WO2018083792A1 - Pipe blockage prevention method and pipe blockage prevention system - Google Patents

Pipe blockage prevention method and pipe blockage prevention system Download PDF

Info

Publication number
WO2018083792A1
WO2018083792A1 PCT/JP2016/082936 JP2016082936W WO2018083792A1 WO 2018083792 A1 WO2018083792 A1 WO 2018083792A1 JP 2016082936 W JP2016082936 W JP 2016082936W WO 2018083792 A1 WO2018083792 A1 WO 2018083792A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
pressure
valve
fluid
predetermined range
Prior art date
Application number
PCT/JP2016/082936
Other languages
French (fr)
Japanese (ja)
Inventor
泰孝 和田
昭史 中村
幸彦 松村
良文 川井
琢史 野口
Original Assignee
中国電力株式会社
国立大学法人広島大学
中電プラント株式会社
株式会社東洋高圧
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社, 国立大学法人広島大学, 中電プラント株式会社, 株式会社東洋高圧 filed Critical 中国電力株式会社
Priority to PCT/JP2016/082936 priority Critical patent/WO2018083792A1/en
Priority to JP2017520557A priority patent/JP6414868B2/en
Publication of WO2018083792A1 publication Critical patent/WO2018083792A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • B08B9/032Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G1/00Non-rotary, e.g. reciprocated, appliances
    • F28G1/16Non-rotary, e.g. reciprocated, appliances using jets of fluid for removing debris

