WO2018198552A1 - Direct current shut-down device - Google Patents

Direct current shut-down device Download PDF

Info

Publication number
WO2018198552A1
WO2018198552A1 PCT/JP2018/009367 JP2018009367W WO2018198552A1 WO 2018198552 A1 WO2018198552 A1 WO 2018198552A1 JP 2018009367 W JP2018009367 W JP 2018009367W WO 2018198552 A1 WO2018198552 A1 WO 2018198552A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor switching
switching element
current
circuit breaker
connection point
Prior art date
Application number
PCT/JP2018/009367
Other languages
French (fr)
Japanese (ja)
Inventor
一伸 大井
伸仁 上栗
裕吾 只野
修治 中村
健太 高所
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017087757A external-priority patent/JP6365724B1/en
Priority claimed from JP2018036082A external-priority patent/JP6424976B1/en
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Publication of WO2018198552A1 publication Critical patent/WO2018198552A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle

Definitions

  • the present invention relates to a direct current cut-off device which can shut off direct current in both directions with small power loss in steady state.
  • the AC interrupting device for interrupting the alternating current is energized since it functions as a conductor when the mechanical circuit breaker is closed (in steady state), and opens the mechanical circuit breaker when an accident occurs. An arc is generated when the mechanical circuit breaker is opened, but since the arc can be extinguished at the current zero point, the current can be interrupted.
  • the AC circuit breaker mainly uses a gas circuit breaker or a vacuum circuit breaker, and although a medium for arc extinguishing is different, both adopt a method for extinguishing the arc at a current zero point.
  • Patent Document 1 is disclosed as a shutoff method provided with such an auxiliary circuit.
  • the device of Patent Document 1 is configured to cope with unidirectional current interruption.
  • bidirectional current interruption technology is required because bidirectional current may flow in one path.
  • the configuration of the auxiliary circuit for diverting the current in Patent Document 1 is a capacitor and a diode. However, a voltage drop occurs when current passes through the diode. If this voltage drop is greater than the arc maintenance voltage, current will continue to flow through the open machine breaker and the arc can not be extinguished, causing a current interruption failure.
  • the auxiliary circuit has a parasitic resistance and a parasitic inductance component, and it is difficult to divert all the current to the auxiliary circuit at the same time as opening the mechanical circuit breaker.
  • the current diverted only partially from the mechanical circuit breaker flows in the auxiliary circuit to charge the capacitor, and the sum of the capacitor voltage and the voltage drop of the diode voltage is applied to the mechanical circuit breaker , Arc extinction becomes difficult.
  • FIG. 40 shows the operation that causes the problem.
  • FIG. 40 (a) is a circuit diagram in which only elements relevant to interrupting the short circuit current of the second DC system 2 are extracted from the DC interrupting device, and parasitic inductance is added to the auxiliary circuit.
  • FIG. 40 (b) is a time chart showing each waveform when the voltage drop and the inductance of the diode in the auxiliary circuit are ignored.
  • FIG. 40 (c) is a time chart showing each waveform when the voltage drop and the inductance of the diode in the auxiliary circuit are taken into consideration.
  • time t1 in addition to the capacitor voltage of the auxiliary circuit, the sum of the voltage drop of the diode and the parasitic inductance voltage is applied to the voltage Vcb across the mechanical circuit breaker.
  • the auxiliary circuit current Iaux increases with a finite slope, and the mechanical circuit breaker passing current Icb also decreases with the same slope.
  • the capacitor C is charged by the auxiliary circuit current Iaux, and the voltage Vcb across the machine breaker further increases.
  • the voltage Vcb across the mechanical circuit breaker exceeds the arc holding voltage before the mechanical circuit breaker passing current Icb becomes sufficiently small (in FIG. 40, time t2), the arc can not be extinguished, and the current is the mechanical circuit breaker CB. Continue to pass and fail to shut off. Also, if a plurality of diodes D are connected in series for a high voltage system, the risk of exceeding the arc holding voltage is increased.
  • the present invention has been made in view of the above-mentioned conventional problems, and one aspect thereof is characterized in that the first, the fourth, and the third connected in series between the + terminal of the first DC system and the + terminal of the second DC system.
  • a first auxiliary circuit current switch unit having two mechanical circuit breakers and a first semiconductor switching element, and one end connected to a common connection point of the positive terminal of the first DC system and the first mechanical circuit breaker; 2 has a semiconductor switching element, one end is connected to the other end of the first auxiliary circuit current switch portion, and the other end is connected to the common connection point of the + terminal of the second DC system and the second mechanical circuit breaker
  • a second auxiliary circuit current switch portion a capacitor connected between a common connection point of the first and second mechanical circuit breakers and a common connection point of the first and second auxiliary circuit current switch portions;
  • a first reactor connected in series to a capacitor, and the first and second Characterized in that and a impedance connected between the terminals - a common connection point between said first,
  • the impedance is a resistor.
  • the first and second semiconductor switching elements are thyristors.
  • first and second auxiliary circuit current switch parts have diodes connected in series to the first and second semiconductor switching elements, and the first and second semiconductor switching elements are It is characterized by having a self-extinguishing ability.
  • a Zener diode is connected between the resistor and the negative terminals of the first and second DC systems.
  • a third semiconductor switching element is connected between the resistor and the negative terminals of the first and second DC systems.
  • the impedance is a second reactor, and between a diode connected in parallel to the second reactor, the second reactor, and negative terminals of the first and second DC systems. And a third semiconductor switching element connected.
  • first and second mechanical circuit breakers connected in series between the negative terminal of the first DC system and the negative terminal of the second DC system, and the first semiconductor switching element
  • It has a first auxiliary circuit current switch unit whose one end is connected to the common connection point of the first DC circuit negative terminal and the first mechanical circuit breaker, and a second semiconductor switching element, and the first auxiliary circuit current switch unit
  • a second auxiliary circuit current switch unit having one end connected to the other end and the other end connected to the common connection point of the second terminal of the second DC system and the second mechanical circuit breaker;
  • a capacitor connected between a common connection point of the mechanical circuit breaker and a common connection point of the first and second auxiliary circuit current switch parts, a first reactor connected in series to the capacitor, the first and second 2 Common connection point of the auxiliary circuit current switch section and the first A connection impedance between the positive terminal of the second DC system, characterized by comprising a.
  • the first semiconductor switching element when a current flows from the first DC system to the second DC system, and an accident occurs in the second DC system, the first semiconductor switching element is turned on, and (1) After the current flowing through the mechanical circuit breaker becomes lower than a predetermined value, the first mechanical circuit breaker is shut off, and current flows from the second direct current system to the first direct current system, and the first direct current system When an accident occurs, the second semiconductor switching element is turned on, and after the current flowing through the second mechanical circuit breaker becomes a predetermined value or less, the second mechanical circuit breaker is shut off.
  • an anode is connected to a common connection point of the first and second mechanical circuit breakers, and a cathode is connected to a common connection point of the first mechanical circuit breaker and the first auxiliary circuit current switch portion.
  • An anode is connected to a common connection point of the third diode and the first and second mechanical circuit breakers, and a cathode is connected to a common connection point of the second mechanical circuit breaker and the second auxiliary circuit current switch unit.
  • a fourth diode is connected to a common connection point of the first and second mechanical circuit breakers, and a cathode is connected to a common connection point of the first mechanical circuit breaker and the first auxiliary circuit current switch portion.
  • the first semiconductor switching element when a current flows from the first direct current system to the second direct current system and a short circuit occurs in the second direct current system, the first semiconductor switching element is turned on to be an auxiliary circuit. A current flows, and the first mechanical circuit breaker is shut off in a period during which the auxiliary circuit current is greater than the short circuit current, a current flows from the second DC system to the first DC system, and the first DC system.
  • the second semiconductor switching element When a short circuit occurs, the second semiconductor switching element is turned on to flow an auxiliary circuit current, and the second mechanical circuit breaker is disconnected in a period during which the auxiliary circuit current is larger than the short circuit current.
  • first and second mechanical circuit breakers are connected in parallel with fourth and fifth semiconductor switching elements having a self-extinguishing ability.
  • the fourth semiconductor switching element when a current flows from the first DC system to the second DC system and a short circuit occurs in the second DC system, the fourth semiconductor switching element is turned on, An opening command of the first mechanical circuit breaker is issued, and then the first semiconductor switching element is turned on, and current flows from the second DC system to the first DC system, and a short circuit occurs in the first DC system.
  • an opening command of the second mechanical circuit breaker is issued, and then the second semiconductor switching device is turned on.
  • the semiconductor switching device does not have a self-extinguishing ability that is antiparallel connected to the third diode and does not have self-extinguishing ability that is antiparallel connected to the fourth diode. And a seventh semiconductor switching element.
  • the sixth semiconductor switching element when a current flows from the first direct current system to the second direct current system and a short circuit occurs in the second direct current system, the sixth semiconductor switching element is turned on; The opening instruction of the first mechanical circuit breaker is performed, and then the OFF instruction of the sixth semiconductor switching element is performed, and then the first semiconductor switching element is turned ON, and the second direct current system to the first direct current system.
  • the seventh semiconductor switching device is turned on, and then an opening command of the second mechanical circuit breaker is issued, and then the seventh semiconductor switching is performed. A command to turn off the element is issued, and then the second semiconductor switching element is turned on.
  • a cathode is connected to a common connection point of the first and second mechanical circuit breakers, and an anode is connected to a common connection point of the first mechanical circuit breaker and the first auxiliary circuit current switch unit.
  • a cathode is connected to a common connection point of the third diode and the first and second mechanical circuit breakers, and an anode is connected to a common connection point of the second mechanical circuit breaker and the second auxiliary circuit current switch unit.
  • a fourth diode is connected to a common connection point of the first and second mechanical circuit breakers, and an anode is connected to a common connection point of the first mechanical circuit breaker and the first auxiliary circuit current switch unit.
  • first and second mechanical circuit breakers are connected in parallel with fourth and fifth semiconductor switching elements having a self-extinguishing ability.
  • the semiconductor switching device does not have a self-extinguishing ability that is antiparallel connected to the third diode and does not have self-extinguishing ability that is antiparallel connected to the fourth diode. And a seventh semiconductor switching element.
  • the mechanical circuit breaker connected between the + terminal of the first DC system and the + terminal of the second DC system, the common connection of the + terminal of the first DC system and the mechanical circuit breaker A third capacitor and a third auxiliary circuit current switch unit, or a first capacitor, a third reactor, and a third auxiliary circuit, which are sequentially connected in series between the point and the positive terminal of the second DC system and the common connection point of the mechanical circuit breaker
  • the common connection point of the reactor, the first capacitor, the third auxiliary circuit current switch portion, the positive terminal of the second DC system and the mechanical circuit breaker, and the common connection of the positive terminal of the first DC system and the mechanical circuit breaker A second capacitor, a fourth reactor, and a fourth auxiliary circuit current switch unit sequentially connected in series between the points; or a fourth reactor, a second capacitor, and a fourth auxiliary circuit current switch unit, and the third reactor
  • the third auxiliary circuit A first impedance connected between the common connection point of the flow switch unit or the common connection point of the first capacitor and the third auxiliary
  • the first impedance and the second impedance are a first resistance and a second resistance.
  • the third auxiliary circuit current switch unit includes an eighth semiconductor switching device of a self-arc-extinguishing device and a fifth diode connected in series to the eighth semiconductor switching device;
  • the fourth auxiliary circuit current switch unit includes a ninth semiconductor switching element of a self-arc-extinguishing type element and a sixth diode connected in series to the ninth semiconductor switching element.
  • the third auxiliary circuit current switch unit includes an eighth semiconductor switching element having no self arc extinguishing capability, and the fourth auxiliary circuit current switch unit has a self arc extinguishing capability.
  • a ninth semiconductor switching device is provided.
  • the semiconductor device further includes a tenth semiconductor switching element connected between the first and second resistors and the negative terminals of the first and second DC systems, or the first resistor and the first resistor.
  • a tenth semiconductor switching device connected between the first and second DC systems and an eleventh semiconductor switching connected between the second resistor and the first terminals of the first and second DC systems And an element.
  • the first impedance and the second impedance are a fifth reactor and a sixth reactor, and between the fifth and sixth reactors and the negative terminals of the first and second DC systems.
  • a twelfth semiconductor switching element connected between the fifth reactor and the negative terminals of the first and second DC systems, the sixth reactor, and the sixth semiconductor switching element
  • An anode is connected to a common connection point of a thirteenth semiconductor switching element connected between the first terminal and the negative terminal of the second DC system, the fifth reactor and the twelfth semiconductor switching element, and a cathode is the third auxiliary A seventh diode connected to a common connection point of the circuit current switch portion and the positive terminal of the second DC system, the sixth reactor, and the thirteenth semiconductor switch
  • An eighth diode whose anode is connected to a common connection point of the element or the twelfth semiconductor switching element, and whose cathode is connected to a common connection point of the fourth auxiliary circuit current switch portion and the positive terminal of the first DC system; It is
  • the third auxiliary circuit current switch unit includes an eighth semiconductor switching element having no self arc extinguishing capability, and the fourth auxiliary circuit current switch unit has a self arc extinguishing capability.
  • a ninth semiconductor switching device is provided.
  • the fourth auxiliary circuit current switch unit when a current flows from the first DC system to the second DC system and an accident occurs in the second DC system, the fourth auxiliary circuit current switch unit is turned on, After the current flowing to the mechanical circuit breaker becomes lower than a predetermined value, the mechanical circuit breaker is shut off, and current flows from the second DC system to the first DC system, and an accident occurs in the first DC system.
  • the third auxiliary circuit current switch unit is turned on, and the mechanical circuit breaker is shut off after the current flowing through the mechanical circuit breaker becomes less than a predetermined value.
  • the direct current shutoff device in the direct current shutoff device, it is possible to shut off bidirectional current more reliably without increasing the capacitance of the capacitor.
  • FIG. 1 is a circuit diagram showing a direct current cut-off device in a first embodiment.
  • FIG. 2 is a diagram showing a direct current cut-off device in a steady state in the first embodiment.
  • FIG. 2 is a diagram showing a direct current cut-off device at the time of capacitor discharge in Embodiment 1.
  • FIG. 2 is a diagram showing a DC circuit breaker after the first mechanical circuit breaker arc extinguishing in the first embodiment.
  • FIG. 2 is a diagram showing a direct current shutoff device at the time of system reconnection in the first embodiment.
  • 5 is a time chart showing each waveform at the time of second DC system short circuit in the first embodiment.
  • FIG. 7 is a circuit diagram showing a direct current cut-off device in a second embodiment.
  • FIG. 10 is a circuit diagram showing a direct current cut-off device in a third embodiment.
  • FIG. The figure which shows the direct current
  • FIG. The figure which shows the direct current
  • FIG. The figure which shows the direct current
  • FIG. The figure which shows the direct current
  • FIG. The time chart which shows the current waveform at the time of interception failure in patent documents 1.
  • FIG. 5 shows the structure which connected the direct current
  • FIG. 6 shows the structure which connected the direct current
  • FIG. 8 The figure which shows the direct current
  • FIG. 8 The figure which shows the direct current
  • FIG. 8 The figure which shows the direct current
  • FIG. The time chart which shows each waveform at the time of short circuit current interruption
  • FIG. The circuit diagram which shows the direct current
  • FIG. The circuit diagram which shows the direct current
  • FIG. 10 The circuit diagram which shows the direct current
  • FIG. 8 The figure which shows the direct current
  • FIG. 11 The circuit diagram which shows the direct current
  • FIG. The figure which shows the direct current
  • FIG. The figure which shows the direct current
  • FIG. The figure which shows the direct current
  • FIG. The figure which shows the direct current
  • FIG. The figure which shows the direct current
  • FIG. The figure which shows each waveform of the conventional direct current
  • FIG. 1 shows a direct current cut-off device in the first embodiment.
  • the DC interrupting device 3 is connected to the first DC system 1 and the second DC system 2.
  • the DC interrupting device 3 includes a first mechanical circuit breaker CB1 and a second mechanical circuit breaker CB2, a capacitor C, a first reactor L1, first and second auxiliary circuit current switch units 4 and 5, and resistance (impedance). And R.
  • the first and second auxiliary circuit current switch units 4 and 5 have first and second semiconductor switching elements T1 and T2.
  • thyristors are shown as the first and second semiconductor switching elements T1 and T2, but semiconductor switching elements other than thyristors may be used.
  • diodes may be connected in series to the first and second semiconductor switching elements T1 and T2.
  • First and second mechanical circuit breakers CB1 and CB2 are connected in series between the + terminal of the first DC system 1 and the + terminal of the second DC system 2.
  • One end (anode) of the first semiconductor switching element T1 is connected to a common connection point of the + terminal of the first DC system 1 and the first mechanical circuit breaker CB1.
  • One end (cathode) of a second semiconductor switching element T2 is connected to the other end (cathode) of the first semiconductor switching element T1.
  • the other end (anode) of the second semiconductor switching element T2 is connected to the common connection point of the + terminal of the second DC system 2 and the second mechanical circuit breaker CB2.
  • a capacitor C is connected between a common connection point of the first and second mechanical circuit breakers CB1 and CB2 and a common connection point of the first and second semiconductor switching elements T1 and T2. Further, the first reactor L1 is connected in series to the capacitor C.
  • the connection order of the capacitor C and the first reactor L1 may be either.
  • a resistance (impedance) R is connected between the common connection point of the first and second semiconductor switching elements T1 and T2 and the negative terminals of the first and second DC systems 1 and 2.
  • FIG. 2 the direct current
  • the first mechanical circuit breaker CB1 and the second mechanical circuit breaker CB2 are closed, and current flows in both directions.
  • the first semiconductor switching device T1 and the second semiconductor switching device T2 are in the off state.
  • the capacitor C when the charging current flows through the first reactor L1 and the resistor R and the system voltage is charged, the current flowing to the capacitor C becomes zero.
  • FIG. 3 shows the DC interrupting device 3 when an accident occurs on the second DC system 2 side.
  • the discharge current from the capacitor C is used as an auxiliary circuit current: first mechanical circuit breaker CB1 ⁇ first semiconductor switching element T1 ⁇ first reactor It cancels the short circuit current which flows via L1 and flows from the first DC system 1 to the first mechanical circuit breaker CB1.
  • the auxiliary circuit current (discharge current) is a resonant current of a frequency determined by the capacitor C and the first reactor L1. If the resonance frequency is too high, the resonance ends before the first mechanical circuit breaker CB1 opens, and the short circuit current flowing to the first mechanical circuit breaker CB1 returns to the original magnitude. If the resonance frequency is too low, the increase speed of the first mechanical circuit breaker pass current Icb1 due to the short circuit becomes larger than the increase speed of the auxiliary circuit current (discharge current), and the short circuit current can not be canceled. Therefore, it is necessary to set the resonance frequency to be equal to or slightly longer than the operation time of the first mechanical circuit breaker CB1.
  • the first mechanical circuit breaker CB1 When the mechanical circuit breaker passing current becomes smaller than a predetermined value, the first mechanical circuit breaker CB1 is opened. It should be noted that there is a time delay from when the first and second mechanical circuit breakers CB1 and CB2 receive the cutoff designation until they are actually opened. In the present specification, when it is described as blocking or opening, it indicates the time of actual opening.
  • FIG. 4 shows the DC circuit breaker 3 after arc extinguishing of the first mechanical circuit breaker CB1.
  • the auxiliary circuit current flows through the first semiconductor switching element T1 ⁇ the first reactor L1 ⁇ the capacitor C ⁇ the second mechanical circuit breaker CB2, and the capacitor C is charged in the opposite direction to the case shown in FIG. Ru.
  • the first semiconductor switching element T1 When the charging of the capacitor C is completed, the current flowing to the second DC system 2 becomes zero, and the current interruption is completed. When the current interruption is completed, the first semiconductor switching element T1 is turned off. When the first semiconductor switching element T1 is a thyristor, the thyristor does not have a self-extinguishing ability, but as shown in FIG. 4, when the charging of the capacitor C is completed, the current flowing through the second DC system 2 becomes zero. , The thyristor can be turned off.
  • FIG. 5 shows the DC interrupting device 3 at the time of system reconnection.
  • the first mechanical circuit breaker CB1 By closing the first mechanical circuit breaker CB1, current flows from the first DC system 1 side to the second DC system 2 side via the first mechanical circuit breaker CB1 and the second mechanical circuit breaker CB2.
  • a charging current flows through the first mechanical circuit breaker CB1 ⁇ capacitor C ⁇ first reactor L1 ⁇ resistor R, and the capacitor C, which has been charged in the reverse direction in FIG. 4, is recharged in the original direction.
  • the state shown in FIG. 2 is reached, and recharging is completed.
  • the direction of current flow and the current value at the time of an accident occurrence are monitored using the host controller, and the opening and closing of the first and second mechanical circuit breakers CB1 and CB2 and the turning on of the first and second semiconductor switching elements T1 and T2 Do the off.
  • the waveform at the time of interrupting the short circuit current by the side of the 2nd direct current system 2 in Drawing 6 is shown.
  • a short circuit occurs and the first mechanical circuit breaker passing current Icb1 increases.
  • the first semiconductor switching element T1 is turned on at time t2
  • a discharge current flows from the capacitor C as the auxiliary circuit current Iaux, and cancels the first mechanical circuit breaker passing current Icb1.
  • the first mechanical circuit breaker passing current Icb1 becomes smaller than a predetermined value
  • the first mechanical circuit breaker CB1 is opened.
  • the contact is opened at time t3.
  • the first mechanical circuit breaker pass current Icb1 remains, so some arcing occurs, but since the first mechanical circuit breaker pass current Icb1 becomes zero by the auxiliary circuit current Iaux, the arc can be extinguished.
  • the voltage Vc of the capacitor C is reversely charged by the auxiliary circuit current Iaux and the short circuit current, and when the first system voltage -Vdc of-is exceeded, the charging is completed and the auxiliary circuit current Iaux becomes zero and the interruption is completed.
  • the shutoff method in the case where an accident occurs on the second DC system 2 side is described, but even if an accident occurs on the first DC system 1 side, the same principle and the operation of the target can be used to shut off. It is.
  • the second mechanical circuit breaker CB2 and the second semiconductor switching element T2 are opened and turned on to extinguish and interrupt the arc of the second mechanical circuit breaker CB2.
  • the first embodiment it is possible to shut off the direct current in both directions, and it is possible to shut off the direct current repeatedly by the reopening operation. In addition, it is possible to cut off the current more reliably by creating a zero point in the first mechanical circuit breaker passing current Icb1 by the capacitor discharge current of the auxiliary circuit. Furthermore, since the first and second mechanical circuit breakers CB1 and CB2 are energized at all times during steady state, there is almost no power loss.
  • the capacitor capacity of the auxiliary circuit may be small, and the apparatus can be miniaturized. It becomes.
  • some increase in the parasitic impedance component of the auxiliary circuit can be tolerated.
  • FIG. 7 shows the DC interrupting device 3 of the second embodiment.
  • the direct current cut-off device 3 of the second embodiment is the same as the first embodiment except that an element such as a Zener diode ZD can be added between the resistor R and the negative terminals of the first and second DC systems 1 and 2. It is.
  • FIG. 8 shows a DC interrupting device 3 of the third embodiment.
  • the Zener diode ZD of the second embodiment is replaced with a third semiconductor switching element T3 capable of self-extinguishing to block unnecessary current.
  • the third semiconductor switching element T3 may be a switch other than a self-extinguishing semiconductor switching element.
  • the third semiconductor switching element T3 When charging of the capacitor C is completed or a shutoff command is received due to a short circuit accident or the like, the third semiconductor switching element T3 is turned off. The completion of charging of the capacitor C is detected on the condition that the voltage across the capacitor C is detected and equal to the grid voltage. Alternatively, the time for completion of charging of capacitor C is calculated in advance from the capacitance value of capacitor C, the resistance value of resistor R, and the inductance value of first reactor L1, and it is determined that charging is completed when the calculated value elapses. You may
  • the third semiconductor switching element T3 After the arc extinguishing, the third semiconductor switching element T3 is off, and unlike in FIG. 4, the unnecessary current flowing through the first semiconductor switching element T1 ⁇ the resistor R is blocked by the third semiconductor switching element T3. Therefore, the loss can be reduced.
  • the first semiconductor switching element (thyristor) T1 can be reliably turned off.
  • the recharging speed of the capacitor C at the time of reconnection of the system in FIG. 5 is improved. Thus, it is possible to shorten the time taken to complete the blocking preparation.
  • the first mechanical circuit breaker CB1 is closed and the third semiconductor switching element T3 is turned on, whereby the capacitor C is charged as in the first embodiment, and reopening is completed.
  • the same function and effect as those of the first and second embodiments can be obtained. Moreover, the loss which arises in resistance R after electric current interruption can be made into zero.
  • blocking apparatus 3 of this Embodiment 4 is shown in FIG.
  • the direct current cutoff device 3 of the fourth embodiment is provided with a second reactor (impedance) L2 and a diode D connected in parallel to the second reactor L2 instead of the resistor R of the third embodiment.
  • FIG. 10 shows the DC interrupting device 3 in the steady state of the fourth embodiment.
  • the first mechanical circuit breaker CB1 and the second mechanical circuit breaker CB2 are closed, and current flows in both directions.
  • current flows through the first mechanical circuit breakers CB1 and CB2 in steady state there is almost no power loss.
  • the third semiconductor switching element T3 is in the on state, a charging current flows through the capacitor C ⁇ the first reactor L1 ⁇ the second reactor L2 ⁇ the third semiconductor switching element T3, and the capacitor C is charged up to the system voltage. The current flowing in the becomes zero.
  • the third semiconductor switching element T3 When charging is completed, the third semiconductor switching element T3 is turned off. The charge completion is detected on the condition that the voltage across the capacitor C is detected and equal to the system voltage.
  • FIG. 11 shows the DC interrupting device 3 when an accident occurs on the second DC system 2 side.
  • the discharge current from the capacitor C is used as an auxiliary circuit current: first mechanical circuit breaker CB1 ⁇ first semiconductor switching element T1 ⁇ first reactor It cancels the short circuit current which flows via L1 and flows from the first DC system 1 to the first mechanical circuit breaker CB1.
  • the auxiliary circuit current (discharge current) is a resonant current of a frequency determined by the capacitor C and the first reactor L1. If the resonance frequency is too high, the resonance ends before the opening of the first mechanical circuit breaker CB1, and the short circuit current flowing to the first mechanical circuit breaker CB1 returns to the original magnitude. If the resonance frequency is too low, the increasing speed of the first mechanical circuit breaker passing current Icb1 due to the short circuit becomes larger than the increasing speed of the auxiliary circuit current, and the short circuit current can not be canceled. Therefore, it is necessary to set the resonance frequency to be equal to or slightly longer than the operation time of the first mechanical circuit breaker CB1.
  • FIG. 12 shows the DC circuit breaker 3 after arc extinguishing of the first mechanical circuit breaker CB1.
  • a short circuit current flows through the first semiconductor switching element T1 ⁇ first reactor L1 ⁇ capacitor C ⁇ second mechanical circuit breaker CB2, and the capacitor C is charged in the opposite direction to that in FIG.
  • the current flowing to the second DC system 2 becomes zero, and the current interruption is completed.
  • the first semiconductor switching element T1 is turned off.
  • FIG. 13 shows the DC interrupting device 3 at the time of reconnection of the system.
  • the first mechanical circuit breaker CB1 By closing the first mechanical circuit breaker CB1, current flows from the first DC system 1 side to the second DC system 2 side via the first mechanical circuit breaker CB1 and the second mechanical circuit breaker CB2.
  • the resistor R is not required by connecting the second reactor L2 and the diode D to the third semiconductor switching element T3.
  • the capacitor charging current does not flow through the resistor R, the resistance loss at the time of charging is eliminated. Furthermore, while the first semiconductor switching device T1 is on, the third semiconductor switching device T3 is off, and no current flows to the negative terminals of the first and second DC networks 2. Therefore, the first semiconductor switching element T1 which can not be self-extinguished can be reliably turned off. Moreover, since the current is not suppressed by the resistance, the present invention can be applied to a system having a small capacity.
  • the current flow direction and the current value at the time of occurrence of an accident are monitored using the host controller, and the opening and closing of the first mechanical circuit breaker CB1 and the on and off of the first and third semiconductor switching elements T1 and T3. I do.
  • the shutoff method in the case where an accident occurs on the second DC system 2 side is described, but even when an accident occurs on the first DC system 1 side, the same principle and the operation of the target can be used to shut off. It is.
  • the second mechanical circuit breaker CB2 and the second semiconductor switching element T2 are opened and turned on to extinguish and interrupt the arc of the second mechanical circuit breaker CB2.
  • a zero point is created by flowing the auxiliary circuit current Iaux in the reverse direction with respect to the first mechanical circuit breaker passing current Icb1, and the first and second mechanical circuit breakers CB1 and CB2 are opened.
  • the first and second mechanical circuit breakers CB1 and CB2 open at a timing when the mechanical circuit breaker passing current is zero.
  • FIG. 14 shows a current waveform when the interruption fails in the first embodiment.
  • the following factors (1) and (2) can be considered as factors that can not extinguish an arc in the circuit of the first embodiment.
  • the first and second mechanical circuit breakers CB1 and CB2 have delays and variations between when the opening command is issued and when actually starting the opening. Therefore, a variation also occurs in the first mechanical circuit breaker passing current Icb1 at the timing of time t3 (at the start of opening of the first mechanical circuit breaker CB1) in FIG.
  • the current slope of the first mechanical circuit breaker passing current Icb1 at time t3 is large, the arc voltage applied between the contacts of the first mechanical circuit breaker CB1 is also large, and it becomes difficult to extinguish the arc.
  • the first and second mechanical circuit breakers CB1 and CB2 take time until the contact point distance is fully opened after the start of the opening. In addition, the time also varies. If it takes a long time for the contact point distance to fully open after the start of the opening, it is difficult to extinguish the arc.
  • the third diode D3 is connected in parallel to the first mechanical circuit breaker CB1.
  • the anode of the third diode D3 is connected to the common connection point of the first and second mechanical circuit breakers CB1 and CB2, and the cathode is connected to the common connection point of the first semiconductor switching element T1 and the first mechanical circuit breaker CB1.
  • the fourth diode D4 is connected in parallel to the second mechanical circuit breaker CB2.
  • the anode of the fourth diode D4 is connected to the common connection point of the first and second mechanical circuit breakers CB1 and CB2, and the cathode is connected to the common connection point of the second semiconductor switching element T2 and the second mechanical circuit breaker CB2.
  • the first auxiliary circuit current switch unit 4 of the fifth embodiment is a series connection of the first semiconductor switching element T1 and the first diode D1.
  • the first semiconductor switching element T1 is an element having a self-extinguishing ability, and for example, an IGBT is used.
  • the collector terminal of the first semiconductor switching element T1 is connected to the common connection point of the + terminal of the first DC system 1 and the first mechanical circuit breaker CB1.
  • the anode terminal of the first diode D1 is connected to the emitter terminal side of the first semiconductor switching element T1.
  • the cathode terminal of the first diode D1 is connected to the common connection point of the first reactor L1 and the resistor R.
  • the connection order of the first semiconductor switching element T1 and the first diode D1 may be reversed.
  • the second auxiliary circuit current switch unit 5 connects the second semiconductor switching element T2 and the second diode D2 in series.
  • the second semiconductor switching element T2 is an element having a self-extinguishing ability, and for example, an IGBT is used.
  • the collector terminal of the second semiconductor switching element T2 is connected to the common connection point of the + terminal of the second DC system 2 and the second mechanical circuit breaker CB2.
  • the anode terminal of the second diode D2 is connected to the emitter terminal side of the second semiconductor switching element T2.
  • the cathode terminal of the second diode D2 is connected to the common connection point of the first reactor L1 and the resistor R.
  • the connection order of the second semiconductor switching element T2 and the second diode D2 may be reversed.
  • the first and second auxiliary circuit current switches 4 and 5 may be thyristors as in the first embodiment.
  • the operation is the same as in the first embodiment. After opening the first mechanical circuit breaker CB1, when the first semiconductor switching element T1 is turned on, the auxiliary circuit current Iaux flows in the opposite direction to the short circuit current to cancel the short circuit current.
  • auxiliary circuit current Iaux is a sine wave and its amplitude is designed to be larger than the short circuit current, the excess current after canceling the short circuit current has a negative value. Therefore, excess negative current flows through the third diode D3 connected in parallel to the first mechanical circuit breaker CB1.
  • auxiliary circuit current Iaux becomes smaller, a short circuit current flows through the first semiconductor switching element T1 ⁇ the first diode D1 ⁇ the first reactor L1 ⁇ the capacitor C, and the capacitor C is charged in the reverse direction.
  • the current flowing through the second DC system 2 becomes zero and the disconnection is completed.
  • the opening start of the first mechanical circuit breaker CB1 is delayed after the first semiconductor switching element T1 is turned on, and the first zero point of the combined current of the short circuit current and the auxiliary circuit current Iaux (point A in FIG. 16) Even when it is later than the first zero point A, a second zero point of the combined current of the short circuit current and the auxiliary circuit current I aux (see FIG. 16) is the opening start of the first mechanical circuit breaker CB1.
  • the subsequent operation is the same as that of the first embodiment.
  • the excess auxiliary circuit current Iaux can be bypassed to the third diode D3 connected in parallel to the first mechanical circuit breaker CB1.
  • the current is commutated to the third diode D3. Since the applied contact voltage is only the voltage drop of the third diode D3 lower than the arc voltage, during the conduction of the third diode D3 (that is, during the period from the first zero point A to the second zero point B in FIG. 16) Arc does not occur. That is, it is desirable to open the first mechanical circuit breaker CB1 in a period from the first zero point A to the second zero point B (auxiliary circuit current Iaux> short circuit current).
  • the contact distance of the first mechanical circuit breaker CB1 is extended, and no arc is generated between the first zero point A and the second zero point B, so the gas temperature between the contacts drops and it is difficult to cause dielectric breakdown. Therefore, even if a voltage is applied between the contacts of the first mechanical circuit breaker CB1 after the second zero point B of FIG. 16, there is almost no possibility that an arc will occur.
  • the LC resonance frequency can be increased. This leads to the downsizing of the first reactor L1 and the capacitor C, and further to the downsizing and cost reduction of the DC interrupting device.
