WO2016140122A1 - Direct-current interruption device - Google Patents

Direct-current interruption device Download PDF

Info

Publication number
WO2016140122A1
WO2016140122A1 PCT/JP2016/055395 JP2016055395W WO2016140122A1 WO 2016140122 A1 WO2016140122 A1 WO 2016140122A1 JP 2016055395 W JP2016055395 W JP 2016055395W WO 2016140122 A1 WO2016140122 A1 WO 2016140122A1
Authority
WO
WIPO (PCT)
Prior art keywords
mechanical
circuit breaker
current
circuit
breaker
Prior art date
Application number
PCT/JP2016/055395
Other languages
French (fr)
Japanese (ja)
Inventor
中沢 洋介
隆太 長谷川
尚隆 飯尾
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to EP16758816.9A priority Critical patent/EP3267460B1/en
Publication of WO2016140122A1 publication Critical patent/WO2016140122A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle

Definitions

  • Embodiment of this invention is related with the DC interrupting device which isolates the fault point of a DC power transmission system.
  • HVDC high-voltage direct current transmission
  • HVDC When HVDC is applied to long-distance high-power transmission, it is possible to construct a system with lower transmission loss and lower cost than conventional AC transmission systems.
  • HVDC when a system fault caused by lightning strikes or the like occurs, it is not easy to isolate the fault point. This is because, in alternating current, the current can be cut off at a point where the current crosses zero every half cycle at a frequency of 50 Hz or 60 Hz, but in direct current, there is no point where the current crosses zero. Therefore, even if the contact of the disconnector provided in the system is simply disconnected, an arc is generated between the contacts and current continues to flow.
  • the DC breaker provided with the parallel circuit described above can prevent conduction loss due to the semiconductor breaker because the current passes only through the mechanical disconnector during normal operation.
  • the semiconductor circuit breaker provided in the parallel circuit needs to finally cut off the accident current that increases with time, and it is necessary to use one having a large current capacity.
  • the H bridge circuit provided in the parallel circuit also needs to be configured by a semiconductor element having the same large current capacity as that of the semiconductor circuit breaker, which may increase the equipment capacity and cost.
  • the present embodiment aims to provide a high-efficiency and low-cost DC interrupting device that reduces facility capacity and conduction loss while having a function of interrupting an accident current at high speed. .
  • a DC interrupting device includes a mechanical disconnector provided in a DC power transmission system, and a mechanical interrupter provided in the DC power transmission system and connected in series to the mechanical disconnector.
  • a semiconductor breaker that is connected in parallel to the mechanical disconnector and the mechanical breaker, and that switches between supply and interruption of current of the DC power transmission system, and a reactor that is connected in series to the semiconductor breaker,
  • An H-bridge unit comprising a plurality of switching elements and capacitors, connecting a parallel circuit comprising: a single point between the mechanical disconnector and the mechanical breaker; and a single point between the semiconductor breaker and the reactor.
  • an H-bridge circuit that controls a current flowing through the mechanical circuit breaker by output voltage control.
  • (A) is a figure which shows the structure of the direct current
  • (b) is a figure which shows the structure of an H bridge unit. It is a figure which shows the operation
  • normal time means a state in which a normal current is flowing in the DC power transmission system
  • at the time of an accident means an excessive accident current due to a system fault caused by lightning or the like. The state that has occurred.
  • the DC breaker 1 includes a mechanical disconnector 2 and a mechanical breaker 20 connected in series to the power transmission line 100, a parallel circuit 3 connected in parallel to the mechanical disconnector 2 and the mechanical breaker 20, An H bridge circuit 5 that connects the power transmission line 100 and the parallel circuit 3 is configured. More specifically, the parallel circuit 3 includes a semiconductor circuit breaker 4 and a reactor 55 connected in series to the semiconductor circuit breaker 4, and an arrester 43 is connected in parallel only to the semiconductor circuit breaker 4.
  • the H bridge circuit 5 is configured to connect one point between the mechanical disconnector 2 and the mechanical circuit breaker 20 of the transmission line 100 and one point between the semiconductor breaker 4 and the reactor 55 of the parallel circuit 3. Has been.
  • the mechanical disconnector 2 can use various known configurations. In this embodiment, since the direct current is interrupted using the parallel circuit 3 as will be described later, the mechanical disconnector 2 itself does not need a current interrupting capability. It is sufficient if it has a mechanical contact and has a withstand voltage that can withstand the DC voltage necessary for disconnecting the accident point with the contact disconnected.
  • the mechanical disconnector 2 is provided with a rotating contact between the terminals of the circuit, and the rotating contact rotates to come in contact with and separate from the fixed contact attached to each terminal. It can be set as the structure which performs.
  • the mechanical disconnector 2 is normally controlled to be in an on state, that is, a contact point.
  • the current from the DC transmission network A flows through the mechanical disconnector 2 to the DC transmission network B.
  • control is performed so that a current flows through the parallel circuit 3, and when the current flowing through the mechanical disconnector 2 becomes substantially zero, the circuit is disconnected.
  • the mechanical circuit breaker 20 can use various known configurations. Any mechanical contact that has the ability to cut off a small current by opening the contact is sufficient.
  • the mechanical circuit breaker 20 is provided with a rotating contact between terminals of a circuit, for example, and the rotating contact rotates to contact and separate from a fixed contact attached to each terminal. It can be set as the structure which performs interruption
  • the mechanical circuit breaker 20 is normally controlled to be in an on state, that is, a contact point.
  • the current from the DC power transmission network A flows through the mechanical disconnector 2 and the mechanical circuit breaker 20 to the DC power transmission network B.
  • a current sensor (not shown) is attached to the mechanical circuit breaker 20.
  • the current flowing through the mechanical circuit breaker 20 is measured by a current sensor, and the accident is detected by comparing it with a threshold value indicating the accident.
  • control is performed so that a current flows through the H-bridge circuit 5 and the current flowing through the mechanical circuit breaker 20 becomes substantially zero.
  • the mechanical circuit breaker 20 is switched to an off state when the flowing current becomes substantially zero, and the circuit is disconnected.
  • the semiconductor circuit breaker 4 is provided in the parallel circuit 3 connected in parallel to the mechanical disconnector 2 and the mechanical circuit breaker 20.
  • the semiconductor circuit breaker 4 has a configuration in which a plurality of switching elements 41 are connected in series, and a diode 42 is connected in antiparallel to each switching element 41.
  • the semiconductor circuit breaker 4 includes two switching elements 41.
  • the switching element 41 for example, an element having a self-extinguishing capability such as an IGBT (insulated gate bipolar transistor), a bipolar transistor, or an electric field transistor is used.
  • switching elements that have a collector terminal connected to the DC power transmission network A side and those that have a collector terminal connected to the DC power transmission network B side, so that a bidirectional current from the DC power transmission network A to B or B to A Can be turned on and off.
  • the semiconductor circuit breaker 4 is switched between an on state, which is a conducting state, and an off state, which is a non-conducting state, by the input of a gate signal.
  • an on state which is a conducting state
  • an off state which is a non-conducting state
  • the input of a gate signal In the conductive state, current is supplied from the DC power transmission system to the parallel circuit 3 via the semiconductor circuit breaker 4, and in the non-conductive state, the current from the DC power transmission system to the parallel circuit 3 is interrupted.
  • the semiconductor circuit breaker 4 is connected in parallel with an arrester 43 made of a non-linear element that conducts when a certain voltage or more is applied.
  • the arrester 43 absorbs the surge voltage and enables safe current interruption when the semiconductor circuit breaker 4 is switched to the off state.
  • the H bridge circuit 5 has a configuration in which a plurality of H bridge units 50 are connected in series.
  • Each H-bridge unit 50 has two legs 52 in which two switching elements 51 are connected in series.
  • As the switching elements 51 those having self-extinguishing capability are used.
  • a diode is connected to each switching element 51 in parallel.
  • These two legs 52 are connected in parallel, and a capacitor 53 is connected in parallel with the two legs 52.
  • the capacitor 53 is charged by a current flowing through the power transmission line 100 during steady operation.
  • the reactor 55 is for reducing the rate of change in current and is provided to enable current control by the H-bridge circuit 5 as will be described in detail later.
  • FIG. 3 is a diagram illustrating an operation state of the simulation execution circuit, which was performed to explain the effectiveness of the DC interrupting device 1 described above.
  • the simulation execution circuit is connected to the DC interrupter 1 shown in FIG. 1 in the circuit configuration simulating the current transmission network A, and after applying the DC voltage 320 KV to the DC interrupter 1, the simulated current A ground fault caused by lightning or the like has occurred in the power transmission line 100 of the power transmission network A.
  • (I) indicated by a thick solid line in FIG. 3 indicates a current flowing through the mechanical circuit breaker 20.
  • (Ii) indicated by an alternate long and short dash line indicates a current flowing through the H-bridge circuit 5.
  • (Iii) indicated by a two-dot chain line indicates a current flowing through the semiconductor circuit breaker 4.
  • the DC blocking device 1 performs a two-stage blocking operation as a whole. First, the breaking operation of the mechanical circuit breaker 20 is performed at the initial stage where the fault current is small, and the fault current is commutated to the parallel circuit 3, and the breaking operation of the semiconductor circuit breaker 4 is performed at the later stage when the fault current increases. I do. Details will be described below.
  • the current flowing through the mechanical circuit breaker 20 increases as shown in (i).
  • the current sensor attached to the mechanical circuit breaker 20 detects the current Idc_M flowing through the mechanical circuit breaker 20 and compares it with a preset accident occurrence detection threshold value Idc_J.
  • the gate signal of the switching element 41 of the semiconductor circuit breaker 4 of the parallel circuit 3 is switched from OFF to ON.
  • the output voltage of the H bridge circuit 5 is controlled. Specifically, the output voltage V_H of the H bridge circuit 5 is calculated by the following formula and output.
  • V_H G (s) ⁇ (IdcM-0) (G (s) is control gain, s is Laplace operator)
  • G (s) is a control gain, for example, performing general proportional-integral control.
  • the output voltage V_H of the H bridge unit 50 is variably output by performing pulse width modulation control on the switching element 51 of each leg 52.
  • the current Idc_M flowing through the mechanical circuit breaker 20 continues to be controlled until it becomes substantially zero, as shown in FIG. In this state, the mechanical circuit breaker 20 is shifted to the off state. Since the current flowing through the mechanical circuit breaker 20 is substantially zero, even if the contact is shifted to the OFF state, the current does not continue to flow by pulling an arc as in normal DC current conduction. Therefore, current can be interrupted at high speed.
  • the parallel circuit 3 connected to the H bridge circuit 5 is provided with a reactor 55 for reducing the current change rate. Since the reactor 55 prevents the output voltage of the H-bridge unit 50 from being directly applied to the mechanical breaker 20, the current flowing through the mechanical breaker 20 can be controlled.
  • the rate of change dIdc_M / dt of the current Idc_M flowing through the mechanical circuit breaker 20 is expressed by the following equation using the inductance value L of the reactor 55.
  • dIdc_M / dt V_H / L
  • the inductance value L 0, so that the current change rate dIdc_M / dt becomes infinite unless the output voltage V_H of the H bridge unit 50 is zero, and the current flowing through the mechanical circuit breaker 20 Idc_M cannot be controlled.
  • the current change rate dIdc_M / dt becomes finite. Therefore, the current change rate dIdc_M / dt can be controlled according to the magnitude of the output voltage V_H of the H bridge unit 50. This prevents the output voltage of the H-bridge unit 50 from being directly applied to the mechanical circuit breaker 20 and enables current control to make the current Idc_M flowing through the mechanical circuit breaker 20 substantially zero.
  • the output voltage control by the H bridge circuit 5 continues to be controlled until the current Idc_M flowing through the mechanical circuit breaker 20 becomes substantially zero.
  • the current flowing through the transmission line 100 does not pass through the mechanical circuit breaker 20, passes through the H bridge circuit 5, and further passes through the parallel circuit 3 connected to the H bridge circuit 5. Return to the power transmission line 100.
  • the current Idc_M flowing through the mechanical circuit breaker 20 becomes substantially zero.
  • the mechanical circuit breaker 20 is shifted to the off state. Since the current flowing through the mechanical circuit breaker 20 is substantially zero, even if the contact is shifted to the OFF state, the current does not continue to flow by pulling an arc as in normal DC current conduction. Therefore, current can be interrupted at high speed.
  • the gate signal of the switching element 41 of the semiconductor circuit breaker 4 is switched from on to off to interrupt the accident current flowing in the parallel circuit 3.
  • the surge voltage generated at this time is absorbed by the arrester 43, and the current interruption is completed.
  • the DC breaker 1 includes the mechanical disconnector 2 provided in the power transmission line 100, the mechanical breaker 20 connected in series to the mechanical disconnector 2, and the machine And a parallel circuit 3 connected in parallel to the mechanical disconnector 2 and the mechanical breaker 20.
  • the parallel circuit 3 includes a semiconductor circuit breaker 4 that switches between supply and interruption of the current of the power transmission line 100 to the parallel circuit 3 and a reactor 55 that is connected to the semiconductor circuit breaker 4 in series.
  • the DC breaker 1 further includes an H bridge circuit 5 that connects a point between the mechanical disconnector 2 and the mechanical breaker 20 and a point between the semiconductor breaker 4 and the reactor 55.
  • the H bridge circuit 5 includes an H bridge unit 50 including a plurality of switching elements 51 and a capacitor 53. The H bridge circuit 5 controls the current flowing through the mechanical circuit breaker 20 by output voltage control.
  • the conduction loss can be reduced, and the efficient DC breaker 1 can be provided.
  • the output voltage control using the H-bridge circuit 5 can induce the current in the parallel circuit 3 and the current flowing through the mechanical disconnector 2 can be disconnected without causing an arc.
  • the semiconductor breaker 4 provided in the parallel circuit 3. Such an effect can contribute to improvement in power transmission efficiency, cost reduction, and improvement in reliability in DC power transmission.
  • the H bridge circuit 5 is installed in such a manner that one point between the mechanical disconnector 2 and the mechanical circuit breaker 20 and one point between the semiconductor circuit breaker 4 and the reactor 55 are connected. Therefore, a current flows through the H bridge circuit 5 only in the initial stage where the fault current that performs the breaking operation of the mechanical breaker 20 is small. That is, the maximum value of the current flowing through the H bridge circuit 5 is an accident current at the time when the mechanical circuit breaker 20 is turned off.
  • the fault current that increases when a further time elapses before the mechanical disconnector 2 is turned off flows through the parallel circuit 3, so that the maximum current capacity of the semiconductor switching element 51 constituting the H-bridge circuit 5 is It is possible to reduce the capacity to a much smaller capacity than the maximum current capacity of the switching element 41 constituting the semiconductor circuit breaker 4. Moreover, since the reactor 55 is installed in the parallel circuit 3, the output voltage of the H bridge circuit 5 is not directly applied to the mechanical circuit breaker 20, and accurate current control is possible.
  • the H bridge circuit 5 includes a plurality of H bridge units 50 connected in series. As the number of capacitors 53 provided in each H-bridge unit 50 increases, the amount of charge / discharge also increases, so that a large accident current can be dealt with.
  • the DC cutoff device 1 does not include the H bridge circuit 5.
  • Two sets of semiconductor breakers 4A and 4B are connected in series to the parallel circuit 3 connected in parallel to the mechanical disconnector 2 and the mechanical breaker 20.
  • the semiconductor circuit breaker 4A has a configuration in which two or more switching elements 41a having a self-extinguishing capability are connected in series, and a diode 42a is connected in antiparallel to each switching element 41a. In the example of FIG. 7, an example in which three are connected is shown.
  • the semiconductor circuit breaker 4A has a collector terminal connected to the DC power transmission network A side.
  • the semiconductor circuit breaker 4B has a configuration in which two or more switching elements 41b having a self-extinguishing capability are connected in series, and a diode 42b is connected in antiparallel to each switching element 41b. In the example of FIG. 7, an example in which three are connected is shown.
  • the semiconductor circuit breaker 4B has a collector terminal connected to the DC power transmission network B side. That is, the switching element 41b of the semiconductor circuit breaker 4B has the collector and emitter oriented in the opposite direction to the switching element 41b of the semiconductor circuit breaker 4A.
  • the emitters of the semiconductor circuit breakers 4A and 4B are connected to each other via a reactor 55.
  • this reactor 55 is installed in order to reduce the current change rate of the parallel circuit 3, the reactor 55 can also be abbreviate
  • the reactor 55 is installed between the semiconductor circuit breakers 4A and 4B, an installation position is not restricted to this. Even if the parallel circuit 3 is installed next to the DC power transmission network A side of the semiconductor circuit breaker 4A or adjacent to the DC power transmission network B side of the semiconductor circuit breaker 4B, there is no difference in function.
  • a reverse current generation circuit 6A is connected in reverse parallel to one of the switching elements 41a constituting the semiconductor circuit breaker 4A.
  • the reverse current generation circuit 6A includes a switching element 61a, a diode 62a connected in antiparallel with the switching element 61a, and a capacitor 63a connected in series with the switching element 61a.
  • the collector side of the switching element 41a of the semiconductor circuit breaker 4A is connected to the emitter side of the switching element 41a of the reverse current generation circuit 6A.
  • the collector side of the reverse current generation circuit 6A is connected to the positive terminal of the capacitor 63a.
  • the negative terminal of the capacitor 63a is connected to the emitter side of the switching element 41a of the semiconductor circuit breaker 4A.
  • a reverse current generation circuit 6B is connected in reverse parallel to one of the switching elements 41b constituting the semiconductor circuit breaker 4B.
  • the reverse current generation circuit 6B includes a switching element 61b, a diode 62b connected in antiparallel with the switching element 61b, and a capacitor 63b connected in series with the switching element 61b.
  • the collector side of the switching element 41b of the semiconductor circuit breaker 4B is connected to the emitter side of the switching element 41b of the reverse current generation circuit 6B.
  • the collector side of the reverse current generation circuit 6B is connected to the positive side terminal of the capacitor 63b.
  • the negative terminal of the capacitor 63b is connected to the emitter side of the switching element 41a of the semiconductor circuit breaker 4A. That is, the switching element 61b of the reverse current generation circuit 6B is installed so as to conduct current in the opposite direction to the switching 61a of the reverse current generation circuit 6A.
  • switching elements 61a and 61b constituting the reverse current generating circuits 6A and 6B those having a capacity smaller than the maximum current capacity of the switching elements 41a and 41b constituting the semiconductor circuit breakers 4A and 4B may be used.
  • the reverse current generation circuits 6A and 6B are connected in antiparallel to one of the switching elements 41a and 41b constituting the semiconductor circuit breakers 4A and 4B, respectively. On the other hand, you may make it connect in antiparallel.
  • the semiconductor circuit breakers 4A and 4B have three switching elements 41a and 41b, respectively. Therefore, the reverse current generation circuits 6A and 6B have two or three switching elements 41a and 41b. You may make it connect in antiparallel.
  • a circuit that passes through the switching element 41a and the reactor 55 of the semiconductor circuit breaker 4A with the collector connected to the network A side is configured.
  • the switching element 61b of the reverse current generation circuit 6B is turned off. Further, the mechanical disconnector 2 is turned off. The accident current that increases with the passage of time flows through the parallel circuit 3 only. Here, the fault current is finally cut off by switching the gate signal of the switching element 41a of the semiconductor circuit breaker 4A from on to off.
  • the operation is performed in the opposite direction to the case where the accident occurs in the DC power transmission network B. That is, the switching element 41b of the semiconductor circuit breaker 4B whose collector is connected to the DC power transmission network B side is turned on, and the switching element 61a of the reverse current generation circuit 6A is turned on.
  • a circuit that passes through the switching element 41b and the reactor 55 of the semiconductor circuit breaker 4B having a collector connected to the network B side is formed.
  • the parallel circuit 3 includes two sets of semiconductor circuit breakers 4A and 4B, and further includes the semiconductor circuit breaker 4A. , 4B are provided with reverse current circuits 6A, 6B connected in antiparallel.
  • the semiconductor circuit breakers 4A and 4B are configured by connecting a plurality of switching elements 41a in series, and are installed so as to conduct currents supplied from the power transmission line 100 in directions opposite to each other.
  • the reverse current generation circuits 6A and 6B are connected in reverse parallel to one or more of the switching elements 41a and 41b constituting the semiconductor circuit breakers 4A and 4B, and have a current opposite to the current flowing through the mechanical circuit breaker 20. Is superimposed.
  • the current passes through only the mechanical disconnector 2 and the mechanical circuit breaker 20 at normal times, so that the conduction loss can be reduced and the efficiency is improved. It is possible to provide a direct current interrupting device 1 with good quality.
  • the reverse current generation circuits 6A and 6B superimpose a current in the opposite direction to the current flowing through the mechanical circuit breaker 20, so that the current flowing through the mechanical circuit breaker 20 can be made substantially zero, so Can be separated.
  • high-speed current interruption can be realized by the semiconductor breaker 4 provided in the parallel circuit 3. Such an effect can contribute to improvement in power transmission efficiency, cost reduction, and improvement in reliability in DC power transmission.
  • the reverse current generation circuits 6A and 6B are connected in parallel to the semiconductor circuit breakers 4A and 4B, current is supplied to the reverse current generation circuits 6A and 6B only at the initial stage where the fault current is small when the breaking operation of the mechanical circuit breaker 20 is performed. Flowing. That is, the maximum value of the current flowing through the reverse current generation circuits 6A and 6B is up to the accident current at the time when the mechanical circuit breaker 20 is turned off. After the mechanical circuit breaker 20 is turned off, the accident current increased with the passage of time flows through the semiconductor circuit breakers 4A and 4B connected in parallel with the reverse current generation circuits 6A and 6B.
  • the maximum current capacity of the switching elements 61a and 61b constituting the reverse current generating circuits 6A and 6B can be made smaller than the maximum current capacity of the switching elements 41a and 41b constituting the semiconductor circuit breakers 4A and 4B. Therefore, it is possible to reduce the cost of the DC interrupter 1.
  • the parallel circuit 3 includes a reactor 55 connected in series to the semiconductor circuit breaker 4A and the semiconductor circuit breaker 4B.
  • the current flowing through the parallel circuit 3 can be smoothed by the reactor 55, the rate of current change can be reduced, and accurate output voltage control is possible.

