JP6338080B2 - Biomass gasification system using supercritical water - Google Patents

Biomass gasification system using supercritical water Download PDF

Info

Publication number
JP6338080B2
JP6338080B2 JP2013064672A JP2013064672A JP6338080B2 JP 6338080 B2 JP6338080 B2 JP 6338080B2 JP 2013064672 A JP2013064672 A JP 2013064672A JP 2013064672 A JP2013064672 A JP 2013064672A JP 6338080 B2 JP6338080 B2 JP 6338080B2
Authority
JP
Japan
Prior art keywords
biomass
double
pipe
water
gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013064672A
Other languages
Japanese (ja)
Other versions
JP2014189589A (en
Inventor
泰孝 和田
泰孝 和田
嘉久 清水
嘉久 清水
幸政 山村
幸政 山村
一郎 内山
一郎 内山
圭二 尾山
圭二 尾山
寿樹 山▲崎▼
寿樹 山▲崎▼
幸彦 松村
幸彦 松村
智朗 美濃輪
智朗 美濃輪
琢史 野口
琢史 野口
良文 川井
良文 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Hiroshima University NUC
Toyo Koatsu Co Ltd
Chuden Plant Co Ltd
Original Assignee
Chugoku Electric Power Co Inc
Hiroshima University NUC
Toyo Koatsu Co Ltd
Chuden Plant Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Hiroshima University NUC, Toyo Koatsu Co Ltd, Chuden Plant Co Ltd filed Critical Chugoku Electric Power Co Inc
Priority to JP2013064672A priority Critical patent/JP6338080B2/en
Publication of JP2014189589A publication Critical patent/JP2014189589A/en
Application granted granted Critical
Publication of JP6338080B2 publication Critical patent/JP6338080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

本発明は、タール等の発生を抑制して詰まりを防止することが可能な超臨界水によるバイオマスガス化システムに関する。   The present invention relates to a biomass gasification system using supercritical water capable of preventing clogging by suppressing generation of tar and the like.

従来、含水性バイオマス(焼酎残渣、採卵鶏糞等)を超臨界水でガス化する技術において、バイオマスを超臨界水でガス化することによって得られた生成物等の熱を利用して、超臨界水でガス化される含水性バイオマス又はバイオマスのスラリー体を加熱する二重管式熱交換器を備えた超臨界水によるバイオマスガス化システムが開発されている(例えば、特許文献1及び2参照)。   Conventionally, in the technology of gasifying hydrous biomass (shochu residue, egg-collecting chicken droppings, etc.) with supercritical water, the heat of products etc. obtained by gasifying biomass with supercritical water is used to make supercriticality. A biomass gasification system using supercritical water equipped with a double-pipe heat exchanger that heats hydrous biomass or biomass slurry that is gasified with water has been developed (see, for example, Patent Documents 1 and 2). .

特開2007−271146号公報JP 2007-271146 A 特開2009−242697号公報JP 2009-242697 A

しかしながら、上述のような超臨界水によるバイオマスガス化システムでは、二重管式熱交換器において、含水性バイオマス又はバイオマスのスラリー体を超臨界水でガス化することによって得られた生成物等の熱を利用して、超臨界水でガス化される含水性バイオマス又はバイオマスのスラリー体を加熱する際にタール等が生成され、二重管の管内に詰りが生じる場合がある。
本発明は、上記課題に鑑みてなされたものであり、二重管式熱交換器において、バイオマスを超臨界水でガス化することによって得られた生成物等の熱を利用して、超臨界水でガス化される含水性バイオマス又はバイオマスのスラリー体を加熱する際に、タール等の発生を抑制し、もって二重管の管内における詰まりを防止することが可能な超臨界水によるバイオマスガス化システムを提供することを目的とする。
However, in the biomass gasification system using supercritical water as described above, a product obtained by gasifying hydrous biomass or a slurry of biomass with supercritical water in a double pipe heat exchanger, etc. When heating the hydrous biomass or biomass slurry gasified with supercritical water using heat, tar or the like may be generated, and clogging may occur in the double pipe.
The present invention has been made in view of the above problems, and in a double-pipe heat exchanger, utilizing the heat of a product obtained by gasifying biomass with supercritical water, it is supercritical. Biomass gasification with supercritical water that suppresses the generation of tar and the like and prevents clogging in double pipes when heating hydrous biomass or biomass slurry that is gasified with water The purpose is to provide a system.

