JP2015213914A - System for manufacturing emulsification dispersion liquid - Google Patents

System for manufacturing emulsification dispersion liquid Download PDF

Info

Publication number
JP2015213914A
JP2015213914A JP2015146452A JP2015146452A JP2015213914A JP 2015213914 A JP2015213914 A JP 2015213914A JP 2015146452 A JP2015146452 A JP 2015146452A JP 2015146452 A JP2015146452 A JP 2015146452A JP 2015213914 A JP2015213914 A JP 2015213914A
Authority
JP
Japan
Prior art keywords
emulsified dispersion
dispersion
heat transfer
pressure
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015146452A
Other languages
Japanese (ja)
Other versions
JP5972434B2 (en
Inventor
中野 満
Mitsuru Nakano
満 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIRYU KK
Beryu Corp
Original Assignee
BIRYU KK
Beryu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIRYU KK, Beryu Corp filed Critical BIRYU KK
Priority to JP2015146452A priority Critical patent/JP5972434B2/en
Publication of JP2015213914A publication Critical patent/JP2015213914A/en
Application granted granted Critical
Publication of JP5972434B2 publication Critical patent/JP5972434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a system for manufacturing emulsification dispersion liquid, which can apply sufficient shearing force to a liquid mixture containing medium liquid and an emulsification dispersion material to sufficiently atomize the emulsification dispersion material, and can manufacture the emulsification dispersion liquid of high quality while efficiently preventing occurrence of bubbling.SOLUTION: In a system S for manufacturing emulsification dispersion liquid, first and second dispersion apparatuses 5 and 7 carry out emulsion/dispersion of a liquid mixture including the medium liquid and the emulsification dispersion material to produce the emulsification dispersion liquid. A multistage pressure/temperature control device 9 cools the emulsification dispersion liquid discharged from the second dispersion apparatus 7 and further sets back pressure necessary to the first and second dispersion apparatuses 5 and 7, that is back pressure capable of preventing occurrence of bubbling. Moreover, the multistage pressure/temperature control device 9 stepwise or gradually reduces pressure of the emulsification dispersion liquid and finally lowers the pressure of the emulsification dispersion liquid to pressure that bubbling is not caused even when the emulsification dispersion liquid is released to the atmosphere.

Description

本発明は、媒体液中に所定の材料を乳化又は分散させて乳化分散液を製造する乳化分散液製造システムに関するものであり、より詳しくは、媒体液と、該媒体液に溶解しない液体又は固体の乳化分散材料とを含む混合液に強いせん断力を加えることにより、基本的には界面活性剤を用いることなく、乳化分散材料を媒体液中に乳化又は分散させる乳化分散液製造システムに関するものである。   The present invention relates to an emulsified dispersion production system for producing an emulsified dispersion by emulsifying or dispersing a predetermined material in a medium, and more specifically, a medium or a liquid or solid that does not dissolve in the medium. The emulsified dispersion manufacturing system for emulsifying or dispersing the emulsified and dispersed material in a medium liquid basically without using a surfactant by applying a strong shearing force to the mixed liquid containing the emulsified and dispersed material. is there.

一般に、媒体液中に液体又は固体の乳化分散材料を乳化又は分散させて乳化分散液を製造する場合、種々の界面活性剤が用いられる。しかしながら、乳化分散液が人体と接触する可能性がある場合、例えば乳化分散液が化粧品や食品である場合、界面活性剤が人体にとって有害なことがある。そこで、媒体液と該媒体液に溶解しない液体又は固体の乳化分散材料とを含む混合液に強いせん断力を加えることにより、基本的には界面活性剤を用いることなく、乳化分散材料を媒体液中に乳化又は分散させるようにした乳化分散装置が種々提案されている(例えば、特許文献1、2参照)。   Generally, when a liquid or solid emulsified dispersion material is emulsified or dispersed in a medium liquid to produce an emulsified dispersion, various surfactants are used. However, when the emulsified dispersion may come into contact with the human body, for example, when the emulsified dispersion is a cosmetic or food, the surfactant may be harmful to the human body. Therefore, by applying a strong shearing force to the mixed liquid containing the medium liquid and the liquid or solid emulsified dispersion material that does not dissolve in the medium liquid, the emulsified dispersion material is basically removed from the medium liquid without using a surfactant. Various emulsifying and dispersing devices that are emulsified or dispersed therein have been proposed (see, for example, Patent Documents 1 and 2).

この種の乳化分散装置として、例えば、媒体液と液体又は固体の乳化分散材料とを含む混合液に強いせん断力を加えて乳化分散を行う高圧噴射式又は回転攪拌式の乳化分散装置が知られている。そして、例えば高圧噴射式の乳化分散装置では、高圧の混合液をノズルから噴射してジェット流を生成し、このジェット流を壁に衝突させあるいは壁で反転させて、液・液間でジェット流の運動エネルギをせん断エネルギに変換することにより乳化分散を行うようにしている。   As this type of emulsifying and dispersing apparatus, for example, a high-pressure jet type or rotary stirring type emulsifying and dispersing apparatus that performs emulsification dispersion by applying a strong shearing force to a mixed liquid containing a medium liquid and a liquid or solid emulsifying dispersion material is known. ing. For example, in a high-pressure injection type emulsifying dispersion device, a high-pressure liquid mixture is jetted from a nozzle to generate a jet flow, and this jet flow collides with a wall or is inverted by a wall to cause a jet flow between liquid and liquid. The kinetic energy is converted into shear energy to emulsify and disperse.

しかしながら、混合液に強いせん断力が作用するときに、せん断力が作用する場が不均一であると、例えばせん断力が作用する場に局所的な圧力差や速度差が存在すると、媒体液中に溶解している空気又は媒体液中に残留している空気が気泡となってバブリングが発生し、このバブリングにより粗大な乳化分散材料粒子が発生する。そこで、従来のこの種の乳化分散装置では、混合液ないしは乳化分散液に背圧をかけてこのようなバブリングの発生を防止するようにしている。   However, when a strong shear force acts on the mixed liquid, if the field where the shear force acts is non-uniform, for example, if a local pressure difference or speed difference exists in the field where the shear force acts, The air dissolved in the liquid or the air remaining in the medium liquid is bubbled to generate bubbling, and this bubbling generates coarse emulsified and dispersed material particles. Therefore, in this type of conventional emulsifying and dispersing apparatus, back pressure is applied to the mixed solution or the emulsified dispersion to prevent the occurrence of such bubbling.

特開平8−89774号公報JP-A-8-89774 国際公開第2003/059497号明細書International Publication No. 2003/059497

ところで、近年、市場では、材料の乳化分散性が非常に高い乳化分散液、すなわち乳化分散材料が非常に微粒化された乳化分散液が求められている。そこで、媒体液ないしは混合液にさらに高い圧力を加えて、乳化分散材料のさらなる微粒化を図るようにした乳化分散装置が開発されているが、これに伴ってバブリングの発生がより深刻な問題となっている。ここで、混合液ないしは乳化分散液の背圧をさらに高くすれば、乳化分散装置内でのバブリングの発生を抑制することができる。しかし、このようにすると、乳化分散液が乳化分散装置から排出されたときに生じる瞬時の圧力低下によりバブリングが発生するといった問題が生じる。   By the way, in recent years, there has been a demand in the market for an emulsified dispersion having a very high emulsification dispersibility of the material, that is, an emulsified dispersion in which the emulsified dispersion material is very finely divided. Thus, an emulsifying and dispersing device has been developed that applies a higher pressure to the medium liquid or the mixed liquid to further atomize the emulsifying and dispersing material, but with this, the occurrence of bubbling is a more serious problem. It has become. Here, if the back pressure of the mixed liquid or the emulsified dispersion is further increased, the occurrence of bubbling in the emulsified dispersion apparatus can be suppressed. However, this causes a problem that bubbling occurs due to an instantaneous pressure drop that occurs when the emulsified dispersion is discharged from the emulsifying dispersion device.

乳化分散液中でバブリングが発生すると、媒体液に粉体の材料を分散させる場合(サスペンジョン)は、粉体表面に気泡が付着して粉体の濡れ性が悪くなるといった問題が生じる。他方、媒体液に液体の材料を乳化させる場合(エマルジョン)は、エアゾールが形成されやすくなり、乳化分散液の製品としての品質が低下するといった問題が生じる。また、気泡がエネルギを吸収するので、エネルギ損失が大きくなり、エネルギ効率が悪くなるといった問題が生じる。さらに、例えば乳化分散材料として不飽和脂肪酸を用いる場合は、高温下において気泡中の酸素により乳化分散材料が酸化されるので、製品の品質が低下するといった問題が生じる。   When bubbling occurs in the emulsified dispersion liquid, when the powder material is dispersed in the medium liquid (suspension), there arises a problem that air bubbles adhere to the powder surface and the wettability of the powder deteriorates. On the other hand, when a liquid material is emulsified in a liquid medium (emulsion), aerosols are easily formed, resulting in a problem that the quality of the emulsified dispersion is lowered. In addition, since the bubbles absorb energy, there is a problem that energy loss increases and energy efficiency deteriorates. Furthermore, for example, when an unsaturated fatty acid is used as the emulsified dispersion material, the emulsified dispersion material is oxidized by oxygen in the bubbles at a high temperature, which causes a problem that the quality of the product is deteriorated.

本発明は、上記従来の問題を解決するためになされたものであって、媒体液と該媒体液に溶解しない液体又は固体の乳化分散材料とを含む混合液に十分なせん断力を加えて乳化分散材料を十分に微粒化することができ、かつバブリングの発生を有効に防止して良好な品質の乳化分散液を製造することができる乳化分散液製造システムを提供することを解決すべき課題とする。   The present invention has been made to solve the above-described conventional problems, and emulsifies by applying a sufficient shearing force to a mixed liquid containing a medium liquid and a liquid or solid emulsified dispersion material that does not dissolve in the medium liquid. The problem to be solved is to provide an emulsified dispersion production system that can sufficiently atomize the dispersion material and that can effectively prevent the occurrence of bubbling and produce an emulsified dispersion of good quality. To do.

上記課題を解決するためになされた本発明に係る乳化分散液製造システムは、媒体液(例えば水、メタノール、エタノール、これらの混合物等)と、媒体液に溶解しない液体又は固体の乳化分散材料とを含む混合液にせん断力を加えることにより、乳化分散材料(乳化材料及び/又は分散材料)を媒体液中に乳化又は分散させて乳化分散液(乳化液及び/又は分散液)を製造する。この乳化分散液製造システムは、その基本的態様においては、混合液供給装置と、混合液加圧装置と、乳化分散装置と、多段圧力温度制御装置とを備えている。   The emulsified dispersion manufacturing system according to the present invention made to solve the above problems includes a medium liquid (for example, water, methanol, ethanol, a mixture thereof, etc.), and a liquid or solid emulsified dispersion material that does not dissolve in the medium liquid. An emulsified dispersion (emulsified and / or dispersed) is emulsified or dispersed in a medium liquid by applying a shearing force to the mixed liquid containing the emulsion to produce an emulsified dispersion (emulsified and / or dispersed). The emulsified dispersion production system includes a mixed liquid supply device, a mixed liquid pressurizing device, an emulsified dispersion device, and a multistage pressure temperature control device in its basic mode.

この乳化分散液製造システムにおいて、混合液供給装置は、媒体液と乳化分散材料とを含む混合液を混合液加圧装置に供給する。混合液加圧装置は、混合液供給装置から供給された混合液を加圧してこれを乳化分散装置に排出する。乳化分散装置は、混合液加圧装置から排出された混合液を受け入れ、混合液の圧力エネルギを運動エネルギに変換することにより混合液のジェット流を生成し、ジェット流中に生じるせん断力により混合液中の乳化分散材料を媒体液中に乳化分散させて乳化分散液を生成し、これを多段圧力温度制御装置に排出する。多段圧力温度制御装置は、乳化分散装置から排出された乳化分散液を受け入れ、乳化分散液の圧力を段階的ないしは漸次的に低下させるととともに乳化分散液の温度を制御する一方、乳化分散装置内の乳化分散液に背圧をかける。   In this emulsified dispersion manufacturing system, the mixed liquid supply apparatus supplies a mixed liquid containing the medium liquid and the emulsified dispersion material to the mixed liquid pressurizing apparatus. The mixed liquid pressurizer pressurizes the mixed liquid supplied from the mixed liquid supply apparatus and discharges it to the emulsification dispersion apparatus. The emulsifying dispersion device receives the liquid mixture discharged from the liquid mixture pressurizing device, generates a jet stream of the liquid mixture by converting the pressure energy of the liquid mixture into kinetic energy, and mixes by the shear force generated in the jet stream. The emulsified dispersion material in the liquid is emulsified and dispersed in the medium liquid to produce an emulsified dispersion, which is discharged to a multistage pressure and temperature controller. The multi-stage pressure temperature controller receives the emulsified dispersion discharged from the emulsifying dispersion apparatus, and gradually or gradually decreases the pressure of the emulsified dispersion and controls the temperature of the emulsified dispersion while Back pressure is applied to the emulsified dispersion.