Definitions

  • the present invention relates to a pipe blockage prevention method and a pipe blockage prevention system for removing a viscous body or solidified material adhering to a pipe and reliably preventing the pipe from being blocked.
  • Patent Document 1 discloses that a biomass slurry containing a nonmetallic catalyst is hydrothermally treated in a predetermined reactor under conditions of a temperature of 374 ° C. or higher and a pressure of 22.1 MPa or higher, and the generated product gas is used.
  • a biomass gasification system is described in which power is generated by a power generation device and the slurry body is heated using exhaust heat from the power generation device.
  • the cause of the adhesion is considered to be that the slurry body collides with and adheres to the inner surface on the outer peripheral side, and that stagnation is likely to occur on the inner peripheral side inner surface on the downstream side of the curved pipe, and the flow rate is lowered and tends to stay.
  • the viscous body and the solidified material accumulate, and the circulation of the slurry body in the piping may be hindered, which may reduce the gas yield. Furthermore, if the viscous material or solidified material accumulates and the piping is blocked, the gasification equipment may be damaged.
  • the present invention has been made in view of such a current situation, and an object of the present invention is to prevent a blockage of a pipe and a pipe for reliably preventing the blockage of the pipe by removing the viscous material or solidified substance adhering to the pipe.
  • the object is to provide an occlusion prevention system.
  • One aspect of the present invention for achieving the above-mentioned object is a pipe in which a viscous material or a solidified material derived from a fluid flowing in a pressurized state adheres as a deposit to a predetermined range of the flow direction on the inner wall surface thereof.
  • the first pressure which is the pressure on the upstream side of the predetermined range
  • the attached matter is discharged from the pipe by opening a valve attached in the vicinity of the predetermined range. It is characterized by.
  • the pressure on the upstream side of the attached range is considered to have increased. Therefore, as in the present invention, when the first pressure, which is the pressure upstream of the adhesion range of the deposit, is equal to or greater than a predetermined allowable value, by opening the valve attached in the vicinity of the adhesion range, The deposit can be effectively discharged from the pipe at a timing before the pipe is blocked by the deposit. Thereby, obstruction
  • the valve may be opened and the valve may be closed after a predetermined time has elapsed. Further, after opening the valve, the valve may be closed when the first pressure becomes lower than a predetermined value. From these, the unnecessary outflow of the fluid flowing through the piping can be prevented.
  • an upstream of the predetermined range in a pipe in which a viscous material or solidified substance derived from a fluid flowing in a pressurized state adheres to a predetermined range in the flow direction on the inner wall surface as an adhering substance, an upstream of the predetermined range.
  • the valve attached in the vicinity of the predetermined range is opened.
  • the deposit is discharged from the pipe.
  • the pressure between the fluid on the upstream side and the downstream side of the attachment range Therefore, a pressure difference is generated. Therefore, as in the present invention, when the first pressure is higher than the second pressure, which is the pressure downstream of the adhesion range, by a predetermined allowable value or more, the valve attached in the vicinity of the adhesion range is opened.
  • the deposit can be reliably discharged from the pipe at a timing before the pipe is blocked by the deposit. Thereby, obstruction
  • produced in the said predetermined range is calculated based on the physical-property value of the said fluid, and the said 1st pressure is based on the calculated pressure loss rather than the said 2nd pressure.
  • the valve may be opened when it is higher than the set allowable value.
  • the pressure loss of the fluid generated in the predetermined range is calculated based on the flow velocity and density of the fluid. In this way, by calculating the pressure loss based on the physical properties such as the flow velocity and density of the fluid and setting the allowable value of the difference between the first pressure and the second pressure, the valve can be operated at an appropriate timing before the pipe is blocked. Can be opened.
  • the fluid resistance of the fluid flowing through the predetermined range is calculated based on the flow velocity of the fluid, and the first pressure is set based on the calculated fluid resistance rather than the second pressure.
  • the valve may be opened. In this way, by calculating the fluid resistance of the fluid flowing in the adhesion range of the deposit and setting the allowable value of the difference between the first pressure and the second pressure, the valve is opened at an appropriate timing before the pipe is blocked. can do.
  • the heat exchanger including the pipe through which a biomass slurry as the fluid flows as an inner pipe, and the pipe through which a high-temperature fluid that exchanges heat with the slurry as an outer pipe, and the heat exchange are provided.
  • a gasification reactor that heats the slurry body sent from a vessel to gasify the slurry body, and sends the slurry body after the gasification to the outer pipe as the high-temperature fluid;
  • the first pressure is higher than the second allowable pressure by the predetermined allowable value or more, by opening the valve provided in the vicinity of the predetermined range, the deposit May be discharged from the inner pipe.
  • the deposits are opened by opening the valve provided in the vicinity of the predetermined range. May be discharged from the inner tube, and the high-temperature fluid flowing through the outer tube may be discharged to the outside.
  • the slurry body When the deposit on the inner tube of the heat exchanger is discharged, the slurry body is also discharged at the same time, so the inner tube through which the slurry body flows is subjected to the pressure of the high-temperature fluid flowing through the outer tube, and as a result, the heat exchanger can be damaged There is sex. Therefore, as in the present invention, the deposits are discharged from the inner tube, and the high-temperature fluid flowing through the outer tube is discharged to the outside, thereby reducing the pressure difference between the inner tube and the outer tube, and damaging the heat exchanger. Can be prevented.
  • the pressure difference of the high-temperature fluid in the outer pipe in the vicinity of the predetermined range is a predetermined value or more. If it is higher, the valve attached to the vicinity of the predetermined range is opened to discharge the deposit from the inner pipe and to discharge the high-temperature fluid flowing through the outer pipe to the outside. Also good.
  • the valve of the inner pipe is opened and the high temperature fluid is discharged from the outer pipe, thereby While preventing the heat exchanger from being damaged due to a large pressure difference, the burden of maintenance management for maintenance personnel and the like is also reduced.
  • the predetermined range is, for example, a curved portion of a pipe through which the fluid flows. Since deposits easily adhere to the curved portion of the pipe, according to the present invention, blockage of the pipe can be more effectively prevented.
  • another one of the present invention is an inner tube in which a viscous body or a solidified material derived from a slurry body of biomass flowing in a pressurized state adheres to a predetermined range of the flow direction on the inner wall surface as an adhering matter
  • a heat exchanger comprising an outer pipe that is a pipe through which a high-temperature fluid to be heat-exchanged with the slurry body, and heating the slurry body sent from the heat exchanger to gasify the slurry body
  • a pipe clogging prevention system in a gasification system comprising a gasification reactor that delivers the slurry body after gasification to the outer pipe as the high-temperature fluid, the pressure being upstream of the predetermined range
  • the first pressure is higher than the second allowable pressure, which is the pressure downstream of the predetermined range, by opening the valve provided near the predetermined range
  • the deposits with discharges from the inner tube characterized by further comprising a data processing apparatus having a function of discharging the hot fluid flowing through the outer tube to
  • the pipe clogging prevention method and the pipe clogging prevention system it is possible to reliably prevent clogging of the pipe by removing the viscous material or solidified substance adhering to the pipe.
  • FIG. 3 is a diagram showing a detailed configuration of a heat exchanger 31.
  • FIG. It is the figure which represented typically the structure of the slurry body delivery pipe
  • attachment 65 (tar or char) adhering to the inner wall face of the slurry body delivery pipe
  • FIG. It is a flowchart explaining the removal method of the deposit
  • FIG. It is the figure which showed the mode of the slurry body delivery pipe
  • FIG. 3 is a diagram showing a detailed configuration of a heat exchanger 31.
  • FIG. It is the figure which represented typically the structure of the slurry body delivery pipe
  • FIG. It is the figure which represented typically the structure of the slurry body delivery pipe
  • FIG. It is the figure which showed the structure of the heat exchanger 31 typically. It is a flowchart explaining the removal method of the deposit
  • FIG. It is the figure which represented typically the structure of the slurry body delivery pipe
  • FIG. 3 is a diagram showing a detailed configuration of a heat exchanger 31.
  • FIG. It is a figure explaining the gasification system 10 comprised so that pressure measurement and valve opening / closing may be performed automatically. It is a figure which shows the positional relationship of a pressure gauge and a valve
  • FIG. 1 is a diagram illustrating a configuration of a gasification system 10 according to the first embodiment.
  • This gasification system 10 is a system that generates a combustion gas by preparing a slurry body from biomass such as shochu residue, egg-collecting chicken manure, sludge, etc., and heating and pressurizing the prepared slurry body.
  • the gasification system 10 includes a raw material preparation unit 20, a heat treatment unit 30, and a gas processing unit 40, which are connected by various pipes.
  • the raw material preparation part 20 is a part which prepares a slurry body from biomass.
  • the raw material preparation unit includes a preparation tank 21, a pulverizer 22, a supply pump 23, and a heat exchanger introduction pump 24.
  • the preparation tank 21 is a tank that mixes biomass, water, and a catalyst (in this embodiment, activated carbon), thereby preparing a mixed solution.
  • a catalyst in this embodiment, activated carbon
  • porous particles having an average particle diameter of 200 ⁇ m or less are used as the activated carbon.
  • the mixing ratio of the liquid, water, and activated carbon is adjusted according to the type, amount, moisture content, etc. of biomass.
  • the pulverizer 22 is an apparatus for crushing the solid content of the mixed liquid obtained in the preparation tank 21 to obtain a uniform size (preferably an average particle size of 500 ⁇ m or less, more preferably an average particle size of 300 ⁇ m or less). It is. By processing with this grinder 22, a liquid mixture becomes a slurry body.
  • the supply pump 23 supplies the slurry discharged from the pulverizer 22 to the heat exchanger introduction pump 24. Further, the heat exchanger introduction pump 24 pressurizes the slurry body sent from the supply pump and supplies it to the heat treatment section 30 through the slurry body introduction pipe 51.
  • the heat treatment part 30 is a part that heats and gasifies the slurry body sent from the raw material preparation part 20.
  • the heat treatment unit 30 includes a heat exchanger 31, a heater 32, and a gasification reactor 33.
  • the heat exchanger 31 includes a double pipe 34, the slurry body sent from the slurry body introduction pipe 51 is heated in a pressurized state in the double pipe 34, and the heated slurry body is fed to the slurry body delivery pipe 52.
  • a post-treatment fluid 38 (described later) that is a high-temperature fluid that exchanges heat with the slurry body flows into the double pipe 34 through the post-treatment fluid introduction pipe 53.
  • the treated fluid 38 heat-exchanged with the slurry body 37 in the double pipe 34 is discharged to the treated fluid discharge pipe 54.
  • FIG. 2 is a diagram showing the structure of the double pipe 34.
  • the double tube 34 includes an inner tube 35 and an outer tube 36.
  • the inner tube 35 has a thickness of about 1 mm
  • the outer tube 36 has a thickness of about 1 mm.
  • a slurry body 37 flows through the inner tube 35.
  • a post-treatment fluid 38 that has flowed in a supercritical state from the gasification reactor 33 via the post-treatment fluid introduction pipe 53 flows through the outer pipe 36.
  • the slurry body 37 is heated by exchanging heat with the processed fluid 38.
  • the heated slurry body 37 is sent to the slurry body delivery pipe 52, while the post-treatment fluid 38 heat-exchanged with the slurry body 37 is discharged to the post-treatment fluid discharge pipe 54.
  • the temperature when the slurry body 37 is introduced into the heat exchanger 31 is, for example, about 25 ° C. Moreover, the temperature when the slurry body 37 is sent out from the heat exchanger 31 is about 450 ° C., for example. On the other hand, the temperature when the treated fluid 38 is introduced into the heat exchanger 31 is, for example, about 600 ° C., and the temperature when the treated fluid 38 is discharged from the heat exchanger 31 is, for example, about 120 ° C.
  • the heater 32 is a device for heating the slurry body 37 sent from the heat exchanger 31.
  • the heater 32 includes a combustion device 32a.
  • Combustion gas (described later) sent from the gas processing unit 40 together with liquefied petroleum gas LPG (Liquefied Petroleum Gas) and air is combusted by the combustion device 32a, and a slurry body 37 is obtained.
  • LPG Longfied Petroleum Gas
  • Heat Thereby, the temperature of the slurry body 37 introduced into the heater 32 is raised to about 600 ° C., for example.
  • the heated slurry body 37 is sent to the gasification reactor 33.
  • the gasification reactor 33 is a device that heats the slurry body 37 sent from the heater 32 and hydrothermally heats the organic matter contained in the slurry body 37 to gasify it.
  • the gasification reactor 33 is provided with a combustion device 33a, and the combustion gas sent from the gas processing unit 40 together with the liquefied petroleum gas LPG and air is combusted by the combustion device 33a, and the hydrothermal treatment of the slurry body 37 is performed. Do.
  • the slurry body 37 is held for 1 to 2 minutes under conditions of, for example, 600 ° C. and 25 MPa.
  • the slurry body 37 after being gasified by hydrothermal treatment is a high-temperature fluid, and is sent to the heat exchanger 31 as the post-treatment fluid 38 described above.
  • the gas processing unit 40 includes a decompression mechanism 41, a gas-liquid separator 42, a catalyst recovery unit 43, and a gas tank 44.
  • the decompression mechanism 41 decompresses the treated fluid 38 discharged from the heat exchanger 31 via the treated fluid delivery pipe 54.
  • the gas-liquid separator 42 separates the processed fluid 38 sent from the decompression mechanism 41 into a liquid (a liquid containing activated carbon or ash) and a gas (a gas such as hydrogen or methane). Of these, the liquid is treated as waste and sent to the catalyst recovery unit 43, while the gas is sent to the gas tank 44.
  • the gas tank 44 stores the gas sent from the gas-liquid separator 42.
  • the temperature of the gas in the gas tank 44 is about 30 ° C.
  • the gas stored in the gas tank 44 is supplied to the heater 32 and the gasification reactor 33 as the fuel gas described above.
  • FIG. 3 is a diagram showing a detailed configuration of the heat exchanger 31.
  • the heat exchanger 31 is a double pipe that extends spirally from the lower side to which the slurry body introduction pipe 51 is connected to the upper side to which the slurry body delivery pipe 52 is connected. 34 is provided.
  • tube 34 forms is a rectangular shape, it is not restricted to the said shape.
  • the slurry body introduction pipe 51 is connected to the inner pipe 35 of the double pipe 34 via the branch member 55, and both are communicated with each other. Further, the branch member 55 connects the lower end of the outer tube 36 of the double tube 34 and the post-treatment fluid delivery tube 54 so as to communicate with each other. As a result, the slurry body 37 from the slurry body introduction pipe 51 is sent to the inner pipe 35 of the double pipe 34, and the processed fluid 38 discharged from the outer pipe 36 of the double pipe 34 is sent out after the processing fluid.
  • the pressure reduction mechanism 41 is sent via a pipe 54.
  • the slurry body delivery pipe 52 is connected to the inner pipe 35 of the double pipe 34 via the branch member 56, and both are in communication. Further, the branch member 56 connects the upper end of the outer tube 36 of the double tube 34 and one end of the post-treatment fluid introduction tube 53 so as to communicate with each other.
  • the slurry body 37 discharged from the inner pipe 35 is sent to the heater 32 via the slurry body delivery pipe 52, and the post-treatment fluid 38 is passed through the post-treatment fluid introduction pipe 53.
  • the other end of the slurry body delivery pipe 52 is connected to the heater 32 via a connection member 62, and the other end of the treated fluid introduction pipe 53 is connected to the gasification reactor 33 via a connection member 63. (Not shown).
  • the slurry body delivery pipe 52 is provided with a first pressure gauge 58 and a first valve 61 in order from the upstream side.
  • FIG. 4 is a diagram schematically showing the structure of the slurry body delivery pipe 52 and its surroundings.
  • a viscous material or solidified material for example, tar or char as shown in FIG. .
  • Adheres Adheres.
  • the deposit 65 is likely to adhere to the back side inner wall surface 64 a of the curved portion 64 of the slurry body delivery pipe 52.
  • the deposit 65 is likely to adhere to the abdomen inner wall surface 64b on the downstream side of the curved portion 64.
  • a first pressure gauge 58 is provided on the upstream side of the curved portion 64 of the slurry body delivery pipe 52.
  • a branch pipe (hereinafter referred to as a deposit discharge pipe 66) is provided on the downstream side of the curved portion 64 in the slurry body delivery pipe 52.
  • a first valve 61 that can be opened and closed is provided in the middle of the deposit discharge pipe 66 for discharging the deposit 65.
  • the first valve 61 is normally in a closed state (C).
  • FIG. 6 is a flowchart illustrating a method for removing the deposit 65 using the first pressure gauge 58 and the first valve 61.
  • the maintenance staff of the gasification system 10 starts the gasification system 10 (S0: YES), and then the pressure (hereinafter referred to as the first pressure gauge 58) of the first pressure gauge 58 at a predetermined or arbitrary timing. 1 pressure (denoted as P1 in the drawing) is measured (S1).
  • P1 in the drawing 1 pressure (denoted as P1 in the drawing) is measured (S1).
  • Pmax predetermined pressure
  • S3 the predetermined pressure
  • Pmax is, for example, the first pressure (or a slightly lower pressure) immediately before the curved portion 64 is blocked by the deposit 65, and is determined empirically.
  • FIG. 7 is a view showing the state of the slurry body delivery pipe 52 and its surroundings when the first valve 61 is opened.
  • the adhering matter 65 adhering to the inner wall of the curved portion 64 of the slurry body delivery pipe 52 is increased by the internal pressure of the curved portion 64.
  • the deposit 65 is peeled off from the inner wall by the pressure difference from the atmospheric pressure, and the peeled off deposit 65 is discharged to the outside from the deposit discharge pipe 66.
  • the first valve 61 After opening the first valve 61 and waiting for a certain time (S4 in FIG. 6), the first valve 61 is closed (S45), and the first pressure is measured by the first pressure gauge 58 (S5). And when the measured 1st pressure is more than said pressure Pmax (S6: YES), the operation
  • the adhesion range ( It is believed that the pressure upstream of the bend 64) is rising due to the deposit 65. Therefore, as in the present embodiment, when the first pressure, which is the pressure on the upstream side of the adhesion range of the deposit 65, is equal to or higher than a predetermined allowable value (Pmax), a valve ( By opening the first valve 61), the deposit 65 can be effectively discharged from the pipe at a timing before the pipe is blocked by the deposit 65. Thereby, obstruction
  • inorganic salts derived from inorganic components (calcium, sodium, potassium, etc.) contained in the slurry body 37 can be removed at the same time.
  • the first valve 61 and the first pressure gauge 58 are provided in the vicinity of the slurry body delivery pipe 52.
  • any pipe that may be attached with the deposit 65 is attached to the slurry body delivery pipe 52.
  • the first valve 61 and the first pressure gauge 58 may be provided in the slurry body introduction pipe 51 and various other pipes.
  • the deposit 65 may adhere not only to the curved portion 64 but also to the straight pipe portion of the pipe, the first valve 61 and the first pressure gauge 58 may be attached to the straight pipe portion.
  • FIG. 8 is a diagram illustrating a detailed configuration of the heat exchanger 31 according to the second embodiment. As shown in the figure, the difference between the second embodiment and the first embodiment is that a second pressure gauge 59 is attached to the slurry body delivery pipe 52.
  • FIG. 9 is a diagram schematically showing the structure of the slurry body delivery pipe 52 and its surroundings.
  • a first pressure gauge 58 is attached to the upstream side of the curved portion 64 of the slurry body delivery pipe 52, and a second pressure gauge 59 is attached to the downstream side of the curved portion 64.
  • a deposit discharge pipe 66 that is a branch pipe from the slurry body delivery pipe 52 is provided on the downstream side of the second pressure gauge 59.
  • a first valve 61 that can be opened and closed is provided in the middle of the deposit discharge pipe 66. The first valve 61 is normally in a closed state (C).
  • FIG. 10 is a flowchart illustrating a method for removing the deposit 65 according to the second embodiment.
  • the maintenance staff or the like of the gasification system 10 starts the gasification system 10 (S10: YES), and then the pressure (first pressure) of the first pressure gauge 58 at a predetermined or arbitrary timing. ) And the pressure (second pressure) of the second pressure gauge 59 (S11).
  • the pressure of the first pressure gauge 58 (first pressure) and the pressure of the second pressure gauge 59
  • the operation of measuring (second pressure) is repeated (S11), but when the measured first pressure is higher than the second pressure by a predetermined value ⁇ P (S12: YES), the first valve 61 is turned on. Open (S13).
  • the deposit 65 attached to the inner wall of the curved portion 64 of the slurry body delivery pipe 52 is caused by the pressure difference between the internal pressure of the curved portion 64 and the atmospheric pressure.
  • the deposit 65 peeled off from the inner wall is discharged from the deposit discharge pipe 66 to the outside.
  • ⁇ P is, for example, a differential pressure (or a slightly lower pressure value) between the first pressure and the second pressure immediately before the curved portion 64 is blocked by the deposit 65, and is determined empirically.
  • the first valve 61 When the first valve 61 is opened, the first valve 61 is closed again (S14). Then, the first pressure gauge 58 and the second pressure gauge 59 measure the first pressure and the second pressure, respectively (S15). If the measured first pressure is higher than the second pressure by ⁇ P or more (S16: YES), the operation of opening the first valve 61 (S13) is repeated. On the other hand, when the first pressure is not higher than ⁇ P by more than ⁇ P (S16: NO), the operation of measuring the first pressure and the second pressure (S11) is repeated.
  • the attachment range thereof in the case where a sticky substance 65 or a viscous substance derived from a fluid (slurry body 37) flowing through the pipe is attached to the inner wall surface of the pipe (slurry body delivery pipe 52), the attachment range thereof.
  • the first pressure is higher than the second pressure, which is the pressure downstream of the adhesion range, by a predetermined allowable value or more, the valve (first valve 61) provided near the adhesion range is opened.
  • the deposit 65 can be reliably discharged from the pipe at a timing before the pipe is blocked by the deposit 65. Thereby, obstruction
  • the first valve 61, the first pressure gauge 58, and the second pressure gauge 59 are provided in the vicinity of the slurry body delivery pipe 52.
  • the first valve 61, the first pressure gauge 58, and the second pressure gauge 59 may be provided not only in the slurry body delivery pipe 52 but also in the slurry body introduction pipe 51 and other various pipes. Further, since the deposit 65 may adhere not only to the curved portion 64 but also to the straight pipe portion of the pipe as in the present embodiment, the first valve 61 and the first pressure gauge are attached to such a straight pipe portion. 58 and a second pressure gauge 59 may be provided.
  • FIG. 11 is a diagram schematically illustrating the structure of the slurry body delivery pipe 52 and the periphery thereof according to the third embodiment.
  • a branch pipe hereinafter referred to as a post-treatment fluid discharge pipe 69 for discharging the post-treatment fluid 38 to a middle position of the post-treatment fluid introduction pipe 53 through which the post-treatment fluid 38 flows.
  • a second valve 67 is attached in the middle of the treated fluid discharge pipe 69.
  • the second valve 67 is normally in a closed state (C).
  • the first valve 61, the first pressure gauge 58, and the second pressure gauge 59 are the same as in the second embodiment.
  • FIG. 12 is a flowchart illustrating a method for removing the deposit 65 according to this embodiment.
  • the maintenance staff of the gasification system 10 starts the gasification system 10 (S20: YES), and at a predetermined or arbitrary timing, the first pressure of the first pressure gauge 58, The second pressure of the second pressure gauge 59 is measured (S21). If the measured first pressure is not higher than ⁇ P by more than ⁇ P (S22: NO), the first pressure of the first pressure gauge 58 and the second pressure of the second pressure gauge 59 are measured. The operation (S21) is repeated. When the measured first pressure is higher than the second pressure by ⁇ P or more (S22: YES), the first valve 61 is opened and the second valve 67 is also opened (S22: YES). S23).
  • the slurry body 37 flowing through the slurry body delivery pipe 52 is also discharged together with the deposit 65 attached to the inner wall of the curved portion 64 of the slurry body delivery pipe 52. Then, the pressure of the inner pipe 35 communicating with the slurry body delivery pipe 52 is lowered. As a result, the inner tube 35 may be damaged due to the pressure of the fluid 38 after the processing of the outer tube 36.
  • the second valve 67 of the processed fluid 38 is also open.
  • the treated fluid 38 in the treated fluid introduction pipe 53 is discharged from the treated fluid discharge pipe 69.
  • the pressure of the nearby outer pipe 36 communicating with the post-treatment fluid introduction pipe 53 also decreases. Thereby, the pressure difference between the inner tube 35 and the outer tube 36 in the double tube 34 is reduced, and damage to the heat exchanger 31 can be prevented.
  • the system After opening the first valve 61 and the second valve 67, the system waits for a predetermined time (S27), and then closes the first valve and the second valve again (S24). Then, the first pressure and the second pressure are again measured by the first pressure gauge 58 and the second pressure gauge 59 (S25). When the measured first pressure is higher than the second pressure by ⁇ P or more (S26: YES), the operation of opening the first valve 61 and the second valve 67 (S23) is repeated. On the other hand, when the first pressure is not higher than ⁇ P by more than ⁇ P (S26: NO), the first pressure of the first pressure gauge 58 and the second pressure of the second pressure gauge 59 are measured (S21). repeat.
  • valve first valve 61
  • second valve 67 is opened to open the high temperature fluid ( By discharging the treated fluid 38) from the outer tube 36, the pressure difference between the inner tube 35 and the outer tube 36 can be reduced, and the heat exchanger 31 can be prevented from being damaged.
  • FIG. 13 is a diagram schematically showing the configuration of the heat exchanger 31 according to the fourth embodiment.
  • the slurry body delivery pipe 52 is provided with a first valve 61, a first pressure gauge 58, and a second pressure gauge 59
  • the post-treatment fluid introduction pipe 53 is provided with a first valve 61.
  • a two-valve 67 and a third pressure gauge 68 are provided.
  • FIG. 14 is a flowchart illustrating a method for removing the deposit 65 according to this embodiment.
  • the maintenance staff and the like start the gasification system 10 (S30: YES), and at a predetermined or arbitrary timing, the first pressure of the first pressure gauge 58 and the second pressure gauge 59 The second pressure is measured (S31).
  • the first valve 61 is opened (S33). Thereby, the deposit 65 adhering to the inner wall of the curved portion 64 of the slurry body delivery pipe 52 is discharged to the outside.
  • the first pressure gauge 58 and the third pressure gauge 68 measure the first pressure and the third pressure (denoted as P3 in the drawing), respectively (S35).
  • the second valve 67 is opened (S37), while the third pressure is higher than the first pressure. If it is not higher than ⁇ (S36: NO), the process returns to S35.
  • the second valve 67 is opened (S37), and after waiting for a while, the first pressure and the third pressure are measured again (S38, S39). If the measured third pressure is higher than the first pressure by ⁇ or more (S40: YES), the process returns to S38, while the third pressure is not higher than the first pressure by ⁇ or more. (S40: NO), the second valve 67 is closed (S41), and the process proceeds to S43 described later.
  • the above-mentioned constant ⁇ is, for example, the upper limit value of the pressure difference between the inner pipe 35 and the outer pipe 36 that does not damage the double pipe 34 or a value slightly lower than that, and is determined empirically.
  • the first pressure and the second pressure are measured. If the measured first pressure is higher than the second pressure by ⁇ P or more (S44: YES), the operation of measuring the first pressure and the third pressure is repeated (S35). On the other hand, when the first pressure is not higher than ⁇ P by more than ⁇ P (S44: NO), the first valve 61 is closed (S46), the first pressure of the first pressure gauge 58, and the second pressure gauge 59. The operation (S31) of measuring the second pressure is repeated.
  • the first valve 61 and the second valve 67 Is opened, and the pressure difference between the fluid in the inner pipe 35 (slurry body 37) and the high-temperature fluid in the outer pipe 36 is prevented from being damaged, and the heat exchanger 31 is prevented from being damaged.
  • the burden is also reduced.
  • ⁇ P which is a differential pressure between the first pressure and the second pressure
  • ⁇ P is used as a parameter for determining the timing for opening the first valve 61.
  • This ⁇ P can be determined empirically as described above. However, when it is difficult to determine ⁇ P empirically, ⁇ P can be theoretically obtained and used as follows. In the present embodiment, a method for obtaining this ⁇ P will be described based on the gasification system 10 of the second embodiment.
  • FIG. 15 is a diagram schematically showing the structure of the slurry body delivery pipe 52 and its periphery.
  • the length L of the curved portion 64 of the slurry body delivery pipe 52 and its cross-sectional area A1 are measured.
  • the flow velocity u and the density ⁇ of the slurry body 37 flowing through the curved portion 64 are obtained.
  • a method for obtaining the flow velocity u for example, there are a method of installing a flow meter on the downstream side of the curved portion 64, and a method of estimating from the volume of one stroke of the heat exchanger introduction pump 24, the operation time, and the like.
  • the density ⁇ is calculated from, for example, the volume of the slurry body 37 sent from the heat exchanger introduction pump 24 and its weight.
  • ⁇ P 4f ⁇ (( ⁇ (u 2 )) / 2) ⁇ (L / d) (1)
  • Equation (2) is the Reynolds number, for example, 3000.
  • ⁇ P can also be obtained based on the following equations (3) and (4) relating to fluid resistance.
  • A2 / A1 0.1.
  • g a gravitational acceleration
  • a loss coefficient
  • Cc Ac / A2 is a contraction coefficient.
  • Ac is a minimum cross-sectional area at a portion where the clogging portion 64 of the slurry body delivery pipe 52 starts to be blocked by the deposit 65.
  • the relationship between Cc and ⁇ is shown in the table showing the relationship between A2 / A1, Cc, and ⁇ shown in FIG. 17, and the relationship diagram between ⁇ , Cc, and A2 / A1 (FIG. 18). It can be obtained using.
  • A2 / A1 0.1.
  • A2 / A1 may be set to a predetermined value less than 1.
  • the first valve 61 is closed before the curved portion 64 of the slurry body delivery pipe 52 is closed. Can be opened at the appropriate time. Note that the method for obtaining the differential pressure for determining the timing for opening the valve in this way can be applied not only to the first valve 61 but also to the second valve 67.
  • the method mainly relates to the method for discharging the deposit 65 in the pipe outside the heat exchanger 31, but the deposit in the pipe inside the heat exchanger 31 (for example, the double pipe 34). 65 can be discharged in the same manner.
  • FIG. 19 is a diagram illustrating the configuration of the inner tube 35 and the outer tube 36 related to the double tube 34 of the heat exchanger 31 shown as an example.
  • a part of the double pipe 34 (for example, a longitudinal end portion in each of the rectangular spiral layers of the double pipe 34) is divided into two double pipes 34a and 34b as shown in FIG.
  • the inner pipe 35a of the double pipe 34a and the inner pipe 35b of the double pipe 34b are connected by an elbow pipe 76 (curved pipe) via a branch member 75a.
  • the outer pipe 36a of the double pipe 34a and the outer pipe 36b of the double pipe 34b are connected by a straight pipe 77 via a branch member 75b.
  • the branch member 75a branches the inner pipe 35a of the double pipe 34a into an elbow pipe 76 and the outer pipe 36a into a straight pipe 77.
  • the branch member 75 b branches the inner pipe 35 b of the double pipe 34 b to the elbow pipe 76 and the outer pipe 36 b to the straight pipe 77.
  • a fourth pressure gauge 78 is provided on the upstream side of the bent portion of the elbow pipe 76, and a fifth pressure gauge 79 is provided on the downstream side of the bent portion of the elbow pipe 76.
  • a deposit discharge pipe 84 that is a branch pipe of the elbow pipe 76 is provided on the downstream side of the fifth pressure gauge 79.
  • a third valve 81 is provided in the middle of the deposit discharge pipe 84. The third valve 81 is normally in a closed state (C).
  • a sixth pressure gauge 85 is provided in the double pipe 34b on the upstream side of the straight pipe 77.
  • a seventh pressure gauge 86 is provided in the middle of the straight pipe 77.
  • a post-treatment fluid discharge pipe 87 that is a branch pipe of the straight pipe 77 is provided on the downstream side of the seventh pressure gauge 86.
  • a fourth valve 83 is provided in the middle of the treated fluid discharge pipe 87. The fourth valve 83 is normally in a closed state (C).
  • the deposit 65 such as tar and char derived from the slurry body 37 easily adheres to the inner wall of the elbow pipe 76 in addition to the inner pipe 35 and the outer pipe 36 of the double pipe 34. .
  • the pressure of the slurry body 37 is measured with the fourth pressure gauge 78 on the upstream side and the fifth pressure gauge 79 on the downstream side, and the pressure on the upstream side (fourth pressure) is the pressure on the downstream side (fifth pressure).
  • the deposit 65 is discharged to the outside by opening the third valve 81.
  • the pressure of the processed fluid 38 is measured by the upstream sixth pressure gauge 85 and the downstream seventh pressure gauge 86, and the upstream pressure (sixth pressure) is the downstream pressure (seventh pressure). Is higher than the predetermined value ⁇ , the post-processing fluid 38 is discharged by opening the fourth valve 83.
  • valve (third valve 81) attached to the adhesion range (elbow pipe 76) of the deposit 65 is opened, and the valve (fourth valve 83) attached to the outer pipe 36b is opened to increase the temperature.
  • the pressure difference between the inner tube 35 and the outer tube 36 can be reduced, and damage to the heat exchanger 31 can be prevented.
  • each of the valves (the third valve 81 and the fourth valve 83) is opened.
  • the pressure difference between the fluid in the inner pipe 35 (slurry body 37) and the high-temperature fluid (processed fluid 38) is prevented from damaging the heat exchanger 31, and the maintenance management burden for maintenance personnel and the like is reduced. Is done.
  • a pressure gauge is arranged on the downstream side of the heat exchanger 31, and in the sixth embodiment, a pressure gauge is arranged inside the heat exchanger 31, but the heat exchanger 31 is A pressure gauge may be disposed on each of the upstream side and the downstream side so as to be sandwiched.
  • FIG. 20 is a diagram showing a detailed configuration of the heat exchanger 31 according to the present embodiment.
  • the first pressure gauge 58 is provided at the lower end outside the heat exchanger 31, and the second pressure gauge 59 is provided at the upper end outside the heat exchanger 31.
  • the first pressure gauge 58 is provided in the slurry body introduction pipe 51 of the heat exchanger 31, and the second pressure gauge 59 is provided in the slurry body delivery pipe 52.
  • the pressure of the first pressure gauge 58 (first pressure) and the pressure of the second pressure gauge 59 (second pressure) are measured, and the first pressure is more predetermined than the second pressure.
  • the first valve 61 is opened. In this way, it is possible to prevent the deposit 65 from adhering to the double pipe 34 and blocking the double pipe 34 for a wide range of the entire double pipe 34 of the heat exchanger 31.
  • the deposit 65 can be discharged also by causing the slurry body 37 of the heat exchanger 31 to flow backward.
  • FIG. 21 is a diagram for explaining the gasification system 10 configured to automatically perform pressure measurement and valve opening / closing, as an example.
  • the gasification system 10 includes a first pressure gauge 58, a second pressure gauge 59, a third pressure gauge 68, a first valve 61, and a second valve 67, as in the fourth embodiment. Is provided.
  • This piping blockage prevention system is connected to each of the first pressure gauge 58, the second pressure gauge 59, the third pressure gauge 68, the first valve 61, and the second valve 67 via the communication network 91.
  • a processing device 92 is provided. The information processing device 92 can receive the current pressure measurement value output from the first pressure gauge 58, the second pressure gauge 59, and the third pressure gauge 68.
  • the information processing device 92 transmits a valve opening / closing instruction signal to each of the first valve 61 and the second valve 67, and the first valve 61 and the second valve 67 receive these instruction signals.
  • opening / closing control of the valve can be performed.
  • the information processing device 92 receives the current pressure value from the first pressure gauge 58 and the second pressure gauge 59, and when the received first pressure is higher than the second pressure by ⁇ P or more, A valve opening instruction signal is transmitted to the valve 61.
  • the first valve 61 that has received this instruction signal opens the first valve 61.
  • the information processing device 92 receives the pressure values of the first pressure and the third pressure, and if the received third pressure value is higher than the first pressure value by ⁇ or more, the second information processing device 92 receives the second pressure value.
  • An opening instruction signal is transmitted to the valve 67.
  • the second valve 67 that has received this instruction signal opens the second valve 67.
  • the gasification system 10 that automatically obtains the pressure value and opens and closes the valve using a computer or a network, the work load of maintenance personnel and the like can be reduced.
  • the pipe closing method has been described on the premise of the pipe in the biomass gasification system.
  • the present invention is applicable to pipes in which deposits adhere to the pipe.
  • the positional relationship between the pressure gauge and the valve is mainly the pressure on the upstream side of the region so as to sandwich the area 95 to which the deposit adheres, as shown in FIG.
  • the pressure gauge 97 is provided on the downstream side, and the valve 98 is further provided on the downstream side of the pressure gauge 97.
  • the pressure gauge 96 on the upstream side, the pressure gauge 97 on the downstream side, and the valve 98 are provided.
  • the positional relationship between is not limited to this.
  • a valve 98 may be provided between the upstream pressure gauge 96 and the downstream pressure gauge 97, or as shown in FIG. A valve 98 may be provided further upstream than the total 96. Regardless of the positional relationship, it is considered that there is no significant difference in the effect of discharging the deposit.

