WO2016140407A1 - Ground expansion ratio measuring apparatus and measuring method - Google Patents

Ground expansion ratio measuring apparatus and measuring method Download PDF

Info

Publication number
WO2016140407A1
WO2016140407A1 PCT/KR2015/006863 KR2015006863W WO2016140407A1 WO 2016140407 A1 WO2016140407 A1 WO 2016140407A1 KR 2015006863 W KR2015006863 W KR 2015006863W WO 2016140407 A1 WO2016140407 A1 WO 2016140407A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground
soil
sensor
excavation
expansion rate
Prior art date
Application number
PCT/KR2015/006863
Other languages
French (fr)
Korean (ko)
Inventor
서용석
윤현석
Original Assignee
충북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충북대학교 산학협력단 filed Critical 충북대학교 산학협력단
Publication of WO2016140407A1 publication Critical patent/WO2016140407A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • E02D1/027Investigation of foundation soil in situ before construction work by investigating properties relating to fluids in the soil, e.g. pore-water pressure, permeability
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Definitions

  • the present invention relates to techniques in the field of civil engineering, geology, and more particularly, to apparatus and methods for measuring the expansion or displacement caused by expansion of ground, such as clay, by the supply of moisture.
  • the fault zones and weathering zones found in most construction sites in Korea are pointed out as the main causes of sinkholes and ground depressions.
  • the central part of the weathering zone or single-layer crushing zone is often composed of clay minerals that lower the strength of the ground. Since these clay materials are greatly contracted and expanded by the water content change caused by the groundwater, damage caused by the elevation of the ground is often caused when constructing structures such as tunnels, slopes, and roads.
  • the expansion analysis in the dangerous ground composed of clay minerals is a very important factor in securing the stability of the structure and the ground and quantitatively presenting the engineering and mechanical characteristics of the ground.
  • FIG. 1 A conventional expansion rate test apparatus is shown in FIG. 1
  • the test piece is immersed, and a strain measuring device such as a dial gauge is attached to the test piece, and the strain is measured by measuring the displacement until the expansion displacement in the axial direction is constantly converged.
  • a strain measuring device such as a dial gauge
  • the expansion rate test that is currently being carried out through the indoor test using a sample taken from the field has a disadvantage that can not accurately reflect the characteristics of the base.
  • primary disturbances may occur when samples are taken in the field, and additional disturbances may occur during the process of moving the samples to the laboratory and during the fabrication of specimens.
  • the sample used for the indoor test has a limitation in that it cannot reflect the restrained state due to the load acting on the surrounding ground.
  • the present invention is to solve the above problems, and reflects the characteristics of the original ground as it is, it is possible to perform an immediate expansion rate test on the field for undisturbed samples not only increases the reliability, but also in a very simple way in the field It is an object of the present invention to provide a ground expansion coefficient measuring apparatus and measuring method capable of performing the measurement.
  • Ground expansion coefficient measuring apparatus for achieving the above object is a sensor disposed in the excavation space formed by excavating the ground below the boundary line of the ground to be measured to measure the displacement of the ground excavation surface; A watering unit for spraying water on the ground to be measured; And a controller electrically connected to the sensor to control the sensor and to store the measured value obtained from the sensor.
  • a method for measuring the expansion coefficient of a ground by setting a boundary line on the ground to identify the soil to be measured as the expansion rate, and excavating the ground below the boundary line of the soil to form an excavation space portion; Installing a sensor capable of measuring displacement of the excavation surface of the ground in the excavation space; And measuring the expansion rate of the soil body using the sensor while inflating the soil body by supplying water to the soil body.
  • the present invention provides a device and method for estimating the expansion rate of the ground in a state that reflects the state and conditions of the original ground, leaving the existing method of measuring the expansion rate of the ground through the indoor test for the core sample There is significance in.
  • the present invention in order to prevent the disturbance of the soil consisting of soft soil (clay or weathered soil for a long time), to provide water in the form of a mist, as well as providing a method of making a light plastic material and coating the metal.
  • eddy current displacement sensor was adopted among various sensors.
  • a tripod that is easy to carry the sensor support for the convenience of the observer. All of these configurations provide the best configuration for measuring the expansion rate of the ground in the field.
  • a communication module to the measuring device according to the present invention can monitor the ground condition of the area where there is a risk of landslides and ground collapse due to heavy rain, etc. for a long time will be able to prevent geological disaster in advance.
  • FIG. 1 is a schematic diagram of a conventional soil expansion rate measuring apparatus.
  • Figure 2 is a schematic front view of the ground expansion rate measuring apparatus according to the present invention installed on the ground.
  • FIG. 3 is a schematic plan view of the ground expansion coefficient measuring apparatus shown in FIG.
  • FIG. 4 is a schematic flowchart of a method for measuring ground expansion rate according to the present invention.
  • 5 to 7 are views for explaining the first to third embodiments for performing the method of measuring the ground expansion coefficient according to the present invention.
  • the senor is disposed in the excavation space formed by excavating the ground below the boundary line of the ground to be measured to measure the displacement of the ground excavation surface; A watering unit for spraying water on the ground to be measured; And a controller electrically connected to the sensor to control the sensor and to store the measured value obtained from the sensor.
  • the sensor is an eddy current displacement sensor, the eddy current displacement sensor detects a change in the position of the conductor as the ground expands.
  • the conductor has a flat plate and a leg portion extending from the plate and inserted into and fixed to the ground.
  • the conductor is made of a light plastic material, and a metal is coated on the surface of the plastic to impart conductivity.
  • the senor is further provided with a support installed on the surface of the ground so that the sensor is disposed facing the ground excavation surface, the sensor is mounted.
  • the support is coupled to the main body portion is installed in the ground, the upper and lower direction with respect to the main body portion and the lower arm is disposed in the excavation space portion and the vertical arm and the left and right directions with respect to the intermediate arm portion It is rotatably coupled accordingly and comprises a mounting portion to which the sensor is coupled, whereby the height and placement angle of the sensor are freely adjustable.
  • mist mist
  • the ground expansion rate measuring method by setting a boundary line on the ground to specify the soil to be measured expansion rate, excavating the ground below the boundary line of the soil to form an excavation space portion; Installing a sensor capable of measuring displacement of the excavation surface of the ground in the excavation space; And measuring the expansion rate of the soil body using the sensor while inflating the soil body by supplying water to the soil body.
  • ground expansion rate measuring apparatus Preferably, in the method of measuring ground expansion rate according to the present invention, it is preferable to use the ground expansion rate measuring apparatus described above.
  • the soil body has a rectangular cross section, excavating the ground downward along the two boundary lines facing each other to form the excavation space portion, the sensor is installed in any one of the excavation space portion,
  • the expansion rate of the ground can be determined by the following equation (1).
  • the soil body has a rectangular cross section, excavating the ground downward along the two boundary lines facing each other to form the excavation space portion, the sensor is installed in each of the facing excavation space portion,
  • the expansion rate of the ground can be determined by the following equation (2).
  • the earth body has a rectangular cross section, excavates the ground downward along the boundary line of the rectangle to form a quadrangular excavation space portion, the sensor is installed on all four sides of the excavation space portion,
  • the expansion rate can be determined by the following equation (3).
  • V 0 is the volume of the soil before water injection and V 1 is the volume of soil after water injection
  • the soil body has a rectangular cross section, the length of one side is set to 10 ⁇ 30Cm, the one-way displacement of the soil body is about several mm.
  • FIG. 2 is a schematic front view of a state in which the ground expansion rate measuring apparatus according to the present invention is installed on the ground
  • FIG. 3 is a schematic plan view of the ground expansion rate measuring apparatus shown in FIG. 2.
  • the ground expansion coefficient measuring apparatus 100 includes a displacement sensor 10, the support 30, the watering unit 40 and the controller 50.
  • the displacement sensor 10 is for measuring the expansion displacement of the ground.
  • the present invention is the most important feature to measure the expansion rate of the ground to reflect the state and conditions of the original ground in the field to overcome the limitations of the conventional method for measuring the core sample obtained from the ground in the laboratory.
  • the displacement sensor 10 is installed directly on the site to measure the displacement of the ground as water is supplied to the ground or soil. More specifically, in the present invention, after setting a boundary line in the ground to be measured, the ground is excavated below the boundary line to identify a part of the ground, that is, a soil body. 2 and 3, after setting the boundary line b on the ground g in a quadrangular shape, the soil m was excavated by excavating the ground along two facing lines. For convenience of description, the excavated space is referred to as an excavation space portion s to specify the soil body m.
  • the displacement sensor 10 is installed to face the excavation surface in the excavation space s.
  • the sensor for measuring the expansion displacement of the ground in the present invention may be employed in various forms, in particular in this embodiment using the eddy current displacement sensor to improve the accuracy.
  • a conductor 20 is provided on the excavation surface of the earth body m.
  • the conductor 20 has a flat quadrangular plate shape and a leg portion 21 is formed at the rear side. The leg portion 21 is inserted into the soil body m to support the conductor 20 in parallel with the excavation surface of the soil body m.
  • the conductor 20 is made of a light plastic material, but the metal is coated on the surface of the plastic to give conductivity.
  • the eddy current displacement sensor is disposed to face the conductor 20 at a predetermined distance.
  • the eddy current type external sensor uses a change in the inductance of the coil due to the eddy current generated in the conductor. That is, when a conductor approaches a coil through which high frequency current flows, eddy current flows by the alternating magnetic field which generate
  • the eddy current displacement sensor can perform non-contact measurement, and since the basic component of the detector is only a coil, it can be used regardless of environmental conditions.
  • the magnetic field changes as the conductor 20 approaches the eddy current displacement sensor, thereby measuring the expansion displacement of the soil m.
  • Eddy current displacement sensor used in the present invention measures the displacement within approximately 10mm range, it can measure the displacement in the ultra-precision range of 0.3 ⁇ m level. Since the displacement of the soil is generally about several mm, it is possible to measure the total displacement by using the eddy current displacement sensor and to measure the very fine displacement.
  • the support 30 for installing the displacement sensor 10 facing the excavation surface in the excavation space s is provided.
  • the support 30 has a main body portion 31, an intermediate arm portion 35, and a mounting portion 39.
  • the main body 31 is provided on the ground g.
  • a tripod is used. That is, three legs 32 are supported on the ground, and the pillars 33 are vertically disposed at the centers of the legs 32.
  • Tripod has a column 33 is made of an insertion type such as an antenna, the height can be adjusted, and because the leg 32 is folded is easy to carry, it is suitable for field measurement.
  • the intermediate arm portion 35 is coupled to the position adjustable in the vertical direction with respect to the pillar 33 of the main body portion 31.
  • one side of the intermediate arm portion 35 is formed in an annular shape is inserted into the pillar 33 and a through hole (not shown) is formed between the inner circumferential surface and the outer circumferential surface, the insertion hole at a predetermined interval in the column 33 (Not shown) is formed, the intermediate arm portion 35 is coupled to the column 33 of the main body portion 31 in such a way that the screw or pin (not shown) is fitted into the insertion hole through the through hole. Can be.
  • the intermediate arm portion 35 may be installed to allow angle adjustment with respect to the main body portion 31 using a hinge structure.
  • the middle arm part 35 has two arm parts 36 and 37 rotatably coupled to each other by the hinge 38, and thus the angle can be adjusted.
  • the mounting portion 39 is provided at the lower end of the intermediate arm portion 35.
  • the mounting portion 39 is a portion to which the displacement sensor 10 is coupled, and is rotatable in the vertical direction and the left and right directions with respect to the intermediate arm portion 35.
  • a socket (not shown) is provided at the lower end of the middle arm part 35, and a ball (not shown) is installed in the socket so that it can be rotated in all directions but cannot be separated, and a displacement sensor ( 10) may be adopted.
  • the displacement sensor 10 may be rotatable in the vertical and horizontal directions so that the excavation surface of the earth body m may be installed to correspond to the arrangement direction.
  • the support 30 is a tripod type, two arm parts are hinged, and the ball-socket coupling method is made of only one example. That is, the essential function of the support 30 is to allow the height and installation angle of the displacement sensor 10 to be adjusted while supporting the displacement sensor 10 to be installed in the excavation space s. Therefore, in addition to the above structure, other forms and structures may be used as long as it can perform an essential function as a support.
  • the watering unit 40 is for supplying water to the soil (m).
  • the watering unit 40 includes a water supply unit 41 and a watering unit 42 and a connection hose 43 connecting the water supply unit 41 and the watering unit 42.
  • the watering part 42 is disposed above the soil body m, and supplies water in a constant amount over the entire area of the soil body m.
  • the soil body (m) is made of clay or highly weathered soil, it is very fragile, and water is preferably sprayed in the form of mist of fine particles.
  • the spraying part 42 is provided with a plurality of nozzles of very small diameters, and sprays water in the form of mist.
  • the controller 50 is electrically connected to the displacement sensor 10 and the watering unit 40 to control their operation.
  • the displacement data measured by the displacement sensor 10 is stored at regular time intervals, and the data on the water supply amount is also stored.
  • the communication unit may be mounted on the controller 50 to transmit the stored data to the outside.
  • FIGS. 5 to 7 are views for explaining first to third embodiments for performing a method for measuring ground expansion rate according to the present invention.
  • a boundary line is first set in the ground to be measured, and the soil is excavated below the boundary line to identify the soil body m.
  • the manner of specifying the soil body m may vary as in the example shown in FIGS. 5 to 7. That is, after setting the boundary line in the shape of a square (approximately 10 to 30 cm in length), excavating two opposite sides as shown in the example shown in Figs. As shown in FIG. 7, all four sides may be excavated to form the soil body m as an expandable free surface.
  • the conductor 20 is mounted on the excavation surface, and the displacement sensor 10 is provided in the excavation space s so that the displacement sensor 10 faces the conductor 20.
  • the distance between the conductor 20 and the displacement sensor 10 is approximately 10 mm.
  • the watering unit is disposed on the top of the soil (m).
  • the Salche unit and the displacement sensor are electrically connected to the controller and operated and controlled by the controller.
  • the displacement sensor 10 measures the initial position before spraying water, that is, the distance between the displacement sensor 10 and the conductor 20 and stores the data. Thereafter, while sprinkling water on the soil body (m) through the watering unit, the expansion displacement of the soil body (m) is measured and transmitted to the controller 50.
  • the displacement sensor 10 is installed only on one side of the free surface in a state where the front and rear of the soil body m is formed as a free surface.
  • the expansion rate is determined as shown in Equation 1 below on the assumption that the expansion displacement e on one side is the same as the expansion displacement on the other free surface.
  • e is the displacement of the expanded soil body after water injection
  • L is the length of the soil body between the excavation space before the water injection.
  • the embodiment shown in FIG. 6 is the same as the example shown in FIG. 5, but the displacement sensor 10 is installed on both free surfaces.
  • the expansion coefficient of the ground is determined by the following equation (2).
  • e 1 and e 2 are the inflated displacement after water injection respectively measured by the two sensors, L is the length of the soil between the excavation space.
  • the displacement sensor 10 is installed on each free surface.
  • the displacement in the planar direction except for the up and down direction of the soil body is measured, so that the volume change can be obtained. That is, it is assumed that the height of the soil is constant, and the expansion ratio of the ground is determined by the ratio of the volume of the soil before water injection and the volume of the soil after injection, as shown in the following equation (3).
  • V 0 is the volume of the soil body before water injection
  • V 1 is the volume of soil body after water injection.
  • a device that can measure the expansion rate of the ground in a state that reflects the state and conditions of the original ground, out of the conventional method for measuring the expansion rate of the ground through the indoor test for the core sample It is meaningful in that it provides a method.
  • the soil was excavated to identify the soil, and the sensor was installed in the excavation space, and the apparatus and method for spraying water on the soil were provided.
  • the conductor was made of a light plastic material and a method of coating a metal.
  • eddy current displacement sensor was adopted among various sensors.
  • a communication module to the measuring device according to the present invention can monitor the ground condition of the area where there is a risk of landslides and ground collapse due to heavy rain, etc. for a long time will be able to prevent geological disaster in advance.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Paleontology (AREA)
  • Mining & Mineral Resources (AREA)
  • Soil Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Remote Sensing (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