この乳化分散液製造システムにおいて、多段圧力温度制御装置は、それぞれ、その内部を伝熱媒体が流通する外套(又は外管)と該外套の内部に配置されその内部を乳化分散液が流通する伝熱管とを有し、乳化分散液の流れ方向に関して上流側から下流側に向かって順に直列に配置された第1〜第3制御部を有している。第1〜第3制御部の各伝熱管は直列に接続されている。第1〜第3制御部の各伝熱管の内直径、全長及び全体的形状ないしは配管形態(パイピング)は、第1〜第3制御部における各伝熱管の圧力低下量をそれぞれΔP、ΔP、ΔPとすれば、該乳化分散液製造システムの稼働時における各伝熱管内の乳化分散液の流速及び粘度(又は温度)に応じて、ΔP>ΔP>ΔPの関係を満たすように設定されている。 In this emulsified dispersion manufacturing system, the multi-stage pressure and temperature control devices are respectively arranged in the outer jacket (or outer tube) through which the heat transfer medium flows and the transmission in which the emulsified dispersion flows in the outer jacket. And a first to a third control unit arranged in series in order from the upstream side to the downstream side in the flow direction of the emulsified dispersion. The heat transfer tubes of the first to third control units are connected in series. The inner diameter, the overall length, and the overall shape or piping form (piping) of each heat transfer tube of the first to third control units are the pressure drop amounts of the heat transfer tubes in the first to third control units, respectively, ΔP 1 and ΔP 2. , ΔP 3 so as to satisfy the relationship of ΔP 1 > ΔP 3 > ΔP 2 according to the flow rate and viscosity (or temperature) of the emulsion dispersion in each heat transfer tube during operation of the emulsion dispersion production system. Is set to

本発明に係る乳化分散液製造システムにおいて、第1〜第3制御部の各伝熱管の内直径、全長及び全体形状は、それぞれ、各伝熱管内を乳化分散液が層流(例えば、レイノルズ数が100〜2000)で流れるように設定されていてもよい。また、第1〜第3制御部の各伝熱管の内直径、全長及び全体形状は、それぞれ、各伝熱管内を乳化分散液が乱流(例えば、レイノルズ数が3000〜50000)で流れるように設定されていてもよい。   In the emulsified dispersion manufacturing system according to the present invention, the inner diameter, the overall length, and the overall shape of each heat transfer tube of the first to third control units are respectively laminar (for example, Reynolds number) in each heat transfer tube. May be set to flow at 100 to 2000). In addition, the inner diameter, the overall length, and the overall shape of each heat transfer tube of the first to third control units are such that the emulsified dispersion flows in each heat transfer tube in a turbulent flow (for example, Reynolds number is 3000 to 50000). It may be set.

本発明に係る乳化分散液製造システムは、乳化分散液の流れ方向に関して、混合液供給装置と混合液加圧装置との間に、混合液を加熱又は冷却する熱交換器を備えているのが好ましい。また、混合液供給装置は、混合液を、熱交換器を経由して混合液加圧装置に圧送する混合液圧送ポンプを備えているのが好ましい。   The emulsified dispersion production system according to the present invention includes a heat exchanger for heating or cooling the mixed liquid between the mixed liquid supply apparatus and the mixed liquid pressurizing apparatus with respect to the flow direction of the emulsified dispersion. preferable. Moreover, it is preferable that the mixed liquid supply apparatus is provided with a mixed liquid pressure feeding pump that pressure-feeds the mixed liquid to the mixed liquid pressurizing apparatus via a heat exchanger.

本発明に係る乳化分散液製造システムにおいては、乳化分散装置が、それぞれ細孔を有し乳化分散液の流れ方向に関して上流側から下流側に向かって順に、各細孔が互いに直列に接続されるよう直列に配置された第1〜第3細孔部材(細孔セル)を有しているのが好ましい。この場合、第1〜第3細孔部材の細孔の内直径をそれぞれd、d、dとすれば、各内直径d、d、dは、d>d>dの関係を満たすように設定するのが好ましい。 In the emulsified dispersion production system according to the present invention, each emulsifying dispersion device has pores, and the pores are connected in series in order from the upstream side to the downstream side in the flow direction of the emulsion dispersion. It is preferable to have first to third pore members (pore cells) arranged in series. In this case, if the inner diameters of the pores of the first to third pore members are d 1 , d 2 , and d 3 , the inner diameters d 1 , d 2 , and d 3 are d 2 > d 1 > preferably set so as to satisfy the relation d 3.

本発明に係る乳化分散液製造システムにおいては、乳化分散装置は、互いに直列に接続された第1乳化分散装置と第2乳化分散装置とで構成されているのが好ましい。この場合、第1乳化分散装置の下流に、第1添加剤を乳化分散液に添加する第1添加剤供給装置を付設し、第2乳化分散装置の下流に、第2添加剤を乳化分散液に添加する第2添加剤供給装置が付設するのがより好ましい。   In the emulsified dispersion manufacturing system according to the present invention, it is preferable that the emulsification dispersion apparatus is composed of a first emulsification dispersion apparatus and a second emulsification dispersion apparatus connected in series. In this case, a first additive supply device for adding the first additive to the emulsified dispersion is provided downstream of the first emulsification dispersion device, and the second additive is added downstream of the second emulsification dispersion device. It is more preferable that a second additive supply device to be added is attached.

本発明によれば、混合液加圧装置によって混合液に高圧がかけられるので、乳化分散装置内で混合液に強いせん断力を加えることができ、界面活性剤を用いることなく、乳化分散材料を十分に微粒化することができる。また、多段圧力温度制御装置によって乳化分散装置内の乳化分散液に背圧がかけられるので、乳化分散装置内におけるバブリングの発生を防止することができる。さらに、多段圧力温度制御装置内では、乳化分散液の圧力が段階的ないしは漸次的に低下させられ急激ないしは瞬時の圧力低下が起こらないので、乳化分散液が乳化分散液製造システムから外部に排出される際に、乳化分散液中にバブリングが発生しない。また、乳化分散液製造システムから外部に排出される乳化分散液の温度を好ましく制御することができる。このため、乳化分散液の製品としての品質を高めることができ、かつ、エネルギの損失を低減してエネルギ効率を高めることができる。   According to the present invention, since a high pressure is applied to the mixed solution by the mixed solution pressurizing device, a strong shearing force can be applied to the mixed solution in the emulsifying and dispersing device, and the emulsified and dispersed material can be prepared without using a surfactant. It can be sufficiently atomized. In addition, since the back pressure is applied to the emulsified dispersion in the emulsifying dispersion device by the multistage pressure temperature control device, the occurrence of bubbling in the emulsifying dispersion device can be prevented. Further, in the multi-stage pressure temperature control device, the pressure of the emulsified dispersion is lowered stepwise or gradually and no sudden or instantaneous pressure drop occurs, so the emulsified dispersion is discharged from the emulsion dispersion production system to the outside. No bubbling occurs in the emulsified dispersion. In addition, the temperature of the emulsified dispersion discharged from the emulsified dispersion production system can be preferably controlled. For this reason, the quality of the emulsified dispersion as a product can be enhanced, and energy loss can be reduced to increase energy efficiency.

本発明の実施形態に係る乳化分散液製造システムのシステム構成図である。1 is a system configuration diagram of an emulsified dispersion manufacturing system according to an embodiment of the present invention. 図1に示す乳化分散液製造システムを構成する第1、第2乳化分散装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the 1st, 2nd emulsification dispersion | distribution apparatus which comprises the emulsification dispersion manufacturing system shown in FIG. 図1に示す乳化分散液製造システムを構成する多段圧力温度制御装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the multistage pressure temperature control apparatus which comprises the emulsification dispersion manufacturing system shown in FIG. 多段圧力温度制御装置内での乳化分散液の位置的な圧力変化の態様を示すグラフである。It is a graph which shows the aspect of the positional pressure change of the emulsification dispersion liquid in a multistage pressure temperature control apparatus.

以下、本発明の実施形態を具体的に説明する。まず、本発明の実施形態に係る乳化分散液製造システムの概要を説明する。一般に、媒体液と液体又は固体の乳化分散材料とを含む混合液に強いせん断力を加えて乳化分散材料を乳化分散させるようにした乳化分散装置において、混合液に強いせん断力を加えた場合、せん断力が作用する場が不均一であるとき、例えばせん断力が作用する場における混合液の速度ないし圧力のバランスが崩れたときにはバブリングが発生し、乳化分散材料の粒子が不均一化して粗大粒子が発生する。そして、従来は、混合液を非常に高圧にすることによりバブリングの発生を防止するようにしている。   Hereinafter, embodiments of the present invention will be specifically described. First, the outline | summary of the emulsification dispersion manufacturing system which concerns on embodiment of this invention is demonstrated. In general, in the emulsification dispersion apparatus in which the emulsified dispersion material is emulsified and dispersed by applying a strong shearing force to the mixed liquid containing the medium liquid and the liquid or solid emulsified dispersing material, when a strong shearing force is applied to the mixed liquid, When the field where the shear force acts is non-uniform, for example, when the balance of the speed or pressure of the liquid mixture in the field where the shear force acts is lost, bubbling occurs, and the particles of the emulsified dispersion material become non-uniform and coarse particles Occurs. Conventionally, the occurrence of bubbling is prevented by setting the mixed solution to a very high pressure.

しかしながら、このように混合液を非常に高圧にすると、多大なエネルギが消費される。そこで、本発明に係る乳化分散液製造システムでは、乳化分散装置の下流に多段圧力温度制御装置を設けることにより、混合液にさほど高圧をかけることなくバブリングの発生を防止するようにしている。これにより、乳化分散材料の粒子の寸法ないしは形状が均一化され、粗大粒子の発生が有効に防止され、かつエネルギ消費量が低減される。   However, enormous energy is consumed when the mixed liquid is brought to a very high pressure. Therefore, in the emulsified dispersion production system according to the present invention, a multistage pressure temperature control device is provided downstream of the emulsification dispersion device, so that the occurrence of bubbling is prevented without applying a high pressure to the mixed solution. Thereby, the size or shape of the particles of the emulsified dispersion material is made uniform, the generation of coarse particles is effectively prevented, and the energy consumption is reduced.

本発明に係る乳化分散液製造システムにおける基本的な技術思想は、製品である乳化分散液の出口、すなわち、生成された乳化分散液が大気圧下に開放される時点を基準にして、この時点で生じる圧力低下がバブリングを発生させない構成とすることにある。すなわち、発想の原点を下流側におき、上流側での投入エネルギ等の諸条件に対応するようにしている。そして、本発明に係る乳化分散液製造システムは、乳化分散材料を媒体液中に乳化又は分散させる乳化分散装置と、バブリングの発生を防止する多段圧力温度制御装置とを直列に接続したことを基本的特徴とする。   The basic technical idea of the emulsified dispersion production system according to the present invention is based on the outlet of the emulsified dispersion as a product, that is, based on the time when the produced emulsified dispersion is released under atmospheric pressure. In other words, the pressure drop that occurs in the above configuration is such that no bubbling occurs. In other words, the origin of the idea is set on the downstream side so as to cope with various conditions such as the input energy on the upstream side. The emulsified dispersion manufacturing system according to the present invention is based on the fact that an emulsifying dispersion device for emulsifying or dispersing an emulsified dispersion material in a medium liquid and a multistage pressure temperature control device for preventing bubbling are connected in series. Characteristic.

乳化分散装置は、乳化分散液の流れ方向に関して上流側から下流側に向かって順に、細孔の内直径が互いに異なる第1〜第3細孔部材を軸方向にシールを介して直列に接続したものである。そして、第1〜第3細孔部材の細孔の内直径をそれぞれd、d、dとすれば、各内直径d、d、dを、d>d>dの関係を満たすように設定していることを特徴とする。なお、前記及び後記の本発明の実施形態では、乳化分散装置は3つの細孔部材すなわち第1〜第3細孔部材を有しているが、乳化分散装置は4つ以上の細孔部材を有していてもよい。 In the emulsification dispersion apparatus, the first to third pore members having different inner diameters of the pores are connected in series via a seal in series in order from the upstream side to the downstream side in the flow direction of the emulsion dispersion. Is. If the inner diameters of the pores of the first to third pore members are d 1 , d 2 , and d 3 , respectively, the inner diameters d 1 , d 2 , and d 3 are expressed as d 2 > d 1 > d. 3 is set so as to satisfy the relationship of 3 . In the embodiments of the present invention described above and below, the emulsification and dispersion apparatus has three pore members, that is, the first to third pore members. However, the emulsification and dispersion apparatus has four or more pore members. You may have.

多段圧力温度制御装置は、乳化分散液の流れ方向に関して、上流側から下流側に向かって順に直列に配置された第1〜第3制御部を有している。第1〜第3制御部は、それぞれ、その内部を伝熱媒体が流通する外套(シェル)ないしは外管と、外套の内部に配置されその内部を乳化分散液が流通する伝熱管とを有している。これらの伝熱管は直列に接続されている。そして、多段圧力温度制御装置は、段乳化分散装置に対して必要な背圧を加える一方、この背圧を第1〜第3制御部で段階的ないしは漸次的に減圧する。ここで、第1〜第3制御部は、乳化分散液を、大気圧下に解放されたときにバブリングを生じない圧力、例えば大気圧まで減圧するとともに、乳化分散液を所定の温度、例えば室温まで冷却する。   The multistage pressure temperature control device has first to third control units arranged in series in order from the upstream side to the downstream side in the flow direction of the emulsified dispersion. Each of the first to third control units has a mantle (shell) or outer tube through which the heat transfer medium flows, and a heat transfer tube arranged inside the mantle and through which the emulsified dispersion flows. ing. These heat transfer tubes are connected in series. The multi-stage pressure / temperature control device applies a required back pressure to the step emulsification / dispersion device, and reduces the back pressure stepwise or gradually by the first to third control units. Here, the first to third control units depressurize the emulsified dispersion to a pressure that does not cause bubbling when released under atmospheric pressure, for example, atmospheric pressure, and the emulsified dispersion to a predetermined temperature, for example, room temperature. Allow to cool.