Abstract

The purpose of the present invention is to reliably prevent blockage of pipes. The present invention is characterized in that, in a pipe in which a viscous body or a solid derived from a fluid 37 flowing in a pressurized state adheres as a deposit 65 to a predetermined range along the flow direction on the inner walls of the pipe, the deposit 65 is discharged from the pipe as a consequence of the opening of a valve 61 attached in the vicinity of the predetermined range when a first pressure that is the pressure on the upstream side of the predetermined range is no less than a predetermined allowable value.

Description

配管閉塞防止方法、及び配管閉塞防止システムPiping blockage prevention method and piping blockage prevention system
 本発明は、配管に付着した粘性体又は固化物を除去して配管の閉塞を確実に防止するための配管閉塞防止方法、及び配管閉塞防止システムに関する。 The present invention relates to a pipe blockage prevention method and a pipe blockage prevention system for removing a viscous body or solidified material adhering to a pipe and reliably preventing the pipe from being blocked.
 所定の原料を高温高圧で処理してエネルギーを得るシステムが開発されている。例えば特許文献1には、非金属系触媒を含んだバイオマスのスラリー体を温度374℃以上、圧力22.1MPa以上の条件下で所定の反応器で水熱処理し、生成された生成ガスを利用して発電装置で発電し、発電装置からの排熱を利用してスラリー体を加熱するバイオマスガス化システムが記載されている。 A system for obtaining energy by processing predetermined raw materials at high temperature and high pressure has been developed. For example, Patent Document 1 discloses that a biomass slurry containing a nonmetallic catalyst is hydrothermally treated in a predetermined reactor under conditions of a temperature of 374 ° C. or higher and a pressure of 22.1 MPa or higher, and the generated product gas is used. A biomass gasification system is described in which power is generated by a power generation device and the slurry body is heated using exhaust heat from the power generation device.
特開2008-246343号公報JP 2008-246343 A
 このようなガス化システムにおいては熱交換器で高温高圧の処理水をスラリー体と熱交換しているが、この熱交換器の配管においては、原料(上記ではバイオマス)に由来するタールやチャー等の粘性体ないし固化物が付着する。粘性体や固化物は、配管の直管部や曲部に付着する。特に曲部では、屈曲が始まる部分(上流側)における外周側内面や、屈曲が終了する部分(下流側)の内周側内面に粘性体や固化物が付着しやすいことが知られている。スラリー体が外周側内面に衝突して付着すること、また、曲管下流側の内周側内面においてはよどみが生じやすく流速が低下して滞留しやすくなることが付着の原因と考えられる。 In such a gasification system, high-temperature and high-pressure treated water is heat-exchanged with the slurry body in a heat exchanger. In the pipe of this heat exchanger, tar or char derived from raw materials (in the above, biomass), etc. A sticky substance or solidified product adheres. Viscous materials and solidified substances adhere to straight pipe portions and curved portions of piping. In particular, it is known that, in a curved portion, a viscous material or a solidified substance easily adheres to an inner surface on the outer peripheral side in a portion where the bending starts (upstream side) or an inner peripheral side inner surface in a portion where the bending ends (downstream side). The cause of the adhesion is considered to be that the slurry body collides with and adheres to the inner surface on the outer peripheral side, and that stagnation is likely to occur on the inner peripheral side inner surface on the downstream side of the curved pipe, and the flow rate is lowered and tends to stay.
 このようにスラリー体が滞留する場所では、粘性体や固化物が蓄積し、配管内のスラリー体の流通が妨げられ、ガスの収率が低下するおそれがある。さらに粘性体や固化物が蓄積して配管が閉塞すると、ガス化設備の破損につながるおそれもある。 In such a place where the slurry body stays, the viscous body and the solidified material accumulate, and the circulation of the slurry body in the piping may be hindered, which may reduce the gas yield. Furthermore, if the viscous material or solidified material accumulates and the piping is blocked, the gasification equipment may be damaged.
 本発明はこのような現状に鑑みてなされたものであり、その目的は、配管に付着した粘性体又は固化物を除去して配管の閉塞を確実に防止するための配管閉塞防止方法、及び配管閉塞防止システムを提供することにある。 The present invention has been made in view of such a current situation, and an object of the present invention is to prevent a blockage of a pipe and a pipe for reliably preventing the blockage of the pipe by removing the viscous material or solidified substance adhering to the pipe. The object is to provide an occlusion prevention system.
 前述の目的を達成するための本発明の一つは、その内壁面における流れ方向の所定範囲に、加圧状態で流れる流体に由来する粘性体又は固化物が付着物として付着する配管において、前記所定範囲の上流側の圧力である第1圧力が所定の許容値以上となっている場合に、前記所定範囲の近傍に付設されたバルブを開放することにより前記付着物を前記配管から排出することを特徴とする。 One aspect of the present invention for achieving the above-mentioned object is a pipe in which a viscous material or a solidified material derived from a fluid flowing in a pressurized state adheres as a deposit to a predetermined range of the flow direction on the inner wall surface thereof. When the first pressure, which is the pressure on the upstream side of the predetermined range, is greater than or equal to a predetermined allowable value, the attached matter is discharged from the pipe by opening a valve attached in the vicinity of the predetermined range. It is characterized by.
 配管の内壁面に、配管を流れる流体に由来する粘性体や固化物の付着物が付着している場合、その付着範囲の上流側の圧力は上昇していると考えられる。そこで本発明のように、付着物の付着範囲の上流側の圧力である第1圧力が所定の許容値以上となっている場合に、付着範囲の近傍に付設されたバルブを開放することで、付着物により配管が閉塞する前のタイミングで、付着物を効果的に配管から排出することができる。これにより、配管の閉塞を確実に防止することができる。 If there is a sticky substance or solidified substance derived from the fluid flowing through the pipe on the inner wall surface of the pipe, the pressure on the upstream side of the attached range is considered to have increased. Therefore, as in the present invention, when the first pressure, which is the pressure upstream of the adhesion range of the deposit, is equal to or greater than a predetermined allowable value, by opening the valve attached in the vicinity of the adhesion range, The deposit can be effectively discharged from the pipe at a timing before the pipe is blocked by the deposit. Thereby, obstruction | occlusion of piping can be prevented reliably.
 なお、本発明においては、前記バルブを開放し、一定時間経過後に前記バルブを閉止するようにしてもよい。また、前記バルブを開放した後、前記第1圧力が所定値より低くなった場合に前記バルブを閉止するようにしても良い。これらより、配管を流れる流体の不要の流出を防ぐことができる。 In the present invention, the valve may be opened and the valve may be closed after a predetermined time has elapsed. Further, after opening the valve, the valve may be closed when the first pressure becomes lower than a predetermined value. From these, the unnecessary outflow of the fluid flowing through the piping can be prevented.
 また、本発明の他の一つは、その内壁面における流れ方向の所定範囲に、加圧状態で流れる流体に由来する粘性体又は固化物が付着物として付着する配管において、前記所定範囲の上流側の圧力である第1圧力が、前記所定範囲の下流側の圧力である第2圧力よりも所定の許容値以上高くなっている場合に、前記所定範囲の近傍に付設されたバルブを開放することにより前記付着物を前記配管から排出することを特徴とする。 In another aspect of the present invention, in a pipe in which a viscous material or solidified substance derived from a fluid flowing in a pressurized state adheres to a predetermined range in the flow direction on the inner wall surface as an adhering substance, an upstream of the predetermined range. When the first pressure that is the pressure on the side is higher than the second pressure that is the pressure on the downstream side of the predetermined range by a predetermined allowable value or more, the valve attached in the vicinity of the predetermined range is opened. Thus, the deposit is discharged from the pipe.
 配管の内壁面に、当該配管を流れる流体に由来する粘性体や固化物の付着物が付着している場合、その付着範囲の上流側と下流側における流体の圧力の間には、付着物のために圧力差が生じている。そこで本発明のように、第1圧力が、付着範囲の下流側の圧力である第2圧力よりも所定の許容値以上高くなっている場合に、付着範囲の近傍に付設されたバルブを開放することで、付着物により配管が閉塞する前のタイミングで確実に、付着物を配管から排出することができる。これにより、配管の閉塞を確実に防止することができる。 When a viscous material or solidified substance deposit derived from the fluid flowing in the pipe is attached to the inner wall surface of the pipe, the pressure between the fluid on the upstream side and the downstream side of the attachment range Therefore, a pressure difference is generated. Therefore, as in the present invention, when the first pressure is higher than the second pressure, which is the pressure downstream of the adhesion range, by a predetermined allowable value or more, the valve attached in the vicinity of the adhesion range is opened. Thus, the deposit can be reliably discharged from the pipe at a timing before the pipe is blocked by the deposit. Thereby, obstruction | occlusion of piping can be prevented reliably.
 また、上記発明においては、前記所定範囲において生じた前記流体の圧力損失を、前記流体の物性値に基づき算出し、前記第1圧力が、前記第2圧力よりも、前記算出した圧力損失に基づき設定した前記許容値以上高くなっている場合に、前記バルブを開放するようにしてもよい。例えば、前記所定範囲において生じた前記流体の圧力損失を、前記流体の流速及び密度に基づき算出する。このように、流体の流速及び密度といった物性値に基づき圧力損失を算出して第1圧力と第2圧力の差の許容値を設定することで、配管が閉塞する前の適切なタイミングでバルブを開放することができる。 Moreover, in the said invention, the pressure loss of the said fluid which generate | occur | produced in the said predetermined range is calculated based on the physical-property value of the said fluid, and the said 1st pressure is based on the calculated pressure loss rather than the said 2nd pressure. The valve may be opened when it is higher than the set allowable value. For example, the pressure loss of the fluid generated in the predetermined range is calculated based on the flow velocity and density of the fluid. In this way, by calculating the pressure loss based on the physical properties such as the flow velocity and density of the fluid and setting the allowable value of the difference between the first pressure and the second pressure, the valve can be operated at an appropriate timing before the pipe is blocked. Can be opened.
 また、上記発明においては、前記所定範囲を流れる流体の流体抵抗を、前記流体の流速に基づき算出し、前記第1圧力が、前記第2圧力よりも、前記算出した流体抵抗に基づき設定した前記許容値以上高くなっている場合に、前記バルブを開放するようにしてもよい。このように、付着物の付着範囲を流れる流体の流体抵抗を算出して第1圧力と第2圧力の差の許容値を設定することで、配管が閉塞する前の適切なタイミングでバルブを開放することができる。 In the above invention, the fluid resistance of the fluid flowing through the predetermined range is calculated based on the flow velocity of the fluid, and the first pressure is set based on the calculated fluid resistance rather than the second pressure. When the value is higher than the allowable value, the valve may be opened. In this way, by calculating the fluid resistance of the fluid flowing in the adhesion range of the deposit and setting the allowable value of the difference between the first pressure and the second pressure, the valve is opened at an appropriate timing before the pipe is blocked. can do.
 また、上記発明においては、前記流体としてバイオマスのスラリー体が流れる前記配管を内管として備え、前記スラリー体と熱交換される高温流体が流れる配管を外管として備える熱交換器と、前記熱交換器から送られてきた前記スラリー体を加熱して前記スラリー体をガス化すると共に、前記ガス化を行った後の前記スラリー体を前記高温流体として前記外管に送出するガス化反応器とを備えるガス化システムにおいて、前記第1圧力が前記第2圧力よりも前記所定の許容値以上高くなっている場合に、前記所定範囲の近傍に付設された前記バルブを開放することにより、前記付着物を前記内管から排出するようにしてもよい。 Further, in the above invention, the heat exchanger including the pipe through which a biomass slurry as the fluid flows as an inner pipe, and the pipe through which a high-temperature fluid that exchanges heat with the slurry as an outer pipe, and the heat exchange are provided. A gasification reactor that heats the slurry body sent from a vessel to gasify the slurry body, and sends the slurry body after the gasification to the outer pipe as the high-temperature fluid; In the gasification system provided, when the first pressure is higher than the second allowable pressure by the predetermined allowable value or more, by opening the valve provided in the vicinity of the predetermined range, the deposit May be discharged from the inner pipe.
 本発明のように、熱交換器によるガス化を行うガス化システムにおいて、熱交換器の内管の第1圧力が第2圧力よりも所定の許容値以上高くなっている場合に、付着物の付着範囲の近傍のバルブを開放することで、内管内の付着物を効果的に内管から排出することができる。これにより、熱交換器における内管の閉塞を防止することができる。 As in the present invention, in a gasification system that performs gasification by a heat exchanger, when the first pressure of the inner tube of the heat exchanger is higher than a second tolerance by a predetermined allowable value or more, By opening the valve in the vicinity of the adhesion range, the deposits in the inner pipe can be effectively discharged from the inner pipe. Thereby, obstruction | occlusion of the inner tube | pipe in a heat exchanger can be prevented.
 なお、上記発明においては、前記第1圧力が前記第2圧力よりも前記所定の許容値以上高くなっている場合に、前記所定範囲の近傍に付設された前記バルブを開放することにより前記付着物を前記内管から排出すると共に、前記外管を流れる前記高温流体を外部に排出するようにしてもよい。 In the present invention, when the first pressure is higher than the second allowable value by more than the predetermined allowable value, the deposits are opened by opening the valve provided in the vicinity of the predetermined range. May be discharged from the inner tube, and the high-temperature fluid flowing through the outer tube may be discharged to the outside.
 熱交換器の内管の付着物を排出するとスラリー体も同時に排出されるため、スラリー体が流れる内管が、外管を流れる高温流体の圧力を受け、その結果、熱交換器が破損する可能性がある。そこで、本発明のように、内管から付着物を排出すると共に、外管を流れる高温流体を外部に排出することにより、内管と外管の圧力差を小さくし、熱交換器の破損を防ぐことができる。 When the deposit on the inner tube of the heat exchanger is discharged, the slurry body is also discharged at the same time, so the inner tube through which the slurry body flows is subjected to the pressure of the high-temperature fluid flowing through the outer tube, and as a result, the heat exchanger can be damaged There is sex. Therefore, as in the present invention, the deposits are discharged from the inner tube, and the high-temperature fluid flowing through the outer tube is discharged to the outside, thereby reducing the pressure difference between the inner tube and the outer tube, and damaging the heat exchanger. Can be prevented.
 なお、上記発明においては、前記第1圧力が前記第2圧力よりも前記所定の許容値以上高くなっている場合に、前記所定範囲の近傍の外管における前記高温流体の圧力差が所定値以上高くなっていれば、前記所定範囲の近傍に付設された前記バルブを開放することにより前記付着物を前記内管から排出すると共に、前記外管を流れる前記高温流体を外部に排出するようにしてもよい。 In the above invention, when the first pressure is higher than the second allowable pressure by the predetermined allowable value, the pressure difference of the high-temperature fluid in the outer pipe in the vicinity of the predetermined range is a predetermined value or more. If it is higher, the valve attached to the vicinity of the predetermined range is opened to discharge the deposit from the inner pipe and to discharge the high-temperature fluid flowing through the outer pipe to the outside. Also good.
 本発明のように、外管における高温流体の圧力差が所定値以上である場合に内管のバルブを開放し、外管から高温流体を排出することで、内管の流体と高温流体との圧力差が大きくなって熱交換器が破損することを防ぐと共に、保守員等の保守管理の負担も軽減される。 As in the present invention, when the pressure difference of the high temperature fluid in the outer pipe is equal to or greater than a predetermined value, the valve of the inner pipe is opened and the high temperature fluid is discharged from the outer pipe, thereby While preventing the heat exchanger from being damaged due to a large pressure difference, the burden of maintenance management for maintenance personnel and the like is also reduced.
 なお、上記の各発明において前記所定範囲は、例えば、前記所定範囲は、前記流体が流れる配管の曲部である。配管の曲部には付着物が付着しやすいので、本発明によれば、配管の閉塞をより効果的に防止することができる。 In each of the above inventions, the predetermined range is, for example, a curved portion of a pipe through which the fluid flows. Since deposits easily adhere to the curved portion of the pipe, according to the present invention, blockage of the pipe can be more effectively prevented.
 また、本発明の他の一つは、その内壁面における流れ方向の所定範囲に、加圧状態で流れるバイオマスのスラリー体に由来する粘性体又は固化物が付着物として付着する内管と、前記スラリー体と熱交換される高温流体が流れる配管である外管とを備える熱交換器と、前記熱交換器から送られてきた前記スラリー体を加熱して前記スラリー体をガス化すると共に、前記ガス化を行った後の前記スラリー体を前記高温流体として前記外管に送出するガス化反応器とを備えるガス化システムにおける配管閉塞防止システムであって、前記所定範囲の上流側の圧力である第1圧力が前記所定範囲の下流側の圧力である第2圧力よりも所定の許容値以上高くなっている場合に、前記所定範囲の近傍に付設された前記バルブを開放することにより、前記付着物を前記内管から排出すると共に、前記外管を流れる前記高温流体を外部に排出する機能を有する情報処理装置を備えることを特徴とすることを特徴とする。 Further, another one of the present invention is an inner tube in which a viscous body or a solidified material derived from a slurry body of biomass flowing in a pressurized state adheres to a predetermined range of the flow direction on the inner wall surface as an adhering matter, A heat exchanger comprising an outer pipe that is a pipe through which a high-temperature fluid to be heat-exchanged with the slurry body, and heating the slurry body sent from the heat exchanger to gasify the slurry body, and A pipe clogging prevention system in a gasification system comprising a gasification reactor that delivers the slurry body after gasification to the outer pipe as the high-temperature fluid, the pressure being upstream of the predetermined range When the first pressure is higher than the second allowable pressure, which is the pressure downstream of the predetermined range, by opening the valve provided near the predetermined range, The deposits with discharges from the inner tube, characterized by further comprising a data processing apparatus having a function of discharging the hot fluid flowing through the outer tube to the outside.
 本発明によれば、配管閉塞防止方法、及び配管閉塞防止システムにおいて、配管に付着した粘性体又は固化物を除去して配管の閉塞を確実に防止することができる。 According to the present invention, in the pipe clogging prevention method and the pipe clogging prevention system, it is possible to reliably prevent clogging of the pipe by removing the viscous material or solidified substance adhering to the pipe.
第1実施形態に係るガス化システムの構成を説明する図である。It is a figure explaining the composition of the gasification system concerning a 1st embodiment. 二重管34の構造を示す図である。It is a figure which shows the structure of the double pipe. 熱交換器31の詳細な構成を示す図である。3 is a diagram showing a detailed configuration of a heat exchanger 31. FIG. スラリー体送出管52及びその周辺の構造を模式的に表した図である。It is the figure which represented typically the structure of the slurry body delivery pipe | tube 52 and its periphery. スラリー体送出管52の内壁面に付着する付着物65(タールやチャー)の例である。It is an example of the deposit | attachment 65 (tar or char) adhering to the inner wall face of the slurry body delivery pipe | tube 52. FIG. 付着物65の除去方法について説明するフローチャートである。It is a flowchart explaining the removal method of the deposit | attachment 65. FIG. 第1バルブ61を開いた場合の第1バルブ61を開いた場合のスラリー体送出管52及びその周辺の様子を示した図である。It is the figure which showed the mode of the slurry body delivery pipe | tube 52 at the time of opening the 1st valve 61 at the time of opening the 1st valve 61, and its periphery. 熱交換器31の詳細な構成を示す図である。3 is a diagram showing a detailed configuration of a heat exchanger 31. FIG. スラリー体送出管52及びその周辺の構造を模式的に表した図である。It is the figure which represented typically the structure of the slurry body delivery pipe | tube 52 and its periphery. 付着物65の除去方法について説明するフローチャートである。It is a flowchart explaining the removal method of the deposit | attachment 65. FIG. スラリー体送出管52及びその周辺の構造を模式的に表した図である。It is the figure which represented typically the structure of the slurry body delivery pipe | tube 52 and its periphery. 付着物65の除去方法について説明するフローチャートである。It is a flowchart explaining the removal method of the deposit | attachment 65. FIG. 熱交換器31の構成を模式的に示した図である。It is the figure which showed the structure of the heat exchanger 31 typically. 付着物65の除去方法について説明するフローチャートである。It is a flowchart explaining the removal method of the deposit | attachment 65. FIG. スラリー体送出管52及びその周辺の構造を模式的に表した図である。It is the figure which represented typically the structure of the slurry body delivery pipe | tube 52 and its periphery. パラメータAcを説明するための、スラリー体送出管52の曲部64を示した図である。It is the figure which showed the curved part 64 of the slurry body delivery pipe | tube 52 for demonstrating the parameter Ac. A2/A1、Cc、及びζの間の関係を示した図である。It is the figure which showed the relationship between A2 / A1, Cc, and (zeta). ζ、Cc、及びA2/A1の間の関係を示した図である。It is the figure which showed the relationship between (zeta), Cc, and A2 / A1. 熱交換器31における内管35及び外管36の構成を説明する図である。It is a figure explaining the structure of the inner tube | pipe 35 and the outer tube | pipe 36 in the heat exchanger 31. FIG. 熱交換器31の詳細な構成を示す図である。3 is a diagram showing a detailed configuration of a heat exchanger 31. FIG. 圧力測定やバルブ開閉を自動化して行うように構成したガス化システム10を説明する図である。It is a figure explaining the gasification system 10 comprised so that pressure measurement and valve opening / closing may be performed automatically. 圧力計とバルブの位置関係を示す図である。It is a figure which shows the positional relationship of a pressure gauge and a valve | bulb.