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Keying Circuit Devices (AREA)

Abstract

This direct-current interruption device 1 is provided with: a mechanical disconnector 2 provided to a power transmission line 100; a mechanical breaker 20 connected in series with the mechanical disconnector 2; and a parallel circuit 3 connected in parallel with the mechanical disconnector 2 and the mechanical breaker 20. The parallel circuit 3 is provided with: a semiconductor breaker 4 which switches between supplying and interrupting the current to the parallel circuit 3 from the power transmission line 100; and a reactor 55 which is connected in series with the semiconductor breaker 4. A H-bridge circuit 5 is provided which connects one point between the mechanical disconnector 2 and the mechanical breaker 20, and one point between the semiconductor breaker 4 and the reactor 55. The H-bridge circuit 5 is provided with H-bridge units 50 comprising a plurality of switching elements 51 and capacitors 53. The H-bridge circuit 5 controls the output voltage to control the current flowing to the mechanical breaker 20.

Description

直流遮断装置DC breaker
 本発明の実施形態は、直流送電系統の事故点を切り離す直流遮断装置に関する。 Embodiment of this invention is related with the DC interrupting device which isolates the fault point of a DC power transmission system.
 環境への負荷低減や、電源の多様化といった観点から、風力発電や太陽光発電などの再生可能エネルギーの普及が進んでいる。また、それら電源の大規模化が進んでおり、例えば、洋上での風力発電や、砂漠地帯での太陽光又は太陽熱発電などが実用化され始めている。洋上や砂漠は、電力需要地となる都市部から地理的に離れていることが多く、送電距離が長くなる。このような長距離の送電には、一般的に用いられている交流送電システムに代わって、高圧直流送電(HVDC;high-voltage, direct current)が適用されることがある。 From the viewpoint of reducing environmental burden and diversifying power sources, the spread of renewable energy such as wind power generation and solar power generation is progressing. Further, the scale of these power sources is increasing, and for example, wind power generation on the ocean, sunlight or solar thermal power generation in the desert area, etc. are beginning to be put into practical use. Oceans and deserts are often geographically distant from the urban areas where power is demanded, increasing the transmission distance. For such long-distance power transmission, high-voltage direct current transmission (HVDC) may be applied instead of a commonly used alternating current transmission system.
 HVDCは、長距離大電力送電に適用した場合に、従来の交流送電システムに比べて、低コストで送電損失が少ないシステムを構築することが可能である。しかしながら、HVDCにおいては、落雷等に起因する系統事故が生じた場合、事故点を切り離すことが容易ではない。というのも、交流では、電流が周波数50Hzまたは60Hzの半サイクルごとにゼロを横切る点で電流遮断ができるが、直流電流では電流がゼロを横切る点がない。そのため、系統に設けられた断路器の接点を単に切り離しても、接点間にアークが生じて電流が流れ続けてしまう。 When HVDC is applied to long-distance high-power transmission, it is possible to construct a system with lower transmission loss and lower cost than conventional AC transmission systems. However, in HVDC, when a system fault caused by lightning strikes or the like occurs, it is not easy to isolate the fault point. This is because, in alternating current, the current can be cut off at a point where the current crosses zero every half cycle at a frequency of 50 Hz or 60 Hz, but in direct current, there is no point where the current crosses zero. Therefore, even if the contact of the disconnector provided in the system is simply disconnected, an arc is generated between the contacts and current continues to flow.
 そこで、機械式断路器の代わりに半導体遮断器を用いることで、高速遮断を行うことが提案されている。しかしながら、半導体遮断器を送電系統に直列に接続すると、導通損失が発生して送電効率の低下を招く可能性がある。そこで、機械式断路器に対して半導体遮断器を並列に接続した構成の直流遮断装置が提案されている。半導体遮断器に対しては、複数のスイッチング素子及びコンデンサを有するHブリッジ回路が直列に接続されている。事故時に、Hブリッジ回路を用いて出力電圧制御を行い、並列回路に電流を誘導して、半導体遮断器により高速に電流遮断を行う。 Therefore, it has been proposed to use a semiconductor breaker instead of a mechanical disconnector to perform high-speed breaking. However, when a semiconductor breaker is connected in series to the power transmission system, conduction loss may occur, leading to a decrease in power transmission efficiency. Therefore, a DC circuit breaker having a configuration in which a semiconductor circuit breaker is connected in parallel to a mechanical disconnector has been proposed. An H bridge circuit having a plurality of switching elements and capacitors is connected in series to the semiconductor circuit breaker. In the event of an accident, output voltage control is performed using an H-bridge circuit, current is induced in a parallel circuit, and current interruption is performed at high speed by a semiconductor breaker.
特開2014-235834号公報JP 2014-235834 A
 上述した、並列回路を設けた直流遮断装置は、通常時に電流は機械式断路器のみを通過するため、半導体遮断器による導通損失を防ぐことができる。しかしながら、並列回路に設けた半導体遮断器は、時間経過と共に増大する事故電流を最終的に遮断する必要があり、大電流容量のものを用いる必要がある。そして、並列回路に設けるHブリッジ回路も半導体遮断器と同一の大電流容量を有する半導体素子で構成する必要があり、設備容量の増加やコスト増加を招く可能性があった。 The DC breaker provided with the parallel circuit described above can prevent conduction loss due to the semiconductor breaker because the current passes only through the mechanical disconnector during normal operation. However, the semiconductor circuit breaker provided in the parallel circuit needs to finally cut off the accident current that increases with time, and it is necessary to use one having a large current capacity. The H bridge circuit provided in the parallel circuit also needs to be configured by a semiconductor element having the same large current capacity as that of the semiconductor circuit breaker, which may increase the equipment capacity and cost.
 本実施形態は、上述の問題を鑑み、事故電流を高速に遮断する機能を有しながら、設備容量や導通損失を低減し、高効率かつ低コストの直流遮断装置を提供することを目的とする。 In view of the above-described problems, the present embodiment aims to provide a high-efficiency and low-cost DC interrupting device that reduces facility capacity and conduction loss while having a function of interrupting an accident current at high speed. .
 上記目的を達成するために、実施形態の直流遮断装置は、直流送電系統に設けられる機械式断路器と、前記直流送電系統に設けられ、前記機械式断路器に直列に接続される機械式遮断器と、前記機械式断路器及び前記機械式遮断器に並列に接続され、前記直流送電系統の電流の供給及び遮断を切り換える半導体遮断器と、当該半導体遮断器に直列に接続されたリアクトルと、を備えた並列回路と、前記機械式断路器及び前記機械式遮断器の間の一点と、前記半導体遮断器及び前記リアクトルの間の一点を接続し、複数のスイッチング素子及びコンデンサからなるHブリッジユニットを備え、出力電圧制御により前記機械式遮断器に流れる電流を制御するHブリッジ回路と、を有する。 In order to achieve the above object, a DC interrupting device according to an embodiment includes a mechanical disconnector provided in a DC power transmission system, and a mechanical interrupter provided in the DC power transmission system and connected in series to the mechanical disconnector. A semiconductor breaker that is connected in parallel to the mechanical disconnector and the mechanical breaker, and that switches between supply and interruption of current of the DC power transmission system, and a reactor that is connected in series to the semiconductor breaker, An H-bridge unit comprising a plurality of switching elements and capacitors, connecting a parallel circuit comprising: a single point between the mechanical disconnector and the mechanical breaker; and a single point between the semiconductor breaker and the reactor. And an H-bridge circuit that controls a current flowing through the mechanical circuit breaker by output voltage control.
(a)は第1の実施形態に係る直流遮断装置の構成を示す図であり、(b)はHブリッジユニットの構成を示す図である。(A) is a figure which shows the structure of the direct current | flow interruption | blocking apparatus which concerns on 1st Embodiment, (b) is a figure which shows the structure of an H bridge unit. 第1の実施形態に係る直流遮断装置の通常時の動作を示す図である。It is a figure which shows the operation | movement at the normal time of the direct current | flow interruption | blocking apparatus which concerns on 1st Embodiment. 事故発生時の電流動作を説明する図である。It is a figure explaining the electric current operation at the time of accident occurrence. 第1の実施形態に係る直流遮断装置の事故時の初期の動作を示す図である。It is a figure which shows the initial stage operation | movement at the time of the accident of the DC circuit breaker which concerns on 1st Embodiment. 第1の実施形態に係る直流遮断装置の事故時の中期の動作を示す図である。It is a figure which shows the operation | movement of the medium term at the time of the accident of the DC circuit breaker concerning 1st Embodiment. 第1の実施形態に係る直流遮断装置の事故時の後期の動作を示す図である。It is a figure which shows the operation | movement of the latter period at the time of the accident of the direct-current circuit interrupter which concerns on 1st Embodiment. 第2の実施形態に係る直流遮断装置の構成を示す図である。It is a figure which shows the structure of the direct current | flow interrupting apparatus which concerns on 2nd Embodiment.
 以下、実施形態に係る直流遮断装置について、図面を参照して説明する。なお、実施形態の説明において「通常時」とは、直流送電系統において正常な電流が流れている状態をいい、「事故時」とは、雷等に起因する系統事故によって、過大な事故電流が生じた状態をいう。 Hereinafter, the DC interrupter according to the embodiment will be described with reference to the drawings. In the description of the embodiment, “normal time” means a state in which a normal current is flowing in the DC power transmission system, and “at the time of an accident” means an excessive accident current due to a system fault caused by lightning or the like. The state that has occurred.
(第1の実施形態)
(構成)
 図1に示すように、直流送電系統において、2つの直流送電網A,Bを接続する送電線が設けられている。送電線には正側100と負側101があるが、本実施形態の直流遮断装置1は、正側に設けられている。本実施形態では、正側の送電線100において、直流送電網Aから直流送電網Bへ送電される例を主に説明する。
(First embodiment)
(Constitution)
As shown in FIG. 1, in a DC power transmission system, a power transmission line that connects two DC power transmission networks A and B is provided. Although the power transmission line has a positive side 100 and a negative side 101, the DC breaker 1 of the present embodiment is provided on the positive side. In the present embodiment, an example in which power is transmitted from the DC power transmission network A to the DC power transmission network B in the positive transmission line 100 will be mainly described.
 直流遮断装置1は、送電線100に直列に接続された機械式断路器2及び機械式遮断器20と、機械式断路器2及び機械式遮断器20に並列に接続された並列回路3と、送電線100と並列回路3とを接続するHブリッジ回路5とから構成されている。より具体的には、並列回路3は半導体遮断器4とこれに直列に接続されたリアクトル55から構成され、さらに半導体遮断器4にのみ並列にアレスタ43が接続されている。そして、Hブリッジ回路5は、送電線100の機械式断路器2と機械式遮断器20の間の一点と、並列回路3の半導体遮断器4とリアクトル55の間の一点を接続するように構成されている。 The DC breaker 1 includes a mechanical disconnector 2 and a mechanical breaker 20 connected in series to the power transmission line 100, a parallel circuit 3 connected in parallel to the mechanical disconnector 2 and the mechanical breaker 20, An H bridge circuit 5 that connects the power transmission line 100 and the parallel circuit 3 is configured. More specifically, the parallel circuit 3 includes a semiconductor circuit breaker 4 and a reactor 55 connected in series to the semiconductor circuit breaker 4, and an arrester 43 is connected in parallel only to the semiconductor circuit breaker 4. The H bridge circuit 5 is configured to connect one point between the mechanical disconnector 2 and the mechanical circuit breaker 20 of the transmission line 100 and one point between the semiconductor breaker 4 and the reactor 55 of the parallel circuit 3. Has been.