この多段圧力温度制御装置においては、第1〜第3制御部の各伝熱管の内直径、全長、及びその全体的形状ないしは全体的形態は、各伝熱管内の乳化分散液の流速(平均流速)及び粘度(又は平均温度)に応じて、第1〜第3制御部における各伝熱管の圧力低下量をそれぞれΔP、ΔP、ΔPとすれば、ΔP>ΔP>ΔPの関係を満たすように設定される。なお、各伝熱管の接続部には、それぞれ、前後の伝熱管間での減圧作用を寸断する拡管部が設けられている。要するに、多段圧力温度制御装置の全体としての減圧量は、第1〜第3制御部(伝熱管)の減圧量の総和と考えることができるので、乳化分散装置に必要な背圧に応じて各伝熱管の流動抵抗ないしは減圧量を設定するようにしている。なお、各伝熱管の流動抵抗ないしは減圧量は、それぞれ、各伝熱管の内直径及び相当長さと、各伝熱管内の乳化分散液の平均流速(場所的な平均)及び粘度又は平均温度(場所的な平均)とによって決定される。 In this multi-stage pressure and temperature control device, the inner diameter, the overall length, and the overall shape or overall form of each heat transfer tube of the first to third control units are the flow rate (average flow rate) of the emulsified dispersion in each heat transfer tube. ) And viscosity (or average temperature), if the pressure drop amounts of the heat transfer tubes in the first to third control units are ΔP 1 , ΔP 2 , and ΔP 3 , respectively, ΔP 1 > ΔP 3 > ΔP 2 Set to satisfy the relationship. In addition, the connection part of each heat exchanger tube is each provided with the pipe expansion part which interrupts | blocks the pressure_reduction | reduced_pressure action between the front and back heat exchanger tubes. In short, the amount of pressure reduction as a whole of the multi-stage pressure temperature control device can be considered as the sum of the amount of pressure reduction of the first to third control units (heat transfer tubes). The flow resistance of the heat transfer tube or the amount of pressure reduction is set. The flow resistance or the amount of pressure reduction of each heat transfer tube is the inner diameter and corresponding length of each heat transfer tube, the average flow velocity (local average) and the viscosity or average temperature (location) of the emulsified dispersion in each heat transfer tube. Average).

さらに、多段圧力温度制御装置は、第1〜第3制御部の各外套内を流れる伝熱媒体の供給温度及び流量を調節することにより、多段圧力温度制御装置内の乳化分散液の温度を制御する。例えば、各外套内に伝熱媒体として冷却水を流し、その流量を調整することにより、多段圧力温度制御装置内の乳化分散液の温度ないしは多段圧力温度制御装置から排出される乳化分散液の温度の温度を所定の目標温度まで冷却する。   Furthermore, the multi-stage pressure temperature control device controls the temperature of the emulsified dispersion in the multi-stage pressure temperature control device by adjusting the supply temperature and flow rate of the heat transfer medium flowing in each jacket of the first to third control units. To do. For example, the temperature of the emulsified dispersion in the multistage pressure temperature control device or the temperature of the emulsified dispersion discharged from the multistage pressure temperature control device by flowing cooling water as a heat transfer medium in each jacket and adjusting the flow rate. Is cooled to a predetermined target temperature.

さらに、第1〜第3制御部の各外套内を流れる伝熱媒体の供給温度及び流量を調節して各伝熱管内の乳化分散液の温度を制御することにより、各伝熱管内の乳化分散液の粘度ひいては各伝熱管の流動抵抗ないしは圧力低下量を補助的に制御することができる。なお、第1〜第3制御部の各伝熱管における流動抵抗ないしは圧力低下量は、主として、各伝熱管の内直径及び相当長さと、各伝熱管内の乳化分散液の流速とによって制御するのはもちろんである。   Furthermore, by adjusting the supply temperature and flow rate of the heat transfer medium flowing in each jacket of the first to third control units to control the temperature of the emulsified dispersion in each heat transfer tube, the emulsification dispersion in each heat transfer tube The viscosity of the liquid and thus the flow resistance or pressure drop of each heat transfer tube can be controlled in an auxiliary manner. The flow resistance or pressure drop amount in each heat transfer tube of the first to third control units is mainly controlled by the inner diameter and corresponding length of each heat transfer tube and the flow rate of the emulsified dispersion in each heat transfer tube. Of course.

前記及び後記の本発明の実施形態では、多段圧力温度制御装置は3つの制御部すなわち第1〜第3制御部で構成されているが、多段圧力温度制御装置を4つ以上の制御部で構成してもよい。例えば、乳化分散装置に供給する混合液の圧力ひいては乳化分散装置内の圧力をより高くする場合は、バブリングの発生を確実に防止するため、第1〜第4制御部あるいは第1〜第5制御部で構成される多段圧力温度制御装置を設け、多段圧力温度制御装置内における段階的ないしは漸次的な圧力低下量の変化度合いを緩慢化するようにしてもよい。   In the embodiments of the present invention described above and below, the multistage pressure temperature control device is configured by three control units, that is, first to third control units, but the multistage pressure temperature control device is configured by four or more control units. May be. For example, when the pressure of the liquid mixture supplied to the emulsifying dispersion device and thus the pressure in the emulsification dispersion device is increased, the first to fourth control units or the first to fifth controls are performed in order to reliably prevent the occurrence of bubbling. A multi-stage pressure temperature control device constituted by a part may be provided, and the degree of change in the stepwise or gradual pressure drop amount in the multi-stage pressure temperature control device may be slowed down.

なお、本発明に係る多段圧力温度制御装置は、従来用いられている回転式や高圧式の乳化分散装置にも適用することができる。この場合も、多段圧力温度制御装置は、乳化分散装置に対し必要な背圧を与えて乳化分散装置内におけるバブリングの発生を抑止する一方、この背圧を段階的ないしは漸次的に減圧してゆき、乳化分散液の圧力を、最終的に大気圧下に解放してもバブリングが発生しない圧力、例えばほぼ大気圧にまで減圧することになる。   The multi-stage pressure and temperature control device according to the present invention can also be applied to conventionally used rotary and high-pressure emulsifying and dispersing devices. In this case as well, the multi-stage pressure and temperature control device applies necessary back pressure to the emulsifying dispersion device to suppress the occurrence of bubbling in the emulsification dispersion device, while reducing the back pressure stepwise or gradually. The pressure of the emulsified dispersion is finally reduced to a pressure at which bubbling does not occur even when the pressure is finally released to atmospheric pressure, for example, approximately atmospheric pressure.

以下、添付の図面を参照しつつ、本発明に係る乳化分散液製造システムの具体的な構成及び機能を説明する。
図1に示すように、本発明の実施形態に係る乳化分散液製造システムSにおいては、原料である混合液又は製品である乳化分散液の流れ方向に関して、上流側から下流側に向かって順に、混合液供給タンク1と、混合液圧送ポンプ2と、熱交換器3と、混合液加圧ポンプ4と、第1乳化分散装置5と、第1添加剤供給ポート6と、第2乳化分散装置7と、第2添加剤供給ポート8と、多段圧力温度制御装置9とが直列に配設されている。
Hereinafter, a specific configuration and function of an emulsified dispersion manufacturing system according to the present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1, in the emulsified dispersion manufacturing system S according to the embodiment of the present invention, with respect to the flow direction of the emulsified dispersion that is a raw material mixture or product, in order from the upstream side to the downstream side, Liquid mixture supply tank 1, liquid mixture pressure feed pump 2, heat exchanger 3, liquid mixture pressure pump 4, first emulsification dispersion device 5, first additive supply port 6, and second emulsion dispersion device 7, the second additive supply port 8, and the multistage pressure temperature control device 9 are arranged in series.

混合液供給タンク1内には、媒体液(例えば水)と、媒体液には溶解しない液体又は固体の乳化分散材料とを含む混合液が貯留されている。詳しくは図示していないが、混合液供給タンク1内には攪拌機が付設され、この攪拌機は、媒体液中に乳化分散材料が巨視的にはほぼ均一に分布するように、混合液を常時攪拌している。なお、ここで「乳化分散材料」は、媒体液中に乳化又は分散させるべき材料を意味する。   In the liquid mixture supply tank 1, a liquid mixture containing a medium liquid (for example, water) and a liquid or solid emulsified dispersion material that does not dissolve in the medium liquid is stored. Although not shown in detail, a stirrer is provided in the liquid mixture supply tank 1, and this stirrer constantly stirs the liquid mixture so that the emulsified dispersion material is macroscopically distributed almost uniformly in the medium liquid. doing. Here, “emulsified dispersion material” means a material to be emulsified or dispersed in a medium liquid.

混合液供給タンク1内の混合液は、混合液圧送ポンプ2により、所定の流量で、熱交換器3を経由して混合液加圧ポンプ4に供給される。熱交換器3は、適当な伝熱媒体、例えばスチーム、高温の水(例えば80〜100℃)、高温の鉱油(例えば、100〜500℃)等を用いて、混合液を、乳化分散材料が水の中で乳化分散するのに適した所定の温度となるように加熱する。熱交換器3としては、例えば、2重管式熱交換器、コイル式熱交換器、プレート式熱交換器等を用いることができる。また、場合によっては、混合液を加熱するのではなく、冷却することもある。この場合は、伝熱媒体として、例えば低温の水(例えば0〜5℃)、低温の冷媒(例えば−20〜0℃)等を用いればよい。なお、混合液の温度を調節する必要がなければ、熱交換器3を省いてもよい。   The mixed solution in the mixed solution supply tank 1 is supplied to the mixed solution pressurizing pump 4 through the heat exchanger 3 at a predetermined flow rate by the mixed solution pressure feed pump 2. The heat exchanger 3 uses a suitable heat transfer medium such as steam, high-temperature water (for example, 80 to 100 ° C.), high-temperature mineral oil (for example, 100 to 500 ° C.), etc. Heat to a predetermined temperature suitable for emulsification and dispersion in water. As the heat exchanger 3, for example, a double pipe heat exchanger, a coil heat exchanger, a plate heat exchanger, or the like can be used. In some cases, the mixed solution may be cooled rather than heated. In this case, for example, low-temperature water (for example, 0 to 5 ° C.), low-temperature refrigerant (for example, −20 to 0 ° C.), or the like may be used as the heat transfer medium. Note that the heat exchanger 3 may be omitted if it is not necessary to adjust the temperature of the mixed solution.

混合液加圧ポンプ4は、混合液圧送ポンプ2から熱交換器3を経由して供給される混合液を、例えば30〜300MPa(300〜3000バール)に加圧して下流側に吐出する。そして、混合液加圧ポンプ4から吐出された高圧の混合液は、この高圧を維持しつつ、まず第1乳化分散装置5に供給される。第1乳化分散装置5は、後で詳しく説明するように、ジェット流による液・液せん断により、乳化分散材料を媒体液中に乳化分散させて乳化分散液を生成し、これを下流側に排出する。乳化分散材料の一部が媒体液中に乳化分散しなかった場合、この乳化分散材料は、後で説明する第2乳化分散装置7により乳化分散させられる。なお、ここで「乳化分散液」は、乳化させるべき材料及び/又は分散させるべき材料が媒体液中に乳化又は分散している液体(例えば、エマルジョン、サスペンション等)を意味する。   The liquid mixture pressurizing pump 4 pressurizes the liquid mixture supplied from the liquid mixture pressure feed pump 2 via the heat exchanger 3 to, for example, 30 to 300 MPa (300 to 3000 bar) and discharges it downstream. The high-pressure mixed liquid discharged from the mixed-liquid pressurizing pump 4 is first supplied to the first emulsifying / dispersing device 5 while maintaining this high pressure. As will be described in detail later, the first emulsifying dispersion device 5 generates an emulsified dispersion by emulsifying and dispersing the emulsified dispersion material in the medium liquid by liquid / liquid shearing by jet flow, and discharging this to the downstream side. To do. When a part of the emulsified and dispersed material is not emulsified and dispersed in the medium liquid, the emulsified and dispersed material is emulsified and dispersed by a second emulsifying and dispersing device 7 described later. Here, the “emulsified dispersion liquid” means a material to be emulsified and / or a liquid in which the material to be dispersed is emulsified or dispersed in a medium liquid (for example, emulsion, suspension, etc.).

第1乳化分散装置5から排出された乳化分散液は、第1添加剤供給ポート6を経由して第2乳化分散装置7に供給される。第1添加原料供給ポート6では、所定の第1添加剤が乳化分散液中に添加される。第1添加剤は1種類の添加剤でも複数種類の添加剤の混合物でもよい。なお、第1添加剤供給ポート6内の乳化分散液は高圧であるので、第1添加剤は、図示していない高圧ポンプにより第1添加剤供給ポート6に圧入される。なお、必要がなければ、第1添加剤は添加しなくてもよい。   The emulsified dispersion discharged from the first emulsifying / dispersing device 5 is supplied to the second emulsifying / dispersing device 7 via the first additive supply port 6. In the first additive raw material supply port 6, a predetermined first additive is added to the emulsified dispersion. The first additive may be one kind of additive or a mixture of plural kinds of additives. Since the emulsified dispersion in the first additive supply port 6 has a high pressure, the first additive is pressed into the first additive supply port 6 by a high-pressure pump (not shown). If not necessary, the first additive may not be added.