<第1実施形態>
 図1は、第1実施形態に係るガス化システム10の構成を説明する図である。このガス化システム10は、焼酎残渣、採卵鶏糞、汚泥等のバイオマスからスラリー体を調製し、調製したスラリー体を加熱加圧することにより燃焼ガスを生成するシステムである。
<First Embodiment>
FIG. 1 is a diagram illustrating a configuration of a gasification system 10 according to the first embodiment. This gasification system 10 is a system that generates a combustion gas by preparing a slurry body from biomass such as shochu residue, egg-collecting chicken manure, sludge, etc., and heating and pressurizing the prepared slurry body.
 同図に示すように、ガス化システム10は、原料調製部20、熱処理部30、及びガス処理部40を有し、これらの間は各種の配管によって接続されている。 As shown in the figure, the gasification system 10 includes a raw material preparation unit 20, a heat treatment unit 30, and a gas processing unit 40, which are connected by various pipes.
 このうち原料調製部20は、バイオマスからスラリー体を調製する部分である。原料調製部は、調製タンク21、粉砕機22、供給ポンプ23、及び熱交換器導入ポンプ24を備える。 Among these, the raw material preparation part 20 is a part which prepares a slurry body from biomass. The raw material preparation unit includes a preparation tank 21, a pulverizer 22, a supply pump 23, and a heat exchanger introduction pump 24.
 調製タンク21は、バイオマスと、水と、触媒(本実施形態では活性炭とする)とを混合し、これにより混合液を調製するタンクである。活性炭は、例えば平均粒径200μm以下の多孔質の粒子を用いる。なお、上記液分、水、及び活性炭の混合割合は、バイオマスの種類、量、含水率などに応じて調節される。 The preparation tank 21 is a tank that mixes biomass, water, and a catalyst (in this embodiment, activated carbon), thereby preparing a mixed solution. For example, porous particles having an average particle diameter of 200 μm or less are used as the activated carbon. The mixing ratio of the liquid, water, and activated carbon is adjusted according to the type, amount, moisture content, etc. of biomass.
 粉砕機22は、調製タンク21で得られた混合液の固形分を破砕し、均一な大きさ(好ましくは平均粒径が500μm以下、より好ましくは平均粒径が300μm以下)にするための装置である。この粉砕機22で処理されることにより、混合液はスラリー体となる。 The pulverizer 22 is an apparatus for crushing the solid content of the mixed liquid obtained in the preparation tank 21 to obtain a uniform size (preferably an average particle size of 500 μm or less, more preferably an average particle size of 300 μm or less). It is. By processing with this grinder 22, a liquid mixture becomes a slurry body.
 供給ポンプ23は、粉砕機22から排出されたスラリー体を熱交換器導入ポンプ24に供給する。また、熱交換器導入ポンプ24は、供給ポンプから送られてきたスラリー体を加圧し、スラリー体導入管51を通じて熱処理部30に供給する。 The supply pump 23 supplies the slurry discharged from the pulverizer 22 to the heat exchanger introduction pump 24. Further, the heat exchanger introduction pump 24 pressurizes the slurry body sent from the supply pump and supplies it to the heat treatment section 30 through the slurry body introduction pipe 51.
 熱処理部30は、原料調製部20から送られてきたスラリー体を加熱しガス化する部分である。熱処理部30は、熱交換器31、加熱器32、及びガス化反応器33を備える。このうち熱交換器31は二重管34を備え、スラリー体導入管51から送られてきたスラリー体を当該二重管34において加圧状態で加熱し、加熱したスラリー体をスラリー体送出管52に送出する。また、熱交換器31においては、スラリー体と熱交換される高温流体である処理後流体38(後述)が処理後流体導入管53を通じて二重管34に流入してくる。二重管34においてスラリー体37と熱交換された処理後流体38は、処理後流体排出管54に排出される。 The heat treatment part 30 is a part that heats and gasifies the slurry body sent from the raw material preparation part 20. The heat treatment unit 30 includes a heat exchanger 31, a heater 32, and a gasification reactor 33. Among these, the heat exchanger 31 includes a double pipe 34, the slurry body sent from the slurry body introduction pipe 51 is heated in a pressurized state in the double pipe 34, and the heated slurry body is fed to the slurry body delivery pipe 52. To send. In the heat exchanger 31, a post-treatment fluid 38 (described later) that is a high-temperature fluid that exchanges heat with the slurry body flows into the double pipe 34 through the post-treatment fluid introduction pipe 53. The treated fluid 38 heat-exchanged with the slurry body 37 in the double pipe 34 is discharged to the treated fluid discharge pipe 54.
 図2は二重管34の構造を示す図である。同図に示すように、二重管34は内管35、及び外管36を備える。内管35の厚みは約1mm程度、外管36の厚みは約1mm程度である。内管35には、スラリー体37が流通する。外管36には、ガス化反応器33から処理後流体導入管53を経由して超臨界状態で流入してきた処理後流体38が流通する。二重管34において、スラリー体37は処理後流体38と熱交換されることによって加熱される。加熱されたスラリー体37はスラリー体送出管52に送出され、一方、スラリー体37と熱交換された処理後流体38は、処理後流体排出管54に排出される。 FIG. 2 is a diagram showing the structure of the double pipe 34. As shown in the figure, the double tube 34 includes an inner tube 35 and an outer tube 36. The inner tube 35 has a thickness of about 1 mm, and the outer tube 36 has a thickness of about 1 mm. A slurry body 37 flows through the inner tube 35. A post-treatment fluid 38 that has flowed in a supercritical state from the gasification reactor 33 via the post-treatment fluid introduction pipe 53 flows through the outer pipe 36. In the double pipe 34, the slurry body 37 is heated by exchanging heat with the processed fluid 38. The heated slurry body 37 is sent to the slurry body delivery pipe 52, while the post-treatment fluid 38 heat-exchanged with the slurry body 37 is discharged to the post-treatment fluid discharge pipe 54.
 なお、スラリー体37が熱交換器31に導入されるときの温度は、例えば約25℃である。また、スラリー体37が熱交換器31から送出されるときの温度は例えば約450℃である。一方、処理後流体38が熱交換器31に導入されるときの温度は例えば600℃程度であり、処理後流体38が熱交換器31から排出されるときの温度は例えば120℃程度である。 The temperature when the slurry body 37 is introduced into the heat exchanger 31 is, for example, about 25 ° C. Moreover, the temperature when the slurry body 37 is sent out from the heat exchanger 31 is about 450 ° C., for example. On the other hand, the temperature when the treated fluid 38 is introduced into the heat exchanger 31 is, for example, about 600 ° C., and the temperature when the treated fluid 38 is discharged from the heat exchanger 31 is, for example, about 120 ° C.
 図1に示すように、加熱器32は、熱交換器31から送られてきたスラリー体37を加熱する装置である。加熱器32は燃焼装置32aを備え、液化石油ガスLPG(Liquefied Petroleum Gas)や空気と共に、ガス処理部40から送られてくる燃焼ガス(後述)を当該燃焼装置32aにより燃焼させて、スラリー体37を加熱する。これにより、加熱器32に導入されたスラリー体37は例えば約600℃程度までに昇温される。昇温されたスラリー体37は、ガス化反応器33に送られる。 As shown in FIG. 1, the heater 32 is a device for heating the slurry body 37 sent from the heat exchanger 31. The heater 32 includes a combustion device 32a. Combustion gas (described later) sent from the gas processing unit 40 together with liquefied petroleum gas LPG (Liquefied Petroleum Gas) and air is combusted by the combustion device 32a, and a slurry body 37 is obtained. Heat. Thereby, the temperature of the slurry body 37 introduced into the heater 32 is raised to about 600 ° C., for example. The heated slurry body 37 is sent to the gasification reactor 33.
 ガス化反応器33は、加熱器32から送られてきたスラリー体37を加熱し、スラリー体37に含まれる有機物を水熱処理してガス化する装置である。ガス化反応器33は燃焼装置33aを備えており、液化石油ガスLPGや空気等と共に、ガス処理部40から送られてくる燃焼ガスを燃焼装置33aにより燃焼させて、スラリー体37の水熱処理を行う。ガス化反応器33においてスラリー体37は、例えば600℃、25MPaの条件下で、1~2分間にわたって保持される。水熱処理によりガス化された後のスラリー体37は高温流体となっており、前述した処理後流体38として、熱交換器31に送出される。 The gasification reactor 33 is a device that heats the slurry body 37 sent from the heater 32 and hydrothermally heats the organic matter contained in the slurry body 37 to gasify it. The gasification reactor 33 is provided with a combustion device 33a, and the combustion gas sent from the gas processing unit 40 together with the liquefied petroleum gas LPG and air is combusted by the combustion device 33a, and the hydrothermal treatment of the slurry body 37 is performed. Do. In the gasification reactor 33, the slurry body 37 is held for 1 to 2 minutes under conditions of, for example, 600 ° C. and 25 MPa. The slurry body 37 after being gasified by hydrothermal treatment is a high-temperature fluid, and is sent to the heat exchanger 31 as the post-treatment fluid 38 described above.
 ガス処理部40は、減圧機構41、気液分離器42、及び触媒回収器43、ガスタンク44を備える。 The gas processing unit 40 includes a decompression mechanism 41, a gas-liquid separator 42, a catalyst recovery unit 43, and a gas tank 44.
 このうち減圧機構41は、処理後流体送出管54を介して熱交換器31から排出された処理後流体38を減圧する。気液分離器42は、減圧機構41から送られてきた処理後流体38を、液体(活性炭や灰分を含む液体)と、気体(水素やメタン等のガス)とに分離する。このうち液体は排液として処理され、触媒回収器43に送られ、一方、気体はガスタンク44に送られる。ガスタンク44は、気液分離器42から送られてきた気体を貯留する。ガスタンク44における気体の温度は30℃程度である。ガスタンク44に貯留されたガスは、前述した燃料ガスとして、加熱器32、及びガス化反応器33に供給される。 Among these, the decompression mechanism 41 decompresses the treated fluid 38 discharged from the heat exchanger 31 via the treated fluid delivery pipe 54. The gas-liquid separator 42 separates the processed fluid 38 sent from the decompression mechanism 41 into a liquid (a liquid containing activated carbon or ash) and a gas (a gas such as hydrogen or methane). Of these, the liquid is treated as waste and sent to the catalyst recovery unit 43, while the gas is sent to the gas tank 44. The gas tank 44 stores the gas sent from the gas-liquid separator 42. The temperature of the gas in the gas tank 44 is about 30 ° C. The gas stored in the gas tank 44 is supplied to the heater 32 and the gasification reactor 33 as the fuel gas described above.
 次に、熱交換器31の詳細について説明する。
 図3は、熱交換器31の詳細な構成を示す図である。同図に示すように、熱交換器31は、スラリー体導入管51が接続されている下方側から、スラリー体送出管52が接続されている上方側に向かって螺旋状に伸びる、二重管34を備える。なお、同図では、二重管34の螺旋が形成する各層の外周は長方形状となっているが、係る形状に限るものではない。
Next, the details of the heat exchanger 31 will be described.
FIG. 3 is a diagram showing a detailed configuration of the heat exchanger 31. As shown in the figure, the heat exchanger 31 is a double pipe that extends spirally from the lower side to which the slurry body introduction pipe 51 is connected to the upper side to which the slurry body delivery pipe 52 is connected. 34 is provided. In addition, in the same figure, although the outer periphery of each layer which the spiral of the double pipe | tube 34 forms is a rectangular shape, it is not restricted to the said shape.
 スラリー体導入管51は、分岐部材55を介して二重管34の内管35と接続され、両者が連通されている。また、この分岐部材55は、二重管34の外管36の下端と処理後流体送出管54とを接続して両者を連通させている。これにより、スラリー体導入管51からのスラリー体37は二重管34の内管35に送られ、また、二重管34の外管36から排出された処理後流体38は、処理後流体送出管54を介して減圧機構41に送られるようになっている。 The slurry body introduction pipe 51 is connected to the inner pipe 35 of the double pipe 34 via the branch member 55, and both are communicated with each other. Further, the branch member 55 connects the lower end of the outer tube 36 of the double tube 34 and the post-treatment fluid delivery tube 54 so as to communicate with each other. As a result, the slurry body 37 from the slurry body introduction pipe 51 is sent to the inner pipe 35 of the double pipe 34, and the processed fluid 38 discharged from the outer pipe 36 of the double pipe 34 is sent out after the processing fluid. The pressure reduction mechanism 41 is sent via a pipe 54.
 一方、スラリー体送出管52は、分岐部材56を介して二重管34の内管35と接続され、両者が連通されている。また、この分岐部材56は、二重管34の外管36の上端と処理後流体導入管53の一端とを接続して両者を連通させている。これにより、内管35から排出されたスラリー体37はスラリー体送出管52を介して加熱器32に送られ、また、処理後流体38は、処理後流体導入管53を介して二重管34の外管36に送られるようになっている。なお、スラリー体送出管52の他端は接続部材62を介して加熱器32と接続しており、処理後流体導入管53の他端は接続部材63を介してガス化反応器33と接続している(不図示)。 On the other hand, the slurry body delivery pipe 52 is connected to the inner pipe 35 of the double pipe 34 via the branch member 56, and both are in communication. Further, the branch member 56 connects the upper end of the outer tube 36 of the double tube 34 and one end of the post-treatment fluid introduction tube 53 so as to communicate with each other. As a result, the slurry body 37 discharged from the inner pipe 35 is sent to the heater 32 via the slurry body delivery pipe 52, and the post-treatment fluid 38 is passed through the post-treatment fluid introduction pipe 53. To the outer pipe 36. The other end of the slurry body delivery pipe 52 is connected to the heater 32 via a connection member 62, and the other end of the treated fluid introduction pipe 53 is connected to the gasification reactor 33 via a connection member 63. (Not shown).
 ここで、図3に示すように、スラリー体送出管52には、上流側から順に、第1圧力計58、及び第1バルブ61が設けられている。 Here, as shown in FIG. 3, the slurry body delivery pipe 52 is provided with a first pressure gauge 58 and a first valve 61 in order from the upstream side.
 図4は、スラリー体送出管52及びその周辺の構造を模式的に表した図である。スラリー体送出管52の内壁面の各所には、スラリー体送出管52を流れるスラリー体37に由来する粘性体や固化物(例えば、図5に示すようなタールやチャー等。以下、付着物という。)が付着する。特に、同図に示すように、スラリー体送出管52の曲部64の背側内壁面64aには、付着物65が付着しやすい。同様に、曲部64の下流側の腹側内壁面64bにおいても付着物65が付着しやすい。 FIG. 4 is a diagram schematically showing the structure of the slurry body delivery pipe 52 and its surroundings. At various locations on the inner wall surface of the slurry body delivery pipe 52, a viscous material or solidified material (for example, tar or char as shown in FIG. .) Adheres. In particular, as shown in the figure, the deposit 65 is likely to adhere to the back side inner wall surface 64 a of the curved portion 64 of the slurry body delivery pipe 52. Similarly, the deposit 65 is likely to adhere to the abdomen inner wall surface 64b on the downstream side of the curved portion 64.
 ここで、スラリー体送出管52の曲部64の上流側には、第1圧力計58が設けられている。また、スラリー体送出管52における曲部64の下流側には、分岐管(以下、付着物排出管66という)が設けられている。付着物排出管66の途中には、付着物65を排出するための、開閉可能な第1バルブ61が設けられている。第1バルブ61は通常、閉じた状態(C)とされている。 Here, a first pressure gauge 58 is provided on the upstream side of the curved portion 64 of the slurry body delivery pipe 52. Further, a branch pipe (hereinafter referred to as a deposit discharge pipe 66) is provided on the downstream side of the curved portion 64 in the slurry body delivery pipe 52. A first valve 61 that can be opened and closed is provided in the middle of the deposit discharge pipe 66 for discharging the deposit 65. The first valve 61 is normally in a closed state (C).
 図6は、第1圧力計58、及び第1バルブ61を用いた付着物65の除去方法を説明するフローチャートである。同図に示すように、ガス化システム10の保守員等は、ガス化システム10を起動した後(S0:YES)、所定の又は任意のタイミングで、第1圧力計58の圧力(以下、第1圧力という。図面ではP1と表記。)を測定する(S1)。そして、測定した第1圧力が所定の圧力Pmax以上になっている場合には(S2:YES)、第1バルブ61を開く(S3)。 FIG. 6 is a flowchart illustrating a method for removing the deposit 65 using the first pressure gauge 58 and the first valve 61. As shown in the figure, the maintenance staff of the gasification system 10 starts the gasification system 10 (S0: YES), and then the pressure (hereinafter referred to as the first pressure gauge 58) of the first pressure gauge 58 at a predetermined or arbitrary timing. 1 pressure (denoted as P1 in the drawing) is measured (S1). When the measured first pressure is equal to or higher than the predetermined pressure Pmax (S2: YES), the first valve 61 is opened (S3).
 なお、Pmaxは、例えば、曲部64が付着物65によって閉塞される直前の第1圧力(又はそれよりもやや小さい圧力)であり、経験的に定められる。 Note that Pmax is, for example, the first pressure (or a slightly lower pressure) immediately before the curved portion 64 is blocked by the deposit 65, and is determined empirically.
 図7は第1バルブ61を開いた場合のスラリー体送出管52及びその周辺の様子を示した図である。同図に示すように、第1バルブ61を開くと(図面ではOと表記)、スラリー体送出管52の曲部64の内壁に付着している付着物65が、曲部64の内圧と大気圧との差圧により内壁から剥がれ落ち、剥がれ落ちた付着物65が付着物排出管66から外部に排出される。 FIG. 7 is a view showing the state of the slurry body delivery pipe 52 and its surroundings when the first valve 61 is opened. As shown in the figure, when the first valve 61 is opened (indicated as O in the drawing), the adhering matter 65 adhering to the inner wall of the curved portion 64 of the slurry body delivery pipe 52 is increased by the internal pressure of the curved portion 64. The deposit 65 is peeled off from the inner wall by the pressure difference from the atmospheric pressure, and the peeled off deposit 65 is discharged to the outside from the deposit discharge pipe 66.
 第1バルブ61を開いて一定時間待機した後(図6のS4)、第1バルブ61を閉じ(S45)、第1圧力計58により第1圧力を測定する(S5)。そして、測定した第1圧力が上記の圧力Pmax以上になっている場合には(S6:YES)、第1バルブ61を開く作業(S3)を繰り返す。一方、第1圧力が圧力Pmax以上になっていない場合は(S6:NO)、第1圧力を測定する作業を繰り返す(S1)。このように、第1バルブ61を開放した後待機し、第1圧力が所定値より低くなった場合に第1バルブ61を閉止することにより、スラリー体37の不要の流出を防ぐことができる。 After opening the first valve 61 and waiting for a certain time (S4 in FIG. 6), the first valve 61 is closed (S45), and the first pressure is measured by the first pressure gauge 58 (S5). And when the measured 1st pressure is more than said pressure Pmax (S6: YES), the operation | work (S3) which opens the 1st valve | bulb 61 is repeated. On the other hand, when the first pressure is not equal to or higher than the pressure Pmax (S6: NO), the operation of measuring the first pressure is repeated (S1). As described above, the first valve 61 is opened and then waited. When the first pressure becomes lower than the predetermined value, the first valve 61 is closed to prevent the slurry body 37 from being unnecessarily discharged.
 このように、配管(スラリー体送出管52)の内壁面に、当該配管を流れる流体(スラリー体37)に由来する粘性体や固化物の付着物65が付着している場合、その付着範囲(曲部64)の上流側の圧力は、付着物65のために上昇していると考えられる。そこで本実施形態のように、付着物65の付着範囲の上流側の圧力である第1圧力が所定の許容値(Pmax)以上となっている場合に、付着範囲の近傍に付設されたバルブ(第1バルブ61)を開放することで、付着物65により配管が閉塞する前のタイミングで、付着物65を効果的に配管から排出することができる。これにより、配管の閉塞を確実に防止することができる。 As described above, in the case where the adherent 65 of the viscous body or the solidified material derived from the fluid (slurry body 37) flowing through the pipe is attached to the inner wall surface of the pipe (slurry body delivery pipe 52), the adhesion range ( It is believed that the pressure upstream of the bend 64) is rising due to the deposit 65. Therefore, as in the present embodiment, when the first pressure, which is the pressure on the upstream side of the adhesion range of the deposit 65, is equal to or higher than a predetermined allowable value (Pmax), a valve ( By opening the first valve 61), the deposit 65 can be effectively discharged from the pipe at a timing before the pipe is blocked by the deposit 65. Thereby, obstruction | occlusion of piping can be prevented reliably.
 また、第1バルブ61の開放により、スラリー体37に含まれる無機成分(カルシウム、ナトリウム、カリウム等)由来の無機塩類等も同時に除去できる。 Moreover, by opening the first valve 61, inorganic salts derived from inorganic components (calcium, sodium, potassium, etc.) contained in the slurry body 37 can be removed at the same time.
