한 성형탄의 제조 방법을 포함하는 용철제조방법을 제공하고자 한다.The present invention provides a coal briquette having excellent hot strength and cold strength by using a cellulose ether compound or the like as a binder. Moreover, the manufacturing method of the coal briquettes mentioned above is provided. And to provide a molten iron manufacturing method including the above-described method for producing coal briquettes.
본 발명의 일 실시예에 따른 성형탄은 i) 환원철이 장입되는 용융가스화로, 및 ii) 용융가스화로에 연결되고, 환원철을 제공하는 환원로를 포함하는 용철제조장치에서 용융가스화로의 돔부에 장입되어 급속 가열된다. 성형탄의 제조 방법은, i) 미분탄을 제공하는 단계, ii) 미분탄에 분말형의 셀룰로오스 에테르 화합물을 혼합하여 혼합물을 제공하는 단계, iii) 혼합물에 물을 첨가하여 혼합하는 단계, 및 iv) 혼합물을 성형하여 성형탄을 제공하는 단계를 포함한다. 성형탄을 제공하는 단계에서, 성형탄에 포함된 셀룰로오스 에테르 화합물의 양은 0.7wt% 내지 2.0wt%이다.Coal briquettes according to an embodiment of the present invention is charged into the dome portion of the molten gasifier in the molten iron manufacturing apparatus comprising a reducing gas which is i) a molten gasifier to which iron is charged, and ii) a molten gasifier, and providing a reduced iron. It is heated rapidly. The process for producing coal briquettes includes i) providing pulverized coal, ii) mixing the powdered cellulose ether compound with pulverized coal to provide a mixture, iii) adding water to the mixture and mixing the mixture, and iv) mixing the mixture. Shaping to provide coal briquettes. In the providing of the coal briquettes, the amount of the cellulose ether compound included in the coal briquettes is 0.7 wt% to 2.0 wt%.
더욱 바람직하게는, 셀룰로오스 에테르 화합물의 양은 0.8wt% 내지 1.5wt%일 수 있다. 성형탄을 제공하는 단계에서, 성형탄에 포함된 수분의 양은 5wt% 내지 15wt%일 수 있다. 좀더 바람직하게는, 성형탄에 포함된 수분의 양은 7wt% 내지 12wt%일 수 있다.More preferably, the amount of cellulose ether compound may be 0.8 wt% to 1.5 wt%. In the step of providing coal briquettes, the amount of water contained in the coal briquettes may be 5wt% to 15wt%. More preferably, the amount of water contained in the coal briquettes may be 7wt% to 12wt%.
성형탄에 포함된 셀룰로오스 에테르 화합물의 양에 대한 성형탄에 포함된 수분의 양의 비는 5 내지 40일 수 있다. 또한, 성형탄에 포함된 셀룰로오스 에테르 화합물의 양에 대한 성형탄에 포함된 수분의 양의 비는 7 내지 20일 수 있다.The ratio of the amount of water contained in the coal briquettes to the amount of the cellulose ether compound contained in the coal briquettes may be 5 to 40. In addition, the ratio of the amount of water contained in the coal briquettes to the amount of the cellulose ether compound contained in the coal briquettes may be 7 to 20.
혼합물을 제공하는 단계에서, 셀룰로오스 에테르 화합물의 평균 입도는 50㎛ 내지 100㎛일 수 있다. 더욱 바람직하게는, 혼합물을 제공하는 단계에서, 셀룰로오스 에테르 화합물의 평균 입도에 대한 미분탄의 평균 입도의 비는 7 내지 30일 수 있다. 셀룰로오스 에테르 화합물의 평균 입도에 대한 미분탄의 평균 입도의 비는 10 내지 20일 수 있다.In providing the mixture, the average particle size of the cellulose ether compound may be 50 μm to 100 μm. More preferably, in the step of providing the mixture, the ratio of the average particle size of the pulverized coal to the average particle size of the cellulose ether compound may be 7 to 30. The ratio of the average particle size of the pulverized coal to the average particle size of the cellulose ether compound may be 10 to 20.
혼합물을 제공하는 단계에서의 혼합 시간은 혼합물에 물을 첨가하여 혼합하는 단계에서의 혼합 시간보다 작고, 혼합물에 물을 첨가하여 혼합하는 단계에서의 혼합 시간에 대한 혼합물을 제공하는 단계에서의 혼합 시간의 비는 2 내지 5일 수 있다. 셀룰로오스 에테르 화합물은 메틸셀룰로오스(MC), 히드록시에틸셀룰로오스(HEC), 히드록시프로필셀룰로오스(HPC), 히드록시프로필메틸셀룰로오스(HPMC) 및 히드록시에틸메틸셀룰로오스(HEMC)로 이루어진 군으로부터 선택된 적어도 1종의 화합물을 포함할 수 있다.The mixing time in providing the mixture is less than the mixing time in adding water to the mixture and mixing, and the mixing time in providing the mixture to the mixing time in adding water to the mixture and mixing. The ratio of may be 2 to 5. The cellulose ether compound is at least 1 selected from the group consisting of methyl cellulose (MC), hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), hydroxypropyl methyl cellulose (HPMC) and hydroxyethyl methyl cellulose (HEMC). Species of the compound may be included.
셀룰로오스 에테르 화합물은 카르복시메틸 셀룰로오스(carboxymethyl cellulose, CMC)가 포함되지 않을 수 있다. 셀룰로오스 에테르 화합물의 점도는 4,000cps 내지 80,000cps일 수 있다. 본 발명의 일 실시예에 따른 성형탄의 제조 방법은 혼합물에 물을 첨가하여 혼합하는 단계 후에 혼합물을 건조하는 단계를 더 포함할 수 있다.The cellulose ether compound may not include carboxymethyl cellulose (CMC). The viscosity of the cellulose ether compound may be between 4,000 cps and 80,000 cps. Method for producing coal briquettes according to an embodiment of the present invention may further comprise the step of drying the mixture after the step of mixing by adding water to the mixture.
혼합물을 제공하는 단계에서, 미분탄에 PVA(polyvinyl alcohol, 폴리비닐 알코올), 리그닌(lignin) 및 전분에서 선택된 하나 이상의 바인더를 더 혼합할 수 있다. 성형탄을 제공하는 단계에서, 성형탄에 포함된 수분의 양은 5wt% 내지 15wt%일 수 있다. In the step of providing a mixture, the pulverized coal may be further mixed with one or more binders selected from polyvinyl alcohol (PVA), lignin, and starch. In the step of providing coal briquettes, the amount of water contained in the coal briquettes may be 5wt% to 15wt%.
본 발명의 일 실시예에 따른 성형탄의 제조 방법은 성형탄을 80℃ 내지 150℃에서 1시간 내지 24시간 가열하여 성형탄에 포함된 수분의 양을 5wt% 이하로 조절하고, 성형탄의 압축 하중을 100kgf 이상으로 조절하는 단계를 더 포함할 수 있다. 성형탄은 열풍, 스팀, 근적외선, 마이크로웨이브, 액화 천연 가스(liquid natural gas, LNG), 액화 프로판 가스(liquid propane gas, LPG), 용철 제조 배가스(Finex off gas, FOG), 코크스 오븐 가스(cokes oven gas, COG) 및 고로 가스(blast furnace gas, BFG)로 이루어진 군에서 선택된 하나 이상의 열원에 의해 가열될 수 있다.In the method for manufacturing coal briquettes according to an embodiment of the present invention, the coal briquettes are heated at 80 ° C. to 150 ° C. for 1 hour to 24 hours to adjust the amount of moisture contained in the coal briquettes to 5 wt% or less, and the compression load of the coal briquettes is 100 kgf or more. It may further comprise the step of adjusting to. The coal briquettes are hot air, steam, near infrared, microwave, liquid natural gas (LNG), liquid propane gas (LPG), FIG off gas (FOG), and coke oven gas (cokes oven). gas, COG) and blast furnace gas (BFG) may be heated by one or more heat sources selected from the group consisting of.
본 발명의 일 실시예에 따른 용철 제조 방법은 i) 전술한 방법에 따라 제조한 성형탄을 제공하는 단계, ii) 철광석을 환원로에서 환원한 환원철을 제공하는 단계, 및 iii) 성형탄과 환원철을 용융가스화로에 장입하여 용철을 제공하는 단계를 포함한다. 환원철을 제공하는 단계에서, 환원로는 유동층형 환원로 또는 충전층형 환원로일 수 있다.The method for producing molten iron according to an embodiment of the present invention includes the steps of i) providing coal briquettes prepared according to the above method, ii) providing reduced iron from iron ore in a reduction furnace, and iii) melting the coal briquettes and reduced iron. Charging the gasifier to provide molten iron. In the providing of reduced iron, the reduction furnace may be a fluidized bed reduction furnace or a packed bed reduction furnace.
본 발명의 일 실시예에 따른 성형탄은 i) 환원철이 장입되는 용융가스화로, 및 ii) 용융가스화로에 연결되고, 환원철을 제공하는 환원로를 포함하는 용철제조장치에서 용융가스화로의 돔부에 장입되어 급속 가열된다. 성형탄은 0.7wt% 내지 2.0wt%의 셀룰로오스 에테르 화합물, 5wt% 내지 15wt%의 수분 및 나머지 미분탄을 포함한다. 좀더 바람직하게는 셀룰로오스 에테르 화합물의 양은 0.8wt% 내지 1.5wt%일 수 있다.Coal briquettes according to an embodiment of the present invention is charged into the dome portion of the molten gasifier in the molten iron manufacturing apparatus comprising a reducing gas which is i) a molten gasifier to which iron is charged, and ii) a molten gasifier, and providing a reduced iron. It is heated rapidly. The coal briquettes comprise 0.7 wt% to 2.0 wt% of cellulose ether compounds, 5 wt% to 15 wt% of water, and the remaining fine coal. More preferably, the amount of cellulose ether compound may be 0.8 wt% to 1.5 wt%.
본 발명의 일 실시예에 따른 성형탄 제조 장치는, i) 미분탄을 저장하는 미분탄 호퍼, ii) 수용성 바인더를 저장하는 바인더 호퍼, iii) 미분탄 호퍼로부터 미분탄을 공급받고, 바인더 호퍼로부터 수용성 바인더를 공급받아 미분탄과 수용성 바인더를 혼합한 혼합물을 제조하는 혼합기, iv) 혼합기에 물을 공급하는 물 공급부, v) 혼합기로부터 혼합물을 공급받아 성형탄을 제조하는 성형 장치, vi) 성형 장치로부터 성형탄을 제공받아 성형탄을 가열 건조하며, 하부로부터 상부로 갈수록 그 직경이 점차 감소하는 저장빈, 및 vii) 저장빈의 하부에 성형탄을 건조시키는 열풍을 공급하는 열원을 포함한다. 본 발명의 일 실시예에 따른 용철 제조 장치는i) 전술한 성형탄 제조 장치, ii) 환원철을 제공하는 환원로, 및 iii) 환원로에 연결되어 환원철을 제공받고, 성형탄 제조 장치와 연결되어 성형탄을 공급받아 용철을 제조하는 용융가스화로를 포함한다. 환원로는 유동층형 환원로 또는 충전층형 환원로일 수 있다.The coal briquette manufacturing apparatus according to an embodiment of the present invention includes: i) pulverized coal hopper for storing pulverized coal, ii) binder hopper for storing water-soluble binder, iii) pulverized coal is supplied from pulverized coal hopper, and water-soluble binder is supplied from the binder hopper. A mixer for preparing a mixture of pulverized coal and a water-soluble binder, iv) a water supply unit for supplying water to the mixer, v) a molding apparatus for manufacturing coal briquettes by receiving a mixture from the mixer, and vi) a coal briquette provided from a molding apparatus. Heat-drying, a storage bin whose diameter gradually decreases from the bottom to the top, and vii) a heat source for supplying hot air for drying the coal briquettes to the bottom of the storage bin. The molten iron manufacturing apparatus according to an embodiment of the present invention is i) a coal briquette manufacturing apparatus described above, ii) a reducing furnace for providing reduced iron, and iii) a reduced iron connected to a reducing furnace, and is connected to a coal briquette manufacturing apparatus to obtain coal briquettes. It includes a molten gasifier for supplying molten iron. The reduction furnace may be a fluidized bed reduction furnace or a packed bed reduction furnace.
본 발명의 일 실시예에 따르면, 셀룰로오스 에테르 화합물을 바인더로 사용하여 성형탄의 열간 강도와 냉간 강도를 크게 향상시킬 수 있다. 또한, 셀룰로오스 에테르 화합물을 사용하여 알칼리가 유동층형 환원로에 퇴적되지 않도록 할 수 있다. 성형탄을 열처리하여 성형탄의 압축 하중을 높여서 수용성 바인더 또는 물을 사용하여 제조된 성형탄의 열간 강도와 냉간 강도를 크게 향상시킬 수 있다. 그리고 신속하고 효율적인 열처리를 통해 빠른 시간 내에서 성형탄의 압축 하중을 높일 수 있다. 또한, 기존의 저장빈과 제철소 내의 열원을 이용하여 비용을 최소화하면서 효율적으로 성형탄을 열처리할 수 있다.According to one embodiment of the present invention, by using a cellulose ether compound as a binder it can greatly improve the hot strength and cold strength of the coal briquettes. In addition, a cellulose ether compound can be used to prevent alkali from being deposited in the fluidized-bed reduction furnace. By heat-treating the coal briquettes to increase the compressive load of the coal briquettes can greatly improve the hot strength and cold strength of the coal briquettes manufactured using a water-soluble binder or water. In addition, the compression load of the coal briquettes can be increased in a short time through rapid and efficient heat treatment. In addition, it is possible to heat-treat the coal briquettes efficiently while minimizing costs by using heat sources in existing storage bins and steel mills.