The present invention relates to an apparatus and method for measuring in situ the displacement by which the ground is expanded as water is supplied thereto, that is, the expansion ratio of the ground. The apparatus for measuring a ground expansion ratio according to the present invention comprises: a sensor for measuring the displacement of an excavated surface of the ground, the sensor being disposed in an excavated space part formed by excavating the ground downward from the boundary line of the ground to be measured; a conductor attached to the excavated surface of the ground; a water sprinkler unit for sprinkling water on the ground to be measured; and a controller electrically connected to the sensor so as to control the sensor and store a measured value obtained from the sensor, wherein the displacement sensor measures a change in the position of the conductor as the ground is expanded.

Description

지반 팽창률 측정장치 및 측정방법Ground expansion rate measuring device and measuring method
본 발명은 토목, 지질 분야의 기술로서, 특히 점토와 같이 수분의 공급에 의해 팽창하는 지반의 팽창성 또는 팽창에 의한 변위를 측정하기 위한 장치 및 방법에 관한 것이다.TECHNICAL FIELD The present invention relates to techniques in the field of civil engineering, geology, and more particularly, to apparatus and methods for measuring the expansion or displacement caused by expansion of ground, such as clay, by the supply of moisture.
국내 대부분의 건설현장에서 발견되는 단층대 및 풍화대 등은 싱크홀, 지반함몰 등의 주요원인으로 지적되고 있다. 풍화대나 단층 파쇄대의 중심부는 지반의 강도를 저하시키는 점토광물로 구성되어 있는 경우가 많다. 이들 점토물질은 지하수에 의한 함수비 변화에 의해 매우 큰 폭으로 수축 및 팽창이 일어나기 때문에 터널이나 비탈면, 도로 등과 같은 구조물을 시공할 때 지반의 융기에 의한 피해가 종종 일어나고 있다. The fault zones and weathering zones found in most construction sites in Korea are pointed out as the main causes of sinkholes and ground depressions. The central part of the weathering zone or single-layer crushing zone is often composed of clay minerals that lower the strength of the ground. Since these clay materials are greatly contracted and expanded by the water content change caused by the groundwater, damage caused by the elevation of the ground is often caused when constructing structures such as tunnels, slopes, and roads.
따라서 점토광물로 구성되어 있는 위험 지반에서의 팽창성 분석은 구조물 및 지반의 안정성을 확보하고, 지반의 공학적, 역학적 특성을 정량적으로 제시하는 데 있어 매우 중요한 요소이다.Therefore, the expansion analysis in the dangerous ground composed of clay minerals is a very important factor in securing the stability of the structure and the ground and quantitatively presenting the engineering and mechanical characteristics of the ground.
종래의 팽창률 시험장치가 도 1에 도시되어 있다. A conventional expansion rate test apparatus is shown in FIG.
도 1을 참고하면, 시험편을 수침시키고, 시험편에 다이얼 게이지 등과 같은 변위 측정 장치를 부착시켜 축방향의 팽창 변위가 일정하게 수렴할 때까지의 변위를 측정하여 변형률을 측정한다.Referring to FIG. 1, the test piece is immersed, and a strain measuring device such as a dial gauge is attached to the test piece, and the strain is measured by measuring the displacement until the expansion displacement in the axial direction is constantly converged.
그러나 현재 수행하고 있는 팽창률 시험은 현장에서 채취한 시료를 이용하여 실내시험을 통해 수행되고 있어 원지반의 특성을 정확히 반영할 수 없는 단점이 있다. 특히, 단층 점토와 같은 연약한 물질의 경우 현장에서 시료를 채취할 때 1차적인 교란이 발생할 수 있으며, 시료를 실험실로 이동하는 과정 및 시험편 제작 과정에서 추가적인 교란이 발생할 수 있다. 또한, 원지반 내에 분포하고 있는 현장 시료와는 달리 실내 시험에 사용되는 시료의 경우 주변 지반에서 작용하고 있는 하중에 의한 구속 상태 등을 반영할 수 없는 한계가 있다. However, the expansion rate test that is currently being carried out through the indoor test using a sample taken from the field has a disadvantage that can not accurately reflect the characteristics of the base. In particular, in the case of fragile materials such as monolayer clay, primary disturbances may occur when samples are taken in the field, and additional disturbances may occur during the process of moving the samples to the laboratory and during the fabrication of specimens. In addition, unlike the field sample distributed in the original ground, the sample used for the indoor test has a limitation in that it cannot reflect the restrained state due to the load acting on the surrounding ground.
본 발명은 상기한 문제점을 해결하기 위한 것으로서, 원지반의 특성을 그대로 반영하고 있으며, 교란되지 않은 시료에 대하여 현장에서 즉각적인 팽창률 시험을 수행할 수 있어 신뢰성이 증대될 뿐만 아니라, 현장에서도 매우 간단한 방법으로 측정을 수행할 수 있는 지반 팽창률 측정장치 및 측정방법을 제공하는데 그 목적이 있다. The present invention is to solve the above problems, and reflects the characteristics of the original ground as it is, it is possible to perform an immediate expansion rate test on the field for undisturbed samples not only increases the reliability, but also in a very simple way in the field It is an object of the present invention to provide a ground expansion coefficient measuring apparatus and measuring method capable of performing the measurement.
상기 목적을 달성하기 위한 본 발명에 따른 지반 팽창률 측정장치는, 측정 대상이 되는 지반의 경계선 하방으로 지반을 굴착하여 형성한 굴착공간부에 배치되어 지반굴착면의 변위를 측정하기 위한 센서; 상기 측정대상이 되는 지반에 물을 뿌리기 위한 살수유닛; 및 상기 센서와 전기적으로 연결되어 상기 센서를 제어하고, 상기 센서로부터 얻어진 측정값을 저장하는 콘트롤러;를 구비하는 것에 특징이 있다. Ground expansion coefficient measuring apparatus according to the present invention for achieving the above object is a sensor disposed in the excavation space formed by excavating the ground below the boundary line of the ground to be measured to measure the displacement of the ground excavation surface; A watering unit for spraying water on the ground to be measured; And a controller electrically connected to the sensor to control the sensor and to store the measured value obtained from the sensor.
본 발명에 따른 지반 팽창률 측정방법은, 지반에 경계선을 설정하여 팽창률 측정 대상이 되는 토체를 특정하고, 상기 토체의 경계선 하방으로 지반을 굴착하여 굴착공간부를 형성하는 단계; 상기 지반의 굴착면의 변위를 측정할 수 있는 센서를 상기 굴착공간부에 설치하는 단계; 및 상기 토체에 물을 공급하여 토체를 팽창시키면서 상기 센서를 이용하여 토체의 팽창률을 측정하는 단계;를 포함하여 이루어져 지반의 팽창률을 현장에서 직접 측정하는 것에 특징이 있다. According to the present invention, there is provided a method for measuring the expansion coefficient of a ground by setting a boundary line on the ground to identify the soil to be measured as the expansion rate, and excavating the ground below the boundary line of the soil to form an excavation space portion; Installing a sensor capable of measuring displacement of the excavation surface of the ground in the excavation space; And measuring the expansion rate of the soil body using the sensor while inflating the soil body by supplying water to the soil body.
본 발명에서는 기존에 코어 시료를 대상으로 하는 실내 시험을 통해 지반의 팽창률을 측정하는 방법에서 벗어나, 원지반의 상태와 조건을 그대로 반영한 상태로 지반의 팽창률을 측정할 수 있는 장치와 방법을 제공한다는 점에서 의의가 있다. The present invention provides a device and method for estimating the expansion rate of the ground in a state that reflects the state and conditions of the original ground, leaving the existing method of measuring the expansion rate of the ground through the indoor test for the core sample There is significance in.
특히 본 발명에서는 연약한 토질(점토질 또는 풍화가 오래 진행된 토사)로 이루어진 토체가 교란되는 것을 방지하고자, 물을 미스트 형태로 공급할 뿐만 아니라 도전체를 가벼운 플라스틱 재질로 만들고 금속을 코팅하는 방식을 제공하였다. 또한 토양의 미세한 팽창 변위를 정밀하게 측정하기 위하여 다양한 센서들 중에서 특히 와전류식 변위센서를 채택하였다. 또한 센서 지지대를 휴대가 용이한 삼각대를 채택함으로써 관찰자의 작업 편의성을 도모하였다. 이러한 구성들은 모두 현장에서 지반의 팽창률을 측정하기에 최적의 구성을 제공한다. In particular, the present invention, in order to prevent the disturbance of the soil consisting of soft soil (clay or weathered soil for a long time), to provide water in the form of a mist, as well as providing a method of making a light plastic material and coating the metal. In addition, in order to precisely measure the microscopic expansion displacement of soil, eddy current displacement sensor was adopted among various sensors. In addition, by adopting a tripod that is easy to carry the sensor support for the convenience of the observer. All of these configurations provide the best configuration for measuring the expansion rate of the ground in the field.
