WO2016139721A1 - Biomass treatment system - Google Patents

Biomass treatment system Download PDF

Info

Publication number
WO2016139721A1
WO2016139721A1 PCT/JP2015/056091 JP2015056091W WO2016139721A1 WO 2016139721 A1 WO2016139721 A1 WO 2016139721A1 JP 2015056091 W JP2015056091 W JP 2015056091W WO 2016139721 A1 WO2016139721 A1 WO 2016139721A1
Authority
WO
WIPO (PCT)
Prior art keywords
separated
raw material
biomass
heat
processing system
Prior art date
Application number
PCT/JP2015/056091
Other languages
French (fr)
Japanese (ja)
Inventor
泰孝 和田
幸彦 松村
良文 川井
琢史 野口
Original Assignee
中国電力株式会社
国立大学法人広島大学
中電プラント株式会社
株式会社東洋高圧
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社, 国立大学法人広島大学, 中電プラント株式会社, 株式会社東洋高圧 filed Critical 中国電力株式会社
Priority to PCT/JP2015/056091 priority Critical patent/WO2016139721A1/en
Priority to JP2016543747A priority patent/JP6098912B2/en
Publication of WO2016139721A1 publication Critical patent/WO2016139721A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features

Definitions

  • the present invention relates to a biomass processing system for efficiently heat-treating biomass.
  • Patent Document 1 discloses that a biomass slurry containing a nonmetallic catalyst is hydrothermally treated under conditions of a temperature of 374 ° C. or higher and a pressure of 22.1 MPa or higher, and the generated gas is used to generate a power generator.
  • a biomass gasification power generation system that generates power and heats a slurry body using exhaust heat from a power generation device is described.
  • FIG. 9 is a diagram for explaining a case where the shochu residue is heated and gasified in a general biomass processing system.
  • the biomass processing system 1 includes a heating unit 3 and a gas-liquid separation unit 4.
  • the heating unit 3 includes a heat exchanger 5 that heats a slurry body generated from a mixture of shochu residue, activated carbon, and water, and a heating mechanism 6 that further heats the slurry body.
  • the gas-liquid separation unit 4 performs gas-liquid separation after depressurizing and cooling a supercritical fluid (referred to as a supercritical fluid) after the gasification reaction is completed, thereby obtaining a gas.
  • the gas separated by the gas-liquid separation unit 4 is used as a combustion gas, for example.
  • FIG. 10 is a diagram for explaining the configuration of a double pipe in a double pipe heat exchanger.
  • the double pipe 7 includes a low temperature side flow path formed by the inner pipe 9 and a high temperature side flow path formed by the outer pipe 12.
  • the slurry body 8 is introduce
  • a supercritical fluid 11 that exchanges heat with the slurry body 8 is introduced into the high-temperature channel.
  • FIG. 11 is a cross-sectional photograph of the double tube after heat-exchanging the mixture containing the shochu residue.
  • black or brown tar 13 adheres to the inner pipe 9 (low temperature side flow path).
  • the mixture containing the shochu residue is subjected to heat exchange with a high temperature fluid in a supercritical state or a subcritical state, and the temperature is raised.
  • the shochu residue contains a lot of organic substances such as protein, lipid and dietary fiber. These organic substances are considered to be thermally decomposed when heated, thereby generating tar.
  • the generated tar obstructs the flow of the raw material by blocking the low temperature side flow path. As a result, the amount of exchange heat is reduced and the yield of gas is reduced. Such clogging of piping due to tar may occur not only in the heat exchanger but also in piping in other heating processes in which the raw material is heat-treated.
  • This invention is made
  • the present invention for achieving the above-mentioned object is a biomass processing system for heat-treating a slurry produced from a raw material containing biomass, wherein at least one of protein, lipid, and dietary fiber is extracted from the raw material.
  • a raw material separator that separates the organic matter contained therein as a first separated product, and an alkaline processing unit that reacts by adding an alkaline solution to the second separated product that is a residue after the first separated product is separated by the raw material separated unit.
  • a precipitate separation part for separating the precipitate produced by the reaction in the alkali treatment part, and the slurry body is produced by the solution after separating the precipitate.
  • Biomass which is a raw material, contains a large amount of organic substances such as proteins, lipids, and dietary fibers (lignin, etc.), and these organic substances are tars that adhere to various pipes in the process of heat-treating the slurry produced from the raw materials. May be generated. Therefore, as in the present invention, by separating an organic substance containing at least one of protein, lipid, and dietary fiber (such as lignin) from a raw material as a first separated substance (hereinafter also referred to as tar-causing substance), The production
  • tar-causing substance a first separated substance
  • the separated phosphorous compound can be reused as a fertilizer raw material or the like. Can use resources efficiently.
  • the biomass also contains an inorganic substance that generates an inorganic salt. Therefore, the volume of the inorganic material is reduced in the volume of the slurry, and the effect of preventing the blockage of the piping can be expected.
  • the heat treatment here refers to a heat treatment under a high temperature and high pressure that allows the biomass of the slurry to be heat exchanged with supercritical water, high temperature combustion gas, etc.
  • the temperature that can be used is not only the gasification reaction temperature, but also a heat treatment under supercritical temperature or pressure condition (for example, hydrothermal treatment in a subcritical state or a temperature lower than the gasification reaction temperature). It is a concept including heat treatment in a state.
  • a drying unit for drying the first separated product may be provided.
  • the drying unit may heat and dry the first separated product.
  • the dried product can be stored for a long time by drying the first isolate as in the present invention. It can be used as a feed that can be transported at low cost. In addition, the moisture can be surely removed by heating and drying.
  • the heater which heats the said slurry body is provided, and the said drying part heats and drys the said 1st isolate
  • Heat generated in the biomass processing system can be used effectively by heating and drying solids with exhaust heat from the heater.
  • the alkaline solution is preferably an aqueous solution containing sodium hydroxide or potassium hydroxide.
  • biomass can be efficiently heat-treated in the biomass processing system.
  • FIG. 1 is a diagram illustrating a configuration of a biomass processing system according to the first embodiment.
  • the biomass processing system 20 includes a raw material preparation unit 30, a heat treatment unit 40, and a gas-liquid separation unit 50.
  • the biomass processing system 20 is a system (gasification system) that generates combustion gas by heat-treating shochu residue that is a raw material.
  • the shochu in this case may be any of wheat shochu, shochu shochu, rice shochu, soba shochu, or a combination thereof.
  • the raw material preparation unit 30 is a part for preparing raw materials.
  • the raw material preparation unit 30 includes a separation device 31, a reaction vessel 32, a preparation tank 33, a pulverizer 34, and a supply pump 35.
  • the separation device 31 is a device that separates an organic substance (hereinafter referred to as a first separated substance) containing at least one of protein, lipid, and dietary fiber from a shochu residue that is a raw material.
  • the separation device 31 removes proteins, lipids, and dietary fibers contained in the shochu residue.
  • the first separated product contains more protein, lipid, and dietary fiber than the residue after separating the first separated product by the separation device 31 (hereinafter referred to as the second separated product).
  • the first separated product is a solid component
  • the second separated product is a liquid component. Details of such a separation device 31 will be described later.
  • the reaction vessel 32 is a vessel for performing an alkali treatment in which the liquid separated by the separation device 31 is reacted with an alkaline solution such as an aqueous sodium hydroxide solution.
  • the reaction vessel 32 separates inorganic substances such as phosphorus compounds as precipitates. Details of the reaction vessel 32 will be described later.
  • the preparation tank 33 is a tank that mixes the second separated product separated by the separation device 31, water, and a nonmetallic catalyst (activated carbon in this embodiment), thereby preparing a mixture.
  • a nonmetallic catalyst activated carbon in this embodiment
  • porous particles having an average particle diameter of 200 ⁇ m or less are used as the activated carbon.
  • the mixing ratio of the liquid, water, and activated carbon is adjusted according to the type, amount, moisture content, etc. of the shochu residue.
  • the pulverizer 34 pulverizes the mixture obtained in the preparation tank 33 so as to make the shochu residue a uniform size in advance (preferably an average particle size of 500 ⁇ m or less, more preferably an average particle size of 300 ⁇ m or less). It is a device.
  • the mixture obtained by the pulverizer 34 is referred to as a slurry body.
  • the supply pump 35 is a device that supplies the slurry discharged from the pulverizer 34 to the heat treatment unit 40.
  • the heat treatment part 40 is a part that heats and gasifies the slurry body prepared by the raw material preparation part 30.
  • the heat treatment unit 40 includes a high-pressure pump 43, a heat exchanger 44, a heater 45, a gasification reactor 46, and a feed tank 47.
  • the slurry body sent to the heat treatment unit 40 by the supply pump 35 is sent to the heat exchanger 44 by the high-pressure pump 43.
  • the heat exchanger 44 is a device that receives the slurry body from the high-pressure pump 43 and further heats the slurry body.
  • the heat exchanger 44 is a double-pipe heat exchanger having a double pipe 48 and is introduced from a gasification reactor 46 and a low-temperature flow path 48a through which the slurry sent from the high-pressure pump 43 flows.
  • the slurry body is heated by exchanging heat with the processed fluid in the low temperature channel 48a.
  • the temperature at the time of introducing the treated fluid into the heat exchanger 44 is, for example, about 600 ° C.
  • the discharge temperature of the treated fluid from the heat exchanger 44 is, for example, about 120 ° C.
  • the discharge temperature of the slurry body from the heat exchanger 44 is about 450 ° C., for example. That is, in this case, the slurry body is in a supercritical state.
  • the slurry body heated by the heat exchanger 44 is sent to the heater 45.
  • the heater 45 is a device for heating the slurry body sent from the heat exchanger 44.
  • the heater 45 includes a combustion device 45a, and a product gas (described later) sent from the gas-liquid separator 50 is combusted by the combustion device 45a to heat the slurry body.
  • the slurry body introduced into the heater 45 is heated to about 600 ° C., for example.
  • the heated slurry body is sent to the gasification reactor 46.
  • the gasification reactor 46 is an apparatus that heats the slurry body sent from the heater 45 and hydrothermally heats organic substances contained in the slurry body.
  • the gasification reactor 46 includes a combustion device 46a, and the product gas sent from the gas-liquid separator 50 is combusted by the combustion device 46a to perform hydrothermal treatment of the slurry body.
  • the slurry body is hydrothermally treated for 1 to 2 minutes under conditions of, for example, 600 ° C. and 25 MPa.
  • the hydrothermally treated slurry body is in a supercritical state and is introduced into the heat exchanger 44 as a post-treatment fluid.
  • the feed tank 47 is a tank for storing feed that is a by-product in the biomass processing system 20.
  • the feed stored in the feed tank 47 will be described later.
  • the post-treatment fluid introduced from the gasification reactor 46 to the heat exchanger 44 is heat-exchanged with the slurry body introduced into the low-temperature flow path 48a, and the temperature decreases while maintaining a high pressure. It becomes a critical state. For example, the temperature of the slurry decreases to about 300 ° C. while maintaining a pressure of 25 MPa.
  • the processed fluid may change from a supercritical state to a subcritical state and be separated into a gas and a liquid and may be in a so-called gas-liquid two-phase flow state.
  • FIG. 2 is a diagram for explaining this gas-liquid two-phase flow.
  • the processed fluid 61 is separated into an upper portion gas phase portion 61a and a lower portion liquid phase portion 61b.
  • Each of the gas phase portion 61a and the liquid phase portion 61b is heat-exchanged with the slurry body 62 flowing through the low temperature channel 48a.
  • the post-treatment fluid that has been heat-exchanged with the slurry body in this way is sent to the gas-liquid separator 50.
  • the gas-liquid separator 50 includes a decompression mechanism 51, a gas-liquid separator 52, a gas tank 53, and a drainage treatment device 54.
  • the decompression mechanism 51 is a part that decompresses the processed fluid sent from the heat treatment unit 40, and is configured by, for example, a capillary tube.
  • the gas-liquid separator 52 is a part that separates the processed fluid sent from the decompression mechanism 51 into a liquid component (liquid containing activated carbon or ash) and a gas component (gas such as hydrogen or methane). A gas of about 0.3 MPa is discharged from the gas-liquid separator 52 at room temperature.
  • the gas tank 53 is a container for storing the gas (generated gas) separated by the gas-liquid separator 52.
  • the product gas stored in the gas tank 53 is supplied to the heater 45 and the gasification reactor 46.
  • the drainage treatment apparatus 54 is an apparatus that separates activated carbon and ash contained in the solution separated by the gas-liquid separator 52 from the solution.
  • the drainage treatment device 54 includes, for example, a separation device that separates a solution containing solids into a liquid component and a solid component.
  • the liquid component separated from the drainage treatment device 54 is discharged as a drainage to a predetermined drainage channel.
  • tar organic substances (protein, lipid, dietary fiber (lignin, etc.) of the shochu residue are hereinafter referred to as tar causes.
  • the substance is thermally decomposed to generate tar, which may adhere to the inner wall surface of the inner pipe that defines the low-temperature flow path 48a (for example, the temperature of the slurry becomes 150 ° C. to 450 ° C.).
  • the adhering tar eventually closes the low-temperature flow path 48a and hinders the flow of the slurry body. As a result, the gas yield in the gas-liquid separation unit 50 is reduced.
  • the same phenomenon may occur in piping other than the heat exchanger 44. That is, in other places where the slurry body is heat-treated, such as the heater 45 in the heat treatment section 40, the gasification reactor 46, and their connection piping, there is a possibility that tar is generated and the piping is blocked. is there.