そして、第1添加剤が添加された乳化分散液は、第1添加剤供給ポート6から排出されて第2乳化分散装置7に供給される。第2乳化分散装置7は、第1乳化分散装置5によって生成された乳化分散液中に乳化分散していない乳化分散材料が存在する場合、この乳化分散材料を、基本的には第1乳化分散装置5と同様の液・液せん断により媒体液中に乳化分散させ、乳化分散材料が完全に乳化分散している乳化分散液を生成し、これを下流側に排出する。なお、乳化分散材料が第1乳化分散装置5によって十分に乳化分散する場合は、第2乳化分散装置7を省いてもよい。   Then, the emulsified dispersion liquid to which the first additive is added is discharged from the first additive supply port 6 and supplied to the second emulsification dispersion apparatus 7. When there is an emulsified dispersion material that is not emulsified and dispersed in the emulsified dispersion produced by the first emulsified dispersion device 5, the second emulsified dispersion device 7 basically uses the first emulsified dispersion material as the first emulsified dispersion. Emulsified and dispersed in the medium liquid by the same liquid / liquid shear as in the apparatus 5 to produce an emulsified dispersion in which the emulsified and dispersed material is completely emulsified and dispersed, and this is discharged downstream. In addition, when the emulsified dispersion material is sufficiently emulsified and dispersed by the first emulsifying and dispersing apparatus 5, the second emulsifying and dispersing apparatus 7 may be omitted.

第2乳化分散装置7から排出された乳化分散液は、第2添加剤供給ポート8を経由して多段圧力温度制御装置9に供給される。第2添加剤供給ポート8では、所定の第2添加剤が乳化分散液中に添加される。第2添加剤は1種類の添加剤でも複数種類の添加剤の混合物でもよい。なお、第2添加剤供給ポート8内の乳化分散液は高圧であるので、第2添加剤は、図示していない高圧ポンプにより第2添加剤供給ポート8に圧入される。なお、必要がなければ、第2添加剤は添加しなくてもよい。   The emulsified dispersion discharged from the second emulsifying dispersion device 7 is supplied to the multistage pressure temperature control device 9 via the second additive supply port 8. In the second additive supply port 8, a predetermined second additive is added to the emulsified dispersion. The second additive may be one kind of additive or a mixture of plural kinds of additives. Since the emulsified dispersion in the second additive supply port 8 is at a high pressure, the second additive is pressed into the second additive supply port 8 by a high-pressure pump (not shown). If not necessary, the second additive may not be added.

そして、第2添加剤が添加された乳化分散液は、第2添加原料供給ポート8から排出されて多段圧力温度制御装置9に供給される。多段圧力温度制御装置9は、後で詳しく説明するように、第2乳化分散装置7内の乳化分散液と第1乳化分散装置5内の乳化分散液とに対して所定の背圧をかけ、第1、第2乳化分散装置5、7の内部におけるバブリングの発生を防止するとともに、生成された乳化分散液の圧力を段階的ないしは漸次的に減圧し、多段圧力温度制御装置9の出口部における乳化分散液の圧力を、乳化分散液を大気圧下に解放してもバブリングが発生しない程度の圧力、例えば大気圧にまで低下させる。   Then, the emulsified dispersion to which the second additive is added is discharged from the second additive raw material supply port 8 and supplied to the multistage pressure temperature controller 9. As will be described in detail later, the multistage pressure and temperature control device 9 applies a predetermined back pressure to the emulsified dispersion in the second emulsification dispersion device 7 and the emulsification dispersion in the first emulsification dispersion device 5, While preventing the occurrence of bubbling inside the first and second emulsifying dispersion devices 5 and 7, the pressure of the generated emulsified dispersion is gradually or gradually reduced, and at the outlet of the multistage pressure and temperature control device 9. The pressure of the emulsified dispersion is reduced to a pressure at which bubbling does not occur even when the emulsified dispersion is released under atmospheric pressure, for example, atmospheric pressure.

図2は、第1乳化分散装置5の構造を模式的に示す図である。なお、第2乳化分散装置7の構造及び機能は、図2に示す第1乳化分散装置5と実質的には同様であるので、説明の重複を避けるため、以下では第1乳化分散装置5の構成及び機能のみを説明する。図2に示すように、第1乳化分散装置5は、互いに直列に接続された、ノズル部材11と、円筒形の通路部材12と、略円柱形の本体部13とを備えている。   FIG. 2 is a diagram schematically showing the structure of the first emulsifying dispersion device 5. The structure and function of the second emulsification dispersion device 7 are substantially the same as those of the first emulsification dispersion device 5 shown in FIG. Only the configuration and function will be described. As shown in FIG. 2, the first emulsification dispersion device 5 includes a nozzle member 11, a cylindrical passage member 12, and a substantially columnar main body 13 that are connected to each other in series.

ここで、ノズル部材11と通路部材12と本体部13とは、これらの中心軸が一直線となるように、すなわち同軸状となるように配置されている。本体部13は、混合液ないしは乳化分散液の流れ方向(図2中の位置関係では右向き)に関して、上流側から下流側に向かって順に並ぶ第1〜第3細孔部材14〜16を備えている。第1〜第3細孔部材14〜16は、それぞれ、該第1〜第3細孔部材14〜16をその中心軸方向に貫通する円柱形の第1〜第3細孔17〜19を有している。なお、第1〜第3細孔部材14〜16は、リング状のシール部材20を介して相互に接続されている。   Here, the nozzle member 11, the passage member 12, and the main body portion 13 are arranged so that their central axes are in a straight line, that is, coaxial. The main body 13 includes first to third pore members 14 to 16 that are arranged in order from the upstream side to the downstream side in the flow direction of the mixed liquid or the emulsified dispersion liquid (rightward in the positional relationship in FIG. 2). Yes. The first to third pore members 14 to 16 respectively have columnar first to third pores 17 to 19 that penetrate the first to third pore members 14 to 16 in the central axis direction. doing. The first to third pore members 14 to 16 are connected to each other via a ring-shaped seal member 20.

ここで、第1〜第3細孔部材14〜16の第1〜第3細孔17〜19の内直径をそれぞれd、d、dとすれば、各内直径d、d、dは、d>d>dの関係を満たすように設定されている。ここで、円筒形の通路部材12の内直径は、dより大きい値に設定されている。なお、通路部材12の内直径はdと同一であってもよい。また、各シール部材20の内直径はdより大きい値に設定されている。なお、第1〜第3細孔部材14〜16の内直径は、混合液ないしは乳化分散液の性状に応じて、例えば0.4〜4mmの範囲内で好ましく設定され、その長さは例えば4〜40mmの範囲内で好ましく設定される。また、ノズル部材11の内直径は、混合液ないしは乳化分散液の性状に応じて、例えば0.1〜0.5mmの範囲内で好ましく設定され、ノズル長さは例えば1〜4mmの範囲内で好ましく設定される。シール部材20の内直径は、例えば2〜8mmの範囲内で好ましく設定される。 Here, if the inner diameters of the first to third pores 17 to 19 of the first to third pore members 14 to 16 are d 1 , d 2 , and d 3 , respectively, the inner diameters d 1 and d 2 will be described. , D 3 are set so as to satisfy the relationship of d 2 > d 1 > d 3 . Here, the inner diameter of the cylindrical passage member 12 is set to d 2 greater than. Incidentally, the inner diameter of the passage member 12 may be the same as d 2. The inner diameter of each seal member 20 is set to d 2 greater than. The inner diameters of the first to third pore members 14 to 16 are preferably set within a range of 0.4 to 4 mm, for example, according to the properties of the mixed liquid or the emulsified dispersion, and the length thereof is, for example, 4 It is preferably set within a range of ˜40 mm. The inner diameter of the nozzle member 11 is preferably set within a range of, for example, 0.1 to 0.5 mm, and the nozzle length is within a range of, for example, 1 to 4 mm, depending on the properties of the mixed liquid or emulsified dispersion. Preferably set. The inner diameter of the seal member 20 is preferably set within a range of 2 to 8 mm, for example.

第1乳化分散装置5においては、比較的小径の第1細孔部材14ないしは第1細孔17は、比較的大径の通路部材12内の混合液に対して所定の背圧をかける。また、最も小径の第3細孔部材16ないしは第3細孔19は、最も大径の第2細孔部材15ないしは第2細孔18内の混合液ないしは乳化分散液に対して所定の背圧をかける。前記のとおり、リング状のシール部材20の内直径は、最も大径の第2細孔部材15ないしは第2細孔18の内直径d2より大きいので、混合液ないしは乳化分散液の圧力を瞬間的に緩和することにより、第1〜第3細孔部材14〜16が、それぞれ独立した減圧作用を生じさせることを可能にする。   In the first emulsifying / dispersing device 5, the first pore member 14 or the first pore 17 having a relatively small diameter applies a predetermined back pressure to the mixed liquid in the channel member 12 having a relatively large diameter. Further, the third pore member 16 or the third pore 19 having the smallest diameter has a predetermined back pressure against the mixed liquid or emulsified dispersion in the second pore member 15 or the second pore 18 having the largest diameter. multiply. As described above, since the inner diameter of the ring-shaped seal member 20 is larger than the inner diameter d2 of the second pore member 15 or the second pore 18 having the largest diameter, the pressure of the mixed liquid or the emulsified dispersion liquid is instantaneously adjusted. The first to third pore members 14 to 16 can cause independent pressure reducing actions by relaxing to the above.

第1乳化分散装置5においては、最も強いせん断が生ずる通路部材12に対して、この強いせん断によって生じようとするバブリングを防止するのに十分な背圧をかけることができる。また、最も小径の第3細孔部材16ないしは第3細孔19は、最も大径の第2細孔部材15による圧力緩和に対して、この圧力緩和によりバブリングが生じない背圧をかける。なお、第3細孔部材16の下流側でこれと連通する、第1添加原料供給ポート6への円筒形の接続部材21の内直径は、第3細孔部材16ないしは第3細孔19の内直径d3に対して十分に大きくなっている。   In the 1st emulsification dispersion | distribution apparatus 5, back pressure sufficient to prevent the bubbling which is going to be produced by this strong shearing can be applied with respect to the channel | path member 12 in which the strongest shearing occurs. In addition, the third pore member 16 or the third pore 19 having the smallest diameter applies a back pressure that does not cause bubbling due to the pressure relaxation to the pressure relief by the second pore member 15 having the largest diameter. The inner diameter of the cylindrical connection member 21 communicating with the first additive raw material supply port 6 on the downstream side of the third pore member 16 is the third pore member 16 or the third pore 19. It is sufficiently large with respect to the inner diameter d3.

かくして、混合液加圧ポンプ4によって、例えば30〜300MPa(300〜3000バール)の高い圧力に加圧された混合液は、ノズル部材11により、高速のジェット流に変換されて通路部材12内に噴出する。通路部材12内に噴出したジェット流は、周囲に存在する混合液に強いせん断力を加えて乳化分散材料の乳化分散を生じさせる。そして、混合液のジェット流自体は、その運動エネルギを失いつつ第1〜第3細孔部材14〜16内に流入し、第1〜第3細孔部材14〜16内に存在する混合液にせん断力を加え、乳化分散材料の乳化分散を生じさせて乳化分散液を生成する。   Thus, the mixed liquid pressurized to a high pressure of, for example, 30 to 300 MPa (300 to 3000 bar) by the mixed liquid pressurizing pump 4 is converted into a high-speed jet flow by the nozzle member 11 and is then introduced into the passage member 12. Erupts. The jet stream ejected into the passage member 12 applies a strong shearing force to the surrounding liquid mixture to cause emulsification dispersion of the emulsified dispersion material. And the jet flow itself of the mixed liquid flows into the first to third pore members 14 to 16 while losing its kinetic energy, and turns into the mixed liquid existing in the first to third pore members 14 to 16. A shearing force is applied to produce an emulsified dispersion of the emulsified dispersion material to produce an emulsified dispersion.

なお、第1〜第3細孔部材14〜16は、軸心部を通過する混合液のジェット流と、その周囲に存在する混合液との間における液・液せん断により、ジェット流の運動エネルギがせん断エネルギや熱エネルギに変換され、その運動エネルギが次第に失われる小径の細孔を有するものである。第1〜第3細孔部材14〜16ないしは第1〜第3細孔17〜19の内直径及び段数の設定は、バブリングを発生させることなく強力な乳化分散作用を生じさせる上で極めて重要な要素である。   Note that the first to third fine pore members 14 to 16 have kinetic energy of the jet flow due to liquid / liquid shear between the jet flow of the mixed liquid passing through the axial center and the mixed liquid existing therearound. Is converted into shear energy or heat energy, and has small-diameter pores from which the kinetic energy is gradually lost. The setting of the inner diameter and the number of steps of the first to third pore members 14 to 16 or the first to third pores 17 to 19 is extremely important for producing a powerful emulsifying and dispersing action without causing bubbling. Is an element.

このように、第1、第2乳化分散装置5、7には、混合液加圧ポンプ4によって混合液に高圧がかけられるので、第1、第2乳化分散装置5、7内で混合液に強いせん断力を加えることができ、乳化分散材料を十分に微粒化することができる。また、後で説明する多段圧力温度制御装置9によって第1、第2乳化分散装置5、7に背圧がかけられるので、第1、第2乳化分散装置5、7内におけるバブリングの発生を防止することができる。   In this manner, since the mixed liquid is pressurized by the mixed liquid pressurizing pump 4 in the first and second emulsifying and dispersing apparatuses 5 and 7, the mixed liquid is converted into the mixed liquid in the first and second emulsifying and dispersing apparatuses 5 and 7. A strong shearing force can be applied, and the emulsified and dispersed material can be sufficiently atomized. In addition, since back pressure is applied to the first and second emulsifying and dispersing devices 5 and 7 by the multistage pressure and temperature control device 9 described later, the occurrence of bubbling in the first and second emulsifying and dispersing devices 5 and 7 is prevented. can do.