 機械式断路器2は、公知の種々の構成を用いることができる。本実施形態では、後述するように並列回路3を用いて直流電流の遮断が行われるため、機械式断路器2自体に電流遮断能力は不要である。機械接点を持つものであって、接点が切り離された状態で、事故点を切り離すのに必要な直流電圧に耐える絶縁耐圧を持つものであれば足りる。機械式断路器2は、例えば、回路の端子間に回動接触子を設け、この回動接触子が回動して各端子に取り付けられた固定接触子と接離することによって、回路の切り離しを行う構成とすることができる。 The mechanical disconnector 2 can use various known configurations. In this embodiment, since the direct current is interrupted using the parallel circuit 3 as will be described later, the mechanical disconnector 2 itself does not need a current interrupting capability. It is sufficient if it has a mechanical contact and has a withstand voltage that can withstand the DC voltage necessary for disconnecting the accident point with the contact disconnected. For example, the mechanical disconnector 2 is provided with a rotating contact between the terminals of the circuit, and the rotating contact rotates to come in contact with and separate from the fixed contact attached to each terminal. It can be set as the structure which performs.
 機械式断路器2は、通常時にはオン状態、すなわち接点が接触した状態になるように制御される。直流送電網Aからの電流は、機械式断路器2を通過して直流送電網Bへ流れる。事故時は、後述するが、並列回路3に電流が流れるように制御が行われ、機械式断路器2を流れる電流が略ゼロになったところで、オフ状態に切り換えられ、回路が切り離される。 The mechanical disconnector 2 is normally controlled to be in an on state, that is, a contact point. The current from the DC transmission network A flows through the mechanical disconnector 2 to the DC transmission network B. In the event of an accident, as will be described later, control is performed so that a current flows through the parallel circuit 3, and when the current flowing through the mechanical disconnector 2 becomes substantially zero, the circuit is disconnected.
 機械式遮断器20は、公知の種々の構成を用いることができる。機械接点を持つものであって、接点を開くことにより小電流を遮断する能力を有するものであれば足りる。機械式遮断器20は、例えば、回路の端子間に回動接触子を設け、この回動接触子が回動して各端子に取り付けられた固定接触子と接離することによって、小電流の遮断を行う構成とすることができる。 The mechanical circuit breaker 20 can use various known configurations. Any mechanical contact that has the ability to cut off a small current by opening the contact is sufficient. The mechanical circuit breaker 20 is provided with a rotating contact between terminals of a circuit, for example, and the rotating contact rotates to contact and separate from a fixed contact attached to each terminal. It can be set as the structure which performs interruption | blocking.
 機械式遮断器20は、通常時にはオン状態、すなわち接点が接触した状態になるように制御される。直流送電網Aからの電流は、機械式断路器2及び機械式遮断器20を通過して直流送電網Bへ流れる。事故時には、機械式遮断器20に流れる電流が増大する。機械式遮断器20には電流センサ(不図示)が取り付けられている。機械式遮断器20に流れる電流を電流センサで測定し、事故を示す閾値と比較することで、事故を検出する。詳細は後述するが、事故時に、Hブリッジ回路5に電流が流れ、機械式遮断器20を流れる電流が略ゼロになる制御が行われる。機械式遮断器20は、流れる電流が略ゼロになったところでオフ状態に切り換えられ、回路が切り離される。 The mechanical circuit breaker 20 is normally controlled to be in an on state, that is, a contact point. The current from the DC power transmission network A flows through the mechanical disconnector 2 and the mechanical circuit breaker 20 to the DC power transmission network B. At the time of an accident, the current flowing through the mechanical circuit breaker 20 increases. A current sensor (not shown) is attached to the mechanical circuit breaker 20. The current flowing through the mechanical circuit breaker 20 is measured by a current sensor, and the accident is detected by comparing it with a threshold value indicating the accident. Although details will be described later, in the event of an accident, control is performed so that a current flows through the H-bridge circuit 5 and the current flowing through the mechanical circuit breaker 20 becomes substantially zero. The mechanical circuit breaker 20 is switched to an off state when the flowing current becomes substantially zero, and the circuit is disconnected.
 機械式断路器2および機械式遮断器20に並列に接続された並列回路3には、半導体遮断器4が設けられている。半導体遮断器4は、スイッチング素子41を複数個直列に接続し、それぞれのスイッチング素子41に対してダイオード42を逆並列に接続した構成となっている。図1の例では、半導体遮断器4は2個のスイッチング素子41を備えている。スイッチング素子41は、例えばIGBT(絶縁ゲートバイポーラトランジスタ)、バイポーラトランジスタ、電界トランジスタ等の自己消弧能力を持つものが用いられる。スイッチング素子は、直流送電網A側にコレクタ端子を接続したものと、直流送電網B側にコレクタ端子を接続したものとがあるため、直流送電網AからB若しくはBからAの双方向の電流を導通および遮断可能となっている。 The semiconductor circuit breaker 4 is provided in the parallel circuit 3 connected in parallel to the mechanical disconnector 2 and the mechanical circuit breaker 20. The semiconductor circuit breaker 4 has a configuration in which a plurality of switching elements 41 are connected in series, and a diode 42 is connected in antiparallel to each switching element 41. In the example of FIG. 1, the semiconductor circuit breaker 4 includes two switching elements 41. As the switching element 41, for example, an element having a self-extinguishing capability such as an IGBT (insulated gate bipolar transistor), a bipolar transistor, or an electric field transistor is used. There are switching elements that have a collector terminal connected to the DC power transmission network A side and those that have a collector terminal connected to the DC power transmission network B side, so that a bidirectional current from the DC power transmission network A to B or B to A Can be turned on and off.
 半導体遮断器4はゲート信号の入力によって、導通状態であるオン状態と非導通状態であるオフ状態が切り換えられる。導通状態では、半導体遮断器4を介して直流送電系統から並列回路3へ電流が供給され、非導通状態では直流送電系統から並列回路3への電流は遮断される。 The semiconductor circuit breaker 4 is switched between an on state, which is a conducting state, and an off state, which is a non-conducting state, by the input of a gate signal. In the conductive state, current is supplied from the DC power transmission system to the parallel circuit 3 via the semiconductor circuit breaker 4, and in the non-conductive state, the current from the DC power transmission system to the parallel circuit 3 is interrupted.
 半導体遮断器4には、一定電圧以上が印加されると導通する非線形素子からなるアレスタ43が並列に接続されている。アレスタ43は、半導体遮断器4がオフ状態に切り換えられたときに、サージ電圧を吸収して安全な電流遮断を可能とする。 The semiconductor circuit breaker 4 is connected in parallel with an arrester 43 made of a non-linear element that conducts when a certain voltage or more is applied. The arrester 43 absorbs the surge voltage and enables safe current interruption when the semiconductor circuit breaker 4 is switched to the off state.
 Hブリッジ回路5は、複数のHブリッジユニット50を直列に接続した構成となっている。各Hブリッジユニット50は、スイッチング素子51を直列に2個接続した2つのレグ52を有する。スイッチング素子51は、それぞれ自己消弧能力を持つものが用いられる。各スイッチング素子51にはダイオードが並列に接続されている。これら2つのレグ52は並列に接続され、さらにコンデンサ53が2つのレグ52と並列に接続されている。コンデンサ53は、定常動作時に送電線100を流れる電流によって充電される。 The H bridge circuit 5 has a configuration in which a plurality of H bridge units 50 are connected in series. Each H-bridge unit 50 has two legs 52 in which two switching elements 51 are connected in series. As the switching elements 51, those having self-extinguishing capability are used. A diode is connected to each switching element 51 in parallel. These two legs 52 are connected in parallel, and a capacitor 53 is connected in parallel with the two legs 52. The capacitor 53 is charged by a current flowing through the power transmission line 100 during steady operation.
 リアクトル55は、電流変化率低減用のものであり、詳細は後述するが、Hブリッジ回路5による電流制御を可能とするために設けられている。 The reactor 55 is for reducing the rate of change in current and is provided to enable current control by the H-bridge circuit 5 as will be described in detail later.
(動作)
 以上の構成を有する直流遮断装置1の動作を、図2~図6を参照し、通常時と事故時に分けて説明する。通常時は、機械式断路器2及び機械式遮断器20をオン状態、半導体遮断器4およびHブリッジ回路5をオフ状態に制御する。図2に示すように、直流送電網Aからの電流は、機械式断路器2及び機械式遮断器20のみを通過して直流送電網Bへ流れ、並列回路3及びHブリッジ回路5には流れない。
(Operation)
The operation of the DC circuit breaker 1 having the above configuration will be described separately with reference to FIGS. At normal times, the mechanical disconnector 2 and the mechanical circuit breaker 20 are controlled to be in an on state, and the semiconductor circuit breaker 4 and the H bridge circuit 5 are controlled to be in an off state. As shown in FIG. 2, the current from the DC power transmission network A flows only through the mechanical disconnector 2 and the mechanical circuit breaker 20 to the DC power transmission network B, and flows into the parallel circuit 3 and the H bridge circuit 5. Absent.
 事故時の直流遮断装置1の動作を説明するにあたって、図3を参照する。図3は、上述した直流遮断装置1の有効性を説明するために実施した、シミュレーション実施回路の動作状態を表す図である。シミュレーション実施回路は、電流送電網Aを模擬した回路構成の中に図1に示す直流遮断装置1に接続し、この直流遮断装置1に直流電圧320KVを印加した状態とした後、模擬化した電流送電網Aの送電線100に雷などに起因する地絡事故を発生させたものである。図3の太い実線で表示した(i)は機械式遮断器20を流れる電流を示す。一点鎖線で表示した(ii)はHブリッジ回路5を流れる電流を示す。二点鎖線で表示した(iii)は半導体遮断器4を流れる電流を示す。 In describing the operation of the DC interrupter 1 at the time of an accident, refer to FIG. FIG. 3 is a diagram illustrating an operation state of the simulation execution circuit, which was performed to explain the effectiveness of the DC interrupting device 1 described above. The simulation execution circuit is connected to the DC interrupter 1 shown in FIG. 1 in the circuit configuration simulating the current transmission network A, and after applying the DC voltage 320 KV to the DC interrupter 1, the simulated current A ground fault caused by lightning or the like has occurred in the power transmission line 100 of the power transmission network A. (I) indicated by a thick solid line in FIG. 3 indicates a current flowing through the mechanical circuit breaker 20. (Ii) indicated by an alternate long and short dash line indicates a current flowing through the H-bridge circuit 5. (Iii) indicated by a two-dot chain line indicates a current flowing through the semiconductor circuit breaker 4.
 事故発生時は事故電流は時間と共に増大していく。直流遮断装置1は、全体として見ると二段階の遮断動作を行う。まず、事故電流の小さい初期の段階で、機械式遮断器20の遮断動作を行って事故電流を並列回路3に転流させ、事故電流の増大した後期の段階で、半導体遮断器4の遮断動作を行う。以下、詳細に説明する。 ¡When an accident occurs, the accident current increases with time. The DC blocking device 1 performs a two-stage blocking operation as a whole. First, the breaking operation of the mechanical circuit breaker 20 is performed at the initial stage where the fault current is small, and the fault current is commutated to the parallel circuit 3, and the breaking operation of the semiconductor circuit breaker 4 is performed at the later stage when the fault current increases. I do. Details will be described below.