  • the biomass processing system 20 of the present embodiment not only when the slurry body performs heat treatment under high temperature and high pressure (under a supercritical state) such that the slurry body is gasified by heat exchange with supercritical water, Even when the slurry body is heated under supercritical temperature or pressure conditions (for example, hydrothermal treatment, heat treatment in a subcritical state or a temperature lower than the gasification reaction temperature).
  • the piping in the process may be blocked.
  • the raw material preparation unit 30 is provided with a separation device 31 to separate tar-causing substances from the shochu residue, which is the main raw material, in order to prevent such a situation. Like to do.
  • the separation device 31 includes a raw material containing a first separated substance (a solid content in this embodiment) containing a large amount of tar-causing substances and no tar-causing substance (or at least less than the first separated substance). ) Separated into a second separated product (liquid component in this embodiment).
  • the separation device 31 is, for example, a device that separates a raw material into a first separated material and a second separated material based on a difference in specific gravity using gravity or centrifugal force (for example, a stationary storage tank for separating by gravity sedimentation, A centrifuge such as a decanter) or an apparatus (for example, a filter press) that separates the raw material into a second separated product and a second separated product using a filter (for example, the first separated product is separated as a solid phase). And the second separation is separated as a liquid phase).
  • the separation device 31 may be a combination of these devices.
  • the first separated product (solid content of the shochu residue) separated by the separation device 31 is introduced into the heater 45 of the heat treatment unit 40.
  • the solid content introduced into the heater 45 is heated and dried by exhaust heat in the heater 45 (exhaust heat generated during combustion by the combustion device 45a). Since the solid content after drying contains a lot of protein, it can be used as feed.
  • the dried solid content is stored in the feed tank 47 as feed.
  • the second separated product (liquid component of shochu residue) separated in the separation device 31 is introduced into the reaction vessel 32.
  • An alkaline aqueous solution (for example, 10 wt% sodium hydroxide aqueous solution) is introduced into the reaction vessel 32, and the alkali treatment of the liquid is performed. That is, in the reaction vessel 32, the separated liquid and the alkaline aqueous solution are mixed, thereby generating a precipitate.
  • the main component of the precipitate is an inorganic substance made of a phosphorus compound such as magnesium phosphate, and is sent to the storage container 36. This phosphorus compound can be reused as a fertilizer raw material.
  • the solution after the reaction after removing the precipitate (for example, the supernatant) is sent to the preparation tank 33.
  • the post-reaction solution sent to the preparation tank 33 is mixed with activated carbon and water, and the resulting mixture is made into a slurry body by the pulverizer 34 and introduced into the heat treatment section 40 via the supply pump 35.
  • the slurry body introduced into the heat treatment unit 40 is in a state in which inorganic substances such as proteins, lipids, dietary fibers, and phosphorus compounds are largely removed by separation by the separation device 31 and alkali treatment in the reaction vessel 32. It has become.
  • the separation apparatus 31 uses organic materials (first first) containing at least one of proteins, lipids, and dietary fibers (such as lignin) from the raw materials.
  • organic materials first first
  • dietary fibers such as lignin
  • reaction vessel 32 (alkali treatment unit) causes the phosphorus compound (inorganic matter) such as magnesium phosphate from the residue of the first separation (second separation) to be stored in the storage container 36 (precipitation separation unit).
  • the phosphorus compound inorganic matter
  • the storage container 36 precipitation separation unit
  • separated from the shochu residue contains high concentration protein, lipid, and dietary fiber
  • this solid content is heated and dried like the biomass processing system 20 of this embodiment.
  • the water can be surely removed, and the dried product can be used as a high-quality feed that is cheap and can be stored for a long time and is rich in nutrients.
  • drying prevents rot and allows long-term storage, as well as reducing the weight and transportation costs.
  • the heating of the solid matter is performed as the drying unit by the exhaust heat of the exhaust gas of the heater 45, the heat generated in the biomass processing system 20 can be used effectively.
  • an alkaline solution such as an aqueous sodium hydroxide solution or potassium hydroxide also acts as a catalyst for hydrothermal treatment in the gasification reactor 46, further improvement in gas yield can be expected.
  • the nitrogen concentration of the drainage discharged in the drainage treatment apparatus 54 is obtained by removing the protein and the phosphorus compound from the shochu residue.
  • ammonia concentration for example, ammonia concentration
  • phosphorus concentration for example, phosphoric acid concentration
  • the discharge of nitrogen and phosphorus into public water bodies and the like causes an environmental load (eutrophication, etc.), according to the biomass processing system 20 of this embodiment, such an increase in the environmental load can be prevented. .
  • FIG. 3 is a view for explaining the processed fluid flowing in the double pipe 48 of the heat exchanger 44.
  • the separation by the separation device 31 is performed, the amount of product gas obtained by hydrothermally treating the organic matter is reduced as much as the organic matter that causes tar is removed from the shochu residue. Therefore, as indicated by reference numeral 63, the gas phase portion 61a of the gas-liquid two-phase flow in the processed fluid 61 in the subcritical state also decreases.
  • the liquid phase portion 61b increases, the heat transfer area of the liquid phase portion 61b that comes into contact with the slurry body 62 (via the piping) increases, and as a result, the post-treatment fluid 61 and the slurry body 62 of the low temperature channel 48a.
  • the amount of exchange heat with the slurry increases, and the slurry body 62 can be efficiently heated. This is because the specific heat of the liquid is larger than that of the gas. Accordingly, since the fuel gas used in the heater 45 and the gasification reactor 46 is reduced, the generated gas can be effectively used in the entire system.
  • the separated solid is heated and dried by exhaust heat from the heater 45, but other devices that generate exhaust heat other than the heater 45, for example,
  • the drying of the solid material may be used by using the heat discharged from the gasification reactor 46 or the decompression mechanism 51. Even if comprised in this way, the heat which generate
  • FIG. 4 is a diagram illustrating the configuration of the biomass processing system according to the second embodiment.
  • the biomass processing system 20 of the present embodiment includes a raw material preparation unit 30, a heat treatment unit 40, and a gas-liquid separation unit 50, as in the first embodiment.
  • the raw material preparation unit 30 is a part for preparing raw materials.
  • the raw material preparation unit 30 includes a reaction vessel 32, a separation device 31, a preparation tank 33, a pulverizer 34, and a supply pump 35.
  • the arrangement of the reaction vessel 32 and the separation device 31 is reversed compared to the first embodiment. Specifically, the reaction vessel 32 is arranged on the upstream side, and the separation device 31 is arranged on the downstream side. Has been.
  • the reaction vessel 32 is a vessel for reacting the shochu residue, which is the main raw material, with an alkaline solution (for example, an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution).
  • the reaction vessel 32 is charged with the shochu residue and the alkaline solution. Both of them are subjected to alkali treatment of the shochu residue in the reaction vessel 32.
  • a solution obtained by this alkali treatment (hereinafter referred to as a post-treatment solution) is sent to the separation device 31.
  • the treated solution contains proteins, lipids and dietary fibers contained in the shochu residue.
  • the solid matter (precipitate) separated from the post-treatment solution contains a large amount of phosphorus compound, which is stored in the storage container 36. This precipitate can be used as a feed fertilizer or the like.
  • the separation device 31 separates the treated solution supplied from the reaction vessel 32 into a solid content and a liquid content. Thereby, protein, lipid, and dietary fiber contained in the solution after processing are separated as solids.
  • the separated solid content is introduced into the heater 45 of the heat treatment unit 40.
  • the solid content introduced into the heater 45 is heated and dried using exhaust heat generated by the heater 45. Since the solid content after drying contains a large amount of protein, lipid and dietary fiber, it can be used as feed for livestock. However, it is preferable to neutralize this solid content, that is, to neutralize the substance derived from the alkaline solution used in the alkali treatment described above.
  • the dried solid content is stored in the feed tank 47.
  • the liquid component separated by the separation device 31 is sent to the preparation tank 33.
  • the separated liquid, activated carbon, and water are mixed and sent to the pulverizer 34.
  • the pulverizer 34 and the supply pump 35 are the same as in the first embodiment.
  • the mixture generated in the preparation tank 33 is made into a slurry body by the pulverizer 34 and is introduced into the heat treatment section 40 through the supply pump 35. Then, the slurry body introduced into the heat treatment unit 40 is introduced into the heat exchanger 44.
  • the order of separation treatment and alkali treatment is reversed. That is, the alkali treatment is first performed on the shochu residue (reaction vessel 32), and the solution after the alkali treatment is performed and the precipitate is removed is separated into the first separated product and the second separated product ( Separation device 31). Even with such a configuration, the same effect as the first embodiment can be obtained.
  • FIG. 5 is a diagram for explaining the procedure of the separation experiment. As shown in the figure, a test container 71 for storing a shochu residue and a filtration container 72 were used in this separation experiment.
  • test vessel 71 charged with the shochu residue 73 (sucrose barley shochu residue) was allowed to stand for about 48 hours and waited for the precipitate 74 to settle. Thereafter, the supernatant liquid of the test container 71 was taken out, and the precipitate 74 remaining at the bottom of the test container 71 was introduced into the filtration container 72.
  • the filter container 72 is provided with a filter 75 (a wire mesh having a mesh size of 2 mm), and the precipitate 74 described above was introduced into the upper surface of the filter 75. After filtration, the filtered precipitate 76 remaining in the filter 75 was taken out.
  • a filter 75 a wire mesh having a mesh size of 2 mm
  • FIG. 6 is a diagram showing the analysis results of the shochu residue before the separation experiment, the supernatant obtained in the separation experiment, and the precipitate 76 after filtration.
  • pH is 3.8
  • water is 88.2 g per 100 g of shochu residue
  • lipid is 0.6 g per 100 g of shochu residue
  • protein is 3 per 100 g of shochu residue.
  • 0.8 g and dietary fiber was 1.4 g per 100 g of shochu residue.
  • pH is 4.0
  • moisture content is 89.8g per 100g of shochu residue
  • a lipid is less than 0.1g per 100g of shochu residue
  • a protein is 3.5g per 100g of shochu residue
  • dietary fiber It was 0.2g per 100g of shochu residue.
  • the pH is 4.0
  • the moisture is 83.4 g per 100 g of the shochu residue
  • the lipid is 1.6 g per 100 g of the shochu residue
  • the protein is 4.6 g per 100 g of the shochu residue
  • the dietary fiber is 100 g of shochu residue. 4.4g per unit.
  • the concentration of lipid, protein, and dietary fiber in the liquid after separation treatment is significantly lower than the concentration of lipid, protein, and dietary fiber in the shochu residue before separation treatment.
  • the precipitate (solid content) after the separation treatment contains high concentrations of lipids, proteins, and dietary fibers. That is, it can be seen that protein, lipid and dietary fiber can be easily separated from the shochu residue.
  • FIG. 7 is a diagram for explaining the procedure of the alkali treatment experiment.
  • 27 ml of 10 wt% sodium hydroxide aqueous solution 83 was added to 500 ml of shochu residue 82 (six-row wheat shochu residue) contained in the reaction vessel 81 and stirred with a stirrer 84. Then, both were reacted.
  • the solution 85 after the reaction in the reaction vessel 81 was put into a filtration vessel 87 equipped with a filter 86 (particle retention ability 1.0 ⁇ m) and filtered. Then, chemical analysis of the precipitate 89 remaining on the filter 86 was performed.
  • FIG. 8 is a diagram for explaining the analysis result of the precipitate 89 ((a) infrared spectroscopic analysis using a Fourier transform infrared microspectroscopy apparatus, (b) elemental analysis using an energy dispersive X-ray microanalyzer).
  • the precipitate 89 has remarkably oxygen (O), magnesium (Mg), and phosphorus (P) peaks. Moreover, the peak derived from protein or an amino acid is not confirmed.
  • the mass concentration (%) of oxygen in the precipitate 89 is 52.72%
  • the mass concentration (%) of magnesium is 6.60%
  • the mass concentration (%) of phosphorus is 8.39%.
  • the precipitate 89 was a fine crystalline substance having a white translucent to pale yellow color, and a fibrous substance considered to be derived from a filter was mixed.
  • the precipitate 89 contains a large amount of phosphorus compound such as magnesium phosphate. Therefore, it can be seen that the phosphorus compound can be precipitated from the shochu residue by subjecting the shochu residue to an alkali treatment.
  • the raw material of the biomass may be other than the shochu residue, and may be, for example, egg-collecting chicken manure, sewage sludge or other water-containing biomass.
  • water and a catalyst are mixed when the slurry body is generated, but these may not be mixed.
  • the first separated product has a solid content, but the first separated product may not have a solid content. Even in such a case, a centrifuge or the like is appropriately used as the separation device 31. Separation is possible by using it. Similarly, separation is possible even when the second separation is not liquid.
  • the heat source for heating the first separated matter may be the waste heat of the biomass processing system 20 other than the exhaust gas of the heater 45 or the waste heat of equipment such as a separately installed steam boiler.
  • this invention is applicable even when performing heat processing other than gasification.
  • this invention is applicable even when performing heat processing other than gasification.
  • a heating device other than the heat exchanger is present, blockage of piping due to tar in the device can be prevented.
  • hydrothermal treatment is performed at a temperature equal to or lower than the gasification reaction temperature, blockage of the piping can be prevented and the hydrothermal treatment can be performed efficiently.