한편, 상기한 장치를 이용하여 토체의 팽창률을 현장에서 측정하기 위한 구체적인 방법, 즉 지반을 굴착하여 토체를 특정하고 굴착면위 팽창 변위를 측정하는 방법을 제공하였다. 이러한 방법은 종래로부터 행해지던 토체의 팽창률 측정의 전통적 원리를 벗어나지 않으면서도, 원지반의 조건과 상태를 그대로 반영할 수 있는 바 기존의 실내 시험 방법에 비하여 탁월한 신뢰성을 획득할 수 있을 것이다. On the other hand, using the above-described device to provide a specific method for measuring the expansion rate of the soil in the field, that is, to excavate the ground to specify the soil and to measure the expansion displacement on the excavation surface. This method is able to reflect the condition and condition of the original ground without departing from the traditional principle of measuring the expansion rate of the soil, which has been conventionally performed, and thus it will be able to obtain excellent reliability compared to the existing indoor test method.
본 발명에 따른 지반 팽창률 측정장치 및 측정방법을 이용하여 토목 및 건축물이 축조될 지반의 상태와 안정성을 현장에서 매우 용이하면서도 신뢰성있게 측정할 수 있을 것으로 기대된다. It is expected that the condition and stability of the ground on which civil and building structures will be constructed can be very easily and reliably measured in the field using the ground expansion rate measuring apparatus and measuring method according to the present invention.
또한, 본 발명에 따른 측정장치에 통신 모듈을 장착하여 집중 호우 등에 따라 산사태나 지반 붕괴 등의 위험이 있는 지역의 지반 상태를 장기간에 걸쳐 모니터링할 수 있어 지질재해를 사전에 예방할 수 있을 것이다.In addition, by mounting a communication module to the measuring device according to the present invention can monitor the ground condition of the area where there is a risk of landslides and ground collapse due to heavy rain, etc. for a long time will be able to prevent geological disaster in advance.
도 1은 종래의 토양 팽창률 측정장치의 개략적 도면이다. 1 is a schematic diagram of a conventional soil expansion rate measuring apparatus.
도 2는 본 발명에 따른 지반 팽창률 측정장치가 지반에 설치된 상태의 개략적 정면도이다. Figure 2 is a schematic front view of the ground expansion rate measuring apparatus according to the present invention installed on the ground.
도 3은 도 2에 도시된 지반 팽창률 측정장치의 개략적 평면도이다. 3 is a schematic plan view of the ground expansion coefficient measuring apparatus shown in FIG.
도 4는 본 발명에 따른 지반 팽창률 측정방법의 개략적 흐름도이다. 4 is a schematic flowchart of a method for measuring ground expansion rate according to the present invention.
도 5 내지 도 7은 본 발명에 따른 지반 팽창률 측정방법을 수행하기 위한 제1실시예 내지 제3실시예를 설명하기 위한 도면이다.5 to 7 are views for explaining the first to third embodiments for performing the method of measuring the ground expansion coefficient according to the present invention.
본 발명에 따른 지반 팽창률 측정장치는, 측정 대상이 되는 지반의 경계선 하방으로 지반을 굴착하여 형성한 굴착공간부에 배치되어 지반굴착면의 변위를 측정하기 위한 센서; 상기 측정대상이 되는 지반에 물을 뿌리기 위한 살수유닛; 및 상기 센서와 전기적으로 연결되어 상기 센서를 제어하고, 상기 센서로부터 얻어진 측정값을 저장하는 콘트롤러;를 구비하는 것에 특징이 있다. The ground expansion coefficient measuring apparatus according to the present invention, the sensor is disposed in the excavation space formed by excavating the ground below the boundary line of the ground to be measured to measure the displacement of the ground excavation surface; A watering unit for spraying water on the ground to be measured; And a controller electrically connected to the sensor to control the sensor and to store the measured value obtained from the sensor.
본 발명에 따르면, 상기 지반굴착면에 부착되는 도전체를 더 구비하며, 상기 센서는 와전류식 변위센서이고, 상기 와전류식 변위센서는 상기 지반이 팽창함에 따라 상기 도전체의 위치 변화를 탐지한다. 그리고 상기 도전체는 평평한 플레이트와, 상기 플레이트로부터 연장되어 상기 지반에 삽입되어 고정되는 다리부를 구비한다. 특히, 상기 도전체의 자중에 의하여 토양이 교란되는 것을 방지하기 위하여 상기 도전체는 가벼운 플라스틱 재질로 이루어지며, 도전성을 부여하고자 플라스틱 표면에 금속이 코팅된다. According to the invention, further comprising a conductor attached to the ground excavation surface, the sensor is an eddy current displacement sensor, the eddy current displacement sensor detects a change in the position of the conductor as the ground expands. The conductor has a flat plate and a leg portion extending from the plate and inserted into and fixed to the ground. In particular, in order to prevent the soil from being disturbed by the weight of the conductor, the conductor is made of a light plastic material, and a metal is coated on the surface of the plastic to impart conductivity.
본 발명에 따르면, 상기 센서가 상기 지반굴착면에 대면하게 배치되도록, 지반의 표면에 설치되어 상기 센서가 장착되는 지지대를 더 구비한다. 특히, 상기 지지대는 지반에 설치되는 본체부와, 상기 본체부에 대하여 상하방향으로 이동가능하게 결합되며 하단부가 상기 굴착공간부에 배치되는 중간암부와, 상기 중간암부에 대하여 상하방향 및 좌우방향을 따라 회전가능하게 결합되며 상기 센서가 결합되는 장착부를 포함하여 이루어짐으로써, 센서의 높이 및 배치 각도가 자유롭게 조절가능하다. According to the present invention, the sensor is further provided with a support installed on the surface of the ground so that the sensor is disposed facing the ground excavation surface, the sensor is mounted. In particular, the support is coupled to the main body portion is installed in the ground, the upper and lower direction with respect to the main body portion and the lower arm is disposed in the excavation space portion and the vertical arm and the left and right directions with respect to the intermediate arm portion It is rotatably coupled accordingly and comprises a mounting portion to which the sensor is coupled, whereby the height and placement angle of the sensor are freely adjustable.
본 발명의 일 실시예에서, 지반에 공급되는 물에 의하여 지반이 교란되는 것을 방지하기 위하여 상기 살수유닛에서는 물을 미스트(mist) 형태로 공급하는 것이 바람직하다. In one embodiment of the present invention, in order to prevent the ground is disturbed by the water supplied to the ground, it is preferable to supply water in the form of mist (mist) in the spraying unit.
한편, 본 발명에 따른 지반 팽창률 측정방법은, 지반에 경계선을 설정하여 팽창률 측정 대상이 되는 토체를 특정하고, 상기 토체의 경계선 하방으로 지반을 굴착하여 굴착공간부를 형성하는 단계; 상기 지반의 굴착면의 변위를 측정할 수 있는 센서를 상기 굴착공간부에 설치하는 단계; 및 상기 토체에 물을 공급하여 토체를 팽창시키면서 상기 센서를 이용하여 토체의 팽창률을 측정하는 단계;를 포함하여 이루어져 지반의 팽창률을 현장에서 직접 측정하는 것에 특징이 있다. On the other hand, the ground expansion rate measuring method according to the present invention, by setting a boundary line on the ground to specify the soil to be measured expansion rate, excavating the ground below the boundary line of the soil to form an excavation space portion; Installing a sensor capable of measuring displacement of the excavation surface of the ground in the excavation space; And measuring the expansion rate of the soil body using the sensor while inflating the soil body by supplying water to the soil body.
바람직하게는 본 발명에 따른 지반 팽창률 측정방법에서는 앞에서 기재한 지반 팽창률 측정장치를 이용하는 것이 바람직하다. Preferably, in the method of measuring ground expansion rate according to the present invention, it is preferable to use the ground expansion rate measuring apparatus described above.
본 발명의 일 예에서, 상기 토체는 단면이 사각 형상이며, 상호 마주보는 두 개의 경계선을 따라 하방으로 지반을 굴착하여 상기 굴착공간부를 형성하며, 상기 센서는 굴착공간부 중 어느 하나에 설치하고, 지반의 팽창률은 하기 식(1)에 의하여 결정할 수 있다. In one example of the present invention, the soil body has a rectangular cross section, excavating the ground downward along the two boundary lines facing each other to form the excavation space portion, the sensor is installed in any one of the excavation space portion, The expansion rate of the ground can be determined by the following equation (1).
팽창률 = 2×(e/L)×100(%) ... 식(1)Expansion rate = 2 × (e / L) × 100 (%) ... equation (1)
(여기서, e는 물 주입 후 팽창된 토체의 변위, L은 물 주입전 굴착공간부 사이의 토체의 길이)(Where e is the displacement of the inflated soil after water injection, L is the length of the soil between the excavation spaces before water injection)
본 발명의 다른 예에서, 상기 토체는 단면이 사각 형상이며, 상호 마주보는 두 개의 경계선을 따라 하방으로 지반을 굴착하여 상기 굴착공간부를 형성하며, 상기 센서는 마주보는 굴착공간부에 각각 설치하고, 지반의 팽창률은 하기 식(2)에 의하여 결정할 수 있다. In another example of the present invention, the soil body has a rectangular cross section, excavating the ground downward along the two boundary lines facing each other to form the excavation space portion, the sensor is installed in each of the facing excavation space portion, The expansion rate of the ground can be determined by the following equation (2).