なお、図2に示す第1〜第3細孔部材14〜16は、それぞれ、内直径が互いに異なる単一の円筒部材で構成されている。しかしながら、第1〜第3細孔部材14〜16を、それぞれ、複数(例えば2〜3個)の円筒部材で構成してもよい。この場合、各細孔部材14〜16において、各円筒部材間にはシール部材20を介設するのが好ましい。   In addition, the 1st-3rd fine pore members 14-16 shown in FIG. 2 are respectively comprised by the single cylindrical member from which an internal diameter mutually differs. However, each of the first to third pore members 14 to 16 may be composed of a plurality of (for example, 2 to 3) cylindrical members. In this case, in each pore member 14-16, it is preferable to interpose the sealing member 20 between each cylindrical member.

図3は、多段圧力温度制御装置9の構造を模式的に示す図である。多段圧力温度制御装置9は、第2乳化分散装置7から第2添加原料供給ポート8を経由して供給される乳化分散液を受け入れ、乳化分散液の圧力を段階的ないしは漸次的に低下させるととともに、第1、第2乳化分散装置5、7内の乳化分散液に背圧をかける。また、多段圧力温度制御装置9は、せん断力による乳化分散により高温となった乳化分散液を、所定の温度、例えば室温(20〜30℃)まで冷却する。また、乳化分散液の温度ひいては粘度を制御することにより、補助的に圧力低下を制御する。   FIG. 3 is a diagram schematically showing the structure of the multistage pressure temperature control device 9. When the multistage pressure and temperature control device 9 receives the emulsified dispersion supplied from the second emulsifying and dispersing device 7 via the second additive raw material supply port 8, and reduces the pressure of the emulsified dispersion stepwise or gradually. At the same time, a back pressure is applied to the emulsified dispersion in the first and second emulsifying dispersion devices 5 and 7. Moreover, the multistage pressure temperature control apparatus 9 cools the emulsified dispersion liquid, which has become high temperature due to the emulsification dispersion by the shearing force, to a predetermined temperature, for example, room temperature (20 to 30 ° C.). Further, the pressure drop is controlled in an auxiliary manner by controlling the temperature and hence the viscosity of the emulsified dispersion.

図3に示すように、多段圧力温度制御装置9は、乳化分散液の流れ方向(図3中の位置関係では右向き)に関して上流側から下流側に向かって順に直列に接続された第1〜第3制御部23〜25を備えている。ここで、第1制御部23は、その内部を冷却水(伝熱媒体)が流通する第1外套26と、この第1外套26の内部に配置されその内部を乳化分散液が流通する第1伝熱管29とを有している。第2制御部24は、その内部を冷却水が流通する第2外套27と、この第2外套27の内部に配置されその内部を乳化分散液が流通する第2伝熱管30とを有している。第3制御部25は、その内部を冷却水が流通する第3外套28と、この第3外套28の内部に配置されその内部を乳化分散液が流通する第3伝熱管31とを有している。   As shown in FIG. 3, the multistage pressure temperature control device 9 includes first to first connected in series from the upstream side to the downstream side in the flow direction of the emulsified dispersion (rightward in the positional relationship in FIG. 3). 3 control units 23 to 25 are provided. Here, the first control unit 23 is disposed in the first mantle 26 through which cooling water (heat transfer medium) flows, and the first outer mantle 26 is disposed in the first mantle 26 and the emulsified dispersion liquid flows through the first mantle 26. And a heat transfer tube 29. The second control unit 24 includes a second mantle 27 through which cooling water flows, and a second heat transfer tube 30 that is disposed inside the second mantle 27 and through which the emulsified dispersion flows. Yes. The third control unit 25 includes a third outer sheath 28 through which cooling water flows, and a third heat transfer tube 31 that is disposed inside the third outer sheath 28 and through which the emulsified dispersion flows. Yes.

多段圧力温度制御装置9においては、第1〜第3伝熱管29〜31は、いずれもその横断面が円形であり、連通部材35を介して互いに直列に接続されている。なお、乳化分散液の流れ方向に関して、第1伝熱管29の上流側の端部及び第3伝熱管31の下流側の端部は、それぞれ連通部材35を介して、これらの上流側及び下流側の配管に接続されている。   In the multistage pressure and temperature control device 9, the first to third heat transfer tubes 29 to 31 are all circular in cross section and are connected in series via the communication member 35. Regarding the flow direction of the emulsified dispersion, the upstream end of the first heat transfer tube 29 and the downstream end of the third heat transfer tube 31 are respectively connected to the upstream side and the downstream side via the communication member 35. Connected to the pipe.

多段圧力温度制御装置9において、第1〜第3伝熱管29〜31の内直径、全長及び全体的形状ないしは配管形状(パイピング、コンフィギュレーション)は、第1〜第3伝熱管29〜31の圧力低下をそれぞれΔP〜ΔPとすれば、第1〜第3伝熱管29〜31内を流れる乳化分散液の流速、密度及び粘度等の物性を考慮した上で、ΔP>ΔP>ΔPの関係を満たすように設定されている。すなわち、所定の物性ないしは組成の乳化分散液が得られるように、第1〜第3伝熱管29〜31内を流れる乳化分散液の温度、流速、密度及び粘度を好ましく設定した上で、ΔP>ΔP>ΔPの関係を満たすように、第1〜第3伝熱管29〜31の内直径、全長及び全体的形状ないしは配管形状を決定する。 In the multistage pressure and temperature control device 9, the inner diameter, the overall length, and the overall shape or piping shape (piping, configuration) of the first to third heat transfer tubes 29 to 31 are the pressures of the first to third heat transfer tubes 29 to 31. Assuming that the reductions are ΔP 1 to ΔP 3 , respectively, ΔP 1 > ΔP 3 > ΔP in consideration of physical properties such as flow velocity, density and viscosity of the emulsified dispersion flowing in the first to third heat transfer tubes 29 to 31. It is set to satisfy the relationship of 2 . That is, the temperature, flow rate, density and viscosity of the emulsified dispersion flowing in the first to third heat transfer tubes 29 to 31 are preferably set so that an emulsified dispersion having a predetermined physical property or composition is obtained, and ΔP 1 The inner diameter, the overall length, and the overall shape or pipe shape of the first to third heat transfer tubes 29 to 31 are determined so as to satisfy the relationship of> ΔP 3 > ΔP 2 .

なお、このように多段圧力温度制御装置9の第1〜第3伝熱管29〜31の圧力低下ΔP〜ΔPを、ΔP>ΔP>ΔPの関係を満たすように設定するのは、本願発明者が、多段圧力温度制御装置9の第1〜第3伝熱管29〜31における圧力低下の種々の組合せについてバブリングの発生の有無を実験により確認した結果に基づくものである。この実験により、バブリングが発生しない圧力低下の組合せは、上記条件を満たす場合のみであり、この条件を満たさない組合せではバブリングが発生することが判明した。 Note that to set so as to satisfy this manner the pressure drop ΔP 1 ~ΔP 3 of the first to third heat transfer tubes 29 to 31 of the multi-stage pressure temperature controller 9, ΔP 1> ΔP 3> of [Delta] P 2 related The inventor of the present application is based on the result of confirming the occurrence of bubbling by experiment for various combinations of pressure drop in the first to third heat transfer tubes 29 to 31 of the multistage pressure and temperature control device 9. From this experiment, it was found that the combination of pressure drops where bubbling does not occur is only when the above condition is satisfied, and bubbling occurs when the combination does not satisfy this condition.

前記のとおり、第1〜第3伝熱管29〜31の内直径、全長及び全体的形状ないしは配管形態は、乳化分散液の流速、密度及び粘度等の物性に応じて、ΔP>ΔP>ΔPの関係を満たすように設定されるが、第1〜第3伝熱管29〜31における圧力低下量ΔP〜ΔPは、以下で説明する手法により算出ないしは推算することができる。 As described above, the inner diameter, the overall length, the overall shape, or the piping form of the first to third heat transfer tubes 29 to 31 are determined according to the physical properties such as the flow rate, density, and viscosity of the emulsified dispersion, ΔP 1 > ΔP 3 > is set so as to satisfy the relationship of [Delta] P 2, but the pressure reduction amount ΔP 1 ~ΔP 3 in the first to third heat transfer tubes 29 to 31 can be calculated or estimated by a method described below.

<乳化分散液が層流の場合>
まず、第1〜第3伝熱管29〜31内を乳化分散液が層流で流れる場合の圧力低下量ΔP〜ΔPの算出手法を説明する。この場合は、第1〜第3伝熱管29〜31の内直径をそれぞれD〜Dとし、第1〜第3伝熱管29〜31の相当長さをそれぞれLe〜Leとし、第1〜第3伝熱管29〜31内の乳化分散液の流速をそれぞれU〜Uとし、第1〜第3伝熱管29〜31内の乳化分散液の粘度をそれぞれμ〜μとし、重力換算係数をg(9.8kg・m/Kg・sec2)とすれば、圧力低下量ΔP〜ΔPは、それぞれ、下記の式1〜3、すなわちハーゲン・ポアズイユ(Hagen-Poiseuille)の式により算出することができる。

ΔP=32・U1・Le1・μ1/(g・D1 )・・・・・・・・・・・・・・・式1
ΔP=32・U2・Le2・μ2/(g・D2 )・・・・・・・・・・・・・・・式2
ΔP=32・U3・Le3・μ3/(g・D3 )・・・・・・・・・・・・・・・式3
<When the emulsified dispersion is laminar>
First, a method of calculating pressure drop amounts ΔP 1 to ΔP 3 when the emulsified dispersion flows in a laminar flow in the first to third heat transfer tubes 29 to 31 will be described. In this case, the inner diameters of the first to third heat transfer tubes 29 to 31 are D 1 to D 3 , the corresponding lengths of the first to third heat transfer tubes 29 to 31 are Le 1 to Le 3 , respectively. The flow rates of the emulsified dispersions in the first to third heat transfer tubes 29 to 31 are U 1 to U 3 , respectively, and the viscosities of the emulsified dispersions in the first to third heat transfer tubes 29 to 31 are μ 1 to μ 3 , respectively. When the gravity conversion coefficient is g (9.8 kg · m / Kg · sec 2 ), the pressure drop amounts ΔP 1 to ΔP 3 are respectively expressed by the following formulas 1 to 3, that is, Hagen-Poiseuille It can be calculated by an equation.

ΔP 1 = 32 ・ U 1・ Le 1・ μ 1 / (g ・ D 1 2 ) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Equation 1
ΔP 2 = 32 ・ U 2・ Le 2・ μ 2 / (g ・ D 2 2 ) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 2
ΔP 3 = 32 ・ U 3・ Le 3・ μ 3 / (g ・ D 3 2 ) ・ ・ ・ ・ ・ Equation 3

なお、ここで「相当長さLe」は、種々の形態の実際の伝熱管の圧力低下ないしは圧力損失と同一の圧力低下ないしは圧力損失を生じさせる、上記伝熱管と内直径が同一の直管の長さを意味する(乳化分散液が乱流で流れる後記の場合も同様)。つまり、本発明では、種々の管継ぎ手等を有しかつ種々の全体形状をもつ種々の伝熱管を、同一の圧力低下を生じさせる直管に置き換える(同一視する)ことにより、ハーゲン・ポアズイユの式を利用することができるようにしている。なお、種々の形態の管ないしは管継ぎ手の「相当長さ」の算出方法は、当業者にはよく知られているので、その詳しい説明は省略する。第1〜第3伝熱管29〜31の断面が円形でない場合、例えば楕円、正方形、矩形等である場合は、上記内直径D〜Dに代えて「相当直径(4×管断面積/浸辺長)」を用いればよい(乳化分散液が乱流で流れる後記の場合も同様)。 Here, the “equivalent length Le” is a straight pipe having the same inner diameter as that of the heat transfer pipe, which causes the same pressure drop or pressure loss as the pressure drop or pressure loss of actual heat transfer pipes of various forms. It means the length (the same applies to the case described below where the emulsified dispersion flows in turbulent flow). In other words, in the present invention, by replacing various heat transfer tubes having various pipe joints and the like and having various overall shapes with straight pipes that cause the same pressure drop (identified), Hagen-Poiseuille's The formula can be used. It should be noted that methods for calculating the “equivalent length” of various forms of pipes or pipe joints are well known to those skilled in the art and will not be described in detail. When the cross section of the first to third heat transfer tubes 29 to 31 is not circular, for example, an ellipse, a square, a rectangle or the like, instead of the inner diameters D 1 to D 3 , “equivalent diameter (4 × tube cross-sectional area / (Soaking length) ”may be used (the same applies to the case described later in which the emulsified dispersion flows in a turbulent flow).

このように、第1〜第3伝熱管29〜31内の乳化分散液の流れが層流である場合、すなわちレイノルズ(Reynolds)数がおおむね2300以下である場合、第1〜第3伝熱管29〜31における圧力低下ないしは圧力損失は、第1〜第3伝熱管の内面の粗面度にかかわらず、それぞれ上記式1〜式3、すなわちハーゲン・ポアズイユの式で算出することができる。なお、例えば、乳化分散液の粘度μが3.6kg/m・hr(1センチポイズ)であり、密度ρが1000kg/mであり、流速Uが1800m/hr(0.5m/秒)である場合において、伝熱管の内直径Dを0.002m(2mm)とすれば、伝熱管内の乳化分散液の流れのレイノルズ数は下記のとおり1000であり、したがって乳化分散液の流れは層流である。

Re=D・U・ρ/μ=0.002×1800×1000/3.6=1000
Thus, when the flow of the emulsified dispersion in the first to third heat transfer tubes 29 to 31 is a laminar flow, that is, when the Reynolds number is approximately 2300 or less, the first to third heat transfer tubes 29. Regardless of the roughness of the inner surfaces of the first to third heat transfer tubes, the pressure drop or pressure loss at ˜31 can be calculated by the above formulas 1 to 3, that is, the Hagen-Poiseuille formula, respectively. For example, the viscosity μ of the emulsified dispersion is 3.6 kg / m · hr (1 centipoise), the density ρ is 1000 kg / m 3 , and the flow rate U is 1800 m / hr (0.5 m / sec). In this case, if the inner diameter D of the heat transfer tube is 0.002 m (2 mm), the Reynolds number of the flow of the emulsified dispersion in the heat transfer tube is 1000 as follows, and therefore the flow of the emulsified dispersion is a laminar flow. is there.