本発明者らは、上記課題を解決するために鋭意研究した結果、含水性バイオマスに懸濁させた非金属系触媒を触媒として、バイオマスを超臨界水でガス化処理するガス化反応器と、ガス化反応器にて生成された生成ガス及び灰分、並びに前記非金属系触媒が水に懸濁され、かつガス化反応器から排出される混合物の熱を利用して、ガス化反応器で超臨界水によりガス化処理される含水性バイオマスに非金属系触媒を懸濁させた懸濁液を予熱する二重管式熱交換器と、を備える超臨界水によるバイオマスガス化システムを用いて、システム内の圧力を27MPa以上に調整して、上記懸濁液の代わりにおよそ30℃の水を二重管式熱交換器における二重管の内管内の流路に、上記混合物の代わりにおよそ600℃に加熱された水を二重管の外管と内管との間の流路に、それぞれ逆方向に供給して熱交換を行った場合、システム内の圧力を23MPaで調整して熱交換を行った場合に比べて、二重管の内管内に供給した水がタール発生温度である380℃近辺(より具体的には、350〜400℃の温度範囲)で保持される時間(滞留時間)が短くなることを見出し、本発明を完成するに至った。   As a result of earnest research to solve the above problems, the present inventors, as a catalyst, a non-metallic catalyst suspended in hydrous biomass, a gasification reactor for gasifying the biomass with supercritical water, The product gas and ash produced in the gasification reactor, and the nonmetallic catalyst is suspended in water, and the heat of the mixture discharged from the gasification reactor is used to increase the amount in the gasification reactor. Using a supercritical water biomass gasification system comprising a double-tube heat exchanger that preheats a suspension in which a nonmetallic catalyst is suspended in hydrous biomass that is gasified with critical water, The pressure in the system is adjusted to 27 MPa or more, and water at about 30 ° C. is used instead of the suspension in the flow path in the inner pipe of the double pipe in the double pipe heat exchanger, and instead of the mixture. Outer pipe of double pipe with water heated to 600 ° C When heat exchange is performed by supplying the flow path to the inner pipe in opposite directions, compared to the case where heat exchange is performed by adjusting the pressure in the system at 23 MPa, the inner pipe of the double pipe In order to complete the present invention, it is found that the time (residence time) in which the water supplied to is maintained at around 380 ° C. (more specifically, a temperature range of 350 to 400 ° C.), which is the tar generation temperature, is shortened. It came.

すなわち、本発明に係る超臨界水によるバイオマスガス化システムは、含水性バイオマス又はバイオマスのスラリー体に懸濁させた非金属系触媒を触媒として、前記バイオマスを超臨界水でガス化処理するガス化反応器と、前記ガス化反応器にて生成された生成ガス及び灰分、並びに前記非金属系触媒が水に懸濁され、前記ガス化反応器から排出される600℃の混合物、前記ガス化反応器で超臨界水によりガス化処理される前記含水性バイオマス又は前記バイオマスのスラリー体に前記非金属系触媒を懸濁させた懸濁液とを熱交換させることにより前記懸濁液を予熱する二重管式熱交換器と、を備える超臨界水によるバイオマスガス化システムにおいて、前記システム内の圧力を27MPa以上60MPa以下の範囲内に調整することを含む。 That is, the biomass gasification system using supercritical water according to the present invention is a gasification in which the biomass is gasified with supercritical water using a hydrous biomass or a non-metallic catalyst suspended in a slurry body of biomass as a catalyst. A reactor, a product gas and ash produced in the gasification reactor, and a non-metallic catalyst suspended in water and discharged from the gasification reactor at 600 ° C., and the gasification The suspension is preheated by heat-exchanging the hydrous biomass gasified with supercritical water in a reactor or a suspension of the non-metallic catalyst suspended in the biomass slurry. in the biomass gasification system with supercritical water and a double-pipe heat exchanger, that is adjusted to within the range of not less than 27 MPa 60 MPa pressure in the system No.

なお、上記超臨界水によるバイオマスガス化システムにおける上記ガス化反応器でのガス化処理は、600℃以上の温度で行ってもよい。   In addition, you may perform the gasification process in the said gasification reactor in the biomass gasification system by the said supercritical water at the temperature of 600 degreeC or more.