도 1은 본 발명의 일 실시예에 따른 성형탄의 제조 방법의 개략적인 순서도이다.1 is a schematic flowchart of a method of manufacturing coal briquettes according to an exemplary embodiment of the present invention.
도 2는 도 1의 성형탄 제조 방법을 사용한 성형탄 제조 장치의 개략적인 도면이다.FIG. 2 is a schematic diagram of an apparatus for manufacturing coal briquettes using the method of manufacturing coal briquettes of FIG. 1.
도 3은 도 2의 성형탄 제조 장치를 포함하는 용철 제조 장치의 개략적인 도면이다.3 is a schematic view of a molten iron manufacturing apparatus including the coal briquette manufacturing apparatus of FIG. 2.
도 4는 도 2의 성형탄 제조 장치를 포함하는 또다른 용철 제조 장치의 개략적인 도면이다.4 is a schematic view of another molten iron manufacturing apparatus including the coal briquette manufacturing apparatus of FIG.
도 5 내지 도 8은 각각 본 발명의 실험예 10 내지 실험예 13에 따른 실험 결과를 나타낸 그래프이다.5 to 8 are graphs showing experimental results according to Experimental Examples 10 to 13 of the present invention, respectively.
제1, 제2 및 제3 등의 용어들은 다양한 부분, 성분, 영역, 층 및/또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.Terms such as first, second, and third are used to describe various parts, components, regions, layers, and / or sections, but are not limited to these. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, the first portion, component, region, layer or section described below may be referred to as the second portion, component, region, layer or section without departing from the scope of the invention.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 “포함하는”의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.The terminology used herein is for reference only to specific embodiments and is not intended to limit the invention. As used herein, the singular forms “a,” “an,” and “the” include plural forms as well, unless the phrases clearly indicate the opposite. As used in the specification, the meaning of “comprising” embodies a particular characteristic, region, integer, step, operation, element and / or component, and the presence of another characteristic, region, integer, step, operation, element and / or component or It does not exclude the addition.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms including technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. Commonly defined terms used are additionally interpreted to have a meaning consistent with the related technical literature and the presently disclosed contents, and are not interpreted in an ideal or very formal sense unless defined.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
도 1은 본 발명의 일 실시예에 따른 성형탄의 제조 방법의 순서도를 개략적으로 나타낸다. 도 1의 성형탄의 제조 방법의 순서도는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다. 따라서 성형탄의 제조 방법을 다양하게 변형할 수 있다. 한편, 도 1의 성형탄의 제조 방법을 구현하기 위한 성형탄 제조 장치의 구조는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 이해할 수 있으므로 그 상세한 설명을 생략한다.Figure 1 schematically shows a flow chart of a method for producing coal briquettes according to an embodiment of the present invention. The flowchart of the manufacturing method of the coal briquette of FIG. 1 is only for illustration of this invention, Comprising: This invention is not limited to this. Therefore, the manufacturing method of the coal briquettes can be variously modified. Meanwhile, the structure of the coal briquette manufacturing apparatus for implementing the method of manufacturing coal briquettes of FIG. 1 may be easily understood by those skilled in the art, and thus detailed description thereof will be omitted.
도 1에 도시한 바와 같이, 성형탄의 제조 방법은, 미분탄을 제공하는 단계(S10), 분말형의 셀룰로오스 에테르 화합물을 혼합하여 혼합물을 제공하는 단계(S20), 혼합물에 물을 첨가하여 혼합하는 단계(S30), 그리고 혼합물을 성형하여 성형탄을 제공하는 단계(S40)를 포함한다. 이외에, 필요에 따라 성형탄의 제조 방법은 다른 단계들을 더 포함할 수 있다.As shown in FIG. 1, the method of manufacturing coal briquettes includes providing fine coal (S10), mixing a powdered cellulose ether compound to provide a mixture (S20), and adding water to the mixture to mix it. (S30), and forming a mixture to provide coal briquettes (S40). In addition, if necessary, the method of manufacturing coal briquettes may further include other steps.
먼저, 단계(S10)에서는 미분탄을 제공한다. 미분탄으로서 역청탄(bituminous coal), 아역청탄(subbituminous coal), 무연탄(anthracite), 코크스 등의 탄소가 함유된 원료를 사용할 수 있다. 미분탄의 입도는 4mm 이하로 조절할 수 있다.First, in step S10, pulverized coal is provided. As pulverized coal, raw materials containing carbon such as bituminous coal, subbituminous coal, anthracite and coke may be used. The particle size of pulverized coal can be adjusted to 4mm or less.
다음으로, 단계(S20)에서는 미분탄에 셀룰로오스 에테르 화합물을 혼합하여 혼합물을 제공한다. 즉, 셀룰로오스 에테르 화합물을 미분탄에 첨가한 후 균일하게 혼합되도록 혼합물을 잘 섞어준다.Next, in step S20, a cellulose ether compound is mixed with pulverized coal to provide a mixture. That is, the cellulose ether compound is added to the pulverized coal and then the mixture is mixed well so as to be uniformly mixed.
여기서는 액상이 아닌 분말형의 셀룰로오스 에테르 화합물을 사용한다. 바인더 용액을 사용하는 경우, 흐름성을 좋게 하기 위하여 바인더 자체의 점도가 낮은 카르복시메틸 셀룰로오스(carboxymethyl cellulose, CMC) 용액을 사용할 수 있다. 그러나 점도가 낮은 바인더를 사용하므로, 성형탄의 강도가 저하되는 문제점이 있다. 또한, 용액 형태의 바인더는 층분리로 인하여 바인더 성분을 균일하게 유지하기가 어려우며, 이송시 탱크로리 등 특수 운반차가 필요하여 운송비가 높은 단점을 가진다. 또한, 바인더 용액은 동절기에는 결빙되므로, 저장이 용이하지 않다.Here, a powdered cellulose ether compound is used rather than the liquid phase. In the case of using a binder solution, a carboxymethyl cellulose (CMC) solution having a low viscosity of the binder itself may be used to improve flowability. However, since a binder having a low viscosity is used, there is a problem that the strength of coal briquettes is lowered. In addition, the binder in the form of a solution is difficult to maintain the binder component uniformly due to the separation of the layer, the transport cost is high because a special transport vehicle such as tank lorry is required during the transfer. In addition, the binder solution freezes during the winter months, so storage is not easy.
이와는 대조적으로, 분말형의 셀룰로오스 에테르 화합물을 바인더로 사용하는 경우, 셀룰로오스 에테르 화합물 자체의 점도가 높으므로, 우수한 강도를 가지는 성형탄을 제조할 수 있다. 또한, 셀룰로오스 에테르 화합물을 분말형으로 사용하므로 그 부피를 최소화하여 보관하기가 용이하며, 운송도 간편한 이점이 있다. 나아가 동절기에 결빙 등을 걱정할 필요가 없다. 따라서 분말형의 셀룰로오스 에테르 화합물을 사용하기에 적합하다.In contrast, when the powdered cellulose ether compound is used as the binder, the coal briquettes having excellent strength can be produced because the viscosity of the cellulose ether compound itself is high. In addition, since the cellulose ether compound is used in a powder form, it is easy to store by minimizing its volume, and there is an advantage of easy transportation. Furthermore, there is no need to worry about freezing during the winter season. It is therefore suitable to use powdered cellulose ether compounds.
셀룰로오스 에테르 화합물의 점도는 4,000cps 내지 80,000cps 일 수 있다. 셀룰로오스 에테르 화합물의 점도는 Brookfield사의 DV-Ⅱ+Pro(spindle HA)를 사용하여 20±0.1℃에서 2중량%의 농도를 갖는 셀룰로오스 에테르 화합물 수용액의 점도를 측정한 값을 의미한다. 셀룰로오스 에테르 화합물의 점도가 너무 낮은 경우, 셀룰로오스 에테르 화합물을 포함하는 용액, 예를 들면 수용액의 점도가 너무 낮아서 미분탄에 대한 결합력이 저하된다. 그 결과, 성형탄의 강도가 저하될 수 있다. 한편, 셀룰로오스 에테르 화합물의 점도가 너무 높은 경우, 셀룰로오스 에테르 화합물의 분자량이 너무 높아서 수용해성이 저하되므로, 미분탄에 대한 결합력이 충분하지 않다. 따라서 셀룰로오스 에테르 화합물의 점도를 전술한 범위로 조절하는 것이 바람직하다.The viscosity of the cellulose ether compound may be between 4,000 cps and 80,000 cps. The viscosity of the cellulose ether compound refers to a value obtained by measuring the viscosity of an aqueous solution of a cellulose ether compound having a concentration of 2% by weight at 20 ± 0.1 ° C. using Brookfield's DV-II + Pro (spindle HA). When the viscosity of the cellulose ether compound is too low, the viscosity of the solution containing the cellulose ether compound, for example, an aqueous solution, is too low, thereby lowering the binding force to the pulverized coal. As a result, the strength of the coal briquettes may be lowered. On the other hand, when the viscosity of a cellulose ether compound is too high, since the molecular weight of a cellulose ether compound is too high and water solubility falls, binding force with respect to pulverized coal is not enough. Therefore, it is preferable to adjust the viscosity of a cellulose ether compound to the above-mentioned range.
셀룰로오스 에테르 화합물은 메틸셀룰로오스(MC), 히드록시에틸셀룰로오스(HEC), 히드록시프로필셀룰로오스(HPC), 히드록시프로필메틸셀룰로오스(HPMC) 또는 히드록시에틸메틸셀룰로오스(HEMC) 등을 포함할 수 있다. 메틸셀룰로오스(MC)는 18~32wt%의 메틸기 치환도를 가지며, 히드록시에틸셀룰로오스(HEC)는 20~80wt%의 히드록시에틸기 치환도를 가진다. 그리고 히드록시프로필셀룰로오스(HPC)는 20~80wt%의 히드록시프로필기 치환도를 가지며, 히드록시프로필메틸셀룰로오스(HPMC)는 18~32wt%의 메틸기 치환도 및 2~14wt%의 히드록시프로필기 치환도를 가진다. 또한, 히드록시에틸메틸셀룰로오스(HEMC)는 18~32wt%의 메틸기 치환도 및 2~14wt%의 히드록시에틸기 치환도를 가질 수 있다.The cellulose ether compound may include methyl cellulose (MC), hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), hydroxypropyl methyl cellulose (HPMC) or hydroxyethyl methyl cellulose (HEMC). Methyl cellulose (MC) has a methyl group substitution degree of 18 to 32wt%, hydroxyethyl cellulose (HEC) has a hydroxyethyl group substitution degree of 20 to 80wt%. And hydroxypropyl cellulose (HPC) has a hydroxypropyl group substitution degree of 20 to 80wt%, hydroxypropyl methyl cellulose (HPMC) has a methyl group substitution degree of 18 to 32wt% and a hydroxypropyl group of 2-14wt% It has a degree of substitution. In addition, the hydroxyethyl methyl cellulose (HEMC) may have a degree of substitution of 18 to 32 wt% methyl group and a degree of substitution of 2 to 14 wt% hydroxyethyl group.
한편, 분말형 셀룰로오스 에테르 화합물의 평균 입도는 50㎛ 내지 100㎛ 일 수 있다. 분말형 셀룰로오스 에테르 화합물의 입도가 너무 작은 경우, 그 제조 공정비가 상승한다. 또한, 셀룰로오스 에테르 화합물의 입도가 너무 큰 경우, 셀룰로오스 에테르 화합물의 비표면적이 작아지고, 그 수용해성이 저하되어 이를 이용하여 제조한 성형탄의 강도가 저하될 수 있다. 따라서 분말형 셀룰로오스 에테르 화합물의 입도를 전술한 범위로 조절하는 것이 바람직하다. 한편, 좀더 구체적으로, 분말형 셀룰로오스 에테르 화합물의 평균 입도는 78㎛일 수 있다. 이 경우, 분말형 셀룰로오스 에테르 화합물의 입도는 0.18mm 이하가 97% 이상일 수 있다.On the other hand, the average particle size of the powdered cellulose ether compound may be 50㎛ to 100㎛. When the particle size of the powdered cellulose ether compound is too small, the production process cost increases. In addition, when the particle size of the cellulose ether compound is too large, the specific surface area of the cellulose ether compound is small, its water solubility is lowered, and the strength of the coal briquettes manufactured using the cellulose ether compound may be lowered. Therefore, it is preferable to adjust the particle size of the powdered cellulose ether compound to the above-mentioned range. On the other hand, more specifically, the average particle size of the powdered cellulose ether compound may be 78㎛. In this case, the particle size of the powdered cellulose ether compound may be 97% or more in 0.18 mm or less.
