WO2016139712A1 - Heat exchange device and fuel gas generation device - Google Patents

Heat exchange device and fuel gas generation device Download PDF

Info

Publication number
WO2016139712A1
WO2016139712A1 PCT/JP2015/056061 JP2015056061W WO2016139712A1 WO 2016139712 A1 WO2016139712 A1 WO 2016139712A1 JP 2015056061 W JP2015056061 W JP 2015056061W WO 2016139712 A1 WO2016139712 A1 WO 2016139712A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
slurry body
fluid
temperature
heating device
Prior art date
Application number
PCT/JP2015/056061
Other languages
French (fr)
Japanese (ja)
Inventor
泰孝 和田
幸彦 松村
良文 川井
琢史 野口
Original Assignee
中国電力株式会社
国立大学法人広島大学
中電プラント株式会社
株式会社東洋高圧
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社, 国立大学法人広島大学, 中電プラント株式会社, 株式会社東洋高圧 filed Critical 中国電力株式会社
Priority to JP2016543754A priority Critical patent/JP6093918B2/en
Priority to PCT/JP2015/056061 priority patent/WO2016139712A1/en
Publication of WO2016139712A1 publication Critical patent/WO2016139712A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G13/00Appliances or processes not covered by groups F28G1/00 - F28G11/00; Combinations of appliances or processes covered by groups F28G1/00 - F28G11/00