本発明によれば、二重管式熱交換器において、バイオマスを超臨界水でガス化することによって得られた生成物等の熱を利用して、超臨界水でガス化される含水性バイオマス又はバイオマスのスラリー体を加熱する際に、タール等の発生を抑制し、もって二重管の管内における詰まりを防止することが可能な超臨界水によるバイオマスガス化システムを提供することができる。   According to the present invention, in a double-pipe heat exchanger, hydrous biomass that is gasified with supercritical water using the heat of a product or the like obtained by gasifying the biomass with supercritical water. Alternatively, it is possible to provide a biomass gasification system using supercritical water that can suppress the generation of tar and the like and prevent clogging in the double pipe when the biomass slurry is heated.

本発明の一実施形態において、超臨界水によるバイオマスガス化システムの概略構成を示す図である。In one Embodiment of this invention, it is a figure which shows schematic structure of the biomass gasification system by supercritical water. 本発明の一実施形態において、二重管式熱交換器における二重管の概略構成を示す図である。In one Embodiment of this invention, it is a figure which shows schematic structure of the double pipe in a double pipe type heat exchanger. 本発明の一実施例において、二重管式熱交換器の圧力を23MPaに調整し、二重管の内管内におよそ30℃の水を、外管と内管との間におよそ600℃の水を、それぞれ逆方向で供給して熱交換させた場合の、二重管の各地点における各流体の温度を測定した結果を示す図である。In one embodiment of the present invention, the pressure of the double pipe heat exchanger is adjusted to 23 MPa, water of about 30 ° C. is placed in the inner pipe of the double pipe, and water of about 600 ° C. is placed between the outer pipe and the inner pipe. It is a figure which shows the result of having measured the temperature of each fluid in each point of a double pipe | tube at the time of supplying water in the reverse direction and making it heat-exchange, respectively. 本発明の一実施例において、二重管式熱交換器の圧力を27.5MPaに調整し、二重管の内管内におよそ30℃の水を、外管と内管との間におよそ600℃の水を、それぞれ逆方向で供給して熱交換させた場合の、二重管の各地点における各流体の温度を測定した結果を示す図である。In one embodiment of the present invention, the pressure of the double tube heat exchanger is adjusted to 27.5 MPa, water of about 30 ° C. is placed in the inner tube of the double tube, and about 600 between the outer tube and the inner tube. It is a figure which shows the result of having measured the temperature of each fluid in each point of a double tube | pipe at the time of supplying heat | fever water in a reverse direction, respectively, and making it heat-exchange.

以下、本発明の好ましい実施形態につき、添付図面を参照して詳細に説明する。なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び図面等は、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図ならびに範囲内で、本明細書の記載に基づき、様々に修飾ができることは、当業者にとって明らかである。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The objects, features, advantages, and ideas of the present invention will be apparent to those skilled in the art from the description of the present specification, and those skilled in the art can easily reproduce the present invention from the description of the present specification. it can. DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and drawings of the invention described below show preferred embodiments of the present invention and are shown for illustration or explanation, and are not intended to limit the present invention thereto. Absent. It will be apparent to those skilled in the art that various modifications can be made based on the description of the present specification within the spirit and scope of the present invention disclosed herein.

図1は、本発明の一実施形態として説明する、超臨界水によるバイオマスガス化システム(以下、単に「システム」と称する。)の概略構成を示す図である。図1に示すように、システム100は、調整タンク10、破砕機20、供給ポンプ30、二重管式熱交換器40、ガス化反応器50、冷却器60、減圧器70、気液分離器80、ガスタンク90などを備えており、供給ポンプ30と二重管式熱交換器40、二重管式熱交換器40とガス化反応器50、及びガス化反応器50と熱交換器40は、それぞれ配管によって接続されており、二重管式熱交換器40とガス化反応器50との内部の圧力を27MPa以上に調整されている。   FIG. 1 is a diagram showing a schematic configuration of a biomass gasification system using supercritical water (hereinafter simply referred to as “system”), which is described as one embodiment of the present invention. As shown in FIG. 1, the system 100 includes a regulating tank 10, a crusher 20, a supply pump 30, a double tube heat exchanger 40, a gasification reactor 50, a cooler 60, a decompressor 70, and a gas-liquid separator. 80, gas tank 90, etc., supply pump 30 and double pipe heat exchanger 40, double pipe heat exchanger 40 and gasification reactor 50, and gasification reactor 50 and heat exchanger 40 are These are connected by piping, and the internal pressures of the double-tube heat exchanger 40 and the gasification reactor 50 are adjusted to 27 MPa or more.