Abstract

The purpose of the present invention is to efficiently treat biomass in a biomass treatment system. This biomass treatment system 20, for heat treating a slurry generated from raw material that includes biomass, is provided with a raw material separation unit 31 in which an organic substance that contains proteins, fats and/or dietary fibers is separated as a first separated substance from the raw material, an alkaline treatment unit 32 in which an alkaline solution is added to and reacted with a second separated substance, which is the residual substance left over after the first separated substance has been separated by the raw material separation unit 31, and a sediment separation unit 36 in which the sediment produced by the reaction in the alkaline treatment unit 32 is separated off. A slurry is produced from the solution from which the sediment has been separated.

Description

バイオマス処理システムBiomass processing system
 本発明は、バイオマスを効率よく加熱処理するためのバイオマス処理システムに関する。 The present invention relates to a biomass processing system for efficiently heat-treating biomass.
 超臨界状態でバイオマスを分解処理して燃料ガスを得るバイオマス処理システムが知られている。例えば、特許文献1には、非金属系触媒を含んだバイオマスのスラリー体を温度374℃以上、圧力22.1MPa以上の条件下で水熱処理し、生成された生成ガスを利用して発電装置で発電し、発電装置からの排熱を利用してスラリー体を加熱するバイオマスガス化発電システムが記載されている。 A biomass processing system that decomposes biomass in a supercritical state to obtain fuel gas is known. For example, Patent Document 1 discloses that a biomass slurry containing a nonmetallic catalyst is hydrothermally treated under conditions of a temperature of 374 ° C. or higher and a pressure of 22.1 MPa or higher, and the generated gas is used to generate a power generator. A biomass gasification power generation system that generates power and heats a slurry body using exhaust heat from a power generation device is described.
特開2008-246343号公報JP 2008-246343 A
 このバイオマスである原料として代表的なものの一つに、焼酎残渣がある。図9は、一般的なバイオマス処理システムで焼酎残渣を加熱してガス化する場合を説明する図である。同図に示すように、このバイオマス処理システム1は、加熱部3、及び気液分離部4を含んで構成される。このうち加熱部3は、焼酎残渣、活性炭、及び水の混合物から生成されたスラリー体を加熱する熱交換器5と、スラリー体をさらに加熱する加熱機構6とを備える。気液分離部4は、ガス化反応が終了した超臨界状態の流体(超臨界流体という)を減圧、冷却した後、気液分離してガスを得るものである。気液分離部4で分離されたガスは、例えば燃焼ガスとして用いられる。 One of the typical raw materials for biomass is shochu residue. FIG. 9 is a diagram for explaining a case where the shochu residue is heated and gasified in a general biomass processing system. As shown in the figure, the biomass processing system 1 includes a heating unit 3 and a gas-liquid separation unit 4. Among these, the heating unit 3 includes a heat exchanger 5 that heats a slurry body generated from a mixture of shochu residue, activated carbon, and water, and a heating mechanism 6 that further heats the slurry body. The gas-liquid separation unit 4 performs gas-liquid separation after depressurizing and cooling a supercritical fluid (referred to as a supercritical fluid) after the gasification reaction is completed, thereby obtaining a gas. The gas separated by the gas-liquid separation unit 4 is used as a combustion gas, for example.
 ここで熱交換器5としては、例えば二重管式熱交換器が挙げられる。図10は二重管式熱交換器における二重管の構成を説明する図である。同図に示すように、二重管7は、内側の配管9で形成される低温側流路と、外側の配管12で形成される高温側流路とを備えている。そして、低温側流路にはスラリー体8が導入される。また、高温側流路には、スラリー体8と熱交換される超臨界流体11が導入される。 Here, as the heat exchanger 5, for example, a double tube heat exchanger may be mentioned. FIG. 10 is a diagram for explaining the configuration of a double pipe in a double pipe heat exchanger. As shown in the figure, the double pipe 7 includes a low temperature side flow path formed by the inner pipe 9 and a high temperature side flow path formed by the outer pipe 12. And the slurry body 8 is introduce | transduced into a low temperature side flow path. A supercritical fluid 11 that exchanges heat with the slurry body 8 is introduced into the high-temperature channel.
 ところで、内側の配管9の内壁面には、焼酎残渣の成分に由来するタールが付着することがある。図11は、焼酎残渣を含有する混合物を熱交換した後の二重管の断面写真である。同図に示すように、内側の配管9(低温側流路)には黒色ないし褐色のタール13が付着している。低温側流路において、焼酎残渣を含有する混合物は超臨界状態又は亜臨界状態の高温流体と熱交換されて昇温される。ここで、焼酎残渣にはタンパク質や脂質や食物繊維といった有機物が多く含まれている。これらの有機物は加熱されると熱分解され、これによりタールが生成されるものと考えられる。生成されたタールは低温側流路を閉塞して原料の流通を妨げる。その結果、交換熱量が低下してガスの収率の低下がもたらされる。そして、このようなタールによる配管の閉塞は、熱交換器内に限らず、原料を加熱処理するその他の加熱過程における配管においても起こる可能性がある。 Incidentally, tar derived from the components of the shochu residue may adhere to the inner wall surface of the inner pipe 9. FIG. 11 is a cross-sectional photograph of the double tube after heat-exchanging the mixture containing the shochu residue. As shown in the figure, black or brown tar 13 adheres to the inner pipe 9 (low temperature side flow path). In the low temperature side channel, the mixture containing the shochu residue is subjected to heat exchange with a high temperature fluid in a supercritical state or a subcritical state, and the temperature is raised. Here, the shochu residue contains a lot of organic substances such as protein, lipid and dietary fiber. These organic substances are considered to be thermally decomposed when heated, thereby generating tar. The generated tar obstructs the flow of the raw material by blocking the low temperature side flow path. As a result, the amount of exchange heat is reduced and the yield of gas is reduced. Such clogging of piping due to tar may occur not only in the heat exchanger but also in piping in other heating processes in which the raw material is heat-treated.
 本発明はこのような事情に鑑みてなされたものであり、その目的は、バイオマスを効率よく加熱処理するためのバイオマス処理システムを提供することにある。 This invention is made | formed in view of such a situation, The objective is to provide the biomass processing system for heat-processing biomass efficiently.
 前述の目的を達成するための本発明は、バイオマスを含む原料から生成されたスラリー体を加熱処理するバイオマス処理システムであって、前記原料から、タンパク質、脂質、及び食物繊維のうち少なくともいずれかを含む有機物を第1分離物として分離する原料分離部と、前記原料分離部により前記第1分離物が分離された後の残余物である第2分離物にアルカリ性溶液を加えて反応させるアルカリ処理部と、前記アルカリ処理部における反応により生成した沈殿物を分離する沈殿物分離部とを備え、前記沈殿物を分離した後の溶液により前記スラリー体を生成する。 The present invention for achieving the above-mentioned object is a biomass processing system for heat-treating a slurry produced from a raw material containing biomass, wherein at least one of protein, lipid, and dietary fiber is extracted from the raw material. A raw material separator that separates the organic matter contained therein as a first separated product, and an alkaline processing unit that reacts by adding an alkaline solution to the second separated product that is a residue after the first separated product is separated by the raw material separated unit. And a precipitate separation part for separating the precipitate produced by the reaction in the alkali treatment part, and the slurry body is produced by the solution after separating the precipitate.
 原料であるバイオマスには、タンパク質、脂質や食物繊維(リグニン等)の有機物が多く含まれており、これらの有機物は、原料から生成したスラリー体を加熱処理する過程において、各種配管に付着するタールを生成する原因となる可能性がある。そこで本発明のように、原料から、タンパク質、脂質、及び食物繊維(リグニン等)のうち少なくともいずれかを含む有機物を第1分離物(以下、タール原因物質ともいう)として分離することにより、上記配管におけるタールの生成を抑制し、これにより、当該配管の閉塞を防止することができる。これにより、バイオマスを効率よく加熱処理することができる。 Biomass, which is a raw material, contains a large amount of organic substances such as proteins, lipids, and dietary fibers (lignin, etc.), and these organic substances are tars that adhere to various pipes in the process of heat-treating the slurry produced from the raw materials. May be generated. Therefore, as in the present invention, by separating an organic substance containing at least one of protein, lipid, and dietary fiber (such as lignin) from a raw material as a first separated substance (hereinafter also referred to as tar-causing substance), The production | generation of the tar in piping is suppressed and this can block | close the said piping. Thereby, biomass can be heat-processed efficiently.
 また、アルカリ処理部により、第1分離物を分離後の残余物(第2分離物)からリン酸マグネシウム等のリン化合物を沈殿物として分離することで、分離したリン化合物を肥料原料等として再利用し、資源を効率よく活用することができる。また、上述のようにリン化合物が沈殿することからわかる通り、バイオマスは無機塩を生成するような無機物も含んでいる。したがって、この無機物の分もスラリー体は減容されていることになり、これによる配管の閉塞の防止の効果も期待できる。 In addition, by separating the phosphorus compound such as magnesium phosphate as a precipitate from the residue after the separation of the first separated product (second separated product) by the alkali treatment unit, the separated phosphorous compound can be reused as a fertilizer raw material or the like. Can use resources efficiently. Further, as can be seen from the fact that the phosphorus compound is precipitated as described above, the biomass also contains an inorganic substance that generates an inorganic salt. Therefore, the volume of the inorganic material is reduced in the volume of the slurry, and the effect of preventing the blockage of the piping can be expected.
 なお、ここでいう加熱処理とは、スラリー体を超臨界水や高温の燃焼ガス等と熱交換してバイオマスをガス化できるような高温高圧下での加熱処理(なお、このような加熱処理が行える温度を、以下、ガス化反応温度という)のみならず、超臨界以下の温度ないし圧力条件下での加熱処理(例えば水熱処理であって、亜臨界状態や、ガス化反応温度以下の温度の状態での加熱処理)を含む概念である。 The heat treatment here refers to a heat treatment under a high temperature and high pressure that allows the biomass of the slurry to be heat exchanged with supercritical water, high temperature combustion gas, etc. The temperature that can be used is not only the gasification reaction temperature, but also a heat treatment under supercritical temperature or pressure condition (for example, hydrothermal treatment in a subcritical state or a temperature lower than the gasification reaction temperature). It is a concept including heat treatment in a state.
 なお、本発明においては、前記第1分離物を乾燥させる乾燥部を備えていてもよい。もしくは、前記乾燥部は、前記第1分離物を加熱して乾燥させてもよい。 In the present invention, a drying unit for drying the first separated product may be provided. Alternatively, the drying unit may heat and dry the first separated product.
 バイオマス(焼酎残渣)から分離した第1分離物にはタンパク質や脂質や食物繊維が多く含まれるので、本発明のように、この第1分離物を乾燥させることで、その乾燥物を長期保管が可能で輸送費が安価な飼料として用いることができる。また、加熱し乾燥させることで、確実に水分を取り除くことができる。 Since the first isolate separated from biomass (shochu residue) contains a lot of proteins, lipids and dietary fiber, the dried product can be stored for a long time by drying the first isolate as in the present invention. It can be used as a feed that can be transported at low cost. In addition, the moisture can be surely removed by heating and drying.
 また、本発明においては、前記スラリー体を加熱する加熱器を備え、前記乾燥部は、前記原料分離部において分離した前記第1分離物を、前記加熱器からの排熱により加熱して乾燥させるようにしてもよい。 Moreover, in this invention, the heater which heats the said slurry body is provided, and the said drying part heats and drys the said 1st isolate | separated thing isolate | separated in the said raw material separation part with the waste heat from the said heater. You may do it.
 加熱器からの排熱により固形物の加熱して乾燥を行っていることで、バイオマス処理システムで発生する熱を有効に利用できる。 ∙ Heat generated in the biomass processing system can be used effectively by heating and drying solids with exhaust heat from the heater.
 なお、前記アルカリ性溶液は、水酸化ナトリウム又は水酸化カリウムを含む水溶液であることが好ましい。 Note that the alkaline solution is preferably an aqueous solution containing sodium hydroxide or potassium hydroxide.
 本発明によれば、バイオマス処理システムにおいて、バイオマスを効率よく加熱処理することができる。 According to the present invention, biomass can be efficiently heat-treated in the biomass processing system.
第1実施形態に係るバイオマス処理システムの構成を説明する図である。It is a figure explaining the composition of the biomass processing system concerning a 1st embodiment. 二重管における気液二相流を説明する図である。It is a figure explaining the gas-liquid two-phase flow in a double pipe. 分離実験を実施した場合と実施しない場合における、二重管における気液二相流の違いを説明する図である。It is a figure explaining the difference of the gas-liquid two-phase flow in a double pipe in the case where it implements and the case where a separation experiment is not implemented. 第2実施形態に係るバイオマス処理システムの構成を説明する図である。It is a figure explaining the structure of the biomass processing system which concerns on 2nd Embodiment. 分離実験の手順を説明する図である。It is a figure explaining the procedure of a separation experiment. 分離実験の実験結果を説明する図である。It is a figure explaining the experimental result of a separation experiment. アルカリ処理実験の手順を説明する図である。It is a figure explaining the procedure of an alkali treatment experiment. 沈殿物89の分析結果((a)フーリエ変換赤外顕微分光装置による赤外分光分析、(b)エネルギ分散X線マイクロアナライザによる元素分析)の結果)を説明する図である。It is a figure explaining the analysis result (The result of (a) Infrared spectroscopic analysis by a Fourier-transform infrared microspectroscopy apparatus, (b) Elemental analysis by an energy dispersive X-ray microanalyzer) of the deposit 89. 一般的なバイオマス処理で焼酎残渣をガス化する場合を説明する図である。It is a figure explaining the case where a shochu residue is gasified by general biomass processing. 二重管式熱交換器における二重管の構成を説明する図である。It is a figure explaining the structure of the double pipe in a double pipe type heat exchanger. 焼酎残渣を含有する混合物を熱交換した後の二重管の断面写真である。It is a cross-sectional photograph of the double tube after heat-exchanging the mixture containing a shochu residue.
<第1実施形態>
 図1は、第1実施形態に係るバイオマス処理システムの構成を説明する図である。同図に示すように、バイオマス処理システム20は、原料調製部30、熱処理部40、及び気液分離部50を有する。バイオマス処理システム20は、原料である焼酎残渣を加熱処理することにより燃焼ガスを生成するシステム(ガス化システム)である。なお、この場合の焼酎は、麦焼酎、芋焼酎、米焼酎、そば焼酎、またはこれらの組み合わせのうちいずれでもよい。
<First Embodiment>
FIG. 1 is a diagram illustrating a configuration of a biomass processing system according to the first embodiment. As shown in the figure, the biomass processing system 20 includes a raw material preparation unit 30, a heat treatment unit 40, and a gas-liquid separation unit 50. The biomass processing system 20 is a system (gasification system) that generates combustion gas by heat-treating shochu residue that is a raw material. In addition, the shochu in this case may be any of wheat shochu, shochu shochu, rice shochu, soba shochu, or a combination thereof.