 なお、本実施形態では、第1バルブ61や第1圧力計58をスラリー体送出管52の近傍に設けたが、付着物65が付着する可能性のある配管であればスラリー体送出管52に限らず、例えばスラリー体導入管51やそれ以外の各種配管に、第1バルブ61や第1圧力計58を設けてもよい。また、付着物65は、曲部64だけでなく配管の直管部にも付着する可能性があるため、直管部に第1バルブ61や第1圧力計58を付設してもよい。 In the present embodiment, the first valve 61 and the first pressure gauge 58 are provided in the vicinity of the slurry body delivery pipe 52. However, any pipe that may be attached with the deposit 65 is attached to the slurry body delivery pipe 52. For example, the first valve 61 and the first pressure gauge 58 may be provided in the slurry body introduction pipe 51 and various other pipes. Further, since the deposit 65 may adhere not only to the curved portion 64 but also to the straight pipe portion of the pipe, the first valve 61 and the first pressure gauge 58 may be attached to the straight pipe portion.
<第2実施形態>
 図8は、第2実施形態に係る、熱交換器31の詳細な構成を示す図である。同図に示すように、第2実施形態と第1実施形態との違いは、スラリー体送出管52に第2圧力計59が付設されていることである。
Second Embodiment
FIG. 8 is a diagram illustrating a detailed configuration of the heat exchanger 31 according to the second embodiment. As shown in the figure, the difference between the second embodiment and the first embodiment is that a second pressure gauge 59 is attached to the slurry body delivery pipe 52.
 図9は、スラリー体送出管52及びその周辺の構造を模式的に表した図である。同図に示すように、スラリー体送出管52の曲部64の上流側には第1圧力計58が付設され、さらに、曲部64の下流側には第2圧力計59が付設されている。そして、第2圧力計59の下流側には、スラリー体送出管52からの分岐管である付着物排出管66が設けられている。そして、付着物排出管66の途中には開閉可能な第1バルブ61が設けられている。第1バルブ61は通常、閉じた状態(C)とされている。 FIG. 9 is a diagram schematically showing the structure of the slurry body delivery pipe 52 and its surroundings. As shown in the figure, a first pressure gauge 58 is attached to the upstream side of the curved portion 64 of the slurry body delivery pipe 52, and a second pressure gauge 59 is attached to the downstream side of the curved portion 64. . A deposit discharge pipe 66 that is a branch pipe from the slurry body delivery pipe 52 is provided on the downstream side of the second pressure gauge 59. A first valve 61 that can be opened and closed is provided in the middle of the deposit discharge pipe 66. The first valve 61 is normally in a closed state (C).
 図10は、第2実施形態に係る付着物65の除去方法について説明するフローチャートである。同図に示すように、ガス化システム10の保守員等は、ガス化システム10を起動した後(S10:YES)、所定の又は任意のタイミングで、第1圧力計58の圧力(第1圧力)と、第2圧力計59の圧力(第2圧力)とを測定する(S11)。そして、測定した第1圧力が第2圧力よりも所定の値ΔP以上高い値でない場合には(S12:NO)、第1圧力計58の圧力(第1圧力)及び第2圧力計59の圧力(第2圧力)を測定する作業を繰り返すが(S11)、測定した第1圧力が第2圧力よりも所定の値ΔP以上高くなっている場合には(S12:YES)、第1バルブ61を開く(S13)。第1バルブ61を開くと、第1実施形態と同様に、スラリー体送出管52の曲部64の内壁に付着している付着物65が、曲部64の内圧と大気圧との差圧により内壁から剥がれ落ち、剥がれ落ちた付着物65が付着物排出管66から外部に排出される。 FIG. 10 is a flowchart illustrating a method for removing the deposit 65 according to the second embodiment. As shown in the figure, the maintenance staff or the like of the gasification system 10 starts the gasification system 10 (S10: YES), and then the pressure (first pressure) of the first pressure gauge 58 at a predetermined or arbitrary timing. ) And the pressure (second pressure) of the second pressure gauge 59 (S11). If the measured first pressure is not higher than the second pressure by a predetermined value ΔP or more (S12: NO), the pressure of the first pressure gauge 58 (first pressure) and the pressure of the second pressure gauge 59 The operation of measuring (second pressure) is repeated (S11), but when the measured first pressure is higher than the second pressure by a predetermined value ΔP (S12: YES), the first valve 61 is turned on. Open (S13). When the first valve 61 is opened, as in the first embodiment, the deposit 65 attached to the inner wall of the curved portion 64 of the slurry body delivery pipe 52 is caused by the pressure difference between the internal pressure of the curved portion 64 and the atmospheric pressure. The deposit 65 peeled off from the inner wall is discharged from the deposit discharge pipe 66 to the outside.
 なお、ΔPは、例えば、曲部64が付着物65によって閉塞される直前の第1圧力と第2圧力の差圧(又はそれよりもやや小さい圧力値)であり、経験的に定められる。 Note that ΔP is, for example, a differential pressure (or a slightly lower pressure value) between the first pressure and the second pressure immediately before the curved portion 64 is blocked by the deposit 65, and is determined empirically.
 第1バルブ61を開いたら、再び第1バルブ61を閉じる(S14)。そして、第1圧力計58、及び第2圧力計59により第1圧力、及び第2圧力をそれぞれ測定する(S15)。そして、測定した第1圧力が第2圧力よりもΔP以上高くなっている場合には(S16:YES)、第1バルブ61を開く作業(S13)を繰り返す。一方、第1圧力が、第2圧力よりΔP以上高くなっていない場合は(S16:NO)、第1圧力及び第2圧力を測定する作業(S11)を繰り返す。 When the first valve 61 is opened, the first valve 61 is closed again (S14). Then, the first pressure gauge 58 and the second pressure gauge 59 measure the first pressure and the second pressure, respectively (S15). If the measured first pressure is higher than the second pressure by ΔP or more (S16: YES), the operation of opening the first valve 61 (S13) is repeated. On the other hand, when the first pressure is not higher than ΔP by more than ΔP (S16: NO), the operation of measuring the first pressure and the second pressure (S11) is repeated.
 本実施形態においては、配管(スラリー体送出管52)の内壁面に当該配管を流れる流体(スラリー体37)に由来する粘性体や固化物の付着物65が付着している場合、その付着範囲(曲部64)の上流側と下流側における流体の圧力の間には、付着物65のために圧力差が生じている。そこで、第1圧力が、付着範囲の下流側の圧力である第2圧力よりも所定の許容値以上高くなっている場合に、付着範囲の近傍に付設されたバルブ(第1バルブ61)を開放することで、付着物65により配管が閉塞する前のタイミングで確実に、付着物65を配管から排出することができる。これにより、配管の閉塞を確実に防止することができる。 In the present embodiment, in the case where a sticky substance 65 or a viscous substance derived from a fluid (slurry body 37) flowing through the pipe is attached to the inner wall surface of the pipe (slurry body delivery pipe 52), the attachment range thereof. There is a pressure difference due to the deposit 65 between the pressure of the fluid on the upstream side and the downstream side of the (curved portion 64). Therefore, when the first pressure is higher than the second pressure, which is the pressure downstream of the adhesion range, by a predetermined allowable value or more, the valve (first valve 61) provided near the adhesion range is opened. By doing so, the deposit 65 can be reliably discharged from the pipe at a timing before the pipe is blocked by the deposit 65. Thereby, obstruction | occlusion of piping can be prevented reliably.
 なお、本実施形態では、第1バルブ61や第1圧力計58、第2圧力計59をスラリー体送出管52の近傍に設けたが、付着物65が付着する可能性のある配管であればスラリー体送出管52に限らず、スラリー体導入管51やその他の各種配管に第1バルブ61、第1圧力計58、第2圧力計59を設けてもよい。また、付着物65は、本実施形態のように曲部64だけでなく配管の直管部にも付着する可能性があるため、そのような直管部に第1バルブ61、第1圧力計58、第2圧力計59を設けてもよい。 In the present embodiment, the first valve 61, the first pressure gauge 58, and the second pressure gauge 59 are provided in the vicinity of the slurry body delivery pipe 52. The first valve 61, the first pressure gauge 58, and the second pressure gauge 59 may be provided not only in the slurry body delivery pipe 52 but also in the slurry body introduction pipe 51 and other various pipes. Further, since the deposit 65 may adhere not only to the curved portion 64 but also to the straight pipe portion of the pipe as in the present embodiment, the first valve 61 and the first pressure gauge are attached to such a straight pipe portion. 58 and a second pressure gauge 59 may be provided.
<第3実施形態>
 図11は、第3実施形態に係る、スラリー体送出管52及びその周辺の構造を模式的に表した図である。同図に示すように、本実施形態では、処理後流体38が流れる処理後流体導入管53の途中位置に、処理後流体38を排出するための分岐管(以下、処理後流体排出管69という)が設けられている。処理後流体排出管69の途中には第2バルブ67が付設されている。第2バルブ67は通常、閉じた状態(C)とされている。なお、第1バルブ61、第1圧力計58、及び第2圧力計59は第2実施形態と同様である。
<Third Embodiment>
FIG. 11 is a diagram schematically illustrating the structure of the slurry body delivery pipe 52 and the periphery thereof according to the third embodiment. As shown in the figure, in the present embodiment, a branch pipe (hereinafter referred to as a post-treatment fluid discharge pipe 69) for discharging the post-treatment fluid 38 to a middle position of the post-treatment fluid introduction pipe 53 through which the post-treatment fluid 38 flows. ) Is provided. A second valve 67 is attached in the middle of the treated fluid discharge pipe 69. The second valve 67 is normally in a closed state (C). The first valve 61, the first pressure gauge 58, and the second pressure gauge 59 are the same as in the second embodiment.
 図12は、本実施形態に係る付着物65の除去方法について説明するフローチャートである。同図に示すように、ガス化システム10の保守員等は、ガス化システム10を起動した後(S20:YES)、所定の又は任意のタイミングで、第1圧力計58の第1圧力と、第2圧力計59の第2圧力とを測定する(S21)。そして、測定した第1圧力が第2圧力よりもΔP以上高くなっていない場合には(S22:NO)、第1圧力計58の第1圧力及び第2圧力計59の第2圧力を測定する作業(S21)を繰り返すが、測定した第1圧力が第2圧力よりもΔP以上高くなっている場合には(S22:YES)、第1バルブ61を開放すると共に、第2バルブ67も開く(S23)。 FIG. 12 is a flowchart illustrating a method for removing the deposit 65 according to this embodiment. As shown in the figure, the maintenance staff of the gasification system 10 starts the gasification system 10 (S20: YES), and at a predetermined or arbitrary timing, the first pressure of the first pressure gauge 58, The second pressure of the second pressure gauge 59 is measured (S21). If the measured first pressure is not higher than ΔP by more than ΔP (S22: NO), the first pressure of the first pressure gauge 58 and the second pressure of the second pressure gauge 59 are measured. The operation (S21) is repeated. When the measured first pressure is higher than the second pressure by ΔP or more (S22: YES), the first valve 61 is opened and the second valve 67 is also opened (S22: YES). S23).
 第1バルブ61を開くと、スラリー体送出管52の曲部64の内壁に付着していた付着物65と共に、スラリー体送出管52を流れるスラリー体37も排出されてしまう。すると、スラリー体送出管52と連通している内管35の圧力が低下することになる。これにより、内管35が、外管36の処理後流体38の圧力を受けて破損する可能性がある。 When the first valve 61 is opened, the slurry body 37 flowing through the slurry body delivery pipe 52 is also discharged together with the deposit 65 attached to the inner wall of the curved portion 64 of the slurry body delivery pipe 52. Then, the pressure of the inner pipe 35 communicating with the slurry body delivery pipe 52 is lowered. As a result, the inner tube 35 may be damaged due to the pressure of the fluid 38 after the processing of the outer tube 36.
 しかし、本実施形態では処理後流体38の第2バルブ67も開いている。第2バルブ67を開くと、処理後流体導入管53内の処理後流体38が処理後流体排出管69から排出される。これに伴い、処理後流体導入管53に連通する、近傍の外管36の圧力も低下する。これにより、二重管34における内管35と外管36の圧力差が小さくなり、熱交換器31の破損を防ぐことができる。 However, in this embodiment, the second valve 67 of the processed fluid 38 is also open. When the second valve 67 is opened, the treated fluid 38 in the treated fluid introduction pipe 53 is discharged from the treated fluid discharge pipe 69. Along with this, the pressure of the nearby outer pipe 36 communicating with the post-treatment fluid introduction pipe 53 also decreases. Thereby, the pressure difference between the inner tube 35 and the outer tube 36 in the double tube 34 is reduced, and damage to the heat exchanger 31 can be prevented.
 第1バルブ61、及び第2バルブ67を開いた後、一定時間待機し(S27)、再び第1バルブ、及び第2バルブを閉じる(S24)。そして、第1圧力計58、及び第2圧力計59により、再び第1圧力、及び第2圧力を測定する(S25)。測定した第1圧力が第2圧力よりΔP以上高くなっている場合には(S26:YES)、第1バルブ61及び第2バルブ67を開く作業(S23)を繰り返す。一方、第1圧力が第2圧力よりΔP以上高くなっていない場合は(S26:NO)、第1圧力計58の第1圧力及び第2圧力計59の第2圧力を測定する作業(S21)を繰り返す。 After opening the first valve 61 and the second valve 67, the system waits for a predetermined time (S27), and then closes the first valve and the second valve again (S24). Then, the first pressure and the second pressure are again measured by the first pressure gauge 58 and the second pressure gauge 59 (S25). When the measured first pressure is higher than the second pressure by ΔP or more (S26: YES), the operation of opening the first valve 61 and the second valve 67 (S23) is repeated. On the other hand, when the first pressure is not higher than ΔP by more than ΔP (S26: NO), the first pressure of the first pressure gauge 58 and the second pressure of the second pressure gauge 59 are measured (S21). repeat.
 このように、付着物65の付着範囲の近傍に付設されたバルブ(第1バルブ61)を開放して内管35から付着物65を排出すると共に、第2バルブ67を開放して高温流体(処理後流体38)を外管36から排出することにより、内管35と外管36の圧力差を小さくし、熱交換器31の破損を防ぐことができる。 In this way, the valve (first valve 61) provided in the vicinity of the adhesion range of the deposit 65 is opened to discharge the deposit 65 from the inner pipe 35, and the second valve 67 is opened to open the high temperature fluid ( By discharging the treated fluid 38) from the outer tube 36, the pressure difference between the inner tube 35 and the outer tube 36 can be reduced, and the heat exchanger 31 can be prevented from being damaged.
<第4実施形態>
 図13は、第4実施形態に係る熱交換器31の構成を模式的に示した図である。同図に示すように、本実施形態では、スラリー体送出管52に第1バルブ61、第1圧力計58、及び第2圧力計59が設けられている他、処理後流体導入管53に第2バルブ67、及び第3圧力計68が設けられている。
<Fourth embodiment>
FIG. 13 is a diagram schematically showing the configuration of the heat exchanger 31 according to the fourth embodiment. As shown in the figure, in this embodiment, the slurry body delivery pipe 52 is provided with a first valve 61, a first pressure gauge 58, and a second pressure gauge 59, and the post-treatment fluid introduction pipe 53 is provided with a first valve 61. A two-valve 67 and a third pressure gauge 68 are provided.
 図14は、本実施形態に係る付着物65の除去方法について説明するフローチャートである。同図に示すように、保守員等は、ガス化システム10を起動後(S30:YES)、所定のまたは任意のタイミングで、第1圧力計58の第1圧力と、第2圧力計59の第2圧力とを測定する(S31)。そして、測定した第1圧力が第2圧力よりもΔP以上高くなっている場合には(S32:YES)、第1バルブ61を開放する(S33)。これにより、スラリー体送出管52の曲部64の内壁に付着していた付着物65を外部に排出する。 FIG. 14 is a flowchart illustrating a method for removing the deposit 65 according to this embodiment. As shown in the figure, the maintenance staff and the like start the gasification system 10 (S30: YES), and at a predetermined or arbitrary timing, the first pressure of the first pressure gauge 58 and the second pressure gauge 59 The second pressure is measured (S31). When the measured first pressure is higher than the second pressure by ΔP or more (S32: YES), the first valve 61 is opened (S33). Thereby, the deposit 65 adhering to the inner wall of the curved portion 64 of the slurry body delivery pipe 52 is discharged to the outside.
 第1バルブ61を開放後(S33)、第1圧力計58、及び第3圧力計68により第1圧力、及び第3圧力(図面ではP3と表記)をそれぞれ測定する(S35)。そして、測定した第3圧力が第1圧力よりも所定値α以上高くなっている場合には(S36:YES)、第2バルブ67を開き(S37)、一方、第3圧力が第1圧力よりα以上高くなっていない場合には(S36:NO)、S35に戻る。 After opening the first valve 61 (S33), the first pressure gauge 58 and the third pressure gauge 68 measure the first pressure and the third pressure (denoted as P3 in the drawing), respectively (S35). When the measured third pressure is higher than the first pressure by a predetermined value α (S36: YES), the second valve 67 is opened (S37), while the third pressure is higher than the first pressure. If it is not higher than α (S36: NO), the process returns to S35.
 第2バルブ67を開き(S37)、しばらく待機した後は、再び第1圧力、及び第3圧力を測定する(S38、S39)。そして、測定した第3圧力が第1圧力よりもα以上高くなっている場合には(S40:YES)、S38に戻り、一方、第3圧力が、第1圧力よりα以上高くなっていない場合は(S40:NO)、第2バルブ67を閉じ(S41)、後述するS43に進む。 The second valve 67 is opened (S37), and after waiting for a while, the first pressure and the third pressure are measured again (S38, S39). If the measured third pressure is higher than the first pressure by α or more (S40: YES), the process returns to S38, while the third pressure is not higher than the first pressure by α or more. (S40: NO), the second valve 67 is closed (S41), and the process proceeds to S43 described later.
 なお、前述の定数αは、例えば、二重管34を破損させない内管35と外管36の圧力差の上限値またはそれよりやや低い値であり、経験的に定められる。 The above-mentioned constant α is, for example, the upper limit value of the pressure difference between the inner pipe 35 and the outer pipe 36 that does not damage the double pipe 34 or a value slightly lower than that, and is determined empirically.
 S43では、第1圧力、及び第2圧力を測定する。そして、測定した第1圧力が、第2圧力よりΔP以上高くなっている場合には(S44:YES)、第1圧力及び第3圧力をそれぞれ測定する作業を繰り返す(S35)。一方、第1圧力が第2圧力よりΔP以上高くなっていない場合は(S44:NO)、第1バルブ61を閉じ(S46)、第1圧力計58の第1圧力、及び第2圧力計59の第2圧力を測定する作業(S31)を繰り返す。 In S43, the first pressure and the second pressure are measured. If the measured first pressure is higher than the second pressure by ΔP or more (S44: YES), the operation of measuring the first pressure and the third pressure is repeated (S35). On the other hand, when the first pressure is not higher than ΔP by more than ΔP (S44: NO), the first valve 61 is closed (S46), the first pressure of the first pressure gauge 58, and the second pressure gauge 59. The operation (S31) of measuring the second pressure is repeated.
 以上のように、内管35における流体(スラリー体37)と外管36における高温流体(処理後流体38)との圧力差が所定値以上である場合に、第1バルブ61及び第2バルブ67を開放することで、内管35の流体(スラリー体37)と外管36の高温流体との圧力差が大きくなって熱交換器31が破損することを防ぐと共に、保守員等の保守管理の負担も軽減される。 As described above, when the pressure difference between the fluid in the inner pipe 35 (slurry body 37) and the high-temperature fluid in the outer pipe 36 (processed fluid 38) is greater than or equal to a predetermined value, the first valve 61 and the second valve 67 Is opened, and the pressure difference between the fluid in the inner pipe 35 (slurry body 37) and the high-temperature fluid in the outer pipe 36 is prevented from being damaged, and the heat exchanger 31 is prevented from being damaged. The burden is also reduced.
<第5実施形態>
 第2乃至第4実施形態では、第1バルブ61を開放するタイミングを決定するパラメータとして、第1圧力と第2圧力の差圧であるΔPを用いた。このΔPは、前述のように経験的に定めることができる。しかしながら、ΔPを経験的に定めることが困難な場合は、以下のようにして理論的にΔPを求め、これを使用することができる。本実施形態では、このΔPを求める方法を、第2実施形態のガス化システム10に基づき説明する。
<Fifth Embodiment>
In the second to fourth embodiments, ΔP, which is a differential pressure between the first pressure and the second pressure, is used as a parameter for determining the timing for opening the first valve 61. This ΔP can be determined empirically as described above. However, when it is difficult to determine ΔP empirically, ΔP can be theoretically obtained and used as follows. In the present embodiment, a method for obtaining this ΔP will be described based on the gasification system 10 of the second embodiment.
 図15は、スラリー体送出管52及びその周辺の構造を模式的に表した図である。同図に示すように、まず、スラリー体送出管52の曲部64の長さL、及びその断面積A1を測定する。また、曲部64を流れるスラリー体37の流速u、及び密度ρを求める。なお、流速uを求める方法としては、例えば、曲部64の下流側に流速計を設置する方法や、熱交換器導入ポンプ24の1ストロークの容積や動作時間等から推定する方法がある。また、密度ρは、例えば、熱交換器導入ポンプ24から送られてくるスラリー体37の体積とその重量から算出する。 FIG. 15 is a diagram schematically showing the structure of the slurry body delivery pipe 52 and its periphery. As shown in the figure, first, the length L of the curved portion 64 of the slurry body delivery pipe 52 and its cross-sectional area A1 are measured. Further, the flow velocity u and the density ρ of the slurry body 37 flowing through the curved portion 64 are obtained. As a method for obtaining the flow velocity u, for example, there are a method of installing a flow meter on the downstream side of the curved portion 64, and a method of estimating from the volume of one stroke of the heat exchanger introduction pump 24, the operation time, and the like. Further, the density ρ is calculated from, for example, the volume of the slurry body 37 sent from the heat exchanger introduction pump 24 and its weight.