調整タンク10は、含水性バイオマス(バイオマスのスラリー体であってもよい。以下、同じ。)、非金属系触媒、水などを混合するタンクである。システム100へ送液するガス化原料は、調整タンク10に投入された含水性バイオマス及び非金属系触媒、並びに必要に応じて投入された水を混合して、含水性バイオマス(あるいはバイオマス溶液)に非金属系触媒を懸濁することにより調製される。なお、水の投入は、バイオマスの含水率に応じて適宜行われる。上記含水性バイオマスは、例えば、焼酎残渣、採卵鶏糞、汚泥などである。また、上記非金属系触媒は、例えば、活性炭、ゼオライトなどである。非金属系触媒としては、平均粒径200μm以下の粒子を用いることが好ましく、平均粒径200μm以下の多孔質の粒子を用いることがより好ましい。   The adjustment tank 10 is a tank that mixes hydrous biomass (may be a biomass slurry. The same applies hereinafter), a non-metallic catalyst, water, and the like. The gasification raw material to be sent to the system 100 is mixed with the hydrous biomass and the non-metallic catalyst introduced into the adjustment tank 10 and the water introduced as necessary to obtain hydrous biomass (or biomass solution). It is prepared by suspending a nonmetallic catalyst. In addition, the injection | pouring of water is suitably performed according to the moisture content of biomass. The hydrous biomass is, for example, shochu residue, egg-collected chicken droppings, sludge, and the like. The non-metallic catalyst is, for example, activated carbon or zeolite. As the nonmetallic catalyst, particles having an average particle diameter of 200 μm or less are preferably used, and porous particles having an average particle diameter of 200 μm or less are more preferably used.

破砕機20は、調整タンク10で調製したガス化原料(懸濁液)中のバイオマスを破砕して、あらかじめ均一な大きさ(好ましくは平均粒径が500μm以下、より好ましくは平均粒径が300μm以下)にするための装置である。   The crusher 20 crushes the biomass in the gasification raw material (suspension) prepared in the adjustment tank 10 and has a uniform size in advance (preferably an average particle diameter of 500 μm or less, more preferably an average particle diameter of 300 μm). The following device).

ガス化反応器50は、破砕機20でバイオマスを破砕した懸濁液に懸濁させた非金属系触媒を触媒として、懸濁液中のバイオマスを超臨界水でガス化する装置である。バイオマスの超臨界水によるガス化は、前記非金属系触媒を利用して、例えば、600℃以上の温度の超臨界水によってバイオマスを水熱処理することにより行われる。このようにバイオマスを超臨界水で処理することにより、バイオマスを分解し、水素ガス、メタン、エタン、エチレン等の燃料ガスを生成することができる。   The gasification reactor 50 is a device that gasifies the biomass in the suspension with supercritical water using a non-metallic catalyst suspended in the suspension in which the biomass is crushed by the crusher 20 as a catalyst. The gasification of biomass with supercritical water is performed by hydrothermally treating the biomass with supercritical water at a temperature of 600 ° C. or higher, for example, using the non-metallic catalyst. By treating the biomass with supercritical water in this way, the biomass can be decomposed and a fuel gas such as hydrogen gas, methane, ethane, or ethylene can be generated.

供給ポンプ30は、ガス化反応器50に破砕機20でバイオマスを破砕した懸濁液を供給する装置である。供給ポンプ30は、バイオマスを破砕した懸濁液を供給できる装置であれば特に制限されるものではなく、例えば、高圧ポンプやモーノポンプなどを用いることができる。   The supply pump 30 is a device that supplies the gasification reactor 50 with a suspension obtained by crushing biomass with the crusher 20. The supply pump 30 is not particularly limited as long as it is a device that can supply a suspension obtained by crushing biomass. For example, a high-pressure pump or a Mono pump can be used.