 時間t1において地絡事故が発生すると、(i)に示すように機械式遮断器20に流れる電流は増大する。機械式遮断器20に取り付けられた電流センサは、機械式遮断器20を流れる電流Idc_Mを検出し、予め設定した事故発生検出閾値Idc_Jと比較する。検出された電流Idc_Mが閾値Idc_Jを超過した時間t2において、並列回路3の半導体遮断器4のスイッチング素子41のゲート信号をオフからオンに切り換える。同時に、Hブリッジ回路5の出力電圧制御を行う。具体的には、Hブリッジ回路5の出力電圧V_Hを以下の式で演算して、出力する。
 V_H=G(s)×(IdcM-0)
   (G(s)は制御ゲイン。sはラプラス演算子)
 G(s)は制御ゲインで、例えば一般的な比例積分制御を行う。
When a ground fault occurs at time t1, the current flowing through the mechanical circuit breaker 20 increases as shown in (i). The current sensor attached to the mechanical circuit breaker 20 detects the current Idc_M flowing through the mechanical circuit breaker 20 and compares it with a preset accident occurrence detection threshold value Idc_J. At time t2 when the detected current Idc_M exceeds the threshold value Idc_J, the gate signal of the switching element 41 of the semiconductor circuit breaker 4 of the parallel circuit 3 is switched from OFF to ON. At the same time, the output voltage of the H bridge circuit 5 is controlled. Specifically, the output voltage V_H of the H bridge circuit 5 is calculated by the following formula and output.
V_H = G (s) × (IdcM-0)
(G (s) is control gain, s is Laplace operator)
G (s) is a control gain, for example, performing general proportional-integral control.
 すなわち、各Hブリッジユニット50の各レグ52のスイッチング素子51を予め定めるオン・オフ時間の比(duty)に従ってパルス幅変調制御を実行することにより、機械式遮断器20に流れる電流Idc_Mが略ゼロとなるように制御し続ける。言い換えると、各レグ52のスイッチング素子51をパルス幅変調制御を実施することにより、Hブリッジユニット50の出力電圧V_Hを可変出力する。 That is, by performing pulse width modulation control on the switching elements 51 of each leg 52 of each H-bridge unit 50 according to a predetermined on / off time ratio (duty), the current Idc_M flowing through the mechanical circuit breaker 20 is substantially zero. Continue to control to become. In other words, the output voltage V_H of the H bridge unit 50 is variably output by performing pulse width modulation control on the switching element 51 of each leg 52.
 このようなHブリッジ回路5による制御により、図3の(i)に示すように、機械式遮断器20に流れる電流Idc_Mは略ゼロになるまで制御され続ける。この状態で機械式遮断器20をオフ状態に移行させる。機械式遮断器20に流れる電流は略ゼロとなっているため、接点をオフ状態に移行させても通常の直流電流導通時のように、アークを引いて電流が流れ続けることがない。そのため、高速に電流を遮断することができる。 As a result of such control by the H-bridge circuit 5, the current Idc_M flowing through the mechanical circuit breaker 20 continues to be controlled until it becomes substantially zero, as shown in FIG. In this state, the mechanical circuit breaker 20 is shifted to the off state. Since the current flowing through the mechanical circuit breaker 20 is substantially zero, even if the contact is shifted to the OFF state, the current does not continue to flow by pulling an arc as in normal DC current conduction. Therefore, current can be interrupted at high speed.
 Hブリッジユニット50による出力電圧制御を行う場合は、ほぼ導通抵抗ゼロの機械式遮断器20にHブリッジユニット50の出力電圧が直接印加され、短絡電流が流れて、電流制御ができなくなるおそれがある。しかしながら、本実施形態では、Hブリッジ回路5に接続された並列回路3に、電流変化率低減用のリアクトル55が設けられている。このリアクトル55によって機械式遮断器20にHブリッジユニット50の出力電圧が直接印加されることが防止されるため、機械式遮断器20に流れる電流の制御が可能となる。 When the output voltage control by the H bridge unit 50 is performed, the output voltage of the H bridge unit 50 is directly applied to the mechanical circuit breaker 20 having almost zero conduction resistance, a short circuit current flows, and there is a possibility that the current control cannot be performed. . However, in the present embodiment, the parallel circuit 3 connected to the H bridge circuit 5 is provided with a reactor 55 for reducing the current change rate. Since the reactor 55 prevents the output voltage of the H-bridge unit 50 from being directly applied to the mechanical breaker 20, the current flowing through the mechanical breaker 20 can be controlled.
 具体的に説明すると、機械式遮断器20に流れる電流Idc_Mの変化率dIdc_M/dtは、リアクトル55のインダクタンス値Lを用いて以下の式で表される。
 dIdc_M/dt=V_H/L
 リアクトル55がない場合、インダクタンス値L=0となるため、Hブリッジユニット50の出力電圧V_Hがゼロでない限り、電流変化率dIdc_M/dtは無限大となってしまい、機械式遮断器20に流れる電流Idc_Mの制御ができなくなる。本実施形態では、並列回路3にリアクトル55を設けることによって、上記式においてインダクタンス値Lが挿入されるため、電流変化率dIdc_M/dtが有限となる。したがって、Hブリッジユニット50の出力電圧V_Hの大きさに応じて電流変化率dIdc_M/dtを制御することが可能となる。これによって、機械式遮断器20にHブリッジユニット50の出力電圧が直接印加されることを防止し、機械式遮断器20を流れる電流Idc_Mを略ゼロにする電流制御が可能となる。
More specifically, the rate of change dIdc_M / dt of the current Idc_M flowing through the mechanical circuit breaker 20 is expressed by the following equation using the inductance value L of the reactor 55.
dIdc_M / dt = V_H / L
In the absence of the reactor 55, the inductance value L = 0, so that the current change rate dIdc_M / dt becomes infinite unless the output voltage V_H of the H bridge unit 50 is zero, and the current flowing through the mechanical circuit breaker 20 Idc_M cannot be controlled. In the present embodiment, by providing the reactor 55 in the parallel circuit 3, since the inductance value L is inserted in the above equation, the current change rate dIdc_M / dt becomes finite. Therefore, the current change rate dIdc_M / dt can be controlled according to the magnitude of the output voltage V_H of the H bridge unit 50. This prevents the output voltage of the H-bridge unit 50 from being directly applied to the mechanical circuit breaker 20 and enables current control to make the current Idc_M flowing through the mechanical circuit breaker 20 substantially zero.
 Hブリッジ回路5による出力電圧制御により、機械式遮断器20に流れる電流Idc_Mは略ゼロになるまで制御され続ける。具体的には、図4に示すように、送電線100を流れる電流は、機械式遮断器20を通らずにHブリッジ回路5を通り、さらにHブリッジ回路5に接続された並列回路3を通って、送電線100に戻る。このため、機械式遮断器20に流れる電流Idc_Mが略ゼロになる。この状態で機械式遮断器20をオフ状態に移行させる。機械式遮断器20に流れる電流は略ゼロとなっているため、接点をオフ状態に移行させても通常の直流電流導通時のように、アークを引いて電流が流れ続けることがない。そのため、高速に電流を遮断することができる。 The output voltage control by the H bridge circuit 5 continues to be controlled until the current Idc_M flowing through the mechanical circuit breaker 20 becomes substantially zero. Specifically, as shown in FIG. 4, the current flowing through the transmission line 100 does not pass through the mechanical circuit breaker 20, passes through the H bridge circuit 5, and further passes through the parallel circuit 3 connected to the H bridge circuit 5. Return to the power transmission line 100. For this reason, the current Idc_M flowing through the mechanical circuit breaker 20 becomes substantially zero. In this state, the mechanical circuit breaker 20 is shifted to the off state. Since the current flowing through the mechanical circuit breaker 20 is substantially zero, even if the contact is shifted to the OFF state, the current does not continue to flow by pulling an arc as in normal DC current conduction. Therefore, current can be interrupted at high speed.
 次に、図5に示すように、Hブリッジユニット50のスイッチング素子51を全てオフにする(図3の(ii)参照)。すると、Hブリッジユニット50のコンデンサ53にあらかじめ蓄えられていた電圧が、機械式断路器2を流れ続ける事故電流を減少させる方向に印加される。これによって、機械式断路器2を流れる事故電流は減少する。機械式断路器2に流れる事故電流が減少した分、機械式断路器2に並列に接続された並列回路3に事故電流が転流される。図3の(iii)に示すように、半導体遮断器4に流れる電流が増大し、時間の経過により、最終的に機械式断路器2に流れる電流はゼロになり、すべての事故電流が半導体遮断器4を流れるようになる。このタイミングで、機械式断路器2をオフにする。機械式断路器2には電流が流れていないため、接点を切り離しの際にアークが生じて電流が流れ続けることはない。 Next, as shown in FIG. 5, all the switching elements 51 of the H bridge unit 50 are turned off (see (ii) of FIG. 3). Then, the voltage stored in advance in the capacitor 53 of the H bridge unit 50 is applied in a direction to reduce the accident current that continues to flow through the mechanical disconnector 2. As a result, the fault current flowing through the mechanical disconnector 2 is reduced. Since the accident current flowing through the mechanical disconnector 2 is reduced, the accident current is commutated to the parallel circuit 3 connected in parallel to the mechanical disconnector 2. As shown in (iii) of FIG. 3, the current flowing through the semiconductor breaker 4 increases, and eventually the current flowing through the mechanical disconnector 2 becomes zero with the passage of time, and all fault currents are cut off by the semiconductor It flows through the vessel 4. At this timing, the mechanical disconnector 2 is turned off. Since no current flows through the mechanical disconnector 2, an arc is not generated when the contact is disconnected, and the current does not continue to flow.
 最後に、図6に示すように、半導体遮断器4のスイッチング素子41のゲート信号をオンからオフに切り換えて、並列回路3に流れる事故電流を遮断する。このとき発生するサージ電圧はアレスタ43に吸収され、電流遮断が完了する。 Finally, as shown in FIG. 6, the gate signal of the switching element 41 of the semiconductor circuit breaker 4 is switched from on to off to interrupt the accident current flowing in the parallel circuit 3. The surge voltage generated at this time is absorbed by the arrester 43, and the current interruption is completed.
(効果)
 以上のように、第1の実施形態では、直流遮断装置1に、送電線100に設けられる機械式断路器2と、機械式断路器2に直列に接続される機械式遮断器20と、機械式断路器2及び機械式遮断器20に並列に接続される並列回路3と、を備えた。並列回路3には、並列回路3への送電線100の電流の供給及び遮断を切り換える半導体遮断器4と、半導体遮断器4に直列に接続されたリアクトル55を備えた。直流遮断装置1はさらに、機械式断路器2及び機械式遮断器20の間の一点と、半導体遮断器4及びリアクトル55の間の一点を接続するHブリッジ回路5を備えている。Hブリッジ回路5は、複数のスイッチング素子51及びコンデンサ53からなるHブリッジユニット50を備える。Hブリッジ回路5は、出力電圧制御により機械式遮断器20に流れる電流を制御する。
(effect)
As described above, in the first embodiment, the DC breaker 1 includes the mechanical disconnector 2 provided in the power transmission line 100, the mechanical breaker 20 connected in series to the mechanical disconnector 2, and the machine And a parallel circuit 3 connected in parallel to the mechanical disconnector 2 and the mechanical breaker 20. The parallel circuit 3 includes a semiconductor circuit breaker 4 that switches between supply and interruption of the current of the power transmission line 100 to the parallel circuit 3 and a reactor 55 that is connected to the semiconductor circuit breaker 4 in series. The DC breaker 1 further includes an H bridge circuit 5 that connects a point between the mechanical disconnector 2 and the mechanical breaker 20 and a point between the semiconductor breaker 4 and the reactor 55. The H bridge circuit 5 includes an H bridge unit 50 including a plurality of switching elements 51 and a capacitor 53. The H bridge circuit 5 controls the current flowing through the mechanical circuit breaker 20 by output voltage control.