팽창률 = (e1+e2)/L×100(%) ... 식(2)Expansion rate = (e 1 + e 2 ) / L × 100 (%) ... equation (2)
(여기서, e1과 e2는 두 개의 센서에 의하여 각각 측정된 물 주입 후 팽창된 변위, L은 굴착공간부 사이의 토체의 길이)(Where e 1 and e 2 are the inflated displacements after water injection respectively measured by two sensors, L is the length of the soil between the excavation spaces)
또 다른 예에서, 상기 토체는 단면이 사각 형상이며, 사각형의 경계선을 따라 하방으로 지반을 굴착하여 4각 형상의 굴착공간부를 형성하며, 상기 센서는 굴착공간부의 4면에 모두 설치하고, 지반의 팽창률은 하기 식(3)에 의하여 결정할 수 있다. In another example, the earth body has a rectangular cross section, excavates the ground downward along the boundary line of the rectangle to form a quadrangular excavation space portion, the sensor is installed on all four sides of the excavation space portion, The expansion rate can be determined by the following equation (3).
팽창률 = (V1-V0)/V0×100(%) ... 식(3)Expansion rate = (V 1 -V 0 ) / V 0 × 100 (%) ... equation (3)
(여기서, V0는 물 주입 전의 토체의 부피, V1은 물 주입 후의 토체의 부피)Where V 0 is the volume of the soil before water injection and V 1 is the volume of soil after water injection
본 발명에서 상기 토체는 단면이 사각 형상으로, 한 변의 길이는 10~30Cm로 설정하고, 토체의 일방향 변위는 대략 수 mm 정도이다.In the present invention, the soil body has a rectangular cross section, the length of one side is set to 10 ~ 30Cm, the one-way displacement of the soil body is about several mm.
이하, 첨부된 도면을 참고하여, 본 발명의 일 실시예에 따른 지반 팽창률 측정장치에 대하여 더욱 상세히 설명하기로 한다. Hereinafter, with reference to the accompanying drawings, it will be described in more detail with respect to the ground expansion ratio measuring apparatus according to an embodiment of the present invention.
도 2는 본 발명에 따른 지반 팽창률 측정장치가 지반에 설치된 상태의 개략적 정면도이며, 도 3은 도 2에 도시된 지반 팽창률 측정장치의 개략적 평면도이다. 2 is a schematic front view of a state in which the ground expansion rate measuring apparatus according to the present invention is installed on the ground, and FIG. 3 is a schematic plan view of the ground expansion rate measuring apparatus shown in FIG. 2.
도 2 및 도 3을 참고하면, 본 발명의 일 실시예에 따른 지반 팽창률 측정장치(100)는 변위 센서(10), 지지대(30), 살수유닛(40) 및 콘트롤러(50)를 구비한다. 2 and 3, the ground expansion coefficient measuring apparatus 100 according to an embodiment of the present invention includes a displacement sensor 10, the support 30, the watering unit 40 and the controller 50.
변위 센서(10)는 지반의 팽창 변위를 측정하기 위한 것이다. 본 발명은 지반으로부터 얻어진 코어 시료를 실험실에서 측정하는 종래의 방법의 한계를 극복하고자 현장에서 원지반의 상태와 조건을 그대로 반영하여 지반의 팽창률을 측정하고자 하는데 가장 중요한 특징이 있다. The displacement sensor 10 is for measuring the expansion displacement of the ground. The present invention is the most important feature to measure the expansion rate of the ground to reflect the state and conditions of the original ground in the field to overcome the limitations of the conventional method for measuring the core sample obtained from the ground in the laboratory.
이에 본 발명에서는 변위 센서(10)를 직접 현장에 설치하여 지반 또는 토양에 물이 공급됨에 따라 지반이 팽창되는 변위를 측정한다. 보다 구체적으로, 본 발명에서는 측정대상이 되는 지반에서 경계선을 설정한 후, 이 경계선 하방으로 지반을 굴착하여 지반의 일부 영역, 즉 토체를 특정한다. 도 2 및 도 3의 실시예에서는 4각 형상으로 지반(g)에 경계선(b)을 설정한 후, 마주보는 두 개의 경계선을 따라 지반을 굴착하여 토체(m)를 특정하였다. 설명의 편의상 토체(m)를 특정하기 위하여 굴착된 공간을 굴착공간부(s)로 지칭한다. In the present invention, the displacement sensor 10 is installed directly on the site to measure the displacement of the ground as water is supplied to the ground or soil. More specifically, in the present invention, after setting a boundary line in the ground to be measured, the ground is excavated below the boundary line to identify a part of the ground, that is, a soil body. 2 and 3, after setting the boundary line b on the ground g in a quadrangular shape, the soil m was excavated by excavating the ground along two facing lines. For convenience of description, the excavated space is referred to as an excavation space portion s to specify the soil body m.
변위 센서(10)는 굴착공간부(s)에서 굴착면에 대면하게 설치된다. 본 발명에서 지반의 팽창 변위를 측정하기 위한 센서는 다양한 형태의 것이 채용될 수 있지만, 특히 본 실시예에서는 와전류식 변위 센서를 사용하여 정밀도를 향상시킨다. 그리고 이 와전류식 변위 센서에 대응하여 토체(m)의 굴착면에는 도전체(20)를 설치한다. 도전체(20)는 평평한 4각 플레이트 형상이며 후면으로 다리부(21)가 형성되어 있다. 다리부(21)는 토체(m)에 삽입되어 도전체(20)를 토체(m)의 굴착면에 평행하게 지지한다. 또한 도전체(20)의 무게에 의하여 토체(m)가 교란되는 것을 방지하고자, 도전체(20)는 가벼운 플라스틱 재질로 이루어지되, 도전성을 부여하기 위하여 플라스틱의 표면에 금속을 코팅한다. The displacement sensor 10 is installed to face the excavation surface in the excavation space s. The sensor for measuring the expansion displacement of the ground in the present invention may be employed in various forms, in particular in this embodiment using the eddy current displacement sensor to improve the accuracy. In response to the eddy current type displacement sensor, a conductor 20 is provided on the excavation surface of the earth body m. The conductor 20 has a flat quadrangular plate shape and a leg portion 21 is formed at the rear side. The leg portion 21 is inserted into the soil body m to support the conductor 20 in parallel with the excavation surface of the soil body m. In addition, in order to prevent the earth (m) from being disturbed by the weight of the conductor 20, the conductor 20 is made of a light plastic material, but the metal is coated on the surface of the plastic to give conductivity.
와전류식 변위센서는 도전체(20)와 일정거리 이격되어 대면하게 배치된다. 와전류식 변외센서는 도전체에 발생하는 와전류에 의한 코일의 인덕턴스 변화를 이용한 것이다. 즉, 고주파 전류를 흘린 코일에 도전체를 접근시키면 코일에서 발생하는 교류자계에 의하여 와전류가 흐른다. 이 와전류가 역자계를 발생하여 코일의 인덕턴스를 변화시키기 때문에 코일의 임피던스를 측정함으로써 코일과 도전체의 상대 위치관계를 알 수 있다. The eddy current displacement sensor is disposed to face the conductor 20 at a predetermined distance. The eddy current type external sensor uses a change in the inductance of the coil due to the eddy current generated in the conductor. That is, when a conductor approaches a coil through which high frequency current flows, eddy current flows by the alternating magnetic field which generate | occur | produces in a coil. Since the eddy current generates an inverse magnetic field to change the inductance of the coil, the relative positional relationship between the coil and the conductor can be known by measuring the impedance of the coil.
따라서 와전류식 변위센서는 비접촉 측정이 가능하며, 검출부의 기본 구성요소가 코일뿐이어서 환경 조건에 무관하게 이용가능하다. 본 발명에서는 물이 공급되어 토체(m)가 팽창하면 도전체(20)가 와전류식 변위센서 쪽으로 접근함에 따라 자계가 변화를 일으키게 되므로 토체(m)의 팽창 변위를 측정할 수 있다. Therefore, the eddy current displacement sensor can perform non-contact measurement, and since the basic component of the detector is only a coil, it can be used regardless of environmental conditions. In the present invention, when water is supplied and the soil m expands, the magnetic field changes as the conductor 20 approaches the eddy current displacement sensor, thereby measuring the expansion displacement of the soil m.
본 발명에서 사용하는 와전류식 변위센서는 대략 10mm 범위 내에서 변위를 측정하며, 0.3μm 수준의 초정밀 범위에서 변위를 측정할 수 있다. 토체의 변위는 일반적으로 최대 수mm 수준이므로 와전류식 변위센서를 이용하여 전체 변위 측정이 가능하며, 매우 미세한 변위도 측정할 수 있다. Eddy current displacement sensor used in the present invention measures the displacement within approximately 10mm range, it can measure the displacement in the ultra-precision range of 0.3μm level. Since the displacement of the soil is generally about several mm, it is possible to measure the total displacement by using the eddy current displacement sensor and to measure the very fine displacement.
상기한 바와 같이, 변위 센서(10)를 굴착공간부(s) 내에서 굴착면에 대면하게 설치하기 위한 지지대(30)가 마련된다. 지지대(30)는 본체부(31)와, 중간암부(35) 및 장착부(39)를 구비한다.  As described above, the support 30 for installing the displacement sensor 10 facing the excavation surface in the excavation space s is provided. The support 30 has a main body portion 31, an intermediate arm portion 35, and a mounting portion 39.