二重管式熱交換器40は、ガス化反応器50において超臨界水によりガス化処理することにより生成された生成ガス及び灰分、並びに非金属系触媒が水に懸濁され、かつ、ガス化反応器50から排出される排出物(混合物)の熱を利用して、ガス化反応器50で超臨界水によりガス化処理されるバイオマスを破砕した懸濁液を予熱する装置である。二重管式熱交換器40における二重管41は、図2に示すように、外管42と内管43とから構成されており、上記混合物及び上記懸濁液のうち一方が内管43内の流路を流れ、他方が外管42と内管43との間の流路を流れる。なお、本実施の形態及び本実施例においては、内管43内の流路に上記懸濁液が流れ、外管42と内管43との間の流路に上記混合物が流れるように設定している。   The double-pipe heat exchanger 40 includes a gasification reactor 50 in which a product gas and ash generated by gasification with supercritical water and a nonmetallic catalyst are suspended in water and gasified. This is an apparatus for preheating a suspension obtained by crushing biomass that is gasified by supercritical water in the gasification reactor 50 using heat of the discharge (mixture) discharged from the reactor 50. As shown in FIG. 2, the double pipe 41 in the double pipe heat exchanger 40 includes an outer pipe 42 and an inner pipe 43, and one of the mixture and the suspension is the inner pipe 43. The other flows through the flow path between the outer tube 42 and the inner tube 43. In this embodiment and this example, it is set so that the suspension flows in the flow path in the inner pipe 43 and the mixture flows in the flow path between the outer pipe 42 and the inner pipe 43. ing.

冷却器60は、ガス化反応器50から排出された排出物(生成ガス、灰分及び非金属系触媒が水に懸濁された混合物)を冷却するための装置である。冷却器60は、例えば、クーラーなどである。
減圧器70は、ガス化反応器50から排出された排出物の圧力を減圧する装置である。
The cooler 60 is an apparatus for cooling the exhaust (the mixture of product gas, ash, and nonmetallic catalyst suspended in water) discharged from the gasification reactor 50. The cooler 60 is, for example, a cooler.
The decompressor 70 is a device that reduces the pressure of the exhaust discharged from the gasification reactor 50.

気液分離器80は、ガス化反応器50から排出された排出物を、生成ガス(燃料ガス等)を含む気体成分と、灰分及び非金属系触媒が水に懸濁された液体成分とに分離する装置である。
ガスタンク90は、気液分離器80によって分離された気体成分(生成ガス)を貯える容器(好ましくは耐圧容器)である。
The gas-liquid separator 80 converts the effluent discharged from the gasification reactor 50 into a gas component containing a product gas (fuel gas or the like) and a liquid component in which ash and a nonmetallic catalyst are suspended in water. It is a device to separate.
The gas tank 90 is a container (preferably a pressure-resistant container) that stores a gas component (product gas) separated by the gas-liquid separator 80.

加熱器51は、ガスタンク90に貯えられた生成ガス(燃料ガス)の一部あるいは燃料ガス(例えば、LPGなど)を燃焼してガス化反応器50を加熱し、バイオマスを粉砕した懸濁液を所定の温度に加熱する装置である。加熱器51は、例えば、バーナーなどの、燃料ガスを燃焼して加熱する既存の装置である。   The heater 51 combusts a part of the generated gas (fuel gas) stored in the gas tank 90 or fuel gas (for example, LPG) to heat the gasification reactor 50, and the suspension obtained by pulverizing the biomass is heated. It is an apparatus for heating to a predetermined temperature. The heater 51 is an existing device that burns and heats fuel gas, such as a burner, for example.

なお、本実施の形態においては、二重管式熱交換器40において、バイオマスを超臨界水でガス化することによって得られた生成物等の熱を利用して、超臨界水でガス化される含水性バイオマスに非金属系触媒を懸濁させた懸濁液を加熱する際に、二重管41の内管43において、該懸濁液がタール発生温度である380℃近辺(より具体的には、350〜400℃の温度範囲)で保持される時間(滞留時間)が短くなるようにしてタール等の発生を抑制し、もって二重管41の管内、特に外管42と内管43との間の流路においてタール等による詰まりを防止するために、二重管式熱交換器40とガス化反応器50との内部の圧力を27MPa以上に調整することとしているが、市販の一般的な機器を用いる場合には、その機器が耐え得ることができる圧力、例えば、35MPa未満の圧力に調整することが好ましい。なお、二重管式熱交換器40とガス化反応器50が、35MPaより大きく60MPa以下の圧力に耐え得る材料で構成されている場合には、これらの圧力で調整してもよい。   In the present embodiment, the double tube heat exchanger 40 is gasified with supercritical water using heat of a product obtained by gasifying biomass with supercritical water. When the suspension in which the nonmetallic catalyst is suspended in the hydrous biomass is heated, in the inner tube 43 of the double tube 41, the suspension is around 380 ° C. (more specifically, the tar generation temperature). In this case, the generation of tar or the like is suppressed by shortening the time (residence time) held in a temperature range of 350 to 400 ° C., and thus the inside of the double pipe 41, particularly the outer pipe 42 and the inner pipe 43. In order to prevent clogging due to tar or the like in the flow path between the two, the internal pressure of the double-pipe heat exchanger 40 and the gasification reactor 50 is adjusted to 27 MPa or more. When using typical equipment, the equipment can withstand The pressure can bets, for example, it is preferable to adjust a pressure of less than 35 MPa. In addition, when the double-pipe heat exchanger 40 and the gasification reactor 50 are made of a material that can withstand a pressure greater than 35 MPa and less than or equal to 60 MPa, the pressure may be adjusted with these pressures.