Definitions

  • the present invention relates to a heat exchange device and a fuel gas generation device.
  • a heat exchange device having a pipe through which a slurry body moves so that heat exchange with an external fluid is performed is known (for example, Patent Document 1).
  • the main present invention that solves the above-described problems is a first pipe in which a slurry body moves so that heat exchange is performed with an external first fluid, and the slurry body supplied from the first pipe.
  • the amount of the slurry body adhering to the second pipe coupled to the first pipe on the downstream side of the first pipe and the inner wall of the second pipe is smaller than a predetermined amount so that the inside moves.
  • a heating device that heats the second pipe.
  • FIG. 1 is a block diagram showing a supercritical gasifier in the present embodiment.
  • the supercritical gasifier 100 (fuel gas generator) is a device that generates fuel gas from a gasification raw material or the like.
  • the supercritical gasifier 100 includes a raw material adjustment unit 10, a raw material supply unit 20, a heat exchange unit 30, a gasification processing unit 40, and a fuel generation unit 50.
  • the raw material adjustment unit 10 is a part that adjusts a raw material slurry (also referred to as “slurry body” or “raw material”) from a gasification raw material or the like, and includes an adjustment tank 11 and a crusher 12.
  • a raw material slurry also referred to as “slurry body” or “raw material”
  • the raw material adjustment unit 10 includes an adjustment tank 11 and a crusher 12.
  • the adjustment tank 11 is a container for preparing a suspension by mixing gasification raw materials, activated carbon, water, and the like, and is provided with a stirring blade (not shown).
  • gasification raw material for example, shochu residue, egg-collected chicken manure, and sludge can be used.
  • Activated carbon functions as a nonmetallic catalyst, and porous particles having an average particle diameter of 200 ⁇ m or less can be used.
  • the crusher 12 is a device for crushing the solid content (mainly gasification raw material) contained in the suspension mixed in the adjustment tank 11 to obtain a uniform size. In this embodiment, crushing is performed so that the average particle size of the solid content is 500 ⁇ m or less. Due to crushing by the crusher 12, the suspension becomes a raw slurry.
  • the raw material supply unit 20 is a part that feeds the raw material slurry at a high pressure, and includes a supply pump 21 and a high pressure pump 22.
  • the supply pump 21 is a device for supplying the raw slurry sent from the crusher 12 toward the high-pressure pump 22.
  • the high-pressure pump 22 is a device for sending the raw slurry at high pressure.
  • the raw material slurry is pressurized to about 0.1 to 4 MPa by the high-pressure pump 22.
  • the heat exchange unit 30 heats the raw material slurry by causing heat exchange between the raw material slurry supplied from the raw material supply unit 20 and the processed fluid after being decomposed by the gasification processing unit 40. At the same time, it is a part that cools the processed fluid.
  • the heat exchange unit 30 includes a heat exchanger 6 (heat exchange device) and a cooler 32.
  • the heat exchanger 6 is a device that exchanges heat between the raw slurry and the treated fluid, and a double tube type is used.
  • the inner channel is used as a low temperature side channel through which the raw material slurry flows, and the outer channel is used as a high temperature side channel through which the treated fluid flows.
  • the introduction temperature of the treated fluid is about 600 ° C.
  • the discharge temperature is about 120 ° C.
  • the introduction temperature of the raw slurry is normal temperature and the discharge temperature is about 450 ° C.
  • the cooler 33 is a device that cools the processed fluid discharged from the heat exchanger 6.
  • the gasification processing unit 40 is a part that heats the raw material slurry heated by the heat exchanger 6 to a supercritical state and decomposes organic substances contained in the raw material slurry, and has a preheater 41 and a gasification reactor 42. ing.
  • the preheater 41 is a device for preheating the raw material slurry discharged from the heat exchanger 6, and in this embodiment, the raw material slurry introduced at about 450 ° C is heated to about 600 ° C.
  • the gasification reactor 42 is an apparatus for decomposing organic substances contained in the raw material slurry while maintaining the raw material slurry in a supercritical state. In this embodiment, the temperature is set to 600 ° C. and the pressure is set to 25 MPa, and the raw material slurry is decomposed for 1 to 2 minutes.
  • the fuel generator 50 generates fuel gas from the processed fluid.
  • the fuel generator 50 includes a decompressor 51, a gas-liquid separator 51, a catalyst recovery unit, and a gas tank 54.
  • the decompressor 51 decompresses the processed fluid cooled by the cooler 32.
  • the gas-liquid separator 52 separates the processed fluid decompressed by the decompressor 51 into a gas (fuel gas) and a liquid (drainage, activated carbon, ash). Then, the separated liquid is discharged via the catalyst recovery unit 53. On the other hand, the separated gas is stored in the gas tank 54.
  • FIG. 2 is a perspective view showing a heat exchanger in the present embodiment.
  • FIG. 3 is a plan view showing the heat exchanger in the present embodiment.
  • FIG. 4 is a cross-sectional perspective view showing the double tube in the present embodiment.
  • FIG. 4 shows the double pipe 61 in a state viewed from a cross section substantially orthogonal to the longitudinal direction of the double pipe 61. A part of the inner tube 612 is indicated by a broken line for
  • the heat exchanger 6 is a device that exchanges heat between the slurry body and the treated fluid.
  • the processed fluid is a slurry body processed by the gasification processing unit 40.
  • the heat exchanger 6 has a double pipe 61, pipes 62 to 65, and a heating device 7.
  • the double pipe 61 has an outer pipe 611 and an inner pipe 612.
  • the inner pipe 612 is, for example, a metal pipe through which the slurry body moves.
  • the inner tube 612 is inserted into the outer tube 611 so that a gap for moving the processed fluid is formed between the inner tube 612 and the outer tube 611.
  • the inner side of the inner pipe 612 corresponds to the inner flow path, and the gap between the inner pipe 612 and the outer pipe 611 corresponds to the outer flow path.
  • the outer tube 611 is, for example, a metal pipe through which the inner tube 612 is inserted.
  • the double pipe 61 is centered on a winding axis (not shown) along the vertical direction (Z axis) so that the length of the double pipe 61 can be relatively long in a relatively narrow space. It is wound in a spiral. That is, the outer tube 611 and the inner tube 612 are both spirally wound.
  • the pipes 62 and 63 are coupled to one end of the double pipe 61 via a coupling portion P2 provided on the upper side (+ Z) from the coupling portion P1.
  • the pipe 62 is coupled so as to communicate with the inner flow path.
  • the pipe 63 is coupled so as to communicate with the outer flow path.
  • the pipes 64 and 65 are coupled to the other end of the double pipe 61 through a coupling part P1 provided on the lower side ( ⁇ Z) than the coupling part P2.
  • the pipe 65 is coupled so as to communicate with the inner flow path.
  • the pipe 64 is coupled so as to communicate with the outer flow path.
  • the slurry body is supplied to the pipe 65 from the raw material supply unit 20.
  • This slurry body is supplied to the gasification processing unit 40 via the inner flow path of the double pipe 61 and the pipe 62.
  • the post-treatment fluid is supplied to the pipe 63 from the gasification processing unit 40.
  • the post-treatment fluid is supplied to the cooler 32 via the outer flow path of the double pipe 61 and the pipe 64. That is, in the double pipe 61, the flow direction of the slurry body and the flow direction of the processed fluid are opposed to each other.
  • the heating device 7 is a device that heats the pipe 62 so that the amount of the product T1 adhering to the inner wall of the pipe 62 is less than a predetermined amount.
  • FIG. 5 is a side view showing the pipe with the product attached thereto in the present embodiment.
  • FIG. 6 is a side view showing the pipe with the product peeled in the present embodiment.
  • Product For example, since the pipe 62 is connected to the preheater 41, the pipe 62 may have a bent portion 62A depending on the arrangement of the equipment.
  • the product T1 may adhere to the bent portion 62A of the pipe 62 and the inner wall near the bent portion 62A on the downstream side of the bent portion 62A. This is based on, for example, the change in the moving speed and moving direction of the slurry body in the bending portion 62A.
  • the slurry body comes into contact with the inner wall of the pipe at a position where the moving direction of the slurry body changes suddenly, but the position is also a position where the moving speed is reduced, so that the product T1 adheres and is easily laminated.
  • the product T1 is, for example, tar and char generated when the slurry body is heated.
  • the movement of the slurry body may be hindered by the attached slurry body.
  • the moving speed of the slurry body is reduced, and the slurry body adheres to the inner wall of the heat exchanger 6.
  • the heat transfer rate with the fluid may be reduced.
  • the pipe 62 may be blocked. In this case, it may be difficult for another supercritical gasifier having another heat exchanger to generate the fuel gas.
  • the amount of the product T1 adhering to the inner wall of the pipe 62 needs to be smaller than a predetermined amount.
  • the predetermined amount may be, for example, an amount that does not block the pipe 62, and the heat exchanger 6 has a heat passage rate that allows the temperature of the slurry discharged from the pipe 62 to be about 450 ° C. It is good also as a quantity defined based on experiment or simulation whether it can be maintained in.
  • Heating device The heating device 7 is a heater that heats the bent portion and the downstream side of the pipe 62. The heating device 7 applies heat to the pipe 62 so that the temperature of the pipe 62 is higher than the temperature of the slurry body moving inside the pipe 62.
  • Equation (1) when the product T1 adheres to the inner wall of the pipe 62 and is stacked and the flow path in the pipe 62 is narrowed, the average velocity of the fluid increases at the closed portion, so that the inner wall of the pipe 62 is expressed as shown in Equation (1).
  • the shear stress acting on the deposit is increased, and a phenomenon that the product T1 adhered to the inner wall is peeled off from the inner wall can be expected.
  • the product T1 is difficult to adhere to the inner wall of the pipe 62.
  • the temperature of the pipe 62 is lowered because it is cooled by the outside air, and the viscosity of the portion of the product T1 adhering to the pipe 62 increases accordingly. Therefore, the product T1 adhering to the inner wall of the pipe 62 is difficult to peel off from the inner wall of the pipe 62, so that the blockage of the pipe 62 cannot be avoided even if the shear stress increases.
  • the amount of the product T1 adhering to the inner wall of the pipe 62 can be made smaller than a predetermined amount.
  • the temperature of the pipe 62 rising by the heating device 7 and the amount of heat applied from the heating device 7 to the pipe 62 confirm whether or not the amount of the product T1 adhering to the inner wall of the pipe 62 is smaller than a predetermined amount. For example, it may be determined based on confirmation experiments or simulations.
  • the raw material adjusting unit 10 adjusts (generates) a slurry body from a gasification raw material or the like.
  • the raw material supply unit 20 pressurizes the slurry body adjusted by the raw material adjustment unit 10 and supplies it to the pipe 65 in the heat exchanger 6.
  • the slurry body supplied from the raw material supply unit 20 to the pipe 65 is supplied to the gasification processing unit 40 via the inner flow path and the pipe 62.
  • the heating device 7 is heating the pipe 62, for example, the product T1 is separated from the inner wall of the pipe 62 and flows downstream, so that the flow of the pipe 62 is not hindered.
  • the flow of the heat exchanger 6 located upstream of the pipe 62 is not hindered, and the amount of the product T1 adhering to the heat transfer surface of the heat exchanger 6 is less than a predetermined amount. Therefore, the heat transfer rate between the slurry body and the treated fluid in the heat exchanger 6 can be improved.
  • the gasification processing unit 40 heats the slurry body heated by the heat exchanger 6 and supplied to the gasification processing unit 40 to generate a post-processing fluid.
  • the post-treatment fluid generated by the gasification processing unit 40 is supplied to the pipe 63 in the heat exchanger 6.
  • the processed fluid supplied from the gasification processing unit 40 to the pipe 63 is supplied to the fuel generation unit 50 via the outer flow path, the pipe 64, and the cooler 32. Thereafter, the fuel generator 50 generates fuel gas from the supplied processed fluid.
  • the heat exchanger 6 includes the double pipe 61, the pipe 62, and the heating device 7.
  • the slurry body moves inside so that heat exchange is performed with an external post-treatment fluid.
  • the pipe 62 is coupled in a state bent from the inner pipe 612 on the downstream side of the inner pipe 612 so that the slurry supplied from the inner pipe 612 moves inside.
  • the heating device 7 heats the pipe 62 so that the amount of the slurry body attached to the inner wall of the pipe 62 is less than a predetermined amount. Therefore, the heat passage rate of the heat exchanger 6 can be improved.
  • the pipe 62 is prevented from being blocked by the product T1, and the slurry body can be reliably supplied from the heat exchanger 6 to the gasification processing unit 40. That is, the fuel gas can be reliably generated in the supercritical gasifier 100.
  • the heating device 7 heats the pipe 62 so that the temperature of the pipe 62 becomes higher than the temperature of the slurry body inside the pipe 62. Therefore, the product T1 adhering to the inner wall of the pipe 62 can be reliably peeled off.
  • the heating device 7 is a heater that applies heat to the downstream side of the pipe 62. Therefore, at the position where the concentration of the product T1 tends to be high, the product T1 adhering to the inner wall can be reliably peeled off by setting the temperature of the pipe 62 to be relatively high.
  • the supercritical gasifier 100B (FIG. 1) of the second embodiment is obtained by changing the heat exchanger 6 in the supercritical gasifier 100 of the first embodiment to a heat exchanger 700.
  • the configuration of the supercritical gasifier 100B other than the heat exchanger 700 is the same as the configuration of the supercritical gasifier 100.
  • FIG. 7 is a plan view showing a heat exchanger in the present embodiment.
  • the same reference numerals are given to the same components as those shown in FIG. 3, and the description thereof will be omitted.
  • the supercritical gasifier 100B has a heat exchanger 700.
  • the heat exchanger 6 has a double pipe 71 and pipes 72 and 73.
  • One end of the double pipe 71 on the coupling part P4 side (+ X) has a shape bent at the bending part 71A.
  • the configuration other than the configuration of one end of the double tube 71 is the same as the configuration of the double tube 61.
  • the pipes 72 and 73 are coupled to one end of the double pipe 71 through the coupling part P4.
  • the pipe 72 is coupled so as to communicate with the inner flow path of the double pipe 71.
  • the pipe 73 is coupled so as to communicate with the outer flow path of the double pipe 71.
  • the inner pipe at one end of the double pipe 71 is heated by the processed fluid supplied to the pipe 73. That is, the treated fluid supplied to the pipe 73 and the outer pipe at one end of the double pipe 71 exhibit a function as a heating device.
  • the temperature of the treated fluid supplied to the pipe 73 is higher than the temperature of the slurry body.
  • the inner pipe of the double pipe 71 is heated so that the temperature of the inner pipe of the double pipe 71 becomes higher than the temperature of the slurry body moving through the inner pipe of the double pipe 71. Therefore, the product adhering to the inner wall of the inner pipe of the double pipe 71 peels from the inner pipe. Therefore, the heat passage rate of the heat exchanger 700 can be improved. Further, the fuel gas can be reliably generated in the supercritical gasifier 100B.
  • the first and second embodiments are intended to facilitate understanding of the present invention and are not intended to limit the present invention.
  • the present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof.
  • the pipe 62 has a bent shape, but the present invention is not limited to this.
  • the pipe 62 may have a straight shape. That is, the pipe 62 may be a straight pipe. In this case, no bending portion is provided in the pipe 62, and the moving direction and moving speed of the slurry body inside the pipe 62 are substantially the same at each position in the cross section of the pipe 62. For this reason, the amount of the product T1 adhering to the inner wall of the pipe 62 becomes smaller than a predetermined amount.
  • the post-process fluid was supplied to the outer side flow path of the double pipe 61, it is not limited to this.
  • a fluid other than the post-treatment fluid may be supplied to the outer flow path of the double pipe 61.
  • the temperature of the other fluid is set to be higher than the temperature of the slurry body supplied to the inner pipe 612.
  • pipe 612 was penetrated by the outer tube
  • the inner pipe 612 may be provided in the storage tank. It is assumed that a fluid having a temperature higher than the temperature of the slurry supplied to the inner pipe 612 is stored in the storage tank. In this case, in the slurry body in the inner pipe 612, heat exchange is performed with the fluid stored in the storage tank.
  • the slurry body was supplied to the piping 65 from the raw material supply part 20, and the post-processing fluid was supplied to the piping 63 from the gasification process part 40, it is limited to this. is not.
  • the slurry body may be supplied to the pipe 62 from the raw material supply unit 20, and the post-treatment fluid may be supplied to the pipe 64 from the gasification processing unit 40.
  • the slurry body may be supplied to the pipe 65 from the raw material supply unit 20, and the post-treatment fluid may be supplied to the pipe 64 from the gasification processing unit 40.
  • the pipe 62 may be supplied from the raw material supply unit 20.
  • the slurry body may be supplied, and the processed fluid may be supplied from the gasification processing unit 40 to the pipe 63. In this case, in the double pipe 61, the flow direction of the slurry body and the flow direction of the processed fluid are the same direction.
  • the pipes 62 and 65 communicate with the inner flow path, and the pipes 63 and 64 communicate with the outer flow path.
  • the present invention is not limited to this.
  • the pipes 62 and 65 may communicate with the outer flow path, and the pipes 63 and 64 may communicate with the inner flow path.
  • the processed fluid moves in the inner flow path, and the slurry body moves in the outer flow path.
  • a different fluid may be supplied to each of the outer flow paths without communicating with the outer flow paths of the “parts”.
  • the inner pipes of the first and second portions are in communication.
  • the temperature of the different fluid supplied to each of the outer flow paths is such that the temperature of the outer tube of the first and second parts is higher than the temperature of the slurry body moving through the inner pipe of the first and second parts. It is assumed that it is set as follows.