 原料調製部30は、原料を調製する部分である。原料調製部30は、分離装置31、反応容器32、調製タンク33、粉砕機34、及び供給ポンプ35を備える。 The raw material preparation unit 30 is a part for preparing raw materials. The raw material preparation unit 30 includes a separation device 31, a reaction vessel 32, a preparation tank 33, a pulverizer 34, and a supply pump 35.
 分離装置31は、原料である焼酎残渣から、タンパク質、脂質、及び食物繊維のうち少なくともいずれかを含む有機物(以下、第1分離物という)を分離する装置である。分離装置31により、焼酎残渣に含まれていたタンパク質や脂質や食物繊維が除去される。 The separation device 31 is a device that separates an organic substance (hereinafter referred to as a first separated substance) containing at least one of protein, lipid, and dietary fiber from a shochu residue that is a raw material. The separation device 31 removes proteins, lipids, and dietary fibers contained in the shochu residue.
 第1分離物は、分離装置31で第1分離物を分離後の残余物(以下、第2分離物という)よりも、タンパク質、脂質、食物繊維を多く含んでいる。なお、本実施形態において、第1分離物は固形分であり、第2分離物は液分である。このような分離装置31の詳細は後述する。 The first separated product contains more protein, lipid, and dietary fiber than the residue after separating the first separated product by the separation device 31 (hereinafter referred to as the second separated product). In the present embodiment, the first separated product is a solid component, and the second separated product is a liquid component. Details of such a separation device 31 will be described later.
 反応容器32は、分離装置31で分離された液分と、水酸化ナトリウム水溶液等のアルカリ性溶液とを反応させるアルカリ処理を行うための容器である。反応容器32により、リン化合物等の無機物が沈殿物として分離される。反応容器32の詳細は後述する。 The reaction vessel 32 is a vessel for performing an alkali treatment in which the liquid separated by the separation device 31 is reacted with an alkaline solution such as an aqueous sodium hydroxide solution. The reaction vessel 32 separates inorganic substances such as phosphorus compounds as precipitates. Details of the reaction vessel 32 will be described later.
 調製タンク33は、分離装置31で分離された第2分離物と、水と、非金属系触媒(本実施形態では活性炭とする)とを混合し、これにより混合物を調製するタンクである。活性炭は、例えば平均粒径200μm以下の多孔質の粒子を用いる。なお、上記液分、水、及び活性炭の混合割合は、焼酎残渣の種類、量、含水率などに応じて調節される。 The preparation tank 33 is a tank that mixes the second separated product separated by the separation device 31, water, and a nonmetallic catalyst (activated carbon in this embodiment), thereby preparing a mixture. For example, porous particles having an average particle diameter of 200 μm or less are used as the activated carbon. The mixing ratio of the liquid, water, and activated carbon is adjusted according to the type, amount, moisture content, etc. of the shochu residue.
 粉砕機34は、調製タンク33で得られた混合物を粉砕することにより、焼酎残渣を予め均一な大きさ(好ましくは平均粒径が500μm以下、より好ましくは平均粒径が300μm以下)にするための装置である。粉砕機34により得られた混合物を、以下、スラリー体と呼ぶ。供給ポンプ35は、粉砕機34から排出されたスラリー体を熱処理部40に供給する装置である。 The pulverizer 34 pulverizes the mixture obtained in the preparation tank 33 so as to make the shochu residue a uniform size in advance (preferably an average particle size of 500 μm or less, more preferably an average particle size of 300 μm or less). It is a device. Hereinafter, the mixture obtained by the pulverizer 34 is referred to as a slurry body. The supply pump 35 is a device that supplies the slurry discharged from the pulverizer 34 to the heat treatment unit 40.
 熱処理部40は、原料調製部30で調製されたスラリー体を加熱してガス化する部分である。熱処理部40は、高圧ポンプ43、熱交換器44、加熱器45、ガス化反応器46、及び飼料タンク47を備える。 The heat treatment part 40 is a part that heats and gasifies the slurry body prepared by the raw material preparation part 30. The heat treatment unit 40 includes a high-pressure pump 43, a heat exchanger 44, a heater 45, a gasification reactor 46, and a feed tank 47.
 供給ポンプ35により熱処理部40に送られてきたスラリー体は、高圧ポンプ43により熱交換器44に送られる。 The slurry body sent to the heat treatment unit 40 by the supply pump 35 is sent to the heat exchanger 44 by the high-pressure pump 43.
 熱交換器44は、高圧ポンプ43からのスラリー体が導入され、このスラリー体をさらに加熱する装置である。熱交換器44は二重管48を備える二重管式熱交換器であり、高圧ポンプ43から送られてきたスラリー体が流通する低温流路48aと、ガス化反応器46から導入される、当該ガス化反応器46で生成された超臨界状態の流体(ガス化反応器46でガス化が終了したスラリー体。以下、処理後流体という)が流通する高温流路48bとを備える。当該スラリー体は、低温流路48aにおいて処理後流体と熱交換することにより昇温される。 The heat exchanger 44 is a device that receives the slurry body from the high-pressure pump 43 and further heats the slurry body. The heat exchanger 44 is a double-pipe heat exchanger having a double pipe 48 and is introduced from a gasification reactor 46 and a low-temperature flow path 48a through which the slurry sent from the high-pressure pump 43 flows. A high-temperature flow path 48b through which a fluid in a supercritical state generated in the gasification reactor 46 (a slurry body that has been gasified in the gasification reactor 46; hereinafter referred to as a post-treatment fluid) flows. The slurry body is heated by exchanging heat with the processed fluid in the low temperature channel 48a.
 なお、処理後流体の熱交換器44への導入時の温度は、例えば600℃程度であり、処理後流体の熱交換器44からの排出温度は例えば120℃程度である。一方、スラリー体の熱交換器44からの排出温度は例えば約450℃である。すなわちこの場合、スラリー体は超臨界状態になることになる。熱交換器44で加熱されたスラリー体は、加熱器45に送られる。 The temperature at the time of introducing the treated fluid into the heat exchanger 44 is, for example, about 600 ° C., and the discharge temperature of the treated fluid from the heat exchanger 44 is, for example, about 120 ° C. On the other hand, the discharge temperature of the slurry body from the heat exchanger 44 is about 450 ° C., for example. That is, in this case, the slurry body is in a supercritical state. The slurry body heated by the heat exchanger 44 is sent to the heater 45.
 加熱器45は、熱交換器44から送られてくるスラリー体を加熱する装置である。加熱器45は燃焼装置45aを備え、気液分離部50から送られてくる生成ガス(後述)を当該燃焼装置45aにより燃焼させ、スラリー体を加熱する。加熱器45に導入されたスラリー体は、例えば約600℃程度までに昇温される。昇温されたスラリー体は、ガス化反応器46に送られる。 The heater 45 is a device for heating the slurry body sent from the heat exchanger 44. The heater 45 includes a combustion device 45a, and a product gas (described later) sent from the gas-liquid separator 50 is combusted by the combustion device 45a to heat the slurry body. The slurry body introduced into the heater 45 is heated to about 600 ° C., for example. The heated slurry body is sent to the gasification reactor 46.
 ガス化反応器46は、加熱器45から送られてきたスラリー体を加熱し、スラリー体に含まれる有機物を水熱処理する装置である。ガス化反応器46は燃焼装置46aを備えており、気液分離部50から送られてくる生成ガスを燃焼装置46aにより燃焼させてスラリー体の水熱処理を行う。この水熱処理においてスラリー体は、例えば600℃、25MPaの条件下で、1~2分間にわたって水熱処理される。水熱処理されたスラリー体は超臨界状態であり、処理後流体として熱交換器44に導入される。 The gasification reactor 46 is an apparatus that heats the slurry body sent from the heater 45 and hydrothermally heats organic substances contained in the slurry body. The gasification reactor 46 includes a combustion device 46a, and the product gas sent from the gas-liquid separator 50 is combusted by the combustion device 46a to perform hydrothermal treatment of the slurry body. In this hydrothermal treatment, the slurry body is hydrothermally treated for 1 to 2 minutes under conditions of, for example, 600 ° C. and 25 MPa. The hydrothermally treated slurry body is in a supercritical state and is introduced into the heat exchanger 44 as a post-treatment fluid.
 飼料タンク47は、バイオマス処理システム20における副生成物である飼料を蓄えるためのタンクである。飼料タンク47に蓄えられる飼料については後述する。 The feed tank 47 is a tank for storing feed that is a by-product in the biomass processing system 20. The feed stored in the feed tank 47 will be described later.
 ガス化反応器46から熱交換器44に導入された処理後流体は、前述のように、低温流路48aに導入されたスラリー体と熱交換され、高い圧力を維持したまま温度が下がって亜臨界状態となる。例えば、当該スラリー体は、25MPaの圧力を維持したまま温度が300℃程度まで下がる。 As described above, the post-treatment fluid introduced from the gasification reactor 46 to the heat exchanger 44 is heat-exchanged with the slurry body introduced into the low-temperature flow path 48a, and the temperature decreases while maintaining a high pressure. It becomes a critical state. For example, the temperature of the slurry decreases to about 300 ° C. while maintaining a pressure of 25 MPa.
 熱交換器44において処理後流体は、超臨界状態から亜臨界状態に変化して気体と液体とに分離し、いわゆる気液二相流の状態となる場合がある。 In the heat exchanger 44, the processed fluid may change from a supercritical state to a subcritical state and be separated into a gas and a liquid and may be in a so-called gas-liquid two-phase flow state.
 図2は、この気液二相流を説明する図である。同図に示すように、二重管48の高温流路48bでは、処理後流体61が、上方部分の気相部分61aと、下方部分の液相部分61bとに分離する。気相部分61a、及び液相部分61bのそれぞれが、低温流路48aを流れるスラリー体62と熱交換される。 FIG. 2 is a diagram for explaining this gas-liquid two-phase flow. As shown in the figure, in the high-temperature flow path 48b of the double pipe 48, the processed fluid 61 is separated into an upper portion gas phase portion 61a and a lower portion liquid phase portion 61b. Each of the gas phase portion 61a and the liquid phase portion 61b is heat-exchanged with the slurry body 62 flowing through the low temperature channel 48a.
 このようにしてスラリー体との熱交換が行われた処理後流体は、気液分離部50に送られる。 The post-treatment fluid that has been heat-exchanged with the slurry body in this way is sent to the gas-liquid separator 50.
 次に、図1に示すように、気液分離部50は、減圧機構51、気液分離器52、ガスタンク53、及び排液処理装置54を備える。 Next, as shown in FIG. 1, the gas-liquid separator 50 includes a decompression mechanism 51, a gas-liquid separator 52, a gas tank 53, and a drainage treatment device 54.
 減圧機構51は、熱処理部40から送られてきた処理後流体を減圧する部分であり、例えばキャピラリーチューブによって構成される。 The decompression mechanism 51 is a part that decompresses the processed fluid sent from the heat treatment unit 40, and is configured by, for example, a capillary tube.
 気液分離器52は、減圧機構51から送られてきた処理後流体を、液体成分(活性炭や灰分を含む液体)と、気体成分(水素やメタン等のガス)とに分離する部分である。気液分離器52からは、常温で0.3MPa程度のガスが排出される。 The gas-liquid separator 52 is a part that separates the processed fluid sent from the decompression mechanism 51 into a liquid component (liquid containing activated carbon or ash) and a gas component (gas such as hydrogen or methane). A gas of about 0.3 MPa is discharged from the gas-liquid separator 52 at room temperature.
 ガスタンク53は、気液分離器52で分離したガス(生成ガス)を貯留する容器である。ガスタンク53に貯留された生成ガスは、加熱器45、及びガス化反応器46に供給される。 The gas tank 53 is a container for storing the gas (generated gas) separated by the gas-liquid separator 52. The product gas stored in the gas tank 53 is supplied to the heater 45 and the gasification reactor 46.
 排液処理装置54は、気液分離器52によって分離された溶液に含まれている活性炭や灰分を、当該溶液から分離する装置である。排液処理装置54は、例えば、固形物を含む溶液を液分と固形分とに分離する分離装置を含む。排液処理装置54より分離された液分は、排液として所定の排水路に排出される。 The drainage treatment apparatus 54 is an apparatus that separates activated carbon and ash contained in the solution separated by the gas-liquid separator 52 from the solution. The drainage treatment device 54 includes, for example, a separation device that separates a solution containing solids into a liquid component and a solid component. The liquid component separated from the drainage treatment device 54 is discharged as a drainage to a predetermined drainage channel.
 ところで、熱交換器44の二重管内(具体的には低温流路48a)では、スラリー体が加熱される際、焼酎残渣の有機物(タンパク質や脂質や食物繊維(リグニン等)。以下、タール原因物質という。)が熱分解してタールが生成され、これが低温流路48aを区画する内側の配管の内壁面に付着することがある(例えば、スラリー体の温度が150℃~450℃になっている箇所)。付着したタールは、やがて低温流路48aを閉塞し、スラリー体の流通を妨げる。その結果、気液分離部50におけるガスの収率は低下することとなる。 By the way, in the double pipe of the heat exchanger 44 (specifically, the low temperature channel 48a), when the slurry body is heated, organic substances (protein, lipid, dietary fiber (lignin, etc.) of the shochu residue are hereinafter referred to as tar causes. The substance is thermally decomposed to generate tar, which may adhere to the inner wall surface of the inner pipe that defines the low-temperature flow path 48a (for example, the temperature of the slurry becomes 150 ° C. to 450 ° C.). Where). The adhering tar eventually closes the low-temperature flow path 48a and hinders the flow of the slurry body. As a result, the gas yield in the gas-liquid separation unit 50 is reduced.
 これと同様の現象が、熱交換器44以外の配管でも起きる可能性がある。すなわち、熱処理部40における加熱器45、ガス化反応器46、及びこれらの接続配管など、スラリー体が加熱処理される他の箇所においても同様に、タールが生成して当該配管を閉塞するおそれがある。 The same phenomenon may occur in piping other than the heat exchanger 44. That is, in other places where the slurry body is heat-treated, such as the heater 45 in the heat treatment section 40, the gasification reactor 46, and their connection piping, there is a possibility that tar is generated and the piping is blocked. is there.
 このように、本実施形態のバイオマス処理システム20では、スラリー体が超臨界水と熱交換してガス化するような高温高圧下(超臨界状態下)での加熱処理を行う場合だけでなく、超臨界以下の温度ないし圧力条件下でスラリー体の加熱処理(例えば水熱処理であって、亜臨界状態や、ガス化反応温度以下の温度の状態での加熱処理)を行う場合にも、その処理過程における配管が閉塞するおそれがある。 Thus, in the biomass processing system 20 of the present embodiment, not only when the slurry body performs heat treatment under high temperature and high pressure (under a supercritical state) such that the slurry body is gasified by heat exchange with supercritical water, Even when the slurry body is heated under supercritical temperature or pressure conditions (for example, hydrothermal treatment, heat treatment in a subcritical state or a temperature lower than the gasification reaction temperature). The piping in the process may be blocked.
 そこで、本実施形態のバイオマス処理システム20では、このような事態を防ぐべく、図1に示すように、原料調製部30に分離装置31を設け、主原料である焼酎残渣からタール原因物質を分離するようにしている。 Therefore, in the biomass processing system 20 of the present embodiment, as shown in FIG. 1, the raw material preparation unit 30 is provided with a separation device 31 to separate tar-causing substances from the shochu residue, which is the main raw material, in order to prevent such a situation. Like to do.
 すなわち、分離装置31は、原料を、タール原因物質を多く含む第1分離物(本実施形態では固形分)と、タール原因物質を含まない(または、少なくとも第1分離物よりは含有量が少ない)第2分離物(本実施形態では液分)とに分離する。 That is, the separation device 31 includes a raw material containing a first separated substance (a solid content in this embodiment) containing a large amount of tar-causing substances and no tar-causing substance (or at least less than the first separated substance). ) Separated into a second separated product (liquid component in this embodiment).