また、本実施の形態においては、調整タンク10で含水性バイオマス(あるいはバイオマスの溶液)に非金属系触媒を懸濁した懸濁液を、供給ポンプ30により二重管式熱交換器40に供給しているが、供給ポンプ30で供給する直前に、非金属系触媒を、破砕機20で破砕した含水性バイオマス(あるいはバイオマスの溶液)に懸濁し、二重管式熱交換器40に供給してもよい。   In the present embodiment, a suspension in which a nonmetallic catalyst is suspended in hydrous biomass (or biomass solution) in the adjustment tank 10 is supplied to the double-pipe heat exchanger 40 by the supply pump 30. However, just before the supply pump 30 supplies, the nonmetallic catalyst is suspended in the hydrous biomass (or biomass solution) crushed by the crusher 20 and supplied to the double-tube heat exchanger 40. May be.

さらに、本実施の形態において、供給ポンプ30から二重管式熱交換器40に供給する、含水性バイオマスに非金属系触媒を懸濁した懸濁液を、タールが発生しない温度(例えば、350℃程度)まで、あらかじめ予熱する予熱器を別途設けてもよい。これにより、ガス化反応器50に供給する上記懸濁液の加熱を迅速に行うことが可能となる。   Further, in the present embodiment, the suspension in which the nonmetallic catalyst is suspended in the hydrous biomass supplied to the double-pipe heat exchanger 40 from the supply pump 30 is set at a temperature at which tar is not generated (for example, 350 A preheater that preheats up to about 0 ° C. may be provided separately. This makes it possible to quickly heat the suspension supplied to the gasification reactor 50.

上述の二重管式熱交換器40とガス化反応器50とを備えるシステム100を用いて、二重管41の外管42と内管43との間の流路における出口の圧力を23MPa又は27.5MPaになるように調整して、二重管41の内管43内の流路におよそ30℃の水を供給し、二重管41の外管42と内管43との間の流路に対して、内管43内を流れる流体の進行方向とは逆方向に、ガス化反応器50でおよそ600℃に加熱された水を供給して熱交換を実施し、二重管41の各地点における、内管43内の流体の温度及び外管42と内管43との間における流体の温度を測定した。なお、水の流量は0.76L/minとした。二重管41としては、内管43の内径が8mm、内管43の厚さが3mm、外管42の内径が13mm、外管42の厚さが4mm、及び長さが100mであって、内管43及び外管42がそれぞれSUS316TPSから構成されたものを用いた。また、内管43内の流路の入口、あるいは外管42と内管43との間における流路の出口を0mとして各地点における流体の温度を測定した。それらの結果を図3及び図4に示す。   Using the above-described system 100 including the double-tube heat exchanger 40 and the gasification reactor 50, the outlet pressure in the flow path between the outer tube 42 and the inner tube 43 of the double tube 41 is set to 23 MPa or Adjust the pressure to 27.5 MPa, supply water at about 30 ° C. to the flow path in the inner pipe 43 of the double pipe 41, and flow between the outer pipe 42 and the inner pipe 43 of the double pipe 41. Heat is exchanged by supplying water heated to about 600 ° C. in the gasification reactor 50 in the direction opposite to the traveling direction of the fluid flowing in the inner pipe 43 with respect to the passage, At each point, the temperature of the fluid in the inner tube 43 and the temperature of the fluid between the outer tube 42 and the inner tube 43 were measured. The water flow rate was 0.76 L / min. As the double pipe 41, the inner diameter of the inner pipe 43 is 8 mm, the thickness of the inner pipe 43 is 3 mm, the inner diameter of the outer pipe 42 is 13 mm, the thickness of the outer pipe 42 is 4 mm, and the length is 100 m, The inner tube 43 and the outer tube 42 were each made of SUS316TPS. Further, the temperature of the fluid at each point was measured by setting the inlet of the flow path in the inner pipe 43 or the outlet of the flow path between the outer pipe 42 and the inner pipe 43 to 0 m. The results are shown in FIGS.