Abstract

The present invention is provided with the following: a first piping inside of which a slurry moves so as to perform heat exchange with an external first fluid; a second piping that is connected to the first piping at the downstream side of the first piping so that the slurry supplied from the first piping moves inside the second piping; and a heating device that heats the second piping so that the amount of the slurry adhered to the inner wall of the second piping becomes less than a prescribed amount.

Description

熱交換装置、燃料ガス生成装置Heat exchange device, fuel gas generator
 本発明は、熱交換装置、燃料ガス生成装置に関する。 The present invention relates to a heat exchange device and a fuel gas generation device.
 例えば、外部の流体との間で熱交換が行われるようにスラリー体が内部を移動する配管を有する熱交換装置が知られている(例えば特許文献1)。 For example, a heat exchange device having a pipe through which a slurry body moves so that heat exchange with an external fluid is performed is known (for example, Patent Document 1).
特開2007-269945号公報JP 2007-269945 A
 例えば、特許文献1の熱交換装置では、配管の内壁に付着するスラリー体の量が増大した場合、配管が閉塞して、スラリー体と外部の流体との間での熱交換が行われ難くなる虞がある。 For example, in the heat exchange device of Patent Document 1, when the amount of the slurry body adhering to the inner wall of the pipe increases, the pipe is blocked and heat exchange between the slurry body and the external fluid is difficult to be performed. There is a fear.
 前述した課題を解決する主たる本発明は、外部の第1流体との間で熱交換が行われるようにスラリー体が内部を移動する第1配管と、前記第1配管から供給される前記スラリー体が内部を移動するように、前記第1配管における下流側において前記第1配管と結合されている第2配管と、前記第2配管の内壁に付着する前記スラリー体の量が所定量よりも少なくなるように前記第2配管を加熱する加熱装置と、を備えたことを特徴とする熱交換装置である。 The main present invention that solves the above-described problems is a first pipe in which a slurry body moves so that heat exchange is performed with an external first fluid, and the slurry body supplied from the first pipe. The amount of the slurry body adhering to the second pipe coupled to the first pipe on the downstream side of the first pipe and the inner wall of the second pipe is smaller than a predetermined amount so that the inside moves. And a heating device that heats the second pipe.
 本発明の他の特徴については、添付図面及び本明細書の記載により明らかとなる。 Other features of the present invention will become apparent from the accompanying drawings and the description of the present specification.
 本発明によれば、熱交換装置出口配管における閉塞トラブルを防止するとともに、熱交換装置による熱通過率を向上させることができる。 According to the present invention, it is possible to prevent a clogging trouble in the outlet pipe of the heat exchange device and to improve the heat passage rate by the heat exchange device.
本発明の第1及び第2実施形態における超臨界ガス化装置を示すブロック図である。It is a block diagram which shows the supercritical gasifier in 1st and 2nd embodiment of this invention. 本発明の第1実施形態における熱交換器を示す斜視図である。It is a perspective view which shows the heat exchanger in 1st Embodiment of this invention. 本発明の第1実施形態における熱交換器を示す平面図である。It is a top view which shows the heat exchanger in 1st Embodiment of this invention. 本発明の第1実施形態における二重管を示す断面斜視図である。It is a section perspective view showing the double pipe in a 1st embodiment of the present invention. 本発明の第1実施形態における生成物が付着した状態の配管を示す側面図である。It is a side view which shows piping of the state to which the product in 1st Embodiment of this invention adhered. 本発明の第1実施形態における生成物が剥離した状態の配管を示す側面図である。It is a side view which shows piping of the state from which the product in 1st Embodiment of this invention peeled. 本発明の第2実施形態における熱交換器を示す平面図である。It is a top view which shows the heat exchanger in 2nd Embodiment of this invention.
 本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。
[第1実施形態]
===超臨界ガス化装置===
 以下、図1を参照して、本実施形態における超臨界ガス化装置について説明する。図1は、本実施形態における超臨界ガス化装置を示すブロック図である。
At least the following matters will become apparent from the description of this specification and the accompanying drawings.
[First embodiment]
=== Supercritical gasifier ===
Hereinafter, the supercritical gasifier in the present embodiment will be described with reference to FIG. FIG. 1 is a block diagram showing a supercritical gasifier in the present embodiment.
 超臨界ガス化装置100(燃料ガス生成装置)は、ガス化原料等から燃料ガスを生成する装置である。超臨界ガス化装置100は、原料調整部10、原料供給部20、熱交換部30、ガス化処理部40、及び、燃料生成部50を有している。 The supercritical gasifier 100 (fuel gas generator) is a device that generates fuel gas from a gasification raw material or the like. The supercritical gasifier 100 includes a raw material adjustment unit 10, a raw material supply unit 20, a heat exchange unit 30, a gasification processing unit 40, and a fuel generation unit 50.
 原料調整部10は、ガス化原料等から原料スラリー(「スラリー体」又は「原料」とも称する)を調整する部分であり、調整タンク11と破砕機12とを有している。 The raw material adjustment unit 10 is a part that adjusts a raw material slurry (also referred to as “slurry body” or “raw material”) from a gasification raw material or the like, and includes an adjustment tank 11 and a crusher 12.
 調整タンク11は、ガス化原料、活性炭、水などを混合して懸濁液を作製する容器であり、図示しない攪拌翼が設けられている。ガス化原料としては、例えば、焼酎残渣、採卵鶏糞、汚泥を用いることができる。活性炭は、非金属系触媒として機能するものであり、平均粒径200μm以下の多孔質の粒子を用いることができる。 The adjustment tank 11 is a container for preparing a suspension by mixing gasification raw materials, activated carbon, water, and the like, and is provided with a stirring blade (not shown). As the gasification raw material, for example, shochu residue, egg-collected chicken manure, and sludge can be used. Activated carbon functions as a nonmetallic catalyst, and porous particles having an average particle diameter of 200 μm or less can be used.
 破砕機12は、調整タンク11で混合された懸濁液に含まれる固形分(主にガス化原料)を破砕し、均一な大きさにするための装置である。本実施形態では、固形分の平均粒径が500μm以下になるように破砕を行っている。破砕機12による破砕により、懸濁液は原料スラリーになる。 The crusher 12 is a device for crushing the solid content (mainly gasification raw material) contained in the suspension mixed in the adjustment tank 11 to obtain a uniform size. In this embodiment, crushing is performed so that the average particle size of the solid content is 500 μm or less. Due to crushing by the crusher 12, the suspension becomes a raw slurry.
 原料供給部20は、原料スラリーを高圧で送出する部分であり、供給ポンプ21と高圧ポンプ22とを有している。供給ポンプ21は、破砕機12から送出された原料スラリーを、高圧ポンプ22に向けて供給するための装置である。高圧ポンプ22は、原料スラリーを高圧で送出するための装置である。この高圧ポンプ22により、原料スラリーは0.1~4MPa程度まで加圧される。 The raw material supply unit 20 is a part that feeds the raw material slurry at a high pressure, and includes a supply pump 21 and a high pressure pump 22. The supply pump 21 is a device for supplying the raw slurry sent from the crusher 12 toward the high-pressure pump 22. The high-pressure pump 22 is a device for sending the raw slurry at high pressure. The raw material slurry is pressurized to about 0.1 to 4 MPa by the high-pressure pump 22.
 熱交換部30は、原料供給部20から供給された原料スラリーと、ガス化処理部40で分解処理された後の処理後流体との間で熱交換を行わせることで、原料スラリーを加熱するとともに処理後流体を冷却する部分である。この熱交換部30は、熱交換器6(熱交換装置)と、クーラー32とを有している。 The heat exchange unit 30 heats the raw material slurry by causing heat exchange between the raw material slurry supplied from the raw material supply unit 20 and the processed fluid after being decomposed by the gasification processing unit 40. At the same time, it is a part that cools the processed fluid. The heat exchange unit 30 includes a heat exchanger 6 (heat exchange device) and a cooler 32.
 熱交換器6は、原料スラリーと処理後流体との間で熱交換を行わせる装置であり、二重管式のものが用いられている。そして、内側流路を原料スラリーが流れる低温側流路として用い、外側流路を処理後流体が流れる高温側流路として用いている。本実施形態において、処理後流体の導入温度は600℃程度とされ、排出温度が120℃程度とされている。一方、原料スラリーの導入温度は常温とされ、排出温度が約450℃とされている。なお、熱交換器6については後で説明する。クーラー33は、熱交換器6から排出された処理後流体を冷却する装置である。 The heat exchanger 6 is a device that exchanges heat between the raw slurry and the treated fluid, and a double tube type is used. The inner channel is used as a low temperature side channel through which the raw material slurry flows, and the outer channel is used as a high temperature side channel through which the treated fluid flows. In this embodiment, the introduction temperature of the treated fluid is about 600 ° C., and the discharge temperature is about 120 ° C. On the other hand, the introduction temperature of the raw slurry is normal temperature and the discharge temperature is about 450 ° C. The heat exchanger 6 will be described later. The cooler 33 is a device that cools the processed fluid discharged from the heat exchanger 6.
 ガス化処理部40は、熱交換器6で加熱された原料スラリーを超臨界状態まで加熱し、原料スラリーに含まれる有機物を分解する部分であり、予熱器41とガス化反応器42を有している。予熱器41は、熱交換器6から排出された原料スラリーを予熱する装置であり、本実施形態では約450℃で導入された原料スラリーを約600℃まで加熱している。ガス化反応器42は、原料スラリーを超臨界状態に維持して原料スラリーに含まれる有機物を分解する装置である。本実施形態では温度を600℃、圧力を25MPaに定め、1~2分間に亘って原料スラリーの分解処理を行っている。 The gasification processing unit 40 is a part that heats the raw material slurry heated by the heat exchanger 6 to a supercritical state and decomposes organic substances contained in the raw material slurry, and has a preheater 41 and a gasification reactor 42. ing. The preheater 41 is a device for preheating the raw material slurry discharged from the heat exchanger 6, and in this embodiment, the raw material slurry introduced at about 450 ° C is heated to about 600 ° C. The gasification reactor 42 is an apparatus for decomposing organic substances contained in the raw material slurry while maintaining the raw material slurry in a supercritical state. In this embodiment, the temperature is set to 600 ° C. and the pressure is set to 25 MPa, and the raw material slurry is decomposed for 1 to 2 minutes.