Re = D · U · ρ / μ = 0.002 × 1800 × 1000 / 3.6 = 1000

かくして、第1〜第3伝熱管29〜31内に乳化分散液を層流で流す場合は、まず第1〜第3伝熱管29〜31内を流れる乳化分散液の温度、流速、密度及び粘度を設定した上で、上記式1〜式3を利用して第1〜第3伝熱管29〜31の圧力低下量ΔP〜ΔPがΔP>ΔP>ΔPの関係を満たすように、第1〜第3伝熱管29〜31の内直径、全長及び全体的形状ないしは配管形状を決定すればよい。 Thus, when the emulsified dispersion is caused to flow through the first to third heat transfer tubes 29 to 31 in a laminar flow, first, the temperature, flow velocity, density and viscosity of the emulsified dispersion flowing in the first to third heat transfer tubes 29 to 31. after having set the, so that the pressure reduction amount ΔP 1 ~ΔP 3 of the first to third heat transfer tubes 29 to 31 using the above formula 1 formula 3 satisfies the relationship ΔP 1> ΔP 3> ΔP 2 What is necessary is just to determine the inner diameter of the 1st-3rd heat exchanger tubes 29-31, the full length, and the whole shape thru | or piping shape.

<乳化分散液が層流の場合>
次に、第1〜第3伝熱管29〜31内を乳化分散液が乱流で流れる場合の圧力低下量ΔP〜ΔPの算出手法を説明する。この場合、第1〜第3伝熱管29〜31が平滑管であれば、第1〜第3伝熱管29〜31における圧力低下ΔP〜ΔPは、それぞれ、下記の式4〜6、すなわちカルマン・ニクラーゼ(Karman-Nikuradse)の式により算出することができる。なお、この乳化分散液製造システムSでは、第1〜第3伝熱管29〜31にはすべて平滑管、例えば内壁面の粗度がガラス管の粗度と同程度である平滑なステンレススチール管、銅管等を用いている。
<When the emulsified dispersion is laminar>
Next, a method for calculating the pressure drop amounts ΔP 1 to ΔP 3 when the emulsified dispersion flows in a turbulent flow in the first to third heat transfer tubes 29 to 31 will be described. In this case, if the first to third heat transfer tubes 29 to 31 are smooth tube, the pressure drop ΔP 1 ~ΔP 3 in the first to third heat transfer tubes 29 to 31, respectively, formulas 4-6 below, namely It can be calculated by the Karman-Nikuradse equation. In this emulsified dispersion manufacturing system S, all of the first to third heat transfer tubes 29 to 31 are smooth tubes, for example, smooth stainless steel tubes whose inner wall surface has the same roughness as the glass tube, A copper tube or the like is used.

ΔP=4・f1・[(ρ1・U1 2/(2・g)]・(Le1/D1)・・・・・・・・・・・式4
但し 1/f1 0.5=4・log[(D1・U1・ρ1/μ1)・f1 0.5]−0.4

ΔP=4・f2・[(ρ2・U2 2/(2・g)]・(Le2/D2)・・・・・・・・・・・式5
但し 1/f2 0.5=4・log[(D2・U2・ρ2/μ2)・f2 0.5]−0.4

ΔP=4・f3・[(ρ3・U3 2/(2・g)]・(Le3/D3)・・・・・・・・・・・式6
但し 1/f3 0.5=4・log[(D3・U3・ρ3/μ3)・f3 0.5]−0.4
ΔP 1 = 4 ・ f 1・ [(ρ 1・ U 1 2 / (2 ・ g)] ・ (Le 1 / D 1 ) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Equation 4
However, 1 / f 1 0.5 = 4 · log [(D 1・ U 1・ ρ 1 / μ 1 ) ・ f 1 0.5 ] −0.4

ΔP 2 = 4 ・ f 2・ [(ρ 2・ U 2 2 / (2 ・ g)] ・ (Le 2 / D 2 ) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Equation 5
However, 1 / f 2 0.5 = 4 · log [(D 2 · U 2 · ρ 2 / μ 2 ) · f 2 0.5 ] −0.4

ΔP 3 = 4 ・ f 3・ [(ρ 3・ U 3 2 / (2 ・ g)] ・ (Le 3 / D 3 ) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Equation 6
However, 1 / f 3 0.5 = 4 · log [(D 3・ U 3・ ρ 3 / μ 3 ) ・ f 3 0.5 ] −0.4

なお、式4〜式6において、ρ〜ρは、それぞれ、第1〜第3伝熱管29〜31内を流れる乳化分散液の密度である。また、f〜fは、第1〜第3伝熱管29〜31の管摩擦係数であり、第1〜第3伝熱管29〜31が平滑管であるので、レイノルズ数のみの関数である。その他の記号の意味は、乳化分散液が層流で流れる場合と同一である。 In Equations 4 to 6, ρ 1 to ρ 3 are the densities of the emulsified dispersion flowing in the first to third heat transfer tubes 29 to 31, respectively. Further, f 1 to f 3 are tube friction coefficients of the first to third heat transfer tubes 29 to 31, and the first to third heat transfer tubes 29 to 31 are smooth tubes, and thus are functions only of the Reynolds number. . The meaning of the other symbols is the same as when the emulsified dispersion flows in a laminar flow.

このように、第1〜第3伝熱管29〜31内の乳化分散液の流れが乱流である場合、すなわちレイノルズ(Reynolds)数がおおむね2300を超える場合、第1〜第3伝熱管29〜31における圧力低下ないしは圧力損失は、第1〜第3伝熱管29〜31が平滑管であれば、それぞれ上記式4〜式6、すなわちカルマン・ニクラーゼの式で算出することができる。なお、例えば、乳化分散液の粘度μが3.6kg/m・hr(1センチポイズ)であり、密度ρが1000kg/mであり、流速Uが3600m/hr(1m/秒)である場合において、伝熱管の内直径Dを0.003m(3mm)とすれば、伝熱管内の乳化分散液の流れのレイノルズ数は下記のとおり3000であり、したがって乳化分散液の流れは乱流である。

Re=D・U・ρ/μ=0.003×3600×1000/3.6=3000
Thus, when the flow of the emulsified dispersion in the first to third heat transfer tubes 29 to 31 is a turbulent flow, that is, when the Reynolds number exceeds about 2300, the first to third heat transfer tubes 29 to When the first to third heat transfer tubes 29 to 31 are smooth tubes, the pressure drop or pressure loss at 31 can be calculated by the above equations 4 to 6, that is, the Kalman niclase equation, respectively. For example, when the viscosity μ of the emulsified dispersion is 3.6 kg / m · hr (1 centipoise), the density ρ is 1000 kg / m 3 , and the flow rate U is 3600 m / hr (1 m / sec). If the inner diameter D of the heat transfer tube is 0.003 m (3 mm), the Reynolds number of the flow of the emulsified dispersion in the heat transfer tube is 3000 as follows, and therefore the flow of the emulsified dispersion is turbulent.

Re = D ・ U ・ ρ / μ = 0.003 × 3600 × 1000 / 3.6 = 3000

かくして、第1〜第3伝熱管29〜31内に乳化分散液を乱流で流す場合は、まず第1〜第3伝熱管29〜31内を流れる乳化分散液の温度、流速、密度及び粘度を設定した上で、上記式4〜式6を利用して第1〜第3伝熱管29〜31の圧力低下量ΔP〜ΔPがΔP>ΔP>ΔPの関係を満たすように、第1〜第3伝熱管29〜31の内直径、全長及び全体的形状ないしは配管形状を決定すればよい。 Thus, when the emulsified dispersion is caused to flow through the first to third heat transfer tubes 29 to 31 by turbulent flow, first, the temperature, flow velocity, density and viscosity of the emulsified dispersion flowing through the first to third heat transfer tubes 29 to 31. after having set the, so that the pressure reduction amount ΔP 1 ~ΔP 3 of the first to third heat transfer tubes 29 to 31 using the above equation 4 to equation 6 satisfies the relationship ΔP 1> ΔP 3> ΔP 2 What is necessary is just to determine the inner diameter of the 1st-3rd heat exchanger tubes 29-31, the full length, and the whole shape thru | or piping shape.

前記のとおり、多段圧力温度制御装置9においては、第1〜第3伝熱管29〜31の内直径、全長及び全体的形状ないしは配管形状は、乳化分散液の粘度及び密度を考慮しつつ、第1〜第3伝熱管29〜31の圧力低下ΔP〜ΔPがΔP>ΔP>ΔPの関係を満たすように好ましく決定されるが、この実施形態では、第1伝熱管29及び第2伝熱管30はコイル状の管(蛇管)である。 As described above, in the multi-stage pressure and temperature control device 9, the inner diameter, the overall length, and the overall shape or the pipe shape of the first to third heat transfer tubes 29 to 31 are determined in consideration of the viscosity and density of the emulsified dispersion liquid. The pressure drops ΔP 1 to ΔP 3 of the first to third heat transfer tubes 29 to 31 are preferably determined so as to satisfy the relationship of ΔP 1 > ΔP 3 > ΔP 2 , but in this embodiment, the first heat transfer tube 29 and the first heat transfer tube 29 The two heat transfer tubes 30 are coiled tubes (conduit tubes).

そして、第1伝熱管29では、その圧力低下量ΔPを最大にするために、内直径は比較的小さく、管全長は比較的長く、コイル直径は比較的小さく、コイルピッチは比較的小さく設定されている。すなわち、第1伝熱管29は、コイル直径が小さい、密に巻かれたコイル状の管である。他方、第2伝熱管30では、その圧力低下量ΔPを最小にするために、内直径は比較的大きく、管全長は比較的短く、コイル直径は比較的小さく、コイルピッチは比較的小さく設定されている。すなわち、第2伝熱管30は、コイル直径が大きい、疎に巻かれたコイル状の管である。 Then, the first heat transfer pipe 29, in order to maximize its pressure reduction amount [Delta] P 1, the inner diameter is relatively small, the pipe total length is relatively long, the coil diameter is relatively small, the coil pitch is relatively small set Has been. That is, the first heat transfer tube 29 is a closely wound coiled tube having a small coil diameter. On the other hand, the second heat transfer pipe 30, in order to make the pressure decrease amount [Delta] P 2 to a minimum, the inner diameter is relatively large, the tube overall length is relatively short, the coil diameter is relatively small, the coil pitch is relatively small set Has been. That is, the second heat transfer tube 30 is a sparsely coiled tube having a large coil diameter.

また、第3伝熱管31は、全体的形状ないしは配管形状が矩形波の形状の管、すなわち矩形の凹凸を繰り返す形状の管である。そして、この第3伝熱管31は、図3中にその一部を拡大して示しているように、複数の直管37が各折れ曲がり部でそれぞれ90°エルボ38を用いて接続された組立体構造のものである。ここで、第3伝熱管31の全長、直管37の内直径、90°エルボ38の形状は、該第3伝熱管31における圧力低下量ΔPが、第1伝熱管29の圧力低下量ΔPより小さく、かつ第2伝熱管30の圧力低下量ΔPより大きくなるように好ましく設定されている。なお、第3伝熱管31は、分解してその内部を容易に清掃することができる。 The third heat transfer tube 31 is a tube having an overall shape or a rectangular wave shape, that is, a tube having a shape in which rectangular irregularities are repeated. The third heat transfer tube 31 is an assembly in which a plurality of straight pipes 37 are connected to each other using a 90 ° elbow 38 at each bent portion, as shown in an enlarged view in FIG. Of structure. Here, the total length of the third heat transfer tube 31, the inner diameter of the straight tube 37, and the shape of the 90 ° elbow 38 are such that the pressure drop amount ΔP 3 in the third heat transfer tube 31 is the pressure drop amount ΔP 3 in the first heat transfer tube 29. It is preferably set to be smaller than 1 and larger than the pressure drop amount ΔP 2 of the second heat transfer tube 30. In addition, the 3rd heat exchanger tube 31 can decompose | disassemble and can clean the inside easily.