 通常時には、電流は機械式断路器2及び機械式遮断器20のみを通過するため、導通損失を低減させることができ、効率の良い直流遮断装置1を提供することが可能となる。事故時には、Hブリッジ回路5を用いた出力電圧制御により、並列回路3に電流を誘導して機械式断路器2を流れる電流を、アークを生じさせずに回路の切り離しを行うことができる量、例えば略ゼロにすることで、電流遮断能力のない機械式断路器2であっても、安全に事故点の切り離しを行うことができる。さらに、並列回路3に設けた半導体遮断器4によって高速の電流遮断を実現することができる。このような効果によって、送電効率の向上、コスト低減及び直流送電における信頼性の向上に寄与することができる。 In normal times, since the current passes only through the mechanical disconnector 2 and the mechanical breaker 20, the conduction loss can be reduced, and the efficient DC breaker 1 can be provided. In the event of an accident, the output voltage control using the H-bridge circuit 5 can induce the current in the parallel circuit 3 and the current flowing through the mechanical disconnector 2 can be disconnected without causing an arc. For example, by setting it to substantially zero, even in the case of the mechanical disconnector 2 having no current interruption capability, the accident point can be safely separated. Furthermore, high-speed current interruption can be realized by the semiconductor breaker 4 provided in the parallel circuit 3. Such an effect can contribute to improvement in power transmission efficiency, cost reduction, and improvement in reliability in DC power transmission.
 さらに、Hブリッジ回路5は、機械式断路器2及び機械式遮断器20の間の一点と、半導体遮断器4及びリアクトル55の間の一点を接続する形で設置されている。そのため、機械式遮断器20の遮断動作を行う事故電流の小さい初期の段階のみ、Hブリッジ回路5に電流が流れる。すなわち、Hブリッジ回路5を流れる電流の最大値は、機械式遮断器20をオフする時点での事故電流である。その後、機械式断路器2をオフするまでにさらに時間経過した際に増加する事故電流は、並列回路3を伝わって流れるため、Hブリッジ回路5を構成する半導体スイッチング素子51の最大電流容量は、半導体遮断器4を構成するスイッチング素子41の最大電流容量よりも大幅に小さな容量に低減することが可能になる。また、並列回路3にリアクトル55を設置しているため、Hブリッジ回路5の出力電圧が機械式遮断器20に直接印加されることがなく、正確な電流制御が可能となる。 Furthermore, the H bridge circuit 5 is installed in such a manner that one point between the mechanical disconnector 2 and the mechanical circuit breaker 20 and one point between the semiconductor circuit breaker 4 and the reactor 55 are connected. Therefore, a current flows through the H bridge circuit 5 only in the initial stage where the fault current that performs the breaking operation of the mechanical breaker 20 is small. That is, the maximum value of the current flowing through the H bridge circuit 5 is an accident current at the time when the mechanical circuit breaker 20 is turned off. Thereafter, the fault current that increases when a further time elapses before the mechanical disconnector 2 is turned off flows through the parallel circuit 3, so that the maximum current capacity of the semiconductor switching element 51 constituting the H-bridge circuit 5 is It is possible to reduce the capacity to a much smaller capacity than the maximum current capacity of the switching element 41 constituting the semiconductor circuit breaker 4. Moreover, since the reactor 55 is installed in the parallel circuit 3, the output voltage of the H bridge circuit 5 is not directly applied to the mechanical circuit breaker 20, and accurate current control is possible.
 また、Hブリッジ回路5は、直列に接続された複数のHブリッジユニット50を備えている。各Hブリッジユニット50に備えられているコンデンサ53の数が増えることによって充放電量も増えるため、大きな事故電流にも対応することができる。 The H bridge circuit 5 includes a plurality of H bridge units 50 connected in series. As the number of capacitors 53 provided in each H-bridge unit 50 increases, the amount of charge / discharge also increases, so that a large accident current can be dealt with.
(第2の実施形態)
 第2の実施形態について、図7を用いて説明する。第2の実施形態では、第1の実施形態とは異なる点のみを説明し、第1の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
(Second Embodiment)
A second embodiment will be described with reference to FIG. In the second embodiment, only points different from the first embodiment will be described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and detailed description thereof will be omitted.
(構成)
 本実施形態では、直流遮断装置1はHブリッジ回路5を備えていない。機械式断路器2及び機械式遮断器20に並列に接続された並列回路3には、2組の半導体遮断器4A,4Bが直列に接続されている。
(Constitution)
In the present embodiment, the DC cutoff device 1 does not include the H bridge circuit 5. Two sets of semiconductor breakers 4A and 4B are connected in series to the parallel circuit 3 connected in parallel to the mechanical disconnector 2 and the mechanical breaker 20.
 半導体遮断器4Aは自己消弧能力を持つスイッチング素子41aを、2つ以上直列に接続し、各スイッチング素子41aに対してダイオード42aを逆並列に接続した構成となっている。図7の例では、3つ接続した例を示している。半導体遮断器4Aは、直流送電網A側にコレクタ端子を接続している。 The semiconductor circuit breaker 4A has a configuration in which two or more switching elements 41a having a self-extinguishing capability are connected in series, and a diode 42a is connected in antiparallel to each switching element 41a. In the example of FIG. 7, an example in which three are connected is shown. The semiconductor circuit breaker 4A has a collector terminal connected to the DC power transmission network A side.
 半導体遮断器4Bは自己消弧能力を持つスイッチング素子41bを、2つ以上直列に接続し、各スイッチング素子41bに対してダイオード42bを逆並列に接続した構成となっている。図7の例では、3つ接続した例を示している。半導体遮断器4Bは、直流送電網B側にコレクタ端子を接続している。すなわち、半導体遮断器4Bのスイッチング素子41bは、半導体遮断器4Aのスイッチング素子41bとは、コレクタ及びエミッタの向きが逆になっている。 The semiconductor circuit breaker 4B has a configuration in which two or more switching elements 41b having a self-extinguishing capability are connected in series, and a diode 42b is connected in antiparallel to each switching element 41b. In the example of FIG. 7, an example in which three are connected is shown. The semiconductor circuit breaker 4B has a collector terminal connected to the DC power transmission network B side. That is, the switching element 41b of the semiconductor circuit breaker 4B has the collector and emitter oriented in the opposite direction to the switching element 41b of the semiconductor circuit breaker 4A.
 半導体遮断器4A,4Bは、それぞれのエミッタ同士がリアクトル55を介して接続されている。このリアクトル55は、並列回路3の電流変化率を低減するために設置されているが、配線インダクタンスを活用することによって、リアクトル55を省略することもできる。また、図7の例では、リアクトル55は半導体遮断器4A,4Bの間に設置されているが、設置位置はこれに限られない。並列回路3において、半導体遮断器4Aの直流送電網A側の隣や、半導体遮断器4Bの直流送電網B側の隣に設置しても、機能に違いはない。 The emitters of the semiconductor circuit breakers 4A and 4B are connected to each other via a reactor 55. Although this reactor 55 is installed in order to reduce the current change rate of the parallel circuit 3, the reactor 55 can also be abbreviate | omitted by utilizing wiring inductance. Moreover, in the example of FIG. 7, although the reactor 55 is installed between the semiconductor circuit breakers 4A and 4B, an installation position is not restricted to this. Even if the parallel circuit 3 is installed next to the DC power transmission network A side of the semiconductor circuit breaker 4A or adjacent to the DC power transmission network B side of the semiconductor circuit breaker 4B, there is no difference in function.
 半導体遮断器4Aを構成するスイッチング素子41aの一つには、逆電流発生回路6Aが逆並列に接続される。逆電流発生回路6Aは、スイッチング素子61aと、スイッチング素子61aと逆並列に接続したダイオード62aと、スイッチング素子61aに直列に接続したコンデンサ63aとから構成されている。半導体遮断器4Aのスイッチング素子41aのコレクタ側と、逆電流発生回路6Aのスイッチング素子41aのエミッタ側とを接続している。逆電流発生回路6Aのコレクタ側は、コンデンサ63aの正側端子に接続されている。コンデンサ63aの負側端子は、半導体遮断器4Aのスイッチング素子41aのエミッタ側に接続される。 A reverse current generation circuit 6A is connected in reverse parallel to one of the switching elements 41a constituting the semiconductor circuit breaker 4A. The reverse current generation circuit 6A includes a switching element 61a, a diode 62a connected in antiparallel with the switching element 61a, and a capacitor 63a connected in series with the switching element 61a. The collector side of the switching element 41a of the semiconductor circuit breaker 4A is connected to the emitter side of the switching element 41a of the reverse current generation circuit 6A. The collector side of the reverse current generation circuit 6A is connected to the positive terminal of the capacitor 63a. The negative terminal of the capacitor 63a is connected to the emitter side of the switching element 41a of the semiconductor circuit breaker 4A.
 半導体遮断器4Bを構成するスイッチング素子41bの一つには、逆電流発生回路6Bが逆並列に接続される。逆電流発生回路6Bは、スイッチング素子61bと、スイッチング素子61bと逆並列に接続したダイオード62bと、スイッチング素子61bに直列に接続したコンデンサ63bとから構成されている。半導体遮断器4Bのスイッチング素子41bのコレクタ側と、逆電流発生回路6Bのスイッチング素子41bのエミッタ側とを接続している。逆電流発生回路6Bのコレクタ側は、コンデンサ63bの正側端子に接続されている。コンデンサ63bの負側端子は、半導体遮断器4Aのスイッチング素子41aのエミッタ側に接続される。すなわち、逆電流発生回路6Bのスイッチング素子61bは、逆電流発生回路6Aのスイッチング61aとは、逆方向に電流を導通させるように設置されている。 A reverse current generation circuit 6B is connected in reverse parallel to one of the switching elements 41b constituting the semiconductor circuit breaker 4B. The reverse current generation circuit 6B includes a switching element 61b, a diode 62b connected in antiparallel with the switching element 61b, and a capacitor 63b connected in series with the switching element 61b. The collector side of the switching element 41b of the semiconductor circuit breaker 4B is connected to the emitter side of the switching element 41b of the reverse current generation circuit 6B. The collector side of the reverse current generation circuit 6B is connected to the positive side terminal of the capacitor 63b. The negative terminal of the capacitor 63b is connected to the emitter side of the switching element 41a of the semiconductor circuit breaker 4A. That is, the switching element 61b of the reverse current generation circuit 6B is installed so as to conduct current in the opposite direction to the switching 61a of the reverse current generation circuit 6A.
 逆電流発生回路6A,6Bを構成するスイッチング素子61a,61bは、半導体遮断器4A,4Bを構成するスイッチング素子41a,41bの最大電流容量よりも小さな容量のものを用いても良い。 As the switching elements 61a and 61b constituting the reverse current generating circuits 6A and 6B, those having a capacity smaller than the maximum current capacity of the switching elements 41a and 41b constituting the semiconductor circuit breakers 4A and 4B may be used.
 なお、逆電流発生回路6A,6Bは、それぞれ、半導体遮断器4A,4Bを構成するスイッチング素子41a,41bの一つに対して逆並列に接続されているが、複数のスイッチング素子41a,41bに対して逆並列に接続するようにしても良い。図7の例では半導体遮断器4A,4Bは、それぞれ3つのスイッチング素子41a,41bを有しているため、逆電流発生回路6A,6Bは、2つ又は3つのスイッチング素子41a,41bに対して逆並列に接続するようにしても良い。 The reverse current generation circuits 6A and 6B are connected in antiparallel to one of the switching elements 41a and 41b constituting the semiconductor circuit breakers 4A and 4B, respectively. On the other hand, you may make it connect in antiparallel. In the example of FIG. 7, the semiconductor circuit breakers 4A and 4B have three switching elements 41a and 41b, respectively. Therefore, the reverse current generation circuits 6A and 6B have two or three switching elements 41a and 41b. You may make it connect in antiparallel.
(動作)
 以上の構成を有する直流遮断装置1の動作を、通常時と事故時に分けて説明する。なお、事故時については、直流送電網Bで直流短絡事故が発生した場合を説明する。通常時、機械式断路器2及び機械式遮断器20をオン状態、半導体遮断器4A,4B及び逆電流発生回路6A,6Bのスイッチング素子をオフ状態に制御する。直流送電網Aからの電流は、機械式断路器2と機械式遮断器20のみを通過して直流送電網Bへ流れ、並列回路3には流れない。
(Operation)