 分離装置31は、例えば、重力や遠心力を用いて、比重の違いに基づき、原料を第1分離物と第2分離物に分離する装置(例えば、重力沈降により分離させる静置用貯溜槽やデキャンタ等の遠心分離機)や、フィルタなどを用いて原料を第2分離物と第2分離物に分離する装置(例えば、フィルタプレス)などである(例えば、第1分離物は固相として分離され、第2分離物は液相として分離される)。なお、分離装置31はこれらの装置を組み合わせたものでもよい。 The separation device 31 is, for example, a device that separates a raw material into a first separated material and a second separated material based on a difference in specific gravity using gravity or centrifugal force (for example, a stationary storage tank for separating by gravity sedimentation, A centrifuge such as a decanter) or an apparatus (for example, a filter press) that separates the raw material into a second separated product and a second separated product using a filter (for example, the first separated product is separated as a solid phase). And the second separation is separated as a liquid phase). The separation device 31 may be a combination of these devices.
 分離装置31によって分離された第1分離物(焼酎残渣の固形分)は、熱処理部40の加熱器45に導入される。加熱器45に導入された固形分は、加熱器45における排熱(燃焼装置45aによる燃焼の際に生じる排熱)により加熱、乾燥される。この乾燥後の固形分はタンパク質を多く含むため、飼料として用いることができる。この乾燥後の固形分は、飼料として飼料タンク47に蓄えられる。 The first separated product (solid content of the shochu residue) separated by the separation device 31 is introduced into the heater 45 of the heat treatment unit 40. The solid content introduced into the heater 45 is heated and dried by exhaust heat in the heater 45 (exhaust heat generated during combustion by the combustion device 45a). Since the solid content after drying contains a lot of protein, it can be used as feed. The dried solid content is stored in the feed tank 47 as feed.
 一方、分離装置31において分離された第2分離物(焼酎残渣の液分)は、反応容器32に導入される。反応容器32には、アルカリ性の水溶液(例えば10wt%水酸化ナトリウム水溶液)が導入され、上記液分のアルカリ処理が行われる。すなわち反応容器32内では、上記分離された液分と、アルカリ性の水溶液とが混合され、これにより沈殿物が生成する。この沈殿物の主成分はリン酸マグネシウム等のリン化合物からなる無機物であり、保管容器36に送られる。このリン化合物は、肥料原料等として再利用できる。 On the other hand, the second separated product (liquid component of shochu residue) separated in the separation device 31 is introduced into the reaction vessel 32. An alkaline aqueous solution (for example, 10 wt% sodium hydroxide aqueous solution) is introduced into the reaction vessel 32, and the alkali treatment of the liquid is performed. That is, in the reaction vessel 32, the separated liquid and the alkaline aqueous solution are mixed, thereby generating a precipitate. The main component of the precipitate is an inorganic substance made of a phosphorus compound such as magnesium phosphate, and is sent to the storage container 36. This phosphorus compound can be reused as a fertilizer raw material.
 一方、沈殿物を取り除いた後の反応後の溶液(例えば上澄み液)は調製タンク33に送られる。調製タンク33に送られた反応後溶液は、活性炭、及び水と混合され、これにより生成した混合物は、粉砕機34でスラリー体となり、供給ポンプ35を経て熱処理部40に導入される。 On the other hand, the solution after the reaction after removing the precipitate (for example, the supernatant) is sent to the preparation tank 33. The post-reaction solution sent to the preparation tank 33 is mixed with activated carbon and water, and the resulting mixture is made into a slurry body by the pulverizer 34 and introduced into the heat treatment section 40 via the supply pump 35.
 このように、熱処理部40に導入されるスラリー体は、分離装置31による分離、及び反応容器32におけるアルカリ処理により、タンパク質、脂質、食物繊維や、リン化合物等の無機物が大幅に取り除かれた状態となっている。 As described above, the slurry body introduced into the heat treatment unit 40 is in a state in which inorganic substances such as proteins, lipids, dietary fibers, and phosphorus compounds are largely removed by separation by the separation device 31 and alkali treatment in the reaction vessel 32. It has become.
 以上のように、本実施形態のバイオマス処理システム20では、分離装置31(原料分離部)により、原料から、タンパク質、脂質、及び食物繊維(リグニン等)のうち少なくともいずれかを含む有機物(第1分離物。タール原因物質)を分離することにより、原料から生成したスラリー体を加熱処理する過程における各種配管におけるタールの生成を抑制し、これにより、当該配管の閉塞を防止することができる。これにより、バイオマスを効率よく加熱処理することができる。 As described above, in the biomass processing system 20 of the present embodiment, the separation apparatus 31 (raw material separation unit) uses organic materials (first first) containing at least one of proteins, lipids, and dietary fibers (such as lignin) from the raw materials. By separating the separated substance (tar-causing substance), it is possible to suppress the generation of tar in various pipes in the process of heat-treating the slurry body generated from the raw material, thereby preventing the pipe from being blocked. Thereby, biomass can be heat-processed efficiently.
 また、反応容器32(アルカリ処理部)により、第1分離物の残余物(第2分離物)からリン酸マグネシウム等のリン化合物(無機物)を沈殿物として保管容器36(沈殿物分離部)に分離することで、分離したリン化合物を肥料原料等として再利用し、資源を効率よく活用することができる。また、上述のようにリン化合物が沈殿することからわかる通り、焼酎残渣は無機塩を生成するような無機物も含んでいる。したがって、この無機物の分もスラリー体は減容されていることになり、これによる配管の閉塞の防止の効果も期待できる。 Further, the reaction vessel 32 (alkali treatment unit) causes the phosphorus compound (inorganic matter) such as magnesium phosphate from the residue of the first separation (second separation) to be stored in the storage container 36 (precipitation separation unit). By separating, the separated phosphorus compound can be reused as a fertilizer raw material, and resources can be efficiently utilized. Moreover, as can be seen from the fact that the phosphorus compound is precipitated as described above, the shochu residue contains an inorganic substance that forms an inorganic salt. Therefore, the volume of the inorganic material is reduced in the volume of the slurry, and the effect of preventing the blockage of the piping can be expected.
 また、焼酎残渣から分離した第1分離物(固形分)には高濃度のタンパク質や脂質や食物繊維が含まれるので、本実施形態のバイオマス処理システム20のように、この固形分を加熱し乾燥させることで、確実に水分を取り除き、その乾燥物を安価で長期保管可能で栄養豊富な、質の良い飼料として活用できる。また乾燥することで腐敗を防ぎ長期保管が可能となるばかりか重量が減るため輸送コストも安価となる。 Moreover, since the 1st isolate | separated substance (solid content) isolate | separated from the shochu residue contains high concentration protein, lipid, and dietary fiber, this solid content is heated and dried like the biomass processing system 20 of this embodiment. By doing so, the water can be surely removed, and the dried product can be used as a high-quality feed that is cheap and can be stored for a long time and is rich in nutrients. In addition, drying prevents rot and allows long-term storage, as well as reducing the weight and transportation costs.
 上記の固形物の乾燥は、加熱器45の排気ガスが持つ排熱により、加熱器45が乾燥部として行っているので、バイオマス処理システム20で発生する熱を有効に利用できる。 Since the heating of the solid matter is performed as the drying unit by the exhaust heat of the exhaust gas of the heater 45, the heat generated in the biomass processing system 20 can be used effectively.
 なお、反応容器32でリン化合物を沈殿させる方法としては、アルカリ性溶液ではなく酸性溶液を加える方法もあり得る。しかし、本実施形態において酸性溶液では無くアルカリ性溶液を用いたのは、酸性溶液を用いると、これが熱交換器44等の配管の金属を腐食させるおそれがあるためである。また、水酸化ナトリウム水溶液や水酸化カリウムのようなアルカリ性溶液は、ガス化反応器46における水熱処理の触媒としても作用するので、さらなるガスの収率の向上も見込むことができる。 As a method for precipitating the phosphorus compound in the reaction vessel 32, there may be a method of adding an acidic solution instead of an alkaline solution. However, the reason why the alkaline solution is used instead of the acidic solution in the present embodiment is that when the acidic solution is used, this may corrode the metal of the piping such as the heat exchanger 44. In addition, since an alkaline solution such as an aqueous sodium hydroxide solution or potassium hydroxide also acts as a catalyst for hydrothermal treatment in the gasification reactor 46, further improvement in gas yield can be expected.
 また、焼酎残渣は、リン化合物に由来するリンや、タンパク質に由来する窒素を多く含むため、焼酎残渣からタンパク質やリン化合物を取り除くことにより、排液処理装置54において排出される排液の窒素濃度(例えばアンモニア濃度)やリン濃度(例えばリン酸濃度)を低下させることができる。公共用水域等への窒素分やリン分の排出は環境負荷(富栄養化等)をもたらすため、本実施形態のバイオマス処理システム20によれば、そのような環境負荷の増大を防ぐことができる。 In addition, since the shochu residue contains a large amount of phosphorus derived from the phosphorus compound and nitrogen derived from the protein, the nitrogen concentration of the drainage discharged in the drainage treatment apparatus 54 is obtained by removing the protein and the phosphorus compound from the shochu residue. (For example, ammonia concentration) and phosphorus concentration (for example, phosphoric acid concentration) can be reduced. Since the discharge of nitrogen and phosphorus into public water bodies and the like causes an environmental load (eutrophication, etc.), according to the biomass processing system 20 of this embodiment, such an increase in the environmental load can be prevented. .
 また、本実施形態のバイオマス処理システム20では、以下のような効果も奏されると考えられる。図3は熱交換器44の二重管48に流れる処理後流体を説明する図である。分離装置31による分離を行うと、タールの原因である有機物が焼酎残渣から取り除かれる分、その有機物を水熱処理することにより得られる生成ガスは減少する。そのため、符号63で示すように、亜臨界状態の処理後流体61における気液二相流の気相部分61aも減少する。これに伴い、液相部分61bは増えるため、スラリー体62と(配管を介して)接触する液相部分61bの伝熱面積が増え、結果として処理後流体61と低温流路48aのスラリー体62との交換熱量が増大し、スラリー体62を効率よく加熱できる。これは、気体よりも液体の方が、比熱が大きいためである。したがって、加熱器45とガス化反応器46で使用する燃料ガスが減るためシステム全体において生成ガスを有効に活用することができる。 Moreover, in the biomass processing system 20 of this embodiment, it is considered that the following effects are also exhibited. FIG. 3 is a view for explaining the processed fluid flowing in the double pipe 48 of the heat exchanger 44. When the separation by the separation device 31 is performed, the amount of product gas obtained by hydrothermally treating the organic matter is reduced as much as the organic matter that causes tar is removed from the shochu residue. Therefore, as indicated by reference numeral 63, the gas phase portion 61a of the gas-liquid two-phase flow in the processed fluid 61 in the subcritical state also decreases. Accordingly, since the liquid phase portion 61b increases, the heat transfer area of the liquid phase portion 61b that comes into contact with the slurry body 62 (via the piping) increases, and as a result, the post-treatment fluid 61 and the slurry body 62 of the low temperature channel 48a. The amount of exchange heat with the slurry increases, and the slurry body 62 can be efficiently heated. This is because the specific heat of the liquid is larger than that of the gas. Accordingly, since the fuel gas used in the heater 45 and the gasification reactor 46 is reduced, the generated gas can be effectively used in the entire system.
 なお、本実施形態のバイオマス処理システム20では、分離した固形分の加熱及び乾燥を加熱器45からの排熱により行っているが、加熱器45以外の、排熱が発生する他の装置、例えば、ガス化反応器46や減圧機構51から排出される熱を用いて固形物の乾燥を用いてもよい。このように構成しても、バイオマス処理システム20で発生する熱は有効に再利用される。 In the biomass processing system 20 of the present embodiment, the separated solid is heated and dried by exhaust heat from the heater 45, but other devices that generate exhaust heat other than the heater 45, for example, The drying of the solid material may be used by using the heat discharged from the gasification reactor 46 or the decompression mechanism 51. Even if comprised in this way, the heat which generate | occur | produces in the biomass processing system 20 is reused effectively.
<第2実施形態>
 図4は、第2実施形態に係るバイオマス処理システムの構成を説明する図である。同図に示すように、本実施形態のバイオマス処理システム20は、第1実施形態と同様、原料調製部30、熱処理部40、及び気液分離部50を有する。
Second Embodiment
FIG. 4 is a diagram illustrating the configuration of the biomass processing system according to the second embodiment. As shown in the figure, the biomass processing system 20 of the present embodiment includes a raw material preparation unit 30, a heat treatment unit 40, and a gas-liquid separation unit 50, as in the first embodiment.
 熱処理部40、及び気液分離部50は、第1実施形態と同様であるので、説明を省略する。ここでは、原料調製部30について説明する。 Since the heat treatment unit 40 and the gas-liquid separation unit 50 are the same as those in the first embodiment, description thereof is omitted. Here, the raw material preparation unit 30 will be described.
 原料調製部30は、原料を調製する部分である。原料調製部30は、反応容器32、分離装置31、調製タンク33、粉砕機34、及び供給ポンプ35を備える。同図に示すように、第1実施形態と比べると反応容器32と分離装置31の配置が逆になっており、具体的には、反応容器32が上流側、分離装置31が下流側に配置されている。 The raw material preparation unit 30 is a part for preparing raw materials. The raw material preparation unit 30 includes a reaction vessel 32, a separation device 31, a preparation tank 33, a pulverizer 34, and a supply pump 35. As shown in the figure, the arrangement of the reaction vessel 32 and the separation device 31 is reversed compared to the first embodiment. Specifically, the reaction vessel 32 is arranged on the upstream side, and the separation device 31 is arranged on the downstream side. Has been.
 反応容器32は、主原料である焼酎残渣と、アルカリ性溶液(例えば水酸化ナトリウム水溶液、水酸化カリウム水溶液)とを反応させるための容器である。反応容器32には、焼酎残渣と、アルカリ性溶液とが投入される。そして両者が反応容器32内で焼酎残渣がアルカリ処理される。このアルカリ処理によって得られた溶液(以下、処理後溶液という)は、分離装置31に送られる。なお、処理後溶液には、焼酎残渣に含まれているタンパク質や脂質や食物繊維が含まれている。一方、処理後溶液から分離された固形物(沈殿物)は、リン化合物を多く含んでおり、これは保管容器36に蓄えられる。この沈殿物は、飼料肥料等して用いることができる。 The reaction vessel 32 is a vessel for reacting the shochu residue, which is the main raw material, with an alkaline solution (for example, an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution). The reaction vessel 32 is charged with the shochu residue and the alkaline solution. Both of them are subjected to alkali treatment of the shochu residue in the reaction vessel 32. A solution obtained by this alkali treatment (hereinafter referred to as a post-treatment solution) is sent to the separation device 31. The treated solution contains proteins, lipids and dietary fibers contained in the shochu residue. On the other hand, the solid matter (precipitate) separated from the post-treatment solution contains a large amount of phosphorus compound, which is stored in the storage container 36. This precipitate can be used as a feed fertilizer or the like.