 燃料生成部50は、処理後流体から燃料ガスを生成する。この燃料生成部50は、減圧器51、気液分離器51、触媒回収器、ガスタンク54を有している。 The fuel generator 50 generates fuel gas from the processed fluid. The fuel generator 50 includes a decompressor 51, a gas-liquid separator 51, a catalyst recovery unit, and a gas tank 54.
 減圧器51は、クーラー32で冷却された処理後流体を減圧する。気液分離器52は、減圧器51で減圧された処理後流体を、気体(燃料ガス)と液体(排水、活性炭、灰分)とに分離する。そして、分離後の液体は触媒回収器53を介して排出される。一方、分離後の気体は、ガスタンク54内に貯蔵される。
===熱交換器===
 以下、図2乃至図4を参照して、本実施形態における熱交換器について説明する。図2は、本実施形態における熱交換器を示す斜視図である。図3は、本実施形態における熱交換器を示す平面図である。図4は、本実施形態における二重管を示す断面斜視図である。尚、図4は、二重管61の長手方向に対して略直交する断面から見た状態の二重管61を示している。内管612の一部は、説明の便宜上、破線で示されている。
The decompressor 51 decompresses the processed fluid cooled by the cooler 32. The gas-liquid separator 52 separates the processed fluid decompressed by the decompressor 51 into a gas (fuel gas) and a liquid (drainage, activated carbon, ash). Then, the separated liquid is discharged via the catalyst recovery unit 53. On the other hand, the separated gas is stored in the gas tank 54.
=== Heat exchanger ===
Hereinafter, with reference to FIG. 2 thru | or FIG. 4, the heat exchanger in this embodiment is demonstrated. FIG. 2 is a perspective view showing a heat exchanger in the present embodiment. FIG. 3 is a plan view showing the heat exchanger in the present embodiment. FIG. 4 is a cross-sectional perspective view showing the double tube in the present embodiment. FIG. 4 shows the double pipe 61 in a state viewed from a cross section substantially orthogonal to the longitudinal direction of the double pipe 61. A part of the inner tube 612 is indicated by a broken line for convenience of explanation.
 熱交換器6は、スラリー体と処理後流体との間で熱交換を行わせる装置である。尚、処理後流体は、ガス化処理部40で処理されたスラリー体である。 The heat exchanger 6 is a device that exchanges heat between the slurry body and the treated fluid. The processed fluid is a slurry body processed by the gasification processing unit 40.
 熱交換器6は、二重管61、配管62乃至65、加熱装置7を有している。 The heat exchanger 6 has a double pipe 61, pipes 62 to 65, and a heating device 7.
 二重管61は、外管611、内管612を有している。内管612は、内部をスラリー体が移動する例えば金属製の配管である。内管612は、外管611との間に処理後流体を移動させるための隙間が形成されるように、外管611内に挿通されている。尚、内管612の内側が、内側流路に対応し、内管612と外管611との間の隙間が外側流路に対応している。外管611は、内管612が内部に挿通される例えば金属製の配管である。 The double pipe 61 has an outer pipe 611 and an inner pipe 612. The inner pipe 612 is, for example, a metal pipe through which the slurry body moves. The inner tube 612 is inserted into the outer tube 611 so that a gap for moving the processed fluid is formed between the inner tube 612 and the outer tube 611. The inner side of the inner pipe 612 corresponds to the inner flow path, and the gap between the inner pipe 612 and the outer pipe 611 corresponds to the outer flow path. The outer tube 611 is, for example, a metal pipe through which the inner tube 612 is inserted.
 二重管61は、比較的狭い空間において二重管61の長さを比較的長くすることができるように、垂直方向(Z軸)に沿っている巻回軸(不図示)を中心に、螺旋状に巻回されている。つまり、外管611及び内管612は、共に螺旋状に巻回されている。 The double pipe 61 is centered on a winding axis (not shown) along the vertical direction (Z axis) so that the length of the double pipe 61 can be relatively long in a relatively narrow space. It is wound in a spiral. That is, the outer tube 611 and the inner tube 612 are both spirally wound.
 配管62、63は、結合部P1よりも上側(+Z)に設けられている結合部P2を介して二重管61の一端に結合されている。配管62は、内側流路と連通するように結合されている。配管63は、外側流路と連通するように結合されている。 The pipes 62 and 63 are coupled to one end of the double pipe 61 via a coupling portion P2 provided on the upper side (+ Z) from the coupling portion P1. The pipe 62 is coupled so as to communicate with the inner flow path. The pipe 63 is coupled so as to communicate with the outer flow path.
 配管64、65は、結合部P2よりも下側(-Z)に設けられている結合部P1を介して二重管61の他端に結合されている。配管65は、内側流路と連通するように結合されている。配管64は、外側流路と連通するように結合されている。 The pipes 64 and 65 are coupled to the other end of the double pipe 61 through a coupling part P1 provided on the lower side (−Z) than the coupling part P2. The pipe 65 is coupled so as to communicate with the inner flow path. The pipe 64 is coupled so as to communicate with the outer flow path.
 配管65には、原料供給部20からスラリー体が供給される。このスラリー体は、二重管61の内側流路、配管62を介してガス化処理部40に供給される。又、配管63には、ガス化処理部40から処理後流体が供給される。この処理後流体は、二重管61の外側流路、配管64を介してクーラー32に供給される。つまり、二重管61においては、スラリー体の流向と処理後流体の流向とが互いに対向することになる。 The slurry body is supplied to the pipe 65 from the raw material supply unit 20. This slurry body is supplied to the gasification processing unit 40 via the inner flow path of the double pipe 61 and the pipe 62. Further, the post-treatment fluid is supplied to the pipe 63 from the gasification processing unit 40. The post-treatment fluid is supplied to the cooler 32 via the outer flow path of the double pipe 61 and the pipe 64. That is, in the double pipe 61, the flow direction of the slurry body and the flow direction of the processed fluid are opposed to each other.
 加熱装置7は、配管62の内壁に付着する生成物T1の量が所定量よりも少なくなるように、配管62を加熱する装置である。
===生成物、加熱装置===
 以下、図5及び図6を参照して、本実施形態における生成物について説明する。図5は、本実施形態における生成物が付着した状態の配管を示す側面図である。図6は、本実施形態における生成物が剥離した状態の配管を示す側面図である。
=生成物=
 例えば,配管62は予熱器41と接続するため機器の配置によっては曲げ部62Aを持つことがある。例えば、配管62の曲げ部62A及び曲げ部62Aよりも下流側における曲げ部62Aの近傍の内壁には、生成物T1(スラリー体)が付着することがある。これは、例えば、曲げ部62Aにおいてスラリー体の移動速度や移動方向が変化することに基づくものである。例えば、スラリー体の移動方向が急変する位置においてスラリー体が配管の内壁に接触するが,その位置は移動速度が低減する位置でもあるため、生成物T1が付着し積層しやすくなる。尚、生成物T1は、スラリー体を加熱した際に生成される例えばタール及びチャーである。
The heating device 7 is a device that heats the pipe 62 so that the amount of the product T1 adhering to the inner wall of the pipe 62 is less than a predetermined amount.
=== Product, heating device ===
Hereinafter, the product in the present embodiment will be described with reference to FIGS. 5 and 6. FIG. 5 is a side view showing the pipe with the product attached thereto in the present embodiment. FIG. 6 is a side view showing the pipe with the product peeled in the present embodiment.
= Product =
For example, since the pipe 62 is connected to the preheater 41, the pipe 62 may have a bent portion 62A depending on the arrangement of the equipment. For example, the product T1 (slurry body) may adhere to the bent portion 62A of the pipe 62 and the inner wall near the bent portion 62A on the downstream side of the bent portion 62A. This is based on, for example, the change in the moving speed and moving direction of the slurry body in the bending portion 62A. For example, the slurry body comes into contact with the inner wall of the pipe at a position where the moving direction of the slurry body changes suddenly, but the position is also a position where the moving speed is reduced, so that the product T1 adheres and is easily laminated. The product T1 is, for example, tar and char generated when the slurry body is heated.
 配管62の内壁に付着する生成物T1の量が増大した場合、例えば、スラリー体の移動が付着したスラリー体によって妨げられることがある。この場合、熱交換器6においてもスラリー体の移動が妨げられるため、スラリー体の移動速度が低下して熱交換器6の内壁へスラリー体が付着し、熱交換器6におけるスラリー体と処理後流体との間の熱通過率が低減することがある。配管62の内壁に付着する生成物T1の量が、更に増大した場合、例えば、配管62が閉塞することがある。この場合、他の熱交換器を有する他の超臨界ガス化装置が、燃料ガスを生成するのが困難となる虞がある。 When the amount of the product T1 attached to the inner wall of the pipe 62 increases, for example, the movement of the slurry body may be hindered by the attached slurry body. In this case, since the movement of the slurry body is also hindered in the heat exchanger 6, the moving speed of the slurry body is reduced, and the slurry body adheres to the inner wall of the heat exchanger 6. The heat transfer rate with the fluid may be reduced. When the amount of the product T1 adhering to the inner wall of the pipe 62 further increases, for example, the pipe 62 may be blocked. In this case, it may be difficult for another supercritical gasifier having another heat exchanger to generate the fuel gas.
 従って、熱交換器6においては、配管62の内壁に付着する生成物T1の量を、所定量よりも少なくする必要がある。尚、所定量は、例えば、配管62を閉塞しない程度の量であることとしてもよいし、配管62から排出されたスラリー体の温度が約450℃とできる程度の熱通過率を熱交換器6において維持できるか否かの、実験又はシミュレーションに基づいて定められる量であることとしてもよい。
=加熱装置=
 加熱装置7は、配管62における曲げ部及び下流側を加熱するヒーターである。加熱装置7は、配管62の温度が配管62の内部を移動するスラリー体の温度よりも高くなるように、配管62に熱を付与する。これは、温度が上昇するにつれて生成物T1の粘度が低下するという、生成物T1の粘度と温度との関係に基づいて、配管62の内壁に付着した生成物T1を剥離したり、配管62の内壁に生成物T1が付着し難くしたりするための構成である。
Therefore, in the heat exchanger 6, the amount of the product T1 adhering to the inner wall of the pipe 62 needs to be smaller than a predetermined amount. The predetermined amount may be, for example, an amount that does not block the pipe 62, and the heat exchanger 6 has a heat passage rate that allows the temperature of the slurry discharged from the pipe 62 to be about 450 ° C. It is good also as a quantity defined based on experiment or simulation whether it can be maintained in.
= Heating device =