  • the fifth embodiment when the contact openings of the first and second mechanical circuit breakers CB1 and CB2 do not meet the first zero point A, the first and second mechanical circuit breakers CB1 and CB2 By the operation of the third and fourth diodes D3 and D4 connected in parallel to each other, generation of arc can be suppressed. Thereby, as compared with the first embodiment, it is possible to increase the probability that the short circuit current can be cut off.
  • the fifth embodiment which reduces the arc can perform more reliable interruption.
  • the reliability of the device can be improved.
  • the time between the first zero point A and the second zero point B becomes short. Even at the second zero point B, the distance between the contacts is insufficient. In addition, the decrease in gas temperature between the contacts becomes insufficient. As a result, breakdown occurs during opening, leaving the risk of arcing again.
  • blocking apparatus of this Embodiment 6 is shown in FIG.
  • the sixth embodiment is a circuit configuration in which fourth and fifth semiconductor switching elements (for example, IGBTs) T4 and T5 having self-extinguishing ability are provided instead of the third and fourth diodes D3 and D4 of the fifth embodiment. It is. That is, the fourth semiconductor switching element T4 is connected in parallel to the first mechanical circuit breaker CB1. The emitter terminal of the fourth semiconductor switching element T4 is connected to the common connection point of the first and second mechanical circuit breakers CB1 and CB2, and the collector terminal is at the common connection point of the first semiconductor switching element T1 and the first mechanical circuit breaker CB1.
  • fourth and fifth semiconductor switching elements for example, IGBTs
  • the fifth semiconductor switching element T5 is connected in parallel to the second mechanical circuit breaker CB2.
  • the emitter terminal of the fifth semiconductor switching element T5 is connected to the common connection point of the first and second mechanical circuit breakers CB1 and CB2, and the collector terminal is at the common connection point of the second semiconductor switching element T2 and the second mechanical circuit breaker CB2.
  • a semiconductor switch in which diodes are connected in antiparallel as shown in FIG. 17 is applied to the fourth and fifth semiconductor switching elements T4 and T5.
  • the first and second auxiliary circuit current switches 4 and 5 may be thyristors as in the first embodiment.
  • the fourth and fifth semiconductor switching elements T4 and T5 are turned off by the gate command, and the operation is the same as in the first embodiment.
  • the fourth semiconductor switching element T4 is turned on by the gate command before the opening command of the first machine breaker CB1 (when the second machine breaker CB2 is opened) Turns on the fifth semiconductor switching element T5).
  • the first mechanical circuit breaker CB1 is opened by the opening command of the first mechanical circuit breaker CB1.
  • the first mechanical circuit breaker CB1 is turned on, even if the fourth semiconductor switching element T4 is turned on, the current does not divert to the fourth semiconductor switching element T4 because there is an on resistance component of the semiconductor switching element. Therefore, there is no problem even if the fourth semiconductor switching element T4 is always on in the steady state.
  • the fourth semiconductor switching element T4 is turned off by the gate command at the timing when the auxiliary circuit current Iaux peaks. This is after a lapse of 1 ⁇ 4 of the LC resonance period from the turning on of the first semiconductor switching element T1. Therefore, it is not necessary to detect the passing current or the auxiliary circuit current Iaux during the off operation of the fourth semiconductor switching element T4.
  • the short circuit current is diverted to the fourth semiconductor switching element T4 (about 100 ⁇ s) immediately after the first mechanical circuit breaker CB1 is opened, an arc hardly occurs. Therefore, the opening command of the first mechanical circuit breaker CB1 can be issued earlier (immediately after the fourth semiconductor switching element T4 ON command), and there is no need to worry about the points to be noted in the fifth embodiment described above.
  • the shutoff operation can be performed. Furthermore, the amplitude of the LC resonant frequency and the auxiliary circuit current Iaux can be designed to be higher than those of the fifth embodiment.
  • the opening start time of the first mechanical circuit breaker CB1 is the first Even if it is delayed between the zero point A and the second zero point B, arcs hardly occur.
  • the turn-off of the fourth semiconductor switching element T4 is fixed after 1 ⁇ 4 of the LC resonance period has elapsed since the first semiconductor switching element T1 is turned on. Therefore, if the relationship of “short circuit current ⁇ auxiliary circuit current Iaux” is established, the current at the time of turn-off of the fourth semiconductor switching device T4 passes through the anti-parallel diode in the fourth semiconductor switching device T4.
  • the short circuit current can be interrupted by the fourth semiconductor switching element T4. Also in this case, the fourth semiconductor switching element T4 is turned off at a timing after 1 ⁇ 4 of the LC resonance period since the turning on of the first semiconductor switching element T1 (that is, the timing at which the current of the fourth semiconductor switching element T4 is minimized). Therefore, switching loss and surge voltage can be minimized.
  • FIG. 20 shows the waveform measurement points of FIG.
  • the experimental conditions are: The setting time from the opening command of the first mechanical circuit breaker CB1 to the gate command of the first semiconductor switching element T1 is approximately 3. It was 6 ms. In addition, at time 0 ms, a cutoff current (1 kA) is already supplied to the first mechanical circuit breaker CB1, and at time 0.5 ms, the gate on command of the fourth semiconductor switching element T4 and the opening command of the first mechanical circuit breaker CB1 are approximately simultaneously. I input it. Also, under this experimental condition, the opening operation of the first mechanical circuit breaker CB1 is started with almost no delay after the opening command of the first mechanical circuit breaker CB1.
  • Patent Document 2 is a similar prior art to Embodiment 6. However, Patent Document 2 is an invention of a unidirectional current breaker and does not correspond to a bidirectional current breaker. In addition, a separate charging circuit is required for the resonant capacitor.
  • the turn-off timing of the semiconductor switch is when the contact distance of the disconnecting device 3 is sufficiently long.
  • the current passing through the semiconductor switch at this timing is unknown, and a large short circuit current may have to be interrupted by the semiconductor switch. In this case, a very large switching loss and surge voltage may occur to damage the device. If multiple semiconductor switching elements are connected in parallel or a large capacity snubber circuit is connected to prevent this, the cost and volume of the device will increase.
  • the sixth embodiment since zero current switching is established, the number of parallel semiconductor switching elements can be reduced, and the cost and volume of the device can be reduced.
  • the short-circuit current is rapidly reduced to the fourth and fifth Since the current is commutated to the semiconductor switching elements T4 and T5, the arc can be further suppressed.
  • the reliability of the device is further enhanced.
  • first and second mechanical circuit breakers CB1 and CB2 can be opened earlier with respect to the first zero point A, and the characteristics of the first and second mechanical circuit breakers CB1 and CB2 (from the opening command to the opening) Even when there is a variation in the delay time until the start of operation, etc., the current can be cut off reliably.
  • the design margin of the LC resonance circuit is expanded compared to the fifth embodiment, it is possible to increase the LC resonance frequency, and hence to miniaturize the first reactor L1 and the capacitor C. Therefore, it is possible to miniaturize the direct current shutoff device.
  • the sixth embodiment produces the following effects with respect to the seventh embodiment described later. Even if the short circuit current is larger than the auxiliary circuit current Iaux, the current can be cut off. Even in this case, switching loss and surge occur but are minimized, so the duty of the fourth and fifth semiconductor switching elements T4 and T5 can be suppressed.
  • blocking apparatus of this Embodiment 7 is shown in FIG.
  • the sixth and seventh semiconductor switching elements T6 and T7 (for example, thyristors) having no self-extinguishing ability are connected in antiparallel to the third and fourth diodes D3 and D4 of the fifth embodiment.
  • the cathode terminal of the sixth semiconductor switching element T6 is connected to the common connection point of the first and second mechanical circuit breakers CB1 and CB2, and the anode terminal is connected to the common connection point of the first semiconductor switching element T1 and the first mechanical circuit breaker CB1.
  • the cathode terminal of the seventh semiconductor switching element T7 is connected to the common connection point of the first and second mechanical circuit breakers CB1 and CB2, and the anode terminal is common to the second semiconductor switching element T2 and the second mechanical circuit breaker CB2. Connected to connection point.
  • the first and second auxiliary circuit current switch portions 4 and 5 are the first and second semiconductor switching elements T1 and T2 (for example, thyristors) having no self-extinguishing ability.
  • the IGBT and the diode may be connected in series similarly to the fifth and sixth embodiments.
  • the operation and operation of the seventh embodiment are as follows. The difference from Embodiment 6 is described. The operation of the direct current cut-off device in the seventh embodiment and the current flowing to each portion are summarized in FIG.
  • an ON command is output to the sixth semiconductor switching element T6.
  • an arc voltage is applied to the first mechanical circuit breaker CB1.
  • current is diverted to the sixth semiconductor switching element T6.
  • the discharge current (auxiliary circuit current Iaux) component from the capacitor C is switched to the sixth semiconductor switching element T6 by turning on the first semiconductor switching element T1 according to the gate command. It cancels the short circuit current which flows via the first semiconductor switching element T1 ⁇ the first reactor L1 and flows from the first DC system 1 to the sixth semiconductor switching element T6. If an off command is previously input to the sixth semiconductor switching element T6, the sixth semiconductor switching element T6 is turned off when the current flowing through the sixth semiconductor switching element T6 becomes zero. Therefore, immediately after the first mechanical circuit breaker CB1 is opened, an off command of the sixth semiconductor switching element T6 is output.
  • the off command of the sixth semiconductor switching device T6 takes into account the variation, for example, the opening of the first mechanical circuit breaker CB1 Set to 1 to 2 ms after command.
  • thyristors have components corresponding to high withstand voltage and large current compared to IGBTs. There are also devices that can flow 10 times the rated current in a short time (10 ms).
  • the thyristor has an advantage that the on-voltage is lower than that of the IGBT, and commutation is easy at the time of opening of the first and second mechanical circuit breakers CB1 and CB2.
  • the current of the sixth semiconductor switching device T6 can not be reduced to 0 A or less, and thus the sixth semiconductor switching device T6 can not be turned off. That is, the short circuit current can not be cut off. Therefore, care must be taken in the design of the LC resonant circuit to prevent such operation.
  • the timing of the gate-off command of the sixth and seventh semiconductor switching elements T6 and T7 (thyristor) connected in parallel to the first and second mechanical circuit breakers CB1 and CB2 is set to 1/4 of the LC resonance period. There is no need to Therefore, the design of the gate command becomes easy.
  • the seventh embodiment produces the following effects with respect to the patent document 2. It is possible to shut off the current flowing in both directions. No external power supply is required for the capacitor of the resonant circuit. Since no switching loss occurs in the added sixth and seventh semiconductor switching elements T6 and T7, the thermal duty of the sixth and seventh semiconductor switching elements T6 and T7 is small, and the number of series and parallel connections can be reduced. A large capacity snubber circuit is also unnecessary. Therefore, cost and volume can be reduced.
  • first and second mechanical circuit breakers CB1 and CB2 are connected in series between the + terminal of the first DC system 1 and the + terminal of the second DC system 2 has been described.
  • the first and second mechanical circuit breakers CB1 and CB2 may be connected in series between the ⁇ terminal of the first DC system 1 and the ⁇ terminal of the second DC system 2.
  • one end (cathode) of the first semiconductor switching element T1 is connected to the common connection point of the negative terminal of the first DC system 1 and the first mechanical circuit breaker CB1.
  • One end (anode) of the second semiconductor switching element T2 is connected to the other end (anode) of the first semiconductor switching element T1.
  • the other end (cathode) of the second semiconductor switching element T2 is connected to the common connection point of the ⁇ terminal of the second DC system 2 and the second mechanical circuit breaker CB2.
  • a capacitor C is connected between a common connection point of the first and second mechanical circuit breakers CB1 and CB2 and a common connection point of the first and second semiconductor switching elements T1 and T2. Further, the first reactor L1 is connected in series to the capacitor C.
  • the connection order of the capacitor C and the first reactor L1 may be either.
  • the resistor R of the first embodiment, the Zener diode ZD of the second embodiment, and the third semiconductor switching element T3 of the third and fourth embodiments are connected to the positive terminals of the first and second DC systems 1 and 2.
  • connection in the case of connecting a DC interrupting device between the ⁇ terminal of the first DC system 1 and the ⁇ terminal of the second DC system 2, the connection may be made in the same manner as the first embodiment.
  • FIG. 23 A configuration in which the DC interrupting device of the fifth embodiment is connected between the ⁇ terminal of the first DC system 1 and the ⁇ terminal of the second DC system 2 is shown in FIG.
  • a first mechanical circuit breaker CB1 and a second mechanical circuit breaker CB2 are connected in series between the ⁇ terminal of the first DC system 1 and the ⁇ terminal of the second DC system 2.
  • the emitter terminal of the first semiconductor switching element T1 is connected to the common connection point of the ⁇ terminal of the first DC system 1 and the first mechanical circuit breaker CB1.
  • the cathode terminal of the first diode D1 is connected to the collector terminal of the first semiconductor switching element T1.
  • the connection order of the first semiconductor switching element T1 and the first diode D1 may be reversed.
  • the emitter terminal of the second semiconductor switching element T2 is connected to the common connection point of the ⁇ terminal of the second DC system 2 and the second mechanical circuit breaker CB2.
  • the cathode terminal of the second diode D2 is connected to the collector terminal of the second semiconductor switching element T2.
  • the anode terminal of the second diode D2 is connected to the anode terminal of the first diode D1.
  • the connection order of the second semiconductor switching element T2 and the second diode D2 may be reversed.
  • a capacitor C is connected between the common connection point of the first and second mechanical circuit breakers CB1 and CB2 and the common connection point of the first and second diodes D1 and D2.
  • the first reactor L1 is connected in series to the capacitor C. Here, the connection order of the capacitor C and the first reactor L1 may be reversed.
  • a resistor R is connected between the common connection point of the first and second diodes D1 and D2 and the positive terminals of the first and second DC systems 1 and 2.
  • a third diode D3 is connected in parallel to the first mechanical circuit breaker CB1.
  • the anode terminal of the third diode D3 is connected to the common connection point of the-terminal of the first DC system 1 and the first mechanical circuit breaker CB1.
  • the cathode terminal of the third diode D3 is connected to the common connection point of the first and second mechanical circuit breakers CB1 and CB2.
  • the fourth diode D4 is connected in parallel to the second mechanical circuit breaker CB2.
  • the anode terminal of the fourth diode D4 is connected to the common connection point of the-terminal of the second DC system 2 and the second mechanical circuit breaker CB2.
  • the cathode terminal of the fourth diode D4 is connected to the common connection point of the first and second mechanical circuit breakers CB1 and CB2.
  • FIG. 24 A configuration in which the DC interrupting device of the sixth embodiment is connected between the ⁇ terminal of the first DC system 1 and the ⁇ terminal of the second DC system 2 is shown in FIG.
  • the third and fourth diodes D3 and D4 in FIG. 23 are replaced with fourth and fifth semiconductor switching elements (IGBTs) T4 and T5.
  • the emitter terminal of the fourth semiconductor switching element T4 is connected to the common connection point of the first terminal of the first DC system 1 and the first mechanical circuit breaker CB1.
  • the collector terminal of the fourth semiconductor switching element T4 is connected to the common connection point of the first and second mechanical circuit breakers CB1 and CB2.
  • the emitter terminal of the fifth semiconductor switching element T5 is connected to the common connection point of the ⁇ terminal of the second DC system 2 and the second mechanical circuit breaker CB2.
  • the collector terminal of the fifth semiconductor switching element T5 is connected to the common connection point of the first and second mechanical circuit breakers CB1 and CB2.
  • FIG. 25 A configuration in which the DC interrupting device of the seventh embodiment is connected between the ⁇ terminal of the first DC system 1 and the ⁇ terminal of the second DC system 2 is shown in FIG.
  • sixth and seventh semiconductor switching elements (thyristors) T6 and T7 are connected in antiparallel to the third and fourth diodes D3 and D4 in FIG.
  • the cathode terminal of the sixth semiconductor switching element T6 is connected to the common connection point of the ⁇ terminal of the first DC system 1 and the first mechanical circuit breaker CB1.
  • the anode terminal of the sixth semiconductor switching element T6 is connected to the common connection point of the first and second mechanical circuit breakers CB1 and CB2.
  • the cathode terminal of the seventh semiconductor switching element T7 is connected to the common connection point of the ⁇ terminal of the second DC system 2 and the second mechanical circuit breaker CB2.
  • the anode terminal of the seventh semiconductor switching element T7 is connected to the common connection point of the first and second mechanical circuit breakers CB1 and CB2.
  • FIG. 26 shows a main circuit configuration of the eighth embodiment.
  • the DC circuit breaker 3 according to the eighth embodiment includes a mechanical circuit breaker CB, third and fourth auxiliary circuit current switch parts 6 and 7, and first and second capacitors C1 and C2.
  • the third and fourth reactors L3 and L4 and the first and second resistors R1 and R2 are provided.
  • the third auxiliary circuit current switch unit 6 is a series connection of an eighth semiconductor switching device T8 and a fifth diode D5
  • the fourth auxiliary circuit current switch unit 7 is a ninth semiconductor switching device T9 and a sixth diode D6. Series connection.
  • a mechanical circuit breaker CB is connected between the + terminal of the first DC system 1 and the + terminal of the second DC system 2.
  • a resistor (first impedance) R1 is sequentially connected in series. (The order of connection of the first capacitor C1 and the third reactor L3 may be reversed.)
  • One end of an eighth semiconductor switching element T8 at the common connection point of the machine breaker CB and the + terminal of the second DC system 2 Is connected.
  • the anode of the fifth diode D5 is connected to the other end of the eighth semiconductor switching element T8.
  • the cathode of the fifth diode D5 is connected to the common connection point of the third reactor L3 and the first resistor R1.
  • a second capacitor C2, a fourth reactor L4, and a second resistor are connected between the + terminal of the second DC system 2 and the common connection point of the mechanical circuit breaker CB and the ⁇ terminals of the first and second DC systems 1 and 2.
  • the (second impedance) R2 is sequentially connected in series. (The order of connection of the second capacitor C2 and the fourth reactor L4 may be reversed.)
  • One end of a ninth semiconductor switching element T9 at the common connection point of the machine breaker CB and the + terminal of the first DC system 1 Is connected.
  • the other end of the ninth semiconductor switching element T9 is connected to the anode of a sixth diode D6.
  • the cathode of the sixth diode D6 is connected to the common connection point of the fourth reactor L4 and the second resistor R2.
  • the eighth and ninth semiconductor switching elements T8 and T9 of the eighth embodiment are switching elements capable of self-extinguishing. 26, the collector terminal of the eighth semiconductor switching element T8 is connected to the common connection point between the + terminal of the second DC system 2 and the mechanical circuit breaker CB. Further, the collector terminal of the ninth semiconductor switching element T9 is connected to the common connection point of the + terminal of the first DC system 1 and the mechanical circuit breaker CB. The emitter terminals of the eighth and ninth semiconductor switching elements T8 and T9 are connected to the anodes of the fifth and sixth diodes D5 and D6.
  • the eighth and ninth semiconductor switching elements T8 and T9 and the fifth and sixth diodes D5 and D6 may be replaced by switching elements such as reverse blocking IGBTs having a reverse blocking capability and capable of self-ignition.
  • FIG. 27 shows the DC interrupting device in the steady state of the eighth embodiment.
  • the mechanical circuit breaker CB is closed, and current flows in both directions.
  • a charging current flows through the first capacitor C1 via the third reactor L3 and the first resistor R1.
  • a charging current flows through the second capacitor C2 via the fourth reactor L4 and the second resistor R2.
  • flow system 2 side is shown.
  • the ninth semiconductor switching element T9 is turned ON, and the discharge current from the second capacitor C2 passes through the mechanical circuit breaker CB ⁇ the ninth semiconductor switching element T9 ⁇ the sixth diode D6 ⁇ the fourth reactor L4 as the auxiliary circuit current. Flow.
  • the auxiliary circuit current cancels the short circuit current flowing through the mechanical circuit breaker CB to create a current zero, and opens the mechanical circuit breaker CB to extinguish the arc.
  • the magnitude of the auxiliary circuit current is determined by the fourth reactor L4 and the second capacitor C2. Therefore, the magnitude
  • blocking apparatus 3 of this Embodiment 8 after arc extinguishing is shown in FIG.
  • the auxiliary circuit current flows via the ninth semiconductor switching element T9 ⁇ sixth diode D6 ⁇ the fourth reactor L4 ⁇ the second capacitor C2, and charges the second capacitor C2 in the opposite direction to that shown in FIG.
  • the current on the second DC system 2 side becomes zero, and the interruption of the current is completed.
  • FIG. 30 shows the DC interrupting device 3 of the eighth embodiment when the current interrupting is completed and the second DC system 2 is turned on again.
  • the mechanical circuit breaker CB When the mechanical circuit breaker CB is closed, current flows through the mechanical circuit breaker CB ⁇ second capacitor C 2 ⁇ fourth reactor L 4 ⁇ second resistor R 2, and the second capacitor C 2, which has been charged in the opposite direction, Recharge in the direction.
  • the state returns to the state of FIG.
  • the direction of current flow and the current value at the time of the occurrence of an accident are monitored using the upper controller, and the opening and closing of the machine breaker CB and the ON and OFF of the eighth and ninth semiconductor switching elements T8 and T9 are performed.
  • the waveform at the time of interrupting the short circuit current by the side of the 2nd direct current system 2 in Drawing 31 is shown.
  • a short circuit occurs at time t1, and the mechanical circuit breaker passing current Icb increases.
  • the ninth semiconductor switching element T9 is turned on at time t2, a discharge current flows from the second capacitor C2 as the auxiliary circuit current Iaux, and the mechanical circuit breaker passing current Icb is cancelled.
  • the auxiliary circuit current Iaux is a resonant current of a frequency determined by the second capacitor C2 and the fourth reactor L4. If the resonance frequency is too high, the resonance ends and the mechanical circuit breaker passing current Icb returns to the original size before opening the mechanical circuit breaker CB. Also, if the resonance frequency is too low, the increase rate of the mechanical circuit breaker pass current Icb due to a short circuit becomes larger than the auxiliary circuit current Iaux increase speed, and a zero point can not be formed in the mechanical circuit breaker pass current Icb. Therefore, it is necessary to set the resonance frequency to be equal to or slightly longer than the mechanical circuit breaker CB operation time.
  • the first method is a method of detecting the mechanical circuit breaker passing current Icb with a current sensor and opening the detected value when the detected value is less than the allowable value.
  • the second method is a method of calculating the time at which the auxiliary circuit current Iaux is maximum from the values of the fourth reactor L4 and the second capacitor C2 and opening the mechanical circuit breaker CB at that timing.
  • the mechanical circuit breaker CB is opened at time t3. Although the mechanical circuit breaker pass current Icb remains at time t3, some arcing occurs, but the mechanical circuit pass current Icb becomes zero thereafter by the auxiliary circuit current Iaux, so that the arc can be extinguished.
  • the voltage Vc2 of the second capacitor C2 is reversely charged by the resonance current and the short circuit current, and when the negative system voltage Vdc is reached, the charging is completed, the auxiliary circuit current Iaux becomes zero, and the interruption is completed.
  • the shutoff method in the case where an accident occurs on the second DC system 2 side is described, but it is possible to shut off similarly in the case where an accident occurs on the first DC system 1 side.
  • turning on the eighth semiconductor switching element T8 instead of the ninth semiconductor switching element T9 cancels the short circuit current passing through the mechanical circuit breaker CB using the discharge current of the first capacitor C1.
  • the mechanical circuit breaker CB is always energized during steady state, there is almost no power loss. Since the eighth and ninth semiconductor switching elements T8 and T9 increase with an inclination from the zero current by the third and fourth reactors L3 and L4 immediately after ON (see Iaux in FIG. 31B), the turn is ON The losses are very small. Further, the eighth and ninth semiconductor switching elements T8 and T9 do not interrupt the short circuit current, and turn off is performed when the short circuit current becomes zero due to reverse charging of the first and second capacitors C1 and C2, so the turn OFF There is almost no loss.
  • the capacitor capacity of the auxiliary circuit may be small, and the size can be reduced.
  • some increase in the parasitic impedance component of the auxiliary circuit can be tolerated.
  • FIG. 32 shows a main circuit configuration of the ninth embodiment.
  • the eighth and ninth semiconductor switching devices T8 and T9 of the eighth embodiment are replaced with switching devices having a reverse blocking capability that can not be self-extinguished such as thyristors.
  • the fifth and sixth diodes D5 and D6 of the eighth embodiment are omitted.
  • the operation of the ninth embodiment is the same as that of the eighth embodiment. However, as shown in FIG. 29, since the unnecessary current flows through the ninth semiconductor switching element T9 and the second resistor R2 by turning on the ninth semiconductor switching element T9 after opening the mechanical circuit breaker CB, self-arc-extinguishing Without the ability, the ninth semiconductor switching element T9 can not be turned off by the command signal from the host controller.
  • the same function and effect as the eighth embodiment can be obtained.
  • the thyristor has a smaller voltage drop than the IGBT, and it is easy to obtain high breakdown voltage and high current products.
  • the number of series connection may be smaller than that of the IGBT. Therefore, high withstand voltage and large current can be achieved with smaller size and lower cost than IGBT, and loss and heat generation at the time of interruption can be reduced.
  • FIG. 33 shows a main circuit configuration of the tenth embodiment.
  • the tenth embodiment is characterized in that a self-ignitionable tenth semiconductor switching element T10 is interposed between the first and second resistors R1 and R2 of the ninth embodiment and the negative terminals of the first and second DC systems 1 and 2. It is added to cut off the unnecessary current.
  • the operation of the direct current cut-off device 3 in the tenth embodiment will be described.
  • the tenth semiconductor switching element T10 is turned on to charge the first and second capacitors C1 and C2 in the same state as shown in FIG.
  • the shutoff command comes due to completion of charging or a short circuit accident, the tenth semiconductor switching element T10 is turned off.
  • the completion of charging is detected on the condition that the voltage across the first and second capacitors C1 and C2 is detected and equal to the grid voltage.
  • the time constant is obtained from the product of the first capacitor C1 and the first resistor R1 and the second capacitor C2 and the second resistor R2, and the time from the closing of the mechanical circuit breaker CB is sufficiently longer than the time constant (for example, about 10 times) It may be determined that charging is completed by the lapse of.
  • the tenth semiconductor switching device T10 is OFF, and unlike in FIG. 29, the unnecessary current flowing through the ninth semiconductor switching device T9 and the second resistor R2 is interrupted by the tenth semiconductor switching device T10. .
  • the same function and effect as the eighth and ninth embodiments can be obtained. Also, the loss after current interruption can be made zero. In addition, since the unnecessary current does not flow even if the resistance values of the first and second resistors R1 and R2 are small, the eighth and ninth semiconductor switching elements (thyristors) T8 and T9 can be reliably turned OFF. As a merit of reducing the resistance value of the first and second resistors R1 and R2, the recharging speed of the first and second capacitors C1 and C2 at the time of reconnection of the system in FIG. 30 is improved. Thus, it is possible to shorten the time taken to complete the blocking preparation.
  • the tenth semiconductor switching element T10 may be divided into a tenth semiconductor switching element T10 for charging the first capacitor C1 and an eleventh semiconductor switching element T11 for charging the second capacitor C2.
  • the first resistor R1 and the tenth semiconductor switching element T10 are connected.
  • the second resistor R2 and the eleventh semiconductor switching element T11 are connected.
  • command signals from upper controllers of the tenth semiconductor switching device T10 and the eleventh semiconductor switching device T11 may be shared.
  • the first and second capacitors C1 and C2 of the auxiliary circuit are charged in advance, and the capacitor discharge current is used to cancel the current at the time of opening the mechanical circuit breaker to create a zero point to extinguish the arc. Arc.
  • the charging current of the first and second capacitors C1 and C2 flows through the first and second resistors R1 and R2, there is a problem that power loss occurs in each of the resistors.
  • the DC circuit breaker 3 according to the eleventh embodiment includes the mechanical circuit breaker CB, the first and second capacitors C1 and C2, the third and fourth auxiliary circuit current switch units 6 and 7, and the twelfth and thirteenth semiconductor switching devices.
  • Elements T12 and T13, third to sixth reactors L3 to L6, and seventh and eighth diodes D7 and D8 are provided.
  • the third and fourth auxiliary circuit current switch sections 6 and 7 are assumed to be eighth and ninth semiconductor switching elements T8 and T9 (thyristors).
  • a mechanical circuit breaker CB is connected between the + terminal of the first DC system 1 and the + terminal of the second DC system 2.
  • a first capacitor C1 and a third reactor L3 are provided between the + terminal of the first DC system 1 and the common connection point of the mechanical circuit breaker CB and the ⁇ terminals of the first and second DC systems 1 and 2.
  • a fifth reactor (first impedance) L5 and a twelfth semiconductor switching element T12 having a self arc extinguishing capability are sequentially connected in series. The order of connection of the first capacitor C1 and the third reactor L3 may be reversed.
  • the twelfth semiconductor switching element T12 is an IGBT, and its collector terminal is connected to the fifth reactor L5, and its emitter terminal is connected to the ⁇ terminal side of the first and second DC systems 1 and 2.
  • the anode of an eighth semiconductor switching device (thyristor in FIG. 34) having reverse blocking capability is connected to the common connection point between the positive terminal of the second DC system 2 and the mechanical circuit breaker CB.
  • the cathode of the eighth semiconductor switching element (thyristor) T8 is connected to the common connection point of the third and fifth reactors L3 and L5.
  • An anode of a seventh diode D7 is connected to a common connection point of the fifth reactor L5 and the twelfth semiconductor switching element T12.
  • the cathode of the seventh diode D7 is connected to the common connection point between the eighth semiconductor switching element (thyristor) T8 and the positive terminal of the second DC system 2.
  • a second capacitor C2 and a fourth reactor L4 are provided between the + terminal of the second DC system 2 and the common connection point of the mechanical circuit breaker CB and the ⁇ terminals of the first and second DC systems 1 and 2.
  • a sixth reactor (second impedance) L6 and a thirteenth semiconductor switching element T13 having a self arc extinguishing capability are sequentially connected in series. The order of connection of the second capacitor C2 and the fourth reactor L4 may be reversed.
  • the thirteenth semiconductor switching element T13 is an IGBT, and its collector terminal is connected to the sixth reactor L6, and its emitter terminal is connected to the-terminal side of the first and second DC systems 1 and 2.
  • the anode of a ninth semiconductor switching device (a thyristor in FIG. 34) having reverse blocking capability is connected to the common connection point between the positive terminal of the first DC system 1 and the mechanical circuit breaker CB.
  • the cathode of the ninth semiconductor switching element (thyristor) T9 is connected to the common connection point of the fourth and sixth reactors L4 and L6.
  • An anode of an eighth diode D8 is connected to a common connection point of the sixth reactor L6 and the thirteenth semiconductor switching element T13.
  • the cathode of the eighth diode D8 is connected to the common connection point of the ninth semiconductor switching element (thyristor) T9 and the positive terminal of the first DC system 1.
  • the eighth and ninth semiconductor switching devices T8 and T9 do not require the self arc-extinguishing capability but need the reverse blocking capability.
  • Other switching elements such as a series circuit of an IGBT and a diode or a reverse blocking IGBT may be substituted.
  • the mechanical circuit breaker CB is closed, and current flows in both directions.
  • the first and second capacitors C1 and C2 are charged by switching the twelfth and thirteenth semiconductor switching elements T12 and T13.
  • FIG. 35 shows a state in which the twelfth and thirteenth semiconductor switching elements T12 and T13 are turned ON.
  • the capacitor charging current flows through the first capacitor C1 ⁇ the third reactor L3 ⁇ the fifth reactor L5 ⁇ the twelfth semiconductor switching element T12, and the first capacitor C1 is charged.
  • the capacitor charging current flows through the second capacitor C2 ⁇ the fourth reactor L4 ⁇ the sixth reactor L6 ⁇ the thirteenth semiconductor switching element T13, and the second capacitor C2 is charged.
  • FIG. 36 shows a state in which the twelfth and thirteenth semiconductor switching elements T12 and T13 are turned off.
  • the magnetic energy stored in the fifth reactor L5 at the time of turning on the twelfth semiconductor switching element T12 circulates the seventh diode D7 ⁇ the first capacitor C1 ⁇ the third reactor L3 to flow a current, and the first capacitor C1 is charged.
  • the magnetic energy stored in the sixth reactor L6 when the thirteenth semiconductor switching element T13 is ON circulates the eighth diode D8 ⁇ the second capacitor C2 ⁇ the fourth reactor L4, and the second capacitor C2 is charged. Ru.
  • the completion of charging is determined by detecting the voltage across the first and second capacitors C1 and C2 and having reached a predetermined voltage.
  • the time until the first and second capacitors C1 and C2 are completely charged is calculated in advance from the constants of the third to sixth reactors L3 to L6 and the first and second capacitors C1 and C2.
  • the twelfth and thirteenth semiconductor switching elements T12 and T13 may be turned off when the time is reached.
  • flow system 2 side is shown.
  • the ninth semiconductor switching element T9 is turned ON, and a discharge current flows from the second capacitor C2 as an auxiliary circuit current via the mechanical circuit breaker CB ⁇ the ninth semiconductor switching element T9 ⁇ the fourth reactor L4.
  • the auxiliary circuit current cancels the short circuit current flowing through the mechanical circuit breaker CB to create a current zero, and opens the mechanical circuit breaker CB to extinguish the arc.
  • blocking apparatus 3 of this Embodiment 11 after arc extinguishing is shown in FIG.
  • the auxiliary circuit current flows via the ninth semiconductor switching element T9 ⁇ the fourth reactor L4 ⁇ the second capacitor C2, and charges the second capacitor C2 in the reverse direction to that in FIG.
  • the current on the second DC system 2 side becomes zero, and the interruption of the current is completed.
  • FIG. 39 shows the DC interrupting device 3 of Embodiment 11 when the current interrupting is completed and the second DC system 2 is turned on again.
  • the mechanical circuit breaker CB is closed, a resonant circuit is formed in the path of the second capacitor C2 ⁇ the fourth reactor L4 ⁇ the sixth reactor L6 ⁇ the eighth diode D8 ⁇ the mechanical circuit breaker CB, and a resonant current flows, and the second capacitor C2 is recharged to its original orientation.
  • the resonance current is blocked by the eighth diode D8, the steady state is reached, and the preparation for cutoff is completed. If charging of the second capacitor C2 is incomplete, the second capacitor C2 can be charged by turning on the thirteenth semiconductor switching element T13.
  • the direction of current flow and the current value at the time of the occurrence of an accident are monitored using the upper controller, and the opening and closing of the machine breaker CB and the ON and OFF of the eighth and ninth semiconductor switching elements T8 and T9 are performed.
  • the shutoff method in the case where an accident occurs on the second DC system 2 side is described, but it is possible to shut off similarly in the case where an accident occurs on the first DC system 1 side.
  • the eighth semiconductor switching element T9 instead of the ninth semiconductor switching element T9, the short circuit current passing through the mechanical circuit breaker CB is canceled using the discharge current of the first capacitor C1.
  • the twelfth semiconductor switching device T12 and the thirteenth semiconductor switching device T13 may be shared.
  • the semiconductor switching element made common is the same connection configuration as the tenth semiconductor switching element T10 of FIG.
  • the eleventh embodiment exhibits the same effects as the eighth to tenth embodiments.
  • the capacitor charging current does not flow through the resistor, and a power loss due to the resistor does not occur, so the loss at the time of charging can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

In this invention, first and second mechanical circuit breakers CB1, CB2 are connected between a plus terminal from a first direct current system 1 and a plus terminal from a second direct current system 2. One end from a first semiconductor switching element T1 is connected to a connection point shared by the plus terminal from the first direct current system 1 and the first mechanical circuit breaker CB1. One end from a second semiconductor switching element T2 is connected to another end from the first semiconductor switching element T1. Another end from the second semiconductor switching element T2 is connected to the plus terminal from the second direct current system 2. A capacitor C is connected between the connection point shared by the first and second mechanical circuit breakers CB1, CB2 and the connection point shared by the first and second semiconductor switching elements T1, T2. A first reactor L1 is connected in series to the capacitor C. An impedance is connected between the connection point shared by the first and second semiconductor switching elements T1, T2 and the minus terminals from the first and second direct current systems 1, 2. In this direct current shut-down device the shutting down of current in both directions is reliably ensured without increasing the capacity of the capacitor.

Description

直流遮断装置DC blocking device
 本発明は、定常時の電力損失が小さく、双方向の直流電流を遮断できる直流遮断装置に関する。 TECHNICAL FIELD The present invention relates to a direct current cut-off device which can shut off direct current in both directions with small power loss in steady state.
 交流電流を遮断する交流遮断装置は、機械遮断器閉極時(定常時)は導体として機能するため通電しており、事故発生時は機械遮断器を開極する。機械遮断器開極時はアークが発生するが、電流零点でアークを消弧できるため電流遮断が可能となる。 The AC interrupting device for interrupting the alternating current is energized since it functions as a conductor when the mechanical circuit breaker is closed (in steady state), and opens the mechanical circuit breaker when an accident occurs. An arc is generated when the mechanical circuit breaker is opened, but since the arc can be extinguished at the current zero point, the current can be interrupted.
 また、遮断状態は絶縁体として機能するため電流は流れない。この交流遮断装置は主にガス遮断器や真空遮断器が利用されており、アークを消弧する媒体は異なるものの、どちらも電流零点でアークを消弧する方式が採用されている。 In addition, no current flows because the cutoff state functions as an insulator. The AC circuit breaker mainly uses a gas circuit breaker or a vacuum circuit breaker, and although a medium for arc extinguishing is different, both adopt a method for extinguishing the arc at a current zero point.
 しかし、直流電流を遮断する直流遮断装置の場合は交流電流と異なり電流零点が生じないため、機械遮断器開極時に発生するアークを消弧できず、接点の損傷または遮断失敗となる。 However, in the case of a direct current shutoff device which shuts off a direct current, unlike the alternating current, no current zero point occurs, so that the arc generated at the opening of the machine breaker can not be extinguished, resulting in damage or interruption failure of the contact.
 そのため、直流遮断装置は電流零点を生じさせる補助回路等が必要となる。このような補助回路を備えた遮断方式として、特許文献1が開示されている。特許文献1の装置は単方向の電流遮断に対応した構成である。 Therefore, the DC interrupting device requires an auxiliary circuit or the like for generating a current zero point. Patent Document 1 is disclosed as a shutoff method provided with such an auxiliary circuit. The device of Patent Document 1 is configured to cope with unidirectional current interruption.
 再生可能エネルギーの活用や安定した電力の需給など、ネットワーク化された直流送配電システムにおいては、一本の経路に双方向の電流が流れるケースが考えられるため、双方向電流遮断技術が必要となる。 In a networked direct current transmission and distribution system, such as utilization of renewable energy and stable power supply and demand, bidirectional current interruption technology is required because bidirectional current may flow in one path. .
 特許文献1において電流を迂回させる補助回路の構成は、コンデンサとダイオードである。しかし、電流がダイオードを通過する際には電圧降下が生じる。この電圧降下がアーク維持電圧よりも大きい場合、電流は開極した機械遮断器を流れ続けアークを消弧できず電流遮断に失敗してしまう。 The configuration of the auxiliary circuit for diverting the current in Patent Document 1 is a capacitor and a diode. However, a voltage drop occurs when current passes through the diode. If this voltage drop is greater than the arc maintenance voltage, current will continue to flow through the open machine breaker and the arc can not be extinguished, causing a current interruption failure.
 特に高圧系統に適用する場合、耐圧の高いダイオードや複数のダイオードを直列接続して用いると、ダイオードでの電圧降下が大きくなり、電流遮断に失敗する恐れが増大する。 In particular, when applied to a high voltage system, if a diode with a high withstand voltage or a plurality of diodes are connected in series, the voltage drop in the diode becomes large, and the possibility of failure to interrupt the current increases.
 さらに、ダイオードの他にも補助回路には寄生抵抗や寄生インダクタンス成分があり、機械遮断器の開極と同時にすべての電流を補助回路に迂回させるのは困難である。開極から少しでも時間がたつと、機械遮断器から一部だけ迂回した電流が補助回路に流れコンデンサを充電してしまい、コンデンサ電圧とダイオード電圧降下分の電圧の和が機械遮断器に印加され、アーク消弧が困難になってしまう。 Furthermore, in addition to the diode, the auxiliary circuit has a parasitic resistance and a parasitic inductance component, and it is difficult to divert all the current to the auxiliary circuit at the same time as opening the mechanical circuit breaker. When a little time has passed since the opening, the current diverted only partially from the mechanical circuit breaker flows in the auxiliary circuit to charge the capacitor, and the sum of the capacitor voltage and the voltage drop of the diode voltage is applied to the mechanical circuit breaker , Arc extinction becomes difficult.
 図40に問題となる動作を示す。図40(a)は直流遮断装置から、第2直流系統2の短絡電流を遮断する際に関係する素子のみを抽出し、補助回路に寄生インダクタンスを加えた回路図である。 FIG. 40 shows the operation that causes the problem. FIG. 40 (a) is a circuit diagram in which only elements relevant to interrupting the short circuit current of the second DC system 2 are extracted from the DC interrupting device, and parasitic inductance is added to the auxiliary circuit.
 図40(b)は補助回路におけるダイオードの電圧降下やインダクタンスを無視した時の各波形を示すタイムチャートである。時刻t1で機械遮断器CBを開極すると、機械遮断器両端電圧Vcbにはコンデンサ電圧のみが印加され、時刻t1では零である。そのため、アークは発生せず電流はすべて補助回路に迂回され、電流を遮断することができる。 FIG. 40 (b) is a time chart showing each waveform when the voltage drop and the inductance of the diode in the auxiliary circuit are ignored. When the mechanical circuit breaker CB is opened at time t1, only the capacitor voltage is applied to the voltage Vcb across the mechanical circuit breaker, and the voltage is zero at time t1. Therefore, no arcing occurs and all the current is diverted to the auxiliary circuit, and the current can be cut off.
 図40(c)は補助回路におけるダイオードの電圧降下やインダクタンスを考慮したときの各波形を示すタイムチャートである。時刻t1において、機械遮断器両端電圧Vcbには補助回路のコンデンサ電圧の他にダイオードの電圧降下と寄生インダクタンス電圧の和が印加される。また、寄生インダクタンスにより補助回路電流Iauxは有限の傾きで増加し、機械遮断器通過電流Icbも同じ傾きで減少する。 FIG. 40 (c) is a time chart showing each waveform when the voltage drop and the inductance of the diode in the auxiliary circuit are taken into consideration. At time t1, in addition to the capacitor voltage of the auxiliary circuit, the sum of the voltage drop of the diode and the parasitic inductance voltage is applied to the voltage Vcb across the mechanical circuit breaker. Also, due to the parasitic inductance, the auxiliary circuit current Iaux increases with a finite slope, and the mechanical circuit breaker passing current Icb also decreases with the same slope.
 時刻t1以降は補助回路電流IauxによりコンデンサCが充電され、機械遮断器両端電圧Vcbはさらに増加する。ここで、機械遮断器通過電流Icbが十分小さくなる前に機械遮断器両端電圧Vcbがアーク保持電圧を超えてしまうと(図40では時刻t2)、アークを消弧できなくなり電流は機械遮断器CBを通過し続け、遮断に失敗してしまう。また、高圧系統向けにダイオードDを複数直列に接続すると、アーク保持電圧を超える危険性が高くなる。 After time t1, the capacitor C is charged by the auxiliary circuit current Iaux, and the voltage Vcb across the machine breaker further increases. Here, if the voltage Vcb across the mechanical circuit breaker exceeds the arc holding voltage before the mechanical circuit breaker passing current Icb becomes sufficiently small (in FIG. 40, time t2), the arc can not be extinguished, and the current is the mechanical circuit breaker CB. Continue to pass and fail to shut off. Also, if a plurality of diodes D are connected in series for a high voltage system, the risk of exceeding the arc holding voltage is increased.
 対策として、補助回路のコンデンサ容量を増加し、機械遮断器開極時の両端電圧を緩やかに上昇させる方法がある。しかし、これは図40において時刻t1以降の機械遮断器両端電圧Vcb増加量を低減するだけであり、時刻t1における機械遮断器両端電圧Vcb増加を低減する効果はない。また、コンデンサ容量を増加すると、コスト・装置容積が増加してしまう問題点もある。 As a countermeasure, there is a method of increasing the capacity of the capacitor of the auxiliary circuit and gradually increasing the voltage at the opening of the mechanical circuit breaker. However, this only reduces the increase amount of voltage Vcb across mechanical circuit breaker after time t1 in FIG. 40, and there is no effect of reducing the increase of voltage Vcb across mechanical circuit breaker at time t1. In addition, there is also a problem that cost and device volume increase when the capacitor capacity is increased.
 以上示したようなことから、直流遮断装置において、コンデンサ容量を増加させずにより確実に双方向の電流を遮断することが課題となる。 As described above, it is an object of the direct current cut-off device to cut off bidirectional current more reliably without increasing the capacity of the capacitor.
特開2016-28378号公報JP, 2016-28378, A 特許第6049957号公報Patent No. 6049957
 本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、第1直流系統の+端子と第2直流系統の+端子との間に直列接続された第1,第2機械遮断器と、第1半導体スイッチング素子を有し、前記第1直流系統の+端子と前記第1機械遮断器の共通接続点に一端が接続された第1補助回路電流スイッチ部と、第2半導体スイッチング素子を有し、前記第1補助回路電流スイッチ部の他端に一端が接続され、他端が前記第2直流系統の+端子と前記第2機械遮断器の共通接続点に接続された第2補助回路電流スイッチ部と、前記第1,第2機械遮断器の共通接続点と前記第1,第2補助回路電流スイッチ部の共通接続点との間に接続されたコンデンサと、前記コンデンサに直列接続された第1リアクトルと、前記第1,第2補助回路電流スイッチ部の共通接続点と前記第1,第2直流系統の-端子との間に接続されたインピーダンスと、を備えたことを特徴とする。 The present invention has been made in view of the above-mentioned conventional problems, and one aspect thereof is characterized in that the first, the fourth, and the third connected in series between the + terminal of the first DC system and the + terminal of the second DC system. A first auxiliary circuit current switch unit having two mechanical circuit breakers and a first semiconductor switching element, and one end connected to a common connection point of the positive terminal of the first DC system and the first mechanical circuit breaker; 2 has a semiconductor switching element, one end is connected to the other end of the first auxiliary circuit current switch portion, and the other end is connected to the common connection point of the + terminal of the second DC system and the second mechanical circuit breaker A second auxiliary circuit current switch portion, a capacitor connected between a common connection point of the first and second mechanical circuit breakers and a common connection point of the first and second auxiliary circuit current switch portions; A first reactor connected in series to a capacitor, and the first and second Characterized in that and a impedance connected between the terminals - a common connection point between said first, second DC system circuit current switch unit.
 また、その一態様として、前記インピーダンスは、抵抗であることを特徴とする。 Further, as one aspect thereof, the impedance is a resistor.
 また、その一態様として、前記第1,第2半導体スイッチング素子はサイリスタであることを特徴とする。 In one aspect, the first and second semiconductor switching elements are thyristors.
 また、他の態様として、前記第1,第2補助回路電流スイッチ部は、前記第1,第2半導体スイッチング素子に直列接続されたダイオードを有し、前記第1,第2半導体スイッチング素子は、自己消弧能力を有することを特徴とする。 Further, as another aspect, the first and second auxiliary circuit current switch parts have diodes connected in series to the first and second semiconductor switching elements, and the first and second semiconductor switching elements are It is characterized by having a self-extinguishing ability.
 また、その一態様として、前記抵抗と、前記第1,第2直流系統の-端子との間にツェナーダイオードが接続されたことを特徴とする。 In one embodiment, a Zener diode is connected between the resistor and the negative terminals of the first and second DC systems.
 また、他の態様として、前記抵抗と、前記第1,第2直流系統の-端子との間に第3半導体スイッチング素子が接続されたことを特徴とする。 Further, according to another aspect, a third semiconductor switching element is connected between the resistor and the negative terminals of the first and second DC systems.
 また、他の態様として、前記インピーダンスは第2リアクトルであり、前記第2リアクトルに対して並列接続されたダイオードと、前記第2リアクトルと前記第1,第2直流系統の-端子との間に接続された第3半導体スイッチング素子と、を備えたことを特徴とする。 In another aspect, the impedance is a second reactor, and between a diode connected in parallel to the second reactor, the second reactor, and negative terminals of the first and second DC systems. And a third semiconductor switching element connected.
 また、他の態様として、第1直流系統の-端子と第2直流系統の-端子との間に直列接続された第1,第2機械遮断器と、第1半導体スイッチング素子を有し、前記第1直流系統の-端子と前記第1機械遮断器の共通接続点に一端が接続された第1補助回路電流スイッチ部と、第2半導体スイッチング素子を有し、前記第1補助回路電流スイッチ部の他端に一端が接続され、他端が前記第2直流系統の-端子と前記第2機械遮断器の共通接続点に接続された第2補助回路電流スイッチ部と、前記第1,第2機械遮断器の共通接続点と前記第1,第2補助回路電流スイッチ部の共通接続点との間に接続されたコンデンサと、前記コンデンサに直列接続された第1リアクトルと、前記第1,第2補助回路電流スイッチ部の共通接続点と前記第1,第2直流系統の+端子との間に接続されたインピーダンスと、を備えたことを特徴とする。 Further, as another aspect, it has first and second mechanical circuit breakers connected in series between the negative terminal of the first DC system and the negative terminal of the second DC system, and the first semiconductor switching element, It has a first auxiliary circuit current switch unit whose one end is connected to the common connection point of the first DC circuit negative terminal and the first mechanical circuit breaker, and a second semiconductor switching element, and the first auxiliary circuit current switch unit A second auxiliary circuit current switch unit having one end connected to the other end and the other end connected to the common connection point of the second terminal of the second DC system and the second mechanical circuit breaker; A capacitor connected between a common connection point of the mechanical circuit breaker and a common connection point of the first and second auxiliary circuit current switch parts, a first reactor connected in series to the capacitor, the first and second 2 Common connection point of the auxiliary circuit current switch section and the first A connection impedance between the positive terminal of the second DC system, characterized by comprising a.
 また、その一態様として、前記第1直流系統から前記第2直流系統に電流が流れており、前記第2直流系統で事故が発生した場合は、前記第1半導体スイッチング素子をオンし、前記第1機械遮断器に流れる電流が所定値以下になった後、前記第1機械遮断器を遮断し、前記第2直流系統から前記第1直流系統に電流が流れており、前記第1直流系統で事故が発生した場合は、前記第2半導体スイッチング素子をオンし、前記第2機械遮断器に流れる電流が所定値以下になった後、前記第2機械遮断器を遮断することを特徴とする。 Further, as one aspect thereof, when a current flows from the first DC system to the second DC system, and an accident occurs in the second DC system, the first semiconductor switching element is turned on, and (1) After the current flowing through the mechanical circuit breaker becomes lower than a predetermined value, the first mechanical circuit breaker is shut off, and current flows from the second direct current system to the first direct current system, and the first direct current system When an accident occurs, the second semiconductor switching element is turned on, and after the current flowing through the second mechanical circuit breaker becomes a predetermined value or less, the second mechanical circuit breaker is shut off.
 また、その一態様として、前記第1,第2機械遮断器の共通接続点にアノードが接続され、前記第1機械遮断器と前記第1補助回路電流スイッチ部の共通接続点にカソードが接続された第3ダイオードと、前記第1,第2機械遮断器の共通接続点にアノードが接続され、前記第2機械遮断器と前記第2補助回路電流スイッチ部の共通接続点にカソードが接続された第4ダイオードと、を備えたことを特徴とする。 Further, as one aspect thereof, an anode is connected to a common connection point of the first and second mechanical circuit breakers, and a cathode is connected to a common connection point of the first mechanical circuit breaker and the first auxiliary circuit current switch portion. An anode is connected to a common connection point of the third diode and the first and second mechanical circuit breakers, and a cathode is connected to a common connection point of the second mechanical circuit breaker and the second auxiliary circuit current switch unit. And a fourth diode.
 また、その一態様として、前記第1直流系統から前記第2直流系統に電流が流れており、前記第2直流系統で短絡が発生した場合は、前記第1半導体スイッチング素子をONして補助回路電流を流し、前記補助回路電流が短絡電流より大きい期間に、前記第1機械遮断器を遮断し、前記第2直流系統から前記第1直流系統に電流が流れており、前記第1直流系統で短絡が発生した場合は、前記第2半導体スイッチング素子をONして補助回路電流を流し、前記補助回路電流が短絡電流より大きい期間に、前記第2機械遮断器を遮断することを特徴とする。 Further, as one aspect thereof, when a current flows from the first direct current system to the second direct current system and a short circuit occurs in the second direct current system, the first semiconductor switching element is turned on to be an auxiliary circuit. A current flows, and the first mechanical circuit breaker is shut off in a period during which the auxiliary circuit current is greater than the short circuit current, a current flows from the second DC system to the first DC system, and the first DC system When a short circuit occurs, the second semiconductor switching element is turned on to flow an auxiliary circuit current, and the second mechanical circuit breaker is disconnected in a period during which the auxiliary circuit current is larger than the short circuit current.
 また、他の態様として、前記第1,第2機械遮断器に自己消弧能力を有する第4,第5半導体スイッチング素子を並列接続したことを特徴とする。 In another aspect, the first and second mechanical circuit breakers are connected in parallel with fourth and fifth semiconductor switching elements having a self-extinguishing ability.
 また、その一態様として、前記第1直流系統から前記第2直流系統に電流が流れており、前記第2直流系統で短絡が発生した場合は、前記第4半導体スイッチング素子をONした後、前記第1機械遮断器の開極指令を行い、その後、前記第1半導体スイッチング素子をONし、前記第2直流系統から前記第1直流系統に電流が流れており、前記第1直流系統で短絡が発生した場合は、前記第5半導体スイッチング素子をONした後、前記第2機械遮断器の開極指令を行い、その後、前記第2半導体スイッチング素子をONすることを特徴とする。 Further, as one aspect thereof, when a current flows from the first DC system to the second DC system and a short circuit occurs in the second DC system, the fourth semiconductor switching element is turned on, An opening command of the first mechanical circuit breaker is issued, and then the first semiconductor switching element is turned on, and current flows from the second DC system to the first DC system, and a short circuit occurs in the first DC system. When it occurs, after the fifth semiconductor switching device is turned on, an opening command of the second mechanical circuit breaker is issued, and then the second semiconductor switching device is turned on.
 また、他の態様として、前記第3ダイオードに逆並列接続された自己消弧能力を有さない第6半導体スイッチング素子と、前記第4ダイオードに逆並列接続された自己消弧能力を有さない第7半導体スイッチング素子と、を有することを特徴とする。 In another aspect, the semiconductor switching device does not have a self-extinguishing ability that is antiparallel connected to the third diode and does not have self-extinguishing ability that is antiparallel connected to the fourth diode. And a seventh semiconductor switching element.
 また、その一態様として、前記第1直流系統から前記第2直流系統に電流が流れており、前記第2直流系統で短絡が発生した場合は、前記第6半導体スイッチング素子をONした後、前記第1機械遮断器の開極指令を行い、その後、前記第6半導体スイッチング素子のオフ指令を行い、その後、前記第1半導体スイッチング素子をONし、前記第2直流系統から前記第1直流系統に電流が流れており、前記第1直流系統で短絡が発生した場合は、前記第7半導体スイッチング素子をONした後、前記第2機械遮断器の開極指令を行い、その後、前記第7半導体スイッチング素子のオフ指令を行い、その後、前記第2半導体スイッチング素子をONすることを特徴とする。 Further, as one aspect thereof, when a current flows from the first direct current system to the second direct current system and a short circuit occurs in the second direct current system, the sixth semiconductor switching element is turned on; The opening instruction of the first mechanical circuit breaker is performed, and then the OFF instruction of the sixth semiconductor switching element is performed, and then the first semiconductor switching element is turned ON, and the second direct current system to the first direct current system When current flows and a short circuit occurs in the first DC system, the seventh semiconductor switching device is turned on, and then an opening command of the second mechanical circuit breaker is issued, and then the seventh semiconductor switching is performed. A command to turn off the element is issued, and then the second semiconductor switching element is turned on.
 また、他の態様として、前記第1,第2機械遮断器の共通接続点にカソードが接続され、前記第1機械遮断器と前記第1補助回路電流スイッチ部の共通接続点にアノードが接続された第3ダイオードと、前記第1,第2機械遮断器の共通接続点にカソードが接続され、前記第2機械遮断器と前記第2補助回路電流スイッチ部の共通接続点にアノードが接続された第4ダイオードと、を備えたことを特徴とする。 As another aspect, a cathode is connected to a common connection point of the first and second mechanical circuit breakers, and an anode is connected to a common connection point of the first mechanical circuit breaker and the first auxiliary circuit current switch unit. A cathode is connected to a common connection point of the third diode and the first and second mechanical circuit breakers, and an anode is connected to a common connection point of the second mechanical circuit breaker and the second auxiliary circuit current switch unit. And a fourth diode.
 また、他の態様として、前記第1,第2機械遮断器に自己消弧能力を有する第4,第5半導体スイッチング素子を並列接続したことを特徴とする。 In another aspect, the first and second mechanical circuit breakers are connected in parallel with fourth and fifth semiconductor switching elements having a self-extinguishing ability.
 また、他の態様として、前記第3ダイオードに逆並列接続された自己消弧能力を有さない第6半導体スイッチング素子と、前記第4ダイオードに逆並列接続された自己消弧能力を有さない第7半導体スイッチング素子と、を有することを特徴とする。 In another aspect, the semiconductor switching device does not have a self-extinguishing ability that is antiparallel connected to the third diode and does not have self-extinguishing ability that is antiparallel connected to the fourth diode. And a seventh semiconductor switching element.
 また、他の態様として、第1直流系統の+端子と第2直流系統の+端子との間に接続された機械遮断器と、前記第1直流系統の+端子と前記機械遮断器の共通接続点と、前記第2直流系統の+端子と前記機械遮断器の共通接続点と、の間に順次直列接続された第1コンデンサと第3リアクトルと第3補助回路電流スイッチ部、または、第3リアクトルと第1コンデンサと第3補助回路電流スイッチ部と、前記第2直流系統の+端子と前記機械遮断器の共通接続点と、前記第1直流系統の+端子と前記機械遮断器の共通接続点と、の間に順次直列接続された第2コンデンサと第4リアクトルと第4補助回路電流スイッチ部、または、第4リアクトルと第2コンデンサと第4補助回路電流スイッチ部と、前記第3リアクトルと前記第3補助回路電流スイッチ部の共通接続点、または、前記第1コンデンサと前記第3補助回路電流スイッチ部の共通接続点と、前記第1、第2直流系統の-端子との間に接続された第1インピーダンスと、前記第4リアクトルと前記第4補助回路電流スイッチ部の共通接続点、または、前記第2コンデンサと前記第4補助回路電流スイッチ部の共通接続点と、前記第1、第2直流系統の-端子との間に接続された第2インピーダンスと、を備えたことを特徴とする。 In another aspect, the mechanical circuit breaker connected between the + terminal of the first DC system and the + terminal of the second DC system, the common connection of the + terminal of the first DC system and the mechanical circuit breaker A third capacitor and a third auxiliary circuit current switch unit, or a first capacitor, a third reactor, and a third auxiliary circuit, which are sequentially connected in series between the point and the positive terminal of the second DC system and the common connection point of the mechanical circuit breaker The common connection point of the reactor, the first capacitor, the third auxiliary circuit current switch portion, the positive terminal of the second DC system and the mechanical circuit breaker, and the common connection of the positive terminal of the first DC system and the mechanical circuit breaker A second capacitor, a fourth reactor, and a fourth auxiliary circuit current switch unit sequentially connected in series between the points; or a fourth reactor, a second capacitor, and a fourth auxiliary circuit current switch unit, and the third reactor And the third auxiliary circuit A first impedance connected between the common connection point of the flow switch unit or the common connection point of the first capacitor and the third auxiliary circuit current switch unit, and the-terminals of the first and second DC systems. A common connection point of the fourth reactor and the fourth auxiliary circuit current switch unit, or a common connection point of the second capacitor and the fourth auxiliary circuit current switch unit, and the first and second DC systems And-a second impedance connected between the terminal and the terminal.
 また、その一態様として、前記第1インピーダンスと前記第2インピーダンスは、第1抵抗と第2抵抗であることを特徴とする。 In one aspect, the first impedance and the second impedance are a first resistance and a second resistance.
 また、その一態様として、前記第3補助回路電流スイッチ部は、自己消弧型素子の第8半導体スイッチング素子と、前記第8半導体スイッチング素子に直列接続された第5ダイオードと、を有し、前記第4補助回路電流スイッチ部は、自己消弧型素子の第9半導体スイッチング素子と、前記第9半導体スイッチング素子に直列接続された第6ダイオードと、を有することを特徴とする。 In one embodiment, the third auxiliary circuit current switch unit includes an eighth semiconductor switching device of a self-arc-extinguishing device and a fifth diode connected in series to the eighth semiconductor switching device; The fourth auxiliary circuit current switch unit includes a ninth semiconductor switching element of a self-arc-extinguishing type element and a sixth diode connected in series to the ninth semiconductor switching element.
 また、他の態様として、前記第3補助回路電流スイッチ部は、自己消弧能力の有さない第8半導体スイッチング素子を備え、前記第4補助回路電流スイッチ部は、自己消弧能力を有さない第9半導体スイッチング素子を備えたことを特徴とする。 In another aspect, the third auxiliary circuit current switch unit includes an eighth semiconductor switching element having no self arc extinguishing capability, and the fourth auxiliary circuit current switch unit has a self arc extinguishing capability. A ninth semiconductor switching device is provided.
 また、その一態様として、前記第1,第2抵抗と前記第1,第2直流系統の-端子との間に接続された第10半導体スイッチング素子を備え、または、前記第1抵抗と前記第1,第2直流系統の-端子との間に接続された第10半導体スイッチング素子と、前記第2抵抗と前記第1,第2直流系統の-端子との間に接続された第11半導体スイッチング素子と、を備えたことを特徴とする。 In one embodiment, the semiconductor device further includes a tenth semiconductor switching element connected between the first and second resistors and the negative terminals of the first and second DC systems, or the first resistor and the first resistor. A tenth semiconductor switching device connected between the first and second DC systems and an eleventh semiconductor switching connected between the second resistor and the first terminals of the first and second DC systems And an element.
 また、他の態様として、前記第1インピーダンスと前記第2インピーダンスは、第5リアクトルと第6リアクトルであり、前記第5,第6リアクトルと前記第1,第2直流系統の-端子との間に接続された第12半導体スイッチング素子と、または、前記第5リアクトルと前記第1,第2直流系統の-端子との間に接続された第12半導体スイッチング素子と、前記第6リアクトルと前記第1,第2直流系統の-端子との間に接続された第13半導体スイッチング素子と、前記第5リアクトルと前記第12半導体スイッチング素子の共通接続点にアノードが接続され、カソードが前記第3補助回路電流スイッチ部と前記第2直流系統の+端子の共通接続点に接続された第7ダイオードと、前記第6リアクトルと前記第13半導体スイッチング素子または前記第12半導体スイッチング素子の共通接続点にアノードが接続され、カソードが前記第4補助回路電流スイッチ部と前記第1直流系統の+端子の共通接続点に接続された第8ダイオードと、を備えたことを特徴とする。 In another aspect, the first impedance and the second impedance are a fifth reactor and a sixth reactor, and between the fifth and sixth reactors and the negative terminals of the first and second DC systems. , Or a twelfth semiconductor switching element connected between the fifth reactor and the negative terminals of the first and second DC systems, the sixth reactor, and the sixth semiconductor switching element An anode is connected to a common connection point of a thirteenth semiconductor switching element connected between the first terminal and the negative terminal of the second DC system, the fifth reactor and the twelfth semiconductor switching element, and a cathode is the third auxiliary A seventh diode connected to a common connection point of the circuit current switch portion and the positive terminal of the second DC system, the sixth reactor, and the thirteenth semiconductor switch An eighth diode whose anode is connected to a common connection point of the element or the twelfth semiconductor switching element, and whose cathode is connected to a common connection point of the fourth auxiliary circuit current switch portion and the positive terminal of the first DC system; It is characterized by having.
 また、その一態様として、前記第3補助回路電流スイッチ部は、自己消弧能力の有さない第8半導体スイッチング素子を備え、前記第4補助回路電流スイッチ部は、自己消弧能力を有さない第9半導体スイッチング素子を備えたことを特徴とする。 Further, as one aspect thereof, the third auxiliary circuit current switch unit includes an eighth semiconductor switching element having no self arc extinguishing capability, and the fourth auxiliary circuit current switch unit has a self arc extinguishing capability. A ninth semiconductor switching device is provided.
 また、その一態様として、前記第1直流系統から前記第2直流系統に電流が流れており、前記第2直流系統で事故が発生した場合は、前記第4補助回路電流スイッチ部をONし、前記機械遮断器に流れる電流が所定値以下になった後、前記機械遮断器を遮断し、前記第2直流系統から前記第1直流系統に電流が流れており、前記第1直流系統で事故が発生した場合は、前記第3補助回路電流スイッチ部をONし、前記機械遮断器に流れる電流が所定値以下になった後、前記機械遮断器を遮断することを特徴とする。 Further, as one aspect thereof, when a current flows from the first DC system to the second DC system and an accident occurs in the second DC system, the fourth auxiliary circuit current switch unit is turned on, After the current flowing to the mechanical circuit breaker becomes lower than a predetermined value, the mechanical circuit breaker is shut off, and current flows from the second DC system to the first DC system, and an accident occurs in the first DC system. When it occurs, the third auxiliary circuit current switch unit is turned on, and the mechanical circuit breaker is shut off after the current flowing through the mechanical circuit breaker becomes less than a predetermined value.
 本発明によれば、直流遮断装置において、コンデンサ容量を増加させずにより確実に双方向の電流を遮断することが可能となる。 According to the present invention, in the direct current shutoff device, it is possible to shut off bidirectional current more reliably without increasing the capacitance of the capacitor.
実施形態1における直流遮断装置を示す回路図。FIG. 1 is a circuit diagram showing a direct current cut-off device in a first embodiment. 実施形態1における定常時の直流遮断装置を示す図。FIG. 2 is a diagram showing a direct current cut-off device in a steady state in the first embodiment. 実施形態1におけるコンデンサ放電時の直流遮断装置を示す図。FIG. 2 is a diagram showing a direct current cut-off device at the time of capacitor discharge in Embodiment 1. 実施形態1における第1機械遮断器アーク消弧後の直流遮断装置を示す図。FIG. 2 is a diagram showing a DC circuit breaker after the first mechanical circuit breaker arc extinguishing in the first embodiment. 実施形態1における系統再投入時の直流遮断装置を示す図。FIG. 2 is a diagram showing a direct current shutoff device at the time of system reconnection in the first embodiment. 実施形態1における第2直流系統短絡時の各波形を示すタイムチャート。5 is a time chart showing each waveform at the time of second DC system short circuit in the first embodiment. 実施形態2における直流遮断装置を示す回路図。FIG. 7 is a circuit diagram showing a direct current cut-off device in a second embodiment. 実施形態3における直流遮断装置を示す回路図。FIG. 10 is a circuit diagram showing a direct current cut-off device in a third embodiment. 実施形態4における直流遮断装置を示す回路図。The circuit diagram which shows the direct current | flow interruption | blocking apparatus in Embodiment 4. FIG. 実施形態4における定常時の直流遮断装置を示す図。The figure which shows the direct current | flow interruption apparatus at the time of steady state in Embodiment 4. FIG. 実施形態4におけるコンデンサ放電時の直流遮断装置を示す図。The figure which shows the direct current | flow interruption apparatus at the time of capacitor | condenser discharge in Embodiment 4. FIG. 実施形態4における第1機械遮断器アーク消弧後の直流遮断装置を示す図。The figure which shows the direct current | flow interrupting apparatus after the 1st machine breaker arc extinguishing in Embodiment 4. FIG. 実施形態4における系統再投入時の直流遮断装置を示す図。The figure which shows the direct current | flow interrupting apparatus at the time of the system reopening in Embodiment 4. FIG. 特許文献1における遮断失敗時の電流波形を示すタイムチャート。The time chart which shows the current waveform at the time of interception failure in patent documents 1. 実施形態5における直流遮断装置を示す回路図。The circuit diagram which shows the direct current | flow interruption | blocking apparatus in Embodiment 5. FIG. 実施形態5における各部の動作および電流波形を示すタイムチャート。The time chart which shows the operation and current waveform of each part in Embodiment 5. 実施形態6における直流遮断装置を示す回路図。The circuit diagram which shows the direct current | flow interruption | blocking apparatus in Embodiment 6. FIG. 実施形態6における各部の動作および電流波形を示すタイムチャート。The time chart which shows operation of each part in Embodiment 6, and current waveform. 実施形態6における実験結果を示すタイムチャート。The time chart which shows the experimental result in Embodiment 6. FIG. 実験波形の測定箇所を示す図。The figure which shows the measurement location of an experimental waveform. 実施形態7における直流遮断装置を示す回路図。The circuit diagram which shows the direct current | flow interrupting apparatus in Embodiment 7. FIG. 実施形態7における各部の動作および電流波形を示すタイムチャート。The time chart which shows operation of each part in an embodiment 7, and current waveform. 第1,第2直流系統1,2の-端子間に実施形態5の直流遮断装置を接続した構成を示す図。The figure which shows the structure which connected the direct current | flow interruption | blocking apparatus of Embodiment 5 between-terminal of the 1st, 2nd direct current grid | systems 1 and 2. FIG. 第1,第2直流系統1,2の-端子間に実施形態6の直流遮断装置を接続した構成を示す図。The figure which shows the structure which connected the direct current | flow interruption | blocking apparatus of Embodiment 6 between the-terminals of 1st, 2nd direct current grid | systems 1,2. 第1,第2直流系統1,2の-端子間に実施形態7の直流遮断装置を接続した構成を示す図。The figure which shows the structure which connected the direct current | flow interruption | blocking apparatus of Embodiment 7 between-terminal of the 1st, 2nd direct current grid | systems 1 and 2. FIG. 実施形態8における直流遮断装置を示す回路図。The circuit diagram which shows the direct current | flow interruption | blocking apparatus in Embodiment 8. FIG. 実施形態8における定常状態の直流遮断装置を示す図。The figure which shows the direct current | flow interruption apparatus in the steady state in Embodiment 8. FIG. 実施形態8における第2直流系統側で事故が発生した場合の直流遮断装置を示す図。The figure which shows the direct current | flow interruption | blocking apparatus when an accident generate | occur | produces in the 2nd direct current | flow system side in Embodiment 8. FIG. 実施形態8におけるアーク遮断後の直流遮断装置を示す図。The figure which shows the direct current | flow interruption apparatus after the arc interruption | blocking in Embodiment 8. FIG. 実施形態8における第2直流系統を再投入する時の直流遮断装置を示す図。The figure which shows the direct current | flow interruption | blocking apparatus at the time of restarting the 2nd DC system in Embodiment 8. FIG. 実施形態8における第2直流系統の短絡電流遮断時の各波形を示すタイムチャート。The time chart which shows each waveform at the time of short circuit current interruption | blocking of the 2nd DC system in Embodiment 8. FIG. 実施形態9における直流遮断装置を示す回路図。The circuit diagram which shows the direct current | flow interruption | blocking apparatus in Embodiment 9. FIG. 実施形態10における直流遮断装置を示す回路図。The circuit diagram which shows the direct current | flow interruption | blocking apparatus in Embodiment 10. FIG. 実施形態11における直流遮断装置を示す回路図。The circuit diagram which shows the direct current | flow interruption | blocking apparatus in Embodiment 11. FIG. 実施形態11における第12,第13半導体スイッチング素子ON時の直流遮断装置を示す図。The figure which shows the direct current | flow interruption apparatus at the time of the 12th, 13th semiconductor switching element ON in Embodiment 11. FIG. 実施形態11における第12,第13半導体スイッチング素子OFF時の直流遮断装置を示す図。The figure which shows the direct current | flow interruption | blocking apparatus at the time of the 12th, 13th semiconductor switching element OFF in Embodiment 11. FIG. 実施形態11における第2直流系統側で事故が発生した場合の直流遮断装置を示す図。The figure which shows the direct current | flow interruption | blocking apparatus when an accident generate | occur | produces in the 2nd direct current | flow system side in Embodiment 11. FIG. 実施形態11におけるアーク遮断後の直流遮断装置を示す図。The figure which shows the direct current | flow interruption | blocking apparatus after arc interruption | blocking in Embodiment 11. FIG. 実施形態11における第2直流系統を再投入する時の直流遮断装置を示す図。The figure which shows the direct current | flow interruption | blocking apparatus at the time of restarting the 2nd DC system in Embodiment 11. FIG. 従来の直流遮断装置の各波形を示す図。The figure which shows each waveform of the conventional direct current | flow interruption | blocking apparatus.
 以下、本願発明における直流遮断装置の実施形態1~11を図1~図39に基づいて詳述する。 Hereinafter, first to eleventh embodiments of the direct current shutoff device in the present invention will be described in detail based on FIGS. 1 to 39.
 [実施形態1]
 図1に本実施形態1における直流遮断装置を示す。図1に示すように、直流遮断装置3は、第1直流系統1及び第2直流系統2に接続される。直流遮断装置3は、第1機械遮断器CB1及び第2機械遮断器CB2と、コンデンサCと、第1リアクトルL1と、第1,第2補助回路電流スイッチ部4,5と、抵抗(インピーダンス)Rと、を備える。
Embodiment 1
FIG. 1 shows a direct current cut-off device in the first embodiment. As shown in FIG. 1, the DC interrupting device 3 is connected to the first DC system 1 and the second DC system 2. The DC interrupting device 3 includes a first mechanical circuit breaker CB1 and a second mechanical circuit breaker CB2, a capacitor C, a first reactor L1, first and second auxiliary circuit current switch units 4 and 5, and resistance (impedance). And R.
 第1,第2補助回路電流スイッチ部4,5は、第1,第2半導体スイッチング素子T1,T2を有する。図1では、第1,2半導体スイッチング素子T1,T2としてサイリスタを示しているが、サイリスタ以外の半導体スイッチング素子でも良い。また、第1,第2半導体スイッチング素子T1,T2にダイオードを直列接続しても良い。 The first and second auxiliary circuit current switch units 4 and 5 have first and second semiconductor switching elements T1 and T2. In FIG. 1, thyristors are shown as the first and second semiconductor switching elements T1 and T2, but semiconductor switching elements other than thyristors may be used. Further, diodes may be connected in series to the first and second semiconductor switching elements T1 and T2.
 第1直流系統1の+端子と第2直流系統2の+端子との間には第1,第2機械遮断器CB1,CB2が直列接続される。 First and second mechanical circuit breakers CB1 and CB2 are connected in series between the + terminal of the first DC system 1 and the + terminal of the second DC system 2.
 第1直流系統1の+端子と第1機械遮断器CB1の共通接続点に第1半導体スイッチング素子T1の一端(アノード)が接続される。第1半導体スイッチング素子T1の他端(カソード)には、第2半導体スイッチング素子T2の一端(カソード)が接続される。第2半導体スイッチング素子T2の他端(アノード)は第2直流系統2の+端子と第2機械遮断器CB2の共通接続点に接続される。 One end (anode) of the first semiconductor switching element T1 is connected to a common connection point of the + terminal of the first DC system 1 and the first mechanical circuit breaker CB1. One end (cathode) of a second semiconductor switching element T2 is connected to the other end (cathode) of the first semiconductor switching element T1. The other end (anode) of the second semiconductor switching element T2 is connected to the common connection point of the + terminal of the second DC system 2 and the second mechanical circuit breaker CB2.
 第1,第2機械遮断器CB1,CB2の共通接続点と第1,第2半導体スイッチング素子T1,T2の共通接続点との間にはコンデンサCが接続される。また、コンデンサCには第1リアクトルL1が直列接続される。ここで、コンデンサCと第1リアクトルL1との接続順序はどちらでも良い。 A capacitor C is connected between a common connection point of the first and second mechanical circuit breakers CB1 and CB2 and a common connection point of the first and second semiconductor switching elements T1 and T2. Further, the first reactor L1 is connected in series to the capacitor C. Here, the connection order of the capacitor C and the first reactor L1 may be either.
 また、第1,第2半導体スイッチング素子T1,T2の共通接続点と第1,第2直流系統1,2の-端子との間には抵抗(インピーダンス)Rが接続される。 Further, a resistance (impedance) R is connected between the common connection point of the first and second semiconductor switching elements T1 and T2 and the negative terminals of the first and second DC systems 1 and 2.
 図2に、本実施形態1の定常状態における直流遮断装置3を示す。定常状態では第1機械遮断器CB1及び第2機械遮断器CB2が閉極状態であり、電流は双方向に流れる。このとき、第1半導体スイッチング素子T1及び第2半導体スイッチング素子T2はオフ状態である。コンデンサCは第1リアクトルL1,抵抗Rを介して充電電流が流れ系統電圧まで充電されるとコンデンサCに流れる電流が零になる。また、定常時は、第1機械遮断器CB1及び第2機械遮断器CB2に電流が流れるため、電力損失はほとんどない。 In FIG. 2, the direct current | flow interruption | blocking apparatus 3 in the steady state of this Embodiment 1 is shown. In the steady state, the first mechanical circuit breaker CB1 and the second mechanical circuit breaker CB2 are closed, and current flows in both directions. At this time, the first semiconductor switching device T1 and the second semiconductor switching device T2 are in the off state. In the capacitor C, when the charging current flows through the first reactor L1 and the resistor R and the system voltage is charged, the current flowing to the capacitor C becomes zero. In addition, since current flows in the first mechanical circuit breaker CB1 and the second mechanical circuit breaker CB2 in steady state, there is almost no power loss.
 図3に、第2直流系統2側で事故が発生した場合の直流遮断装置3を示す。第2直流系統2側の事故発生時に第1半導体スイッチング素子T1をオンすることで、コンデンサCからの放電電流が補助回路電流として第1機械遮断器CB1→第1半導体スイッチング素子T1→第1リアクトルL1を経由して流れ、第1直流系統1から第1機械遮断器CB1に流れる短絡電流を打ち消す。 FIG. 3 shows the DC interrupting device 3 when an accident occurs on the second DC system 2 side. By turning on the first semiconductor switching element T1 at the occurrence of an accident on the second DC system 2 side, the discharge current from the capacitor C is used as an auxiliary circuit current: first mechanical circuit breaker CB1 → first semiconductor switching element T1 → first reactor It cancels the short circuit current which flows via L1 and flows from the first DC system 1 to the first mechanical circuit breaker CB1.
 このとき、補助回路電流(放電電流)はコンデンサC、第1リアクトルL1により決定する周波数の共振電流となる。共振周波数が高すぎると第1機械遮断器CB1開極前に共振が終わり、第1機械遮断器CB1に流れる短絡電流が元の大きさに戻ってしまう。共振周波数が低すぎると補助回路電流(放電電流)の増加速度よりも短絡による第1機械遮断器通過電流Icb1の増加速度の方が大きくなり、短絡電流を打ち消すことができなくなる。そのため、共振周波数は第1機械遮断器CB1動作時間と同程度か少し長めに設定する必要がある。 At this time, the auxiliary circuit current (discharge current) is a resonant current of a frequency determined by the capacitor C and the first reactor L1. If the resonance frequency is too high, the resonance ends before the first mechanical circuit breaker CB1 opens, and the short circuit current flowing to the first mechanical circuit breaker CB1 returns to the original magnitude. If the resonance frequency is too low, the increase speed of the first mechanical circuit breaker pass current Icb1 due to the short circuit becomes larger than the increase speed of the auxiliary circuit current (discharge current), and the short circuit current can not be canceled. Therefore, it is necessary to set the resonance frequency to be equal to or slightly longer than the operation time of the first mechanical circuit breaker CB1.
 機械遮断器通過電流が所定値よりも小さくなったら、第1機械遮断器CB1を開極する。なお、第1,第2機械遮断器CB1,CB2が遮断指定を受けてから実際に開極となるまでは時間遅れがある。本明細書で遮断、または、開極すると記載している場合、実際に開極した時を示すものとする。 When the mechanical circuit breaker passing current becomes smaller than a predetermined value, the first mechanical circuit breaker CB1 is opened. It should be noted that there is a time delay from when the first and second mechanical circuit breakers CB1 and CB2 receive the cutoff designation until they are actually opened. In the present specification, when it is described as blocking or opening, it indicates the time of actual opening.
 図4に、第1機械遮断器CB1のアーク消弧後の直流遮断装置3を示す。アーク消弧後は第1半導体スイッチング素子T1→第1リアクトルL1→コンデンサC→第2機械遮断器CB2を介して補助回路電流が流れ、コンデンサCが図2に示す場合とは逆向きに充電される。 FIG. 4 shows the DC circuit breaker 3 after arc extinguishing of the first mechanical circuit breaker CB1. After the arc extinguishing, the auxiliary circuit current flows through the first semiconductor switching element T1 → the first reactor L1 → the capacitor C → the second mechanical circuit breaker CB2, and the capacitor C is charged in the opposite direction to the case shown in FIG. Ru.
 コンデンサCの充電が完了すると、第2直流系統2へ流れる電流が零となり、電流遮断が完了する。電流遮断が完了したら第1半導体スイッチング素子T1がオフとなる。第1半導体スイッチング素子T1をサイリスタとした場合、サイリスタには自己消弧能力はないが、図4に示すように、コンデンサCの充電が完了すると第2直流系統2に流れる電流が零となるため、サイリスタをオフにすることができる。 When the charging of the capacitor C is completed, the current flowing to the second DC system 2 becomes zero, and the current interruption is completed. When the current interruption is completed, the first semiconductor switching element T1 is turned off. When the first semiconductor switching element T1 is a thyristor, the thyristor does not have a self-extinguishing ability, but as shown in FIG. 4, when the charging of the capacitor C is completed, the current flowing through the second DC system 2 becomes zero. , The thyristor can be turned off.
 このとき、遮断に不必要な電流が第1半導体スイッチング素子T1と抵抗Rを介して第1,第2直流系統1,2の-端子側へ流れ損失が発生する。また、第1半導体スイッチング素子(サイリスタ)T1をオフするためには、ゲート電流零及び順方向電流を保持電流より小さくする必要がある。そのため、損失を小さくする、第1半導体スイッチング素子T1をオフするためには、抵抗Rに流れる電流が十分小さくなるように抵抗Rの抵抗値を大きくしなければならない。 At this time, a current unnecessary for the shutoff flows through the first semiconductor switching element T1 and the resistor R to the minus terminal side of the first and second DC systems 1 and 2 and a loss occurs. Moreover, in order to turn off the first semiconductor switching element (thyristor) T1, it is necessary to make the gate current zero and the forward current smaller than the holding current. Therefore, in order to reduce the loss and to turn off the first semiconductor switching element T1, it is necessary to increase the resistance value of the resistor R so that the current flowing through the resistor R becomes sufficiently small.
 図5に系統再投入時の直流遮断装置3を示す。再投入時は、第1機械遮断器CB1を閉極することで第1直流系統1側から第1機械遮断器CB1→第2機械遮断器CB2を介し第2直流系統2側へ電流が流れる。また、第1機械遮断器CB1→コンデンサC→第1リアクトルL1→抵抗Rを介して充電電流が流れ、図4において逆向きに充電されていたコンデンサCを元の向きに充電し直す。充電が完了すると、図2の状態になり再投入が完了する。 FIG. 5 shows the DC interrupting device 3 at the time of system reconnection. At the time of reopening, by closing the first mechanical circuit breaker CB1, current flows from the first DC system 1 side to the second DC system 2 side via the first mechanical circuit breaker CB1 and the second mechanical circuit breaker CB2. In addition, a charging current flows through the first mechanical circuit breaker CB1 → capacitor C → first reactor L1 → resistor R, and the capacitor C, which has been charged in the reverse direction in FIG. 4, is recharged in the original direction. When charging is completed, the state shown in FIG. 2 is reached, and recharging is completed.
 なお、電流の流れる方向や事故発生時の電流値は上位コントローラを用いて監視し、第1,第2機械遮断器CB1,CB2の開閉と第1,第2半導体スイッチング素子T1,T2のオン及びオフを行う。 The direction of current flow and the current value at the time of an accident occurrence are monitored using the host controller, and the opening and closing of the first and second mechanical circuit breakers CB1 and CB2 and the turning on of the first and second semiconductor switching elements T1 and T2 Do the off.
 図6に第2直流系統2側の短絡電流を遮断する際の波形を示す。時刻t1で短絡が発生し、第1機械遮断器通過電流Icb1が増加する。時刻t2で第1半導体スイッチング素子T1をオンすると、コンデンサCから放電電流が補助回路電流Iauxとして流れ、第1機械遮断器通過電流Icb1を打ち消す。 The waveform at the time of interrupting the short circuit current by the side of the 2nd direct current system 2 in Drawing 6 is shown. At time t1, a short circuit occurs and the first mechanical circuit breaker passing current Icb1 increases. When the first semiconductor switching element T1 is turned on at time t2, a discharge current flows from the capacitor C as the auxiliary circuit current Iaux, and cancels the first mechanical circuit breaker passing current Icb1.
 第1機械遮断器通過電流Icb1が所定値よりも小さくなったら、第1機械遮断器CB1を開極する。図6では時刻t3で開極している。時刻t3では第1機械遮断器通過電流Icb1が残っているため多少のアークが発生するが、第1機械遮断器通過電流Icb1は補助回路電流Iauxにより零となるため、アークを消弧できる。 When the first mechanical circuit breaker passing current Icb1 becomes smaller than a predetermined value, the first mechanical circuit breaker CB1 is opened. In FIG. 6, the contact is opened at time t3. At time t3, the first mechanical circuit breaker pass current Icb1 remains, so some arcing occurs, but since the first mechanical circuit breaker pass current Icb1 becomes zero by the auxiliary circuit current Iaux, the arc can be extinguished.
 その後、コンデンサCの電圧Vcは補助回路電流Iauxおよび短絡電流により逆向きに充電され、-の第1系統電圧-Vdcを超えると充電が完了し補助回路電流Iauxは零になり遮断が完了する。 After that, the voltage Vc of the capacitor C is reversely charged by the auxiliary circuit current Iaux and the short circuit current, and when the first system voltage -Vdc of-is exceeded, the charging is completed and the auxiliary circuit current Iaux becomes zero and the interruption is completed.
 本実施形態1では、第2直流系統2側で事故が発生した場合の遮断方法を記載したが、第1直流系統1側で事故が発生した場合も同様な原理及び対象の動作で遮断が可能である。この場合、第2機械遮断器CB2及び第2半導体スイッチング素子T2を開極、オン動作させることで第2機械遮断器CB2のアークを消弧し遮断を行う。 In the first embodiment, the shutoff method in the case where an accident occurs on the second DC system 2 side is described, but even if an accident occurs on the first DC system 1 side, the same principle and the operation of the target can be used to shut off. It is. In this case, the second mechanical circuit breaker CB2 and the second semiconductor switching element T2 are opened and turned on to extinguish and interrupt the arc of the second mechanical circuit breaker CB2.
 以上示したように、本実施形態1によれば、双方向の直流電流を遮断することができ、再投入動作により繰り返し直流電流の遮断が可能である。また、補助回路のコンデンサ放電電流により第1機械遮断器通過電流Icb1に零点を作り、より確実に電流を遮断することができる。さらに、定常時は常に第1,第2機械遮断器CB1,CB2を通電するため、電力損失がほとんどない。 As described above, according to the first embodiment, it is possible to shut off the direct current in both directions, and it is possible to shut off the direct current repeatedly by the reopening operation. In addition, it is possible to cut off the current more reliably by creating a zero point in the first mechanical circuit breaker passing current Icb1 by the capacitor discharge current of the auxiliary circuit. Furthermore, since the first and second mechanical circuit breakers CB1 and CB2 are energized at all times during steady state, there is almost no power loss.
 また、第1,第2機械遮断器CB1,CB2の開極時の両端電圧を緩やかに上昇させる必要がないため、補助回路のコンデンサ容量が小さくてもよく、装置の小型化を図ることが可能となる。また、補助回路の寄生インピーダンス成分の多少の増加を許容できる。 In addition, since there is no need to gradually increase the voltage across the open circuit of the first and second mechanical circuit breakers CB1 and CB2, the capacitor capacity of the auxiliary circuit may be small, and the apparatus can be miniaturized. It becomes. In addition, some increase in the parasitic impedance component of the auxiliary circuit can be tolerated.
 [実施形態2]
 図7に本実施形態2の直流遮断装置3を示す。本実施形態2の直流遮断装置3は実施形態1に対し、抵抗Rと第1,第2直流系統1,2の-端子との間にツェナーダイオードZDなどの電圧を制限できる素子を追加したものである。
Second Embodiment
FIG. 7 shows the DC interrupting device 3 of the second embodiment. The direct current cut-off device 3 of the second embodiment is the same as the first embodiment except that an element such as a Zener diode ZD can be added between the resistor R and the negative terminals of the first and second DC systems 1 and 2. It is.
 ツェナーダイオードZDを接続することにより、抵抗Rの両端電圧が下がる。そのため、本実施形態2における直流遮断装置3によれば、コンデンサC充電時の不要電流による損失が低減することが可能となる。 Connecting the Zener diode ZD lowers the voltage across the resistor R. Therefore, according to the direct current cutoff device 3 in the second embodiment, it is possible to reduce the loss due to the unnecessary current at the time of charging the capacitor C.
 [実施形態3]
 図8に本実施形態3の直流遮断装置3を示す。本実施形態3は、実施形態2のツェナーダイオードZDを自己消弧可能な第3半導体スイッチング素子T3に置き換え、不要電流をブロックできるようにしたものである。第3半導体スイッチング素子T3は自己消弧可能な半導体スイッチング素子以外のスイッチでもよい。
Third Embodiment
FIG. 8 shows a DC interrupting device 3 of the third embodiment. In the third embodiment, the Zener diode ZD of the second embodiment is replaced with a third semiconductor switching element T3 capable of self-extinguishing to block unnecessary current. The third semiconductor switching element T3 may be a switch other than a self-extinguishing semiconductor switching element.
 定常状態では第3半導体スイッチング素子T3をオンし、図2と同様に示すようにコンデンサCを充電する。 In the steady state, the third semiconductor switching element T3 is turned on, and the capacitor C is charged as shown in FIG.
 コンデンサCの充電が完了するか短絡事故などにより遮断指令が来たら、第3半導体スイッチング素子T3をオフする。コンデンサCの充電完了は、コンデンサCの両端電圧を検出し、系統電圧に等しくなったことを条件とする。または、コンデンサCの容量値と抵抗Rの抵抗値と第1リアクトルL1のインダクタンス値よりコンデンサCの充電が完了する時間を事前に計算しておき、その計算値の時間の経過をもって充電完了と判定してもよい。 When charging of the capacitor C is completed or a shutoff command is received due to a short circuit accident or the like, the third semiconductor switching element T3 is turned off. The completion of charging of the capacitor C is detected on the condition that the voltage across the capacitor C is detected and equal to the grid voltage. Alternatively, the time for completion of charging of capacitor C is calculated in advance from the capacitance value of capacitor C, the resistance value of resistor R, and the inductance value of first reactor L1, and it is determined that charging is completed when the calculated value elapses. You may
 アーク消弧後は第3半導体スイッチング素子T3がオフであり、図4とは異なり、第1半導体スイッチング素子T1→抵抗Rを経由して流れる不要電流は第3半導体スイッチング素子T3によりブロックされる。そのため、損失を小さくすることができる。 After the arc extinguishing, the third semiconductor switching element T3 is off, and unlike in FIG. 4, the unnecessary current flowing through the first semiconductor switching element T1 → the resistor R is blocked by the third semiconductor switching element T3. Therefore, the loss can be reduced.
 また、抵抗Rの抵抗値が小さくても不要電流は流れないため、第1半導体スイッチング素子(サイリスタ)T1を確実にオフすることができる。抵抗Rの抵抗値を小さくするメリットとして、図5における系統再投入時のコンデンサC再充電速度が向上する。よって、遮断準備完了までにかかる時間を短縮できる。 In addition, since the unnecessary current does not flow even if the resistance value of the resistor R is small, the first semiconductor switching element (thyristor) T1 can be reliably turned off. As a merit of reducing the resistance value of the resistor R, the recharging speed of the capacitor C at the time of reconnection of the system in FIG. 5 is improved. Thus, it is possible to shorten the time taken to complete the blocking preparation.
 再投入時は第1機械遮断器CB1を閉極するとともに第3半導体スイッチング素子T3をオンすることで、実施形態1と同様にコンデンサCを充電し再投入完了となる。 At the time of reopening, the first mechanical circuit breaker CB1 is closed and the third semiconductor switching element T3 is turned on, whereby the capacitor C is charged as in the first embodiment, and reopening is completed.
 以上示したように、本実施形態3の直流遮断装置3によれば、実施形態1,2と同様の作用効果を奏する。また、電流遮断後の抵抗Rに生じる損失を零にすることができる。 As described above, according to the direct current cut-off device 3 of the third embodiment, the same function and effect as those of the first and second embodiments can be obtained. Moreover, the loss which arises in resistance R after electric current interruption can be made into zero.
 [実施形態4]
 図9に本実施形態4の直流遮断装置3を示す。本実施形態4の直流遮断装置3は、実施形態3の抵抗Rの代わりに、第2リアクトル(インピーダンス)L2と、第2リアクトルL2に並列接続したダイオードDと、を設けたものである。
Fourth Embodiment
The direct current | flow interruption | blocking apparatus 3 of this Embodiment 4 is shown in FIG. The direct current cutoff device 3 of the fourth embodiment is provided with a second reactor (impedance) L2 and a diode D connected in parallel to the second reactor L2 instead of the resistor R of the third embodiment.
 図10に、本実施形態4の定常状態における直流遮断装置3を示す。定常状態では第1機械遮断器CB1及び第2機械遮断器CB2が閉極状態であり、電流は双方向に流れる。なお、定常時は第1機械遮断器CB1,CB2に電流が流れるため、電力損失はほとんどない。 FIG. 10 shows the DC interrupting device 3 in the steady state of the fourth embodiment. In the steady state, the first mechanical circuit breaker CB1 and the second mechanical circuit breaker CB2 are closed, and current flows in both directions. In addition, since current flows through the first mechanical circuit breakers CB1 and CB2 in steady state, there is almost no power loss.
 このとき、第1,第2半導体スイッチング素子T1,T2はオフ状態であるため、第1,第2半導体スイッチング素子T1,T2に電流は流れない。また、第3半導体スイッチング素子T3はオン状態であり、コンデンサC→第1リアクトルL1→第2リアクトルL2→第3半導体スイッチング素子T3を介して充電電流が流れ、系統電圧まで充電されるとコンデンサCに流れる電流が零になる。 At this time, since the first and second semiconductor switching elements T1 and T2 are in the off state, no current flows in the first and second semiconductor switching elements T1 and T2. In addition, the third semiconductor switching element T3 is in the on state, a charging current flows through the capacitor C → the first reactor L1 → the second reactor L2 → the third semiconductor switching element T3, and the capacitor C is charged up to the system voltage. The current flowing in the becomes zero.
 充電が完了したら、第3半導体スイッチング素子T3をオフする。充電完了は、コンデンサCの両端電圧を検出し、系統電圧に等しくなったことを条件とする。 When charging is completed, the third semiconductor switching element T3 is turned off. The charge completion is detected on the condition that the voltage across the capacitor C is detected and equal to the system voltage.
 第2リアクトルL2に蓄えられたエネルギーは、第3半導体スイッチング素子T3オフ後、第2リアクトルL2とダイオードDとを循環して流れることにより、エネルギーが消費される。 Energy stored in the second reactor L2 is consumed by circulating through the second reactor L2 and the diode D after the third semiconductor switching element T3 is turned off.
 図11に、第2直流系統2側で事故が発生した場合の直流遮断装置3を示す。第2直流系統2側の事故発生時に第1半導体スイッチング素子T1をオンすることで、コンデンサCからの放電電流が補助回路電流として第1機械遮断器CB1→第1半導体スイッチング素子T1→第1リアクトルL1を経由して流れ、第1直流系統1から第1機械遮断器CB1に流れる短絡電流を打ち消す。 FIG. 11 shows the DC interrupting device 3 when an accident occurs on the second DC system 2 side. By turning on the first semiconductor switching element T1 at the occurrence of an accident on the second DC system 2 side, the discharge current from the capacitor C is used as an auxiliary circuit current: first mechanical circuit breaker CB1 → first semiconductor switching element T1 → first reactor It cancels the short circuit current which flows via L1 and flows from the first DC system 1 to the first mechanical circuit breaker CB1.
 このとき、補助回路電流(放電電流)はコンデンサC、第1リアクトルL1により決定する周波数の共振電流となる。共振周波数が高すぎると第1機械遮断器CB1の開極前に共振が終わり、第1機械遮断器CB1に流れる短絡電流が元の大きさに戻ってしまう。共振周波数が低すぎると補助回路電流の増加速度よりも短絡による第1機械遮断器通過電流Icb1の増加速度の方が大きくなり、短絡電流を打ち消すことができなくなる。そのため、共振周波数は第1機械遮断器CB1の動作時間と同程度か少し長めに設定する必要がある。 At this time, the auxiliary circuit current (discharge current) is a resonant current of a frequency determined by the capacitor C and the first reactor L1. If the resonance frequency is too high, the resonance ends before the opening of the first mechanical circuit breaker CB1, and the short circuit current flowing to the first mechanical circuit breaker CB1 returns to the original magnitude. If the resonance frequency is too low, the increasing speed of the first mechanical circuit breaker passing current Icb1 due to the short circuit becomes larger than the increasing speed of the auxiliary circuit current, and the short circuit current can not be canceled. Therefore, it is necessary to set the resonance frequency to be equal to or slightly longer than the operation time of the first mechanical circuit breaker CB1.
 第1機械遮断器通過電流が所定値よりも小さくなったら、第1機械遮断器CB1を開極する。図12に、第1機械遮断器CB1のアーク消弧後の直流遮断装置3を示す。アーク消弧後は第1半導体スイッチング素子T1→第1リアクトルL1→コンデンサC→第2機械遮断器CB2を介して短絡電流が流れ、コンデンサCが図10とは逆向きに充電される。コンデンサCの充電が完了すると、第2直流系統2へ流れる電流が零となり、電流遮断が完了する。電流遮断が完了したら第1半導体スイッチング素子T1がオフとなる。 When the first mechanical circuit breaker passing current becomes smaller than the predetermined value, the first mechanical circuit breaker CB1 is opened. FIG. 12 shows the DC circuit breaker 3 after arc extinguishing of the first mechanical circuit breaker CB1. After arc extinguishing, a short circuit current flows through the first semiconductor switching element T1 → first reactor L1 → capacitor C → second mechanical circuit breaker CB2, and the capacitor C is charged in the opposite direction to that in FIG. When the charging of the capacitor C is completed, the current flowing to the second DC system 2 becomes zero, and the current interruption is completed. When the current interruption is completed, the first semiconductor switching element T1 is turned off.
 図13に系統再投入時の直流遮断装置3を示す。再投入時は、第1機械遮断器CB1を閉極することで第1直流系統1側から第1機械遮断器CB1→第2機械遮断器CB2を介し第2直流系統2側へ電流が流れる。 FIG. 13 shows the DC interrupting device 3 at the time of reconnection of the system. At the time of reopening, by closing the first mechanical circuit breaker CB1, current flows from the first DC system 1 side to the second DC system 2 side via the first mechanical circuit breaker CB1 and the second mechanical circuit breaker CB2.
 また、第3半導体スイッチング素子T3をオンすることで、第1機械遮断器CB1→コンデンサC→第1リアクトルL1→第2リアクトルL2→第3半導体スイッチング素子T3を介して充電電流が流れ、図12で逆向きに充電されていたコンデンサCを元の向きに充電し直す。 Further, by turning on the third semiconductor switching element T3, a charging current flows through the first mechanical circuit breaker CB1 → capacitor C → first reactor L1 → second reactor L2 → third semiconductor switching element T3, as shown in FIG. The capacitor C, which was being charged in the reverse direction, is recharged in the original direction.
 充電が完了すると、図10の状態になり再投入が完了する。なお、本実施形態4は第2リアクトルL2とダイオードDを第3半導体スイッチング素子T3に接続することにより、抵抗Rを必要としない。 When charging is completed, the state shown in FIG. 10 is reached, and recharging is completed. In the fourth embodiment, the resistor R is not required by connecting the second reactor L2 and the diode D to the third semiconductor switching element T3.
 そのため、コンデンサ充電電流が抵抗Rを流れないため、充電時の抵抗損失がなくなる。さらに、第1半導体スイッチング素子T1をオンしている期間は第3半導体スイッチング素子T3がオフしており、第1,第2直流系統2の-端子へ電流が流れない。そのため、自己消弧不可能な第1半導体スイッチング素子T1は確実にオフできる。また、抵抗によって電流が抑制されないため、容量が小さい系統へも適用が可能である。 Therefore, since the capacitor charging current does not flow through the resistor R, the resistance loss at the time of charging is eliminated. Furthermore, while the first semiconductor switching device T1 is on, the third semiconductor switching device T3 is off, and no current flows to the negative terminals of the first and second DC networks 2. Therefore, the first semiconductor switching element T1 which can not be self-extinguished can be reliably turned off. Moreover, since the current is not suppressed by the resistance, the present invention can be applied to a system having a small capacity.
 本実施形態4では、電流の流れる方向や事故発生時の電流値は上位コントローラを用いて監視し、第1機械遮断器CB1の開閉と第1,第3半導体スイッチング素子T1,T3のオン及びオフを行う。 In the fourth embodiment, the current flow direction and the current value at the time of occurrence of an accident are monitored using the host controller, and the opening and closing of the first mechanical circuit breaker CB1 and the on and off of the first and third semiconductor switching elements T1 and T3. I do.
 本実施形態4では、第2直流系統2側で事故が発生した場合の遮断方法を記載したが、第1直流系統1側で事故が発生した場合も同様な原理及び対象の動作で遮断が可能である。この場合、第2機械遮断器CB2及び第2半導体スイッチング素子T2を開極、オン動作させることで第2機械遮断器CB2のアークを消弧し遮断を行う。 In the fourth embodiment, the shutoff method in the case where an accident occurs on the second DC system 2 side is described, but even when an accident occurs on the first DC system 1 side, the same principle and the operation of the target can be used to shut off. It is. In this case, the second mechanical circuit breaker CB2 and the second semiconductor switching element T2 are opened and turned on to extinguish and interrupt the arc of the second mechanical circuit breaker CB2.
 [実施形態5]
 実施形態1は、第1機械遮断器通過電流Icb1に対して補助回路電流Iauxを逆方向に流すことで零点を作りだし第1,第2機械遮断器CB1,CB2を開極するものである。第1,第2機械遮断器CB1,CB2は機械遮断器通過電流を零にしたタイミングを狙って開極する。
Fifth Embodiment
In the first embodiment, a zero point is created by flowing the auxiliary circuit current Iaux in the reverse direction with respect to the first mechanical circuit breaker passing current Icb1, and the first and second mechanical circuit breakers CB1 and CB2 are opened. The first and second mechanical circuit breakers CB1 and CB2 open at a timing when the mechanical circuit breaker passing current is zero.
 第1機械遮断器CB1では開極直後にいったんアークが発生する場合もあるが、その時第1機械遮断器CB1の接点間に発生するアーク電圧は大きくない。そして第1機械遮断器CB1の接点間距離が開いていくとともにアークが消弧され、アークのない第1機械遮断器通過電流Icb1=0の状態で第1機械遮断器CB1の接点が完全に開いて、遮断が完了する。 In the first mechanical circuit breaker CB1, although an arc may occur once immediately after opening, the arc voltage generated between the contacts of the first mechanical circuit breaker CB1 is not large at that time. Then, the distance between the contacts of the first mechanical circuit breaker CB1 opens and the arc is extinguished, and the contact of the first mechanical circuit breaker CB1 is completely opened in the state of the first mechanical circuit breaker passing current Icb1 = 0 without arc Shut off is complete.
 しかし、第1,第2機械遮断器CB1,CB2の開極時にある程度の大きさのアークが一旦発生すると、その後アークを消弧できずに第1,第2機械遮断器CB1,CB2に電流が流れ続け遮断に失敗してしまう場合がある。図14に実施形態1で遮断に失敗した場合の電流波形を示す。実施形態1の回路でアークを消弧できない要因として、以下の(1),(2)が考えられる。 However, if an arc of a certain size is generated once when the first and second mechanical circuit breakers CB1 and CB2 are opened, then the arc can not be extinguished and current flows to the first and second mechanical circuit breakers CB1 and CB2 It may keep flowing and fail to shut off. FIG. 14 shows a current waveform when the interruption fails in the first embodiment. The following factors (1) and (2) can be considered as factors that can not extinguish an arc in the circuit of the first embodiment.
 (1)第1,第2機械遮断器CB1,CB2は、開極指令を出してから実際に開極を開始するまでに遅延とばらつきがある。よって、図14の時刻t3(第1機械遮断器CB1の開極開始時)のタイミングにおける第1機械遮断器通過電流Icb1にもばらつきが生じる。この時刻t3時の第1機械遮断器通過電流Icb1の電流傾きが大きいときには第1機械遮断器CB1の接点間に印加されるアーク電圧も大きくなるため、アークを消弧しにくくなる。 (1) The first and second mechanical circuit breakers CB1 and CB2 have delays and variations between when the opening command is issued and when actually starting the opening. Therefore, a variation also occurs in the first mechanical circuit breaker passing current Icb1 at the timing of time t3 (at the start of opening of the first mechanical circuit breaker CB1) in FIG. When the current slope of the first mechanical circuit breaker passing current Icb1 at time t3 is large, the arc voltage applied between the contacts of the first mechanical circuit breaker CB1 is also large, and it becomes difficult to extinguish the arc.
 (2)第1,第2機械遮断器CB1,CB2は、開極を開始してから接点間距離が十分開ききるまで時間がかかる。また、その時間もばらつきがある。開極を開始してから接点間距離が十分開ききるまでの時間が長い場合には、アークを消弧しにくくなる。 (2) The first and second mechanical circuit breakers CB1 and CB2 take time until the contact point distance is fully opened after the start of the opening. In addition, the time also varies. If it takes a long time for the contact point distance to fully open after the start of the opening, it is difficult to extinguish the arc.
 対策として、LC共振周波数を下げて第1,第2機械遮断器CB1,CB2の開極開始時の電流の傾きを緩やかにすることで発生するアーク電圧を抑制し、アークを消弧しやすくする方法がある。しかし、これは第1リアクトルL1,コンデンサCの容積・重量・コスト増加につながる。 As a countermeasure, lowering the LC resonance frequency to make the inclination of the current at the start of opening of the first and second mechanical circuit breakers CB1 and CB2 gentler suppresses the arc voltage generated and makes it easy to extinguish the arc. There is a way. However, this leads to an increase in volume, weight, and cost of the first reactor L1 and the capacitor C.
 そこで、本実施形態5では、以上の問題点を解決することができる直流遮断装置を説明する。図15に本実施形態5の直流遮断装置を示す。本実施形態5は実施形態1の回路構成に第3,第4ダイオードD3,D4を追加したものである。 Therefore, in the fifth embodiment, a DC interrupting device capable of solving the above problems will be described. The direct current | flow interruption | blocking apparatus of this Embodiment 5 is shown in FIG. In the fifth embodiment, the third and fourth diodes D3 and D4 are added to the circuit configuration of the first embodiment.
 第3ダイオードD3は、第1機械遮断器CB1に並列接続される。第3ダイオードD3のアノードは第1,第2機械遮断器CB1,CB2の共通接続点に接続され、カソードは第1半導体スイッチング素子T1と第1機械遮断器CB1の共通接続点に接続される。第4ダイオードD4は、第2機械遮断器CB2に並列接続される。第4ダイオードD4のアノードは第1,第2機械遮断器CB1,CB2の共通接続点に接続され、カソードは第2半導体スイッチング素子T2と第2機械遮断器CB2の共通接続点に接続される。 The third diode D3 is connected in parallel to the first mechanical circuit breaker CB1. The anode of the third diode D3 is connected to the common connection point of the first and second mechanical circuit breakers CB1 and CB2, and the cathode is connected to the common connection point of the first semiconductor switching element T1 and the first mechanical circuit breaker CB1. The fourth diode D4 is connected in parallel to the second mechanical circuit breaker CB2. The anode of the fourth diode D4 is connected to the common connection point of the first and second mechanical circuit breakers CB1 and CB2, and the cathode is connected to the common connection point of the second semiconductor switching element T2 and the second mechanical circuit breaker CB2.
 また、本実施形態5の第1補助回路電流スイッチ部4は、第1半導体スイッチング素子T1と第1ダイオードD1の直列接続とする。第1半導体スイッチング素子T1は自己消弧能力を有する素子とし、例えば、IGBTが用いられる。第1半導体スイッチング素子T1のコレクタ端子は第1直流系統1の+端子と第1機械遮断器CB1の共通接続点に接続される。第1半導体スイッチング素子T1のエミッタ端子側には、第1ダイオードD1のアノード端子が接続される。第1ダイオードD1のカソード端子は第1リアクトルL1と抵抗Rの共通接続点に接続される。なお、第1半導体スイッチング素子T1と第1ダイオードD1の接続順序は逆でも良い。 The first auxiliary circuit current switch unit 4 of the fifth embodiment is a series connection of the first semiconductor switching element T1 and the first diode D1. The first semiconductor switching element T1 is an element having a self-extinguishing ability, and for example, an IGBT is used. The collector terminal of the first semiconductor switching element T1 is connected to the common connection point of the + terminal of the first DC system 1 and the first mechanical circuit breaker CB1. The anode terminal of the first diode D1 is connected to the emitter terminal side of the first semiconductor switching element T1. The cathode terminal of the first diode D1 is connected to the common connection point of the first reactor L1 and the resistor R. The connection order of the first semiconductor switching element T1 and the first diode D1 may be reversed.
 また、第2補助回路電流スイッチ部5は、第2半導体スイッチング素子T2と第2ダイオードD2の直列接続とする。第2半導体スイッチング素子T2は自己消弧能力を有する素子とし、例えば、IGBTが用いられる。第2半導体スイッチング素子T2のコレクタ端子は第2直流系統2の+端子と第2機械遮断器CB2の共通接続点に接続される。第2半導体スイッチング素子T2のエミッタ端子側には、第2ダイオードD2のアノード端子が接続される。第2ダイオードD2のカソード端子は第1リアクトルL1と抵抗Rの共通接続点に接続される。なお、第2半導体スイッチング素子T2と第2ダイオードD2の接続順序は逆でも良い。 In addition, the second auxiliary circuit current switch unit 5 connects the second semiconductor switching element T2 and the second diode D2 in series. The second semiconductor switching element T2 is an element having a self-extinguishing ability, and for example, an IGBT is used. The collector terminal of the second semiconductor switching element T2 is connected to the common connection point of the + terminal of the second DC system 2 and the second mechanical circuit breaker CB2. The anode terminal of the second diode D2 is connected to the emitter terminal side of the second semiconductor switching element T2. The cathode terminal of the second diode D2 is connected to the common connection point of the first reactor L1 and the resistor R. The connection order of the second semiconductor switching element T2 and the second diode D2 may be reversed.
 なお、第1,第2補助回路電流スイッチ部4,5は、実施形態1と同様にサイリスタとしても良い。 The first and second auxiliary circuit current switches 4 and 5 may be thyristors as in the first embodiment.
 本実施形態5の作用・動作は以下の通りである。実施形態1との差異を説明する。本実施形態5の直流遮断装置の動作および各部に流れる電流を図16にまとめた。 The operation and operation of the fifth embodiment are as follows. The difference from the first embodiment will be described. The operation of the DC interrupting device of the fifth embodiment and the current flowing to each part are summarized in FIG.
 動作は実施形態1と変わらない。第1機械遮断器CB1を開極後、第1半導体スイッチング素子T1をオンすると短絡電流とは逆向きに補助回路電流Iauxが流れ、短絡電流を打ち消す。 The operation is the same as in the first embodiment. After opening the first mechanical circuit breaker CB1, when the first semiconductor switching element T1 is turned on, the auxiliary circuit current Iaux flows in the opposite direction to the short circuit current to cancel the short circuit current.
 補助回路電流Iauxは正弦波で、その振幅を短絡電流より大きく設計するため、短絡電流を打ち消した後の過剰な電流は負の値となる。そのため、過剰な負の電流は第1機械遮断器CB1に並列に接続した第3ダイオードD3を通って流れる。補助回路電流Iauxが小さくなると、短絡電流は第1半導体スイッチング素子T1→第1ダイオードD1→第1リアクトルL1→コンデンサCを介して電流が流れ、コンデンサCが逆向きに充電される。コンデンサCの充電が完了すると第2直流系統2に流れる電流は零となり遮断が完了する。 Since the auxiliary circuit current Iaux is a sine wave and its amplitude is designed to be larger than the short circuit current, the excess current after canceling the short circuit current has a negative value. Therefore, excess negative current flows through the third diode D3 connected in parallel to the first mechanical circuit breaker CB1. When the auxiliary circuit current Iaux becomes smaller, a short circuit current flows through the first semiconductor switching element T1 → the first diode D1 → the first reactor L1 → the capacitor C, and the capacitor C is charged in the reverse direction. When the charging of the capacitor C is completed, the current flowing through the second DC system 2 becomes zero and the disconnection is completed.
 前述のように、第1機械遮断器CB1の開極指令を受信してから実際に第1機械遮断器CB1が開極するまでには時間遅れがある。この時間遅れが原因で、第1機械遮断器CB1の開極開始が第1半導体スイッチング素子T1オンよりも遅れ、短絡電流と補助回路電流Iauxの合成電流の1回目の零点(図16のA点:以下、第1零点Aと称する)よりも後となってしまった場合でも、第1機械遮断器CB1の開極開始を短絡電流と補助回路電流Iauxの合成電流の2回目の零点(図16のB点:以下、第2零点Bと称する)より早く行うことができれば、短絡電流と補助回路電流Iauxの合成電流はすぐに(100μs程度)第3ダイオードD3に転流する。よってアークは発生しない。その後の動作は実施形態1と同じである。 As described above, there is a time delay from the reception of the opening command of the first mechanical circuit breaker CB1 to the actual opening of the first mechanical circuit breaker CB1. Due to this time delay, the opening start of the first mechanical circuit breaker CB1 is delayed after the first semiconductor switching element T1 is turned on, and the first zero point of the combined current of the short circuit current and the auxiliary circuit current Iaux (point A in FIG. 16) Even when it is later than the first zero point A, a second zero point of the combined current of the short circuit current and the auxiliary circuit current I aux (see FIG. 16) is the opening start of the first mechanical circuit breaker CB1. Point B of: If it can be performed earlier than the second zero point B), the combined current of the short circuit current and the auxiliary circuit current Iaux is immediately (approximately 100 μs) diverted to the third diode D3. Therefore, no arc occurs. The subsequent operation is the same as that of the first embodiment.
 本実施形態5では、過剰な補助回路電流Iauxを第1機械遮断器CB1に並列接続された第3ダイオードD3に迂回させることができる。第1機械遮断器CB1の開極後第1零点Aの後は第3ダイオードD3に電流が転流される。印加される接点電圧はアーク電圧よりも低い第3ダイオードD3の電圧降下分のみであるため、第3ダイオードD3の導通中(つまり図16の第1零点A~第2零点Bの期間)にはアークは発生しない。すなわち、第1零点A~第2零点B(補助回路電流Iaux>短絡電流)の期間に第1機械遮断器CB1を開極することが望ましい。 In the fifth embodiment, the excess auxiliary circuit current Iaux can be bypassed to the third diode D3 connected in parallel to the first mechanical circuit breaker CB1. After the first zero point A after the opening of the first mechanical circuit breaker CB1, the current is commutated to the third diode D3. Since the applied contact voltage is only the voltage drop of the third diode D3 lower than the arc voltage, during the conduction of the third diode D3 (that is, during the period from the first zero point A to the second zero point B in FIG. 16) Arc does not occur. That is, it is desirable to open the first mechanical circuit breaker CB1 in a period from the first zero point A to the second zero point B (auxiliary circuit current Iaux> short circuit current).
 第2零点Bでは第1機械遮断器CB1の接点距離が広がり、かつ、第1零点Aと第2零点Bの間はアークが発生していないため接点間の気体温度が下がり絶縁破壊を起こしにくくなるので、図16の第2零点B以降に第1機械遮断器CB1の接点間に電圧が印加されてもアークが発生するおそれはほとんどない。 At the second zero point B, the contact distance of the first mechanical circuit breaker CB1 is extended, and no arc is generated between the first zero point A and the second zero point B, so the gas temperature between the contacts drops and it is difficult to cause dielectric breakdown. Therefore, even if a voltage is applied between the contacts of the first mechanical circuit breaker CB1 after the second zero point B of FIG. 16, there is almost no possibility that an arc will occur.
 そのため、(1)の問題であった第1零点Aにおける大きな電流の傾きを許容できるため、LC共振周波数を増加できる。このことは第1リアクトルL1とコンデンサCの小型化、さらに、直流遮断装置の小型化・低コスト化につながる。 Therefore, since the inclination of the large current at the first zero point A, which is the problem of (1), can be tolerated, the LC resonance frequency can be increased. This leads to the downsizing of the first reactor L1 and the capacitor C, and further to the downsizing and cost reduction of the DC interrupting device.
 また、過剰な補助回路電流Iauxの振幅も許容できるため、想定よりも小さな短絡電流(補助回路電流Iauxの振幅よりも小さい短絡電流)の遮断にも対応できる。 In addition, since the amplitude of the excess auxiliary circuit current Iaux can be tolerated, interruption of a short circuit current smaller than expected (a short circuit current smaller than the amplitude of the auxiliary circuit current Iaux) can be coped with.
 以上示したように、本実施形態5によれば、第1,第2機械遮断器CB1,CB2の接点開極が第1零点Aに間に合わない場合、第1,第2機械遮断器CB1,CB2に並列接続した第3,第4ダイオードD3,D4の動作によってアークの発生を抑制できる。これにより、実施形態1と比較して、短絡電流を遮断できる確度を高めることができる。 As described above, according to the fifth embodiment, when the contact openings of the first and second mechanical circuit breakers CB1 and CB2 do not meet the first zero point A, the first and second mechanical circuit breakers CB1 and CB2 By the operation of the third and fourth diodes D3 and D4 connected in parallel to each other, generation of arc can be suppressed. Thereby, as compared with the first embodiment, it is possible to increase the probability that the short circuit current can be cut off.
 アークは接点摩耗による定常損失増加、接点癒着による遮断失敗の原因となるため、アークを低減することにより第1,第2機械遮断器CB1,CB2の交換・メンテナンスの手間を削減することができる。 Since the arc causes steady loss increase due to contact wear and interruption failure due to contact adhesion, it is possible to reduce the time for replacement and maintenance of the first and second mechanical circuit breakers CB1 and CB2 by reducing the arc.
 また、アークは接点間の温度上昇や絶縁破壊の原因となるため、アークを低減する本実施形態5はより確実な遮断を行うことができる。よって装置の信頼性を向上させることが可能となる。 Further, since the arc causes the temperature rise between the contacts and the dielectric breakdown, the fifth embodiment which reduces the arc can perform more reliable interruption. Thus, the reliability of the device can be improved.
 [実施形態6]
 実施形態5では、LC共振周波数を大きく設計して短絡電流と補助回路電流Iauxの合成電流の第1零点Aで開極すると、第1零点Aと第2零点B間の時間が短くなるため、第2零点Bでも接点間距離が不足する。また、接点間の気体温度の低下が不十分となる。そのため、開極中に絶縁破壊が起こり、再びアークが発生する危険性が残る。
Sixth Embodiment
In the fifth embodiment, when the LC resonance frequency is designed large and opened at the first zero point A of the combined current of the short circuit current and the auxiliary circuit current Iaux, the time between the first zero point A and the second zero point B becomes short. Even at the second zero point B, the distance between the contacts is insufficient. In addition, the decrease in gas temperature between the contacts becomes insufficient. As a result, breakdown occurs during opening, leaving the risk of arcing again.
 さらに、第1機械遮断器CB1の開極が短絡電流と補助回路電流Iauxの合成電流の第1零点Aより前になった場合には、実施形態1と同様にアークが発生し消弧できないおそれがある。 Furthermore, in the case where the opening of the first mechanical circuit breaker CB1 comes before the first zero point A of the combined current of the short circuit current and the auxiliary circuit current Iaux, an arc may be generated and the arc can not be extinguished as in the first embodiment. There is.
 そのため、実施形態5は、LC共振周波数や短絡事故検出から第1,第2機械遮断器CB1,CB2の開極指令までの遅れ時間の設計が容易ではない。 Therefore, in the fifth embodiment, it is not easy to design the delay time from the detection of the LC resonance frequency or the short circuit accident to the opening command of the first and second mechanical circuit breakers CB1 and CB2.
 図17に本実施形態6の直流遮断装置を示す。本実施形態6は、実施形態5の第3,第4ダイオードD3,D4の代わりに、自己消弧能力のある第4,第5半導体スイッチング素子(例えば、IGBT)T4,T5を設けた回路構成である。すなわち、第4半導体スイッチング素子T4は、第1機械遮断器CB1に並列接続される。第4半導体スイッチング素子T4のエミッタ端子は第1,第2機械遮断器CB1,CB2の共通接続点に接続され、コレクタ端子は第1半導体スイッチング素子T1と第1機械遮断器CB1の共通接続点に接続される。第5半導体スイッチング素子T5は、第2機械遮断器CB2に並列接続される。第5半導体スイッチング素子T5のエミッタ端子は第1,第2機械遮断器CB1,CB2の共通接続点に接続され、コレクタ端子は第2半導体スイッチング素子T2と第2機械遮断器CB2の共通接続点に接続される。 The direct current | flow interruption | blocking apparatus of this Embodiment 6 is shown in FIG. The sixth embodiment is a circuit configuration in which fourth and fifth semiconductor switching elements (for example, IGBTs) T4 and T5 having self-extinguishing ability are provided instead of the third and fourth diodes D3 and D4 of the fifth embodiment. It is. That is, the fourth semiconductor switching element T4 is connected in parallel to the first mechanical circuit breaker CB1. The emitter terminal of the fourth semiconductor switching element T4 is connected to the common connection point of the first and second mechanical circuit breakers CB1 and CB2, and the collector terminal is at the common connection point of the first semiconductor switching element T1 and the first mechanical circuit breaker CB1. Connected The fifth semiconductor switching element T5 is connected in parallel to the second mechanical circuit breaker CB2. The emitter terminal of the fifth semiconductor switching element T5 is connected to the common connection point of the first and second mechanical circuit breakers CB1 and CB2, and the collector terminal is at the common connection point of the second semiconductor switching element T2 and the second mechanical circuit breaker CB2. Connected
 なお、第4,第5半導体スイッチング素子T4,T5には、図17に示すようにダイオードが逆並列接続されている半導体スイッチを適用する。また、第1,第2補助回路電流スイッチ部4,5は実施形態1と同様にサイリスタとしても良い。 A semiconductor switch in which diodes are connected in antiparallel as shown in FIG. 17 is applied to the fourth and fifth semiconductor switching elements T4 and T5. The first and second auxiliary circuit current switches 4 and 5 may be thyristors as in the first embodiment.
 以下、本実施形態6の動作、作用について、実施形態1との差異を説明する。本実施形態6における直流遮断装置の動作および各部分に流れる電流を図18にまとめた。 Hereinafter, the difference from the first embodiment will be described with respect to the operation and action of the sixth embodiment. The operation of the DC interrupting device in the sixth embodiment and the current flowing to each portion are summarized in FIG.
 定常状態では、第4,第5半導体スイッチング素子T4,T5はゲート指令によってオフしており、実施形態1と動作は変わらない。短絡事故などにより遮断指令が来た際の動作は、第1機械遮断器CB1の開極指令前にゲート指令によって第4半導体スイッチング素子T4をオンする(第2機械遮断器CB2を開極する場合は第5半導体スイッチング素子T5をオンする)。 In the steady state, the fourth and fifth semiconductor switching elements T4 and T5 are turned off by the gate command, and the operation is the same as in the first embodiment. In the operation when the shutoff command comes due to a short circuit accident etc., the fourth semiconductor switching element T4 is turned on by the gate command before the opening command of the first machine breaker CB1 (when the second machine breaker CB2 is opened) Turns on the fifth semiconductor switching element T5).
 その後、第1機械遮断器CB1の開極指令によって第1機械遮断器CB1を開極する。なお、第1機械遮断器CB1がオンしている場合、第4半導体スイッチング素子T4をオンしても半導体スイッチング素子のオン抵抗成分があるため第4半導体スイッチング素子T4には電流は転流しない。そのため、定常状態で第4半導体スイッチング素子T4は常時オンしていても問題ない。 After that, the first mechanical circuit breaker CB1 is opened by the opening command of the first mechanical circuit breaker CB1. When the first mechanical circuit breaker CB1 is turned on, even if the fourth semiconductor switching element T4 is turned on, the current does not divert to the fourth semiconductor switching element T4 because there is an on resistance component of the semiconductor switching element. Therefore, there is no problem even if the fourth semiconductor switching element T4 is always on in the steady state.
 第4半導体スイッチング素子T4がオンしている状態で第1機械遮断器CB1の開極を開始すると、第1機械遮断器CB1の接点間にアーク電圧が印加される。その電圧が第4半導体スイッチング素子T4のオン電圧(第4半導体スイッチング素子T4のゲート指令オン中のコレクタ-エミッタ間電圧)を超えると、第4半導体スイッチング素子T4に電流が転流される。 When opening of the first mechanical circuit breaker CB1 is started in a state where the fourth semiconductor switching element T4 is on, an arc voltage is applied between the contacts of the first mechanical circuit breaker CB1. When the voltage exceeds the on voltage of the fourth semiconductor switching device T4 (the voltage between the collector and the emitter during the gate command on of the fourth semiconductor switching device T4), the current is diverted to the fourth semiconductor switching device T4.
 電流が完全に転流されると第1機械遮断器CB1のアークが消弧される。第4半導体スイッチング素子T4への転流が完了したら、ゲート指令によって第1半導体スイッチング素子T1をオンすることで、コンデンサCからの放電電流(補助回路電流Iaux)が第4半導体スイッチング素子T4→第1半導体スイッチング素子T1→第1ダイオードD1→第1リアクトルL1を経由して流れ、第1直流系統1から第4半導体スイッチング素子T4に流れる短絡電流(電流IT4)を打ち消す。 When the current is completely commutated, the arc of the first mechanical circuit breaker CB1 is extinguished. When the commutation to the fourth semiconductor switching element T4 is completed, the discharge current from the capacitor C (auxiliary circuit current Iaux) is switched from the fourth semiconductor switching element T4 to the fourth by turning on the first semiconductor switching element T1 according to the gate command. 1) The semiconductor switching element T1 → the first diode D1 → the first reactor L1 flows, and the short circuit current (current I T4 ) flowing from the first DC system 1 to the fourth semiconductor switching element T4 is cancelled.
 第4半導体スイッチング素子T4は補助回路電流Iauxがピークになるタイミングでゲート指令によってオフする。これは第1半導体スイッチング素子T1オンからLC共振周期の1/4経過後であるため、第4半導体スイッチング素子T4のオフ動作に通過電流や補助回路電流Iauxを検出する必要がない。 The fourth semiconductor switching element T4 is turned off by the gate command at the timing when the auxiliary circuit current Iaux peaks. This is after a lapse of 1⁄4 of the LC resonance period from the turning on of the first semiconductor switching element T1. Therefore, it is not necessary to detect the passing current or the auxiliary circuit current Iaux during the off operation of the fourth semiconductor switching element T4.
 第1機械遮断器CB1開極後、第1半導体スイッチング素子T1→第1ダイオードD1→第1リアクトルL1→コンデンサCを介して短絡電流が流れ、コンデンサCが逆極性に充電される。コンデンサCの充電が完了すると、第2直流系統2へ流れる電流が零となり、電流遮断が完了する。その後、ゲート指令によって第1半導体スイッチング素子T1をオフする。電流遮断完了後の動作は、実施形態1と同じである。 After opening the first mechanical circuit breaker CB1, a short circuit current flows through the first semiconductor switching element T1 → the first diode D1 → the first reactor L1 → the capacitor C, and the capacitor C is charged to the reverse polarity. When the charging of the capacitor C is completed, the current flowing to the second DC system 2 becomes zero, and the current interruption is completed. After that, the first semiconductor switching element T1 is turned off by the gate command. The operation after the current cutoff is the same as in the first embodiment.
 本実施形態6では、第1機械遮断器CB1を開極後、すぐに(100μs程度)短絡電流が第4半導体スイッチング素子T4に転流されるのでアークがほとんど発生しない。そのため、第1機械遮断器CB1の開極指令を早め(第4半導体スイッチング素子T4オン指令の直後)に出すことができ、前述の実施形態5の留意点を気にする必要がなく、確実に遮断動作を行える。さらに、実施形態5よりもLC共振周波数・補助回路電流Iauxの振幅を高く設計することができる。 In the sixth embodiment, since the short circuit current is diverted to the fourth semiconductor switching element T4 (about 100 μs) immediately after the first mechanical circuit breaker CB1 is opened, an arc hardly occurs. Therefore, the opening command of the first mechanical circuit breaker CB1 can be issued earlier (immediately after the fourth semiconductor switching element T4 ON command), and there is no need to worry about the points to be noted in the fifth embodiment described above. The shutoff operation can be performed. Furthermore, the amplitude of the LC resonant frequency and the auxiliary circuit current Iaux can be designed to be higher than those of the fifth embodiment.
 また、第4,第5半導体スイッチング素子T4,T5内には逆並列ダイオードが接続されているため、実施形態5と同じ効果が得られ、第1機械遮断器CB1の開極開始時刻が第1零点Aから第2零点Bまでの間に遅延しても、アークがほとんど発生しない。 Further, since anti-parallel diodes are connected in the fourth and fifth semiconductor switching elements T4 and T5, the same effect as in the fifth embodiment is obtained, and the opening start time of the first mechanical circuit breaker CB1 is the first Even if it is delayed between the zero point A and the second zero point B, arcs hardly occur.
 さらに、第4半導体スイッチング素子T4のターンオフは第1半導体スイッチング素子T1オンからLC共振周期の1/4経過後に固定する。そのため、「短絡電流<補助回路電流Iaux」の関係が成立しているならば、第4半導体スイッチング素子T4ターンオフ時の電流は、第4半導体スイッチング素子T4内の逆並列ダイオードを通過している。 Furthermore, the turn-off of the fourth semiconductor switching element T4 is fixed after 1⁄4 of the LC resonance period has elapsed since the first semiconductor switching element T1 is turned on. Therefore, if the relationship of “short circuit current <auxiliary circuit current Iaux” is established, the current at the time of turn-off of the fourth semiconductor switching device T4 passes through the anti-parallel diode in the fourth semiconductor switching device T4.
 そのため、第4半導体スイッチング素子T4は零電流スイッチングが成立する。よって、第4半導体スイッチング素子T4ではターンオフ時のスイッチング損失が発生しないため熱責務が小さく、ターンオフ時に第4半導体スイッチング素子T4のコレクタ-エミッタ間のサージ電圧もほとんど発生しない。 Therefore, zero current switching is established in the fourth semiconductor switching element T4. Therefore, in the fourth semiconductor switching element T4, no switching loss occurs at turn-off, so the thermal duty is small, and at turn-off, a surge voltage between the collector and the emitter of the fourth semiconductor switching element T4 hardly occurs.
 そのため、大電流の遮断を行う際に第4半導体スイッチング素子T4用のIGBT直並列数を少なくすることができ、サージ電圧抑制用のスナバ回路も不要となる。 Therefore, when interrupting a large current, the number of IGBTs in series and parallel connection for the fourth semiconductor switching element T4 can be reduced, and a snubber circuit for surge voltage suppression is also unnecessary.
 また、「短絡電流>補助回路電流Iaux」の場合でも、本実施形態6ならば第4半導体スイッチング素子T4により短絡電流を遮断することができる。この場合でも第4半導体スイッチング素子T4は第1半導体スイッチング素子T1のターンオンからLC共振周期の1/4経過後のタイミング(すなわち、第4半導体スイッチング素子T4の電流が最小となるタイミング)でターンオフするため、スイッチング損失・サージ電圧を最小に抑えることができる。 Further, even in the case of “short circuit current> auxiliary circuit current Iaux”, in the sixth embodiment, the short circuit current can be interrupted by the fourth semiconductor switching element T4. Also in this case, the fourth semiconductor switching element T4 is turned off at a timing after 1⁄4 of the LC resonance period since the turning on of the first semiconductor switching element T1 (that is, the timing at which the current of the fourth semiconductor switching element T4 is minimized). Therefore, switching loss and surge voltage can be minimized.
 図19に、本実施形態6の直流遮断装置で1kAの直流電流の遮断実験を行った際の波形を示す。図20に図19の波形測定箇所を示す。 The waveform at the time of performing the interruption | blocking experiment of the direct current of 1 kA with the direct current | flow interrupting apparatus of this Embodiment 6 is shown in FIG. FIG. 20 shows the waveform measurement points of FIG.
 実験条件は、第1機械遮断器CB1の最大アーク電圧30V、LC共振周波数2kHz、第1機械遮断器CB1の開極指令から第1半導体スイッチング素子T1オンのゲート指令までの設定時間を約3.6msとした。また、時刻0msですでに遮断電流(1kA)を第1機械遮断器CB1へ流し、時刻0.5msでほぼ同時に第4半導体スイッチング素子T4のゲートオン指令と第1機械遮断器CB1の開極指令を入力した。また、この実験条件では、第1機械遮断器CB1の開極指令後にほとんど遅延することなく第1機械遮断器CB1の開極動作を開始している。 The experimental conditions are: The setting time from the opening command of the first mechanical circuit breaker CB1 to the gate command of the first semiconductor switching element T1 is approximately 3. It was 6 ms. In addition, at time 0 ms, a cutoff current (1 kA) is already supplied to the first mechanical circuit breaker CB1, and at time 0.5 ms, the gate on command of the fourth semiconductor switching element T4 and the opening command of the first mechanical circuit breaker CB1 are approximately simultaneously. I input it. Also, under this experimental condition, the opening operation of the first mechanical circuit breaker CB1 is started with almost no delay after the opening command of the first mechanical circuit breaker CB1.
 第1機械遮断器CB1の開極開始直後の時刻0.5msで、第1機械遮断器CB1の両端に13Vが印加されているのでアークが発生しているのがわかる。しかし、このときのアーク電圧13Vは、第1機械遮断器CB1の最大アーク電圧30Vを大きく下回っている。 At time 0.5 ms immediately after the start of opening of the first mechanical circuit breaker CB1, 13 V is applied to both ends of the first mechanical circuit breaker CB1, so it can be seen that an arc is generated. However, the arc voltage 13V at this time is much lower than the maximum arc voltage 30V of the first mechanical circuit breaker CB1.
 つまり、アーク消弧が容易な電圧レベルである。その直後、第4半導体スイッチング素子T4に流れる電流iT4が遮断電流1kAに一致するので、第1機械遮断器通過電流Icb1が零になっている。さらに、第1機械遮断器両端電圧Vcb1の波形もほぼ0Vに低下しているため、アークも消弧していることが確認できる。 That is, it is a voltage level in which arc extinguishing is easy. Immediately after that, since the current i T4 flowing through the fourth semiconductor switching element T4 matches the cutoff current 1 kA, the first mechanical circuit breaker passing current Icb1 is zero. Furthermore, since the waveform of the voltage Vcb1 across the first mechanical circuit breaker is also reduced to approximately 0 V, it can be confirmed that the arc is also extinguished.
 (実施形態1や実施形態5では、転流用の回路の第4半導体スイッチング素子T4がないため第1零点Aまでの3.6ms間アークが発生し続けてしまう。)
 また、第1半導体スイッチング素子T1オン後、補助回路電流Iauxによって第4半導体スイッチング素子T4に流れる短絡電流が打ち消され、第4半導体スイッチング素子T4を通過する電流iT4が逆向きになり、第4半導体スイッチング素子T4内の逆並列ダイオードに流れるようになった時点でゲート指令によって第4半導体スイッチング素子T4をオフする。
(In the first embodiment and the fifth embodiment, since there is no fourth semiconductor switching element T4 of the circuit for commutation, an arc continues to occur for 3.6 ms up to the first zero point A.)
Also, after the first semiconductor switching element T1 is turned on, the short circuit current flowing to the fourth semiconductor switching element T4 is canceled by the auxiliary circuit current Iaux, and the current i T4 passing through the fourth semiconductor switching element T4 is reversed. At the time when the current flows to the antiparallel diode in the semiconductor switching element T4, the fourth semiconductor switching element T4 is turned off by the gate command.
 第4半導体スイッチング素子T4の第2零点B後に第1機械遮断器CB1に最大アーク電圧30Vを超える電圧が印加されている。そのため、第1機械遮断器CB1にアークが発生せずに第1機械遮断器CB1の開極動作が完了したことが確認でき、正常に遮断動作が行われたことがわかる。 After the second zero point B of the fourth semiconductor switching device T4, a voltage exceeding the maximum arc voltage of 30 V is applied to the first mechanical circuit breaker CB1. Therefore, it can be confirmed that the opening operation of the first mechanical circuit breaker CB1 is completed without the occurrence of an arc in the first mechanical circuit breaker CB1, and it can be understood that the interruption operation has been performed normally.
 なお、本実施形態6の類似先行技術として、特許文献2がある。しかし、特許文献2は単方向のみの電流遮断器の発明で、双方向の電流遮断器には対応していない。また、共振コンデンサに別途充電回路が必要である。 Patent Document 2 is a similar prior art to Embodiment 6. However, Patent Document 2 is an invention of a unidirectional current breaker and does not correspond to a bidirectional current breaker. In addition, a separate charging circuit is required for the resonant capacitor.
 また、特許文献2の実施形態8では、段落[0038]より、半導体スイッチのターンOFFのタイミングを断路器3の接点距離が十分離れたときとしている。このタイミングでの半導体スイッチ通過電流は不明であり、大きな短絡電流を半導体スイッチで遮断しなければならない恐れがある。この場合、非常に大きなスイッチング損失・サージ電圧が発生し、素子が破損する恐れがある。これを防ぐため、半導体スイッチング素子を複数並列接続する、または、大容量のスナバ回路を接続すると、装置のコスト・容積が増加してしまう。一方、本実施形態6では零電流スイッチングが成立するため、半導体スイッチング素子の並列数を低減でき、装置のコスト・容積を低減することができる。 Further, in the eighth embodiment of Patent Document 2, according to paragraph [0038], the turn-off timing of the semiconductor switch is when the contact distance of the disconnecting device 3 is sufficiently long. The current passing through the semiconductor switch at this timing is unknown, and a large short circuit current may have to be interrupted by the semiconductor switch. In this case, a very large switching loss and surge voltage may occur to damage the device. If multiple semiconductor switching elements are connected in parallel or a large capacity snubber circuit is connected to prevent this, the cost and volume of the device will increase. On the other hand, in the sixth embodiment, since zero current switching is established, the number of parallel semiconductor switching elements can be reduced, and the cost and volume of the device can be reduced.
 以上示したように、本実施形態6によれば、実施形態5の効果に加えて、第1,第2機械遮断器CB1,CB2を開極した際、短絡電流が速やかに第4,第5半導体スイッチング素子T4,T5に転流するため、よりアークを抑制することができる。よって、装置の信頼性がさらに高まる。 As described above, according to the sixth embodiment, in addition to the effect of the fifth embodiment, when the first and second mechanical circuit breakers CB1 and CB2 are opened, the short-circuit current is rapidly reduced to the fourth and fifth Since the current is commutated to the semiconductor switching elements T4 and T5, the arc can be further suppressed. Thus, the reliability of the device is further enhanced.
 また、第1,第2機械遮断器CB1,CB2を第1零点Aに対して早めに開極することができ、第1,第2機械遮断器CB1,CB2の特性(開極指令から開極動作開始までの遅延時間など)にばらつきがある場合でも、電流を確実に遮断することができる。 In addition, the first and second mechanical circuit breakers CB1 and CB2 can be opened earlier with respect to the first zero point A, and the characteristics of the first and second mechanical circuit breakers CB1 and CB2 (from the opening command to the opening) Even when there is a variation in the delay time until the start of operation, etc., the current can be cut off reliably.
 また、実施形態5よりもLC共振回路の設計の余裕度が拡がるため、LC共振周波数の増加、ひいては第1リアクトルL1とコンデンサCの小型化が可能となる。よって、直流遮断装置の小型化を図ることが可能となる。 Further, since the design margin of the LC resonance circuit is expanded compared to the fifth embodiment, it is possible to increase the LC resonance frequency, and hence to miniaturize the first reactor L1 and the capacitor C. Therefore, it is possible to miniaturize the direct current shutoff device.
 また、本実施形態6により、後述する実施形態7に対して以下の効果が生じる。短絡電流が補助回路電流Iauxより大きくても、電流を遮断することができる。この場合でもスイッチング損失・サージは発生するが最小であるため、第4,第5半導体スイッチング素子T4,T5の責務を抑制することができる。 Further, the sixth embodiment produces the following effects with respect to the seventh embodiment described later. Even if the short circuit current is larger than the auxiliary circuit current Iaux, the current can be cut off. Even in this case, switching loss and surge occur but are minimized, so the duty of the fourth and fifth semiconductor switching elements T4 and T5 can be suppressed.
 [実施形態7]
 図21に本実施形態7の直流遮断装置を示す。本実施形態7は、実施形態5の第3,第4ダイオードD3,D4に自己消弧能力のない第6,第7半導体スイッチング素子T6,T7(例えば、サイリスタ)を逆並列接続したものである。第6半導体スイッチング素子T6のカソード端子は第1,第2機械遮断器CB1,CB2の共通接続点に接続され、アノード端子は第1半導体スイッチング素子T1と第1機械遮断器CB1の共通接続点に接続される。同様に、第7半導体スイッチング素子T7のカソード端子は第1,第2機械遮断器CB1,CB2の共通接続点に接続され、アノード端子は第2半導体スイッチング素子T2と第2機械遮断器CB2の共通接続点に接続される。
Seventh Embodiment
The direct current | flow interruption | blocking apparatus of this Embodiment 7 is shown in FIG. In the seventh embodiment, the sixth and seventh semiconductor switching elements T6 and T7 (for example, thyristors) having no self-extinguishing ability are connected in antiparallel to the third and fourth diodes D3 and D4 of the fifth embodiment. . The cathode terminal of the sixth semiconductor switching element T6 is connected to the common connection point of the first and second mechanical circuit breakers CB1 and CB2, and the anode terminal is connected to the common connection point of the first semiconductor switching element T1 and the first mechanical circuit breaker CB1. Connected Similarly, the cathode terminal of the seventh semiconductor switching element T7 is connected to the common connection point of the first and second mechanical circuit breakers CB1 and CB2, and the anode terminal is common to the second semiconductor switching element T2 and the second mechanical circuit breaker CB2. Connected to connection point.
 また、本実施形態7では、第1,第2補助回路電流スイッチ部4,5は、自己消弧能力のない第1,第2半導体スイッチング素子T1,T2(例えば、サイリスタ)としている。なお、実施形態5,6と同様にIGBTとダイオードの直列接続でも良い。 Further, in the seventh embodiment, the first and second auxiliary circuit current switch portions 4 and 5 are the first and second semiconductor switching elements T1 and T2 (for example, thyristors) having no self-extinguishing ability. The IGBT and the diode may be connected in series similarly to the fifth and sixth embodiments.
 本実施形態7の作用・動作は以下のとおりである。実施形態6との差異を記載する。本実施形態7における直流遮断装置の動作および各部分に流れる電流を図22にまとめた。 The operation and operation of the seventh embodiment are as follows. The difference from Embodiment 6 is described. The operation of the direct current cut-off device in the seventh embodiment and the current flowing to each portion are summarized in FIG.
 短絡事故などにより遮断指令を受信すると、第6半導体スイッチング素子T6にON指令を出力する。第1機械遮断器CB1を開極後、第1機械遮断器CB1にアーク電圧が印加される。その電圧が第6半導体スイッチング素子T6のオン電圧を超えると、第6半導体スイッチング素子T6に電流が転流される。 When the shutoff command is received due to a short circuit accident or the like, an ON command is output to the sixth semiconductor switching element T6. After opening the first mechanical circuit breaker CB1, an arc voltage is applied to the first mechanical circuit breaker CB1. When the voltage exceeds the on voltage of the sixth semiconductor switching element T6, current is diverted to the sixth semiconductor switching element T6.
 第1機械遮断器CB1の電流が完全に第6半導体スイッチング素子T6に転流されると第1機械遮断器CB1のアークが消弧される。第6半導体スイッチング素子T6への転流が完了したら、ゲート指令によって第1半導体スイッチング素子T1をオンすることで、コンデンサCからの放電電流(補助回路電流Iaux)成分が第6半導体スイッチング素子T6→第1半導体スイッチング素子T1→第1リアクトルL1を経由して流れ、第1直流系統1から第6半導体スイッチング素子T6に流れる短絡電流を打ち消す。第6半導体スイッチング素子T6にあらかじめオフ指令を入れておけば、第6半導体スイッチング素子T6に流れる電流が零になった時点で第6半導体スイッチング素子T6がオフする。そのため、第1機械遮断器CB1開極後すぐに第6半導体スイッチング素子T6のオフ指令を出力する。 When the current of the first mechanical circuit breaker CB1 is completely diverted to the sixth semiconductor switching device T6, the arc of the first mechanical circuit breaker CB1 is extinguished. When the commutation to the sixth semiconductor switching element T6 is completed, the discharge current (auxiliary circuit current Iaux) component from the capacitor C is switched to the sixth semiconductor switching element T6 by turning on the first semiconductor switching element T1 according to the gate command. It cancels the short circuit current which flows via the first semiconductor switching element T1 → the first reactor L1 and flows from the first DC system 1 to the sixth semiconductor switching element T6. If an off command is previously input to the sixth semiconductor switching element T6, the sixth semiconductor switching element T6 is turned off when the current flowing through the sixth semiconductor switching element T6 becomes zero. Therefore, immediately after the first mechanical circuit breaker CB1 is opened, an off command of the sixth semiconductor switching element T6 is output.
 第1機械遮断器CB1に開極指令を出してから実際に開極が開始されるまでの時間にはばらつきがある。第1機械遮断器CB1が開極する前に第6半導体スイッチング素子T6がオフしないように、第6半導体スイッチング素子T6のオフ指令はそのばらつきを考慮し、例えば第1機械遮断器CB1の開極指令後1~2msに設定する。 There is variation in the time from when the opening command is issued to the first mechanical circuit breaker CB1 to when the opening is actually started. In order to prevent the sixth semiconductor switching device T6 from turning off before the first mechanical circuit breaker CB1 opens, the off command of the sixth semiconductor switching device T6 takes into account the variation, for example, the opening of the first mechanical circuit breaker CB1 Set to 1 to 2 ms after command.
 一般的にサイリスタはIGBTに比べ高耐圧・大電流に対応した部品がある。短時間(10ms)ならば定格電流の10倍の電流を流せるものも存在する。またサイリスタの方がIGBTに比べオン電圧が低く、第1,第2機械遮断器CB1,CB2の開極時に転流させやすいといった利点がある。 In general, thyristors have components corresponding to high withstand voltage and large current compared to IGBTs. There are also devices that can flow 10 times the rated current in a short time (10 ms). The thyristor has an advantage that the on-voltage is lower than that of the IGBT, and commutation is easy at the time of opening of the first and second mechanical circuit breakers CB1 and CB2.
 なお、本実施形態7では、短絡電流が補助回路電流Iauxより大きくなると、第6半導体スイッチング素子T6の電流を0A以下にできないため、第6半導体スイッチング素子T6のターンオフはできない。すなわち、短絡電流の遮断はできない。よって、このような動作にならないようにLC共振回路の設計には留意する必要がある。 In the seventh embodiment, when the short circuit current is larger than the auxiliary circuit current Iaux, the current of the sixth semiconductor switching device T6 can not be reduced to 0 A or less, and thus the sixth semiconductor switching device T6 can not be turned off. That is, the short circuit current can not be cut off. Therefore, care must be taken in the design of the LC resonant circuit to prevent such operation.
 以上示したように、本実施形態7によれば、実施形態5,6と同様の作用効果を奏する。また、本実施形態7によれば、実施形態6に対して以下の効果が生じる。 As described above, according to the seventh embodiment, the same function and effect as those of the fifth and sixth embodiments can be obtained. Further, according to the seventh embodiment, the following effects are obtained with respect to the sixth embodiment.
 実施形態6と異なり、第1,第2機械遮断器CB1,CB2と並列接続する第6,第7半導体スイッチング素子T6,T7(サイリスタ)のゲートオフ指令のタイミングをLC共振周期の1/4に設定する必要がない。よってゲート指令の設計が容易になる。 Unlike the sixth embodiment, the timing of the gate-off command of the sixth and seventh semiconductor switching elements T6 and T7 (thyristor) connected in parallel to the first and second mechanical circuit breakers CB1 and CB2 is set to 1/4 of the LC resonance period. There is no need to Therefore, the design of the gate command becomes easy.
 サイリスタならばIGBTに比べ高耐圧・大電流に対応した部品があるため、高圧・大容量の系統への装置の適用が容易となる。また、サイリスタはIGBTに比べオン電圧が低いので、複数直列に接続しても電圧降下が大きくならないため機械遮断器通過電流をサイリスタに転流させやすくなり、より高圧の系統に適用することができる。 Since there is a part corresponding to high withstand voltage and large current compared with IGBT if it is a thyristor, application of the device to a high voltage and large capacity system becomes easy. In addition, since the thyristor has a lower on-voltage compared to the IGBT, the voltage drop does not increase even if a plurality of series are connected, so the mechanical circuit breaker passing current is easily commutated to the thyristor and can be applied to a higher voltage system. .
 また、本実施形態7は、特許文献2に対して以下の効果が生じる。双方向に流れる電流を遮断可能である。共振回路のコンデンサに外部電源を必要としない。追加した第6,第7半導体スイッチング素子T6,T7ではスイッチング損失が発生しないため、第6,第7半導体スイッチング素子T6,T7の熱責務が小さく直並列数を削減することができる。大容量のスナバ回路も不要である。よって、コスト・容積を抑えることができる。 Further, the seventh embodiment produces the following effects with respect to the patent document 2. It is possible to shut off the current flowing in both directions. No external power supply is required for the capacitor of the resonant circuit. Since no switching loss occurs in the added sixth and seventh semiconductor switching elements T6 and T7, the thermal duty of the sixth and seventh semiconductor switching elements T6 and T7 is small, and the number of series and parallel connections can be reduced. A large capacity snubber circuit is also unnecessary. Therefore, cost and volume can be reduced.
 なお、実施形態1~7では、第1直流系統1の+端子と第2直流系統2の+端子との間に第1,第2機械遮断器CB1,CB2を直列接続する構成について説明したが、第1直流系統1の-端子と第2直流系統2の-端子との間に第1,第2機械遮断器CB1,CB2を直列接続する構成としてもよい。 In the first to seventh embodiments, the configuration in which the first and second mechanical circuit breakers CB1 and CB2 are connected in series between the + terminal of the first DC system 1 and the + terminal of the second DC system 2 has been described. The first and second mechanical circuit breakers CB1 and CB2 may be connected in series between the − terminal of the first DC system 1 and the − terminal of the second DC system 2.
 この場合、第1直流系統1の-端子と第1機械遮断器CB1の共通接続点に第1半導体スイッチング素子T1の一端(カソード)が接続される。第1半導体スイッチング素子T1の他端(アノード)には、第2半導体スイッチング素子T2の一端(アノード)が接続される。第2半導体スイッチング素子T2の他端(カソード)は第2直流系統2の-端子と第2機械遮断器CB2の共通接続点に接続される。 In this case, one end (cathode) of the first semiconductor switching element T1 is connected to the common connection point of the negative terminal of the first DC system 1 and the first mechanical circuit breaker CB1. One end (anode) of the second semiconductor switching element T2 is connected to the other end (anode) of the first semiconductor switching element T1. The other end (cathode) of the second semiconductor switching element T2 is connected to the common connection point of the − terminal of the second DC system 2 and the second mechanical circuit breaker CB2.
 第1,第2機械遮断器CB1,CB2の共通接続点と第1,第2半導体スイッチング素子T1,T2の共通接続点との間にはコンデンサCが接続される。また、コンデンサCには第1リアクトルL1が直列接続される。ここで、コンデンサCと第1リアクトルL1との接続順序はどちらでも良い。 A capacitor C is connected between a common connection point of the first and second mechanical circuit breakers CB1 and CB2 and a common connection point of the first and second semiconductor switching elements T1 and T2. Further, the first reactor L1 is connected in series to the capacitor C. Here, the connection order of the capacitor C and the first reactor L1 may be either.
 さらに、実施形態1の抵抗R、実施形態2のツェナーダイオードZD、実施形態3,4の第3半導体スイッチング素子T3は、第1,第2直流系統1,2の+端子に接続される。 Furthermore, the resistor R of the first embodiment, the Zener diode ZD of the second embodiment, and the third semiconductor switching element T3 of the third and fourth embodiments are connected to the positive terminals of the first and second DC systems 1 and 2.
 実施形態2~7でも、第1直流系統1の-端子と第2直流系統2の-端子との間に直流遮断装置を接続する場合は、実施形態1と同様に接続すれば良い。 Also in the second to seventh embodiments, in the case of connecting a DC interrupting device between the − terminal of the first DC system 1 and the − terminal of the second DC system 2, the connection may be made in the same manner as the first embodiment.
 第1直流系統1の-端子と第2直流系統2の-端子との間に、実施形態5の直流遮断装置を接続した構成を図23に示す。図23に示すように、第1直流系統1の-端子と第2直流系統2の-端子との間に第1機械遮断器CB1と第2機械遮断器CB2が直列接続される。 A configuration in which the DC interrupting device of the fifth embodiment is connected between the − terminal of the first DC system 1 and the − terminal of the second DC system 2 is shown in FIG. As shown in FIG. 23, a first mechanical circuit breaker CB1 and a second mechanical circuit breaker CB2 are connected in series between the − terminal of the first DC system 1 and the − terminal of the second DC system 2.
 第1直流系統1の-端子と第1機械遮断器CB1の共通接続点に第1半導体スイッチング素子T1のエミッタ端子が接続される。第1半導体スイッチング素子T1のコレクタ端子には、第1ダイオードD1のカソード端子が接続される。ここで、第1半導体スイッチング素子T1と第1ダイオードD1の接続順序は逆でも良い。 The emitter terminal of the first semiconductor switching element T1 is connected to the common connection point of the − terminal of the first DC system 1 and the first mechanical circuit breaker CB1. The cathode terminal of the first diode D1 is connected to the collector terminal of the first semiconductor switching element T1. Here, the connection order of the first semiconductor switching element T1 and the first diode D1 may be reversed.
 第2直流系統2の-端子と第2機械遮断器CB2の共通接続点には第2半導体スイッチング素子T2のエミッタ端子が接続される。第2半導体スイッチング素子T2にコレクタ端子には第2ダイオードD2のカソード端子が接続される。第2ダイオードD2のアノード端子は第1ダイオードD1のアノード端子に接続される。ここで、第2半導体スイッチング素子T2と第2ダイオードD2の接続順序は逆でも良い。 The emitter terminal of the second semiconductor switching element T2 is connected to the common connection point of the − terminal of the second DC system 2 and the second mechanical circuit breaker CB2. The cathode terminal of the second diode D2 is connected to the collector terminal of the second semiconductor switching element T2. The anode terminal of the second diode D2 is connected to the anode terminal of the first diode D1. Here, the connection order of the second semiconductor switching element T2 and the second diode D2 may be reversed.
 第1,第2機械遮断器CB1,CB2の共通接続点と第1,第2ダイオードD1,D2の共通接続点との間にコンデンサCが接続される。コンデンサCに第1リアクトルL1が直列接続される。ここで、コンデンサCと第1リアクトルL1との接続順序は逆でも良い。第1,第2ダイオードD1,D2の共通接続点と第1,第2直流系統1,2の+端子との間に抵抗Rが接続される。 A capacitor C is connected between the common connection point of the first and second mechanical circuit breakers CB1 and CB2 and the common connection point of the first and second diodes D1 and D2. The first reactor L1 is connected in series to the capacitor C. Here, the connection order of the capacitor C and the first reactor L1 may be reversed. A resistor R is connected between the common connection point of the first and second diodes D1 and D2 and the positive terminals of the first and second DC systems 1 and 2.
 第1機械遮断器CB1に第3ダイオードD3が並列接続される。第3ダイオードD3のアノード端子は第1直流系統1の-端子と第1機械遮断器CB1の共通接続点に接続される。第3ダイオードD3はカソード端子は第1,第2機械遮断器CB1,CB2の共通接続点に接続される。第2機械遮断器CB2に第4ダイオードD4が並列接続される。第4ダイオードD4のアノード端子は第2直流系統2の-端子と第2機械遮断器CB2の共通接続点に接続される。第4ダイオードD4のカソード端子は第1,第2機械遮断器CB1,CB2の共通接続点に接続される。 A third diode D3 is connected in parallel to the first mechanical circuit breaker CB1. The anode terminal of the third diode D3 is connected to the common connection point of the-terminal of the first DC system 1 and the first mechanical circuit breaker CB1. The cathode terminal of the third diode D3 is connected to the common connection point of the first and second mechanical circuit breakers CB1 and CB2. The fourth diode D4 is connected in parallel to the second mechanical circuit breaker CB2. The anode terminal of the fourth diode D4 is connected to the common connection point of the-terminal of the second DC system 2 and the second mechanical circuit breaker CB2. The cathode terminal of the fourth diode D4 is connected to the common connection point of the first and second mechanical circuit breakers CB1 and CB2.
 第1直流系統1の-端子と第2直流系統2の-端子との間に、実施形態6の直流遮断装置を接続した構成を図24に示す。図24は、図23の第3,第4ダイオードD3,D4を第4,第5半導体スイッチング素子(IGBT)T4,T5に置き換えたものである。第4半導体スイッチング素子T4のエミッタ端子は第1直流系統1の-端子と第1機械遮断器CB1の共通接続点に接続される。第4半導体スイッチング素子T4のコレクタ端子は第1,第2機械遮断器CB1,CB2の共通接続点に接続される。第5半導体スイッチング素子T5のエミッタ端子は第2直流系統2の-端子と第2機械遮断器CB2の共通接続点に接続される。第5半導体スイッチング素子T5のコレクタ端子は第1,第2機械遮断器CB1,CB2の共通接続点に接続される。 A configuration in which the DC interrupting device of the sixth embodiment is connected between the − terminal of the first DC system 1 and the − terminal of the second DC system 2 is shown in FIG. In FIG. 24, the third and fourth diodes D3 and D4 in FIG. 23 are replaced with fourth and fifth semiconductor switching elements (IGBTs) T4 and T5. The emitter terminal of the fourth semiconductor switching element T4 is connected to the common connection point of the first terminal of the first DC system 1 and the first mechanical circuit breaker CB1. The collector terminal of the fourth semiconductor switching element T4 is connected to the common connection point of the first and second mechanical circuit breakers CB1 and CB2. The emitter terminal of the fifth semiconductor switching element T5 is connected to the common connection point of the − terminal of the second DC system 2 and the second mechanical circuit breaker CB2. The collector terminal of the fifth semiconductor switching element T5 is connected to the common connection point of the first and second mechanical circuit breakers CB1 and CB2.
 第1直流系統1の-端子と第2直流系統2の-端子との間に、実施形態7の直流遮断装置を接続した構成を図25に示す。図25は、図23の第3,第4ダイオードD3,D4に第6,第7半導体スイッチング素子(サイリスタ)T6,T7を逆並列接続したものである。 A configuration in which the DC interrupting device of the seventh embodiment is connected between the − terminal of the first DC system 1 and the − terminal of the second DC system 2 is shown in FIG. In FIG. 25, sixth and seventh semiconductor switching elements (thyristors) T6 and T7 are connected in antiparallel to the third and fourth diodes D3 and D4 in FIG.
 第6半導体スイッチング素子T6のカソード端子は、第1直流系統1の-端子と第1機械遮断器CB1の共通接続点に接続される。第6半導体スイッチング素子T6のアノード端子は、第1,第2機械遮断器CB1,CB2の共通接続点に接続される。第7半導体スイッチング素子T7のカソード端子は、第2直流系統2の-端子と第2機械遮断器CB2の共通接続点に接続される。第7半導体スイッチング素子T7のアノード端子は、第1,第2機械遮断器CB1,CB2の共通接続点に接続される。 The cathode terminal of the sixth semiconductor switching element T6 is connected to the common connection point of the − terminal of the first DC system 1 and the first mechanical circuit breaker CB1. The anode terminal of the sixth semiconductor switching element T6 is connected to the common connection point of the first and second mechanical circuit breakers CB1 and CB2. The cathode terminal of the seventh semiconductor switching element T7 is connected to the common connection point of the − terminal of the second DC system 2 and the second mechanical circuit breaker CB2. The anode terminal of the seventh semiconductor switching element T7 is connected to the common connection point of the first and second mechanical circuit breakers CB1 and CB2.
 [実施形態8]
 図26に本実施形態8の主回路構成を示す。図26に示すように、本実施形態8の直流遮断装置3は、機械遮断器CBと、第3,第4補助回路電流スイッチ部6,7と、第1,第2コンデンサC1,C2と、第3,第4リアクトルL3,L4と、第1,第2抵抗R1,R2と、を備える。ここで、第3補助回路電流スイッチ部6は、第8半導体スイッチング素子T8と第5ダイオードD5の直列接続とし、第4補助回路電流スイッチ部7は、第9半導体スイッチング素子T9と第6ダイオードD6の直列接続とする。
[Eighth embodiment]
FIG. 26 shows a main circuit configuration of the eighth embodiment. As shown in FIG. 26, the DC circuit breaker 3 according to the eighth embodiment includes a mechanical circuit breaker CB, third and fourth auxiliary circuit current switch parts 6 and 7, and first and second capacitors C1 and C2. The third and fourth reactors L3 and L4 and the first and second resistors R1 and R2 are provided. Here, the third auxiliary circuit current switch unit 6 is a series connection of an eighth semiconductor switching device T8 and a fifth diode D5, and the fourth auxiliary circuit current switch unit 7 is a ninth semiconductor switching device T9 and a sixth diode D6. Series connection.
 第1直流系統1の+端子と第2直流系統2の+端子との間に機械遮断器CBが接続される。 A mechanical circuit breaker CB is connected between the + terminal of the first DC system 1 and the + terminal of the second DC system 2.
 第1直流系統1の+端子と機械遮断器CBの共通接続点と、第1,第2直流系統1,2の-端子との間には、第1コンデンサC1,第3リアクトルL3,第1抵抗(第1インピーダンス)R1が順次直列接続される。(第1コンデンサC1と第3リアクトルL3の接続の順序は逆にしてもよい。)機械遮断器CBと第2直流系統2の+端子の共通接続点には、第8半導体スイッチング素子T8の一端が接続される。第8半導体スイッチング素子T8の他端には第5ダイオードD5のアノードが接続される。第5ダイオードD5のカソードは、第3リアクトルL3と第1抵抗R1の共通接続点に接続される。 A first capacitor C1, a third reactor L3, and a first between the positive terminal of the first DC system 1 and the common connection point of the mechanical circuit breaker CB and the negative terminals of the first and second DC systems 1 and 2. A resistor (first impedance) R1 is sequentially connected in series. (The order of connection of the first capacitor C1 and the third reactor L3 may be reversed.) One end of an eighth semiconductor switching element T8 at the common connection point of the machine breaker CB and the + terminal of the second DC system 2 Is connected. The anode of the fifth diode D5 is connected to the other end of the eighth semiconductor switching element T8. The cathode of the fifth diode D5 is connected to the common connection point of the third reactor L3 and the first resistor R1.
 第2直流系統2の+端子と機械遮断器CBの共通接続点と第1,第2直流系統1,2の-端子との間には、第2コンデンサC2,第4リアクトルL4,第2抵抗(第2インピーダンス)R2が順次直列接続される。(第2コンデンサC2と第4リアクトルL4の接続の順序は逆にしてもよい。)機械遮断器CBと第1直流系統1の+端子の共通接続点には、第9半導体スイッチング素子T9の一端が接続される。第9半導体スイッチング素子T9の他端には第6ダイオードD6のアノードが接続される。第6ダイオードD6のカソードは、第4リアクトルL4と第2抵抗R2の共通接続点に接続される。 A second capacitor C2, a fourth reactor L4, and a second resistor are connected between the + terminal of the second DC system 2 and the common connection point of the mechanical circuit breaker CB and the − terminals of the first and second DC systems 1 and 2. The (second impedance) R2 is sequentially connected in series. (The order of connection of the second capacitor C2 and the fourth reactor L4 may be reversed.) One end of a ninth semiconductor switching element T9 at the common connection point of the machine breaker CB and the + terminal of the first DC system 1 Is connected. The other end of the ninth semiconductor switching element T9 is connected to the anode of a sixth diode D6. The cathode of the sixth diode D6 is connected to the common connection point of the fourth reactor L4 and the second resistor R2.
 なお、本実施形態8の第8,第9半導体スイッチング素子T8,T9は、自己消弧可能なスイッチング素子とする。図26ではIGBTとし、第8半導体スイッチング素子T8のコレクタ端子を第2直流系統2の+端子と機械遮断器CBの共通接続点に接続する。また、第9半導体スイッチング素子T9のコレクタ端子を第1直流系統1の+端子と機械遮断器CBの共通接続点に接続する。また、第8,第9半導体スイッチング素子T8,T9のエミッタ端子は、第5,第6ダイオードD5,D6のアノードに接続する。 The eighth and ninth semiconductor switching elements T8 and T9 of the eighth embodiment are switching elements capable of self-extinguishing. 26, the collector terminal of the eighth semiconductor switching element T8 is connected to the common connection point between the + terminal of the second DC system 2 and the mechanical circuit breaker CB. Further, the collector terminal of the ninth semiconductor switching element T9 is connected to the common connection point of the + terminal of the first DC system 1 and the mechanical circuit breaker CB. The emitter terminals of the eighth and ninth semiconductor switching elements T8 and T9 are connected to the anodes of the fifth and sixth diodes D5 and D6.
 第8,第9半導体スイッチング素子T8,T9,第5,第6ダイオードD5,D6は、リバースブロッキングIGBTなど逆阻止能力を有する自己消弧可能なスイッチング素子に置き換えてもよい。 The eighth and ninth semiconductor switching elements T8 and T9 and the fifth and sixth diodes D5 and D6 may be replaced by switching elements such as reverse blocking IGBTs having a reverse blocking capability and capable of self-ignition.
 次に、本実施形態1における直流遮断装置の動作を説明する。 Next, the operation of the direct current cut-off device in the first embodiment will be described.
 図27は、本実施形態8の定常状態における直流遮断装置である。定常状態では機械遮断器CBが閉極状態であり、電流は双方向に流れる。このとき、第1コンデンサC1には第3リアクトルL3→第1抵抗R1を介して充電電流が流れる。また、第2コンデンサC2には第4リアクトルL4→第2抵抗R2を介して充電電流が流れる。 FIG. 27 shows the DC interrupting device in the steady state of the eighth embodiment. In the steady state, the mechanical circuit breaker CB is closed, and current flows in both directions. At this time, a charging current flows through the first capacitor C1 via the third reactor L3 and the first resistor R1. In addition, a charging current flows through the second capacitor C2 via the fourth reactor L4 and the second resistor R2.
 第1,第2コンデンサC1,C2が系統電圧まで充電されると充電電流は零になる。定常時において電流は機械遮断器CBのみを通過するため、電力損失はほとんどない。 When the first and second capacitors C1 and C2 are charged to the grid voltage, the charging current becomes zero. Since the current passes only through the mechanical circuit breaker CB under constant conditions, there is almost no power loss.
 図28に、第2直流系統2側で事故が発生した場合における本実施形態8の直流遮断装置3を示す。事故発生時には第9半導体スイッチング素子T9をONすることで、第2コンデンサC2から放電電流が補助回路電流として機械遮断器CB→第9半導体スイッチング素子T9→第6ダイオードD6→第4リアクトルL4を経由して流れる。この補助回路電流により機械遮断器CBを流れる短絡電流を打ち消して電流の零点を作り出し、機械遮断器CBを開極してアークを消弧する。 The direct current | flow interruption | blocking apparatus 3 of this Embodiment 8 in case an accident generate | occur | produces in FIG. 28 at the 2nd direct current | flow system 2 side is shown. When an accident occurs, the ninth semiconductor switching element T9 is turned ON, and the discharge current from the second capacitor C2 passes through the mechanical circuit breaker CB → the ninth semiconductor switching element T9 → the sixth diode D6 → the fourth reactor L4 as the auxiliary circuit current. Flow. The auxiliary circuit current cancels the short circuit current flowing through the mechanical circuit breaker CB to create a current zero, and opens the mechanical circuit breaker CB to extinguish the arc.
 補助回路電流の大きさは第4リアクトルL4,第2コンデンサC2で決まる。よって、第4リアクトルL4,第2コンデンサC2の大きさは、想定される短絡電流の最大値を打ち消すことができるように決定する。 The magnitude of the auxiliary circuit current is determined by the fourth reactor L4 and the second capacitor C2. Therefore, the magnitude | sizes of 4th reactor L4 and 2nd capacitor | condenser C2 are determined so that the maximum value of the short circuit current assumed may be negated.
 図29にアーク消弧後の本実施形態8の直流遮断装置3を示す。補助回路電流は第9半導体スイッチング素子T9→第6ダイオードD6→第4リアクトルL4→第2コンデンサC2を経由して流れ、第2コンデンサC2を図27とは逆向きに充電する。第2コンデンサC2が充電完了すると第2直流系統2側の電流が零になり、電流の遮断が完了する。 The direct current | flow interruption | blocking apparatus 3 of this Embodiment 8 after arc extinguishing is shown in FIG. The auxiliary circuit current flows via the ninth semiconductor switching element T9 → sixth diode D6 → the fourth reactor L4 → the second capacitor C2, and charges the second capacitor C2 in the opposite direction to that shown in FIG. When the charging of the second capacitor C2 is completed, the current on the second DC system 2 side becomes zero, and the interruption of the current is completed.
 このとき、遮断動作には不要な電流が第9半導体スイッチング素子T9→第6ダイオードD6→第2抵抗R2を介して流れ、損失が発生する。この電流が十分小さくなるよう第2抵抗R2の抵抗値は大きくする必要がある。これは第1抵抗R1も同様である。第2コンデンサC2の逆充電が完了して、電流の遮断が完了したら、第9半導体スイッチング素子T9をOFFする。 At this time, a current unnecessary for the blocking operation flows through the ninth semiconductor switching element T9 → the sixth diode D6 → the second resistor R2 to generate a loss. It is necessary to increase the resistance value of the second resistor R2 so that the current is sufficiently reduced. The same applies to the first resistor R1. When reverse charging of the second capacitor C2 is completed and interruption of current is completed, the ninth semiconductor switching element T9 is turned off.
 図30に電流遮断が完了し、第2直流系統2を再投入するときの本実施形態8の直流遮断装置3を示す。機械遮断器CBを閉極すると、電流が機械遮断器CB→第2コンデンサC2→第4リアクトルL4→第2抵抗R2を経由して流れ、逆向きに充電されていた第2コンデンサC2を元の向きに充電し直す。充電が完了すると図27の状態に戻り、遮断準備が完了する。 FIG. 30 shows the DC interrupting device 3 of the eighth embodiment when the current interrupting is completed and the second DC system 2 is turned on again. When the mechanical circuit breaker CB is closed, current flows through the mechanical circuit breaker CB → second capacitor C 2 → fourth reactor L 4 → second resistor R 2, and the second capacitor C 2, which has been charged in the opposite direction, Recharge in the direction. When the charging is completed, the state returns to the state of FIG.
 なお、電流の流れる方向や事故発生時の電流値は上位コントローラを用いて監視し、機械遮断器CBの開閉と第8,第9半導体スイッチング素子T8,T9のON,OFFを行う。 The direction of current flow and the current value at the time of the occurrence of an accident are monitored using the upper controller, and the opening and closing of the machine breaker CB and the ON and OFF of the eighth and ninth semiconductor switching elements T8 and T9 are performed.
 図31に第2直流系統2側の短絡電流を遮断する際の波形を示す。時刻t1で短絡が発生し、機械遮断器通過電流Icbが増加する。時刻t2で第9半導体スイッチング素子T9をONすると、第2コンデンサC2から放電電流が補助回路電流Iauxとして流れ、機械遮断器通過電流Icbを打ち消す。 The waveform at the time of interrupting the short circuit current by the side of the 2nd direct current system 2 in Drawing 31 is shown. A short circuit occurs at time t1, and the mechanical circuit breaker passing current Icb increases. When the ninth semiconductor switching element T9 is turned on at time t2, a discharge current flows from the second capacitor C2 as the auxiliary circuit current Iaux, and the mechanical circuit breaker passing current Icb is cancelled.
 このとき、補助回路電流Iauxは第2コンデンサC2,第4リアクトルL4により決定する周波数の共振電流となる。共振周波数が高すぎると機械遮断器CB開極前に共振が終わり機械遮断器通過電流Icbが元の大きさに戻ってしまう。また、共振周波数が低すぎると補助回路電流Iaux増加速度よりも短絡による機械遮断器通過電流Icb増加速度の方が大きくなり機械遮断器通過電流Icbに零点を作れない。そのため、共振周波数は機械遮断器CB動作時間と同程度か少し長めに設定する必要がある。 At this time, the auxiliary circuit current Iaux is a resonant current of a frequency determined by the second capacitor C2 and the fourth reactor L4. If the resonance frequency is too high, the resonance ends and the mechanical circuit breaker passing current Icb returns to the original size before opening the mechanical circuit breaker CB. Also, if the resonance frequency is too low, the increase rate of the mechanical circuit breaker pass current Icb due to a short circuit becomes larger than the auxiliary circuit current Iaux increase speed, and a zero point can not be formed in the mechanical circuit breaker pass current Icb. Therefore, it is necessary to set the resonance frequency to be equal to or slightly longer than the mechanical circuit breaker CB operation time.
 機械遮断器通過電流Icbがある程度小さくなったら、機械遮断器CBを開極する。機械遮断器CBを開極するタイミングの決定方法については、以下の2つが考えられる。まず1つめは、電流センサで機械遮断器通過電流Icbを検出して検出値が許容値以下の時に開極する方法である。2つめは、第4リアクトルL4や第2コンデンサC2の値から補助回路電流Iauxが最大となる時間を計算してそのタイミングで機械遮断器CBを開極する方法である。 When the mechanical circuit breaker passing current Icb decreases to some extent, the mechanical circuit breaker CB is opened. The following two can be considered about the determination method of the timing which opens mechanical breaker CB. The first method is a method of detecting the mechanical circuit breaker passing current Icb with a current sensor and opening the detected value when the detected value is less than the allowable value. The second method is a method of calculating the time at which the auxiliary circuit current Iaux is maximum from the values of the fourth reactor L4 and the second capacitor C2 and opening the mechanical circuit breaker CB at that timing.
 なお、機械遮断器CBが遮断指定を受けてから実際に開極となるまでは時間遅れがある。本明細書で遮断すると記載している場合、実際に開極した時を示すものとする。 It should be noted that there is a time delay from when the mechanical circuit breaker CB receives the interruption designation until it is actually opened. In the case where it is stated in the present specification that interruption is to be made, it shall indicate the time of actual opening.
 図31では時刻t3で機械遮断器CBを開極している。時刻t3では機械遮断器通過電流Icbが残っているため多少のアークが発生するが、機械遮断器通過電流Icbは補助回路電流Iauxにより、その後、零となるため、アークを消弧できる。 In FIG. 31, the mechanical circuit breaker CB is opened at time t3. Although the mechanical circuit breaker pass current Icb remains at time t3, some arcing occurs, but the mechanical circuit pass current Icb becomes zero thereafter by the auxiliary circuit current Iaux, so that the arc can be extinguished.
 その後、第2コンデンサC2の電圧Vc2は共振電流および短絡電流により逆向きに充電され、マイナスの系統電圧Vdcに達すると充電が完了し補助回路電流Iauxは零になり遮断が完了する。 Thereafter, the voltage Vc2 of the second capacitor C2 is reversely charged by the resonance current and the short circuit current, and when the negative system voltage Vdc is reached, the charging is completed, the auxiliary circuit current Iaux becomes zero, and the interruption is completed.
 本実施形態8では、第2直流系統2側で事故が発生した場合の遮断方法を記載したが、第1直流系統1側で事故が発生した場合も同様に遮断が可能である。この場合、第9半導体スイッチング素子T9ではなく第8半導体スイッチング素子T8をONすることで、第1コンデンサC1の放電電流を用いて機械遮断器CBを通過する短絡電流を打ち消す。 In the eighth embodiment, the shutoff method in the case where an accident occurs on the second DC system 2 side is described, but it is possible to shut off similarly in the case where an accident occurs on the first DC system 1 side. In this case, turning on the eighth semiconductor switching element T8 instead of the ninth semiconductor switching element T9 cancels the short circuit current passing through the mechanical circuit breaker CB using the discharge current of the first capacitor C1.
 以上示したように、本実施形態8によれば、補助回路のコンデンサ放電電流により機械遮断器通過電流Icbに零点を作り、確実に双方向の直流電流を遮断することができる。 As described above, according to the eighth embodiment, it is possible to form a zero point in the machine circuit breaker passing current Icb by the capacitor discharge current of the auxiliary circuit, and to cut off bidirectional DC current with certainty.
 さらに、定常時は常に機械遮断器CBを通電するため、電力損失がほとんどない。また、第8,第9半導体スイッチング素子T8,T9はON直後、第3,第4リアクトルL3,L4により零電流から傾きを持って増加するため(図31(b)のIaux参照)、ターンON損失は非常に小さい。さらに、第8,第9半導体スイッチング素子T8,T9は短絡電流を遮断せず、第1,第2コンデンサC1,C2の逆充電により短絡電流が零になったところでターンOFFを行うため、ターンOFF損失もほとんど発生しない。 Furthermore, since the mechanical circuit breaker CB is always energized during steady state, there is almost no power loss. Since the eighth and ninth semiconductor switching elements T8 and T9 increase with an inclination from the zero current by the third and fourth reactors L3 and L4 immediately after ON (see Iaux in FIG. 31B), the turn is ON The losses are very small. Further, the eighth and ninth semiconductor switching elements T8 and T9 do not interrupt the short circuit current, and turn off is performed when the short circuit current becomes zero due to reverse charging of the first and second capacitors C1 and C2, so the turn OFF There is almost no loss.
 また、補助回路のコンデンサ容量が小さくてもよく、小型化ができる。また、補助回路の寄生インピーダンス成分の多少の増加を許容できる。また、繰り返し直流電流の遮断及び再投入動作が可能となる。 In addition, the capacitor capacity of the auxiliary circuit may be small, and the size can be reduced. In addition, some increase in the parasitic impedance component of the auxiliary circuit can be tolerated. In addition, it is possible to repeatedly shut off and restart the direct current.
 [実施形態9]
 図32に本実施形態9の主回路構成を示す。本実施形態9は、実施形態8の第8,第9半導体スイッチング素子T8,T9をサイリスタなどの自己消弧不可能な逆阻止能力を有するスイッチング素子に置き換えたものである。また、実施形態8の第5,第6ダイオードD5,D6を省略している。
[Embodiment 9]
FIG. 32 shows a main circuit configuration of the ninth embodiment. In the ninth embodiment, the eighth and ninth semiconductor switching devices T8 and T9 of the eighth embodiment are replaced with switching devices having a reverse blocking capability that can not be self-extinguished such as thyristors. Further, the fifth and sixth diodes D5 and D6 of the eighth embodiment are omitted.
 本実施形態9の動作は実施形態8と全く同じである。ただし、図29に示すように機械遮断器CB開極後は第9半導体スイッチング素子T9をONすることにより不要電流が第9半導体スイッチング素子T9,第2抵抗R2を介して流れるため、自己消弧能力がないと第9半導体スイッチング素子T9を上位コントローラからの指令信号によってOFFすることができない。 The operation of the ninth embodiment is the same as that of the eighth embodiment. However, as shown in FIG. 29, since the unnecessary current flows through the ninth semiconductor switching element T9 and the second resistor R2 by turning on the ninth semiconductor switching element T9 after opening the mechanical circuit breaker CB, self-arc-extinguishing Without the ability, the ninth semiconductor switching element T9 can not be turned off by the command signal from the host controller.
 しかし、通常のサイリスタはゲート電流が零かつ順方向電流が保持電流未満になるとOFFになる。そこで、第1,第2抵抗R1,R2の値を大きくし、第8,第9半導体スイッチング素子T8,T9ON時に第1,第2抵抗R1,R2を介して流れる不要電流が保持電流よりも小さくなるようにすれば、第8,第9半導体スイッチング素子T8,T9をサイリスタに置き換えることができる。 However, a normal thyristor is turned off when the gate current is zero and the forward current is less than the holding current. Therefore, the values of the first and second resistors R1 and R2 are increased, and the unnecessary current flowing through the first and second resistors R1 and R2 is smaller than the holding current when the eighth and ninth semiconductor switching elements T8 and T9 are ON. If so, the eighth and ninth semiconductor switching elements T8 and T9 can be replaced with thyristors.
 以上示したように、本実施形態9によれば、実施形態8と同様の作用効果を奏する。また、サイリスタはIGBTよりも電圧降下が小さく、高耐圧・大電流品も入手が容易である。また、サイリスタはIGBTよりも耐圧が高い部品があるため、直列接続数もIGBTよりも少なくてよい。そのため、IGBTよりも小型・低コストで高耐圧・大電流化ができ、遮断時の損失・発熱を小さくすることができる。 As described above, according to the ninth embodiment, the same function and effect as the eighth embodiment can be obtained. In addition, the thyristor has a smaller voltage drop than the IGBT, and it is easy to obtain high breakdown voltage and high current products. Further, since there are parts of the thyristor which withstand voltage is higher than that of the IGBT, the number of series connection may be smaller than that of the IGBT. Therefore, high withstand voltage and large current can be achieved with smaller size and lower cost than IGBT, and loss and heat generation at the time of interruption can be reduced.
 [実施形態10]
 図33に本実施形態10の主回路構成を示す。本実施形態10は、実施形態9の第1,第2抵抗R1,R2と第1,第2直流系統1,2の-端子との間に、自己消弧可能な第10半導体スイッチング素子T10を追加し、不要電流を遮断できるようにしたものである。
Tenth Embodiment
FIG. 33 shows a main circuit configuration of the tenth embodiment. The tenth embodiment is characterized in that a self-ignitionable tenth semiconductor switching element T10 is interposed between the first and second resistors R1 and R2 of the ninth embodiment and the negative terminals of the first and second DC systems 1 and 2. It is added to cut off the unnecessary current.
 以下、本実施形態10における直流遮断装置3の動作を説明する。定常状態では第10半導体スイッチング素子T10をONし、図27と同じ状態にして第1,第2コンデンサC1,C2を充電する。充電が完了または短絡事故などにより遮断指令が来たら、第10半導体スイッチング素子T10をOFFにする。 Hereinafter, the operation of the direct current cut-off device 3 in the tenth embodiment will be described. In the steady state, the tenth semiconductor switching element T10 is turned on to charge the first and second capacitors C1 and C2 in the same state as shown in FIG. When the shutoff command comes due to completion of charging or a short circuit accident, the tenth semiconductor switching element T10 is turned off.
 充電完了は、第1,第2コンデンサC1,C2の両端電圧を検出し、系統電圧に等しくなったことを条件とする。または、第1コンデンサC1と第1抵抗R1,第2コンデンサC2と第2抵抗R2の積から時定数を求め、機械遮断器CB閉極から時定数よりも十分長い時間(例えば、10倍程度)の経過をもって充電完了と判定してもよい。 The completion of charging is detected on the condition that the voltage across the first and second capacitors C1 and C2 is detected and equal to the grid voltage. Alternatively, the time constant is obtained from the product of the first capacitor C1 and the first resistor R1 and the second capacitor C2 and the second resistor R2, and the time from the closing of the mechanical circuit breaker CB is sufficiently longer than the time constant (for example, about 10 times) It may be determined that charging is completed by the lapse of.
 アーク消弧後は第10半導体スイッチング素子T10がOFFであり、図29とは異なり第9半導体スイッチング素子T9,第2抵抗R2を経由して流れる不要電流は第10半導体スイッチング素子T10により遮断される。 After the arc extinguishing, the tenth semiconductor switching device T10 is OFF, and unlike in FIG. 29, the unnecessary current flowing through the ninth semiconductor switching device T9 and the second resistor R2 is interrupted by the tenth semiconductor switching device T10. .
 以上示したように、本実施形態10によれば、実施形態8,9と同様の作用効果を奏する。また、電流遮断後の損失を零にすることができる。また、第1,第2抵抗R1,R2の抵抗値が小さくても不要電流は流れないため、第8,第9半導体スイッチング素子(サイリスタ)T8,T9を確実にOFFすることができる。第1,第2抵抗R1,R2の抵抗値を小さくするメリットとして、図30における系統再投入時の第1,第2コンデンサC1,C2再充電速度が向上する。よって、遮断準備完了までにかかる時間を短縮できる。 As described above, according to the tenth embodiment, the same function and effect as the eighth and ninth embodiments can be obtained. Also, the loss after current interruption can be made zero. In addition, since the unnecessary current does not flow even if the resistance values of the first and second resistors R1 and R2 are small, the eighth and ninth semiconductor switching elements (thyristors) T8 and T9 can be reliably turned OFF. As a merit of reducing the resistance value of the first and second resistors R1 and R2, the recharging speed of the first and second capacitors C1 and C2 at the time of reconnection of the system in FIG. 30 is improved. Thus, it is possible to shorten the time taken to complete the blocking preparation.
 なお、第10半導体スイッチング素子T10を、第1コンデンサC1の充電用の第10半導体スイッチング素子T10と、第2コンデンサC2の充電用の第11半導体スイッチング素子T11とに分割してもよい。この場合、第1抵抗R1と第10半導体スイッチング素子T10とを接続する。また、第2抵抗R2と第11半導体スイッチング素子T11とを接続する。また、第10半導体スイッチング素子T10と第11半導体スイッチング素子T11の上位コントローラからの指令信号は共通化してよい。 The tenth semiconductor switching element T10 may be divided into a tenth semiconductor switching element T10 for charging the first capacitor C1 and an eleventh semiconductor switching element T11 for charging the second capacitor C2. In this case, the first resistor R1 and the tenth semiconductor switching element T10 are connected. In addition, the second resistor R2 and the eleventh semiconductor switching element T11 are connected. In addition, command signals from upper controllers of the tenth semiconductor switching device T10 and the eleventh semiconductor switching device T11 may be shared.
 [実施形態11]
 実施形態8~10では、あらかじめ補助回路の第1,第2コンデンサC1,C2を充電しておき、コンデンサ放電電流を用いて機械遮断器開極時の電流を打ち消し、零点を作り出してアークを消弧する。しかし、図27に示すように第1,第2コンデンサC1,C2の充電電流は第1,第2抵抗R1,R2を介して流れるため、各抵抗に電力損失が発生するという問題がある。
[Embodiment 11]
In the eighth to tenth embodiments, the first and second capacitors C1 and C2 of the auxiliary circuit are charged in advance, and the capacitor discharge current is used to cancel the current at the time of opening the mechanical circuit breaker to create a zero point to extinguish the arc. Arc. However, as shown in FIG. 27, since the charging current of the first and second capacitors C1 and C2 flows through the first and second resistors R1 and R2, there is a problem that power loss occurs in each of the resistors.
 以下、本実施形態11における直流遮断装置3を図34に基づいて説明する。本実施形態11における直流遮断装置3は、機械遮断器CBと、第1,第2コンデンサC1,C2と、第3,第4補助回路電流スイッチ部6,7と、第12,第13半導体スイッチング素子T12,T13と、第3~第6リアクトルL3~L6と、第7,第8ダイオードD7,D8と、を備える。ここで、第3,第4補助回路電流スイッチ部6,7は、第8,第9半導体スイッチング素子T8,T9(サイリスタ)とする。 Hereinafter, the direct current shutoff device 3 according to the eleventh embodiment will be described with reference to FIG. The DC circuit breaker 3 according to the eleventh embodiment includes the mechanical circuit breaker CB, the first and second capacitors C1 and C2, the third and fourth auxiliary circuit current switch units 6 and 7, and the twelfth and thirteenth semiconductor switching devices. Elements T12 and T13, third to sixth reactors L3 to L6, and seventh and eighth diodes D7 and D8 are provided. Here, the third and fourth auxiliary circuit current switch sections 6 and 7 are assumed to be eighth and ninth semiconductor switching elements T8 and T9 (thyristors).
 第1直流系統1の+端子と第2直流系統2の+端子との間に機械遮断器CBが接続される。 A mechanical circuit breaker CB is connected between the + terminal of the first DC system 1 and the + terminal of the second DC system 2.
 第1直流系統1の+端子と機械遮断器CBの共通接続点と、第1,第2直流系統1,2の-端子との間には、第1コンデンサC1と、第3リアクトルL3と、第5リアクトル(第1インピーダンス)L5と、自己消弧能力を有する第12半導体スイッチング素子T12と、が順次直列接続される。第1コンデンサC1と第3リアクトルL3の接続の順序は逆にしてもよい。 A first capacitor C1 and a third reactor L3 are provided between the + terminal of the first DC system 1 and the common connection point of the mechanical circuit breaker CB and the − terminals of the first and second DC systems 1 and 2. A fifth reactor (first impedance) L5 and a twelfth semiconductor switching element T12 having a self arc extinguishing capability are sequentially connected in series. The order of connection of the first capacitor C1 and the third reactor L3 may be reversed.
 図34では第12半導体スイッチング素子T12はIGBTとし、コレクタ端子を第5リアクトルL5に、エミッタ端子を第1,第2直流系統1,2の-端子側に接続する。 In FIG. 34, the twelfth semiconductor switching element T12 is an IGBT, and its collector terminal is connected to the fifth reactor L5, and its emitter terminal is connected to the − terminal side of the first and second DC systems 1 and 2.
 第2直流系統2の+端子と機械遮断器CBの共通接続点には、逆阻止能力を有する第8半導体スイッチング素子(図34ではサイリスタ)T8のアノードが接続される。第8半導体スイッチング素子(サイリスタ)T8のカソードは第3,第5リアクトルL3,L5の共通接続点に接続される。 The anode of an eighth semiconductor switching device (thyristor in FIG. 34) having reverse blocking capability is connected to the common connection point between the positive terminal of the second DC system 2 and the mechanical circuit breaker CB. The cathode of the eighth semiconductor switching element (thyristor) T8 is connected to the common connection point of the third and fifth reactors L3 and L5.
 第5リアクトルL5と第12半導体スイッチング素子T12の共通接続点には、第7ダイオードD7のアノードが接続される。第7ダイオードD7のカソードは第8半導体スイッチング素子(サイリスタ)T8と第2直流系統2の+端子との共通接続点に接続される。 An anode of a seventh diode D7 is connected to a common connection point of the fifth reactor L5 and the twelfth semiconductor switching element T12. The cathode of the seventh diode D7 is connected to the common connection point between the eighth semiconductor switching element (thyristor) T8 and the positive terminal of the second DC system 2.
 第2直流系統2の+端子と機械遮断器CBの共通接続点と、第1,第2直流系統1,2の-端子との間には、第2コンデンサC2と、第4リアクトルL4と、第6リアクトル(第2インピーダンス)L6と、自己消弧能力を有する第13半導体スイッチング素子T13と、が順次直列接続される。第2コンデンサC2と第4リアクトルL4の接続の順序は逆にしてもよい。 A second capacitor C2 and a fourth reactor L4 are provided between the + terminal of the second DC system 2 and the common connection point of the mechanical circuit breaker CB and the − terminals of the first and second DC systems 1 and 2. A sixth reactor (second impedance) L6 and a thirteenth semiconductor switching element T13 having a self arc extinguishing capability are sequentially connected in series. The order of connection of the second capacitor C2 and the fourth reactor L4 may be reversed.
 図34では第13半導体スイッチング素子T13はIGBTとし、コレクタ端子を第6リアクトルL6に、エミッタ端子を第1,第2直流系統1,2の-端子側に接続する。 In FIG. 34, the thirteenth semiconductor switching element T13 is an IGBT, and its collector terminal is connected to the sixth reactor L6, and its emitter terminal is connected to the-terminal side of the first and second DC systems 1 and 2.
 第1直流系統1の+端子と機械遮断器CBの共通接続点には、逆阻止能力を有する第9半導体スイッチング素子(図34ではサイリスタ)T9のアノードが接続される。第9半導体スイッチング素子(サイリスタ)T9のカソードは第4,第6リアクトルL4,L6の共通接続点に接続される。 The anode of a ninth semiconductor switching device (a thyristor in FIG. 34) having reverse blocking capability is connected to the common connection point between the positive terminal of the first DC system 1 and the mechanical circuit breaker CB. The cathode of the ninth semiconductor switching element (thyristor) T9 is connected to the common connection point of the fourth and sixth reactors L4 and L6.
 第6リアクトルL6と第13半導体スイッチング素子T13の共通接続点には、第8ダイオードD8のアノードが接続される。第8ダイオードD8のカソードは第9半導体スイッチング素子(サイリスタ)T9と第1直流系統1の+端子の共通接続点に接続される。 An anode of an eighth diode D8 is connected to a common connection point of the sixth reactor L6 and the thirteenth semiconductor switching element T13. The cathode of the eighth diode D8 is connected to the common connection point of the ninth semiconductor switching element (thyristor) T9 and the positive terminal of the first DC system 1.
 第8,第9半導体スイッチング素子T8,T9は、自己消弧能力は不要であるが、逆阻止能力は必要である。IGBTとダイオードの直列回路やリバースブロッキングIGBTなど他のスイッチング素子に置き換えてもよい。 The eighth and ninth semiconductor switching devices T8 and T9 do not require the self arc-extinguishing capability but need the reverse blocking capability. Other switching elements such as a series circuit of an IGBT and a diode or a reverse blocking IGBT may be substituted.
 以下、本実施形態4における直流遮断装置3の動作を説明する。定常状態では機械遮断器CBが閉極状態であり、電流は双方向に流れる。この定常状態において、第12,第13半導体スイッチング素子T12,T13をスイッチングすることで第1,第2コンデンサC1,C2を充電する。 Hereinafter, the operation of the direct current shutoff device 3 in the fourth embodiment will be described. In the steady state, the mechanical circuit breaker CB is closed, and current flows in both directions. In this steady state, the first and second capacitors C1 and C2 are charged by switching the twelfth and thirteenth semiconductor switching elements T12 and T13.
 図35に第12,第13半導体スイッチング素子T12,T13をONした時の状態を示す。コンデンサ充電電流は第1コンデンサC1→第3リアクトルL3→第5リアクトルL5→第12半導体スイッチング素子T12を流れ、第1コンデンサC1が充電される。また、同時に、コンデンサ充電電流は第2コンデンサC2→第4リアクトルL4→第6リアクトルL6→第13半導体スイッチング素子T13を流れ、第2コンデンサC2が充電される。 FIG. 35 shows a state in which the twelfth and thirteenth semiconductor switching elements T12 and T13 are turned ON. The capacitor charging current flows through the first capacitor C1 → the third reactor L3 → the fifth reactor L5 → the twelfth semiconductor switching element T12, and the first capacitor C1 is charged. At the same time, the capacitor charging current flows through the second capacitor C2 → the fourth reactor L4 → the sixth reactor L6 → the thirteenth semiconductor switching element T13, and the second capacitor C2 is charged.
 図36に第12,第13半導体スイッチング素子T12,T13をOFFした時の状態を示す。第12半導体スイッチング素子T12ON時に第5リアクトルL5に蓄えられた磁気エネルギーにより、第7ダイオードD7→第1コンデンサC1→第3リアクトルL3を循環して電流が流れ、第1コンデンサC1が充電される。 FIG. 36 shows a state in which the twelfth and thirteenth semiconductor switching elements T12 and T13 are turned off. The magnetic energy stored in the fifth reactor L5 at the time of turning on the twelfth semiconductor switching element T12 circulates the seventh diode D7 → the first capacitor C1 → the third reactor L3 to flow a current, and the first capacitor C1 is charged.
 また、第13半導体スイッチング素子T13ON時に第6リアクトルL6に蓄えられた磁気エネルギーにより、第8ダイオードD8→第2コンデンサC2→第4リアクトルL4を循環して電流が流れ、第2コンデンサC2が充電される。 In addition, the magnetic energy stored in the sixth reactor L6 when the thirteenth semiconductor switching element T13 is ON circulates the eighth diode D8 → the second capacitor C2 → the fourth reactor L4, and the second capacitor C2 is charged. Ru.
 充電が完了したら、第12,第13半導体スイッチング素子T12,T13はOFF状態を維持する。定常時において電流は機械遮断器CBのみを通過するため、電力損失はほとんどない。 When charging is completed, the twelfth and thirteenth semiconductor switching elements T12 and T13 maintain the OFF state. Since the current passes only through the mechanical circuit breaker CB under constant conditions, there is almost no power loss.
 充電完了については、第1,第2コンデンサC1,C2両端の電圧を検出しあらかじめ定めた電圧に達したことをもって判断する。また、他の方法として、第3~第6リアクトルL3~L6、第1,第2コンデンサC1、C2の定数より、第1,第2コンデンサC1,C2が充電完了するまでの時間を事前に計算して、その時間に到達したら第12,第13半導体スイッチング素子T12,T13をOFFさせてもよい。 The completion of charging is determined by detecting the voltage across the first and second capacitors C1 and C2 and having reached a predetermined voltage. As another method, the time until the first and second capacitors C1 and C2 are completely charged is calculated in advance from the constants of the third to sixth reactors L3 to L6 and the first and second capacitors C1 and C2. The twelfth and thirteenth semiconductor switching elements T12 and T13 may be turned off when the time is reached.
 図37に、第2直流系統2側で事故が発生した場合における本実施形態11の直流遮断装置3を示す。事故発生時には第9半導体スイッチング素子T9をONすることで、第2コンデンサC2から放電電流が補助回路電流として機械遮断器CB→第9半導体スイッチング素子T9→第4リアクトルL4を経由して流れる。この補助回路電流により機械遮断器CBを流れる短絡電流を打ち消して電流の零点を作り出し、機械遮断器CBを開極してアークを消弧する。 The direct current | flow interruption | blocking apparatus 3 of this Embodiment 11 in case an accident generate | occur | produces in FIG. 37 at the 2nd direct current | flow system 2 side is shown. When an accident occurs, the ninth semiconductor switching element T9 is turned ON, and a discharge current flows from the second capacitor C2 as an auxiliary circuit current via the mechanical circuit breaker CB → the ninth semiconductor switching element T9 → the fourth reactor L4. The auxiliary circuit current cancels the short circuit current flowing through the mechanical circuit breaker CB to create a current zero, and opens the mechanical circuit breaker CB to extinguish the arc.
 図38にアーク消弧後の本実施形態11の直流遮断装置3を示す。補助回路電流は第9半導体スイッチング素子T9→第4リアクトルL4→第2コンデンサC2を経由して流れ、第2コンデンサC2を図35とは逆向きに充電する。第2コンデンサC2の充電が完了すると第2直流系統2側の電流が零になり、電流の遮断が完了する。 The direct current | flow interruption | blocking apparatus 3 of this Embodiment 11 after arc extinguishing is shown in FIG. The auxiliary circuit current flows via the ninth semiconductor switching element T9 → the fourth reactor L4 → the second capacitor C2, and charges the second capacitor C2 in the reverse direction to that in FIG. When the charging of the second capacitor C2 is completed, the current on the second DC system 2 side becomes zero, and the interruption of the current is completed.
 本実施形態11の直流遮断装置3では、実施形態8,9とは異なり不要電流は流れない。そのため、第9半導体スイッチング素子T9は自己消弧能力がなくても(保持電流が大きくても)、確実にOFFすることができる。 Unlike the eighth and ninth embodiments, unnecessary current does not flow in the direct current cutoff device 3 of the eleventh embodiment. Therefore, even if the ninth semiconductor switching element T9 does not have the self arc extinguishing ability (even if the holding current is large), it can be turned off with certainty.
 図39に電流遮断が完了し、第2直流系統2を再投入するときの本実施形態11の直流遮断装置3を示す。機械遮断器CBを閉極すると、第2コンデンサC2→第4リアクトルL4→第6リアクトルL6→第8ダイオードD8→機械遮断器CBの経路で共振回路が形成され、共振電流が流れ、第2コンデンサC2は元の向きに再充電される。 FIG. 39 shows the DC interrupting device 3 of Embodiment 11 when the current interrupting is completed and the second DC system 2 is turned on again. When the mechanical circuit breaker CB is closed, a resonant circuit is formed in the path of the second capacitor C2 → the fourth reactor L4 → the sixth reactor L6 → the eighth diode D8 → the mechanical circuit breaker CB, and a resonant current flows, and the second capacitor C2 is recharged to its original orientation.
 第2コンデンサC2の充電が完了すると、共振電流は第8ダイオードD8によりブロックされ、定常状態に到達し遮断準備が完了する。第2コンデンサC2の充電が不完全であれば、第13半導体スイッチング素子T13をONすることで第2コンデンサC2を充電することができる。 When the charging of the second capacitor C2 is completed, the resonance current is blocked by the eighth diode D8, the steady state is reached, and the preparation for cutoff is completed. If charging of the second capacitor C2 is incomplete, the second capacitor C2 can be charged by turning on the thirteenth semiconductor switching element T13.
 なお、電流の流れる方向や事故発生時の電流値は上位コントローラを用いて監視し、機械遮断器CBの開閉と第8,第9半導体スイッチング素子T8,T9のON,OFFを行う。 The direction of current flow and the current value at the time of the occurrence of an accident are monitored using the upper controller, and the opening and closing of the machine breaker CB and the ON and OFF of the eighth and ninth semiconductor switching elements T8 and T9 are performed.
 本実施形態11では、第2直流系統2側で事故が発生した場合の遮断方法を記載したが、第1直流系統1側で事故が発生した場合も同様に遮断が可能である。この場合、第9半導体スイッチング素子T9ではなく第8半導体スイッチング素子T9をONすることで、第1コンデンサC1の放電電流を用いて機械遮断器CBを通過する短絡電流を打ち消す。 In the eleventh embodiment, the shutoff method in the case where an accident occurs on the second DC system 2 side is described, but it is possible to shut off similarly in the case where an accident occurs on the first DC system 1 side. In this case, by turning on the eighth semiconductor switching element T9 instead of the ninth semiconductor switching element T9, the short circuit current passing through the mechanical circuit breaker CB is canceled using the discharge current of the first capacitor C1.
 なお、第12半導体スイッチング素子T12と第13半導体スイッチング素子T13を共通化してもよい。その場合、共通化した半導体スイッチング素子は、図33の第10半導体スイッチング素子T10と同様の接続構成となる。 The twelfth semiconductor switching device T12 and the thirteenth semiconductor switching device T13 may be shared. In that case, the semiconductor switching element made common is the same connection configuration as the tenth semiconductor switching element T10 of FIG.
 本実施形態11は、実施形態8~10と同様の作用効果を奏する。また、本実施形態11の直流遮断装置3は、コンデンサ充電電流が抵抗を流れず、抵抗による電力損失が発生しないため、充電時の損失を小さくすることができる。 The eleventh embodiment exhibits the same effects as the eighth to tenth embodiments. In addition, in the direct current cutoff device 3 of the eleventh embodiment, the capacitor charging current does not flow through the resistor, and a power loss due to the resistor does not occur, so the loss at the time of charging can be reduced.
 また、系統再投入の際は、機械遮断器CBを閉極するだけで第1,第2コンデンサC1,C2の再充電が完了する。 Further, at the time of system reconnection, the recharging of the first and second capacitors C1 and C2 is completed only by closing the mechanical circuit breaker CB.
 以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。 Although the present invention has been described in detail with reference to the specific examples described above, it is obvious to those skilled in the art that various variations and modifications are possible within the scope of the technical idea of the present invention. It is natural that such variations and modifications fall within the scope of the claims.

Claims (26)

  1.  第1直流系統の+端子と第2直流系統の+端子との間に直列接続された第1,第2機械遮断器と、
     第1半導体スイッチング素子を有し、前記第1直流系統の+端子と前記第1機械遮断器の共通接続点に一端が接続された第1補助回路電流スイッチ部と、
     第2半導体スイッチング素子を有し、前記第1補助回路電流スイッチ部の他端に一端が接続され、他端が前記第2直流系統の+端子と前記第2機械遮断器の共通接続点に接続された第2補助回路電流スイッチ部と、
     前記第1,第2機械遮断器の共通接続点と前記第1,第2補助回路電流スイッチ部の共通接続点との間に接続されたコンデンサと、
     前記コンデンサに直列接続された第1リアクトルと、
     前記第1,第2補助回路電流スイッチ部の共通接続点と前記第1,第2直流系統の-端子との間に接続されたインピーダンスと、
     を備えた直流遮断装置。
    First and second mechanical circuit breakers connected in series between the + terminal of the first DC system and the + terminal of the second DC system;
    A first auxiliary circuit current switch unit having a first semiconductor switching element, one end of which is connected to a common connection point of the positive terminal of the first DC system and the first mechanical circuit breaker;
    It has a second semiconductor switching element, one end is connected to the other end of the first auxiliary circuit current switch portion, and the other end is connected to the common connection point of the + terminal of the second DC system and the second mechanical circuit breaker The second auxiliary circuit current switch unit,
    A capacitor connected between a common connection point of the first and second mechanical circuit breakers and a common connection point of the first and second auxiliary circuit current switch parts;
    A first reactor connected in series to the capacitor;
    An impedance connected between a common connection point of the first and second auxiliary circuit current switch parts and a negative terminal of the first and second DC systems;
    DC interrupting device with.
  2.  前記インピーダンスは、抵抗である請求項1記載の直流遮断装置。 The DC interrupting device according to claim 1, wherein the impedance is a resistor.
  3.  前記第1,第2半導体スイッチング素子はサイリスタである請求項2記載の直流遮断装置。 The direct current cut-off device according to claim 2, wherein the first and second semiconductor switching elements are thyristors.
  4.  前記第1,第2補助回路電流スイッチ部は、前記第1,第2半導体スイッチング素子に直列接続されたダイオードを有し、前記第1,第2半導体スイッチング素子は、自己消弧能力を有する請求項2記載の直流遮断装置。 The first and second auxiliary circuit current switch parts have diodes connected in series to the first and second semiconductor switching elements, and the first and second semiconductor switching elements have self-extinguishing ability. The direct current | flow interruption | blocking apparatus of Claim 2.
  5.  前記抵抗と、前記第1,第2直流系統の-端子との間にツェナーダイオードが接続された請求項2~4のうち何れかに記載の直流遮断装置。 5. The DC interrupting device according to claim 2, wherein a Zener diode is connected between the resistor and negative terminals of the first and second DC systems.
  6.  前記抵抗と、前記第1,第2直流系統の-端子との間に第3半導体スイッチング素子が接続された請求項3記載の直流遮断装置。 The direct current cut-off device according to claim 3, wherein a third semiconductor switching element is connected between the resistor and negative terminals of the first and second direct current systems.
  7.  前記インピーダンスは第2リアクトルであり、
     前記第2リアクトルに対して並列接続されたダイオードと、
     前記第2リアクトルと前記第1,第2直流系統の-端子との間に接続された第3半導体スイッチング素子と、
     を備えた請求項1記載の直流遮断装置。
    The impedance is a second reactor,
    A diode connected in parallel to the second reactor,
    A third semiconductor switching element connected between the second reactor and negative terminals of the first and second DC systems;
    The DC interrupting device according to claim 1, comprising:
  8.  第1直流系統の-端子と第2直流系統の-端子との間に直列接続された第1,第2機械遮断器と、
     第1半導体スイッチング素子を有し、前記第1直流系統の-端子と前記第1機械遮断器の共通接続点に一端が接続された第1補助回路電流スイッチ部と、
     第2半導体スイッチング素子を有し、前記第1補助回路電流スイッチ部の他端に一端が接続され、他端が前記第2直流系統の-端子と前記第2機械遮断器の共通接続点に接続された第2補助回路電流スイッチ部と、
     前記第1,第2機械遮断器の共通接続点と前記第1,第2補助回路電流スイッチ部の共通接続点との間に接続されたコンデンサと、
     前記コンデンサに直列接続された第1リアクトルと、
     前記第1,第2補助回路電流スイッチ部の共通接続点と前記第1,第2直流系統の+端子との間に接続されたインピーダンスと、
     を備えた直流遮断装置。
    First and second mechanical circuit breakers connected in series between the-terminal of the first DC system and the-terminal of the second DC system;
    A first auxiliary circuit current switch unit having a first semiconductor switching element, one end of which is connected to a common connection point of the negative terminal of the first DC system and the first mechanical circuit breaker;
    It has a second semiconductor switching element, and one end is connected to the other end of the first auxiliary circuit current switch portion, and the other end is connected to the common connection point of the − terminal of the second DC system and the second mechanical circuit breaker The second auxiliary circuit current switch unit,
    A capacitor connected between a common connection point of the first and second mechanical circuit breakers and a common connection point of the first and second auxiliary circuit current switch parts;
    A first reactor connected in series to the capacitor;
    An impedance connected between a common connection point of the first and second auxiliary circuit current switch parts and a + terminal of the first and second DC systems;
    DC interrupting device with.
  9.  前記第1直流系統から前記第2直流系統に電流が流れており、前記第2直流系統で事故が発生した場合は、前記第1半導体スイッチング素子をオンし、前記第1機械遮断器に流れる電流が所定値以下になった後、前記第1機械遮断器を遮断し、
     前記第2直流系統から前記第1直流系統に電流が流れており、前記第1直流系統で事故が発生した場合は、前記第2半導体スイッチング素子をオンし、前記第2機械遮断器に流れる電流が所定値以下になった後、前記第2機械遮断器を遮断する請求項1~7のうち何れかに記載の直流遮断装置。
    When current flows from the first DC system to the second DC system and an accident occurs in the second DC system, the first semiconductor switching element is turned on, and the current flowing to the first mechanical circuit breaker Shuts off the first mechanical circuit breaker after the value of
    When current flows from the second DC system to the first DC system and an accident occurs in the first DC system, the second semiconductor switching element is turned on, and the current flows to the second mechanical circuit breaker The direct current cut-off device according to any one of claims 1 to 7, wherein the second mechanical circuit breaker is cut off after the value of s becomes equal to or less than a predetermined value.
  10.  前記第1,第2機械遮断器の共通接続点にアノードが接続され、前記第1機械遮断器と前記第1補助回路電流スイッチ部の共通接続点にカソードが接続された第3ダイオードと、
     前記第1,第2機械遮断器の共通接続点にアノードが接続され、前記第2機械遮断器と前記第2補助回路電流スイッチ部の共通接続点にカソードが接続された第4ダイオードと、
     を備えた請求項1記載の直流遮断装置。
    A third diode in which an anode is connected to a common connection point of the first and second mechanical circuit breakers, and a cathode is connected to a common connection point of the first mechanical circuit breaker and the first auxiliary circuit current switch portion;
    A fourth diode whose anode is connected to the common connection point of the first and second mechanical circuit breakers and whose cathode is connected to the common connection point of the second mechanical circuit breaker and the second auxiliary circuit current switch unit;
    The DC interrupting device according to claim 1, comprising:
  11.  前記第1直流系統から前記第2直流系統に電流が流れており、前記第2直流系統で短絡が発生した場合は、前記第1半導体スイッチング素子をONして補助回路電流を流し、前記補助回路電流が短絡電流より大きい期間に、前記第1機械遮断器を遮断し、
     前記第2直流系統から前記第1直流系統に電流が流れており、前記第1直流系統で短絡が発生した場合は、前記第2半導体スイッチング素子をONして補助回路電流を流し、前記補助回路電流が短絡電流より大きい期間に、前記第2機械遮断器を遮断する請求項10記載の直流遮断装置。
    When current flows from the first DC system to the second DC system and a short circuit occurs in the second DC system, the first semiconductor switching element is turned on to flow an auxiliary circuit current, and the auxiliary circuit Interrupt the first mechanical circuit breaker during a period when the current is greater than the short circuit current,
    When a current flows from the second DC system to the first DC system and a short circuit occurs in the first DC system, the second semiconductor switching element is turned on to flow the auxiliary circuit current, and the auxiliary circuit 11. The DC circuit breaker according to claim 10, wherein the second mechanical circuit breaker is shut off during a period when the current is greater than the short circuit current.
  12.  前記第1,第2機械遮断器に自己消弧能力を有する第4,第5半導体スイッチング素子を並列接続した請求項1記載の直流遮断装置。 The DC circuit breaker according to claim 1, wherein fourth and fifth semiconductor switching elements having a self-ignition capability are connected in parallel to the first and second mechanical circuit breakers.
  13.  前記第1直流系統から前記第2直流系統に電流が流れており、前記第2直流系統で短絡が発生した場合は、前記第4半導体スイッチング素子をONした後、前記第1機械遮断器の開極指令を行い、その後、前記第1半導体スイッチング素子をONし、
     前記第2直流系統から前記第1直流系統に電流が流れており、前記第1直流系統で短絡が発生した場合は、前記第5半導体スイッチング素子をONした後、前記第2機械遮断器の開極指令を行い、その後、前記第2半導体スイッチング素子をONする請求項12記載の直流遮断装置。
    When current flows from the first DC system to the second DC system and a short circuit occurs in the second DC system, the fourth semiconductor switching element is turned on and then the first mechanical circuit breaker is opened. Command a pole, and then turn on the first semiconductor switching element,
    When current flows from the second DC system to the first DC system and a short circuit occurs in the first DC system, the fifth semiconductor switching element is turned on, and then the second mechanical circuit breaker is opened. The direct current cut-off device according to claim 12, wherein a pole command is issued and then the second semiconductor switching element is turned on.
  14.  前記第3ダイオードに逆並列接続された自己消弧能力を有さない第6半導体スイッチング素子と、
     前記第4ダイオードに逆並列接続された自己消弧能力を有さない第7半導体スイッチング素子と、
    を有する請求項10記載の直流遮断装置。
    A sixth semiconductor switching element having no self arc extinguishing capability connected in anti-parallel to the third diode;
    A seventh semiconductor switching element not having a self arc extinguishing capability connected antiparallel to the fourth diode;
    The direct current cut-off device according to claim 10, comprising:
  15.  前記第1直流系統から前記第2直流系統に電流が流れており、前記第2直流系統で短絡が発生した場合は、前記第6半導体スイッチング素子をONした後、前記第1機械遮断器の開極指令を行い、その後、前記第6半導体スイッチング素子のオフ指令を行い、その後、前記第1半導体スイッチング素子をONし、
     前記第2直流系統から前記第1直流系統に電流が流れており、前記第1直流系統で短絡が発生した場合は、前記第7半導体スイッチング素子をONした後、前記第2機械遮断器の開極指令を行い、その後、前記第7半導体スイッチング素子のオフ指令を行い、その後、前記第2半導体スイッチング素子をONする請求項14記載の直流遮断装置。
    When current flows from the first DC system to the second DC system and a short circuit occurs in the second DC system, the sixth semiconductor switching element is turned on, and then the first mechanical circuit breaker is opened. The pole command is performed, and then the sixth semiconductor switching element is turned off, and then the first semiconductor switching element is turned on,
    When current flows from the second DC system to the first DC system and a short circuit occurs in the first DC system, the seventh semiconductor switching element is turned on, and then the second mechanical circuit breaker is opened. The direct current cut-off device according to claim 14, wherein a pole command is issued, then an off command of the seventh semiconductor switching element is issued, and then the second semiconductor switching element is turned on.
  16.  前記第1,第2機械遮断器の共通接続点にカソードが接続され、前記第1機械遮断器と前記第1補助回路電流スイッチ部の共通接続点にアノードが接続された第3ダイオードと、
     前記第1,第2機械遮断器の共通接続点にカソードが接続され、前記第2機械遮断器と前記第2補助回路電流スイッチ部の共通接続点にアノードが接続された第4ダイオードと、
     を備えた請求項8記載の直流遮断装置。
    A third diode in which a cathode is connected to a common connection point of the first and second mechanical circuit breakers, and an anode is connected to a common connection point of the first mechanical circuit breaker and the first auxiliary circuit current switch portion;
    A fourth diode whose cathode is connected to the common connection point of the first and second mechanical circuit breakers and whose anode is connected to the common connection point of the second mechanical circuit breaker and the second auxiliary circuit current switch unit;
    The DC interrupting device according to claim 8, comprising:
  17.  前記第1,第2機械遮断器に自己消弧能力を有する第4,第5半導体スイッチング素子を並列接続した請求項8記載の直流遮断装置。 9. The DC circuit breaker according to claim 8, wherein fourth and fifth semiconductor switching elements having a self-ignition capability are connected in parallel to the first and second mechanical circuit breakers.
  18.  前記第3ダイオードに逆並列接続された自己消弧能力を有さない第6半導体スイッチング素子と、
     前記第4ダイオードに逆並列接続された自己消弧能力を有さない第7半導体スイッチング素子と、
    を有する請求項16記載の直流遮断装置。
    A sixth semiconductor switching element having no self arc extinguishing capability connected in anti-parallel to the third diode;
    A seventh semiconductor switching element not having a self arc extinguishing capability connected antiparallel to the fourth diode;
    The direct current cut-off device according to claim 16, comprising
  19.  第1直流系統の+端子と第2直流系統の+端子との間に接続された機械遮断器と、
     前記第1直流系統の+端子と前記機械遮断器の共通接続点と、前記第2直流系統の+端子と前記機械遮断器の共通接続点と、の間に順次直列接続された第1コンデンサと第3リアクトルと第3補助回路電流スイッチ部、または、第3リアクトルと第1コンデンサと第3補助回路電流スイッチ部と、
     前記第2直流系統の+端子と前記機械遮断器の共通接続点と、前記第1直流系統の+端子と前記機械遮断器の共通接続点と、の間に順次直列接続された第2コンデンサと第4リアクトルと第4補助回路電流スイッチ部、または、第4リアクトルと第2コンデンサと第4補助回路電流スイッチ部と、
     前記第3リアクトルと前記第3補助回路電流スイッチ部の共通接続点、または、前記第1コンデンサと前記第3補助回路電流スイッチ部の共通接続点と、前記第1、第2直流系統の-端子との間に接続された第1インピーダンスと、
     前記第4リアクトルと前記第4補助回路電流スイッチ部の共通接続点、または、前記第2コンデンサと前記第4補助回路電流スイッチ部の共通接続点と、前記第1、第2直流系統の-端子との間に接続された第2インピーダンスと、
     を備えた直流遮断装置。
    A mechanical circuit breaker connected between the + terminal of the first DC system and the + terminal of the second DC system;
    A first capacitor sequentially connected in series between the common connection point of the positive terminal of the first DC system and the mechanical circuit breaker, and the common connection point of the positive terminal of the second DC system and the mechanical circuit breaker; A third reactor and a third auxiliary circuit current switch unit, or a third reactor, a first capacitor and a third auxiliary circuit current switch unit;
    A second capacitor sequentially connected in series between the common connection point of the + terminal of the second DC system and the mechanical circuit breaker, and the common connection point of the positive terminal of the first DC system and the mechanical circuit breaker A fourth reactor and a fourth auxiliary circuit current switch unit, or a fourth reactor, a second capacitor and a fourth auxiliary circuit current switch unit;
    Common connection point of the third reactor and the third auxiliary circuit current switch unit, or common connection point of the first capacitor and the third auxiliary circuit current switch unit, and-terminals of the first and second DC systems And a first impedance connected between
    Common connection point of the fourth reactor and the fourth auxiliary circuit current switch unit, or common connection point of the second capacitor and the fourth auxiliary circuit current switch unit, and-terminals of the first and second DC systems And a second impedance connected between
    DC interrupting device with.
  20.  前記第1インピーダンスと前記第2インピーダンスは、第1抵抗と第2抵抗である請求項19記載の直流遮断装置。 The direct current cut-off device according to claim 19, wherein the first impedance and the second impedance are a first resistance and a second resistance.
  21.  前記第3補助回路電流スイッチ部は、自己消弧型素子の第8半導体スイッチング素子と、前記第8半導体スイッチング素子に直列接続された第5ダイオードと、を有し、
     前記第4補助回路電流スイッチ部は、自己消弧型素子の第9半導体スイッチング素子と、前記第9半導体スイッチング素子に直列接続された第6ダイオードと、を有する請求項20記載の直流遮断装置。
    The third auxiliary circuit current switch unit includes an eighth semiconductor switching element of a self-arc-extinguishing type element and a fifth diode connected in series to the eighth semiconductor switching element,
    21. The DC circuit breaker according to claim 20, wherein the fourth auxiliary circuit current switch portion has a ninth semiconductor switching element of a self arc extinguishing element and a sixth diode connected in series to the ninth semiconductor switching element.
  22.  前記第3補助回路電流スイッチ部は、自己消弧能力の有さない第8半導体スイッチング素子を備え、
     前記第4補助回路電流スイッチ部は、自己消弧能力を有さない第9半導体スイッチング素子を備えた請求項20記載の直流遮断装置。
    The third auxiliary circuit current switch unit includes an eighth semiconductor switching element not having a self-extinguishing ability,
    The direct current cut-off device according to claim 20, wherein the fourth auxiliary circuit current switch unit comprises a ninth semiconductor switching element having no self arc-extinguishing ability.
  23.  前記第1,第2抵抗と前記第1,第2直流系統の-端子との間に接続された第10半導体スイッチング素子を備え、または、前記第1抵抗と前記第1,第2直流系統の-端子との間に接続された第10半導体スイッチング素子と、前記第2抵抗と前記第1,第2直流系統の-端子との間に接続された第11半導体スイッチング素子と、を備えた請求項22記載の直流遮断装置。 A tenth semiconductor switching element connected between the first and second resistors and the negative terminals of the first and second DC systems; or the first resistor and the first and second DC systems A tenth semiconductor switching element connected between the − terminal and the eleventh semiconductor switching element connected between the second resistor and the − terminals of the first and second DC systems; The direct current | flow interruption | blocking apparatus of Claim 22.
  24.  前記第1インピーダンスと前記第2インピーダンスは、第5リアクトルと第6リアクトルであり、
     前記第5,第6リアクトルと前記第1,第2直流系統の-端子との間に接続された第12半導体スイッチング素子と、または、前記第5リアクトルと前記第1,第2直流系統の-端子との間に接続された第12半導体スイッチング素子と、前記第6リアクトルと前記第1,第2直流系統の-端子との間に接続された第13半導体スイッチング素子と、
     前記第5リアクトルと前記第12半導体スイッチング素子の共通接続点にアノードが接続され、カソードが前記第3補助回路電流スイッチ部と前記第2直流系統の+端子の共通接続点に接続された第7ダイオードと、
     前記第6リアクトルと前記第13半導体スイッチング素子または前記第12半導体スイッチング素子の共通接続点にアノードが接続され、カソードが前記第4補助回路電流スイッチ部と前記第1直流系統の+端子の共通接続点に接続された第8ダイオードと、
     を備えた請求項19記載の直流遮断装置。
    The first impedance and the second impedance are a fifth reactor and a sixth reactor,
    A twelfth semiconductor switching element connected between the fifth and sixth reactors and the-terminals of the first and second DC systems, or-of the fifth reactor and the first and second DC systems A twelfth semiconductor switching device connected between the terminals and a thirteenth semiconductor switching device connected between the sixth reactor and negative terminals of the first and second DC systems;
    An anode is connected to a common connection point of the fifth reactor and the twelfth semiconductor switching element, and a seventh is connected to a common connection point of a third auxiliary circuit current switch portion and a positive terminal of the second DC system. A diode,
    An anode is connected to a common connection point of the sixth reactor and the thirteenth semiconductor switching element or the twelfth semiconductor switching element, and a cathode is a common connection of the fourth auxiliary circuit current switch portion and the positive terminal of the first DC system. An eighth diode connected to the point,
    The direct current cut-off device according to claim 19, comprising:
  25.  前記第3補助回路電流スイッチ部は、自己消弧能力の有さない第8半導体スイッチング素子を備え、
     前記第4補助回路電流スイッチ部は、自己消弧能力を有さない第9半導体スイッチング素子を備えた請求項24記載の直流遮断装置。
    The third auxiliary circuit current switch unit includes an eighth semiconductor switching element not having a self-extinguishing ability,
    25. The DC interrupting device according to claim 24, wherein the fourth auxiliary circuit current switch unit comprises a ninth semiconductor switching element having no self arc-extinguishing capability.
  26.  前記第1直流系統から前記第2直流系統に電流が流れており、前記第2直流系統で事故が発生した場合は、前記第4補助回路電流スイッチ部をONし、前記機械遮断器に流れる電流が所定値以下になった後、前記機械遮断器を遮断し、
     前記第2直流系統から前記第1直流系統に電流が流れており、前記第1直流系統で事故が発生した場合は、前記第3補助回路電流スイッチ部をONし、前記機械遮断器に流れる電流が所定値以下になった後、前記機械遮断器を遮断する請求項19~25のうち何れかに記載の直流遮断装置。
    When current flows from the first DC system to the second DC system and an accident occurs in the second DC system, the fourth auxiliary circuit current switch unit is turned on to flow the current flowing to the mechanical circuit breaker Shuts off the mechanical circuit breaker after the value of
    When current flows from the second DC system to the first DC system, and an accident occurs in the first DC system, the third auxiliary circuit current switch unit is turned on, and current flows to the mechanical circuit breaker The direct current shutoff device according to any one of claims 19 to 25, which shuts off the mechanical circuit breaker after the value of 以下 falls below a predetermined value.
PCT/JP2018/009367 2017-04-27 2018-03-12 Direct current shut-down device WO2018198552A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-087757 2017-04-27
JP2017087757A JP6365724B1 (en) 2017-04-27 2017-04-27 DC breaker
JP2017-100091 2017-05-19
JP2017100091 2017-05-19
JP2018036082A JP6424976B1 (en) 2017-05-19 2018-03-01 DC blocking device
JP2018-036082 2018-03-01

Publications (1)

Publication Number Publication Date
WO2018198552A1 true WO2018198552A1 (en) 2018-11-01

Family

ID=63918348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009367 WO2018198552A1 (en) 2017-04-27 2018-03-12 Direct current shut-down device

Country Status (1)

Country Link
WO (1) WO2018198552A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034140A1 (en) * 2009-09-16 2011-03-24 株式会社ワイ・ワイ・エル Switch
JP2016162713A (en) * 2015-03-05 2016-09-05 株式会社東芝 Direct-current breaker
EP3131166A1 (en) * 2014-04-08 2017-02-15 State Grid Corporation of China (SGCC) Passive high-voltage direct-current circuit breaker and implementation method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034140A1 (en) * 2009-09-16 2011-03-24 株式会社ワイ・ワイ・エル Switch
EP3131166A1 (en) * 2014-04-08 2017-02-15 State Grid Corporation of China (SGCC) Passive high-voltage direct-current circuit breaker and implementation method therefor
JP2016162713A (en) * 2015-03-05 2016-09-05 株式会社東芝 Direct-current breaker

Similar Documents

Publication Publication Date Title
US9948089B2 (en) DC circuit breaker device
KR101483084B1 (en) Device and method to interrupt direct current
JP6042035B2 (en) DC breaker
RU2592640C2 (en) Linear dc voltage protective automatic device
JP6706834B2 (en) Circuit breaker
JP6815030B2 (en) Circuit breaker
US10395866B2 (en) High voltage DC circuit breaker
JP2018503952A (en) DC circuit breaker with opposite current generation
EP3413330B1 (en) Direct current circuit breaker
KR20150040490A (en) Device and method to interrupt high voltage direct current
US10367423B1 (en) Power conversion device
US10530243B2 (en) Power conversion device with malfunction detection
KR20180096999A (en) Fault current limiting for DC grid type and the method thereof
WO2020233180A1 (en) Current-limiting controllable lightning arrester, converter, power transmission system, and control method
JP6424976B1 (en) DC blocking device
WO2015081615A1 (en) Direct-current circuit breaker
US11211790B2 (en) T-type DC circuit breaker and method for controlling the same
CN112640238A (en) Method and device for identifying a fault in an HVDC line and generating a trigger signal for a DC circuit breaker
JP2019036405A (en) Power supply and cutoff switch circuit
Pang et al. A ground clamped solid-state circuit breaker for DC distribution systems
CN116581720A (en) Thyristor type direct current breaker and control method thereof
CN114128067A (en) DC distribution board
WO2018198552A1 (en) Direct current shut-down device
EP3985850A1 (en) Power conversion system
CN108963987B (en) Hybrid operation control method for direct-current power grid fault current limiting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791047

Country of ref document: EP

Kind code of ref document: A1