 分離装置31は、反応容器32から供給されてきた処理後溶液を、固形分と液分とに分離する。これにより、処理後溶液に含まれるタンパク質や脂質や食物繊維は固形分として分離される。分離された固形分は、熱処理部40の加熱器45に導入される。加熱器45に導入された固形分は、加熱器45で発生する排熱を用いて加熱、乾燥される。この乾燥後の固形分はタンパク質や脂質や食物繊維を多く含むため、家畜等の飼料として用いることができる。ただし、この固形分は中和処理しておく、すなわち、前述のアルカリ処理に用いたアルカリ性溶液に由来する物質を中和して無害化しておくことが好ましい。この乾燥後の固形分は、飼料タンク47に保存される。 The separation device 31 separates the treated solution supplied from the reaction vessel 32 into a solid content and a liquid content. Thereby, protein, lipid, and dietary fiber contained in the solution after processing are separated as solids. The separated solid content is introduced into the heater 45 of the heat treatment unit 40. The solid content introduced into the heater 45 is heated and dried using exhaust heat generated by the heater 45. Since the solid content after drying contains a large amount of protein, lipid and dietary fiber, it can be used as feed for livestock. However, it is preferable to neutralize this solid content, that is, to neutralize the substance derived from the alkaline solution used in the alkali treatment described above. The dried solid content is stored in the feed tank 47.
 一方、分離装置31で分離された液分は、調製タンク33に送られる。調製タンク33では、この分離された液分と、活性炭、及び水とが混合され、粉砕機34に送られる。 On the other hand, the liquid component separated by the separation device 31 is sent to the preparation tank 33. In the preparation tank 33, the separated liquid, activated carbon, and water are mixed and sent to the pulverizer 34.
 粉砕機34、及び供給ポンプ35は第1実施形態と同様である。調製タンク33で生成した混合物は粉砕機34でスラリー体となり、供給ポンプ35を経て熱処理部40に導入される。そして、熱処理部40に導入されたスラリー体は熱交換器44に導入される。 The pulverizer 34 and the supply pump 35 are the same as in the first embodiment. The mixture generated in the preparation tank 33 is made into a slurry body by the pulverizer 34 and is introduced into the heat treatment section 40 through the supply pump 35. Then, the slurry body introduced into the heat treatment unit 40 is introduced into the heat exchanger 44.
 このように第2実施形態では、第1実施形態と異なり分離処理とアルカリ処理の順序を逆にしている。つまり、焼酎残渣に対して先にアルカリ処理を行い(反応容器32)、アルカリ処理を行って沈殿物を除去した後の溶液を、第1分離物と第2分離物とに分離している(分離装置31)。このような構成でも、第1実施形態と同様の効果が得られる。 Thus, in the second embodiment, unlike the first embodiment, the order of separation treatment and alkali treatment is reversed. That is, the alkali treatment is first performed on the shochu residue (reaction vessel 32), and the solution after the alkali treatment is performed and the precipitate is removed is separated into the first separated product and the second separated product ( Separation device 31). Even with such a configuration, the same effect as the first embodiment can be obtained.
<タンパク質、脂質、食物繊維、リン化合物の除去実験>
 以上に説明したバイオマス処理システム20の構成によって、焼酎残渣からタールの原因物質(タンパク質や脂質や食物繊維)を確実に除去できることを、発明者らは以下のような分離実験で確かめた。
<Removal experiment of protein, lipid, dietary fiber, and phosphorus compound>
The inventors have confirmed in the following separation experiment that the causal residue (protein, lipid, and dietary fiber) can be reliably removed from the shochu residue by the configuration of the biomass processing system 20 described above.
<分離実験>
 この分離実験は、焼酎残渣から脂質やタンパク質や食物繊維を分離する実験である。図5は、分離実験の手順を説明する図である。同図に示すように、この分離実験には、焼酎残渣を収容する試験容器71、及び濾過容器72を用いた。
<Separation experiment>
This separation experiment is an experiment in which lipids, proteins, and dietary fibers are separated from the shochu residue. FIG. 5 is a diagram for explaining the procedure of the separation experiment. As shown in the figure, a test container 71 for storing a shochu residue and a filtration container 72 were used in this separation experiment.
 まず、焼酎残渣73(六条麦の焼酎残渣)を投入した試験容器71を48時間程度静置し、沈殿物74が沈殿するのを待った。その後、試験容器71の上澄み液を取り出すと共に、試験容器71の底に残った沈殿物74を濾過容器72に導入した。 First, the test vessel 71 charged with the shochu residue 73 (sucrose barley shochu residue) was allowed to stand for about 48 hours and waited for the precipitate 74 to settle. Thereafter, the supernatant liquid of the test container 71 was taken out, and the precipitate 74 remaining at the bottom of the test container 71 was introduced into the filtration container 72.
 濾過容器72にはフィルタ75(目開2mmの金網)が設けられており、このフィルタ75の上面に前述の沈殿物74を導入した。濾過後、フィルタ75に残った濾過後沈殿物76を取り出した。 The filter container 72 is provided with a filter 75 (a wire mesh having a mesh size of 2 mm), and the precipitate 74 described above was introduced into the upper surface of the filter 75. After filtration, the filtered precipitate 76 remaining in the filter 75 was taken out.
 図6は、分離実験を行う前の焼酎残渣、分離実験で得られた上澄み液、及び濾過後沈殿物76の分析結果を示す図である。同図に示すように、分離実験を行う前の焼酎残渣において、pHは3.8、水分は焼酎残渣100gあたり88.2g、脂質は焼酎残渣100gあたり0.6g、タンパク質は焼酎残渣100gあたり3.8g、食物繊維が焼酎残渣100gあたり1.4gであった。また、試験容器71の上澄み液については、pHが4.0、水分が焼酎残渣100gあたり89.8g、脂質が焼酎残渣100gあたり0.1g未満、タンパク質が焼酎残渣100gあたり3.5g、食物繊維が焼酎残渣100gあたり0.2gであった。濾過後沈殿物76については、pHが4.0、水分が焼酎残渣100gあたり83.4g、脂質が焼酎残渣100gあたり1.6g、タンパク質が焼酎残渣100gあたり4.6g、食物繊維が焼酎残渣100gあたり4.4gであった。 FIG. 6 is a diagram showing the analysis results of the shochu residue before the separation experiment, the supernatant obtained in the separation experiment, and the precipitate 76 after filtration. As shown in the figure, in the shochu residue before the separation experiment, pH is 3.8, water is 88.2 g per 100 g of shochu residue, lipid is 0.6 g per 100 g of shochu residue, and protein is 3 per 100 g of shochu residue. 0.8 g and dietary fiber was 1.4 g per 100 g of shochu residue. Moreover, about the supernatant liquid of the test container 71, pH is 4.0, a water | moisture content is 89.8g per 100g of shochu residue, a lipid is less than 0.1g per 100g of shochu residue, a protein is 3.5g per 100g of shochu residue, dietary fiber It was 0.2g per 100g of shochu residue. Regarding the precipitate 76 after filtration, the pH is 4.0, the moisture is 83.4 g per 100 g of the shochu residue, the lipid is 1.6 g per 100 g of the shochu residue, the protein is 4.6 g per 100 g of the shochu residue, and the dietary fiber is 100 g of shochu residue. 4.4g per unit.
 この実験結果により、分離処理する前の焼酎残渣の脂質、タンパク質、及び食物繊維の濃度に比べ、分離処理した後の液分の脂質、タンパク質、及び食物繊維の濃度は有意に低くなっていることがわかる。一方、分離処理した後の沈殿物(固形分)には、高濃度の脂質、タンパク質、及び食物繊維が含まれていることがわかる。すなわち、焼酎残渣から、タンパク質や脂質や食物繊維を容易に分離することができることがわかる。 As a result of this experiment, the concentration of lipid, protein, and dietary fiber in the liquid after separation treatment is significantly lower than the concentration of lipid, protein, and dietary fiber in the shochu residue before separation treatment. I understand. On the other hand, it can be seen that the precipitate (solid content) after the separation treatment contains high concentrations of lipids, proteins, and dietary fibers. That is, it can be seen that protein, lipid and dietary fiber can be easily separated from the shochu residue.
<アルカリ処理実験>
 次に、発明者らは、焼酎残渣に水酸化ナトリウムを加えることでリン化合物が生成されるかを検証した。
 図7は、アルカリ処理実験の手順を説明する図である。アルカリ処理実験では、(a)に示すように、反応容器81に収容した500mlの焼酎残渣82(六条麦焼酎残渣)に対して、10wt%水酸化ナトリウム水溶液83を27ml加えて攪拌器84で攪拌し、両者を反応させた。次に、(b)に示すように、反応容器81における反応後の溶液85を、フィルタ86(粒子保持能1.0μm)を備えた濾過容器87に投入し、濾過を行った。そして、フィルタ86上に残った沈殿物89の化学分析を行った。
<Alkali treatment experiment>
Next, the inventors verified whether a phosphorus compound was produced by adding sodium hydroxide to the shochu residue.
FIG. 7 is a diagram for explaining the procedure of the alkali treatment experiment. In the alkali treatment experiment, as shown in (a), 27 ml of 10 wt% sodium hydroxide aqueous solution 83 was added to 500 ml of shochu residue 82 (six-row wheat shochu residue) contained in the reaction vessel 81 and stirred with a stirrer 84. Then, both were reacted. Next, as shown in (b), the solution 85 after the reaction in the reaction vessel 81 was put into a filtration vessel 87 equipped with a filter 86 (particle retention ability 1.0 μm) and filtered. Then, chemical analysis of the precipitate 89 remaining on the filter 86 was performed.
 図8は、沈殿物89の分析結果((a)フーリエ変換赤外顕微分光装置による赤外分光分析、(b)エネルギ分散X線マイクロアナライザによる元素分析)を説明する図である。図8(a)が示すように、沈殿物89は、酸素(O)、マグネシウム(Mg)、及びリン(P)のピークを顕著に有する。また、タンパク質やアミノ酸に由来するピークは確認されない。 FIG. 8 is a diagram for explaining the analysis result of the precipitate 89 ((a) infrared spectroscopic analysis using a Fourier transform infrared microspectroscopy apparatus, (b) elemental analysis using an energy dispersive X-ray microanalyzer). As shown in FIG. 8A, the precipitate 89 has remarkably oxygen (O), magnesium (Mg), and phosphorus (P) peaks. Moreover, the peak derived from protein or an amino acid is not confirmed.
 また、図8(b)に示すように、沈殿物89の酸素の質量濃度(%)は52.72%、マグネシウムの質量濃度(%)は6.60%、リンの質量濃度(%)は8.39%である。さらに、光学顕微鏡観察を行ったところ、沈殿物89は、白色半透明から淡黄色をした細かな結晶状の物質であり、フィルタ由来と考えられる繊維状物質が混在していた。 Further, as shown in FIG. 8B, the mass concentration (%) of oxygen in the precipitate 89 is 52.72%, the mass concentration (%) of magnesium is 6.60%, and the mass concentration (%) of phosphorus is 8.39%. Furthermore, as a result of observation with an optical microscope, the precipitate 89 was a fine crystalline substance having a white translucent to pale yellow color, and a fibrous substance considered to be derived from a filter was mixed.
 以上の結果から、沈殿物89は、リン酸マグネシウム等のリン化合物を多く含むと考えられる。したがって、焼酎残渣にアルカリ処理を施すことで焼酎残渣からリン化合物を沈殿させることができることがわかる。 From the above results, it is considered that the precipitate 89 contains a large amount of phosphorus compound such as magnesium phosphate. Therefore, it can be seen that the phosphorus compound can be precipitated from the shochu residue by subjecting the shochu residue to an alkali treatment.
 以上の実施形態の説明は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれる。 The above description of the embodiment is intended to facilitate understanding of the present invention and does not limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof.
 例えば、バイオマスの原料は、焼酎残渣以外であってもよく、例えば、採卵鶏糞、下水汚泥他の含水性バイオマスでもよい。 For example, the raw material of the biomass may be other than the shochu residue, and may be, for example, egg-collecting chicken manure, sewage sludge or other water-containing biomass.
 また、本実施形態では、スラリー体を生成する際に水や触媒を混合することとしたが、これらは混合しなくてもよい。 In this embodiment, water and a catalyst are mixed when the slurry body is generated, but these may not be mixed.
 また、本実施形態では、第1分離物は固形分であったが、第1分離物は固形分でない場合もあり、そのような場合であっても、分離装置31に遠心分離機等を適宜用いることで、分離は可能である。同様に、第2分離物が液体でない場合であっても、分離は可能である。 In the present embodiment, the first separated product has a solid content, but the first separated product may not have a solid content. Even in such a case, a centrifuge or the like is appropriately used as the separation device 31. Separation is possible by using it. Similarly, separation is possible even when the second separation is not liquid.
 また、第1分離物を加熱する熱源は,加熱器45の排気ガス以外の、バイオマス処理システム20の廃熱や、別途据え付けている蒸気ボイラ等の機器の廃熱でも構わない。 Further, the heat source for heating the first separated matter may be the waste heat of the biomass processing system 20 other than the exhaust gas of the heater 45 or the waste heat of equipment such as a separately installed steam boiler.
 また、本実施形態ではバイオマス(焼酎残渣)をガス化するバイオマス処理システムにおける形態を説明したが、ガス化以外の加熱処理を行う場合であっても本発明は適用できる。例えば、熱交換器以外の加熱機器が存在する場合でも、その機器におけるタールによる配管の閉塞を防止できる。また、ガス化反応温度以下の温度において水熱処理を行う場合でも、配管の閉塞を防止し、効率よく水熱処理を行うことができる。 Moreover, although the form in the biomass processing system which gasifies biomass (shochu residue) was demonstrated in this embodiment, this invention is applicable even when performing heat processing other than gasification. For example, even when a heating device other than the heat exchanger is present, blockage of piping due to tar in the device can be prevented. Even when hydrothermal treatment is performed at a temperature equal to or lower than the gasification reaction temperature, blockage of the piping can be prevented and the hydrothermal treatment can be performed efficiently.
1 バイオマス処理システム、3 加熱部、4 気液分離部、5 熱交換器、6 加熱機構、7 二重管、8 スラリー体、9 低温側流路、11 超臨界流体、12 高温側流路、13 タール、20 バイオマス処理システム、30 原料調製部、31 分離装置、32 反応容器、33 調製タンク、34 粉砕機、35 供給ポンプ、36 保管容器、40 熱処理部、43 高圧ポンプ、44 熱交換器、45 加熱器、45a 燃焼装置、46 ガス化反応器、46a 燃焼装置、47 飼料タンク、48 二重管、48a 低温流路、48b 高温流路、50 気液分離部、51 減圧機構、52 気液分離器、53 ガスタンク、54 排液処理装置、61 処理後流体、61a 気相部分、61b 液相部分、62 スラリー体、71 試験容器、72 濾過容器、73 焼酎残渣、74 沈殿物、75 フィルタ、76 濾過後沈殿物、81 反応容器、82 焼酎残渣、83 水酸化ナトリウム水溶液、84 攪拌器、85 反応後の溶液、86 フィルタ、87 濾過容器、88 濾液、89 沈殿物 1 biomass treatment system, 3 heating unit, 4 gas-liquid separation unit, 5 heat exchanger, 6 heating mechanism, 7 double tube, 8 slurry body, 9 low temperature side channel, 11 supercritical fluid, 12 high temperature side channel, 13 tar, 20 biomass processing system, 30 raw material preparation unit, 31 separator, 32 reaction vessel, 33 preparation tank, 34 grinder, 35 supply pump, 36 storage container, 40 heat treatment unit, 43 high pressure pump, 44 heat exchanger, 45 heater, 45a combustion device, 46 gasification reactor, 46a combustion device, 47 feed tank, 48 double tube, 48a low temperature flow channel, 48b high temperature flow channel, 50 gas-liquid separator, 51 pressure reducing mechanism, 52 gas liquid Separator, 53 gas tank, 54 drainage treatment device, 61 post-treatment fluid, 61a gas phase portion, 61b liquid phase portion, 62 slurry -Body, 71 test vessel, 72 filtration vessel, 73 shochu residue, 74 precipitate, 75 filter, 76 precipitate after filtration, 81 reaction vessel, 82 shochu residue, 83 sodium hydroxide aqueous solution, 84 stirrer, 85 after reaction Solution, 86 filter, 87 filtration container, 88 filtrate, 89 precipitate