셀룰로오스 에테르 화합물의 평균 입도에 대한 미분탄의 평균 입도의 비는 7 내지 30일 수 있다. 좀더 구체적으로, 셀룰로오스 에테르 화합물의 평균 입도에 대한 미분탄의 평균 입도의 비는 10 내지 20일 수 있다. 평균 입도의 비가 너무 크거나 너무 작은 경우, 셀룰로오스 에테르 화합물이 바인더로서 미분탄내에서 결합 능력을 충분히 발현하지 못할 수 있다. 따라서 평균 입도의 비를 전술한 범위로 유지하는 것이 바람직하다.The ratio of the average particle size of the pulverized coal to the average particle size of the cellulose ether compound may be 7 to 30. More specifically, the ratio of the average particle size of the pulverized coal to the average particle size of the cellulose ether compound may be 10 to 20. If the ratio of the average particle size is too large or too small, the cellulose ether compound may not sufficiently express the binding capacity in the pulverized coal as a binder. Therefore, it is preferable to keep the ratio of average particle size in the above-mentioned range.
다음으로, 단계(S30)에서는 혼합물에 물을 첨가하여 혼합한다. 분말형의 셀룰로오스 에테르 화합물이 균일하게 분포된 혼합물에 물을 첨가하는 경우, 미분탄내에 분산된 셀룰로오스 에테르 화합물이 물에 용해된다. 그 결과, 용해된 셀룰로오스 에테르 화합물이 미분탄과의 결합력을 발휘하여 후속 공정에서 제조되는 성형탄의 강도를 크게 향상시킬 수 있다. 전술한 바와 같이, 액상 바인더를 미분탄에 바로 혼합하지 않고, 먼저 분말형의 셀룰로오스 에테르 화합물을 미분탄에 혼합한 혼합물에 물을 혼합하여 각 공정을 분리함으로써 우수한 강도를 가지면서도 공정 비용을 최소화한 성형탄을 제조할 수 있다.Next, in step S30, water is added to the mixture and mixed. When water is added to the mixture in which the powdery cellulose ether compound is uniformly distributed, the cellulose ether compound dispersed in the pulverized coal is dissolved in water. As a result, the dissolved cellulose ether compound can exhibit the bonding force with the pulverized coal and can greatly improve the strength of the coal briquettes produced in the subsequent process. As described above, the coal briquettes having excellent strength and minimizing the process cost are separated by mixing water with a mixture of a powdered cellulose ether compound and pulverized coal without first mixing the liquid binder with pulverized coal. It can manufacture.
한편, 단계(S30)에서의 혼합 시간은 단계(S20)에서의 혼합 시간보다 크다. 즉, 단계(S20)에서는 미분탄과 분말형의 셀룰로오스 에테르 화합물을 사용하므로 고체와 고체의 혼합으로 단시간 동안에도 균일한 혼합이 가능하다. 반면에, 단계(S30)에서는 액상의 물을 투입하여 미분탄과 혼합된 분말형의 셀룰로오스 에테르 화합물과 접촉시켜 미분탄 속에서 균일하게 잘 용해시켜야 하기 때문에 단계(S20)보다 장시간 혼합하는 것이 공정 효율면에서 바람직하다. 좀더 바람직하게는, 단계(S20)에서의 혼합 시간에 대한 단계(S30)에서의 혼합 시간의 비는 2내지 5일 수 있다. 전술한 비가 너무 적은 경우, 미분탄과 혼합된 분말형 셀룰로오스 에테르 화합물이 물과 충분하게 접촉하지 못해 성형탄의 강도가 저하될 수 있다. 반대로, 전술한 비가 너무 큰 경우는 공정 효율면에서 바람직하지 않다. 따라서 전술한 비를 적절하게 조절하는 것이 바람직하다.On the other hand, the mixing time in step S30 is greater than the mixing time in step S20. That is, in step (S20), since the pulverized coal and the cellulose ether compound of the powder type are used, uniform mixing is possible even for a short time by mixing the solid and the solid. On the other hand, in step (S30) it is necessary to dissolve in powdered pulverized coal uniformly by contacting the powdered cellulose ether compound mixed with pulverized coal in the step (S20), so mixing for a long time than the step (S20) in terms of process efficiency desirable. More preferably, the ratio of the mixing time in step S30 to the mixing time in step S20 may be 2-5. If the aforementioned ratio is too small, the powdered cellulose ether compound mixed with the pulverized coal may not be in sufficient contact with water, and thus the strength of the coal briquettes may be lowered. On the contrary, when the above ratio is too large, it is not preferable in terms of process efficiency. Therefore, it is desirable to adjust the above ratio appropriately.
한편, 도 1에는 도시하지 않았지만, 단계(S30) 이후에 혼합물을 건조하는 단계를 추가할 수도 있다. 즉, 미분탄, 분말형 셀룰로오스 에테르 화합물 및 물을 첨가한 혼합물의 성형성을 조절할 필요가 있는 경우, 혼합물을 건조하여 일부 수분을 제거할 수 있다. 그 결과, 후속 공정에서 제조되는 성형탄의 강도를 크게 향상시킬 수 있다.On the other hand, although not shown in Figure 1, it may be added after the step (S30) to dry the mixture. That is, when it is necessary to control the moldability of the mixture containing the pulverized coal, the powdered cellulose ether compound and the water, the mixture may be dried to remove some moisture. As a result, the strength of the coal briquettes produced in a subsequent step can be greatly improved.
마지막으로, 단계(S40)에서는 혼합물을 성형하여 성형탄을 제공한다. 예를 들면, 한 쌍의 롤러들 사이로 혼합물을 장입하여 압착함으로써 포켓 또는 스트립 형태의 성형탄을 제조할 수 있다. 그 결과, 우수한 열간강도 및 냉간강도를 가지는 성형탄을 제조할 수 있다. 여기서, 성형탄에 포함된 셀룰로오스 에테르 화합물의 양은 0.7wt% 내지 2.0wt%일 수 있다. 좀더 바람직하게는, 셀룰로오스 에테르 화합물의 양은 0.8wt% 내지 1.5wt%일 수 있다. 셀룰로오스 에테르 화합물의 양이 너무 많은 경우, 성형탄 제조 비용이 상승한다. 또한, 셀룰로오스 에테르 화합물의 양이 너무 적은 경우, 충분한 결합력을 발현하지 못하여 성형탄의 강도가 저하된다. 따라서 셀룰로오스 에테르 화합물의 양을 전술한 범위로 조절하는 것이 바람직하다.Finally, in step S40, the mixture is molded to provide coal briquettes. For example, coal briquettes in the form of pockets or strips can be produced by charging and compressing the mixture between a pair of rollers. As a result, coal briquettes having excellent hot strength and cold strength can be produced. Here, the amount of the cellulose ether compound contained in the coal briquettes may be 0.7wt% to 2.0wt%. More preferably, the amount of cellulose ether compound may be 0.8 wt% to 1.5 wt%. If the amount of cellulose ether compound is too large, the cost of manufacturing coal briquettes rises. In addition, when the amount of the cellulose ether compound is too small, the sufficient binding force is not expressed and the strength of the coal briquettes is lowered. Therefore, it is preferable to adjust the amount of the cellulose ether compound in the above-mentioned range.
한편, 성형탄에 포함된 수분의 양은 5wt% 내지 15wt%일 수 있다. 좀더 바람직하게는, 수분의 양은 7wt% 내지 12wt%일 수 있다. 수분의 양이 너무 많은 경우, 혼합물의 성형이 어려운 문제점이 있다. 또한, 수분의 양이 너무 적은 경우, 성형탄의 냉간 강도가 저하될 수 있다. 따라서 수분의 양을 전술한 범위로 조절한다.On the other hand, the amount of water contained in the coal briquettes may be 5wt% to 15wt%. More preferably, the amount of moisture may be 7 wt% to 12 wt%. If the amount of water is too large, there is a problem that the molding of the mixture is difficult. In addition, when the amount of moisture is too small, the cold strength of the coal briquettes may be lowered. Therefore, the amount of moisture is adjusted to the above range.
전술한 방법으로 제조된 성형탄은 0.7wt% 내지 2.0wt%의 셀룰로오스 에테르 화합물, 5wt% 내지 15wt%의 수분 및 나머지 미분탄을 포함한다. 좀더 구체적으로, 셀룰로오스 에테르 화합물의 양은 0.8wt% 내지 1.5wt%일 수 있다. 여기서, 셀룰로오스 에테르 화합물의 양이 너무 큰 경우, 성형탄의 제조 비용이 크게 증가한다. 또한, 셀룰로오스 에테르 화합물의 양이 너무 적은 경우, 성형탄의 강도가 저하된다. 따라서 셀룰로오스 에테르 화합물의 양을 전술한 범위로 조절하는 것이 바람직하다. 또한, 수분의 양이 너무 많은 경우, 성형탄의 성형성이 저하된다. 또한, 수분의 양이 너무 적은 경우, 성형탄의 냉간 강도가 저하될 수 있다. 따라서 전술한 범위로 성형탄의 수분량을 조절한다.The coal briquettes prepared by the above-described method include 0.7 wt% to 2.0 wt% of cellulose ether compounds, 5 wt% to 15 wt% of water, and the remaining fine coal. More specifically, the amount of cellulose ether compound may be 0.8wt% to 1.5wt%. Here, when the amount of the cellulose ether compound is too large, the production cost of coal briquettes is greatly increased. In addition, when the amount of the cellulose ether compound is too small, the strength of the coal briquettes is lowered. Therefore, it is preferable to adjust the amount of the cellulose ether compound in the above-mentioned range. In addition, when the amount of water is too large, the formability of the coal briquettes is lowered. In addition, when the amount of moisture is too small, the cold strength of the coal briquettes may be lowered. Therefore, the moisture content of the coal briquettes is adjusted to the above range.
한편, 도 1에는 도시하지 않았지만, 단계(S20)에서 전술한 셀룰로오스 에테르 화합물 이외에 PVA(polyvinyl alcohol, 폴리비닐 알코올), 리그닌(lignin) 또는 전분 등의 바인더를 더 혼합할 수도 있다. 이러한 바인더들은 셀룰로오스 에테르 화합물과 동일하게 수용성을 가진다. 이러한 바인더를 사용하여 제조한 성형탄에 포함된 수분의 양은 5wt% 내지 15wt%일 수 있다. 수용성 바인더를 사용하거나 단계(S30)에서 물을 첨가하므로, 성형탄을 제조한 후 성형탄을 가열하여 성형탄에 포함된 수분의 양을 저감시킬 수 있다. 즉, 성형탄을 80℃ 내지 150℃에서 1시간 내지 24시간 가열하여 성형탄에 포함된 수분의 양을 5wt% 이하로 조절한다.Although not shown in FIG. 1, a binder such as PVA (polyvinyl alcohol, polyvinyl alcohol), lignin, or starch may be further mixed in addition to the cellulose ether compound described above in step S20. These binders have the same water solubility as the cellulose ether compound. The amount of water contained in the coal briquettes manufactured using the binder may be 5 wt% to 15 wt%. Since water is used or water is added in step S30, after the coal briquettes are manufactured, the coal briquettes may be heated to reduce the amount of moisture contained in the coal briquettes. That is, the coal briquettes are heated at 80 ° C. to 150 ° C. for 1 to 24 hours to adjust the amount of moisture contained in the coal briquettes to 5 wt% or less.
열처리 조건은 성형탄의 수분 함량에 따라 강화되거나 완화될 수 있다. 성형탄의 가열 온도가 너무 낮은 경우, 성형탄에 포함된 수분이 잘 증발되지 않아서 열처리 효과가 저하되고, 열처리 소요 시간이 증가하여 생산성이 저하된다. 또한, 성형탄의 가열 온도가 너무 높은 경우, 성형탄에 크랙이 발생하면서 성형탄에 함유된 휘발분이 손실될 수 있으며 고온에 노출되어 단순히 수분 함량만 낮아져서 압축 하중이 오히려 저하된다. 따라서 성형탄의 가열 온도를 전술한 범위로 조절한다. 한편, 성형탄 가열 온도가 높을수록 열처리 시간을 단축시킬 수 있지만, 가열 시간을 1시간 미만으로 단축하기 위해서는 고온의 열풍을 가해야 하므로 성형탄에 함유된 휘발분까지 방출 손실된다. 또한, 열처리 시간이 너무 긴 경우, 생산성이 저하된다. 따라서 성형탄의 가열 시간을 전술한 범위로 조절한다. 한편, 성형탄의 압축 하중은 100kgf 이상으로 조절할 수 있다. 이하에서는 도 2를 통하여 성형탄의 가열 유닛 등을 좀더 상세하게 설명한다.Heat treatment conditions may be enhanced or moderated depending on the moisture content of the coal briquettes. If the heating temperature of the coal briquettes is too low, the moisture contained in the coal briquettes are not evaporated well, the heat treatment effect is lowered, the heat treatment time is increased, the productivity is lowered. In addition, when the heating temperature of the coal briquettes is too high, the volatiles contained in the coal briquettes may be lost while cracking in the coal briquettes, and the compressive load is rather lowered because only the moisture content is lowered due to exposure to high temperatures. Therefore, the heating temperature of coal briquettes is adjusted to the above-mentioned range. On the other hand, the higher the coal briquette heating temperature can shorten the heat treatment time, but in order to shorten the heating time to less than 1 hour, a high temperature hot air must be applied to the volatile matter contained in the coal briquettes. Moreover, when heat processing time is too long, productivity will fall. Therefore, the heating time of the coal briquettes is adjusted to the above-mentioned range. On the other hand, the compression load of the coal briquettes can be adjusted to 100kgf or more. Hereinafter, the heating unit of the coal briquettes, etc. will be described in more detail with reference to FIG. 2.