The operation of the DC circuit breaker 1 having the above configuration will be described separately for normal times and accidents. In the case of an accident, a case where a DC short-circuit accident occurs in the DC power transmission network B will be described. During normal operation, the mechanical disconnector 2 and the mechanical circuit breaker 20 are turned on, and the switching elements of the semiconductor circuit breakers 4A and 4B and the reverse current generation circuits 6A and 6B are controlled to be turned off. The current from the DC power transmission network A flows only through the mechanical disconnector 2 and the mechanical circuit breaker 20 to the DC power transmission network B and does not flow into the parallel circuit 3.
 事故発生時、機械式遮断器20に取り付けられた電流センサが閾値Idc_Jを超える電流Idc_Mを検出すると、直流送電網A側にコレクタが接続された半導体遮断器4Aのスイッチング素子41aをオン状態に移行するとともに、半導体遮断器4Bに逆並列に接続された逆電流発生回路6Bのスイッチング素子61bをオンにする。 When an accident occurs, when the current sensor attached to the mechanical circuit breaker 20 detects a current Idc_M exceeding the threshold value Idc_J, the switching element 41a of the semiconductor circuit breaker 4A whose collector is connected to the DC power transmission network A side is turned on. At the same time, the switching element 61b of the reverse current generation circuit 6B connected in reverse parallel to the semiconductor circuit breaker 4B is turned on.
 逆電流発生回路6Bのコンデンサ63bにあらかじめ充電されたコンデンサ電圧により、直流送電網B側にコレクタが接続された半導体遮断器4Bのダイオード42b、機械式遮断器20、機械式断路器2、直流送電網A側にコレクタが接続された半導体遮断器4Aのスイッチング素子41a及びリアクトル55を通過する一巡回路を構成する。この一巡回路によって、事故時に機械式遮断器20を流れる事故電流と逆向きの電流を重畳させる。これによって機械式遮断器20に流れる電流Idc_Mが略ゼロに制御される。この状態で、機械式遮断器20をオフ状態に移行させる。機械式遮断器20に流れる電流は略ゼロとなっているため、接点をオフ状態に移行させても通常の直流電流導通時のように、アークを引いて電流が流れ続けることがない。そのため、高速に電流を遮断することができる。 The diode 42b of the semiconductor circuit breaker 4B, the mechanical circuit breaker 20, the mechanical disconnector 2, the direct current power transmission whose collector is connected to the direct current power transmission network B side by the capacitor voltage charged in advance in the capacitor 63b of the reverse current generation circuit 6B. A circuit that passes through the switching element 41a and the reactor 55 of the semiconductor circuit breaker 4A with the collector connected to the network A side is configured. By this one-round circuit, a current in the opposite direction to the accident current flowing through the mechanical circuit breaker 20 in the event of an accident is superimposed. As a result, the current Idc_M flowing through the mechanical circuit breaker 20 is controlled to be substantially zero. In this state, the mechanical circuit breaker 20 is shifted to the off state. Since the current flowing through the mechanical circuit breaker 20 is substantially zero, even if the contact is shifted to the OFF state, the current does not continue to flow by pulling an arc as in normal DC current conduction. Therefore, current can be interrupted at high speed.
 次に、逆電流発生回路6Bのスイッチング素子61bをオフにする。さらに機械式断路器2をオフにする。時間経過によって増大する事故電流は、並列回路3のみを流れるようになる。ここで、半導体遮断器4Aのスイッチング素子41aのゲート信号をオンからオフに切り換えることにより、最終的に事故電流は遮断される。 Next, the switching element 61b of the reverse current generation circuit 6B is turned off. Further, the mechanical disconnector 2 is turned off. The accident current that increases with the passage of time flows through the parallel circuit 3 only. Here, the fault current is finally cut off by switching the gate signal of the switching element 41a of the semiconductor circuit breaker 4A from on to off.
 なお、直流送電網A側で事故が発生した場合には、直流送電網Bで事故が発生した場合と左右逆に動作させる。すなわち、直流送電網B側にコレクタが接続された半導体遮断器4Bのスイッチング素子41bをオン状態に移行するとともに、逆電流発生回路6Aのスイッチング素子61aをオンにする。逆電流発生回路6Aのコンデンサ63aにあらかじめ充電されたコンデンサ電圧により、直流送電網A側にコレクタが接続された半導体遮断器4Aのダイオード42a、機械式断路器2、機械式遮断器20、直流送電網B側にコレクタが接続された半導体遮断器4Bのスイッチング素子41b及びリアクトル55を通過する一巡回路を構成する。この一巡回路によって、事故時に機械式遮断器20を流れる事故電流と逆向きの電流を重畳させる。機械式遮断器20に流れる電流Idc_Mを略ゼロに制御し、この状態で、機械式遮断器20をオフ状態に移行させる。 In addition, when an accident occurs on the DC power transmission network A side, the operation is performed in the opposite direction to the case where the accident occurs in the DC power transmission network B. That is, the switching element 41b of the semiconductor circuit breaker 4B whose collector is connected to the DC power transmission network B side is turned on, and the switching element 61a of the reverse current generation circuit 6A is turned on. The diode 42a of the semiconductor circuit breaker 4A, the mechanical disconnector 2, the mechanical circuit breaker 20, and the DC power transmission whose collector is connected to the DC power transmission network A side by the capacitor voltage precharged in the capacitor 63a of the reverse current generation circuit 6A. A circuit that passes through the switching element 41b and the reactor 55 of the semiconductor circuit breaker 4B having a collector connected to the network B side is formed. By this one-round circuit, a current in the opposite direction to the accident current flowing through the mechanical circuit breaker 20 in the event of an accident is superimposed. The current Idc_M flowing through the mechanical circuit breaker 20 is controlled to be substantially zero, and in this state, the mechanical circuit breaker 20 is shifted to the off state.
(効果)
(1)以上のように、第2の実施形態では、直流遮断装置1にHブリッジ回路5を備える代わりに、並列回路3に2組の半導体遮断器4A,4Bを備え、さらに半導体遮断器4A,4Bそれぞれに逆並列に接続する逆電流回路6A,6Bを備える構成とした。半導体遮断器4A,4Bは、複数のスイッチング素子41aを直列に接続して構成され、送電線100から供給された電流を、お互いに逆の方向に導通させるように設置される。逆電流発生回路6A,6Bは、半導体遮断器4A,4Bを構成するスイッチング素子41a,41bの1つ又は複数に対して逆並列に接続され、機械式遮断器20を流れる電流と逆向きの電流を重畳させる。
(effect)
(1) As described above, in the second embodiment, instead of including the H bridge circuit 5 in the DC circuit breaker 1, the parallel circuit 3 includes two sets of semiconductor circuit breakers 4A and 4B, and further includes the semiconductor circuit breaker 4A. , 4B are provided with reverse current circuits 6A, 6B connected in antiparallel. The semiconductor circuit breakers 4A and 4B are configured by connecting a plurality of switching elements 41a in series, and are installed so as to conduct currents supplied from the power transmission line 100 in directions opposite to each other. The reverse current generation circuits 6A and 6B are connected in reverse parallel to one or more of the switching elements 41a and 41b constituting the semiconductor circuit breakers 4A and 4B, and have a current opposite to the current flowing through the mechanical circuit breaker 20. Is superimposed.
 このような構成とすることによって、第1の実施形態と同様に、通常時には、電流は機械式断路器2及び機械式遮断器20のみを通過するため、導通損失を低減させることができ、効率の良い直流遮断装置1を提供することが可能となる。事故時には、逆電流発生回路6A,6Bが機械式遮断器20を流れる電流と逆向きの電流を重畳させるため、機械式遮断器20を流れる電流を略ゼロにすることができ、安全に事故点の切り離しを行うことができる。さらに、並列回路3に設けた半導体遮断器4によって高速の電流遮断を実現することができる。このような効果によって、送電効率の向上、コスト低減及び直流送電における信頼性の向上に寄与することができる。 By adopting such a configuration, as in the first embodiment, the current passes through only the mechanical disconnector 2 and the mechanical circuit breaker 20 at normal times, so that the conduction loss can be reduced and the efficiency is improved. It is possible to provide a direct current interrupting device 1 with good quality. In the event of an accident, the reverse current generation circuits 6A and 6B superimpose a current in the opposite direction to the current flowing through the mechanical circuit breaker 20, so that the current flowing through the mechanical circuit breaker 20 can be made substantially zero, so Can be separated. Furthermore, high-speed current interruption can be realized by the semiconductor breaker 4 provided in the parallel circuit 3. Such an effect can contribute to improvement in power transmission efficiency, cost reduction, and improvement in reliability in DC power transmission.
 また、逆電流発生回路6A,6Bを半導体遮断器4A,4Bに並列に接続したため、機械式遮断器20の遮断動作を行う事故電流の小さい初期の段階のみ逆電流発生回路6A,6Bに電流が流れる。すなわち逆電流発生回路6A,6Bを流れる電流の最大値は、機械式遮断器20をオフする時点での事故電流までである。機械式遮断器20のオフ後、時間経過によって増大した事故電流は、逆電流発生回路6A,6Bと並列接続された半導体遮断器4A,4Bを伝わって流れる。そのため、逆電流発生回路6A,6Bを構成するスイッチング素子61a,61bの最大電流容量は、半導体遮断器4A,4Bを構成するスイッチング素子41a,41bの最大電流容量よりも小さな容量にすることが可能になるため、直流遮断装置1を低コスト化することが可能である。 In addition, since the reverse current generation circuits 6A and 6B are connected in parallel to the semiconductor circuit breakers 4A and 4B, current is supplied to the reverse current generation circuits 6A and 6B only at the initial stage where the fault current is small when the breaking operation of the mechanical circuit breaker 20 is performed. Flowing. That is, the maximum value of the current flowing through the reverse current generation circuits 6A and 6B is up to the accident current at the time when the mechanical circuit breaker 20 is turned off. After the mechanical circuit breaker 20 is turned off, the accident current increased with the passage of time flows through the semiconductor circuit breakers 4A and 4B connected in parallel with the reverse current generation circuits 6A and 6B. Therefore, the maximum current capacity of the switching elements 61a and 61b constituting the reverse current generating circuits 6A and 6B can be made smaller than the maximum current capacity of the switching elements 41a and 41b constituting the semiconductor circuit breakers 4A and 4B. Therefore, it is possible to reduce the cost of the DC interrupter 1.
(2)並列回路3は半導体遮断器4A及び半導体遮断器4Bに直列に接続されたリアクトル55を備えている。リアクトル55によって並列回路3に流れる電流を平滑化し、電流変化率を低減することができ、正確な出力電圧制御が可能となる。 (2) The parallel circuit 3 includes a reactor 55 connected in series to the semiconductor circuit breaker 4A and the semiconductor circuit breaker 4B. The current flowing through the parallel circuit 3 can be smoothed by the reactor 55, the rate of current change can be reduced, and accurate output voltage control is possible.
(その他の実施形態)
 本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
(Other embodiments)
The present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
1 直流遮断装置
2 機械式断路器
20 機械式遮断器
3 並列回路
4,4A,4B 半導体遮断器
41,41a,41b スイッチング素子
42,42a,42b ダイオード
43 アレスタ
5 Hブリッジ回路
50 Hブリッジユニット
51 スイッチング素子
52 レグ
53 コンデンサ
55 リアクトル
6A,6B 逆電流発生回路
61a,61b スイッチング素子
62a,62b ダイオード
63a,63b コンデンサ
100 正側の送電線
101 負側の送電線
A,B 直流送電網
DESCRIPTION OF SYMBOLS 1 DC circuit breaker 2 Mechanical disconnector 20 Mechanical circuit breaker 3 Parallel circuit 4, 4A, 4B Semiconductor circuit breaker 41, 41a, 41b Switching element 42, 42a, 42b Diode 43 Arrester 5 H bridge circuit 50 H bridge unit 51 Switching Element 52 Leg 53 Capacitor 55 Reactor 6A, 6B Reverse current generation circuit 61a, 61b Switching element 62a, 62b Diode 63a, 63b Capacitor 100 Positive transmission line 101 Negative transmission line A, B DC transmission network