Claims (5)

  1.  バイオマスを含む原料から生成されたスラリー体を加熱処理するバイオマス処理システムであって、
     前記原料から、タンパク質、脂質、及び食物繊維のうち少なくともいずれかを含む有機物を第1分離物として分離する原料分離部と、前記原料分離部により前記第1分離物が分離された後の残余物である第2分離物にアルカリ性溶液を加えて反応させるアルカリ処理部と、前記アルカリ処理部における反応により生成した沈殿物を分離する沈殿物分離部とを備え、
     前記沈殿物を分離した後の溶液により前記スラリー体を生成する、バイオマス処理システム。
    A biomass processing system for heat-treating a slurry body generated from a raw material containing biomass,
    A raw material separation unit that separates an organic substance containing at least one of protein, lipid, and dietary fiber from the raw material as a first separated product, and a residue after the first separated product is separated by the raw material separating unit. An alkaline treatment unit that reacts by adding an alkaline solution to the second separated product, and a precipitate separation unit that separates a precipitate generated by the reaction in the alkaline treatment unit,
    The biomass processing system which produces | generates the said slurry body with the solution after isolate | separating the said deposit.
  2.  前記第1分離物を乾燥させる乾燥部を備える、請求項1に記載のバイオマス処理システム。 The biomass processing system according to claim 1, further comprising a drying unit that dries the first separated matter.
  3.  前記乾燥部は、前記第1分離物を加熱して乾燥させる、請求項2に記載のバイオマス処理システム。 The biomass processing system according to claim 2, wherein the drying unit heats and drys the first separated matter.
  4.  前記スラリー体を加熱する加熱器を備え、
     前記乾燥部は、前記原料分離部において分離した前記第1分離物を、前記加熱器からの排熱により加熱して乾燥させる、請求項2又は3に記載のバイオマス処理システム。
    A heater for heating the slurry body;
    The biomass processing system according to claim 2 or 3, wherein the drying unit heats and drys the first separated material separated in the raw material separation unit by exhaust heat from the heater.
  5.  前記アルカリ性溶液は水酸化ナトリウム又は水酸化カリウムを含む水溶液である、請求項1乃至4のいずれか一項に記載のバイオマス処理システム。 The biomass treatment system according to any one of claims 1 to 4, wherein the alkaline solution is an aqueous solution containing sodium hydroxide or potassium hydroxide.
PCT/JP2015/056091 2015-03-02 2015-03-02 Biomass treatment system WO2016139721A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/056091 WO2016139721A1 (en) 2015-03-02 2015-03-02 Biomass treatment system
JP2016543747A JP6098912B2 (en) 2015-03-02 2015-03-02 Biomass processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/056091 WO2016139721A1 (en) 2015-03-02 2015-03-02 Biomass treatment system