도 2는 도 1의 성형탄 제조 방법을 적용한 성형탄 제조 장치(60)를 개략적으로 나타낸다. 도 2의 성형탄 제조 장치(60)의 구조는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다. 따라서 성형탄 제조 장치를 다르게 변형할 수도 있다.FIG. 2 schematically shows a coal briquette manufacturing apparatus 60 to which the coal briquette manufacturing method of FIG. 1 is applied. The structure of the coal briquette manufacturing apparatus 60 of FIG. 2 is merely for illustrating the present invention, and the present invention is not limited thereto. Therefore, the coal briquette manufacturing apparatus may be modified differently.
도 2에 도시한 바와 같이, 성형탄 제조 장치(60)는 미분탄 호퍼(61), 바인더 호퍼(62), 물 공급부(63), 혼합기(64), 성형 장치(65) 및 열처리 유닛(66)을 포함한다. 이외에, 필요에 따라 성형탄 제조 장치(60)는 다른 장치들을 더 포함할 수 있다. 미분탄 호퍼(61)에는 미분탄이 저장되고, 바인더 호퍼(62)에는 바인더가 저장된다. 바인더로는 전술한 셀룰로오스 에테르 화합물, PVA(polyvinyl alcohol, 폴리비닐 알코올), 리그닌(lignin) 또는 전분 등을 들 수 있다. 혼합기(64)는 미분탄 호퍼(61)와 바인더 호퍼(62)로부터 각각 공급된 미분탄과 바인더를 혼합하여 혼합물을 제조한다. 물 공급부(63)는 혼합기(64)와 연결되어 혼합기(64)에 물을 공급한다. 성형 장치(65)는 혼합기(64)로부터 혼합물을 공급받아 이를 성형하여 성형탄을 제조한다. 성형 장치(65)는 상호 반대 방향으로 회전하는 한 쌍의 롤들을 이용하여 그 사이로 혼합물을 장입해 압축하여 하부로 배출한다. 열처리 유닛(66)은 성형탄을 건조하여 성형탄의 압축 하중을 향상시킨다.As shown in FIG. 2, the coal briquette manufacturing apparatus 60 includes a pulverized coal hopper 61, a binder hopper 62, a water supply unit 63, a mixer 64, a molding apparatus 65, and a heat treatment unit 66. Include. In addition, the coal briquette manufacturing apparatus 60 may further include other devices as necessary. Pulverized coal is stored in the pulverized coal hopper 61, and a binder is stored in the binder hopper 62. Examples of the binder include the above-described cellulose ether compound, PVA (polyvinyl alcohol, polyvinyl alcohol), lignin or starch. The mixer 64 prepares a mixture by mixing the pulverized coal and a binder supplied from the pulverized coal hopper 61 and the binder hopper 62, respectively. The water supply unit 63 is connected to the mixer 64 to supply water to the mixer 64. The molding apparatus 65 receives the mixture from the mixer 64 to form the coal briquettes by molding the mixture. The molding apparatus 65 uses a pair of rolls that rotate in opposite directions to charge the mixture therebetween, compress it, and discharge it downward. The heat treatment unit 66 dries the coal briquettes to improve the compression load of the coal briquettes.
좀더 구체적으로, 열처리 유닛(66)은 저장빈(661), 블로워(663), 열원(665) 및 집진기(667)를 포함한다. 이외에, 열처리 유닛(66)은 다른 장치들을 더 포함할 수 있다. 저장빈(661)은 성형 장치(65)로부터 하부로 배출되는 성형탄을 저장하고, 건조된 성형탄을 그 하부로 배출한다. 열처리 시간이나 그 압축 하중에 의해 성형탄이 파괴되지 않도록 저장빈(661)에 저장된 성형탄의 레벨을 적정 수준으로 유지한다. 저장빈(661)은 열풍과 성형탄과의 접촉 면적을 늘리도록 깔대기 형상을 가진다.More specifically, the heat treatment unit 66 includes a storage bin 661, a blower 663, a heat source 665, and a dust collector 667. In addition, the heat treatment unit 66 may further include other devices. The storage bin 661 stores the coal briquettes discharged from the forming apparatus 65 to the lower portion, and discharges the dried coal briquettes to the lower portion thereof. The level of coal briquettes stored in the storage bin 661 is maintained at an appropriate level so that coal briquettes are not destroyed by the heat treatment time or the compression load thereof. The storage bin 661 has a funnel shape to increase the contact area between hot air and coal briquettes.
도 2에 도시한 바와 같이, 블로워(663)는 열에너지를 생성하는 열원(667)으로부터 열을 공급받아 저장빈(661)으로 강제 이송한다. 열원으로서 스팀, 근적외선 또는 마이크로웨이브 등을 사용하여 열풍을 제조할 수 있다. 열풍은 액화 천연 가스(liquid natural gas, LNG) 또는 액화 프로판 가스(liquid propane gas, LPG) 등의 상용화 연료를 사용하여 제조할 수도 있다. 또는 제철소 내의 용철 제조 배가스(Finex off gas, FOG), 코크스 오븐 가스(cokes oven gas, COG) 또는 고로 가스(blast furnace gas, BFG) 등을 사용할 수도 있다. 한편, 열원(67)은 전기 히터처럼 직접 가열하거나 슬래그 현열, 미분의 환원철이 산화시 발생하는 폐열 등 제철소내에서 발생하는 폐열을 회수하여 이용할 수도 있다.As shown in FIG. 2, the blower 663 receives heat from the heat source 667 that generates thermal energy and forcibly transfers the heat to the storage bin 661. Hot air can be produced using steam, near infrared rays or microwaves as a heat source. The hot air can also be produced using commercialized fuels such as liquid natural gas (LNG) or liquid propane gas (LPG). Alternatively, molten iron manufacturing exhaust gas (Finex off gas, FOG), coke oven gas (COG) or blast furnace gas (BFG) in a steel mill may be used. The heat source 67 may be directly heated like an electric heater, or may recover and use waste heat generated in an ironworks, such as slag sensible heat and waste heat generated when oxidation of reduced iron of fine powder occurs.
저장빈(661)은 하부로부터 상부를 향하여 그 단면적이 점차 넓어지는 구조를 가진다. 따라서 저장빈(661)의 하부로부터 상부를 향하여 열풍이 상승하므로, 성형탄에 함유된 수분을 제거하면서 성형탄을 효율적으로 건조시킬 수 있다. 건조된 성형탄은 저장빈(661)의 하부로 배출된다.The storage bin 661 has a structure in which its cross-sectional area gradually widens from the bottom to the top. Therefore, since hot air rises from the lower part of the storage bin 661 toward the upper part, the coal briquettes can be efficiently dried while removing the moisture contained in the coal briquettes. The dried coal briquettes are discharged to the lower portion of the storage bin 661.
도 2에는 도시하지 않았지만, 저장빈(661)의 하부에는 배출 장치를 설치할 수도 있다. 배출 장치는 성형탄을 50t/h 이내의 속도로 일정하게 배출한다. 한편, 저장빈(661)에서 배출되는 성형탄의 수증기는 집진기(667)를 통과하면서 분진이 걸러진 후 외부로 배출된다. 수증기의 온도가 포화수증기압 이상으로 저하되는 경우, 응축수가 생성될 수 있다. 따라서 도 2에는 도시하지 않았지만, 응축수가 저장빈(661)으로 다시 흘러들어가지 않도록 보온 장치를 설치할 수 있다.Although not shown in FIG. 2, a discharge device may be provided below the storage bin 661. The discharge device constantly discharges the coal briquettes at a speed within 50 t / h. Meanwhile, steam of the coal briquettes discharged from the storage bin 661 is discharged to the outside after the dust is filtered while passing through the dust collector 667. If the temperature of the water vapor is lowered above the saturated water vapor pressure, condensed water may be produced. Therefore, although not shown in FIG. 2, a thermostat can be provided so that condensed water does not flow back into the storage bin 661.
전술한 바와 같이, 성형탄 이송 과정 중에 중간 버퍼로 기능하는 저장빈(661)을 이용하여 성형탄을 열처리함으로써 별도의 설비를 투자하지 않고 빠른 시간내에 효율적으로 충분한 강도를 가진 성형탄을 제조할 수 있다. 따라서, 바인더와 물을 함께 사용하거나 바인더 자체가 수용성으로서 높은 수분 함유량을 가져서 충분한 강도가 초기에 확보되지 않은 성형탄이라도 성형탄을 가열함으로써 빠른 시간 내에 성형탄의 냉간 강도를 확보할 수 있다.As described above, by heat-treating the coal briquettes using the storage bin 661 that functions as an intermediate buffer during the coal briquette transfer process, it is possible to manufacture coal briquettes having sufficient strength efficiently in a short time without investing a separate facility. Therefore, the cold strength of the coal briquettes can be secured within a short time by heating the coal briquettes even when the binder and water are used together or the coal briquettes in which the binder itself has a high water content as a water-soluble and sufficient strength is not initially secured.
도 3은 도 2의 성형탄 제조 장치를 포함하는 용철제조장치(200)를 개략적으로 나타낸다. 도 3의 용철제조장치(200)의 구조는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다. 따라서 도 3의 용철제조장치(200)를 다양한 형태로 변형할 수 있다.FIG. 3 schematically illustrates an apparatus for manufacturing molten iron 200 including the apparatus for manufacturing coal briquettes of FIG. 2. The structure of the apparatus for manufacturing molten iron 200 of FIG. 3 is merely for illustrating the present invention, and the present invention is not limited thereto. Therefore, the apparatus for manufacturing molten iron 200 of FIG. 3 may be modified in various forms.
도 3에 도시한 바와 같이, 용철제조장치(200)는 용융가스화로(60) 및 충전층형 환원로(20)를 포함한다. 이외에 필요에 따라 기타 다른 장치를 포함할 수 있다. 충전층형 환원로(20)에는 철광석이 장입되어 환원된다. 충전층형 환원로(20)에 장입되는 철광석은 사전 건조된 후에 충전층형 환원로(20)를 통과하면서 환원철로 제조된다. 충전층형 환원로(20)는 충전층형 환원로로서, 용융가스화로로(60)부터 환원가스를 공급받아 그 내부에 충전층을 형성한다.As shown in FIG. 3, the apparatus for manufacturing molten iron 200 includes a molten gasifier 60 and a packed-bed reduction reactor 20. In addition, other devices may be included as needed. In the packed-bed reduction furnace 20, iron ore is charged and reduced. The iron ore charged in the packed-bed reduction furnace 20 is made of reduced iron while passing through the packed-bed reduction furnace 20 after being pre-dried. The packed-bed reduction furnace 20 is a packed-bed reduction furnace, receives a reducing gas from the melt gasifier 60 to form a packed bed therein.
도 1의 제조 방법으로 제조한 성형탄은 용융가스화로(60)에 장입되므로, 용융가스화로(60)의 내부에는 석탄충전층이 형성된다. 용융가스화로(60)의 상부에는 돔부(601)가 형성된다. 즉, 용융가스화로(60)의 다른 부분에 비해 넓은 공간이 형성되고, 여기에는 고온의 환원가스가 존재한다. 따라서 고온의 환원가스에 의해 돔부(601)에 장입되는 성형탄은 열분해 반응에 의해 촤로 변환된다. 성형탄의 열분해 반응에 의해 생성된 촤는 용융가스화로(60)의 하부로 이동하여 풍구(30)를 통해 공급되는 산소와 발열 반응한다. 그 결과, 성형탄은 용융가스화로(60)를 고온으로 유지하는 열원으로서 사용될 수 있다. 한편, 촤가 통기성을 제공하므로, 용융가스화로(60)의 하부에서 발생한 다량의 가스와 충전층형 환원로(20)에서 공급된 환원철이 용융가스화로(60)내의 석탄충전층을 좀더 쉽고 균일하게 통과할 수 있다.Since the coal briquettes manufactured by the manufacturing method of FIG. 1 are charged into the molten gasifier 60, a coal filling layer is formed inside the molten gasifier 60. The dome part 601 is formed in the upper part of the melt gasifier 60. That is, a wider space is formed than the other parts of the melt gasifier 60, where a high temperature reducing gas exists. Therefore, the coal briquettes charged into the dome part 601 by the high temperature reducing gas are converted into char by a pyrolysis reaction. The char generated by the pyrolysis reaction of the coal briquettes moves to the lower portion of the molten gasifier 60 to exothermicly react with oxygen supplied through the tuyere 30. As a result, the coal briquettes can be used as a heat source for keeping the molten gasifier 60 at a high temperature. On the other hand, because it provides air permeability, a large amount of gas generated in the lower portion of the melt gasifier 60 and reduced iron supplied from the packed-bed reduction reactor 20 makes the coal-filled layer in the melt gasifier 60 more easily and uniformly. Can pass.
전술한 성형탄 이외에 괴상 탄재 또는 코크스를 필요에 따라 용융가스화로(60)에 장입할 수도 있다. 용융가스화로(60)의 외벽에는 풍구(30)를 설치하여 산소를 취입한다. 산소는 석탄충전층에 취입되어 연소대를 형성한다. 성형탄은 연소대에서 연소되어 환원가스를 발생시킬 수 있다.In addition to the coal briquettes described above, a bulk coal material or coke may be charged into the melt gasifier 60 as necessary. On the outer wall of the molten gasifier 60 is provided with a tuyere 30 to blow oxygen. Oxygen is blown into the coal packed bed to form a combustion zone. The coal briquettes may be burned in a combustion zone to generate reducing gas.