Claims (7)

  1.  直流送電系統に設けられる機械式断路器と、
     前記直流送電系統に設けられ、前記機械式断路器に直列に接続される機械式遮断器と、
     前記機械式断路器及び前記機械式遮断器に並列に接続され、前記直流送電系統の電流の供給及び遮断を切り換える半導体遮断器と、当該半導体遮断器に直列に接続されたリアクトルと、を備えた並列回路と、
     前記機械式断路器及び前記機械式遮断器の間の一点と、前記半導体遮断器及び前記リアクトルの間の一点を接続し、複数のスイッチング素子及びコンデンサからなるHブリッジユニットを備え、出力電圧制御により前記機械式遮断器に流れる電流を制御するHブリッジ回路と、を有することを特徴とする直流遮断装置。
    A mechanical disconnector provided in the DC transmission system;
    A mechanical circuit breaker provided in the DC power transmission system and connected in series to the mechanical disconnector;
    A semiconductor breaker that is connected in parallel to the mechanical disconnector and the mechanical breaker, and that switches between supply and interruption of current of the DC power transmission system; and a reactor that is connected in series to the semiconductor breaker. A parallel circuit;
    One point between the mechanical disconnector and the mechanical circuit breaker, and one point between the semiconductor breaker and the reactor are connected, and an H bridge unit including a plurality of switching elements and capacitors is provided, and output voltage control is performed. And a H-bridge circuit for controlling a current flowing through the mechanical circuit breaker.
  2.  前記直流送電系統の事故発生時に、
     前記半導体遮断器及び前記Hブリッジユニットをオン状態に移行させ、前記Hブリッジ回路の出力電圧制御により前記機械式遮断器に流れる電流を略ゼロに制御して当該機械式遮断器をオフ状態に移行させ、
     前記Hブリッジユニットをオフ状態に移行させて、前記Hブリッジ回路の前記コンデンサの電圧印加により前記並列回路に事故電流を転流させ、前記機械式断路器をオフ状態に移行させてから、前記半導体遮断器で事故電流を遮断することを特徴とする請求項1記載の直流遮断装置。
    When an accident occurs in the DC transmission system,
    The semiconductor circuit breaker and the H bridge unit are turned on, and the current flowing through the mechanical circuit breaker is controlled to be substantially zero by the output voltage control of the H bridge circuit, and the mechanical circuit breaker is turned off. Let
    The H bridge unit is turned off, a fault current is commutated to the parallel circuit by applying a voltage of the capacitor of the H bridge circuit, and the mechanical disconnector is turned off. 2. The DC circuit breaker according to claim 1, wherein the fault current is interrupted by a circuit breaker.
  3.  前記Hブリッジ回路は、直列に接続された複数の前記Hブリッジユニットを備えたことを特徴とする請求項1又は2記載の直流遮断装置。 3. The DC circuit breaker according to claim 1, wherein the H bridge circuit includes a plurality of the H bridge units connected in series.
  4.  直流送電系統に設けられる機械式断路器と、
     前記直流送電系統に設けられ、前記機械式断路に直列に接続される機械式遮断器と、
     前記機械式断路器及び前記機械式遮断器に並列に接続された並列回路であって、複数のスイッチング素子を直列に接続して構成され、前記直流送電系統から供給された電流を第一の方向に導通させる第1の半導体遮断器と、複数のスイッチング素子を直列に接続して構成され、前記直流送電系統から供給された電流を第一の方向と逆向きの第二の方向に導通させる第2の半導体遮断器と、を備えた並列回路と、
     前記第1の半導体遮断器を構成するスイッチング素子の1つ又は複数に対して逆並列に接続され、スイッチング素子及びコンデンサから構成され、前記機械式遮断器を流れる電流と逆向きの電流を重畳させる第1の逆電流発生回路と、
     前記第2の半導体遮断器を構成するスイッチング素子の1つ又は複数に対して逆並列に接続され、スイッチング素子及びコンデンサから構成され、前記機械式遮断器を流れる電流と逆向きの電流を重畳させる第2の逆電流発生回路と、を備えることを特徴とする直流遮断装置。
    A mechanical disconnector provided in the DC transmission system;
    A mechanical circuit breaker provided in the DC power transmission system and connected in series to the mechanical disconnection;
    A parallel circuit connected in parallel to the mechanical disconnector and the mechanical circuit breaker, wherein a plurality of switching elements are connected in series, and the current supplied from the DC power transmission system is in a first direction. A first semiconductor circuit breaker that is electrically connected to a plurality of switching elements connected in series, and a current that is supplied from the DC power transmission system is electrically connected in a second direction opposite to the first direction. A parallel circuit comprising two semiconductor breakers;
    One or more switching elements constituting the first semiconductor circuit breaker are connected in anti-parallel, and are composed of a switching element and a capacitor, and superimpose a current flowing in the opposite direction to the current flowing through the mechanical circuit breaker. A first reverse current generation circuit;
    One or a plurality of switching elements constituting the second semiconductor circuit breaker is connected in antiparallel, and includes a switching element and a capacitor, and superimposes a current in a direction opposite to the current flowing through the mechanical circuit breaker. And a second reverse current generating circuit.
  5.  前記直流送電系統の事故発生時に、
     前記第1の半導体遮断器及び前記第2の逆電流回路をオン状態に移行させ、前記第2の逆電流発生回路のコンデンサ電圧により、前記機械式遮断器を流れる電流と逆向きの電流を重畳させて前記機械式遮断器に流れる電流を略ゼロに制御して当該機械式遮断器をオフ状態に移行させ、前記第2の逆電流発生回路をオフ状態に移行させ、前記機械式断路器をオフ状態に移行させてから、前記半導体遮断器で事故電流を遮断することを特徴とする請求項4記載の直流遮断装置。
    When an accident occurs in the DC transmission system,
    The first semiconductor circuit breaker and the second reverse current circuit are turned on, and the current flowing in the opposite direction to the current flowing through the mechanical circuit breaker is superimposed by the capacitor voltage of the second reverse current generation circuit The current flowing through the mechanical circuit breaker is controlled to be substantially zero, the mechanical circuit breaker is shifted to an off state, the second reverse current generation circuit is shifted to an off state, and the mechanical disconnector is 5. The DC circuit breaker according to claim 4, wherein the fault current is interrupted by the semiconductor circuit breaker after the transition to the off state.
  6.  前記直流送電系統の事故発生時に、
     前記第2の半導体遮断器及び前記第1の逆電流回路をオン状態に移行させ、前記第1の逆電流発生回路のコンデンサ電圧により、前記機械式遮断器を流れる電流と逆向きの電流を重畳させて前記機械式遮断器に流れる電流を略ゼロに制御して当該機械式遮断器をオフ状態に移行させ、前記第1の逆電流発生回路をオフ状態に移行させ、前記機械式断路器をオフ状態に移行させてから、前記半導体遮断器で事故電流を遮断することを特徴とする請求項4記載の直流遮断装置。
    When an accident occurs in the DC transmission system,
    The second semiconductor circuit breaker and the first reverse current circuit are turned on, and the current flowing in the opposite direction to the current flowing through the mechanical circuit breaker is superimposed by the capacitor voltage of the first reverse current generation circuit The current flowing through the mechanical circuit breaker is controlled to be substantially zero, the mechanical circuit breaker is shifted to an off state, the first reverse current generating circuit is shifted to an off state, and the mechanical disconnector is 5. The DC circuit breaker according to claim 4, wherein the fault current is interrupted by the semiconductor circuit breaker after the transition to the off state.
  7.  前記並列回路は、前記第1の半導体遮断器及び前記第2の半導体遮断器に直列に接続されたリアクトルを備えることを特徴とする請求項4~6のいずれか一項に記載の直流遮断装置。 The DC circuit breaker according to any one of claims 4 to 6, wherein the parallel circuit includes a reactor connected in series with the first semiconductor circuit breaker and the second semiconductor circuit breaker. .
PCT/JP2016/055395 2015-03-05 2016-02-24 Direct-current interruption device WO2016140122A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16758816.9A EP3267460B1 (en) 2015-03-05 2016-02-24 Direct-current interruption device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015043243A JP6430294B2 (en) 2015-03-05 2015-03-05 DC breaker
JP2015-043243 2015-03-05