 次に、付着物65を排出する必要があるときの曲部64の断面積A2が、付着物65がないときの断面積A1の1/10であると仮定して、A2を求める(すなわちA2=A1/10)。これらに基づき、ΔPを、圧力損失と流体の関係を示す下記の式(1)(2)に基づき求める。 Next, assuming that the cross-sectional area A2 of the curved portion 64 when the deposit 65 needs to be discharged is 1/10 of the cross-sectional area A1 when the deposit 65 is not present, A2 is obtained (that is, A2). = A1 / 10). Based on these, ΔP is determined based on the following formulas (1) and (2) indicating the relationship between pressure loss and fluid.
ΔP=4f×((ρ(u2))/2)×(L/d) ・・・(1) ΔP = 4f × ((ρ (u 2 )) / 2) × (L / d) (1)
f=0.0791Re(-1/4) ・・・(2) f = 0.0791Re ( -1/4 ) (2)
ここで、式(2)のReはレイノルズ数であり、例えば3000とする。上記で求めたL、u、ρを式(1)に代入することで、ΔPが求まる。 Here, Re in Equation (2) is the Reynolds number, for example, 3000. By substituting L, u, and ρ obtained above into Equation (1), ΔP is obtained.
 以上とは別に、ΔPは流体抵抗に関する以下の式(3)(4)に基づき求めることもできる。 Apart from the above, ΔP can also be obtained based on the following equations (3) and (4) relating to fluid resistance.
ΔP=((u2)/2g)×(1-A2/A1)2=ζ((u2)/2g) ・・・(3) ΔP = ((u 2 ) / 2g) × (1-A2 / A1) 2 = ζ ((u 2 ) / 2g) (3)
ζ=(A2/Ac-1)2=(1/Cc-1)2 ・・・(4) ζ = (A2 / Ac-1) 2 = (1 / Cc-1) 2 (4)
ここで、A2/A1=0.1とする。また、gは重力加速度、ζは損失係数、Cc=Ac/A2は収縮係数である。なお、Acは図16に示すように、スラリー体送出管52の曲部64において付着物65による閉塞が始まった部分における極小の断面積である。また、Ccとζの関係は、図17に示したA2/A1、Cc、及びζの間の関係を表した表や、ζ、Cc、及びA2/A1の間の関係図(図18)を用いて求めることができる。 Here, A2 / A1 = 0.1. Further, g is a gravitational acceleration, ζ is a loss coefficient, and Cc = Ac / A2 is a contraction coefficient. As shown in FIG. 16, Ac is a minimum cross-sectional area at a portion where the clogging portion 64 of the slurry body delivery pipe 52 starts to be blocked by the deposit 65. Further, the relationship between Cc and ζ is shown in the table showing the relationship between A2 / A1, Cc, and ζ shown in FIG. 17, and the relationship diagram between ζ, Cc, and A2 / A1 (FIG. 18). It can be obtained using.
 なお、以上に説明ではA2/A1=0.1としたが、A2/A1を1未満の所定値に設定してもよい。 In the above description, A2 / A1 = 0.1. However, A2 / A1 may be set to a predetermined value less than 1.
 このように、圧力損失の所定値ΔPを温度や圧力で変化する流体の物性値に基づき理論的に算出することで、第1バルブ61を、スラリー体送出管52の曲部64が閉塞する前の適切なタイミングで開放することができる。なお、このようにしてバルブを開放するタイミングを決定する差圧を求める方法は、第1バルブ61だけでなく、第2バルブ67にも適用できる。 Thus, by calculating theoretically the predetermined value ΔP of the pressure loss based on the physical property value of the fluid that changes with temperature and pressure, the first valve 61 is closed before the curved portion 64 of the slurry body delivery pipe 52 is closed. Can be opened at the appropriate time. Note that the method for obtaining the differential pressure for determining the timing for opening the valve in this way can be applied not only to the first valve 61 but also to the second valve 67.
<第6実施形態>
 以上の実施形態では、主に、熱交換器31の外部の配管における付着物の65の排出方法に係るものであったが、熱交換器31内部の配管(例えば二重管34)における付着物65の排出も同様に行うことができる。
<Sixth Embodiment>
In the above embodiment, the method mainly relates to the method for discharging the deposit 65 in the pipe outside the heat exchanger 31, but the deposit in the pipe inside the heat exchanger 31 (for example, the double pipe 34). 65 can be discharged in the same manner.
 図19は、その一例として示す、熱交換器31の二重管34に係る、内管35及び外管36の構成を説明する図である。二重管34の一部(例えば、二重管34の長方形状の各螺旋層における長手方向端部)は、同図に示すように、2つの二重管34a、34bに分断されており、このうち二重管34aの内管35aと、二重管34bの内管35bとは、分岐部材75aを介してエルボ管76(曲管)で接続されている。また、二重管34aの外管36aと、二重管34bの外管36bとは、分岐部材75bを介して直管77で接続されている。 FIG. 19 is a diagram illustrating the configuration of the inner tube 35 and the outer tube 36 related to the double tube 34 of the heat exchanger 31 shown as an example. A part of the double pipe 34 (for example, a longitudinal end portion in each of the rectangular spiral layers of the double pipe 34) is divided into two double pipes 34a and 34b as shown in FIG. Of these, the inner pipe 35a of the double pipe 34a and the inner pipe 35b of the double pipe 34b are connected by an elbow pipe 76 (curved pipe) via a branch member 75a. Further, the outer pipe 36a of the double pipe 34a and the outer pipe 36b of the double pipe 34b are connected by a straight pipe 77 via a branch member 75b.
 分岐部材75aは、二重管34aの内管35aをエルボ管76に、外管36aを直管77に分岐させている。また、分岐部材75bは、二重管34bの内管35bをエルボ管76に、外管36bを直管77に分岐させている。これにより、内管35aをその上流から流れてきたスラリー体37はエルボ管76を通って内管35bに送出され、一方、外管36bをその上流から流れてきた処理後流体38は直管77を通って外管36aに送出される。 The branch member 75a branches the inner pipe 35a of the double pipe 34a into an elbow pipe 76 and the outer pipe 36a into a straight pipe 77. The branch member 75 b branches the inner pipe 35 b of the double pipe 34 b to the elbow pipe 76 and the outer pipe 36 b to the straight pipe 77. As a result, the slurry body 37 that has flowed from the upstream through the inner pipe 35a is sent to the inner pipe 35b through the elbow pipe 76, while the treated fluid 38 that has flowed from the upstream through the outer pipe 36b is the straight pipe 77. And is delivered to the outer tube 36a.
 ここで、エルボ管76の曲部の上流側には、第4圧力計78が設けられ、エルボ管76の曲部の下流側には、第5圧力計79が設けられている。また、第5圧力計79の下流側には、エルボ管76の分岐管である付着物排出管84が設けられている。付着物排出管84の途中には、第3バルブ81が設けられている。第3バルブ81は通常、閉じた状態(C)とされている。 Here, a fourth pressure gauge 78 is provided on the upstream side of the bent portion of the elbow pipe 76, and a fifth pressure gauge 79 is provided on the downstream side of the bent portion of the elbow pipe 76. Further, a deposit discharge pipe 84 that is a branch pipe of the elbow pipe 76 is provided on the downstream side of the fifth pressure gauge 79. A third valve 81 is provided in the middle of the deposit discharge pipe 84. The third valve 81 is normally in a closed state (C).
 一方、直管77の上流側である二重管34bには、第6圧力計85が設けられている。また、直管77の途中には、第7圧力計86が設けられている。また、第7圧力計86の下流側には、直管77の分岐管である処理後流体排出管87が設けられている。処理後流体排出管87の途中には、第4バルブ83が設けられている。第4バルブ83は通常、閉じた状態(C)とされている。 On the other hand, a sixth pressure gauge 85 is provided in the double pipe 34b on the upstream side of the straight pipe 77. A seventh pressure gauge 86 is provided in the middle of the straight pipe 77. A post-treatment fluid discharge pipe 87 that is a branch pipe of the straight pipe 77 is provided on the downstream side of the seventh pressure gauge 86. A fourth valve 83 is provided in the middle of the treated fluid discharge pipe 87. The fourth valve 83 is normally in a closed state (C).
 以上の配管構成において、スラリー体37に由来するタールやチャー等の付着物65は、二重管34の内管35及び外管36の他、エルボ管76の内壁にも付着しやすくなっている。 In the above-described piping configuration, the deposit 65 such as tar and char derived from the slurry body 37 easily adheres to the inner wall of the elbow pipe 76 in addition to the inner pipe 35 and the outer pipe 36 of the double pipe 34. .
 そこで、スラリー体37の圧力を、上流側の第4圧力計78と下流側の第5圧力計79とで測定し、上流側の圧力(第4圧力)が下流側の圧力(第5圧力)よりもΔP以上高くなっている場合に、第3バルブ81を開放することにより付着物65を外部に排出するようにする。 Therefore, the pressure of the slurry body 37 is measured with the fourth pressure gauge 78 on the upstream side and the fifth pressure gauge 79 on the downstream side, and the pressure on the upstream side (fourth pressure) is the pressure on the downstream side (fifth pressure). In the case where it is higher than ΔP, the deposit 65 is discharged to the outside by opening the third valve 81.
 さらに、処理後流体38の圧力を、上流側の第6圧力計85と下流側の第7圧力計86で測定し、上流側の圧力(第6圧力)が下流側の圧力(第7圧力)よりも所定値β以上高くなっている場合に、第4バルブ83を開放することにより処理後流体38を排出する。 Further, the pressure of the processed fluid 38 is measured by the upstream sixth pressure gauge 85 and the downstream seventh pressure gauge 86, and the upstream pressure (sixth pressure) is the downstream pressure (seventh pressure). Is higher than the predetermined value β, the post-processing fluid 38 is discharged by opening the fourth valve 83.
 このように、付着物65の付着範囲(エルボ管76)に付設されたバルブ(第3バルブ81)を開放すると共に、外管36bに付設されたバルブ(第4バルブ83)を開放して高温流体(処理後流体38)を外部に排出することにより、内管35と外管36の圧力差を小さくし、熱交換器31の破損を防ぐことができる。 In this way, the valve (third valve 81) attached to the adhesion range (elbow pipe 76) of the deposit 65 is opened, and the valve (fourth valve 83) attached to the outer pipe 36b is opened to increase the temperature. By discharging the fluid (processed fluid 38) to the outside, the pressure difference between the inner tube 35 and the outer tube 36 can be reduced, and damage to the heat exchanger 31 can be prevented.
 また、高温流体(処理後流体38)の上流側の圧力と下流側の圧力との差が所定値以上である場合にバルブのそれぞれ(第3バルブ81、第4バルブ83)を開放することで、内管35の流体(スラリー体37)と高温流体(処理後流体38)との圧力差が大きくなって熱交換器31が破損することを防ぐと共に、保守員等の保守管理の負担も軽減される。 Further, when the difference between the upstream pressure and the downstream pressure of the high-temperature fluid (processed fluid 38) is a predetermined value or more, each of the valves (the third valve 81 and the fourth valve 83) is opened. The pressure difference between the fluid in the inner pipe 35 (slurry body 37) and the high-temperature fluid (processed fluid 38) is prevented from damaging the heat exchanger 31, and the maintenance management burden for maintenance personnel and the like is reduced. Is done.
<第7実施形態>
 第1~第5実施形態では熱交換器31の下流側に圧力計を配置し、第6実施形態では熱交換器31の内部に圧力計を配置したものであったが、熱交換器31を挟むようにして、上流側及び下流側のそれぞれに圧力計を配置するようにしてもよい。
<Seventh embodiment>
In the first to fifth embodiments, a pressure gauge is arranged on the downstream side of the heat exchanger 31, and in the sixth embodiment, a pressure gauge is arranged inside the heat exchanger 31, but the heat exchanger 31 is A pressure gauge may be disposed on each of the upstream side and the downstream side so as to be sandwiched.
 図20は、本実施形態に係る熱交換器31の詳細な構成を示す図である。同図に示すように、第1圧力計58が熱交換器31の外部の下方端、第2圧力計59が熱交換器31の外部の上方端に設けられている。具体的には、第1圧力計58が熱交換器31のスラリー体導入管51に設けられ、第2圧力計59がスラリー体送出管52に設けられている。 FIG. 20 is a diagram showing a detailed configuration of the heat exchanger 31 according to the present embodiment. As shown in the figure, the first pressure gauge 58 is provided at the lower end outside the heat exchanger 31, and the second pressure gauge 59 is provided at the upper end outside the heat exchanger 31. Specifically, the first pressure gauge 58 is provided in the slurry body introduction pipe 51 of the heat exchanger 31, and the second pressure gauge 59 is provided in the slurry body delivery pipe 52.
 このような圧力計の配置において、第1圧力計58の圧力(第1圧力)と、第2圧力計59の圧力(第2圧力)を測定し、第1圧力が第2圧力よりも所定の許容値以上高くなっている場合に、第1バルブ61を開放する。このようにすれば、熱交換器31の二重管34全体の広い範囲を対象に、二重管34への付着物65の付着と二重管34の閉塞を防止することができる。 In such a pressure gauge arrangement, the pressure of the first pressure gauge 58 (first pressure) and the pressure of the second pressure gauge 59 (second pressure) are measured, and the first pressure is more predetermined than the second pressure. When it is higher than the allowable value, the first valve 61 is opened. In this way, it is possible to prevent the deposit 65 from adhering to the double pipe 34 and blocking the double pipe 34 for a wide range of the entire double pipe 34 of the heat exchanger 31.
 なお、この場合、付着物65の排出は、熱交換器31のスラリー体37の流れを逆流させることによっても行うことができる。 In this case, the deposit 65 can be discharged also by causing the slurry body 37 of the heat exchanger 31 to flow backward.
<第8実施形態>
 以上に説明してきた実施形態では、圧力の測定、確認やバルブの開閉を保守員等の作業により行うことを前提として説明してきたが、情報処理装置(コンピュータ)を用いて自動化して行うようにしても良い。
<Eighth Embodiment>
In the embodiments described above, the description has been made on the assumption that pressure measurement, confirmation, and valve opening / closing are performed by maintenance personnel or the like. However, it should be automated using an information processing device (computer). May be.
 図21はその一例として示す、圧力測定やバルブ開閉を自動化して行うように構成したガス化システム10を説明する図である。同図に示すように、ガス化システム10には、第4実施形態と同様、第1圧力計58、第2圧力計59、第3圧力計68、第1バルブ61、及び第2バルブ67が設けられている。そして、この配管閉塞防止システムは、第1圧力計58、第2圧力計59、第3圧力計68、第1バルブ61、及び第2バルブ67のそれぞれと通信ネットワーク91を介して接続された情報処理装置92を備える。情報処理装置92は、第1圧力計58、第2圧力計59、及び第3圧力計68が出力する現在の圧力の測定値を受信することができる。また、情報処理装置92は、第1バルブ61、及び第2バルブ67のそれぞれに対してバルブの開閉の指示信号を送信し、第1バルブ61、及び第2バルブ67はこれらの指示信号を受信してバルブの開閉制御を行うことができる。 FIG. 21 is a diagram for explaining the gasification system 10 configured to automatically perform pressure measurement and valve opening / closing, as an example. As shown in the figure, the gasification system 10 includes a first pressure gauge 58, a second pressure gauge 59, a third pressure gauge 68, a first valve 61, and a second valve 67, as in the fourth embodiment. Is provided. This piping blockage prevention system is connected to each of the first pressure gauge 58, the second pressure gauge 59, the third pressure gauge 68, the first valve 61, and the second valve 67 via the communication network 91. A processing device 92 is provided. The information processing device 92 can receive the current pressure measurement value output from the first pressure gauge 58, the second pressure gauge 59, and the third pressure gauge 68. Further, the information processing device 92 transmits a valve opening / closing instruction signal to each of the first valve 61 and the second valve 67, and the first valve 61 and the second valve 67 receive these instruction signals. Thus, opening / closing control of the valve can be performed.
 例えば、情報処理装置92は、第1圧力計58、第2圧力計59から現在の圧力値を受信し、受信した第1圧力が第2圧力よりもΔP以上高くなっている場合に、第1バルブ61に対してバルブ開放の指示信号を送信する。この指示信号を受信した第1バルブ61は、第1バルブ61の開放を行う。また、情報処理装置92は、第1圧力、及び第3圧力の圧力値を受信し、受信した第3圧力の値が第1圧力の値よりもα以上高くなっている場合には、第2バルブ67に対して開放の指示信号を送信する。この指示信号を受信した第2バルブ67は、第2バルブ67の開放を行う。 For example, the information processing device 92 receives the current pressure value from the first pressure gauge 58 and the second pressure gauge 59, and when the received first pressure is higher than the second pressure by ΔP or more, A valve opening instruction signal is transmitted to the valve 61. The first valve 61 that has received this instruction signal opens the first valve 61. The information processing device 92 receives the pressure values of the first pressure and the third pressure, and if the received third pressure value is higher than the first pressure value by α or more, the second information processing device 92 receives the second pressure value. An opening instruction signal is transmitted to the valve 67. The second valve 67 that has received this instruction signal opens the second valve 67.
 このように、圧力値の取得やバルブの開閉をコンピュータやネットワークを用いて自動化して行うガス化システム10とすることで、保守員等の作業負担を軽減することができる。 Thus, by using the gasification system 10 that automatically obtains the pressure value and opens and closes the valve using a computer or a network, the work load of maintenance personnel and the like can be reduced.
 以上の実施形態の説明は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれる。 The above description of the embodiment is intended to facilitate understanding of the present invention and does not limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof.
 例えば、上記の実施形態の説明では、付着物が主に配管の曲部に付着することを前提としたが、直管部であっても付着物は付着する。したがって、圧力計やバルブを必ずしも配管の曲部又はその近傍に設ける必要はない。 For example, in the description of the above-described embodiment, it is assumed that the attached matter mainly adheres to the curved portion of the pipe, but the attached matter adheres even in the straight pipe portion. Therefore, it is not always necessary to provide a pressure gauge or a valve at the curved portion of the pipe or in the vicinity thereof.
 また、上記の実施形態では、バイオマスのガス化システムにおける配管を前提として配管の閉塞方法を説明したが、配管内に付着物が付着する配管一般に適用できる。 In the above embodiment, the pipe closing method has been described on the premise of the pipe in the biomass gasification system. However, the present invention is applicable to pipes in which deposits adhere to the pipe.
 また、上記の実施形態の説明では、圧力計とバルブの位置関係は、主に、図22の(a)に示すように、付着物が付着する範囲95を挟むようにしてその領域の上流側に圧力計96、下流側に圧力計97を設け、さらに、圧力計97のさらに下流側にバルブ98を設けるというものであったが、上流側の圧力計96、下流側の圧力計97、及びバルブ98の間の位置関係はこれに限らない。 Further, in the description of the above embodiment, the positional relationship between the pressure gauge and the valve is mainly the pressure on the upstream side of the region so as to sandwich the area 95 to which the deposit adheres, as shown in FIG. The pressure gauge 97 is provided on the downstream side, and the valve 98 is further provided on the downstream side of the pressure gauge 97. However, the pressure gauge 96 on the upstream side, the pressure gauge 97 on the downstream side, and the valve 98 are provided. The positional relationship between is not limited to this.
 例えば、図22の(b)に示すように、上流側の圧力計96及び下流側の圧力計97の間にバルブ98を設けてもよいし、(c)に示すように、上流側の圧力計96よりもさらに上流側にバルブ98を設けてもよい。いずれの位置関係であっても、付着物を排出する効果に有意な差は無いと考えられる。 For example, as shown in FIG. 22B, a valve 98 may be provided between the upstream pressure gauge 96 and the downstream pressure gauge 97, or as shown in FIG. A valve 98 may be provided further upstream than the total 96. Regardless of the positional relationship, it is considered that there is no significant difference in the effect of discharging the deposit.
10 ガス化システム、20 原料調製部、21 調製タンク、22 粉砕機、23 供給ポンプ、24 熱交換器導入ポンプ、30 熱処理部、31 熱交換器、32 加熱器、32a 燃焼装置、33 ガス化反応器、33a 燃焼装置、34 二重管、35 内管、36 外管、37 スラリー体、38 処理後流体、40 ガス処理部、41 減圧機構、42 気液分離器、43 触媒回収器、44 ガスタンク、51 スラリー体導入管、52 スラリー体送出管、53 処理後流体導入管、54 処理後流体送出管、55 分岐部材、56 分岐部材、58 第1圧力計、59 第2圧力計、61 第1バルブ、62 接続部材、63 接続部材、64 曲部、64a 背側内壁面、64b 腹側内壁面、65 付着物、66 付着物排出管、67 第2バルブ、68 第3圧力計、69 処理後流体排出管、75 分岐部材、76 エルボ管、76a エルボ管の一端、76b エルボ管の他端、77 直管、77a 直管の一端、77b 直管の他端、78 第4圧力計、79 第5圧力計、81 第3バルブ、82 第6圧力計、83 第4バルブ、84 付着物排出管、85 第6圧力計、86 第7圧力計、87 処理後流体排出管、91 通信ネットワーク、92 情報処理装置、95 付着物が付着する範囲、96 圧力計、97 圧力計、98 バルブ 10 gasification system, 20 raw material preparation section, 21 preparation tank, 22 pulverizer, 23 supply pump, 24 heat exchanger introduction pump, 30 heat treatment section, 31 heat exchanger, 32 heater, 32a combustion device, 33 gasification reaction , 33a combustion device, 34 double pipe, 35 inner pipe, 36 outer pipe, 37 slurry body, 38 post-treatment fluid, 40 gas treatment section, 41 decompression mechanism, 42 gas-liquid separator, 43 catalyst recovery unit, 44 gas tank , 51 slurry body introduction pipe, 52 slurry body delivery pipe, 53 post-treatment fluid introduction pipe, 54 post-treatment fluid delivery pipe, 55 branch member, 56 branch member, 58 first pressure gauge, 59 second pressure gauge, 61 first Valve, 62 connecting member, 63 connecting member, 64 curved portion, 64a back side inner wall surface, 64b ventral side inner wall surface, 65 deposit, 66 Kimono discharge pipe, 67 second valve, 68 third pressure gauge, 69 post-treatment fluid discharge pipe, 75 branch member, 76 elbow pipe, 76a elbow pipe one end, 76b other elbow pipe end, 77 straight pipe, 77a straight pipe , 77b, the other end of the straight pipe, 78 fourth pressure gauge, 79 fifth pressure gauge, 81 third valve, 82 sixth pressure gauge, 83 fourth valve, 84 deposit discharge pipe, 85 sixth pressure gauge, 86 7th pressure gauge, 87 after-treatment fluid discharge pipe, 91 communication network, 92 information processing device, 95 range where deposits adhere, 96 pressure gauge, 97 pressure gauge, 98 valve