Publications (1)

Publication Number Publication Date
WO2016139721A1 true WO2016139721A1 (en) 2016-09-09

Family

ID=56849256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056091 WO2016139721A1 (en) 2015-03-02 2015-03-02 Biomass treatment system

Country Status (2)

Country Link
JP (1) JP6098912B2 (en)
WO (1) WO2016139721A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102054845B1 (en) * 2018-04-04 2019-12-12 한국에너지기술연구원 De-Ash in Biomass at Low-Temperature, Manufacturing Method and System of Fuel Production Connected with Dehydration and Washing

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262742A (en) * 1998-03-19 1999-09-28 Ube Ind Ltd Method and apparatus for waste treatment
JP2001115174A (en) * 1999-10-15 2001-04-24 Toshiba Corp Fuel treatment system
JP2008249207A (en) * 2007-03-29 2008-10-16 Hiroshima Univ Biomass gasification power generation system
JP2008256226A (en) * 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Distilled spirit lees treatment method and device
JP2009149773A (en) * 2007-12-20 2009-07-09 Hiroshima Univ Biomass gasification method and biomass gasification system
JP2013220067A (en) * 2012-04-17 2013-10-28 National Agriculture & Food Research Organization Enzymatic saccharification method for cellulosic biomass raw material
JP2014189590A (en) * 2013-03-26 2014-10-06 Chugoku Electric Power Co Inc:The Biomass supercritical water gasification system with activated carbon operation method
JP2014190753A (en) * 2013-03-26 2014-10-06 Chugoku Electric Power Co Inc:The Method and system for quickly detecting clogging of piping or adhesion of deposit to wall surface, and application thereof
JP2014189589A (en) * 2013-03-26 2014-10-06 Chugoku Electric Power Co Inc:The Biomass gasification system with supercritical water

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5750722B2 (en) * 2011-03-11 2015-07-22 国立研究開発法人産業技術総合研究所 Treatment method of organic waste liquid

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262742A (en) * 1998-03-19 1999-09-28 Ube Ind Ltd Method and apparatus for waste treatment
JP2001115174A (en) * 1999-10-15 2001-04-24 Toshiba Corp Fuel treatment system
JP2008249207A (en) * 2007-03-29 2008-10-16 Hiroshima Univ Biomass gasification power generation system
JP2008256226A (en) * 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Distilled spirit lees treatment method and device
JP2009149773A (en) * 2007-12-20 2009-07-09 Hiroshima Univ Biomass gasification method and biomass gasification system
JP2013220067A (en) * 2012-04-17 2013-10-28 National Agriculture & Food Research Organization Enzymatic saccharification method for cellulosic biomass raw material
JP2014189590A (en) * 2013-03-26 2014-10-06 Chugoku Electric Power Co Inc:The Biomass supercritical water gasification system with activated carbon operation method
JP2014190753A (en) * 2013-03-26 2014-10-06 Chugoku Electric Power Co Inc:The Method and system for quickly detecting clogging of piping or adhesion of deposit to wall surface, and application thereof
JP2014189589A (en) * 2013-03-26 2014-10-06 Chugoku Electric Power Co Inc:The Biomass gasification system with supercritical water

Also Published As

Publication number Publication date
JP6098912B2 (en) 2017-03-22
JPWO2016139721A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP4888911B2 (en) Organic waste treatment facility and treatment method
KR102528753B1 (en) Fractional separation of useful substances from aqueous multi-component mixtures
US11332401B2 (en) Method of producing biochar from sludge
JP7167091B2 (en) Wastewater treatment method and wastewater treatment equipment
ES2929331T3 (en) Continuous vertical reactor
JP6931667B2 (en) Liquid phase oxidation method in hydrothermal carbonization process
RU2547491C2 (en) Purification of effluents and installation to this end
JP5382679B2 (en) Phosphate recovery method
JP2006274013A (en) Biomass gasification system
US20160185641A1 (en) Mobile thermal treatment method for processing organic material
JP2019520206A5 (en)
JP5305426B2 (en) Phosphate recovery method
JP4997546B2 (en) Supercritical water biomass gasifier and system including the same
JP6098912B2 (en) Biomass processing system
JP6364645B2 (en) Biomass processing system
CN101503262B (en) Sewage water pretreatment method for complicated system
KR20210091786A (en) Advanced Phosphorus Recovery Process and Plant
Buttmann Industrial scale plant for sewage sludge treatment by hydro-thermal carbonization in Jining/China and phosphate recovery by TerraNova® Ultra HTC process
KR20220080504A (en) Anaerobic Digestion System for Circulation and Mixed Crossing Operation with High-Efficiency Pyrolysis Reactor for Treating High-Concentration Organic
EP2746231A1 (en) Method and apparatus for the treatment of process water from a hydrothermal organic material conversion process
US20160264444A1 (en) Thermal treatment system and method for efficient processing of organic material
US20170313612A1 (en) Method and device for the treatment of organic matter using thickening and thermal treatment
JP5509445B2 (en) Non-metallic catalyst recovery method, non-metallic catalyst reuse method, wastewater usage method associated with supercritical water gasification
EP4204370A1 (en) Method and system for processing of biological waste

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016543747

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883891

Country of ref document: EP

Kind code of ref document: A1