第1〜第3伝熱管29〜31の寸法ないしは全体的形状の一例を以下に示す。
<第1伝熱管>
内直径D 1mm
管全長L 5m
相当長さLe 6m
全体的形状 コイル状(蛇管)
コイル直径:50mm
コイルピッチ:15mm
An example of the dimensions or overall shapes of the first to third heat transfer tubes 29 to 31 is shown below.
<First heat transfer tube>
Inner diameter D 1 1mm
Total length L 1 5m
Equivalent length Le 1 6m
Overall shape Coiled (serpentine)
Coil diameter: 50mm
Coil pitch: 15mm

<第2伝熱管>
内直径D 3mm
管全長L 3m
相当長さLe 3.5m
全体的形状 コイル状(蛇管)
コイル直径:100mm
コイルピッチ:30mm
<Second heat transfer tube>
Inner diameter D 2 3 mm
Tube total length L 2 3m
Equivalent length Le 2 3.5m
Overall shape Coiled (serpentine)
Coil diameter: 100mm
Coil pitch: 30mm

<第3伝熱管>
内直径D 2mm
管全長L 4m
相当長さLe 4.5m
全体的形状 矩形波状
1つの矩形の幅:10mm
1つの矩形の長さ:20mm
<Third heat transfer tube>
Inner diameter D 3 2mm
Total length L 3 4m
Equivalent length Le 3 4.5m
Overall shape Rectangular wave shape
Width of one rectangle: 10mm
Length of one rectangle: 20mm

図4に、多段圧力温度制御装置9の第1〜第3制御部23〜25(第1〜第3伝熱管29〜31)における乳化分散液の位置的な圧力変化の一例を示す。図4に示すように、多段圧力温度制御装置9内では、乳化分散液の圧力は段階的ないしは漸次的に低下し、第3制御部25(第3伝熱管31)の出口部では、大気圧ないしはほぼ大気圧となっている。このように、多段圧力温度制御装置9内では、乳化分散液の圧力が段階的ないしは漸次的に低下させられ急激ないしは瞬時の圧力低下が起こらないので、乳化分散液が乳化分散液製造システムSから外部に排出される際に、乳化分散液中にバブリングが発生しない。また、乳化分散液製造システムSから外部に排出される乳化分散液の温度を好ましく制御することができる。このため、実質的に界面活性剤を用いることなく、乳化分散液の製品としての品質を高めることができ、かつ、エネルギの損失を低減してエネルギ効率を高めることができる。   In FIG. 4, an example of the positional pressure change of the emulsified dispersion in the 1st-3rd control parts 23-25 (1st-3rd heat exchanger tube 29-31) of the multistage pressure temperature control apparatus 9 is shown. As shown in FIG. 4, the pressure of the emulsified dispersion decreases stepwise or gradually in the multistage pressure and temperature control device 9, and atmospheric pressure is generated at the outlet of the third control unit 25 (third heat transfer tube 31). Or it is almost atmospheric pressure. In this way, in the multi-stage pressure and temperature control device 9, the pressure of the emulsified dispersion is lowered stepwise or gradually and no sudden or instantaneous pressure drop occurs, so that the emulsified dispersion is removed from the emulsified dispersion production system S. No bubbling occurs in the emulsified dispersion when discharged to the outside. Moreover, the temperature of the emulsified dispersion discharged from the emulsified dispersion production system S to the outside can be preferably controlled. For this reason, it is possible to improve the quality of the emulsified dispersion as a product without substantially using a surfactant, and to reduce energy loss and increase energy efficiency.

多段圧力温度制御装置9は、第1、第2乳化分散装置5、7に対して必要な背圧、すなわちバブリングの発生を防止することができる背圧を設定することができる一方、この背圧を段階的ないしは漸次的に減圧して最終的には大気に解放してもバブリングが発生しない圧力まで低下させることができる。その際、第1〜第3伝熱管29〜31の内直径ないしは相当内直径と、全長(管長)ないしは相当長さと、全体的形状とを好ましく組み合せることにより、背圧あるいは背圧の減圧度に高い自由度でもって対応することができる。   The multi-stage pressure and temperature control device 9 can set a required back pressure for the first and second emulsification dispersing devices 5 and 7, that is, a back pressure that can prevent the occurrence of bubbling. Can be reduced to a pressure at which bubbling does not occur even if the pressure is gradually reduced or gradually released to the atmosphere. At that time, the pressure reduction degree of the back pressure or the back pressure is preferably obtained by combining the inner diameter or the corresponding inner diameter of the first to third heat transfer tubes 29 to 31 with the total length (pipe length) or the corresponding length and the overall shape. Can be handled with a high degree of freedom.

なお、この乳化分散液製造システムSにおいては、水あるいはその他の種々の媒体液(例えば、メタノール、エタノール、あるいはこれらの水溶液等)を用いることができるが、これらの媒体液を臨界状態として乳化分散材料を乳化分散させてもよい。例えば、媒体液が水であり、乳化分散材料がグリセロリン脂質であるレシチンある場合は、およそ次のような工程で乳化分散材料を乳化分散させればよい。   In this emulsified dispersion production system S, water or other various medium liquids (for example, methanol, ethanol, or an aqueous solution thereof) can be used, and these medium liquids are emulsified and dispersed in a critical state. The material may be emulsified and dispersed. For example, when the medium liquid is water and the emulsified dispersion material is lecithin, which is a glycerophospholipid, the emulsified dispersion material may be emulsified and dispersed in the following steps.

すなわち、まず混合液供給タンク1内に、所定量の水及びレシチン並びにその他の必要な添加剤を入れて攪拌機(図示せず)で攪拌し、巨視的ないしはマクロ的には媒体液である水の中にレシチン及び添加剤の微粒子がほぼ均一に分布している混合液を調製する。そして、この混合液を圧送ポンプ2により所定の流量で熱交換器3を経由して、混合液加圧ポンプ4に供給する。ここで、熱交換器3及び混合液加圧ポンプ4により、混合液を、媒体液である水の臨界温度である374.2℃以上の温度(例えば400℃)に昇温するとともに、水の臨界圧力である218.4気圧以上の圧力(例えば1000気圧)に昇圧して、混合液を臨界状態にする。   That is, first, a predetermined amount of water, lecithin, and other necessary additives are put into the mixed solution supply tank 1 and stirred with a stirrer (not shown), and macroscopically or macroscopically, water that is a medium solution is used. A mixed solution in which the fine particles of lecithin and additive are distributed almost uniformly is prepared. And this liquid mixture is supplied to the liquid mixture pressurization pump 4 by the pressure feed pump 2 via the heat exchanger 3 by predetermined flow volume. Here, the temperature of the mixed liquid is raised to a temperature of 374.2 ° C. or higher (for example, 400 ° C.), which is a critical temperature of water, which is a medium liquid, by the heat exchanger 3 and the mixed liquid pressurizing pump 4. The pressure is increased to a pressure equal to or higher than the critical pressure of 218.4 atm (for example, 1000 atm) to bring the mixed liquid into a critical state.

そして、臨界状態となっている混合液を、第1乳化分散装置5さらには第2乳化分散装置7に供給する。なお、必要であれば、第1、第2添加剤供給装置6、8から所定の添加剤を添加する。媒体液である水が臨界状態となっているので、レシチン等の非水溶性の乳化分散材料は水の中に乳化又は分散しやすい状態となっている。このような状態で、混合液が第1乳化分散装置5内に、さらには第2乳化分散装置7内に高速で噴射されるので、強いせん断力によってレシチン等の非水溶性の乳化分散材料の乳化分散が促進される。このため、界面活性剤を用いることなく、媒体液である水の中に、レシチン等の非水溶性の乳化分散材料を乳化分散させることができる。   Then, the mixed liquid in a critical state is supplied to the first emulsification dispersion device 5 and further to the second emulsification dispersion device 7. If necessary, a predetermined additive is added from the first and second additive supply devices 6 and 8. Since water as a medium liquid is in a critical state, a water-insoluble emulsified dispersion material such as lecithin is easily emulsified or dispersed in water. In such a state, the mixed liquid is jetted into the first emulsification dispersion device 5 and further into the second emulsification dispersion device 7 at a high speed, so that the water-insoluble emulsification dispersion material such as lecithin is made by a strong shearing force. Emulsification dispersion is promoted. For this reason, a water-insoluble emulsifying dispersion material such as lecithin can be emulsified and dispersed in water, which is a medium liquid, without using a surfactant.

その際、多段圧力温度制御装置9によって、第1、第2乳化分散装置5、7内の高温・高圧の混合液ないしは乳化分散液に背圧がかけられるので、第1、第2乳化分散装置5、7ではバブリングは発生しない。第2乳化分散装置7から排出された乳化分散液は、多段圧力温度制御装置9内で所定の温度(例えば室温)まで冷却され、かつ段階的ないしは漸次的に所定の圧力(例えば大気圧)まで減圧される。乳化分散液は、このように冷却されかつ段階的ないしは漸次的に減圧されるので、圧力温度制御装置9内あるいは圧力温度制御装置9から外部に排出されたときにバブリングは発生しない。かくして、臨界状態で混合液にせん断力をかけて乳化分散を行った後、良好な乳化分散状態を維持しながら、バブリングを発生させることなく、最終製品を得ることができる。   At that time, since the multi-stage pressure and temperature control device 9 applies a back pressure to the high-temperature / high-pressure mixed liquid or the emulsified dispersion in the first and second emulsifying and dispersing apparatuses 5 and 7, the first and second emulsifying and dispersing apparatuses. No bubbling occurs in 5 and 7. The emulsified dispersion discharged from the second emulsifying dispersion device 7 is cooled to a predetermined temperature (for example, room temperature) in the multistage pressure temperature control device 9 and gradually or gradually to a predetermined pressure (for example, atmospheric pressure). Depressurized. Since the emulsified dispersion is cooled in this manner and stepwise or gradually reduced in pressure, bubbling does not occur when discharged from the pressure temperature control device 9 or from the pressure temperature control device 9 to the outside. Thus, after carrying out emulsification dispersion by applying a shearing force to the mixed solution in a critical state, a final product can be obtained without causing bubbling while maintaining a good emulsification dispersion state.

以上のように、本発明にかかる多段圧力温度制御装置を用いた乳化分散液製造システムは、とくに高いせん断力を必要とする乳化分散液に有用であり、ホモジナイザ等に用いるのに適している。   As described above, the emulsified dispersion production system using the multistage pressure and temperature control device according to the present invention is particularly useful for an emulsified dispersion requiring high shearing force, and is suitable for use in a homogenizer or the like.

S 乳化分散液製造システム、1 混合液供給タンク、2 圧送ポンプ、3 熱交換器、4 混合液加圧ポンプ、5 第1乳化分散装置、6 第1添加剤供給ポート、7 第2乳化分散装置、8 第2添加剤供給ポート、9 多段圧力温度制御装置、11 ノズル部材、12 通路部材、13 本体部、14 第1細孔部材、15 第2細孔部材、16 第3細孔部材、17 第1細孔、18 第2細孔、19 第3細孔、20 シール部材、21 接続部材、23 第1制御部、24 第2制御部、25 第3制御部、26 第1外套、27 第2外套、28 第3外套、29 第1伝熱管、30 第2伝熱管、31 第3伝熱管、35 連通部材、37 直管、38 90°エルボ。   S emulsified dispersion production system, 1 liquid mixture supply tank, 2 pressure feed pump, 3 heat exchanger, 4 liquid mixture pressure pump, 5 first emulsion dispersion apparatus, 6 first additive supply port, 7 second emulsion dispersion apparatus , 8 Second additive supply port, 9 Multi-stage pressure and temperature control device, 11 Nozzle member, 12 Passage member, 13 Body portion, 14 First pore member, 15 Second pore member, 16 Third pore member, 17 1st pore, 18 2nd pore, 19 3rd pore, 20 Seal member, 21 Connection member, 23 1st control part, 24 2nd control part, 25 3rd control part, 26 1st mantle, 27 1st 2 outer sheath, 28 third outer sheath, 29 first heat transfer tube, 30 second heat transfer tube, 31 third heat transfer tube, 35 communicating member, 37 straight tube, 38 90 ° elbow.

Claims (8)