Claims (12)

  1.  その内壁面における流れ方向の所定範囲に、加圧状態で流れる流体に由来する粘性体又は固化物が付着物として付着する配管において、
     前記所定範囲の上流側の圧力である第1圧力が所定の許容値以上となっている場合に、前記所定範囲の近傍に付設されたバルブを開放することにより前記付着物を前記配管から排出することを特徴とする配管閉塞防止方法。
    In a pipe in which a viscous body or solidified substance derived from a fluid flowing in a pressurized state adheres as a deposit to a predetermined range in the flow direction on the inner wall surface,
    When the first pressure, which is the pressure upstream of the predetermined range, is greater than or equal to a predetermined allowable value, the attached matter is discharged from the pipe by opening a valve attached in the vicinity of the predetermined range. A method for preventing pipe clogging.
  2.  前記バルブを開放し、一定時間経過後に前記バルブを閉止することを特徴とする、請求項1に記載の配管閉塞防止方法。 2. The pipe blockage prevention method according to claim 1, wherein the valve is opened and the valve is closed after a predetermined time has elapsed.
  3.  前記バルブを開放した後、前記第1圧力が所定値より低くなった場合に前記バルブを閉止することを特徴とする、請求項2に記載の配管閉塞防止方法。 3. The pipe blockage prevention method according to claim 2, wherein after the valve is opened, the valve is closed when the first pressure becomes lower than a predetermined value.
  4.  その内壁面における流れ方向の所定範囲に、加圧状態で流れる流体に由来する粘性体又は固化物が付着物として付着する配管において、
     前記所定範囲の上流側の圧力である第1圧力が、前記所定範囲の下流側の圧力である第2圧力よりも所定の許容値以上高くなっている場合に、前記所定範囲の近傍に付設されたバルブを開放することにより前記付着物を前記配管から排出することを特徴とする配管閉塞防止方法。
    In a pipe in which a viscous body or solidified substance derived from a fluid flowing in a pressurized state adheres as a deposit to a predetermined range in the flow direction on the inner wall surface,
    When the first pressure, which is the pressure upstream of the predetermined range, is higher than the second pressure, which is the pressure downstream of the predetermined range, it is attached in the vicinity of the predetermined range. A pipe blockage prevention method, wherein the deposit is discharged from the pipe by opening a valve.
  5.  前記所定範囲において生じた前記流体の圧力損失を、前記流体の物性値に基づき算出し、
     前記第1圧力が、前記第2圧力よりも、前記算出した圧力損失に基づき設定した前記許容値以上高くなっている場合に、前記バルブを開放することを特徴とする、請求項4に記載の配管閉塞防止方法。
    A pressure loss of the fluid generated in the predetermined range is calculated based on a physical property value of the fluid;
    5. The valve according to claim 4, wherein the valve is opened when the first pressure is higher than the second pressure by more than the allowable value set based on the calculated pressure loss. 6. Piping blockage prevention method.
  6.  前記所定範囲において生じた前記流体の圧力損失を、前記流体の流速及び密度に基づき算出することを特徴とする、請求項5に記載の配管閉塞防止方法。 The pipe blockage prevention method according to claim 5, wherein the pressure loss of the fluid generated in the predetermined range is calculated based on the flow velocity and density of the fluid.
  7.  前記所定範囲を流れる流体の流体抵抗を、前記流体の流速に基づき算出し、
     前記第1圧力が、前記第2圧力よりも、前記算出した流体抵抗に基づき設定した前記許容値以上高くなっている場合に、前記バルブを開放することを特徴とする、請求項4に記載の配管閉塞防止方法。
    Calculating the fluid resistance of the fluid flowing through the predetermined range based on the flow velocity of the fluid;
    5. The valve according to claim 4, wherein the valve is opened when the first pressure is higher than the second pressure by more than the allowable value set based on the calculated fluid resistance. Piping blockage prevention method.
  8.  前記流体としてバイオマスのスラリー体が流れる前記配管を内管として備え、前記スラリー体と熱交換される高温流体が流れる配管を外管として備える熱交換器と、
     前記熱交換器から送られてきた前記スラリー体を加熱して前記スラリー体をガス化すると共に、前記ガス化を行った後の前記スラリー体を前記高温流体として前記外管に送出するガス化反応器とを備えるガス化システムにおいて、
     前記第1圧力が前記第2圧力よりも前記所定の許容値以上高くなっている場合に、前記所定範囲の近傍に付設された前記バルブを開放することにより、前記付着物を前記内管から排出することを特徴とする、請求項4乃至7のいずれか一項に記載の配管閉塞防止方法。
    A heat exchanger comprising as an inner pipe the pipe through which a biomass slurry body flows as the fluid, and a pipe through which a high-temperature fluid heat exchanged with the slurry body as an outer pipe;
    Gasification reaction in which the slurry body sent from the heat exchanger is heated to gasify the slurry body and the slurry body after the gasification is sent to the outer pipe as the high-temperature fluid A gasification system comprising a vessel,
    When the first pressure is higher than the second allowable pressure by the predetermined allowable value or more, the attached matter is discharged from the inner pipe by opening the valve attached in the vicinity of the predetermined range. The pipe blockage prevention method according to any one of claims 4 to 7, wherein:
  9.  前記第1圧力が前記第2圧力よりも前記所定の許容値以上高くなっている場合に、前記所定範囲の近傍に付設された前記バルブを開放することにより前記付着物を前記内管から排出すると共に、前記外管を流れる前記高温流体を外部に排出する
     ことを特徴とする、請求項8に記載の配管閉塞防止方法。
    When the first pressure is higher than the second allowable value by more than the predetermined allowable value, the deposit is discharged from the inner pipe by opening the valve attached in the vicinity of the predetermined range. The pipe blockage prevention method according to claim 8, wherein the high-temperature fluid flowing through the outer pipe is discharged to the outside.
  10.  前記第1圧力が前記第2圧力よりも前記所定の許容値以上高くなっている場合に、前記所定範囲の近傍の外管における前記高温流体の圧力差が所定値以上高くなっていれば、前記所定範囲の近傍に付設された前記バルブを開放することにより前記付着物を前記内管から排出すると共に、前記外管を流れる前記高温流体を外部に排出する
     ことを特徴とする、請求項9に記載の配管閉塞防止方法。
    When the first pressure is higher than the second allowable value by more than the predetermined allowable value, if the pressure difference of the high temperature fluid in the outer pipe near the predetermined range is higher than the predetermined value, The said attached substance is discharged | emitted from the said inner pipe by open | releasing the valve provided in the vicinity of the predetermined range, and the said high temperature fluid which flows through the said outer pipe | tube is discharged | emitted outside. The piping blockage prevention method described.
  11.  前記所定範囲は、前記流体が流れる配管の曲部であることを特徴とする、請求項1乃至10のいずれか一項に記載の配管閉塞防止方法。 The pipe blockage prevention method according to any one of claims 1 to 10, wherein the predetermined range is a curved portion of a pipe through which the fluid flows.
  12.  その内壁面における流れ方向の所定範囲に、加圧状態で流れるバイオマスのスラリー体に由来する粘性体又は固化物が付着物として付着する内管と、前記スラリー体と熱交換される高温流体が流れる配管である外管とを備える熱交換器と、
     前記熱交換器から送られてきた前記スラリー体を加熱して前記スラリー体をガス化すると共に、前記ガス化を行った後の前記スラリー体を前記高温流体として前記外管に送出するガス化反応器とを備えるガス化システムにおける配管閉塞防止システムであって、
     前記所定範囲の上流側の圧力である第1圧力が前記所定範囲の下流側の圧力である第2圧力よりも所定の許容値以上高くなっている場合に、前記所定範囲の近傍に付設された前記バルブを開放することにより、前記付着物を前記内管から排出すると共に、前記外管を流れる前記高温流体を外部に排出する機能を有する情報処理装置を備える
     ことを特徴とする配管閉塞防止システム。
    In a predetermined range in the flow direction on the inner wall surface, an inner tube in which a viscous body or a solidified material derived from a biomass slurry flowing under pressure adheres as an adhering material, and a high-temperature fluid that exchanges heat with the slurry flow. A heat exchanger comprising an outer pipe which is a pipe;
    Gasification reaction in which the slurry body sent from the heat exchanger is heated to gasify the slurry body and the slurry body after the gasification is sent to the outer pipe as the high-temperature fluid A pipe blockage prevention system in a gasification system comprising a vessel,
    The first pressure, which is the pressure upstream of the predetermined range, is provided near the predetermined range when the second pressure, which is the pressure downstream of the predetermined range, is higher than a predetermined allowable value. A pipe blockage prevention system comprising: an information processing device having a function of discharging the high-temperature fluid flowing through the outer pipe to the outside while discharging the deposit from the inner pipe by opening the valve. .
PCT/JP2016/082936 2016-11-07 2016-11-07 Pipe blockage prevention method and pipe blockage prevention system WO2018083792A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/082936 WO2018083792A1 (en) 2016-11-07 2016-11-07 Pipe blockage prevention method and pipe blockage prevention system
JP2017520557A JP6414868B2 (en) 2016-11-07 2016-11-07 Piping blockage prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/082936 WO2018083792A1 (en) 2016-11-07 2016-11-07 Pipe blockage prevention method and pipe blockage prevention system