도 4는 도 2의 성형탄 제조 장치를 포함하는 또다른 용철제조장치(300)를 개략적으로 나타낸다. 도 4의 용철제조장치(300)의 구조는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다. 따라서 도 4의 용철제조장치(300)를 다양한 형태로 변형할 수 있다. 도 4의 용철제조장치(300)의 구조는 도 3의 용철제조장치(200)의 구조와 유사하므로, 동일한 부분에는 동일한 도면부호를 사용하며 그 상세한 설명을 생략한다.FIG. 4 schematically shows another apparatus for manufacturing molten iron 300 including the apparatus for manufacturing coal briquettes of FIG. 2. The structure of the apparatus for manufacturing molten iron 300 of FIG. 4 is merely for illustrating the present invention, and the present invention is not limited thereto. Therefore, the apparatus for manufacturing molten iron 300 of FIG. 4 may be modified in various forms. Since the structure of the apparatus for manufacturing molten iron 300 of FIG. 4 is similar to that of the apparatus for manufacturing molten iron 200 of FIG. 3, the same reference numerals are used for the same parts, and a detailed description thereof will be omitted.
도 4에 도시한 바와 같이, 용철제조장치(300)는 용융가스화로(60), 유동층형 환원로(22), 환원철 압축장치(40) 및 압축 환원철 저장조(50)를 포함한다. 여기서, 압축 환원철 저장조(50)는 생략할 수 있다.As shown in FIG. 4, the apparatus for manufacturing molten iron 300 includes a molten gasifier 60, a fluidized bed reduction furnace 22, a reduced iron compression device 40, and a compressed reduced iron storage tank 50. Here, the reduced reduced iron storage tank 50 can be omitted.
제조된 성형탄은 용융가스화로(60)에 장입된다. 여기서, 성형탄은 용융가스화로(60)에서 환원가스를 발생시키고 발생된 환원가스는 유동층형 환원로(22)에 공급된다. 분철광석은 유동층을 가진 복수의 환원로들(22)에 공급되고, 용융가스화로(60)로부터 유동층형 환원로(22)에 공급된 환원가스에 의해 유동되면서 환원철로 제조된다. 환원철은 환원철 압축장치(40)에 의해 압축된 후 압축 환원철 저장조(50)에 저장된다. 압축된 환원철은 압축 환원철 저장조(50)로부터 용융가스화로(60)에 성형탄과 함께 장입되어 용융가스화로(60)에서 용융된다. 성형탄은 용융가스화로(60)에 공급되어 통기성을 가진 촤로 변하므로, 용융가스화로(60)의 하부에서 발생한 다량의 가스와 압축된 환원철이 용융가스화로(60)내의 석탄충전층을 좀더 쉽고 균일하게 통과하여 양질의 용철을 제공할 수 있다.The manufactured coal briquettes are charged into a molten gasifier 60. Here, the coal briquettes generate a reducing gas in the melt gasifier 60, and the generated reducing gas is supplied to the fluidized-bed reduction furnace 22. The iron ore is supplied to the plurality of reducing furnaces 22 having a fluidized bed, and is made of reduced iron while flowing by the reducing gas supplied from the melt gasifier 60 to the fluidized bed reducing furnace 22. The reduced iron is compressed by the reduced iron compression device 40 and then stored in the reduced reduced iron storage tank (50). The compressed reduced iron is charged together with the coal briquettes from the compressed reduced iron storage tank 50 together with the coal briquettes and melted in the molten gasifier 60. Since the coal briquettes are supplied to the molten gasifier 60 and changed into air permeable, a large amount of gas and compressed reduced iron generated in the lower part of the molten gasifier 60 make the coal filling layer in the molten gasifier 60 easier and more uniform. It can be passed through to provide high quality molten iron.
한편, 성형탄에는 바인더로서 당밀이 아닌 셀룰로오스 에테르 화합물을 사용하므로, 알칼리 성분을 획기적으로 감소시킬 수 있다. 따라서 높은 알칼리 성분을 함유한 당밀에 의해 유동층형 환원로(22) 내의 분산판(미도시) 또는 싸이클론(미도시)에 칼륨 등의 알칼리가 침적되어 막히는 현상을 사전에 차단할 수 있다.On the other hand, the coal briquettes use a cellulose ether compound other than molasses as a binder, so that the alkali component can be significantly reduced. Therefore, the phenomenon in which an alkali such as potassium is deposited on the dispersion plate (not shown) or the cyclone (not shown) in the fluidized-bed reduction furnace 22 by the molasses containing a high alkali component can be prevented in advance.
이하에서는 실험예를 통하여 본 발명을 좀더 상세하게 설명한다. 이러한 실험예는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through experimental examples. These experimental examples are only for illustrating the present invention, and the present invention is not limited thereto.
성형탄의Coal briquettes 열간강도Hot strength  And 냉간강도Cold strength 측정 실험 Measurement experiment
실험예Experimental Example
3.4mm이하의 미분탄과 0.2mm 이하의 셀룰로오스 에테르 화합물 분말을 1분간 균일하게 혼합한 후 물을 첨가하여 다시 3분간 혼합해 혼합물을 제조하였다. 미분탄으로는 강점탄, 미점탄 및 분코크스를 혼합하여 사용하였고, 셀룰로오스 에테르 화합물은 삼성정밀화학㈜의 히드록시프로필메틸셀룰로오스(HPMC, 메셀로스®) 제품을 사용하였다. 그리고 혼합물을 한 쌍의 롤들 사이로 장입하여 성형탄을 제조하였다. 이 경우, 한 쌍의 롤들은 20kN/㎝의 압력으로 혼합물을 가압하여 64.5mm × 25.4mm × 19.1mm 크기의 베게 형상의 성형탄을 제조하였다. 나머지 성형탄의 상세한 제조 공정은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 이해할 수 있으므로, 그 상세한 설명을 생략한다.Fine powder of less than 3.4mm and cellulose ether compound powder of 0.2mm or less were uniformly mixed for 1 minute, and then mixed with water for 3 minutes to prepare a mixture. Pulverized coal was used as a mixture of strong coking coal, fine coal and powdered coke, and cellulose ether compound was used as hydroxypropyl methyl cellulose (HPMC, Mecelose ® ) manufactured by Samsung Fine Chemicals. Then, the mixture was charged between a pair of rolls to produce coal briquettes. In this case, the pair of rolls pressurized the mixture at a pressure of 20 kN / cm to produce a pillow-shaped coal briquette having a size of 64.5 mm x 25.4 mm x 19.1 mm. Detailed manufacturing process of the remaining coal briquettes can be easily understood by those skilled in the art, and detailed description thereof will be omitted.
실험예Experimental Example 1 One
수분 함량 7.6%, 평균 입도가 1.1mm 인 100g의 미분탄과 평균 입도 78㎛, 점도가 28,000cps인 1g의 HPMC 분말을 먼저 혼합한 후 10g의 물을 첨가하여 다시 혼합해 혼합물을 제조하였다. 그리고 혼합물을 한 쌍의 롤들 사이에 장입하여 성형탄을 제조하였다. 나머지 실험 과정은 전술한 실험예와 동일하였다.100 g of pulverized coal having a water content of 7.6% and an average particle size of 1.1 mm and 1 g of HPMC powder having an average particle size of 78 μm and a viscosity of 28,000 cps were mixed first, and then mixed again by adding 10 g of water. The mixture was charged between a pair of rolls to produce coal briquettes. The rest of the experimental procedure was the same as the above-described experimental example.
실험예Experimental Example 2 2
수분 함량 7.7%, 평균 입도가 1.1mm 인 100g의 미분탄과 평균 입도 78㎛, 점도가 28,000cps인 0.8g의 HPMC 분말을 먼저 혼합한 후 10g의 물을 첨가하여 다시 혼합해 혼합물을 제조하였다. 그리고 혼합물을 한 쌍의 롤들 사이에 장입하여 성형탄을 제조하였다. 나머지 실험 과정은 전술한 실험예 1과 동일하였다.100 g of pulverized coal having a water content of 7.7% and an average particle size of 1.1 mm and 0.8 g of HPMC powder having an average particle size of 78 μm and a viscosity of 28,000 cps were mixed first, and then mixed again by adding 10 g of water. The mixture was charged between a pair of rolls to produce coal briquettes. The rest of the experiment was the same as in Experiment 1 described above.
실험예Experimental Example 3 3
수분 함량 1.4%, 평균 입도가 1.1mm 인 100g의 미분탄과 평균 입도 78㎛, 점도가 28,000cps인 1g의 HPMC 분말을 먼저 혼합한 후 10g의 물을 첨가하여 다시 혼합해 혼합물을 제조하였다. 그리고 혼합물을 한 쌍의 롤들 사이에 장입하여 성형탄을 제조하였다. 나머지 실험 과정은 전술한 실험예 1과 동일하였다.100 g of pulverized coal having a moisture content of 1.4% and an average particle size of 1.1 mm and 1 g of HPMC powder having an average particle size of 78 μm and a viscosity of 28,000 cps were mixed first, and then mixed again by adding 10 g of water. The mixture was charged between a pair of rolls to produce coal briquettes. The rest of the experiment was the same as in Experiment 1 described above.
실험예Experimental Example 4 4
수분 함량 0.1%, 평균 입도가 0.9mm 인 100g의 미분탄과 평균 입도 78㎛, 점도가 28,000cps인 1g의 HPMC 분말을 먼저 혼합한 후 10g의 물을 첨가하여 다시 혼합해 혼합물을 제조하였다. 그리고 혼합물을 한 쌍의 롤들 사이에 장입하여 성형탄을 제조하였다. 나머지 실험 과정은 전술한 실험예 1과 동일하였다.100 g of pulverized coal having a water content of 0.1% and an average particle size of 0.9 mm and 1 g of HPMC powder having an average particle size of 78 μm and a viscosity of 28,000 cps were mixed first, and then mixed again by adding 10 g of water. The mixture was charged between a pair of rolls to produce coal briquettes. The rest of the experiment was the same as in Experiment 1 described above.
실험예Experimental Example 5 5
수분 함량 5.7%, 평균 입도가 1.0mm 인 100g의 미분탄과 평균 입도 82㎛, 점도가 60,000cps인 1g의 HPMC 분말을 먼저 혼합한 후 10g의 물을 첨가하여 다시 혼합해 혼합물을 제조하였다. 그리고 혼합물을 한 쌍의 롤들 사이에 장입하여 성형탄을 제조하였다. 나머지 실험 과정은 전술한 실험예 1과 동일하였다. 100 g of pulverized coal having a water content of 5.7% and an average particle size of 1.0 mm and 1 g of HPMC powder having an average particle size of 82 μm and a viscosity of 60,000 cps were mixed first, and then mixed again by adding 10 g of water. The mixture was charged between a pair of rolls to produce coal briquettes. The rest of the experiment was the same as in Experiment 1 described above.
실험예Experimental Example 6 6
수분 함량 6.0%, 평균 입도가 1.0mm 인 100g의 미분탄과 평균 입도 75㎛, 점도가 12,200cps인 1g의 HPMC 분말을 먼저 혼합한 후 10g의 물을 첨가하여 다시 혼합해 혼합물을 제조하였다. 그리고 혼합물을 한 쌍의 롤들 사이에 장입하여 성형탄을 제조하였다. 나머지 실험 과정은 전술한 실험예 1과 동일하였다.100 g of pulverized coal having a moisture content of 6.0% and an average particle size of 1.0 mm and 1 g of HPMC powder having an average particle size of 75 μm and a viscosity of 12,200 cps were mixed first, and then mixed again by adding 10 g of water. The mixture was charged between a pair of rolls to produce coal briquettes. The rest of the experiment was the same as in Experiment 1 described above.
실험예Experimental Example 7 7
수분 함량 6.1%, 평균 입도가 1.0mm 인 100g의 미분탄과 평균 입도 77㎛, 점도가 49,000cps인 1g의 HPMC 분말을 먼저 혼합한 후 10g의 물을 첨가하여 다시 혼합해 혼합물을 제조하였다. 그리고 혼합물을 한 쌍의 롤들 사이에 장입하여 성형탄을 제조하였다. 나머지 실험 과정은 전술한 실험예 1과 동일하였다.100 g of pulverized coal having a moisture content of 6.1% and an average particle size of 1.0 mm and 1 g of HPMC powder having an average particle size of 77 μm and a viscosity of 49,000 cps were mixed first, and then mixed again by adding 10 g of water. The mixture was charged between a pair of rolls to produce coal briquettes. The rest of the experiment was the same as in Experiment 1 described above.
비교예Comparative example 1 One
수분 함량 7.6%, 평균 입도가 1.1mm 인 100g의 미분탄과 평균 입도 78㎛, 점도가 28,000cps인 0.6g의 HPMC 분말을 먼저 혼합한 후 10g의 물을 첨가하여 다시 혼합해 혼합물을 제조하였다. 그리고 혼합물을 한 쌍의 롤들 사이에 장입하여 성형탄을 제조하였다. 나머지 실험 과정은 전술한 실험예 1과 동일하였다. 100 g of pulverized coal having a water content of 7.6% and an average particle size of 1.1 mm and 0.6 g of HPMC powder having an average particle size of 78 μm and a viscosity of 28,000 cps were mixed first, and then mixed again by adding 10 g of water. The mixture was charged between a pair of rolls to produce coal briquettes. The rest of the experiment was the same as in Experiment 1 described above.