The heating device 7 is a heater that heats the bent portion and the downstream side of the pipe 62. The heating device 7 applies heat to the pipe 62 so that the temperature of the pipe 62 is higher than the temperature of the slurry body moving inside the pipe 62. This is because the product T1 adhering to the inner wall of the pipe 62 is peeled off based on the relationship between the viscosity of the product T1 and the temperature that the viscosity of the product T1 decreases as the temperature rises. This is a configuration for making it difficult for the product T1 to adhere to the inner wall.
 例えば、生成物T1が配管62の内壁に付着し積層し配管62内の流路が狭まった場合は閉塞部で流体の平均速度が増大するため、式(1)に表す通り、配管62の内壁の付着物に作用する剪断応力が増大し、内壁に付着した生成物T1を内壁から剥離させる現象が期待できる。 For example, when the product T1 adheres to the inner wall of the pipe 62 and is stacked and the flow path in the pipe 62 is narrowed, the average velocity of the fluid increases at the closed portion, so that the inner wall of the pipe 62 is expressed as shown in Equation (1). The shear stress acting on the deposit is increased, and a phenomenon that the product T1 adhered to the inner wall is peeled off from the inner wall can be expected.
Figure JPOXMLDOC01-appb-M000001
(但し、τw:配管内壁の付着物に作用する剪断応力、f:摩擦係数、ρ:流体の密度、u:流体の平均速度)
 加熱装置7から配管62に対して熱を付与した場合は、配管62の温度が上昇し、生成物T1における配管62に付着している部分の粘度が低下するため、配管62の内壁に付着していた生成物T1が、前記剪断応力の増大によって、配管62の内壁との接触部から剥離する。更に、この後、配管62の温度が配管62内のスラリー体の温度よりも高くなっているために、配管62の内壁に生成物T1が付着し難くなる。これに比べて、加熱装置が設置されていない場合は,外気によって冷却されるため配管62の温度が低下し,それにつれて生成物T1における配管62に付着している部分の粘度が増大する。よって配管62の内壁に付着した生成物T1は,配管62の内壁から剥離しづらいため,前記剪断応力の増大によっても配管62の閉塞を回避できない。
Figure JPOXMLDOC01-appb-M000001
(Where τ w is the shear stress acting on the deposit on the inner wall of the pipe, f is the friction coefficient, ρ is the density of the fluid, u is the average velocity of the fluid)
When heat is applied from the heating device 7 to the pipe 62, the temperature of the pipe 62 rises, and the viscosity of the portion of the product T1 adhering to the pipe 62 decreases, so that it adheres to the inner wall of the pipe 62. The product T1 that has been peeled off from the contact portion with the inner wall of the pipe 62 due to the increase in the shear stress. Further, after that, since the temperature of the pipe 62 is higher than the temperature of the slurry body in the pipe 62, the product T1 is difficult to adhere to the inner wall of the pipe 62. In contrast, when the heating device is not installed, the temperature of the pipe 62 is lowered because it is cooled by the outside air, and the viscosity of the portion of the product T1 adhering to the pipe 62 increases accordingly. Therefore, the product T1 adhering to the inner wall of the pipe 62 is difficult to peel off from the inner wall of the pipe 62, so that the blockage of the pipe 62 cannot be avoided even if the shear stress increases.
 従って、加熱装置7によって配管62を加熱することにより、配管62の内壁に付着する生成物T1の量を、所定量よりも少なくすることが可能となる。尚、加熱装置7によって上昇する配管62の温度及び加熱装置7から配管62に付与される熱量は、配管62の内壁に付着する生成物T1の量が所定量よりも少なるか否かを確認する、例えば確認実験又はシミュレーション等に基づいて定められることとしてもよい。 Therefore, by heating the pipe 62 with the heating device 7, the amount of the product T1 adhering to the inner wall of the pipe 62 can be made smaller than a predetermined amount. The temperature of the pipe 62 rising by the heating device 7 and the amount of heat applied from the heating device 7 to the pipe 62 confirm whether or not the amount of the product T1 adhering to the inner wall of the pipe 62 is smaller than a predetermined amount. For example, it may be determined based on confirmation experiments or simulations.
 尚、本実施形態では、配管62の曲げ部及び下流側へ加熱装置を設置することについて説明しているが、これに限定されるものではない。スラリー体の付着が多い曲げ部のみを加熱しても良い。また,伝熱によって曲げ部の加熱が期待できる下流側のみを加熱しても良い。
===熱交換器の動作===
 以下、図1、図3及び図6を参照して、本実施形態における熱交換器の動作について説明する。
In addition, in this embodiment, although it has demonstrated that a heating apparatus is installed in the bending part and downstream of the piping 62, it is not limited to this. You may heat only the bending part with much adhesion of a slurry body. Moreover, you may heat only the downstream side which can anticipate the heating of a bending part by heat transfer.
=== Operation of heat exchanger ===
Hereinafter, the operation of the heat exchanger in the present embodiment will be described with reference to FIGS. 1, 3, and 6.
 原料調整部10は、ガス化原料等からスラリー体を調整(生成)する。原料供給部20は、原料調整部10で調整されたスラリー体を加圧して、熱交換器6における配管65に供給する。原料供給部20から配管65に供給されたスラリー体は、内側流路、配管62を介してガス化処理部40に供給される。この際、加熱装置7が配管62を加熱しているために、例えば生成物T1が配管62の内壁から剥離して下流側に流れるので、配管62の流れが阻害されることが無い。したがって,配管62の上流に位置する熱交換器6の流れも阻害されることが無く,熱交換器6の伝熱面に付着する生成物T1の量が所定量よりも少なくなる。従って、熱交換器6におけるスラリー体と処理後流体との間の熱通過率を向上させることができる。 The raw material adjusting unit 10 adjusts (generates) a slurry body from a gasification raw material or the like. The raw material supply unit 20 pressurizes the slurry body adjusted by the raw material adjustment unit 10 and supplies it to the pipe 65 in the heat exchanger 6. The slurry body supplied from the raw material supply unit 20 to the pipe 65 is supplied to the gasification processing unit 40 via the inner flow path and the pipe 62. At this time, since the heating device 7 is heating the pipe 62, for example, the product T1 is separated from the inner wall of the pipe 62 and flows downstream, so that the flow of the pipe 62 is not hindered. Therefore, the flow of the heat exchanger 6 located upstream of the pipe 62 is not hindered, and the amount of the product T1 adhering to the heat transfer surface of the heat exchanger 6 is less than a predetermined amount. Therefore, the heat transfer rate between the slurry body and the treated fluid in the heat exchanger 6 can be improved.
 ガス化処理部40は、熱交換器6で加熱されてガス化処理部40に供給されたスラリー体を加熱して、処理後流体を生成する。ガス化処理部40で生成された処理後流体は、熱交換器6における配管63に供給する。ガス化処理部40から配管63に供給された処理後流体は、外側流路、配管64、クーラー32を介して燃料生成部50に供給される。この後、燃料生成部50は、供給された処理後流体から燃料ガスを生成する。 The gasification processing unit 40 heats the slurry body heated by the heat exchanger 6 and supplied to the gasification processing unit 40 to generate a post-processing fluid. The post-treatment fluid generated by the gasification processing unit 40 is supplied to the pipe 63 in the heat exchanger 6. The processed fluid supplied from the gasification processing unit 40 to the pipe 63 is supplied to the fuel generation unit 50 via the outer flow path, the pipe 64, and the cooler 32. Thereafter, the fuel generator 50 generates fuel gas from the supplied processed fluid.
 前述したように、熱交換器6は、二重管61、配管62、加熱装置7を有する。二重管61の内管612は、外部の処理後流体との間で熱交換が行われるようにスラリー体が内部を移動する。配管62は、内管612から供給されるスラリー体が内部を移動するように内管612の下流側において内管612から曲げられた状態で結合されている。加熱装置7は、配管62の内壁に付着するスラリー体の量が所定量よりも少なくなるように配管62を加熱する。従って、熱交換器6の熱通過率を向上させることができる。又、生成物T1によって配管62が閉塞するのを防止して、熱交換器6からガス化処理部40に対して確実にスラリー体を供給することができる。つまり、超臨界ガス化装置100において確実に燃料ガスを生成することができる。 As described above, the heat exchanger 6 includes the double pipe 61, the pipe 62, and the heating device 7. In the inner pipe 612 of the double pipe 61, the slurry body moves inside so that heat exchange is performed with an external post-treatment fluid. The pipe 62 is coupled in a state bent from the inner pipe 612 on the downstream side of the inner pipe 612 so that the slurry supplied from the inner pipe 612 moves inside. The heating device 7 heats the pipe 62 so that the amount of the slurry body attached to the inner wall of the pipe 62 is less than a predetermined amount. Therefore, the heat passage rate of the heat exchanger 6 can be improved. Further, the pipe 62 is prevented from being blocked by the product T1, and the slurry body can be reliably supplied from the heat exchanger 6 to the gasification processing unit 40. That is, the fuel gas can be reliably generated in the supercritical gasifier 100.
 又、加熱装置7は、配管62の温度が配管62の内部におけるスラリー体の温度よりも高くなるように加熱する。従って、配管62の内壁に付着する生成物T1を確実に剥離させることができる。 Further, the heating device 7 heats the pipe 62 so that the temperature of the pipe 62 becomes higher than the temperature of the slurry body inside the pipe 62. Therefore, the product T1 adhering to the inner wall of the pipe 62 can be reliably peeled off.
 又、加熱装置7は、配管62における下流側に熱を付与するヒーターである。従って、生成物T1の濃度が高くなりやすい位置において、配管62の温度を比較的高温として内壁に付着する生成物T1を確実に剥離させることができる。
[第2実施形態]
 第2実施形態の超臨界ガス化装置100B(図1)は、第1実施形態の超臨界ガス化装置100における熱交換器6を熱交換器700に変更したものである。超臨界ガス化装置100Bにおける熱交換器700以外の構成は、超臨界ガス化装置100の構成と同様である。
===超臨界ガス化装置、熱交換器===
 以下、図1及び図7を参照して、本実施形態における超臨界ガス化装置及び熱交換器について説明する。図7は、本実施形態における熱交換器を示す平面図である。尚、図3が示す構成と同様な構成には同様な符号を付し、その説明については省略する。
The heating device 7 is a heater that applies heat to the downstream side of the pipe 62. Therefore, at the position where the concentration of the product T1 tends to be high, the product T1 adhering to the inner wall can be reliably peeled off by setting the temperature of the pipe 62 to be relatively high.
[Second Embodiment]