Publications (1)

Publication Number Publication Date
WO2016140122A1 true WO2016140122A1 (en) 2016-09-09

Family

ID=56845417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055395 WO2016140122A1 (en) 2015-03-05 2016-02-24 Direct-current interruption device

Country Status (3)

Country Link
EP (1) EP3267460B1 (en)
JP (1) JP6430294B2 (en)
WO (1) WO2016140122A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110268493A (en) * 2017-01-25 2019-09-20 伊顿智能动力有限公司 Under-voltage protection switch unit
CN110678951A (en) * 2017-06-16 2020-01-10 东芝能源系统株式会社 DC circuit breaker, mechanical breaking device for DC circuit breaker, and semiconductor breaking device for DC circuit breaker

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711977B (en) * 2016-11-22 2019-04-12 平高集团有限公司 A kind of high voltage DC breaker and the through-flow branch for high voltage DC breaker
CN106533145B (en) * 2016-11-22 2019-10-15 平高集团有限公司 A kind of high voltage DC breaker
CN106655081B (en) * 2016-11-30 2019-03-01 平高集团有限公司 A kind of dc circuit breaker and its control method
JP6424976B1 (en) * 2017-05-19 2018-11-21 株式会社明電舎 DC blocking device
JP6365724B1 (en) * 2017-04-27 2018-08-01 株式会社明電舎 DC breaker
WO2018198552A1 (en) * 2017-04-27 2018-11-01 株式会社明電舎 Direct current shut-down device
JP6819452B2 (en) * 2017-05-09 2021-01-27 株式会社明電舎 DC cutoff device
JP7054601B2 (en) * 2019-04-23 2022-04-14 東芝三菱電機産業システム株式会社 DC cutoff device
CN110739167B (en) * 2019-05-10 2023-03-10 许继集团有限公司 Direct current switch equipment
KR20210071601A (en) * 2019-12-06 2021-06-16 주식회사 엘지화학 Apparatus and method for current interrupyion using a disconnecting switch
JP7242575B2 (en) * 2020-01-06 2023-03-20 東芝エネルギーシステムズ株式会社 DC current interrupter
JP7404171B2 (en) * 2020-07-02 2023-12-25 東芝エネルギーシステムズ株式会社 DC current interrupter
JP7446973B2 (en) 2020-10-22 2024-03-11 株式会社東芝 DC current interrupter
EP4016574B1 (en) 2020-12-15 2023-06-28 ABB Schweiz AG A hybrid switching apparatus for electric grids
ES2956365T3 (en) 2020-12-15 2023-12-20 Abb Schweiz Ag A hybrid switching device for electrical networks
KR102656808B1 (en) * 2021-03-29 2024-04-12 엘에스일렉트릭(주) Solid state circuit breaker(sscb)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132776A (en) * 1978-04-05 1979-10-16 Hitachi Ltd Dc breaker
JPS55126923A (en) * 1979-03-22 1980-10-01 Tokyo Shibaura Electric Co Dc breaker
JPS627738U (en) * 1985-06-29 1987-01-17
JPH10126961A (en) * 1996-10-17 1998-05-15 Fuji Electric Co Ltd Current limiting apparatus
WO2014094847A1 (en) * 2012-12-19 2014-06-26 Siemens Aktiengesellschaft Device for switching a direct current in a pole of a direct current network
JP2014175077A (en) * 2013-03-06 2014-09-22 Mitsubishi Electric Corp Current cutoff device
JP2014235834A (en) * 2013-05-31 2014-12-15 株式会社東芝 Dc current breaking device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132776A (en) * 1978-04-05 1979-10-16 Hitachi Ltd Dc breaker
JPS55126923A (en) * 1979-03-22 1980-10-01 Tokyo Shibaura Electric Co Dc breaker
JPS627738U (en) * 1985-06-29 1987-01-17
JPH10126961A (en) * 1996-10-17 1998-05-15 Fuji Electric Co Ltd Current limiting apparatus
WO2014094847A1 (en) * 2012-12-19 2014-06-26 Siemens Aktiengesellschaft Device for switching a direct current in a pole of a direct current network
JP2014175077A (en) * 2013-03-06 2014-09-22 Mitsubishi Electric Corp Current cutoff device
JP2014235834A (en) * 2013-05-31 2014-12-15 株式会社東芝 Dc current breaking device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3267460A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110268493A (en) * 2017-01-25 2019-09-20 伊顿智能动力有限公司 Under-voltage protection switch unit
CN110678951A (en) * 2017-06-16 2020-01-10 东芝能源系统株式会社 DC circuit breaker, mechanical breaking device for DC circuit breaker, and semiconductor breaking device for DC circuit breaker
CN110678951B (en) * 2017-06-16 2021-09-21 东芝能源系统株式会社 DC circuit breaker, mechanical breaking device for DC circuit breaker, and semiconductor breaking device for DC circuit breaker

Also Published As

Publication number Publication date
EP3267460A1 (en) 2018-01-10
EP3267460A4 (en) 2018-08-01
JP2016162713A (en) 2016-09-05
JP6430294B2 (en) 2018-11-28
EP3267460B1 (en) 2019-06-26

Similar Documents

Publication Publication Date Title
JP6430294B2 (en) DC breaker
RU2592640C2 (en) Linear dc voltage protective automatic device
KR101968459B1 (en) DC current interrupter and its control method
JP6250153B2 (en) High voltage direct current interrupting device and method
JP6109649B2 (en) DC current interrupter
US9948089B2 (en) DC circuit breaker device
JP6517589B2 (en) DC power transmission system, central server thereof, and method for recovering DC power transmission path after accident
CN107534296B (en) Bipolar DC power transmission structure
Wang et al. A fast switching, scalable DC-Breaker for meshed HVDCSuperGrids
KR101766229B1 (en) Apparatus and method for interrupting high voltage direct current using gap switch
US20140226247A1 (en) Dc voltage line circuit breaker
KR20140095184A (en) Device and method to interrupt direct current
KR20180096999A (en) Fault current limiting for DC grid type and the method thereof
WO2015036457A1 (en) Voltage source converter
JP6223803B2 (en) DC breaker
JP6391993B2 (en) DC breaker
EP3329506B1 (en) Electrical assembly
JP2005295796A (en) Power generator having incorporated electric power switch
Pang et al. A ground clamped solid-state circuit breaker for DC distribution systems
JP2014236306A (en) Dc current interruption apparatus
Pang et al. A Surge Voltage Free Solid-State Circuit Breaker with Current Limiting Capability
JP2016103427A (en) DC current cutoff device
JP6382757B2 (en) DC breaker
Lin et al. Hardware-in-the-loop implementation of a hybrid circuit breaker controller for MMC-based HVDC systems
Zhang et al. A dual-bridge hybrid DC circuit breaker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016758816

Country of ref document: EP