図3に示すように、外管42と内管43との間における流路の出口の圧力が23MPaである場合には、二重管41の内管43内に供給した水がタール発生温度である380℃付近(350〜400℃の温度範囲)で保持される距離及び時間(時間は、375℃、23MPaにおける水の比重447.59を用いて計算)は、それぞれ54m及び68.6秒であった。これに対して、外管42と内管43との間における流路の出口の圧力が27.5MPaである場合には、図4に示すように、二重管41の内管43内に供給した水がタール発生温度である380℃付近(350〜400℃の温度範囲)で保持される距離及び時間(時間は、375℃、27.5MPaにおける水の比重536.62を用いて計算)は、それぞれ36m及び54.8秒であった。このことから、システム100内の圧力、すなわち、二重管式熱交換器40とガス化反応器50との内部の圧力を27MPa以上に調整することにより、システム内の圧力を23MPaで調整した場合に比べ、二重管41の内管43に供給した水がタール発生温度である380℃近辺(より具体的には、350〜400℃の温度範囲)で保持される時間(滞留時間)が短くなることが明らかになるとともに、タール等の発生を抑制でき、もって二重管41の管内、特に外管42と内管43との間の流路においてタール等による詰まりを防止できることが示された。   As shown in FIG. 3, when the pressure at the outlet of the flow path between the outer tube 42 and the inner tube 43 is 23 MPa, the water supplied into the inner tube 43 of the double tube 41 is at the tar generation temperature. The distance and time (time is calculated using a specific gravity of 447.59 of water at 375 ° C. and 23 MPa) held at around 380 ° C. (temperature range of 350 to 400 ° C.) are 54 m and 68.6 seconds, respectively. there were. On the other hand, when the pressure at the outlet of the flow path between the outer tube 42 and the inner tube 43 is 27.5 MPa, the pressure is supplied into the inner tube 43 of the double tube 41 as shown in FIG. The distance and time (the time is calculated by using the specific gravity of water at 375 ° C. and 27.5 MPa) is about 380 ° C. (temperature range of 350 to 400 ° C.) which is the tar generation temperature. , 36 m and 54.8 seconds, respectively. Therefore, when the pressure in the system 100 is adjusted to 23 MPa or more by adjusting the pressure in the system 100, that is, the pressure inside the double tube heat exchanger 40 and the gasification reactor 50 to 27 MPa or more. Compared to the above, the time (residence time) in which the water supplied to the inner pipe 43 of the double pipe 41 is maintained at around 380 ° C. (more specifically, a temperature range of 350 to 400 ° C.), which is the tar generation temperature, is short. It has become clear that the generation of tar and the like can be suppressed, and clogging due to tar and the like can be prevented in the pipe of the double pipe 41, particularly in the flow path between the outer pipe 42 and the inner pipe 43. .

10 調整タンク、20 破砕機、30 供給ポンプ、40 二重管式熱交換器、41 二重管、42 外管、43 内管、50 ガス化反応器、51 加熱器、60 冷却器、70 減圧器、80 気液分離器、90 ガスタンク、100 超臨界水によるバイオマスガス化システム DESCRIPTION OF SYMBOLS 10 Adjustment tank, 20 Crusher, 30 Supply pump, 40 Double pipe type heat exchanger, 41 Double pipe, 42 Outer pipe, 43 Inner pipe, 50 Gasification reactor, 51 Heater, 60 Cooler, 70 Depressurization , 80 gas-liquid separator, 90 gas tank, 100 biomass gasification system using supercritical water

Claims (2)