The supercritical gasifier 100B (FIG. 1) of the second embodiment is obtained by changing the heat exchanger 6 in the supercritical gasifier 100 of the first embodiment to a heat exchanger 700. The configuration of the supercritical gasifier 100B other than the heat exchanger 700 is the same as the configuration of the supercritical gasifier 100.
=== Supercritical gasifier, heat exchanger ===
Hereinafter, with reference to FIG.1 and FIG.7, the supercritical gasification apparatus and heat exchanger in this embodiment are demonstrated. FIG. 7 is a plan view showing a heat exchanger in the present embodiment. The same reference numerals are given to the same components as those shown in FIG. 3, and the description thereof will be omitted.
 超臨界ガス化装置100Bは、熱交換器700を有している。 The supercritical gasifier 100B has a heat exchanger 700.
 熱交換器6は、二重管71、配管72、73を有している。 The heat exchanger 6 has a double pipe 71 and pipes 72 and 73.
 二重管71における結合部P4側(+X)の一端は、曲げ部71Aにおいて曲げられた形状を呈している。尚、二重管71における一端の構成以外の構成は、二重管61の構成と同様である。 One end of the double pipe 71 on the coupling part P4 side (+ X) has a shape bent at the bending part 71A. The configuration other than the configuration of one end of the double tube 71 is the same as the configuration of the double tube 61.
 配管72、73は、結合部P4を介して二重管71の一端に結合されている。配管72は、二重管71の内側流路と連通するように結合されている。配管73は、二重管71の外側流路と連通するように結合されている。 The pipes 72 and 73 are coupled to one end of the double pipe 71 through the coupling part P4. The pipe 72 is coupled so as to communicate with the inner flow path of the double pipe 71. The pipe 73 is coupled so as to communicate with the outer flow path of the double pipe 71.
 二重管71の一端における内管は、配管73に供給される処理後流体により加熱される。つまり、配管73に供給される処理後流体及び二重管71の一端における外管が、加熱装置としての機能を発揮する。 The inner pipe at one end of the double pipe 71 is heated by the processed fluid supplied to the pipe 73. That is, the treated fluid supplied to the pipe 73 and the outer pipe at one end of the double pipe 71 exhibit a function as a heating device.
 ここで、配管73に供給される処理後流体の温度は、スラリー体の温度よりも高くなっている。このために、二重管71の内管の温度が二重管71の内管を移動するスラリー体の温度より高くなるように、二重管71の内管が加熱される。従って、二重管71の内管における内壁に付着していた生成物が、内管から剥離する。よって、熱交換器700の熱通過率を向上させることができる。又、超臨界ガス化装置100Bにおいて確実に燃料ガスを生成することができる。 Here, the temperature of the treated fluid supplied to the pipe 73 is higher than the temperature of the slurry body. For this reason, the inner pipe of the double pipe 71 is heated so that the temperature of the inner pipe of the double pipe 71 becomes higher than the temperature of the slurry body moving through the inner pipe of the double pipe 71. Therefore, the product adhering to the inner wall of the inner pipe of the double pipe 71 peels from the inner pipe. Therefore, the heat passage rate of the heat exchanger 700 can be improved. Further, the fuel gas can be reliably generated in the supercritical gasifier 100B.
 尚、上記第1及び第2実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物も含まれる。 The first and second embodiments are intended to facilitate understanding of the present invention and are not intended to limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof.
 第1実施形態では、配管62が曲げられた形状を呈していることについて説明したが、これに限定されるものではない。例えば、配管62が真っ直ぐな形状を呈していることとしてもよい。つまり、配管62が直管であることとしてもよい。この場合、配管62に曲げ部が設けられないこととなり、配管62の内部のスラリー体の移動方向及び移動速度が配管62の断面における各位置において略同様となる。このために、配管62の内壁に付着する生成物T1の量が所定量よりも少なくなる。 In the first embodiment, it has been described that the pipe 62 has a bent shape, but the present invention is not limited to this. For example, the pipe 62 may have a straight shape. That is, the pipe 62 may be a straight pipe. In this case, no bending portion is provided in the pipe 62, and the moving direction and moving speed of the slurry body inside the pipe 62 are substantially the same at each position in the cross section of the pipe 62. For this reason, the amount of the product T1 adhering to the inner wall of the pipe 62 becomes smaller than a predetermined amount.
 又、第1実施形態では、二重管61の外側流路に処理後流体が供給されることについて説明したが、これに限定されるものではない。例えば、二重管61の外側流路に処理後流体以外の他の流体が供給されることとしてもよい。尚、他の流体の温度は、内管612に供給されるスラリー体の温度よりも高くなるように設定されることとする。 Moreover, although 1st Embodiment demonstrated that the post-process fluid was supplied to the outer side flow path of the double pipe 61, it is not limited to this. For example, a fluid other than the post-treatment fluid may be supplied to the outer flow path of the double pipe 61. The temperature of the other fluid is set to be higher than the temperature of the slurry body supplied to the inner pipe 612.
 又、第1実施形態では、内管612が外管611に挿通されていることについて説明したが、これに限定されるものではない。例えば、内管612が貯留槽内に設けられていることとしてもよい。尚、貯留槽内には、内管612に供給されるスラリー体の温度よりも高い温度の流体が貯留されていることとする。この場合、内管612内のスラリー体においては、貯留槽に貯留されている流体との間で熱交換が行われる。 Moreover, although 1st Embodiment demonstrated that the inner tube | pipe 612 was penetrated by the outer tube | pipe 611, it is not limited to this. For example, the inner pipe 612 may be provided in the storage tank. It is assumed that a fluid having a temperature higher than the temperature of the slurry supplied to the inner pipe 612 is stored in the storage tank. In this case, in the slurry body in the inner pipe 612, heat exchange is performed with the fluid stored in the storage tank.
 又、第1実施形態では、配管65に原料供給部20からスラリー体が供給され、配管63にガス化処理部40から処理後流体が供給されることについて説明したが、これに限定されるものではない。例えば、配管62に原料供給部20からスラリー体が供給され、配管64にガス化処理部40から処理後流体が供給されることとしてもよい。又、例えば、配管65に原料供給部20からスラリー体が供給され、配管64にガス化処理部40から処理後流体が供給されることとしてもよいし、例えば、配管62に原料供給部20からスラリー体が供給され、配管63にガス化処理部40から処理後流体が供給されることとしてもよい。この場合、二重管61においては、スラリー体の流向と処理後流体の流向とが同じ方向になる。 Moreover, although 1st Embodiment demonstrated that the slurry body was supplied to the piping 65 from the raw material supply part 20, and the post-processing fluid was supplied to the piping 63 from the gasification process part 40, it is limited to this. is not. For example, the slurry body may be supplied to the pipe 62 from the raw material supply unit 20, and the post-treatment fluid may be supplied to the pipe 64 from the gasification processing unit 40. Further, for example, the slurry body may be supplied to the pipe 65 from the raw material supply unit 20, and the post-treatment fluid may be supplied to the pipe 64 from the gasification processing unit 40. For example, the pipe 62 may be supplied from the raw material supply unit 20. The slurry body may be supplied, and the processed fluid may be supplied from the gasification processing unit 40 to the pipe 63. In this case, in the double pipe 61, the flow direction of the slurry body and the flow direction of the processed fluid are the same direction.
 又、第1実施形態では、配管62、65が内側流路と連通し、配管63、64が外側流路と連通することについて説明したが、これに限定されるものではない。例えば、配管62、65が外側流路と連通し、配管63、64が内側流路と連通することとしてもよい。この場合、内側流路を処理後流体が移動し、外側流路をスラリー体が移動することになる。 In the first embodiment, the pipes 62 and 65 communicate with the inner flow path, and the pipes 63 and 64 communicate with the outer flow path. However, the present invention is not limited to this. For example, the pipes 62 and 65 may communicate with the outer flow path, and the pipes 63 and 64 may communicate with the inner flow path. In this case, the processed fluid moves in the inner flow path, and the slurry body moves in the outer flow path.
 又、第2実施形態の二重管71における曲げ部71Aを含む一部(「第1部分」とも称する)の外側流路と、二重管71における第1部分以外の一部(「第2部分」とも称する)の外側流路とを連通させずに、外側流路夫々に対して異なる流体が供給されることとしてもよい。尚、第1及び第2部分の内管は連通していることとする。又、外側流路夫々に対して供給される異なる流体の温度は、第1及び第2部分の外管の温度が第1及び第2部分の内管を移動するスラリー体の温度よりも高くなるように設定されていることとする。 Further, a part of the double pipe 71 of the second embodiment 71 including the bent portion 71A (also referred to as “first part”) and a part of the double pipe 71 other than the first part (“second part”). A different fluid may be supplied to each of the outer flow paths without communicating with the outer flow paths of the “parts”. Note that the inner pipes of the first and second portions are in communication. In addition, the temperature of the different fluid supplied to each of the outer flow paths is such that the temperature of the outer tube of the first and second parts is higher than the temperature of the slurry body moving through the inner pipe of the first and second parts. It is assumed that it is set as follows.
 尚、第1実施形態及び第2実施形態はともに、配管62が直管であっても、内壁の付着物によって流れが乱され、曲げ部が存在するがごとく配管62の内壁へのスラリー体の付着が増加し積層して,配管62が閉塞することがある。このため、予熱器41と接続される直前である配管66や配管74まで、加熱装置7で加温することが望ましい。 In both the first embodiment and the second embodiment, even if the pipe 62 is a straight pipe, the flow is disturbed by the deposits on the inner wall, and there is a bent portion. Adhesion increases and stacks, and the pipe 62 may be blocked. For this reason, it is desirable to heat the pipe 66 and the pipe 74 immediately before being connected to the preheater 41 with the heating device 7.
6、700             熱交換器
30                熱交換部
61、71             二重管
62、63、64、65、72、73 配管
100、100B          超臨界ガス化装置
611               外管
612               内管
6,700 Heat exchanger 30 Heat exchanger 61, 71 Double pipe 62, 63, 64, 65, 72, 73 Pipe 100, 100B Supercritical gasifier 611 Outer pipe 612 Inner pipe