비교예Comparative example 2 2
수분 함량 5.7%, 평균 입도가 1.0mm 인 100g의 미분탄과 평균 입도 82㎛, 점도가 60,000cps인 0.2g의 HPMC 분말을 먼저 혼합한 후 10g의 물을 첨가하여 다시 혼합해 혼합물을 제조하였다. 그리고 혼합물을 한 쌍의 롤들 사이에 장입하여 성형탄을 제조하였다. 나머지 실험 과정은 전술한 실험예 1과 동일하였다.100 g of pulverized coal having a water content of 5.7% and an average particle size of 1.0 mm and 0.2 g of HPMC powder having an average particle size of 82 μm and a viscosity of 60,000 cps were mixed first, and then mixed again by adding 10 g of water. The mixture was charged between a pair of rolls to produce coal briquettes. The rest of the experiment was the same as in Experiment 1 described above.
비교예Comparative example 3 3
수분 함량 1.4%, 평균 입도가 1.1mm 인 100g의 미분탄과 평균 입도 75㎛, 점도가 2,080cps인 1g의 HPMC 분말을 먼저 혼합한 후 10g의 물을 첨가하여 다시 혼합해 혼합물을 제조하였다. 그리고 혼합물을 한 쌍의 롤들 사이에 장입하여 성형탄을 제조하였다. 나머지 실험 과정은 전술한 실험예 1과 동일하였다.100 g of pulverized coal having a moisture content of 1.4% and an average particle size of 1.1 mm and 1 g of HPMC powder having an average particle size of 75 μm and a viscosity of 2,080 cps were mixed first, and then mixed again by adding 10 g of water. The mixture was charged between a pair of rolls to produce coal briquettes. The rest of the experiment was the same as in Experiment 1 described above.
비교예Comparative example 4 4
수분 함량 0.1%, 평균 입도가 1.0mm 인 100g의 미분탄과 평균 입도 70㎛, 점도가 6,000 cps인 1g의 카르복시메틸셀룰로오스(CMC) (ASHILAND社, AQUALONTM) 분말을 먼저 혼합한 후 12g의 물을 첨가하여 다시 혼합해 혼합물을 제조하였다. 그리고 혼합물을 한 쌍의 롤들 사이에 장입하여 성형탄을 제조하였다. 나머지 실험 과정은 전술한 실험예 1과 동일하였다.100 g of pulverized coal with 0.1% water content and 1.0 mm average particle size, 1 g of carboxymethyl cellulose (CMC) (ASHILAND, AQUALONTM) powder with an average particle size of 70 μm and a viscosity of 6,000 cps were mixed first, followed by 12 g of water. And mixed again to prepare a mixture. The mixture was charged between a pair of rolls to produce coal briquettes. The rest of the experiment was the same as in Experiment 1 described above.
실험결과Experiment result
전술한 실험예 1 내지 실험예 6에 따라 제조한 성형탄의 낙하 강도와 압축하중을 측정하였다. 성형탄의 낙하 강도는 성형탄 2kg을 5m 높이에서 4회 자유낙하시킨 후에 +20mm이상의 입도를 가진 성형탄 비율로부터 구하였다. 또한, 성형탄의 압축하중은 일정한 속도의 압력을 가해 성형탄이 파괴될 때까지의 최고 하중으로 측정하였으며, 20개 성형탄 시료의 평균값으로 측정하였고, 그 결과를 하기의 표 1에 나타낸다.Drop strength and compression load of the coal briquettes manufactured according to Experimental Examples 1 to 6 described above were measured. The drop strength of the coal briquettes was determined from the ratio of coal briquettes having a particle size of +20 mm or more after 2 kg of coal briquettes were freely dropped four times at a height of 5 m. In addition, the compression load of the coal briquettes was measured at the maximum load until the coal briquettes were destroyed by applying a constant speed pressure, and measured by the average value of 20 coal briquette samples, and the results are shown in Table 1 below.
표 1
Figure PCTKR2015014010-appb-T000001
Table 1
Figure PCTKR2015014010-appb-T000001
표 1에 기재한 바와 같이, 실험예 1 내지 실험예 7에서 12,200cps 내지 60,000cps의 점도를 가진 HPMC를 0.8중량부 내지 1.0중량부 사용한 경우, 성형탄의 낙하강도 및 압축하중이 우수하게 나타났다. 따라서 HPMC의 점도를 전술한 범위로 조절하는 것이 바람직하다는 것을 알 수 있었다. 이와는 대조적으로, 비교예 1 내지 비교예 4에 따라 제조한 성형탄의 낙하강도 및 압축하중은 실험예 1 내지 실험예 7에 따라 제조한 성형탄의 낙하강도 및 압축하중에 비해 훨씬 작은 것을 확인할 수 있었다. 따라서 HPMC를 사용하여 제조한 성형탄이 CMC를 사용하여 제조한 성형탄에 비해 낙하강도 및 압축하중 측면에서 훨씬 우수한 것을 확인할 수 있었다.As shown in Table 1, in the case of using HPMC having a viscosity of 12,200cps to 60,000cps in 0.8 to 1.0 parts by weight in Experimental Examples 1 to 7, the drop strength and compression load of the coal briquettes were excellent. Therefore, it was found that it is desirable to adjust the viscosity of HPMC to the above-mentioned range. In contrast, it was confirmed that the drop strength and the compressive load of the coal briquettes prepared according to Comparative Examples 1 to 4 were much smaller than the drop strength and the compressive load of the coal briquettes prepared according to Experimental Examples 1 to 7. Therefore, it was confirmed that coal briquettes manufactured using HPMC were much better in terms of drop strength and compressive load than coal briquettes manufactured using CMC.
성형탄 Ash 제조 조업 실험Briquette Ash Manufacturing Operation Experiment
실험예 8Experimental Example 8
전술한 실험예 1에 의해 제조한 성형탄을 파쇄하여 미분으로 만들고, 30ml 자기도가니에 약 7g의 미분화된 성형탄을 넣고, 850℃ Box Furnace에서 10시간 동안 가열하여 연소시켰다. 나머지 실험 과정은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 이해할 수 있으므로, 그 상세한 설명은 생략한다.The coal briquettes prepared according to Experimental Example 1 were crushed into fine powder, and about 7 g of finely divided coal briquettes were put into a 30 ml porcelain crucible, and burned by heating at 850 ° C. Box Furnace for 10 hours. Since the rest of the experimental procedure can be easily understood by those skilled in the art, detailed description thereof will be omitted.
실험예 9Experimental Example 9
미분탄에 HPMC와 CMC 용액을 균일하게 혼합하여 혼합물을 제조하였다. 수분 함량 0.1%, 평균 입도가 1.0mm인 100g의 미분탄과 7.5g의 히드록시프로필메틸셀룰로오스 (HPMC, 삼성정밀화학㈜, 메셀로스®, 점도 28,000cps) 4% 수용액과 7.5g의 카르복시메틸셀룰로오스 (CMC, ASHILAND社, AQUALONTM, 점도 6,000 cps) 6% 수용액을 사용하였다. 그리고 혼합물을 한 쌍의 롤들 사이로 장입하여 성형탄을 제조하였다. 이 경우, 한 쌍의 롤들은 20 kN/㎝의 압력으로 혼합물을 가압하여 64.5mm × 25.4mm × 19.1mm 크기의 베게 형상의 성형탄을 제조하였다. 이와 같이 제조한 성형탄을 파쇄하여 미분으로 만들고, 30ml 자기도가니에 약 7g의 미분화된 성형탄을 넣고, 850℃ Box Furnace에서 10시간 동안 가열하여 연소시켰다. 나머지 실험 과정은 전술한 실험예 8과 동일하였다.HPMC and CMC solution was uniformly mixed with pulverized coal to prepare a mixture. 100 g of pulverized coal with a water content of 0.1% and an average particle size of 1.0 mm and 7.5 g of hydroxypropyl methyl cellulose (HPMC, Samsung Fine Chemicals, Mecellose ® , viscosity 28,000 cps) 4% aqueous solution and 7.5 g of carboxymethyl cellulose ( CMC, ASHILAND, AQUALONTM, viscosity 6,000 cps) 6% aqueous solution was used. Then, the mixture was charged between a pair of rolls to produce coal briquettes. In this case, the pair of rolls pressurized the mixture at a pressure of 20 kN / cm to produce a pillow-shaped coal briquette having a size of 64.5 mm x 25.4 mm x 19.1 mm. The coal briquettes thus prepared were crushed into fine powder, and about 7 g of finely divided coal briquettes were put into a 30 ml porcelain crucible and burned by heating at 850 ° C. Box Furnace for 10 hours. The rest of the experimental procedure was the same as in Experimental Example 8 described above.
비교예 5Comparative Example 5
전술한 비교예 4에 의해 제조한 성형탄을 파쇄하여 미분으로 만들고, 30ml 자기도가니에 약 7g의 미분화된 성형탄을 넣고, 850℃ Box Furnace에서 10시간 동안 가열하여 연소시켰다. 나머지 실험 과정은 전술한 실험예 8과 동일하였다.The coal briquettes prepared according to Comparative Example 4 described above were crushed into fine powder, and about 7 g of finely divided coal briquettes were put into a 30 ml porcelain crucible, and heated and burned at 850 ° C. Box Furnace for 10 hours. The rest of the experimental procedure was the same as in Experimental Example 8 described above.
실험결과Experiment result
실험예 8, 실험예 9 및 비교예 5에 따라 조업시에 남은 회분 성분을 분석하였다. 전술한 실험예 8, 실험예 9 및 비교예 5의 실험 결과를 하기의 표 2에 나타낸다. 표 2에는 실험예 8, 실험예 9 및 비교예 5에 따라 제조한 성형탄에 포함된 애쉬 성분을 나타낸다.According to Experimental Example 8, Experimental Example 9 and Comparative Example 5, the ash components remaining in the operation were analyzed. The experimental results of Experimental Example 8, Experimental Example 9, and Comparative Example 5 described above are shown in Table 2 below. Table 2 shows the ash components contained in the coal briquettes prepared according to Experimental Example 8, Experimental Example 9 and Comparative Example 5.
표 2
Figure PCTKR2015014010-appb-T000002
TABLE 2
Figure PCTKR2015014010-appb-T000002
표 2에 기재한 바와 같이, 실험예 8에서는 회분에 함유된 알칼리 중 Na2O 함량이 0.39으로 낮았지만, 비교예 5에서는 Na2O 함량이 2.64로 매우 높았다. 또한, 실험예 9에서는 Na2O 함량이 1.59로서 다소 높은 편이었다. 이는 CMC의 기능기에 Na 이온이 결합되어 있어서 CMC 용액을 사용하여 성형탄을 제조하는 경우 알칼리가 환원가스에 포함되어 유동층형 환원로 조업에 나쁜 영향을 줄 수 있다는 것을 알 수 있었다.As shown in Table 2, Na 2 O content in the alkali contained in the ash was low as 0.39 in Experimental Example 8, but Na 2 O content was very high as 2.64 in Comparative Example 5. In addition, in Experiment 9, the Na 2 O content was 1.59. This is because the Na ions are bonded to the functional group of the CMC, it can be seen that when the coal briquettes are manufactured using the CMC solution, alkali may be included in the reducing gas, which may adversely affect the operation of the fluidized bed reduction furnace.
성형탄의Coal briquettes 압축하중 측정 실험 Compression Load Measurement Experiment
용융환원철에 사용되는 평균성상을 가진 성형탄용 미분탄과 바인더를 준비하여 혼합하였다. 미분탄은 3.4mm 이하의 입도를 가졌다. 미분탄에는 탄소원 첨가제를 추가로 혼합하였다. 셀룰로오스 에테르 화합물 바인더는 삼성정밀화학(주)에서 제공한 FerrobineTM 바인더를 사용하였다. 미분탄 100 중량부에 대해 바인더 1 중량부를 첨가하고, 7 중량부의 물을 첨가하여 균일하게 혼합하였다. 그리고 혼합물을 한 쌍의 롤들 사이로 장입하여 성형탄을 제조하였다. 이 경우, 한 쌍의 롤들은 20kN/cm의 압력으로 혼합물을 가압하여 64.5mm×25.4mm×19.1mm 크기의 베게 형상의 성형탄을 제조하였다. 제조한 성형탄은 통풍이 잘되는 열처리 오븐에서 열처리하여 수분을 증발시켰다. 그리고 제조한 성형탄 20개를 사용하여 수분과 압축하중을 측정하였다. 성형탄의 압축 하중은 일정한 속의 압력을 가해 성형탄이 파괴될 때까지의 최고 하중으로 측정하였으며, 20개의 성형탄 시료의 평균값으로부터 구하였다. 나머지 실험 과정은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 이해할 수 있으므로, 그 상세한 설명을 생략한다.A fine coal for coal briquettes having an average property used for molten reduced iron and a binder were prepared and mixed. Pulverized coal had a particle size of 3.4 mm or less. The pulverized coal was further mixed with a carbon source additive. As a cellulose ether compound binder, Ferrobine binder provided by Samsung Fine Chemicals Co., Ltd. was used. 1 part by weight of the binder was added to 100 parts by weight of pulverized coal, and 7 parts by weight of water was added and mixed uniformly. Then, the mixture was charged between a pair of rolls to produce coal briquettes. In this case, the pair of rolls pressurized the mixture at a pressure of 20 kN / cm to produce pillow shaped coal briquettes having a size of 64.5 mm x 25.4 mm x 19.1 mm. The coal briquettes prepared were heat-treated in a well-heated oven to evaporate moisture. Water and compression loads were measured using 20 coal briquettes manufactured. The compression load of the coal briquettes was measured by the maximum load until the coal briquettes were destroyed by applying a constant pressure and obtained from an average value of 20 coal briquette samples. The rest of the experimental procedure can be easily understood by those skilled in the art, and detailed description thereof will be omitted.