媒体液と、上記媒体液に溶解しない液体又は固体の乳化分散材料とを含む混合液にせん断力を加えることにより、上記乳化分散材料を上記媒体液中に乳化又は分散させて乳化分散液を製造する乳化分散液製造システムであって、
上記媒体液と上記乳化分散材料とを含む混合液を供給する混合液供給装置と、
上記混合液供給装置から供給された上記混合液を加圧して排出する混合液加圧装置と、
上記混合液加圧装置から排出された上記混合液を受け入れ、上記混合液の圧力エネルギを運動エネルギに変換することにより上記混合液のジェット流を生成し、上記ジェット流中に生じるせん断力により上記混合液中の乳化分散材料を上記媒体液中に乳化分散させて乳化分散液を生成し排出する乳化分散装置と、
上記乳化分散装置から排出された上記乳化分散液を受け入れ、上記乳化分散液の圧力を低下させるととともに上記乳化分散液の温度を制御する一方、上記乳化分散装置内の乳化分散液に背圧をかける多段圧力温度制御装置とを備えていて、
上記多段圧力温度制御装置は、それぞれ、その内部を伝熱媒体が流通する外套と上記外套の内部に配置されその内部を上記乳化分散液が流通する伝熱管とを有し、上記乳化分散液の流れ方向に関して上流側から下流側に向かって順に直列に配置された第1〜第3制御部を有し、
上記第1〜第3制御部の上記各伝熱管は互いに直列に接続され、
上記第1〜第3制御部の上記各伝熱管の内直径、全長及び全体的形状が、上記第1〜第3制御部における上記各伝熱管の圧力低下量をそれぞれΔP、ΔP、ΔPとすれば、上記各伝熱管内の乳化分散液の流速及び粘度に応じて、ΔP>ΔP>ΔPの関係を満たすように設定され、
上記各伝熱管の圧力低下量が、それぞれ、主として上記各伝熱管の内直径及び相当長さと上記各伝熱管内の乳化分散液の流速とによって制御され、かつ、上記第1〜第3制御部の各外套内に伝熱媒体を流して多段圧力温度制御装置内の乳化分散液の温度を室温まで冷却するとともに、該外套内を流れる伝熱媒体の供給温度及び流量を調節して上記各伝熱管内の乳化分散液の温度を制御し上記各伝熱管内の乳化分散液の粘度ひいては上記各伝熱管の流動抵抗を制御することにより補助的に制御されることを特徴とする乳化分散液製造システム。
An emulsified dispersion is produced by emulsifying or dispersing the emulsified dispersion material in the medium liquid by applying a shearing force to a mixed liquid containing the medium liquid and a liquid or solid emulsified dispersion material that does not dissolve in the medium liquid. An emulsified dispersion manufacturing system comprising:
A liquid mixture supply apparatus for supplying a liquid mixture containing the medium liquid and the emulsified dispersion material;
A liquid mixture pressurizing apparatus that pressurizes and discharges the liquid mixture supplied from the liquid mixture supply apparatus;
The liquid mixture discharged from the liquid mixture pressurizing apparatus is received, and a jet flow of the liquid mixture is generated by converting the pressure energy of the liquid mixture into kinetic energy, and the shear force generated in the jet flow generates the above-mentioned An emulsifying dispersion device for emulsifying and dispersing the emulsified dispersion material in the mixed liquid into the medium liquid to generate and discharge the emulsified dispersion;
The emulsified dispersion discharged from the emulsifying dispersion device is received, the pressure of the emulsified dispersion is lowered, and the temperature of the emulsified dispersion is controlled, while a back pressure is applied to the emulsified dispersion in the emulsified dispersion device. With a multi-stage pressure and temperature control device,
Each of the multi-stage pressure and temperature control devices has an outer jacket through which a heat transfer medium flows and a heat transfer tube arranged inside the outer jacket and through which the emulsified dispersion flows. Having first to third control units arranged in series in order from the upstream side to the downstream side with respect to the flow direction,
The heat transfer tubes of the first to third control units are connected to each other in series,
The inner diameter, the overall length, and the overall shape of each of the heat transfer tubes of the first to third control units represent the pressure drop amounts of the heat transfer tubes in the first to third control units, respectively, ΔP 1 , ΔP 2 , ΔP 3 is set so as to satisfy the relationship ΔP 1 > ΔP 3 > ΔP 2 according to the flow rate and viscosity of the emulsified dispersion in each heat transfer tube,
The amount of pressure drop in each heat transfer tube is controlled mainly by the inner diameter and the corresponding length of each heat transfer tube and the flow rate of the emulsified dispersion in each heat transfer tube, and the first to third control units. The heat transfer medium is allowed to flow through each of the jackets to cool the temperature of the emulsified dispersion in the multistage pressure temperature control device to room temperature, and the supply temperature and flow rate of the heat transfer medium flowing through the jackets are adjusted to adjust each of the above-described heat transfer media. Production of an emulsified dispersion, wherein the temperature of the emulsified dispersion in the heat pipe is controlled to control the viscosity of the emulsified dispersion in each of the heat transfer pipes and the flow resistance of each of the heat transfer pipes. system.
上記第1〜第3制御部の各伝熱管の内直径、全長及び全体形状が、それぞれ、上記各伝熱管内を乳化分散液が層流で流れるように設定されていることを特徴とする、請求項1に記載の乳化分散液製造システム。   The inner diameter, the overall length, and the overall shape of each heat transfer tube of the first to third control units are set so that the emulsified dispersion flows in a laminar flow in each heat transfer tube, respectively. The emulsified dispersion production system according to claim 1. 上記第1〜第3制御部の各伝熱管の内直径、全長及び全体形状が、それぞれ、上記各伝熱管内を乳化分散液が乱流で流れるように設定されていることを特徴とする、請求項1に記載の乳化分散液製造システム。   The inner diameter, the overall length, and the overall shape of each heat transfer tube of the first to third control units are set so that the emulsified dispersion flows in a turbulent flow in each heat transfer tube, respectively. The emulsified dispersion production system according to claim 1. 上記乳化分散液の流れ方向に関して、上記混合液供給装置と上記混合液加圧装置との間に、上記混合液を加熱又は冷却する熱交換器を備えていることを特徴とする、請求項1〜3のいずれか1つに記載の乳化分散液製造システム。   The heat exchanger which heats or cools the said liquid mixture is provided between the said liquid mixture supply apparatus and the said liquid mixture pressurization apparatus regarding the flow direction of the said emulsion dispersion liquid, It is characterized by the above-mentioned. The emulsion dispersion manufacturing system according to any one of -3. 上記混合液供給装置が、上記混合液を、上記熱交換器を経由して上記混合液加圧装置に圧送する混合液圧送ポンプを備えていることを特徴とする、請求項4に記載の乳化分散液製造システム。   The emulsification according to claim 4, wherein the mixed liquid supply device includes a mixed liquid pressure feeding pump that pressure-feeds the mixed liquid to the mixed liquid pressure device via the heat exchanger. Dispersion production system. 上記乳化分散装置が、互いに直列に接続された第1乳化分散装置と第2乳化分散装置とで構成されていることを特徴とする、請求項に記載の乳化分散液製造システム。 The emulsifying dispersion apparatus, characterized in that it is constituted by first and emulsification dispersion device and a second emulsifying dispersion devices connected in series with each other, emulsified dispersion manufacturing system according to claim 1. 上記第1乳化分散装置の下流に、第1添加剤を乳化分散液に添加する第1添加剤供給装置が付設され、上記第2乳化分散装置の下流に、第2添加剤を乳化分散液に添加する第2添加剤供給装置が付設されていることを特徴とする、請求項に記載の乳化分散液製造システム。 A first additive supplying device for adding the first additive to the emulsified dispersion is attached downstream of the first emulsifying dispersion device, and the second additive is added to the emulsified dispersion downstream of the second emulsifying dispersion device. The system for producing an emulsified dispersion according to claim 6 , further comprising a second additive supply device to be added. 上記媒体液が水であることを特徴とする請求項1〜いずれか1つに記載の乳化分散液製造システム。 The emulsified dispersion production system according to any one of claims 1 to 7 , wherein the medium liquid is water.
JP2015146452A 2015-07-24 2015-07-24 Emulsified dispersion manufacturing system Active JP5972434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015146452A JP5972434B2 (en) 2015-07-24 2015-07-24 Emulsified dispersion manufacturing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015146452A JP5972434B2 (en) 2015-07-24 2015-07-24 Emulsified dispersion manufacturing system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011058760A Division JP5791142B2 (en) 2011-03-17 2011-03-17 Emulsified dispersion manufacturing system

Publications (2)

Publication Number Publication Date
JP2015213914A true JP2015213914A (en) 2015-12-03
JP5972434B2 JP5972434B2 (en) 2016-08-17

Family

ID=54751341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015146452A Active JP5972434B2 (en) 2015-07-24 2015-07-24 Emulsified dispersion manufacturing system

Country Status (1)

Country Link
JP (1) JP5972434B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021065846A (en) 2019-10-24 2021-04-30 株式会社 美粒 Magnet module, production device of nanocarbon dispersion liquid and production method of nanocarbon dispersion liquid using magnet module

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583453A (en) * 1983-03-29 1986-04-22 Roland Torterotot Process for the preparation and heat treatment of food products and apparatus for performing said process
JPH05154367A (en) * 1991-12-04 1993-06-22 Kao Corp Production of emulsified substance
US5411715A (en) * 1992-06-09 1995-05-02 Eastman Kodak Company Apparatus for preparing aqueous amorphous particle dispersions of high-melting microcrystalline solids
JPH10201386A (en) * 1997-01-13 1998-08-04 Bayer Ag Method for homogenizing milk product and apparatus therefor
JPH10216493A (en) * 1997-02-07 1998-08-18 Kankyo Kagaku Kogyo Kk Static fluid mixing device provided with temp. control function
JPH11156173A (en) * 1994-10-28 1999-06-15 Tal Shechter Preparation of emulsion
JP2000210546A (en) * 1999-01-21 2000-08-02 Harima Chem Inc Production of aqueous emulsion of rosin type compound
JP2001517545A (en) * 1997-09-25 2001-10-09 ジーイー・バイエル・シリコーンズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンジツトゲゼルシヤフト Apparatus and method for the preparation of silicone emulsions
JP2004009050A (en) * 2002-06-03 2004-01-15 Intevep Sa Manufacturing method of solution containing additive and surfactant
JP2006015272A (en) * 2004-07-02 2006-01-19 Takeshi Hirata Static plate type mixing apparatus
JP2006064966A (en) * 2004-08-26 2006-03-09 Ricoh Co Ltd Toner, method for manufacturing the same, method and apparatus for forming image, and process cartridge
JP2006159065A (en) * 2004-12-06 2006-06-22 Dainippon Ink & Chem Inc Micromixer
JP2008065247A (en) * 2006-09-11 2008-03-21 Mitsuru Nakano Electrostatic charge image developing toner production device and electromotive non-return device
JP2008194692A (en) * 2002-01-09 2008-08-28 Biryu:Kk Emulsification/dispersion system using multistage depressurization module
JP2009039699A (en) * 2007-08-10 2009-02-26 Fujifilm Corp Multistage mixing microdevice
JP2010210957A (en) * 2009-03-10 2010-09-24 Sharp Corp Method of manufacturing toner
JP2010241878A (en) * 2009-04-01 2010-10-28 Sharp Corp Production method of crystalline polyester resin fine particle dispersion and production method of toner
JP2010282198A (en) * 2009-06-03 2010-12-16 Toshiba Corp Method for producing developer

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583453A (en) * 1983-03-29 1986-04-22 Roland Torterotot Process for the preparation and heat treatment of food products and apparatus for performing said process
JPH05154367A (en) * 1991-12-04 1993-06-22 Kao Corp Production of emulsified substance
US5411715A (en) * 1992-06-09 1995-05-02 Eastman Kodak Company Apparatus for preparing aqueous amorphous particle dispersions of high-melting microcrystalline solids
JPH11156173A (en) * 1994-10-28 1999-06-15 Tal Shechter Preparation of emulsion
JPH10201386A (en) * 1997-01-13 1998-08-04 Bayer Ag Method for homogenizing milk product and apparatus therefor
JPH10216493A (en) * 1997-02-07 1998-08-18 Kankyo Kagaku Kogyo Kk Static fluid mixing device provided with temp. control function
JP2001517545A (en) * 1997-09-25 2001-10-09 ジーイー・バイエル・シリコーンズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンジツトゲゼルシヤフト Apparatus and method for the preparation of silicone emulsions
JP2000210546A (en) * 1999-01-21 2000-08-02 Harima Chem Inc Production of aqueous emulsion of rosin type compound
JP2008194692A (en) * 2002-01-09 2008-08-28 Biryu:Kk Emulsification/dispersion system using multistage depressurization module
JP2004009050A (en) * 2002-06-03 2004-01-15 Intevep Sa Manufacturing method of solution containing additive and surfactant
JP2006015272A (en) * 2004-07-02 2006-01-19 Takeshi Hirata Static plate type mixing apparatus
JP2006064966A (en) * 2004-08-26 2006-03-09 Ricoh Co Ltd Toner, method for manufacturing the same, method and apparatus for forming image, and process cartridge
JP2006159065A (en) * 2004-12-06 2006-06-22 Dainippon Ink & Chem Inc Micromixer
JP2008065247A (en) * 2006-09-11 2008-03-21 Mitsuru Nakano Electrostatic charge image developing toner production device and electromotive non-return device
JP2009039699A (en) * 2007-08-10 2009-02-26 Fujifilm Corp Multistage mixing microdevice
JP2010210957A (en) * 2009-03-10 2010-09-24 Sharp Corp Method of manufacturing toner
JP2010241878A (en) * 2009-04-01 2010-10-28 Sharp Corp Production method of crystalline polyester resin fine particle dispersion and production method of toner
JP2010282198A (en) * 2009-06-03 2010-12-16 Toshiba Corp Method for producing developer

Also Published As

Publication number Publication date
JP5972434B2 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP5791142B2 (en) Emulsified dispersion manufacturing system
JP6585250B1 (en) Emulsified dispersion
JP4325762B2 (en) Emulsification / dispersion system using multistage decompression module
US6443610B1 (en) Processing product components
EP1095696B1 (en) Apparatus and method for forming stabilized atomized microemulsions
EP1913994A2 (en) Emulsification apparatus and fine-grain manufacturing apparatus
US20170197815A1 (en) Flow compensator
WO1999039813A1 (en) Method and apparatus of producing liquid disperse systems
JP5972434B2 (en) Emulsified dispersion manufacturing system
JP2013530033A (en) Method and apparatus for cavitation generation for mixing and emulsification
Abiev et al. Pulsating flow type apparatus: Energy dissipation rate and droplets dispersion
JP2011147932A (en) Fluid-mixing device
JP2003260343A (en) Method for preparing emulsifying dispersion
JP2003245533A (en) Ultrafine air bubble generator
CN110270282A (en) One kind dividing shape bubble configuration controllable type paste state bed reactor
WO2016082004A1 (en) Fire-fighting system
JP2016073939A (en) Fine bubble generator
JP2011122035A (en) Emulsion fuel system
CN203927906U (en) Fuel nozzle and burner
JP2009208002A (en) Method and apparatus for preparing emulsion
Krugliakova et al. Experimental investigation of droplet flow structure when dispersing water by water-and-air flat spray nozzles
CN203002231U (en) Emulsifying device capable of producing safely, stably and continuously
WO2023192186A1 (en) High-shear mixing chamber with wide slot channel
WO2016139712A1 (en) Heat exchange device and fuel gas generation device
CN115228515A (en) Series-connection domain limiting device and method for regulating and controlling size distribution of dispersed phases in multiphase system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160712

R150 Certificate of patent or registration of utility model

Ref document number: 5972434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250