含水性バイオマス又はバイオマスのスラリー体に懸濁させた非金属系触媒を触媒として、前記バイオマスを超臨界水でガス化処理するガス化反応器と、
前記ガス化反応器にて生成された生成ガス及び灰分、並びに前記非金属系触媒が水に懸濁され、前記ガス化反応器から排出される600℃の混合物、前記ガス化反応器で超臨界水によりガス化処理される前記含水性バイオマス又は前記バイオマスのスラリー体に前記非金属系触媒を懸濁させた懸濁液とを熱交換させることにより前記懸濁液を予熱する二重管式熱交換器と、
を備える超臨界水によるバイオマスガス化システムにおいて、
前記二重管式熱交換器内の圧力を27MPa以上60MPa以下の範囲内に調整することを特徴とする超臨界水によるバイオマスガス化システム。
A gasification reactor for gasifying the biomass with supercritical water using a hydrous biomass or a non-metallic catalyst suspended in a biomass slurry as a catalyst;
Product gas and ash generated in the gasification reactor, and wherein the non-metallic catalyst is suspended in water, a mixture of 600 ° C. discharged from the gasification reactor, super in the gasification reactor Double-tube type that preheats the suspension by heat-exchanging the hydrous biomass gasified with critical water or a suspension in which the non-metallic catalyst is suspended in the biomass slurry. A heat exchanger,
In the biomass gasification system with supercritical water comprising
A biomass gasification system using supercritical water, wherein the pressure in the double-pipe heat exchanger is adjusted within a range of 27 MPa to 60 MPa .
前記ガス化反応器におけるガス化処理を600℃以上の温度で行うことを特徴とする請求項1に記載の超臨界水によるバイオマスガス化システム。   The biomass gasification system using supercritical water according to claim 1, wherein the gasification treatment in the gasification reactor is performed at a temperature of 600 ° C. or more.
JP2013064672A 2013-03-26 2013-03-26 Biomass gasification system using supercritical water Active JP6338080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013064672A JP6338080B2 (en) 2013-03-26 2013-03-26 Biomass gasification system using supercritical water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013064672A JP6338080B2 (en) 2013-03-26 2013-03-26 Biomass gasification system using supercritical water

Publications (2)

Publication Number Publication Date
JP2014189589A JP2014189589A (en) 2014-10-06
JP6338080B2 true JP6338080B2 (en) 2018-06-06

Family

ID=51836202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013064672A Active JP6338080B2 (en) 2013-03-26 2013-03-26 Biomass gasification system using supercritical water

Country Status (1)

Country Link
JP (1) JP6338080B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016139721A1 (en) * 2015-03-02 2016-09-09 中国電力株式会社 Biomass treatment system
WO2016139720A1 (en) * 2015-03-02 2016-09-09 中国電力株式会社 Biomass treatment system
WO2017046934A1 (en) * 2015-09-18 2017-03-23 中国電力株式会社 Supercritical water gasification system
CN114396326A (en) * 2022-01-10 2022-04-26 上海丝竺投资有限公司 Technical improvement method for supercritical water gasification power generation of ultrahigh-pressure subcritical coal-electricity unit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11502891A (en) * 1995-03-31 1999-03-09 ユニバーシティ オブ ハワイ Supercritical gasification of wet biomass using catalyst
JP2001065364A (en) * 1999-08-27 2001-03-13 Toshiba Corp Power generating system
JP2006021069A (en) * 2004-07-06 2006-01-26 Toyo Koatsu Co Ltd Reaction apparatus using supercritical water
JP2007271146A (en) * 2006-03-31 2007-10-18 Hiroshima Univ Double-walled pipe construction
JP5688724B2 (en) * 2008-03-31 2015-03-25 国立大学法人広島大学 Biomass processing method

Also Published As

Publication number Publication date
JP2014189589A (en) 2014-10-06

Similar Documents

Publication Publication Date Title
JP6573261B2 (en) Supercritical water gasification system
JP6070906B1 (en) Supercritical water gasification system and gasification method
JP6338080B2 (en) Biomass gasification system using supercritical water
JP6250293B2 (en) Biomass gasification system using supercritical water and its operation method
CN204939232U (en) Supercritical reaction device and supercritical reaction system
WO2018055705A1 (en) Supercritical water gasification system
JP6154166B2 (en) Method and system for quickly detecting clogging in piping or adhesion of deposits on wall surface, and use thereof
JP6060350B2 (en) Gasification system
JP6057362B1 (en) Supercritical water gasification system
JP5865553B1 (en) Gasifier using supercritical fluid
JP6066411B2 (en) Operation method of supercritical water gasification system of biomass by activated carbon
JP5007999B2 (en) Gas-liquid separator
JP6127215B2 (en) Gasification system
WO2020217398A1 (en) Supercritical water gasification system
JP5865554B1 (en) Gasifier using supercritical fluid
WO2005021685A1 (en) Process and installation for thermal cracking used in decomposing rubber and plastic waste
JP6364645B2 (en) Biomass processing system
JP6020951B1 (en) Gasification system and gasification method in gasification system
JP6671677B1 (en) Supercritical water gasification system
JP6464533B2 (en) Heat exchange device, fuel gas generator
JP6108374B2 (en) Supercritical water gasification system for gasifying biomass slurry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170515

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170602

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180425

R150 Certificate of patent or registration of utility model

Ref document number: 6338080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250