Claims (18)

  1.  外部の第1流体との間で熱交換が行われるようにスラリー体が内部を移動する第1配管と、
     前記第1配管から供給される前記スラリー体が内部を移動するように、前記第1配管における下流側において前記第1配管と結合されている第2配管と、
     前記第2配管の内壁に付着する前記スラリー体の量が所定量よりも少なくなるように前記第2配管を加熱する加熱装置と、
     を備えたことを特徴とする熱交換装置。
    A first pipe through which the slurry body moves so that heat exchange is performed with an external first fluid;
    A second pipe coupled to the first pipe on the downstream side of the first pipe so that the slurry body supplied from the first pipe moves inside;
    A heating device for heating the second pipe so that the amount of the slurry body adhering to the inner wall of the second pipe is less than a predetermined amount;
    A heat exchange device comprising:
  2.  前記加熱装置は、前記第2配管の温度が前記第2配管の内部における前記スラリー体の温度よりも高くなるように加熱する
     ことを特徴とする請求項1に記載の熱交換装置。
    The heat exchanger according to claim 1, wherein the heating device heats the second pipe so that a temperature of the second pipe is higher than a temperature of the slurry body in the second pipe.
  3.  前記加熱装置は、前記第2配管との間の隙間を前記スラリー体の温度よりも高い温度の第2流体が移動するように、前記第2配管が挿通される第3配管、を有する
     ことを特徴とする請求項1又は2に記載の熱交換装置。
    The heating device includes a third pipe through which the second pipe is inserted so that a second fluid having a temperature higher than the temperature of the slurry body moves through the gap between the second pipe and the second pipe. The heat exchange device according to claim 1 or 2, characterized by the above.
  4.  前記加熱装置は、前記スラリー体の温度よりも高い温度の第2流体が移動する第3配管を、前記第2配管に挿通する
     ことを特徴とする請求項1又は2に記載の熱交換装置。
    The heat exchanger according to claim 1 or 2, wherein the heating device inserts a third pipe through which the second fluid having a temperature higher than the temperature of the slurry body moves into the second pipe.
  5.  前記第1配管との間の隙間を前記第1流体が移動するように、前記第1配管が挿通される第3配管、を更に備え、
     前記加熱装置は、前記第2配管との間の隙間を前記スラリー体の温度よりも高い温度の前記第1流体が移動するように、前記第3配管と結合される第4配管、を有する
     ことを特徴とする請求項2に記載の熱交換装置。
    A third pipe through which the first pipe is inserted so that the first fluid moves through a gap between the first pipe and the first pipe;
    The heating device includes a fourth pipe coupled to the third pipe so that the first fluid having a temperature higher than the temperature of the slurry body moves through the gap between the second pipe and the second pipe. The heat exchange device according to claim 2.
  6.  前記第1配管との間の隙間を前記第1流体が移動するように、前記第1配管に挿通する第3配管、を更に備え、
     前記加熱装置は、前記スラリー体の温度よりも高い温度の前記第1流体が移動する第4配管を、前記第3配管と結合する
     ことを特徴とする請求項2に記載の熱交換装置。
    A third pipe inserted through the first pipe so that the first fluid moves through a gap between the first pipe and the first pipe;
    The heat exchanging apparatus according to claim 2, wherein the heating device couples a fourth pipe through which the first fluid having a temperature higher than the temperature of the slurry body moves with the third pipe.
  7.  外部の第1流体との間で、ガス化原料としてのスラリー体を加熱するための熱交換が行われるように前記スラリー体が内部を移動する第1配管と、前記第1配管から供給される前記スラリー体が内部を移動するように、前記第1配管における下流側において前記第1配管と結合されている第2配管と、前記第2配管の内壁に付着する前記スラリー体の量が所定量よりも少なくなるように前記第2配管を加熱する加熱装置と、を有する熱交換装置と、
     前記第1及び第2配管を介して供給される前記スラリー体から燃料ガスを生成する生成装置と、
     を備えたことを特徴とする燃料ガス生成装置。
    The slurry body is supplied from the first pipe and the first pipe through which the slurry body moves so that heat exchange for heating the slurry body as the gasification raw material is performed with the external first fluid. The amount of the slurry body adhering to the second pipe connected to the first pipe on the downstream side of the first pipe and the inner wall of the second pipe so that the slurry body moves inside is a predetermined amount. A heat exchange device having a heating device for heating the second pipe so as to be less than
    A generator for generating fuel gas from the slurry body supplied via the first and second pipes;
    A fuel gas generation device comprising:
  8.  前記加熱装置は、前記第2配管の温度が前記第2配管の内部における前記スラリー体の温度よりも高くなるように加熱する
     ことを特徴とする請求項7に記載の燃料ガス生成装置。
    The fuel gas generation device according to claim 7, wherein the heating device heats the second pipe so that a temperature of the second pipe is higher than a temperature of the slurry body in the second pipe.
  9.  前記加熱装置は、前記第2配管との間の隙間を前記スラリー体の温度よりも高い温度の第2流体が移動するように、前記第2配管が挿通される第3配管、を有する
     ことを特徴とする請求項7又は8に記載の燃料ガス生成装置。
    The heating device includes a third pipe through which the second pipe is inserted so that a second fluid having a temperature higher than the temperature of the slurry body moves through the gap between the second pipe and the second pipe. The fuel gas generation device according to claim 7 or 8, characterized in that
  10.  前記加熱装置は、前記スラリー体の温度よりも高い温度の第2流体が移動する第3配管を、前記第2配管に挿通する
     ことを特徴とする請求項7又は8に記載の燃料ガス生成装置。
    The fuel gas generation device according to claim 7 or 8, wherein the heating device inserts a third pipe through which the second fluid having a temperature higher than the temperature of the slurry body moves into the second pipe. .
  11.  前記第1配管との間の隙間を前記第1流体が移動するように、前記第1配管が挿通される第3配管、を更に備え、
     前記加熱装置は、前記第2配管との間の隙間を前記スラリー体の温度よりも高い温度の前記第1流体が移動するように、前記第3配管と結合される第4配管、を有する
     ことを特徴とする請求項8に記載の燃料ガス生成装置。
    A third pipe through which the first pipe is inserted so that the first fluid moves through a gap between the first pipe and the first pipe;
    The heating device includes a fourth pipe coupled to the third pipe so that the first fluid having a temperature higher than the temperature of the slurry body moves through the gap between the second pipe and the second pipe. The fuel gas generation device according to claim 8.
  12.  前記第1配管との間の隙間を前記第1流体が移動するように、前記第1配管に挿通する第3配管、を更に備え、
     前記加熱装置は、前記スラリー体の温度よりも高い温度の前記第1流体が移動する第4配管を、前記第3配管と結合する
     ことを特徴とする請求項8に記載の燃料ガス生成装置。
    A third pipe inserted through the first pipe so that the first fluid moves through a gap between the first pipe and the first pipe;
    The fuel gas generation device according to claim 8, wherein the heating device couples a fourth pipe through which the first fluid having a temperature higher than a temperature of the slurry body moves with the third pipe.
  13.  前記第2配管は、前記第1配管における下流側において前記第1配管から曲げられた状態で結合されている
    ことを特徴とする請求項1~6の何れかに記載の熱交換装置。
    The heat exchange device according to any one of claims 1 to 6, wherein the second pipe is coupled in a state bent from the first pipe on the downstream side of the first pipe.
  14. 前記第2配管は、前記第1配管における下流側において前記第1配管から曲げられた状態で結合されている
    ことを特徴とする請求項7~12の何れかに記載の燃料ガス生成装置。
    The fuel gas generation device according to any one of claims 7 to 12, wherein the second pipe is coupled in a state bent from the first pipe on the downstream side of the first pipe.
  15.  前記加熱装置は、前記第2配管における曲げ部に熱を付与するヒーター、を有する
     ことを特徴とする請求項13に記載の熱交換装置。
    The heat exchange device according to claim 13, wherein the heating device includes a heater that applies heat to a bent portion in the second pipe.
  16.  前記加熱装置は、前記第2配管における曲げ部に熱を付与するヒーター、を有する
     ことを特徴とする請求項14に記載の燃料ガス生成装置。
    The fuel gas generation device according to claim 14, wherein the heating device includes a heater that applies heat to a bent portion of the second pipe.
  17.  前記加熱装置は、前記第2配管における曲げ部及び下流側に熱を付与するヒーター、を有する
     ことを特徴とする請求項15に記載の熱交換装置。
    The heat exchange device according to claim 15, wherein the heating device includes a bent portion in the second pipe and a heater that applies heat to the downstream side.
  18.  前記加熱装置は、前記第2配管における曲げ部及び下流側に熱を付与するヒーター、を有する
     ことを特徴とする請求項16に記載の燃料ガス生成装置。
    The fuel gas generation device according to claim 16, wherein the heating device includes a bent portion in the second pipe and a heater that applies heat to a downstream side.
PCT/JP2015/056061 2015-03-02 2015-03-02 Heat exchange device and fuel gas generation device WO2016139712A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016543754A JP6093918B2 (en) 2015-03-02 2015-03-02 Heat exchange device, fuel gas generator
PCT/JP2015/056061 WO2016139712A1 (en) 2015-03-02 2015-03-02 Heat exchange device and fuel gas generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/056061 WO2016139712A1 (en) 2015-03-02 2015-03-02 Heat exchange device and fuel gas generation device

Publications (1)

Publication Number Publication Date
WO2016139712A1 true WO2016139712A1 (en) 2016-09-09

Family

ID=56849367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056061 WO2016139712A1 (en) 2015-03-02 2015-03-02 Heat exchange device and fuel gas generation device

Country Status (2)

Country Link
JP (1) JP6093918B2 (en)
WO (1) WO2016139712A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313177A (en) * 1995-05-15 1996-11-29 Nippon Pipe Syst Kk Multi-tube type heat exchanger
JPH10306982A (en) * 1997-03-05 1998-11-17 Murata Mfg Co Ltd Heat-treating device
JP2009242696A (en) * 2008-03-31 2009-10-22 Hiroshima Univ Method for preventing biomass adhesion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313177A (en) * 1995-05-15 1996-11-29 Nippon Pipe Syst Kk Multi-tube type heat exchanger
JPH10306982A (en) * 1997-03-05 1998-11-17 Murata Mfg Co Ltd Heat-treating device
JP2009242696A (en) * 2008-03-31 2009-10-22 Hiroshima Univ Method for preventing biomass adhesion

Also Published As

Publication number Publication date
JPWO2016139712A1 (en) 2017-04-27
JP6093918B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
EP3245165B1 (en) Apparatus for salt separation under supercritical water conditions
US20130062249A1 (en) Method for processing heavy hydrocarbon oil
EP3274080B1 (en) Method and apparatus for mixing in a hydrocarbon conversion process
WO2020186637A1 (en) Micro-interface strengthening fluidized bed hydrogenation system
JP6093918B2 (en) Heat exchange device, fuel gas generator
CN110856806A (en) Emulsified dispersion liquid
JP6464533B2 (en) Heat exchange device, fuel gas generator
WO2014156382A1 (en) Method and device for reforming heavy oil
JP6338080B2 (en) Biomass gasification system using supercritical water
WO2015132919A1 (en) Gasification system
WO2011062720A1 (en) Piggable static mixer apparatus and system for generating a hydrate slurry
JP6789547B1 (en) Blockage removal method
US20120216899A1 (en) Piggable Static Mixer Apparatus and System for Generating a Hydrate Slurry
CN102463078B (en) Boiling bed catalyst on-line priming system
WO2018083792A1 (en) Pipe blockage prevention method and pipe blockage prevention system
CN105620953B (en) A kind of system and method promoting tank inside thermal diffusion
WO2024042770A1 (en) Reaction system and method for producing product
WO2017193725A1 (en) System and method for treating cadmium-containing solution
JP6020951B1 (en) Gasification system and gasification method in gasification system
JP4760173B2 (en) Olefin continuous polymerization apparatus, polymer particle transfer method, and olefin polymerization method
JP6503493B1 (en) Processing unit
CN106179074A (en) A kind of slurry integration disperse system
WO2020217506A1 (en) Obstruction removal method
JP6025838B2 (en) Chemical reactor
JP2015213914A (en) System for manufacturing emulsification dispersion liquid

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016543754

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883882

Country of ref document: EP

Kind code of ref document: A1