Publications (1)

Publication Number Publication Date
WO2018083792A1 true WO2018083792A1 (en) 2018-05-11

Family

ID=62075872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082936 WO2018083792A1 (en) 2016-11-07 2016-11-07 Pipe blockage prevention method and pipe blockage prevention system

Country Status (2)

Country Link
JP (1) JP6414868B2 (en)
WO (1) WO2018083792A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217504A1 (en) * 2019-04-26 2020-10-29 中国電力株式会社 Supercritical water reaction device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52133158A (en) * 1976-04-30 1977-11-08 Showa Aluminium Co Ltd Heat exchanger using heat pipe
JPH05164300A (en) * 1991-12-13 1993-06-29 Hitachi Ltd Piping system
JPH09229591A (en) * 1996-02-23 1997-09-05 Nkk Corp Method and apparatus for preventing particle deposition in heat exchanger
JP2001311199A (en) * 2000-04-28 2001-11-09 Suga Kogyo Kk AUTOMATlC JAMMING PREVENTING EQUIPMENT FOR DRAIN PIPE
JP2008246343A (en) * 2007-03-29 2008-10-16 Hiroshima Univ Biomass gasification power generation system
JP2014024059A (en) * 2013-09-13 2014-02-06 Chugoku Electric Power Co Inc:The Pipe passage system, and contaminant removal method of pipe passage
JP2014190753A (en) * 2013-03-26 2014-10-06 Chugoku Electric Power Co Inc:The Method and system for quickly detecting clogging of piping or adhesion of deposit to wall surface, and application thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5264778A (en) * 1975-11-26 1977-05-28 Nippon Steel Corp Removing method for clogging powder of pneumatic powder supplier
JPS53137565A (en) * 1977-05-06 1978-12-01 Hitachi Ltd Method and device for cleaning separator
JPS55145583A (en) * 1979-04-28 1980-11-13 Sumitomo Metal Ind Method of removing blockade by deposit in slurry transport duct
JPS6138000Y2 (en) * 1981-06-16 1986-11-04
JPS607770Y2 (en) * 1982-03-10 1985-03-16 株式会社島津製作所 Filter cleaning device
JPS6030990A (en) * 1983-08-01 1985-02-16 Hitachi Ltd Method and device for driving foreign matter removing device
JP3288150B2 (en) * 1993-08-31 2002-06-04 中外炉工業株式会社 Removal method of oil adhering in tube coil
JPH11207279A (en) * 1998-01-23 1999-08-03 Smc Corp Shock wave washing method for interior of piping
JPH11285675A (en) * 1998-04-03 1999-10-19 Japan Steel & Tube Constr Co Ltd Waste water treating conduit and tank cleaning method
JP4440505B2 (en) * 2001-03-08 2010-03-24 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Raw material liquid supply device with cleaning function
JP4649808B2 (en) * 2001-09-20 2011-03-16 栗田エンジニアリング株式会社 New plant equipment and pipe cleaning method
JP2004117158A (en) * 2002-09-26 2004-04-15 Yamatake Corp Karman vortex flowmeter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52133158A (en) * 1976-04-30 1977-11-08 Showa Aluminium Co Ltd Heat exchanger using heat pipe
JPH05164300A (en) * 1991-12-13 1993-06-29 Hitachi Ltd Piping system
JPH09229591A (en) * 1996-02-23 1997-09-05 Nkk Corp Method and apparatus for preventing particle deposition in heat exchanger
JP2001311199A (en) * 2000-04-28 2001-11-09 Suga Kogyo Kk AUTOMATlC JAMMING PREVENTING EQUIPMENT FOR DRAIN PIPE
JP2008246343A (en) * 2007-03-29 2008-10-16 Hiroshima Univ Biomass gasification power generation system
JP2014190753A (en) * 2013-03-26 2014-10-06 Chugoku Electric Power Co Inc:The Method and system for quickly detecting clogging of piping or adhesion of deposit to wall surface, and application thereof
JP2014024059A (en) * 2013-09-13 2014-02-06 Chugoku Electric Power Co Inc:The Pipe passage system, and contaminant removal method of pipe passage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217504A1 (en) * 2019-04-26 2020-10-29 中国電力株式会社 Supercritical water reaction device

Also Published As

Publication number Publication date
JPWO2018083792A1 (en) 2018-11-01
JP6414868B2 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
TW576906B (en) Natural gas supply apparatus
JP6414868B2 (en) Piping blockage prevention method
WO2016135979A1 (en) Supercritical water gasification system and gasification method
CN103075908B (en) Novel mobile heat accumulation and release method and mobile heat supply device
CN102374032A (en) Methods and systems for monitoring a seal assembly
Stoots et al. Thermal Energy Delivery System Design Basis Report
CN101424269A (en) Integral thermal insulation type sulfur pump
CN113358690B (en) System and method for experiment of heat loss and leakage of insulation layer of overhead steam pipeline
CN207452008U (en) A kind of coking ascending tube crude-gas waste heat recovery and utilize system
CN206334638U (en) Supercritical water reaction system
CN102639922B (en) Gas supply device
JP6060350B2 (en) Gasification system
CN102425784A (en) Superheated steam generating device adopting photo-thermal power generating fused salt energy storage system and operating system thereof
CN205048166U (en) Prevent that denitration pyrolysis oven urea spray gun and pipe blockage from washing pipeline
CN107937012A (en) Critical the hydrolysis processing unit and method of waste tire
CN205245140U (en) Weary gas recovery unit and recovery system
CN209834607U (en) Integrated flexible peak regulation coupling water storage tank system
CN208154804U (en) A kind of boiler residual heat recovery system
CN106479524A (en) A kind of coke dry quenching boiler blowdown reusing device for waste water and technique
JP6020951B1 (en) Gasification system and gasification method in gasification system
CN212056748U (en) Sub-high pressure water supply system device
RU2466776C2 (en) Device for continuous mixing of natural gas extracted from storage with oxygen to make combustible gas for heating pressurised natural gas before or after its expansion
JP7207674B1 (en) drain elimination unit
CN104197311B (en) Air energy boilers
TW201012917A (en) Method to discharge slag from a reactor for synthesis of gas extraction

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017520557

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920766

Country of ref document: EP

Kind code of ref document: A1