본체부(31)는 지반(g) 위에 설치된다. 본 실시예에서는 삼각대가 사용된다. 즉, 3개의 다리(32)가 지반에 지지되며, 다리(32)들 중앙부에 기둥(33)이 수직하게 배치된다. 삼각대는 기둥(33)이 안테나와 같은 삽입형으로 이루어져 높이 조절이 가능하며, 다리(32)가 접어지므로 휴대가 간편하여 현장 측정용으로 적합하다. The main body 31 is provided on the ground g. In this embodiment, a tripod is used. That is, three legs 32 are supported on the ground, and the pillars 33 are vertically disposed at the centers of the legs 32. Tripod has a column 33 is made of an insertion type such as an antenna, the height can be adjusted, and because the leg 32 is folded is easy to carry, it is suitable for field measurement.
중간암부(35)는 본체부(31)의 기둥(33)에 대하여 상하방향으로 위치 조절 가능하게 결합된다. 예컨대, 중간암부(35)의 일측이 고리형으로 형성되어 기둥(33)에 끼워지며 내주면과 외주면 사이를 관통하는 관통공(미도시)이 형성되어 있고, 기둥(33)에는 일정 간격으로 삽입공(미도시)이 형성되어 있어, 나사 또는 핀(미도시)이 관통공을 거쳐 삽입공에 끼워지는 방식으로 중간암부(35)가 본체부(31)의 기둥(33)에 높이 조절 가능하게 결합될 수 있다. 또한, 다른 실시예에서는 높이 조절 뿐만 아니라, 힌지 구조를 이용하여 중간암부(35)가 본체부(31)에 대하여 각도 조절이 가능하게 설치될 수도 있다. 특히, 본 실시예에서 중간암부(35)는 두 개의 암부(36,37)가 힌지(38)에 의하여 상호 회동가능하게 결합되어 있는 바, 각도 조절이 가능하다. The intermediate arm portion 35 is coupled to the position adjustable in the vertical direction with respect to the pillar 33 of the main body portion 31. For example, one side of the intermediate arm portion 35 is formed in an annular shape is inserted into the pillar 33 and a through hole (not shown) is formed between the inner circumferential surface and the outer circumferential surface, the insertion hole at a predetermined interval in the column 33 (Not shown) is formed, the intermediate arm portion 35 is coupled to the column 33 of the main body portion 31 in such a way that the screw or pin (not shown) is fitted into the insertion hole through the through hole. Can be. In addition, in another embodiment, in addition to height adjustment, the intermediate arm portion 35 may be installed to allow angle adjustment with respect to the main body portion 31 using a hinge structure. Particularly, in the present embodiment, the middle arm part 35 has two arm parts 36 and 37 rotatably coupled to each other by the hinge 38, and thus the angle can be adjusted.
그리고, 중간암부(35)의 하단부에는 장착부(39)가 마련된다. 장착부(39)는 변위 센서(10)가 결합되는 부분으로, 중간암부(35)에 대하여 상하방향 및 좌우방향으로 회전가능하다. 예컨대, 중간암부(35)의 하단부에 소켓(미도시)이 마련되고, 이 소켓 내부에서 전방위로 회전은 가능하되 이탈은 불가능하게 볼(미도시)을 설치하고, 볼의 연장부에 변위 센서(10)를 결합시키는 형식 등이 채용될 수 있다. 이러한 결합 방식에 의하여 변위 센서(10)는 상하 및 좌우 방향을 따라 회전가능하여 토체(m)의 굴착면이 배치 방향에 대응하게 설치될 수 있다.  In addition, the mounting portion 39 is provided at the lower end of the intermediate arm portion 35. The mounting portion 39 is a portion to which the displacement sensor 10 is coupled, and is rotatable in the vertical direction and the left and right directions with respect to the intermediate arm portion 35. For example, a socket (not shown) is provided at the lower end of the middle arm part 35, and a ball (not shown) is installed in the socket so that it can be rotated in all directions but cannot be separated, and a displacement sensor ( 10) may be adopted. By this coupling method, the displacement sensor 10 may be rotatable in the vertical and horizontal directions so that the excavation surface of the earth body m may be installed to correspond to the arrangement direction.
다만, 지금까지 지지대(30)가 삼각대 형식이고, 두 개의 암부가 힌지결합되고, 볼-소켓 결합방식의 장착부로 이루어졌다는 것은 일 예에 불과하다. 즉, 지지대(30)의 본질적 기능은 변위 센서(10)를 굴착공간부(s) 내에 설치되도록 지지하면서 변위 센서(10)의 높이와 설치 각도가 조절될 수 있게 하는 것이다. 따라서 상기한 구조 이외에도 지지대로서 본질적 기능을 수행할 수 있다면 다른 형태와 구조의 지지대를 사용하여도 된다. However, until now, the support 30 is a tripod type, two arm parts are hinged, and the ball-socket coupling method is made of only one example. That is, the essential function of the support 30 is to allow the height and installation angle of the displacement sensor 10 to be adjusted while supporting the displacement sensor 10 to be installed in the excavation space s. Therefore, in addition to the above structure, other forms and structures may be used as long as it can perform an essential function as a support.
한편, 살수유닛(40)은 토체(m)에 물을 공급하기 위한 것이다. 본 실시예에서 살수유닛(40)은 물공급부(41)와 살수부(42) 및 물공급부(41)와 살수부(42) 사이를 연결하는 연결호스(43)로 이루어진다. 살수부(42)는 토체(m)의 상부에 배치되며, 토체(m)의 면적 전체에 걸쳐 일정한 양으로 물을 공급한다. 특히, 토체(m)는 점토질 또는 풍화가 많이 진행된 토질로 이루어지기 때문에 매우 연약한 상태인 바, 물을 고운 입자의 미스트 형태로 분무하는 것이 바람직하다. 이에 본 발명에서도 살수부(42)에는 매우 작은 직경의 노즐이 복수 개 설치되어, 미스트 형태로 물을 분무한다. On the other hand, the watering unit 40 is for supplying water to the soil (m). In the present embodiment, the watering unit 40 includes a water supply unit 41 and a watering unit 42 and a connection hose 43 connecting the water supply unit 41 and the watering unit 42. The watering part 42 is disposed above the soil body m, and supplies water in a constant amount over the entire area of the soil body m. In particular, since the soil body (m) is made of clay or highly weathered soil, it is very fragile, and water is preferably sprayed in the form of mist of fine particles. Thus, in the present invention, the spraying part 42 is provided with a plurality of nozzles of very small diameters, and sprays water in the form of mist.
콘트롤러(50)는 변위 센서(10) 및 살수유닛(40)과 전기적으로 연결되어 이들의 작동을 제어한다. 특히 변위 센서(10)에서 측정된 변위 데이터를 일정 시간 간격으로 저장하며, 물 공급량에 대한 데이터도 저장된다. 실시예에 따라서는 콘트롤러(50)에 통신 유닛이 장착되어 저장된 데이터를 외부로 전송할 수 있다.  The controller 50 is electrically connected to the displacement sensor 10 and the watering unit 40 to control their operation. In particular, the displacement data measured by the displacement sensor 10 is stored at regular time intervals, and the data on the water supply amount is also stored. According to an exemplary embodiment, the communication unit may be mounted on the controller 50 to transmit the stored data to the outside.
이하에서는 상기한 팽창률 측정장치를 이용하여 현장에서 지반의 팽창률을 측정하는 방법에 대하여 설명하기로 한다. Hereinafter, a method of measuring the expansion rate of the ground in the field using the expansion rate measuring device will be described.
도 4는 본 발명에 따른 지반 팽창률 측정방법의 개략적 흐름도이고, 도 5 내지 도 7은 본 발명에 따른 지반 팽창률 측정방법을 수행하기 위한 제1실시예 내지 제3실시예를 설명하기 위한 도면이다. 4 is a schematic flowchart of a method for measuring ground expansion rate according to the present invention, and FIGS. 5 to 7 are views for explaining first to third embodiments for performing a method for measuring ground expansion rate according to the present invention.
도면을 참고하면, 본 발명에서는 우선 측정대상이 되는 지반에 경계선을 설정하고, 이 경계선의 하방으로 지반을 굴착하여 토체(m)를 특정한다. 토체(m)를 특정하는 방식은 도 5 내지 도 7에 도시된 예와 같이 다양할 수 있다. 즉, 사각 형상(대략 한 변의 길이가 10~30Cm)으로 경계선을 설정한 후, 도 5 및 도 6에 도시된 예와 같이 마주보는 두 개의 변을 각각 굴착하여 토체(m)의 앞뒤가 자유면으로 팽창되게 하거나, 또는 도 7에 도시된 예와 같이 4개의 변을 모두 굴착하여 토체(m)가 4개의 변을 모두 팽창가능한 자유면으로 형성할 수도 있다. Referring to the drawings, in the present invention, a boundary line is first set in the ground to be measured, and the soil is excavated below the boundary line to identify the soil body m. The manner of specifying the soil body m may vary as in the example shown in FIGS. 5 to 7. That is, after setting the boundary line in the shape of a square (approximately 10 to 30 cm in length), excavating two opposite sides as shown in the example shown in Figs. As shown in FIG. 7, all four sides may be excavated to form the soil body m as an expandable free surface.
그리고, 굴착면에 도전체(20)를 장착하고, 변위 센서(10)가 도전체(20)에 대면하도록 굴착공간부(s)에 설치한다. 도전체(20)와 변위 센서(10) 사이의 간격은 대략 10mm 정도로 한다. 그리고 토체(m)의 상부에 살수유닛을 배치한다. 물론, 살슈유닛 및 변위 센서는 콘트롤러에 전기적으로 연결되어 콘트롤러에 의하여 작동 및 제어된다. The conductor 20 is mounted on the excavation surface, and the displacement sensor 10 is provided in the excavation space s so that the displacement sensor 10 faces the conductor 20. The distance between the conductor 20 and the displacement sensor 10 is approximately 10 mm. And the watering unit is disposed on the top of the soil (m). Of course, the Salche unit and the displacement sensor are electrically connected to the controller and operated and controlled by the controller.