실험예Experimental Example 10 10
초기 수분 함량이 8.8wt%, 압축 하중은 40kgf인 성형탄을 열처리 오븐에서 80℃의 온도로 24시간 동안 열처리하여 성형탄을 건조하였다.The coal briquettes having an initial moisture content of 8.8 wt% and a compression load of 40 kgf were heat-treated at a temperature of 80 ° C. for 24 hours in a heat treatment oven to dry coal briquettes.
실험예Experimental Example 11 11
초기 수분 함량이 10.1wt%, 압축 하중은 51kgf인 성형탄을 열처리 오븐에서 100℃의 온도로 5시간 동안 열처리하여 성형탄을 건조하였다.The coal briquettes having an initial moisture content of 10.1 wt% and a compressive load of 51 kgf were heat-treated for 5 hours at a temperature of 100 ° C. in a heat treatment oven to dry coal briquettes.
실험예Experimental Example 12 12
초기 수분 함량이 9.7wt%, 압축 하중은 52kgf인 성형탄을 열처리 오븐에서 120℃의 온도로 5시간 동안 열처리하여 성형탄을 건조하였다.The coal briquettes having an initial moisture content of 9.7 wt% and a compressive load of 52 kgf were heat-treated in a heat treatment oven at a temperature of 120 ° C. for 5 hours to dry coal briquettes.
실험예Experimental Example 13 13
초기 수분 함량이 9.2wt%, 압축 하중은 51kgf인 성형탄을 열처리 오븐에서 150℃의 온도로 5시간 동안 열처리하여 성형탄을 건조하였다.The coal briquettes having an initial moisture content of 9.2 wt% and a compressive load of 51 kgf were heat-treated in a heat treatment oven at a temperature of 150 ° C. for 5 hours to dry coal briquettes.
비교예Comparative example 6 6
전술한 실험예 10과 동일한 방법으로 제조한 성형탄을 상온에서 24시간 동안 보관하였다.Coal briquettes prepared in the same manner as in Experimental Example 10 described above were stored at room temperature for 24 hours.
비교예Comparative example 7 7
전술한 비교예 6과 동일한 방법으로 제조한 성형탄을 60℃에서 열처리하였다.Coal briquettes prepared in the same manner as in Comparative Example 6 described above were heat treated at 60 ° C.
비교예Comparative example 8 8
전술한 비교예 6과 동일한 방법으로 제조한 성형탄을 200℃에서 열처리하였다.The coal briquettes manufactured in the same manner as in Comparative Example 6 described above were heat treated at 200 ° C.
실험결과Experiment result
실험 결과, 열처리를 거치지 않은 비교예 6의 경우, 성형탄은 초기에 40kgf의 압축 하중을 보였으며, 상온에서 24시간 경과 후 압축 하중은 70kgf 수준으로서 충분한 강도 향상 효과가 나타나지 않았다. 비교예 7과 같이 성형탄을 60℃에서 열처리한 경우에도 충분한 압축 하중을 얻지 못하였다. 200℃의 고온으로 열처리를 한 비교예 8의 경우에도 크랙이 발생하여 성형탄의 외형을 유지하지 못하였다.As a result, in Comparative Example 6, which was not subjected to heat treatment, the coal briquettes initially showed a compression load of 40 kgf, and after 24 hours at room temperature, the compression load was 70 kgf. Even when the coal briquettes were heat treated at 60 ° C. as in Comparative Example 7, sufficient compressive load was not obtained. Even in Comparative Example 8, which was heat-treated at a high temperature of 200 ° C., cracks occurred, and thus the appearance of the coal briquettes was not maintained.
도 5 내지 도 8은 각각 실험예 10 내지 실험예 13에 따른 성형탄의 압축 하중 측정 실험 결과를 나타낸다.5 to 8 show the compression load measurement test results of the coal briquettes according to Experimental Examples 10 to 13, respectively.
도 5 내지 도 8에 도시한 바와 같이, 성형탄의 압축 하중에 있어서 실험예 10에서는 294kgf, 실험예 11에서는 217kgf, 실험예 12에서는 3491kgf, 실험예 13에서는 307kgf로 각각 우수하게 나타났다. 실험예 11 내지 실험예 13에서는 시간 경과에 따라 성형탄의 압축 하중이 다소 감소하였지만 성형탄의 열처리 조건을 전술한 범위로 조절하는 것이 바람직하다는 것을 알 수 있었다.5 to 8, the compressive load of the coal briquettes was excellent as 294kgf in Experimental Example 10, 217kgf in Experimental Example 11, 3491kgf in Experimental Example 12, and 307kgf in Experimental Example 13, respectively. In Experimental Examples 11 to 13, although the compressive load of the coal briquettes slightly decreased over time, it was found that it is preferable to adjust the heat treatment conditions of the coal briquettes to the above-mentioned ranges.
이와는 대조적으로, 비교예 6 내지 비교예 8에 따라 제조한 성형탄의 압축 하중은 실험예 10 내지 실험예 13에 따라 제조된 성형탄의 압축 하중에 비교 훨씬 작은 것을 확인할 수 있었다. 따라서, 열처리 여부에 따라 성형탄의 압축 하중이 달라진다는 것을 확인할 수 있었다.In contrast, the compressive load of the coal briquettes prepared according to Comparative Examples 6 to 8 was much smaller than that of the coal briquettes prepared according to Experimental Examples 10 to 13. Therefore, it could be confirmed that the compression load of the coal briquettes varies depending on whether the heat treatment is performed.
본 발명을 앞서 기재한 바에 따라 설명하였지만, 다음에 기재하는 특허청구범위의 개념과 범위를 벗어나지 않는 한, 다양한 수정 및 변형이 가능하다는 것을 본 발명이 속하는 기술 분야에서 종사하는 자들은 쉽게 이해할 것이다.Although the present invention has been described above, it will be readily understood by those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the claims set out below.

Claims (24)

  1. 환원철이 장입되는 용융가스화로, 및A molten gas furnace in which reduced iron is charged, and
    상기 용융가스화로에 연결되고, 상기 환원철을 제공하는 환원로A reducing furnace connected to the melt gasifier and providing the reduced iron
    를 포함하는 용철제조장치에서 상기 용융가스화로의 돔부에 장입되어 급속 가열되는 성형탄의 제조 방법으로서,In the molten iron manufacturing apparatus comprising a method for manufacturing coal briquettes which is charged into the dome portion of the molten gasifier rapidly heated;
    미분탄을 제공하는 단계,Providing pulverized coal,
    상기 미분탄에 분말형의 셀룰로오스 에테르 화합물을 혼합하여 혼합물을 제공하는 단계,Mixing a powdered cellulose ether compound with the pulverized coal to provide a mixture,
    상기 혼합물에 물을 첨가하여 혼합하는 단계, 및Adding water to the mixture to mix, and
    상기 혼합물을 성형하여 성형탄을 제공하는 단계Molding the mixture to provide coal briquettes
    를 포함하고,Including,
    상기 성형탄을 제공하는 단계에서, 상기 성형탄에 포함된 셀룰로오스 에테르 화합물의 양은 0.7wt% 내지 2.0wt%인 성형탄의 제조 방법.In the step of providing the coal briquettes, the amount of cellulose ether compound contained in the coal briquettes is 0.7wt% to 2.0wt% method of producing coal briquettes.
  2. 제1항에서,In claim 1,
    상기 셀룰로오스 에테르 화합물의 양은 0.8wt% 내지 1.5wt%인 성형탄의 제조 방법.The amount of the cellulose ether compound is 0.8wt% to 1.5wt% of the method for producing coal briquettes.
  3. 제1항에서,In claim 1,
    상기 성형탄을 제공하는 단계에서, 상기 성형탄에 포함된 수분의 양은 5wt% 내지 15wt%인 성형탄의 제조 방법.In the step of providing the coal briquettes, the amount of water contained in the coal briquettes is 5wt% to 15wt% manufacturing method of coal briquettes.
  4. 제3항에서,In claim 3,
    상기 성형탄에 포함된 수분의 양은 7wt% 내지 12wt%인 성형탄의 제조 방법.The amount of water contained in the coal briquettes is 7wt% to 12wt% manufacturing method of coal briquettes.
  5. 제1항에서,In claim 1,
    상기 성형탄에 포함된 셀룰로오스 에테르 화합물의 양에 대한 상기 성형탄에 포함된 수분의 양의 비는 5 내지 40인 성형탄의 제조 방법.The ratio of the amount of water contained in the coal briquettes to the amount of the cellulose ether compound contained in the coal briquettes is 5 to 40.
  6. 제1항에서,In claim 1,
    상기 성형탄에 포함된 셀룰로오스 에테르 화합물의 양에 대한 상기 성형탄에 포함된 수분의 양의 비는 7 내지 20인 성형탄의 제조 방법.The ratio of the amount of water contained in the coal briquettes to the amount of the cellulose ether compound contained in the coal briquettes is 7 to 20.
  7. 제1항에서,In claim 1,
    상기 혼합물을 제공하는 단계에서, 상기 셀룰로오스 에테르 화합물의 평균 입도는 50㎛ 내지 100㎛인 성형탄의 제조 방법.In the step of providing the mixture, the average particle size of the cellulose ether compound is 50㎛ 100㎛ manufacturing method of coal briquettes.
  8. 제1항에서,In claim 1,
    상기 혼합물을 제공하는 단계에서, 상기 셀룰로오스 에테르 화합물의 평균 입도에 대한 상기 미분탄의 평균 입도의 비는 7 내지 30인 성형탄의 제조 방법.In the providing of the mixture, the ratio of the average particle size of the pulverized coal to the average particle size of the cellulose ether compound is 7 to 30.
  9. 제1항에서,In claim 1,
    상기 셀룰로오스 에테르 화합물의 평균 입도에 대한 상기 미분탄의 평균 입도의 비는 10 내지 20인 성형탄의 제조 방법.The ratio of the average particle size of the pulverized coal to the average particle size of the cellulose ether compound is 10 to 20.
  10. 제1항에서,In claim 1,
    상기 혼합물을 제공하는 단계에서의 혼합 시간은 상기 혼합물에 물을 첨가하여 혼합하는 단계에서의 혼합 시간보다 작고, 상기 혼합물에 물을 첨가하여 혼합하는 단계에서의 혼합 시간에 대한 상기 혼합물을 제공하는 단계에서의 혼합 시간의 비는 2 내지 5인 성형탄의 제조 방법.The mixing time in the providing of the mixture is less than the mixing time in the mixing by adding water to the mixture, and providing the mixture for the mixing time in the mixing by adding water to the mixture. The ratio of the mixing time in the method of producing coal briquettes is 2 to 5.
  11. 제1항에서, In claim 1,
    상기 셀룰로오스 에테르 화합물은 메틸셀룰로오스(MC), 히드록시에틸셀룰로오스(HEC), 히드록시프로필셀룰로오스(HPC), 히드록시프로필메틸셀룰로오스(HPMC) 및 히드록시에틸메틸셀룰로오스(HEMC)로 이루어진 군으로부터 선택된 적어도 1종의 화합물을 포함하는 성형탄의 제조방법.The cellulose ether compound is at least selected from the group consisting of methyl cellulose (MC), hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), hydroxypropyl methyl cellulose (HPMC) and hydroxyethyl methyl cellulose (HEMC) The manufacturing method of the coal briquettes containing 1 type of compound.
  12. 제1항에서, In claim 1,
    상기 셀룰로오스 에테르 화합물은 카르복시메틸 셀룰로오스(carboxymethyl cellulose, CMC)가 포함되지 않는 성형탄의 제조방법.The cellulose ether compound is a method for producing coal briquettes that do not contain carboxymethyl cellulose (CMC).
  13. 제1항에서, In claim 1,
    상기 셀룰로오스 에테르 화합물의 점도는 4,000cps 내지 80,000cps인 성형탄의 제조방법.The viscosity of the cellulose ether compound is 4,000 cps to 80,000 cps manufacturing method of coal briquettes.
  14. 제1항에서,In claim 1,
    상기 혼합물에 물을 첨가하여 혼합하는 단계 후에 상기 혼합물을 건조하는 단계를 더 포함하는 성형탄의 제조 방법.And drying the mixture after adding water to the mixture to mix the mixture.
  15. 제1항에서,In claim 1,
    상기 혼합물을 제공하는 단계에서, 상기 미분탄에 PVA(polyvinyl alcohol, 폴리비닐 알코올), 리그닌(lignin) 및 전분에서 선택된 하나 이상의 바인더를 더 혼합하는 성형탄의 제조 방법.In the providing of the mixture, the coal briquettes are further mixed with at least one binder selected from PVA (polyvinyl alcohol, polyvinyl alcohol), lignin and starch.