상기한 상태에서 변위 센서(10)는 물을 뿌리기 전의 초기 위치, 즉 변위 센서(10)와 도전체(20) 사이의 거리를 측정하여 데이터로 저장한다. 이후, 살수유닛을 통해 토체(m)에 물을 뿌리면서 일정 시간 간격으로 토체(m)의 팽창 변위를 측정하여 콘트롤러(50)에 전송한다. In the above state, the displacement sensor 10 measures the initial position before spraying water, that is, the distance between the displacement sensor 10 and the conductor 20 and stores the data. Thereafter, while sprinkling water on the soil body (m) through the watering unit, the expansion displacement of the soil body (m) is measured and transmitted to the controller 50.
상기한 데이터를 이용하여 지반의 팽창률을 결정하는 것은 실시예에 따라 다른 수학식에 따른다. Determining the expansion rate of the ground using the above data is according to another equation according to the embodiment.
도 5에 도시된 실시예는 토체(m)의 앞뒤가 자유면으로 형성된 상태에서 변위 센서(10)는 일측 자유면에만 설치되어 있는 경우이다. 이러한 경우에는 일측의 팽창 변위(e)가 타측 자유면의 팽창 변위와 동일하다고 전제하여 하기의 식(1)과 같이 팽창률을 결정한다. 5 is a case where the displacement sensor 10 is installed only on one side of the free surface in a state where the front and rear of the soil body m is formed as a free surface. In this case, the expansion rate is determined as shown in Equation 1 below on the assumption that the expansion displacement e on one side is the same as the expansion displacement on the other free surface.
팽창률 = 2×(e/L)×100(%) ... 식(1)Expansion rate = 2 × (e / L) × 100 (%) ... equation (1)
여기서, e는 물 주입 후 팽창된 토체의 변위, L은 물 주입전 굴착공간부 사이의 토체의 길이이다. Here, e is the displacement of the expanded soil body after water injection, L is the length of the soil body between the excavation space before the water injection.
도 6에 도시된 실시예는 도 5에 도시된 예와 동일하지만, 변위 센서(10)가 양측 자유면에 모두 설치된 경우이다. 이러한 경우에는 각 굴착면의 변위가 각각 e1 및 e2로 측정되므로, 하기의 식(2)에 의하여 지반의 팽창률을 결정한다. The embodiment shown in FIG. 6 is the same as the example shown in FIG. 5, but the displacement sensor 10 is installed on both free surfaces. In this case, since the displacement of each excavation surface is measured by e 1 and e 2 , respectively, the expansion coefficient of the ground is determined by the following equation (2).
팽창률 = (e1+e2)/L×100(%) ... 식(2)Expansion rate = (e 1 + e 2 ) / L × 100 (%) ... equation (2)
여기서, e1과 e2는 두 개의 센서에 의하여 각각 측정된 물 주입 후 팽창된 변위, L은 굴착공간부 사이의 토체의 길이이다. Here, e 1 and e 2 are the inflated displacement after water injection respectively measured by the two sensors, L is the length of the soil between the excavation space.
마지막으로 도 7에 도시된 실시예의 경우에는 토체(m)의 앞뒤 및 좌우가 모두 굴착되어 4개의 변이 모두 팽창가능한 자유면으로 형성되고, 각 자유면에 변위 센서(10)가 모두 설치된 경우이다. 이 경우에는 토체의 상하방향을 제외한 평면방향으로의 변위가 모두 측정되므로, 부피 변화를 구할 수 있다. 즉, 토체의 높이는 일정하다고 전제하고, 물 주입 전의 토체의 볼륨과 주입 후의 토체의 볼륨을 비로서 하기의 식(3)과 같이 지반의 팽창률을 결정한다. Lastly, in the case of the embodiment shown in Figure 7, the front, rear, left and right of the earth (m) is excavated to form all four sides of the inflatable free surface, the displacement sensor 10 is installed on each free surface. In this case, the displacement in the planar direction except for the up and down direction of the soil body is measured, so that the volume change can be obtained. That is, it is assumed that the height of the soil is constant, and the expansion ratio of the ground is determined by the ratio of the volume of the soil before water injection and the volume of the soil after injection, as shown in the following equation (3).
팽창률 = (V1-V0)/V0×100(%) ... 식(3)Expansion rate = (V 1 -V 0 ) / V 0 × 100 (%) ... equation (3)
여기서, V0는 물 주입 전의 토체의 부피, V1은 물 주입 후의 토체의 부피이다. Here, V 0 is the volume of the soil body before water injection, and V 1 is the volume of soil body after water injection.
이상에서 설명한 바와 같이, 본 발명에서는 기존에 코어 시료를 대상으로 하는 실내 시험을 통해 지반의 팽창률을 측정하는 방법에서 벗어나, 원지반의 상태와 조건을 그대로 반영한 상태로 지반의 팽창률을 측정할 수 있는 장치와 방법을 제공한다는 점에서 의의가 있다. As described above, in the present invention, a device that can measure the expansion rate of the ground in a state that reflects the state and conditions of the original ground, out of the conventional method for measuring the expansion rate of the ground through the indoor test for the core sample It is meaningful in that it provides a method.
이를 위하여 지반을 굴착하여 토체를 특정하고 굴착공간부에 센서를 설치하고 토체 위에 물을 살포할 수 있는 장치와 방법을 제공하였다. 특히 연약한 토질로 이루어진 토체가 교란되는 것을 방지하고자, 물을 미스트 형태로 공급할 뿐만 아니라 도전체를 가벼운 플라스틱 재질로 만들고 금속을 코팅하는 방식을 제공하였다. 또한 토양의 미세한 팽창 변위를 정밀하게 측정하기 위하여 다양한 센서들 중에서 특히 와전류식 변위센서를 채택하였다. 또한 센서 지지대를 휴대가 용이한 삼각대를 채택함으로써 관찰자의 작업 편의성을 도모하였다. 이러한 구성들은 모두 현장에서 지반의 팽창률을 측정하기에 최적의 구성을 제공한다. To this end, the soil was excavated to identify the soil, and the sensor was installed in the excavation space, and the apparatus and method for spraying water on the soil were provided. In particular, in order to prevent disturbance of the soil composed of the soft soil, in addition to supplying water in the form of a mist, the conductor was made of a light plastic material and a method of coating a metal. In addition, in order to precisely measure the microscopic expansion displacement of soil, eddy current displacement sensor was adopted among various sensors. In addition, by adopting a tripod that is easy to carry the sensor support for the convenience of the observer. All of these configurations provide the best configuration for measuring the expansion rate of the ground in the field.
한편, 상기한 장치를 이용하여 토체의 팽창률을 현장에서 측정하기 위한 구체적인 방법, 즉 지반을 굴착하여 토체를 특정하고 굴착면위 팽창 변위를 측정하는 방법을 제공하였다. 이러한 방법은 종래로부터 행해지던 토체의 팽창률 측정의 전통적 원리를 벗어나지 않으면서도, 원지반의 조건과 상태를 그대로 반영할 수 있는 바 기존의 실내 시험 방법에 비하여 탁월한 신뢰성을 획득할 수 있을 것이다. On the other hand, using the above-described device to provide a specific method for measuring the expansion rate of the soil in the field, that is, to excavate the ground to specify the soil and to measure the expansion displacement on the excavation surface. This method is able to reflect the condition and condition of the original ground without departing from the traditional principle of measuring the expansion rate of the soil, which has been conventionally performed, and thus it will be able to obtain excellent reliability compared to the existing indoor test method.
본 발명에 따른 지반 팽창률 측정장치 및 측정방법을 이용하여 토목 및 건축물이 축조될 지반의 상태와 안정성을 현장에서 매우 용이하면서도 신뢰성있게 측정할 수 있을 것으로 기대된다. It is expected that the condition and stability of the ground on which civil and building structures will be constructed can be very easily and reliably measured in the field using the ground expansion rate measuring apparatus and measuring method according to the present invention.
또한, 본 발명에 따른 측정장치에 통신 모듈을 장착하여 집중 호우 등에 따라 산사태나 지반 붕괴 등의 위험이 있는 지역의 지반 상태를 장기간에 걸쳐 모니터링할 수 있어 지질재해를 사전에 예방할 수 있을 것이다. In addition, by mounting a communication module to the measuring device according to the present invention can monitor the ground condition of the area where there is a risk of landslides and ground collapse due to heavy rain, etc. for a long time will be able to prevent geological disaster in advance.
학술적 차원에서도 강수에 따른 지반상태의 변화를 장기간에 걸쳐 관찰함으로써 강수에 따른 지반의 팽창 거동을 데이터베이스화할 수 있을 것으로 기대한다. At the academic level, it is expected to be able to database the expansion behavior of the ground according to precipitation by observing the change of the ground state according to precipitation for a long time.
본 발명은 첨부된 도면에 도시된 실시예를 참고하여 설명되었으나 이는 예시에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the accompanying drawings, this is only an example, and those skilled in the art may understand that various modifications and equivalent other embodiments are possible therefrom. will be. Accordingly, the true scope of protection of the invention should be defined only by the appended claims.

Claims (14)

  1. 측정 대상이 되는 지반의 경계선 하방으로 지반을 굴착하여 형성한 굴착공간부에 배치되어 지반굴착면의 변위를 측정하기 위한 센서;A sensor disposed in an excavation space portion formed by excavating the ground below the boundary line of the ground to be measured and measuring a displacement of the ground excavation surface;
    상기 측정대상이 되는 지반에 물을 뿌리기 위한 살수유닛; 및 A watering unit for spraying water on the ground to be measured; And
    상기 센서와 전기적으로 연결되어 상기 센서를 제어하고, 상기 센서로부터 얻어진 측정값을 저장하는 콘트롤러;를 구비하는 것을 특징으로 하는 지반 팽창률 측정장치.And a controller electrically connected to the sensor to control the sensor and to store the measured value obtained from the sensor.
  2. 제1항에 있어서, The method of claim 1,
    상기 지반굴착면에 부착되는 도전체를 더 구비하며, Further provided with a conductor attached to the ground excavation surface,
    상기 센서는 와전류식 변위센서이고, The sensor is an eddy current displacement sensor,
    상기 와전류식 변위센서는 상기 지반이 팽창함에 따라 상기 도전체의 위치 변화를 탐지하는 것을 특징으로 하는 지반 팽창률 측정장치.And the eddy current displacement sensor detects a change in the position of the conductor as the ground expands.
  3. 제2항에 있어서,The method of claim 2,
    상기 도전체는 평평한 플레이트와, 상기 플레이트로부터 연장되어 상기 지반에 삽입되어 고정되는 다리부를 구비하는 것을 특징으로 하는 지반 팽창률 측정장치.And the conductor has a flat plate and a leg portion extending from the plate and inserted into and fixed to the ground.
  4. 제2항에 있어서,The method of claim 2,
    상기 도전체는 전기가 흐르는 금속으로 코팅되어 도전체로 기능하는 것을 특징으로 하는 지반 팽창률 측정장치.The conductor is a ground expansion coefficient measuring device, characterized in that the electrical function is coated with a flowing metal to function as a conductor.
  5. 제4항에 있어서, The method of claim 4, wherein
    상기 도전체는 플라스틱 재질로 이루어지며, 표면에 금속이 코팅된 것을 특징으로 하는 지반 팽창률 측정장치.The conductor is made of a plastic material, the ground expansion coefficient measuring device characterized in that the metal is coated on the surface.
  6. 제1항에 있어서, The method of claim 1,
    상기 센서가 상기 지반굴착면에 대면하게 배치되도록, 지반의 표면에 설치되어 상기 센서가 장착되는 지지대를 더 구비하는 것을 특징으로 하는 지반 팽창률 측정장치.Soil expansion rate measuring apparatus further comprises a support is installed on the surface of the ground so that the sensor is disposed facing the ground excavation surface, the sensor is mounted.
  7. 제6항에 있어서, The method of claim 6,
    상기 지지대는 지반에 설치되는 본체부와, 상기 본체부에 대하여 상하방향으로 이동가능하게 결합되며 하단부가 상기 굴착공간부에 배치되는 중간암부와, 상기 중간암부에 대하여 상하방향 및 좌우방향을 따라 회전가능하게 결합되며 상기 센서가 결합되는 장착부를 포함하여 이루어진 것을 특징으로 하는 지반 팽창률 측정장치.The support is coupled to the main body portion installed on the ground, movably coupled to the vertical direction and the lower end portion is disposed in the excavation space portion, and rotates in the vertical direction and the left and right directions relative to the intermediate arm portion The ground expansion coefficient measuring apparatus, characterized in that made possible comprising a mounting portion coupled to the sensor.
  8. 제1항에 있어서, The method of claim 1,
    상기 살수유닛에서는 물을 미스트(mist) 형태로 공급하는 것을 특징으로 하는 지반 팽창률 측정장치.The sprinkling unit is ground expansion coefficient measuring device, characterized in that for supplying water in the form of a mist (mist).
  9. 지반에 경계선을 설정하여 팽창률 측정 대상이 되는 토체를 특정하고, 상기 토체의 경계선 하방으로 지반을 굴착하여 굴착공간부를 형성하는 단계; Setting a boundary line on the ground to specify the soil to be measured as an expansion coefficient, and excavating the ground below the boundary line of the soil to form an excavation space;
    상기 지반의 굴착면의 변위를 측정할 수 있는 센서를 상기 굴착공간부에 설치하는 단계; 및 Installing a sensor capable of measuring displacement of the excavation surface of the ground in the excavation space; And
    상기 토체에 물을 공급하여 토체를 팽창시키면서 상기 센서를 이용하여 토체의 팽창률을 측정하는 단계;를 포함하여 이루어져 지반의 팽창률을 현장에서 직접 측정하는 것을 특징으로 하는 토양 팽창률 측정방법.And measuring the expansion rate of the soil body by using the sensor while expanding the soil body by supplying water to the soil body.
  10. 제9항에 있어서, The method of claim 9,
    지반의 팽창률 측정은, 청구항 1 내지 청구항 8 중 어느 하나에 기재된 지반 팽창률 측정장치를 이용하여 이루어지는 것을 특징으로 하는 토양 팽창률 측정방법.The soil expansion rate measurement is carried out using the ground expansion rate measuring device according to any one of claims 1 to 8.
  11. 제9항에 있어서, The method of claim 9,
    상기 토체는 단면이 사각 형상이며, The soil has a rectangular cross section,
    상호 마주보는 두 개의 경계선을 따라 하방으로 지반을 굴착하여 상기 굴착공간부를 형성하며, 상기 센서는 굴착공간부 중 어느 하나에 설치하고,Excavating the ground downward along two boundary lines facing each other to form the excavation space, the sensor is installed in any one of the excavation space,
    팽창률 = 2×(e/L)×100(%) ... 식(1)Expansion rate = 2 × (e / L) × 100 (%) ... equation (1)
    (여기서, e는 물 주입 후 팽창된 토체의 변위, L은 물 주입전 굴착공간부 사이의 토체의 길이)(Where e is the displacement of the inflated soil after water injection, L is the length of the soil between the excavation spaces before water injection)
    지반의 팽창률은 상기 식(1)에 의하여 결정하는 것을 특징으로 하는 토양 팽창률 측정방법.Soil expansion rate measurement method characterized in that the ground expansion coefficient is determined by the formula (1).
  12. 제9항에 있어서, The method of claim 9,
    상기 토체는 단면이 사각 형상이며, The soil has a rectangular cross section,
    상호 마주보는 두 개의 경계선을 따라 하방으로 지반을 굴착하여 상기 굴착공간부를 형성하며, 상기 센서는 마주보는 굴착공간부에 각각 설치하고,Excavating the ground downward along two boundary lines facing each other to form the excavation space, the sensor is installed in each of the excavation space,
    팽창률 = (e1+e2)/L×100(%) ... 식(2)Expansion rate = (e 1 + e 2 ) / L × 100 (%) ... equation (2)
    (여기서, e1과 e2는 두 개의 센서에 의하여 각각 측정된 물 주입 후 팽창된 변위, L은 굴착공간부 사이의 토체의 길이)(Where e 1 and e 2 are the inflated displacements after water injection respectively measured by two sensors, L is the length of the soil between the excavation spaces)
    지반의 팽창률은 상기 식(2)에 의하여 결정하는 것을 특징으로 하는 토양 팽창률 측정방법.Soil expansion rate measurement method characterized in that the ground expansion coefficient is determined by the formula (2).
  13. 제9항에 있어서, The method of claim 9,
    상기 토체는 단면이 사각 형상이며, The soil has a rectangular cross section,
    사각형의 경계선을 따라 하방으로 지반을 굴착하여 4각 형상의 굴착공간부를 형성하며, 상기 센서는 굴착공간부의 4면에 모두 설치하고,Excavate the ground downward along the rectangular boundary to form a quadrangular excavation space, the sensor is installed on all four sides of the excavation space,
    팽창률 = (V1-V0)/V0×100(%) ... 식(3)Expansion rate = (V 1 -V 0 ) / V 0 × 100 (%) ... equation (3)
    (여기서, V0는 물 주입 전의 토체의 부피, V1은 물 주입 후의 토체의 부피)Where V 0 is the volume of the soil before water injection and V 1 is the volume of soil after water injection
    지반의 팽창률은 상기 식(3)에 의하여 결정하는 것을 특징으로 하는 토양 팽창률 측정방법.Soil expansion rate measurement method characterized in that the ground expansion coefficient is determined by the formula (3).
  14. 제9항에 있어서,The method of claim 9,
    상기 토체는 단면이 사각 형상으로, 한 변의 길이는 10~30Cm로 설정하는 것을 특징으로 하는 토양 팽창률 측정방법.The soil body has a rectangular cross-section, the length of one side of the soil expansion coefficient measuring method characterized in that it is set to 10 ~ 30cm.
PCT/KR2015/006863 2015-03-04 2015-07-03 Ground expansion ratio measuring apparatus and measuring method WO2016140407A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0030448 2015-03-04
KR1020150030448A KR101723288B1 (en) 2015-03-04 2015-03-04 Apparatus and Method for expansion rate of ground

Publications (1)

Publication Number Publication Date
WO2016140407A1 true WO2016140407A1 (en) 2016-09-09

Family

ID=56849391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006863 WO2016140407A1 (en) 2015-03-04 2015-07-03 Ground expansion ratio measuring apparatus and measuring method

Country Status (2)

Country Link
KR (1) KR101723288B1 (en)
WO (1) WO2016140407A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114705836A (en) * 2022-04-15 2022-07-05 南京交通职业技术学院 Expansive soil no-load expansion rate tester and testing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106351201B (en) * 2016-10-31 2018-04-10 中国科学院武汉岩土力学研究所 A kind of hole inner sensor base in controllable direction
KR102466333B1 (en) 2022-07-01 2022-11-17 주식회사 대한이앤씨 System for investigating defects of bridge pavement surface, and method for the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291862A (en) * 2004-03-31 2005-10-20 Tobishima Corp Consolidation and water permeability test apparatus and test method
JP2007113973A (en) * 2005-10-18 2007-05-10 Yokohama National Univ Apparatus and method for measuring axial displacement
KR20120106190A (en) * 2011-03-18 2012-09-26 한국건설생활환경시험연구원 Device for meansuring the strain of substance to be measured
JP2013033002A (en) * 2011-08-03 2013-02-14 Fujita Corp Water immersion expansion test method and water immersion expansion test device of expansive material and banking construction method
KR101481436B1 (en) * 2014-03-24 2015-01-15 한국지질자원연구원 Apparatus for measuring swelling pressure of clay minerals and System for monitoring landslides behavior using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291862A (en) * 2004-03-31 2005-10-20 Tobishima Corp Consolidation and water permeability test apparatus and test method
JP2007113973A (en) * 2005-10-18 2007-05-10 Yokohama National Univ Apparatus and method for measuring axial displacement
KR20120106190A (en) * 2011-03-18 2012-09-26 한국건설생활환경시험연구원 Device for meansuring the strain of substance to be measured
JP2013033002A (en) * 2011-08-03 2013-02-14 Fujita Corp Water immersion expansion test method and water immersion expansion test device of expansive material and banking construction method
KR101481436B1 (en) * 2014-03-24 2015-01-15 한국지질자원연구원 Apparatus for measuring swelling pressure of clay minerals and System for monitoring landslides behavior using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114705836A (en) * 2022-04-15 2022-07-05 南京交通职业技术学院 Expansive soil no-load expansion rate tester and testing method

Also Published As

Publication number Publication date
KR20160107554A (en) 2016-09-19
KR101723288B1 (en) 2017-04-04

Similar Documents

Publication Publication Date Title
CN103727911B (en) Assembly type deep soils equipment and system based on MEMS array
CN106679559B (en) Device and method for actually measuring three-dimensional deformation of interior of ultrahigh earth-rock dam
CN107747936B (en) Method for monitoring surface settlement deformation of underground independent space on line
WO2016140407A1 (en) Ground expansion ratio measuring apparatus and measuring method
KR101655936B1 (en) System for confirming position data of underground construction
WO2022053073A1 (en) Underground three-dimensional displacement measurement system and method based on double mutual inductance equivalent voltage
CN106556376B (en) Device for monitoring deformation of underground space and underground pipeline and measuring method thereof
RU2357205C1 (en) System for determining deformations of building structures
CN210166018U (en) Subway station foundation pit underground water level real-time supervision device
JP2020519798A (en) Precast segment for tunnels and method of making and monitoring such precast segment
KR101768901B1 (en) Apparatus for measuring sinking of underground or surface
CN207066383U (en) A kind of geology monitors displacement meter
CN209279955U (en) The long-range subsiding observation station of integration
WO2014129741A1 (en) Apparatus for automatically monitoring displacement on surface of discontinuity and monitoring method using same
CN112097977B (en) Fixing device and mounting method suitable for embedded sensor in cement concrete pavement
CN107101624B (en) Geological deformation three-dimensional observation system, installation and embedding method and measurement method thereof
CN107870367B (en) Well geophone direction-finding system and method
CN210135879U (en) Verticality tester for civil construction
CN212030438U (en) Concrete prefabricated part flatness detection device
CN210887335U (en) Novel slope deformation remote monitoring equipment
CN208736396U (en) Talus slide large deformation flexible monitoring device
CN206740133U (en) Geological deformation stereo observing system
CN207180656U (en) One kind radially converges deformation measurement device for tunnel model test
CN207963789U (en) The deformation measuring device on building basis under mining influence
CN107560606B (en) Free telescopic hidden point measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884073

Country of ref document: EP

Kind code of ref document: A1