  16. 제15항에서,The method of claim 15,
    상기 성형탄을 제공하는 단계에서, 상기 성형탄에 포함된 수분의 양은 5wt% 내지 15wt%인 성형탄의 제조 방법.In the step of providing the coal briquettes, the amount of water contained in the coal briquettes is 5wt% to 15wt% manufacturing method of coal briquettes.
  17. 제1항에서,In claim 1,
    상기 성형탄을 80℃ 내지 150℃에서 1시간 내지 24시간 가열하여 상기 성형탄에 포함된 수분의 양을 5wt% 이하로 조절하고, 상기 성형탄의 압축 하중을 100kgf 이상으로 조절하는 단계를 더 포함하는 성형탄의 제조 방법.The coal briquettes are heated at 80 ° C. to 150 ° C. for 1 hour to 24 hours to adjust the amount of water contained in the coal briquettes to 5 wt% or less, and to adjust the compression load of the coal briquettes to 100 kgf or more. Manufacturing method.
  18. 제17항에서,The method of claim 17,
    상기 성형탄은 스팀, 근적외선, 마이크로웨이브, 액화 천연 가스(liquid natural gas, LNG), 액화 프로판 가스(liquid propane gas, LPG), 용철 제조 배가스(Finex off gas, FOG), 코크스 오븐 가스(cokes oven gas, COG) 및 고로 가스(blast furnace gas, BFG)로 이루어진 군에서 선택된 하나 이상의 열원에 의해 가열되는 성형탄의 제조 방법.The coal briquettes may include steam, near infrared rays, microwaves, liquid natural gas (Liquid Natural Gas, LNG), liquid propane gas (LPG), FIG off gas (FOG), and coke oven gas. COG) and blast furnace gas (BFG) method for producing coal briquettes heated by one or more heat sources selected from the group consisting of.
  19. 제1항에 따라 제조한 성형탄을 제공하는 단계,Providing the coal briquettes prepared according to claim 1,
    철광석을 환원로에서 환원한 환원철을 제공하는 단계, 및Providing reduced iron reduced iron ore in a reduction furnace, and
    상기 성형탄과 상기 환원철을 용융가스화로에 장입하여 용철을 제공하는 단계Charging molten coal with the coal briquettes and the reduced iron to provide molten iron;
    를 포함하는 용철 제조 방법.The molten iron manufacturing method comprising a.
  20. 제19항에서,The method of claim 19,
    상기 환원철을 제공하는 단계에서, 상기 환원로는 유동층형 환원로 또는 충전층형 환원로인 용철 제조 방법. In the providing of the reduced iron, the reduction furnace is a molten iron manufacturing method is a fluidized bed reduction furnace or packed-bed reduction furnace.
  21. 환원철이 장입되는 용융가스화로, 및A molten gas furnace in which reduced iron is charged, and
    상기 용융가스화로에 연결되고, 상기 환원철을 제공하는 환원로A reducing furnace connected to the melt gasifier and providing the reduced iron
    를 포함하는 용철제조장치에서 상기 용융가스화로의 돔부에 장입되어 급속 가열되는 성형탄으로서, As a coal briquettes which is charged in the dome portion of the molten gasifier in the molten iron manufacturing apparatus comprising a rapid heating,
    0.7wt% 내지 2.0wt%의 셀룰로오스 에테르 화합물, 5wt% 내지 15wt%의 수분 및 나머지 미분탄을 포함하는 성형탄.Coal briquettes comprising 0.7 wt% to 2.0 wt% of cellulose ether compounds, 5 wt% to 15 wt% of water, and remaining fine coal.
  22. 제21항에서,The method of claim 21,
    상기 셀룰로오스 에테르 화합물의 양은 0.8wt% 내지 1.5wt%인 성형탄.Coal briquettes are an amount of the cellulose ether compound is 0.8wt% to 1.5wt%.
  23. 미분탄을 저장하는 미분탄 호퍼, Pulverized coal hopper to store pulverized coal,
    수용성 바인더를 저장하는 바인더 호퍼,Binder hopper to store water soluble binders,
    상기 미분탄 호퍼로부터 미분탄을 공급받고, 상기 바인더 호퍼로부터 수용성 바인더를 공급받아 상기 미분탄과 상기 수용성 바인더를 혼합한 혼합물을 제조하는 혼합기,A mixer for receiving pulverized coal from the pulverized coal hopper and receiving a water-soluble binder from the binder hopper to produce a mixture of the pulverized coal and the water-soluble binder;
    상기 혼합기에 물을 공급하는 물 공급부,A water supply unit supplying water to the mixer,
    상기 혼합기로부터 상기 혼합물을 공급받아 성형탄을 제조하는 성형 장치,Forming apparatus for receiving the mixture from the mixer to produce coal briquettes,
    상기 성형 장치로부터 상기 성형탄을 제공받아 상기 성형탄을 가열 건조하며, 하부로부터 상부로 갈수록 그 직경이 점차 감소하는 저장빈, 및A storage bin which receives the coal briquettes from the molding apparatus and heat-drys the coal briquettes, the diameter of which gradually decreases from a lower portion to an upper portion, and
    상기 저장빈의 하부에 상기 성형탄을 건조시키는 열풍을 공급하는 열원Heat source for supplying hot air drying the coal briquettes in the lower portion of the storage bin
    을 포함하는 성형탄 제조 장치.Coal briquette manufacturing apparatus comprising a.
  24. 제23항에 따른 성형탄 제조 장치,The coal briquette manufacturing apparatus according to claim 23,
    환원철을 제공하는 환원로, 및A reducing furnace providing reduced iron, and
    상기 환원로에 연결되어 환원철을 제공받고, 상기 성형탄 제조 장치와 연결되어 성형탄을 공급받아 용철을 제조하는 용융가스화로A molten gasifier that is connected to the reduction furnace to receive reduced iron and is connected to the coal briquette manufacturing apparatus to receive coal briquettes to produce molten iron.
    를 포함하고,Including,
    상기 환원로는 유동층형 환원로 또는 충전층형 환원로인 용철 제조 장치. The reduction furnace is molten iron manufacturing apparatus which is a fluidized bed reduction furnace or packed bed reduction furnace.
PCT/KR2015/014010 2015-03-04 2015-12-21 Coal briquette, method for manufacturing same, device for manufacturing same, ingot iron manufacturing method, and ingot iron manufacturing device WO2016140428A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580077215.6A CN107406782A (en) 2015-03-04 2015-12-21 Moulded coal, the method and apparatus for preparing moulded coal, the method and apparatus for preparing molten iron
EP15884094.2A EP3266855A4 (en) 2015-03-04 2015-12-21 Coal briquettes, method and apparatus for manufacturing the same, and method and apparatus for manufacturing molten iron

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020150030614A KR101739859B1 (en) 2015-03-04 2015-03-04 Coal briquettes, method for manufacturing the same and method for manufacturing molten iron
KR10-2015-0030614 2015-03-04
KR1020150137117A KR101696628B1 (en) 2015-09-25 2015-09-25 Coal briquettes, method and apparatus for manufacturing the same, and method for manufacturing molten iron
KR10-2015-0137117 2015-09-25

Publications (2)

Publication Number Publication Date
WO2016140428A1 true WO2016140428A1 (en) 2016-09-09
WO2016140428A8 WO2016140428A8 (en) 2016-10-27

Family

ID=56848101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014010 WO2016140428A1 (en) 2015-03-04 2015-12-21 Coal briquette, method for manufacturing same, device for manufacturing same, ingot iron manufacturing method, and ingot iron manufacturing device

Country Status (3)

Country Link
EP (1) EP3266855A4 (en)
CN (1) CN107406782A (en)
WO (1) WO2016140428A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019009484A1 (en) * 2017-07-07 2019-01-10 주식회사 포스코 Method for producing coal briquette, and coal briquette produced by same
WO2019027198A3 (en) * 2017-07-31 2019-04-18 롯데정밀화학 주식회사 Coal briquette composition, coal briquette comprising same, and manufacturing method therefor
CN110536955A (en) * 2017-04-28 2019-12-03 乐天精密化学株式会社 Moulded coal composition and moulded coal comprising it

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135594A (en) * 1985-12-07 1987-06-18 Norio Ohashi Molded coal
JP2007291370A (en) * 2006-03-29 2007-11-08 Mitsubishi Heavy Ind Ltd Method and apparatus for producing sludge carbonized fuel
JP2008138021A (en) * 2006-11-30 2008-06-19 Nippon Steel Corp Method and apparatus for pretreating coal of coke oven
KR20140081514A (en) * 2012-12-21 2014-07-01 주식회사 포스코 Coal briquettes and method for manufacturing the same
JP2014205810A (en) * 2013-04-16 2014-10-30 株式会社知多リサイクル Solid fuel, and production method and device thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3100727C2 (en) * 1981-01-13 1983-07-07 Verkaufsgesellschaft für Teererzeugnisse (VFT) mbH, 4300 Essen "Process for the production of carburizing agents"
JPH0635623B2 (en) * 1989-04-12 1994-05-11 日本磁力選鉱株式会社 How to make carbon powder
KR100314707B1 (en) * 1999-11-10 2001-11-15 박찬구 Massive method of the powder coal by using styrene-butadiene latex
BRPI0506129B8 (en) * 2004-07-30 2018-06-05 Posco cast iron production equipment and method
CN102746865B (en) * 2011-04-21 2014-03-05 宝钢集团有限公司 Preparation method of formed coke used for smelting-reduction ironmaking
CN102533374A (en) * 2012-01-31 2012-07-04 宝山钢铁股份有限公司 Molded coal produced by recycled steel factory dust and used for smelting melted iron and manufacture method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135594A (en) * 1985-12-07 1987-06-18 Norio Ohashi Molded coal
JP2007291370A (en) * 2006-03-29 2007-11-08 Mitsubishi Heavy Ind Ltd Method and apparatus for producing sludge carbonized fuel
JP2008138021A (en) * 2006-11-30 2008-06-19 Nippon Steel Corp Method and apparatus for pretreating coal of coke oven
KR20140081514A (en) * 2012-12-21 2014-07-01 주식회사 포스코 Coal briquettes and method for manufacturing the same
JP2014205810A (en) * 2013-04-16 2014-10-30 株式会社知多リサイクル Solid fuel, and production method and device thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3266855A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536955A (en) * 2017-04-28 2019-12-03 乐天精密化学株式会社 Moulded coal composition and moulded coal comprising it
WO2019009484A1 (en) * 2017-07-07 2019-01-10 주식회사 포스코 Method for producing coal briquette, and coal briquette produced by same
WO2019027198A3 (en) * 2017-07-31 2019-04-18 롯데정밀화학 주식회사 Coal briquette composition, coal briquette comprising same, and manufacturing method therefor

Also Published As

Publication number Publication date
CN107406782A (en) 2017-11-28
EP3266855A4 (en) 2018-05-23
WO2016140428A8 (en) 2016-10-27
EP3266855A1 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
CA1136420A (en) Process for producing metallized iron pellets
WO2014104624A1 (en) Coal briquette manufacturing method and coal briquette manufacturing apparatus
JP4893136B2 (en) Blast furnace operation method using woody biomass
EP1774050B1 (en) Apparatus for manufacturing molten irons by injecting fine coals into a melter-gasifier and the method using the same.
US20120210635A1 (en) Pelletization and calcination of green coke using an organic binder
TW442571B (en) Method for the production of liquid metal and plant for carring out the same
WO2016140428A1 (en) Coal briquette, method for manufacturing same, device for manufacturing same, ingot iron manufacturing method, and ingot iron manufacturing device
WO2012086961A2 (en) Method for manufacturing partially carbonized coal briquettes, apparatus for manufacturing partially carbonized coal briquettes, and apparatus for manufacturing molten iron
JP5403027B2 (en) Blast furnace operating method and coke manufacturing method using woody biomass
KR100929182B1 (en) Binderless briquette manufacturing method and manufacturing apparatus
JP2006057082A (en) Method for producing carbon-containing molded product and method for melting treatment of waste using the carbon-containing molded product
KR101739859B1 (en) Coal briquettes, method for manufacturing the same and method for manufacturing molten iron
JP4532313B2 (en) Manufacturing method of carbonized material agglomerates
WO2019009484A1 (en) Method for producing coal briquette, and coal briquette produced by same
KR101703070B1 (en) Coal briquettes, method for manufacturing the same and method for manufacturing molten iron
JP5421685B2 (en) Production method of coal-type agglomerated ore for vertical furnace
KR101262596B1 (en) Method of producing ferro-coke through low temperature dry distillation
US9994928B2 (en) Method for recycling iron-containing by-products discharged from coal-based molten ironmaking process, system therefor, and reduced iron agglomeration system
KR102425269B1 (en) Coal briquettes, method for manufacturing the same and method for manufacturing molten iron
KR101696628B1 (en) Coal briquettes, method and apparatus for manufacturing the same, and method for manufacturing molten iron
KR101709204B1 (en) Method for manufacturing coal briquettes and dryer
JP4996103B2 (en) Manufacturing method of carbonized material agglomerates
JP3515831B2 (en) Manufacturing method of heated charging coal for coke oven
KR101766855B1 (en) Coal briquettes, method for manufacturing the same and method for manufacturing molten iron
WO2015194702A1 (en) Coal briquettes and preparation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884094

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015884094

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE