WO2016137308A1 - 무선 통신 시스템에서 otdoa 관련 동작 수행 방법 - Google Patents
무선 통신 시스템에서 otdoa 관련 동작 수행 방법 Download PDFInfo
- Publication number
- WO2016137308A1 WO2016137308A1 PCT/KR2016/002026 KR2016002026W WO2016137308A1 WO 2016137308 A1 WO2016137308 A1 WO 2016137308A1 KR 2016002026 W KR2016002026 W KR 2016002026W WO 2016137308 A1 WO2016137308 A1 WO 2016137308A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- reference cell
- cell
- otdoa
- rstd
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/10—Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0205—Details
- G01S5/0244—Accuracy or reliability of position solution or of measurements contributing thereto
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/08—Testing, supervising or monitoring using real traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0205—Details
- G01S5/0236—Assistance data, e.g. base station almanac
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
Definitions
- the following description relates to a wireless communication system, and more particularly, to a method and apparatus for performing an operation related to an Observed Time Difference Of Arrival (OTDOA) of a terminal.
- OTDOA Observed Time Difference Of Arrival
- Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
- a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
- multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- MCD division multiple access
- MCDMA multi-carrier frequency division multiple access
- MC-FDMA multi-carrier frequency division multiple access
- a method for performing an operation related to OTDOA which can improve the accuracy of position estimation, is a technical problem.
- a method of performing an operation related to Observed Time Difference Of Arrival (OTDOA) by a terminal in a wireless communication system comprising: receiving a ProvideAssistanceData message from a server; Receiving a RequestLocationInformation message from the server; Measuring a reference signal time difference measurement (RSTD) based on a reference cell after receiving the requestLocationInformation message; And transmitting the RSTD measurement result to the server, wherein the reference cell is selected by the terminal from a reference cell indicated in the information included in the ProvideAssistanceData or a plurality of cells indicated in the information included in the ProvideAssistanceData. sign. How to perform OTDOA related operations.
- OTDOA Observed Time Difference Of Arrival
- An embodiment of the present invention provides a terminal device for performing an operation related to Observed Time Difference Of Arrival (OTDOA) in a wireless communication system, comprising: a transmitting device and a receiving device; And a processor, wherein the processor receives a ProvideAssistanceData message from a server, receives a RequestLocationInformation message from the server, receives the RequestLocationInformation message, and measures a reference signal time difference measurement (RSTD) based on a reference cell. And transmitting the RSTD measurement result to the server, wherein the reference cell is selected by the terminal from a reference cell indicated in the information included in the ProvideAssistanceData or a plurality of cells indicated in the information included in the ProvideAssistanceData. Device.
- OTD Reference Signal Time Difference Of Arrival
- the terminal may select a cell closest to the terminal from among the plurality of reference cells as a reference cell.
- the terminal may select a cell having the best signal strength as the reference cell among the plurality of reference cells.
- the RSTD measurement result may be included in a ProvideLocationInformation message.
- the ProvideLocationInformation message may necessarily include quality information of the reference cell.
- the quality information of the reference cell may include OTDOA-MeasQuality.
- the OTDOA-MeasQuality may include the best estimate of the terminal for the uncertainty of the OTDOA measurement.
- 1 is a diagram illustrating a structure of a radio frame.
- FIG. 2 is a diagram illustrating a resource grid in a downlink slot.
- 3 is a diagram illustrating a structure of a downlink subframe.
- FIG. 4 is a diagram illustrating a structure of an uplink subframe.
- 5 is a view for explaining OTDOA.
- 6 to 7 are diagrams for explaining the PRS.
- FIG. 8 is a view for explaining an embodiment of the present invention.
- FIG. 9 is a diagram illustrating a configuration of a transmitting and receiving device.
- each component or feature may be considered to be optional unless otherwise stated.
- Each component or feature may be embodied in a form that is not combined with other components or features.
- some components and / or features may be combined to form an embodiment of the present invention.
- the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
- the base station has a meaning as a terminal node of the network that directly communicates with the terminal.
- the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
- a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point (AP), and the like.
- the repeater may be replaced by terms such as relay node (RN) and relay station (RS).
- the term “terminal” may be replaced with terms such as a user equipment (UE), a mobile station (MS), a mobile subscriber station (MSS), a subscriber station (SS), and the like.
- a base station may also be used as a meaning of a scheduling node or a cluster header. If the base station or the relay also transmits a signal transmitted by the terminal, it can be regarded as a kind of terminal.
- the cell names described below are applied to transmission and reception points such as a base station (eNB), a sector, a remote radio head (RRH), a relay, and the like. It may be used as a generic term for identifying a component carrier.
- eNB base station
- RRH remote radio head
- Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802 system, 3GPP system, 3GPP LTE and LTE-Advanced (LTE-A) system and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
- TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
- GSM Global System for Mobile communications
- GPRS General Packet Radio Service
- EDGE Enhanced Data Rates for GSM Evolution
- OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
- UTRA is part of the Universal Mobile Telecommunications System (UMTS).
- 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
- LTE-A Advanced
- WiMAX can be described by the IEEE 802.16e standard (WirelessMAN-OFDMA Reference System) and the advanced IEEE 802.16m standard (WirelessMAN-OFDMA Advanced system). For clarity, the following description focuses on 3GPP LTE and 3GPP LTE-A systems, but the technical spirit of the present invention is not limited thereto.
- a structure of a radio frame will be described with reference to FIG. 1.
- uplink / downlink data packet transmission is performed in units of subframes, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
- the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
- the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
- the time it takes for one subframe to be transmitted is called a transmission time interval (TTI).
- TTI transmission time interval
- one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
- One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
- RBs resource blocks
- a resource block (RB) is a resource allocation unit and may include a plurality of consecutive subcarriers in one block.
- the number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP).
- CP has an extended CP (normal CP) and a normal CP (normal CP).
- normal CP normal CP
- the number of OFDM symbols included in one slot may be seven.
- the OFDM symbol is configured by an extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the normal CP.
- the number of OFDM symbols included in one slot may be six. If the channel state is unstable, such as when the terminal moves at a high speed, an extended CP may be used to further reduce intersymbol interference.
- one subframe includes 14 OFDM symbols.
- the first two or three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
- PDCCH physical downlink control channel
- PDSCH physical downlink shared channel
- Type 2 radio frames consist of two half frames, each of which has five subframes, a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
- DwPTS downlink pilot time slot
- GP guard period
- UpPTS uplink pilot time slot
- One subframe consists of two slots.
- DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
- UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
- the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
- one subframe consists of two slots regardless of the radio frame type.
- the structure of the radio frame is only an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of symbols included in the slot may be variously changed.
- FIG. 2 is a diagram illustrating a resource grid in a downlink slot.
- One downlink slot includes seven OFDM symbols in the time domain and one resource block (RB) is shown to include 12 subcarriers in the frequency domain, but the present invention is not limited thereto.
- one slot includes 7 OFDM symbols in the case of a general cyclic prefix (CP), but one slot may include 6 OFDM symbols in the case of an extended-CP (CP).
- Each element on the resource grid is called a resource element.
- One resource block includes 12 ⁇ 7 resource elements.
- the number N DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
- the structure of the uplink slot may be the same as the structure of the downlink slot.
- FIG. 3 is a diagram illustrating a structure of a downlink subframe.
- Up to three OFDM symbols at the front of the first slot in one subframe correspond to a control region to which a control channel is allocated.
- the remaining OFDM symbols correspond to data regions to which a Physical Downlink Shared Channel (PDSCH) is allocated.
- Downlink control channels used in the 3GPP LTE / LTE-A system include, for example, a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), Physical Hybrid Automatic Repeat Request Indicator Channel (PHICH).
- PCFICH Physical Control Format Indicator Channel
- PDCH Physical Downlink Control Channel
- PHICH Physical Hybrid Automatic Repeat Request Indicator Channel
- the PHICH includes a HARQ ACK / NACK signal as a response of uplink transmission.
- Control information transmitted through the PDCCH is referred to as downlink control information (DCI).
- the DCI includes uplink or downlink scheduling information or an uplink transmit power control command for a certain terminal group.
- the PDCCH is a resource allocation and transmission format of the downlink shared channel (DL-SCH), resource allocation information of the uplink shared channel (UL-SCH), paging information of the paging channel (PCH), system information on the DL-SCH, on the PDSCH Resource allocation of upper layer control messages such as random access responses transmitted to the network, a set of transmit power control commands for individual terminals in an arbitrary terminal group, transmission power control information, and activation of voice over IP (VoIP) And the like.
- a plurality of PDCCHs may be transmitted in the control region.
- the terminal may monitor the plurality of PDCCHs.
- the PDCCH is transmitted in an aggregation of one or more consecutive Control Channel Elements (CCEs).
- CCEs Control Channel Elements
- CCE is a logical allocation unit used to provide a PDCCH at a coding rate based on the state of a radio channel.
- the CCE corresponds to a plurality of resource element groups.
- the number of CCEs required for the PDCCH may vary depending on the size and coding rate of the DCI. For example, any one of 1, 2, 4, and 8 CCEs (corresponding to PDCCH formats 0, 1, 2, and 3, respectively) may be used for PDCCH transmission, and when the size of DCI is large and / or channel state If a low coding rate is required due to poor quality, a relatively large number of CCEs may be used for one PDCCH transmission.
- the base station determines the PDCCH format in consideration of the size of the DCI transmitted to the terminal, the cell bandwidth, the number of downlink antenna ports, the PHICH resource amount, and adds a cyclic redundancy check (CRC) to the control information.
- the CRC is masked with an identifier called a Radio Network Temporary Identifier (RNTI) according to the owner or purpose of the PDCCH.
- RNTI Radio Network Temporary Identifier
- the PDCCH is for a specific terminal, the cell-RNTI (C-RNTI) identifier of the terminal may be masked to the CRC.
- a paging indicator identifier P-RNTI
- SI-RNTI system information identifier and system information RNTI
- RA-RNTI Random Access-RNTI
- the uplink subframe may be divided into a control region and a data region in the frequency domain.
- a physical uplink control channel (PUCCH) including uplink control information is allocated to the control region.
- a physical uplink shared channel (PUSCH) including user data is allocated.
- PUCCH physical uplink control channel
- PUSCH physical uplink shared channel
- one UE does not simultaneously transmit a PUCCH and a PUSCH.
- PUCCH for one UE is allocated to an RB pair in a subframe. Resource blocks belonging to a resource block pair occupy different subcarriers for two slots. This is called a resource block pair allocated to the PUCCH is frequency-hopped at the slot boundary.
- the transmitted packet is transmitted through a wireless channel
- signal distortion may occur during the transmission process.
- the distortion In order to correctly receive the distorted signal at the receiving end, the distortion must be corrected in the received signal using the channel information.
- a method of transmitting the signal known to both the transmitting side and the receiving side and finding the channel information with the distortion degree when the signal is received through the channel is mainly used.
- the signal is called a pilot signal or a reference signal.
- the reference signal may be divided into an uplink reference signal and a downlink reference signal.
- an uplink reference signal as an uplink reference signal,
- DM-RS Demodulation-Reference Signal
- SRS sounding reference signal
- DM-RS Demodulation-Reference Signal
- CSI-RS Channel State Information Reference Signal
- MBSFN Multimedia Broadcast Single Frequency Network
- Reference signals can be classified into two types according to their purpose. There is a reference signal for obtaining channel information and a reference signal used for data demodulation. Since the former has a purpose for the UE to acquire channel information on the downlink, the UE should be transmitted over a wide band, and the UE should receive the reference signal even if the UE does not receive the downlink data in a specific subframe. It is also used in situations such as handover.
- the latter is a reference signal transmitted together with a corresponding resource when the base station transmits a downlink, and the terminal can demodulate data by performing channel measurement by receiving the reference signal. This reference signal should be transmitted in the area where data is transmitted.
- the UE receives configuration information related to PRS (positioning reference signal) transmission of an eNB from an upper layer signal and measures PRSs transmitted by cells around the UE to position OTDOA (Observed Time Difference Of Arrival).
- PRS positioning reference signal
- OTDOA Observed Time Difference Of Arrival
- Other methods include Assisted Global Navigation Satellite System (A-GNSS) positioning technique, Enhanced Cell-ID (E-CID) techniques, and Uplink Time Difference of Arrival (UTDOA). It can be used for based services (e.g. advertising, location tracking, emergency communication, etc.).
- OTDOA Observed Time Difference Of Arrival
- the OTDOA provides the UE with information about the reference cell and the neighbor cell, causes the UE to measure and report a relative time difference between the reference cell and the neighbor cells through a specific signal (for example, PRS), and then based on this. This is how you determine the location.
- a specific signal for example, PRS
- OTDOA measurement is as follows.
- the terminal may detect the intra-frequency PRS for a total time for detection and measurement, and detect and measure the RSTD.
- the total time for detection and measurement is shown in Equation 1 below.
- OTDOA-RequestLocationInformation and OTDOA assistance data in OTDOA-ProvideAssistanceData are started from the first subframe of the closest PRS positioning occasion from after the UE receives the physical layer of the UE.
- TDD intra frequency FDD-FDD inter frequency OTDOA
- TDD-FDD inter frequency OTDOA TDD-FDD inter frequency OTDOA
- the base station may transmit information on the reference cell and information on the neighbor cells through the OTDOA-ProvideAssistanceData as shown in Table 2 below.
- information about a reference cell is an information element (IE) used by a location server to provide reference cell information about OTDOA assistance data. same.
- physCellId is the physical cell ID of the reference cell
- cellGlobalId is a unique ID of the reference cell throughout the system.
- earfcnRef is the EARFCN of the reference cell.
- antennaPortConfig indicates which of the 1, 2, 4 antenna ports are used for the cell specific reference signal.
- cpLength is the CP length of the reference cell PRS.
- prsInfo is a PRS setting of a reference cell.
- prs-Bandwidth is a band used to configure PRS
- prs-ConfigurationIndex is IPRS, which is a PRS configuration index.
- numDL-Frames is the number of consecutive downlink subframes with PRS. to be.
- prs-MutingInfo is a PRS muting configuration of a cell.
- the information about the reference cell is used by the location server to inform the terminal of the reference cell, and the neighboring cells related to the cell defined by the information about the reference cell are provided by the information of the neighboring cells.
- the information of neighboring cells provides a list in descending order of priority of measurement to be performed by the terminal. The first cell of the list has the highest measurement priority.
- the terminal shall provide by performing possible measurements in the order provided by the location server.
- Table 5 shows neighbor cell information elements (OTDOA-NeighbourCellInfoList).
- physCellId is a physical cell ID of a neighbor cell
- cellGlobalId is a unique ID of a neighbor cell throughout the system.
- earfcnRef is the EARFCN of the neighbor cell.
- cpLength is the CP length of the neighbor cell PRS.
- prsInfo is a PRS setting of a neighbor cell.
- antennaPortConfig indicates which of the 1, 2, 4 antenna ports are used for the cell specific reference signal.
- slotNumberOffset is a slot number offset between a neighbor cell and a reference cell.
- prs-SubframeOffset is an offset between a first PRS subframe in a reference carrier frequency layer of a reference cell and a first PRS subframe in another carrier frequency layer of another cell.
- expectedRSTD indicates an RSTD value expected to be measured between the neighbor cell and the reference cell in the target device.
- expectedRSTD-Uncertainty indicates the uncertainty of the expectedRSTD value.
- the terminal receives the information on the above-described reference cell and the information of the neighboring cells and reports a reference signal time difference (RSTD), an RSTD quality, a reference quality, etc. to the base station.
- RSTD is a relative time difference between the neighboring cell j and the reference cell i.
- the time TsubfrmaeRxj at which the UE receives the start of one subframe from the neighboring cell j and the UE closest to the one subframe from the reference cell i It is defined as the difference in time TsubframeRxi from the start of the frame.
- OTDOA-SignalMeasurementInformation reported by the terminal to the base station.
- systemFrameNumber is the system frame number where the last measurement was performed.
- physCellIdRef is the physical cell ID of the associated reference cell for which the RSTDs are provided.
- cellGlobalIdRef indicates the unique ID (ECGI) of the associated reference cell for which the RSTDs are provided.
- earfcnRef is the E-UTRA carrier frequency of the reference cell used for RSTD measurement.
- referenceQuality represents the best estimated quality of the signal arrival time measurement from the reference cell used to calculate the RSTD value.
- neighborMeasurementList is a list that contains the quality of the measurement together with the measured RSTD values.
- physCellIdNeighbor is the physical cell ID of neighboring cells for which RSTDs are provided.
- cellGlobalIdNeighbor is a unique ID of neighboring cells for which RSTDs are provided.
- earfcnNeighbor is the E-UTRA carrier frequency of neighboring cells used for RSTD measurement.
- rstd is the relative time difference between the reference cell and the neighboring cell.
- rstd-Quality is the best estimate of the device for the measured rstd quality.
- the PRS may be used.
- the PRS will be described in detail.
- the PRS is a reference signal used for measuring the position of the UE and is transmitted only in resource blocks configured for PRS transmission in a downlink subframe.
- the downlink subframe in which the PRS is transmitted is a positioning subframe. If both a general subframe and a multicast-broadcast single frequency network (MBSFN) subframe are configured as position subframes in the cell, the OFDM symbols in the MBSFN subframe are the same as the cyclic prefix (CP) used in subframe # 0. CP is used. If only the MBSFN subframe is configured as a position subframe in the cell, an extended CP is used in OFDM symbols configured for PRS transmission in the MBSFN subframe.
- MBSFN multicast-broadcast single frequency network
- the start position of OFDM symbols configured for PRS transmission in a subframe in which PRS transmission is configured is the same as the start position in a subframe in which all OFDM symbols have the same CP length as the OFDM symbols in which PRS transmission is configured.
- the PRS is sent to antenna port 6.
- the PRS is not mapped to a resource element to which a PBCH, a primary synchronization signal (PSS), a secondary synchronization signal (SSS), or the like is allocated.
- the sequence for the PRS is generated by the following equation (3).
- Cell specific subframe setup period for PRS transmission And cell specific subframe offsets Is the PRS configuration index given by the higher layer signal. It can be determined as shown in the following table.
- the PRS is transmitted only in the configured downlink subframes and is not transmitted in the special subframe.
- PRS May be transmitted in four consecutive downlink subframes (PRS positioning occasion), Is set by the higher layer signal.
- the first subframe of the contiguous downlink subframes satisfies Equation 6 below.
- FIG. 7 illustrates an example of a subframe in which the above-described PRS is transmitted, which is a PRS positioning occasion. Is 4, Is 160.
- the UE performs measurement on a single reference cell. If the arrival time estimate is incorrect from the reference cell, an error may increase in all RSTD measurement results and thus the performance of the OTDOA scheme may be very poor. Specifically, for example, in the case of inter frequency measurement, in the case of heterogeneous cell deployment scenarios, the serving cell and the reference cell are different or the channel state between the reference cell and the terminal is not very good, and thus an error in the measurement result may increase.
- the OTDOA method according to the embodiment of the present invention which can solve such a problem and based on the above description, will be described.
- a terminal may receive a ProvideAssistanceData message from a server (S804a, b).
- ProvideAssistanceData may include information about a reference cell and information about neighbor cells.
- the ProvideAssistanceData message may be received in response to a RequestAssistanceData message transmitted by the terminal to the server, or unlike the FIG. 8, may be transmitted by the server as needed.
- the terminal may receive a RequestLocationInformation message from the server (S805). After receiving the RequestLocationInformation message, the reference signal time difference measurement (RSTD) can be measured based on the reference cell (S806).
- RSTD reference signal time difference measurement
- the measurement result may be mapped to a value to be reported through a mapping table as shown in Table 8 and then transmitted to a server.
- the terminal may transmit the RSTD measurement result to the server.
- the RSTD measurement result may be included in the ProvideLocationInformation message and transmitted (S807).
- the reference cell may be selected by a terminal from a reference cell indicated by information included in ProvideAssistanceData or a plurality of cells indicated by information included in ProvideAssistanceData.
- the terminal may select a cell closest to the terminal among the plurality of reference cells as the reference cell.
- the terminal may select a cell having the best signal strength among the plurality of reference cells as the reference cell.
- the ProvideLocationInformation message may necessarily include quality information of the reference cell. That is, OTDOA-SignalMeasurementInformation as shown in Table 9 may be used.
- the ProvideLocationInformation message may be set to be transmitted in the solid arrow of FIG. 8.
- all UEs report the quality of the reference cell to the server through two feedback processes.
- the channel condition is poor or the mobility of the UE is high, the quality information of the reference cell is not properly reported to the server due to the delay in reporting.
- the network eg, LPP server
- the network can always select the optimal reference cell.
- the quality information of the reference cell may include OTDOA-MeasQuality
- the OTDOA-MeasQuality may include the best estimation value of the UE regarding the uncertainty of the OTDOA measurement.
- the network may report the measurement quality of the reference cell through a physical layer or a higher layer signal only to a terminal whose reference cell is likely to change.
- the network may instruct a specific terminal to report the measurement quality of the reference cell as a physical layer or higher layer signal, and the indicated terminal may report the measurement quality of the initial cell (part of the solid line in FIG. 8) or the additional report. Report the measurement quality of the reference cell.
- Embodiment 2 The difference between Embodiment 2 and Embodiment 1 is that the network can instruct only a specific UE of the UE to report the measurement quality of the reference cell, and since the network is signaled, it is determined whether the UE correctly reports the measurement quality of the reference cell. Error case can be determined.
- the UE may report RSTD and related information about all reference cells configured by the network. To this end, the UE may signal information on capability to the server whether it is possible to calculate / report RSTD for a plurality of reference cells.
- the network may determine how many reference cells to configure according to the capability of the UE.
- the terminal may select the best among the plurality of reference cells and report the RSTD and related information on the selected reference cell.
- the RSTD between the serving cell and the neighboring cells we measure the RSTD between the serving cell and the neighboring cells by measuring the PRS transmitted in up to six subframes in the PRS occasion transmitted at least 160ms. That is, only one cell can measure the RSTD of some PRS occasions. In this case, the RSTD of a specific cell may be measured using a TOA measured at different PRS occasions. In this case, therefore, there is a possibility of measuring an incorrect RSTD due to time difference. In particular, when the mobility of the UE is large, a method of only feeding back the RSTD for a specific reference cell may include a large accumulated TOA error.
- the RSTD values of several reference cells are calculated and fed back, so that the reference cell can be measured and fed back by changing the reference cell for each specific PRS occasion. Can also be measured.
- the network can perform position estimation using RSTD values for multiple reference cells, the diversity (versatility) of RSTD measurements can be obtained.
- a UE that knows its position through GPS, cellular or Bluetooth (beacon, etc.) based positioning among the UE may be an anchor UE.
- Such an anchor UE may transmit a predetermined reference signal (DMRS, synchronization signal, SRS, PRACH preamble, etc.).
- the target UE may receive signals from a plurality of UEs, eNBs, etc., measure timing differences of the received signals, and report them to the network.
- an eNB or a specific UE may indicate a specific anchor UE.
- the base station signals several reference anchor UE lists, and the UE may measure and report RSTDs of the plurality of reference anchor UEs.
- the base station may signal several reference anchor UE lists, and the UE may select a reference anchor UE having the best channel state and measure and report an RSTD for the reference anchor UE.
- the terminal may report the whole or part of the RSTD result and the reference cell or the received signal quality, RSTD measurement quality, RSRP, and RSRQ for the terminal as a physical layer / high layer signal to the network, thereby causing the network to change the reference cell.
- a method for minimizing the positioning error due to the RF inherent characteristics of the terminal in the method of positioning the terminal using the RSSI measurement of the Wifi or Bluetooth beacon may be considered.
- the RSSI of the Wifi is not returned to the Wifi AP, but the reason of the feedback to the eNB is that a specific Wifi AP can measure a signal, but a connection for data transmission and reception may not be possible.
- a method of feeding back measurements of neighboring Wifi signals eg, RSSI and MAC addresses
- a method of reducing an error due to RF characteristics of a terminal when reporting an RSSI measurement result of a Wifi signal will be described.
- the window size may be predetermined or may be signaled by the network to a terminal measuring Wifi RSSI as a physical layer or higher layer signal.
- the RSSI may be measured differently according to the RF characteristics of the terminal. In this case, the relative difference with respect to the average of the RSSI for each location may be measured irrespective of the RF characteristics of the terminal. In order to eliminate the uncertainty of RSSI measurement according to the terminal RF characteristics, the RSSI average may be reported together.
- the normalized RSSI may be reported. Compared to the feedback method of RSSI and its average together, it is a method of initially returning normalized RSSI to reduce the amount of feedback. That is, the average of RSSI is measured in a window set in advance or signaled by the network, and the RSSI / RSSI average value, which is normalized at a specific position, is measured.
- the network may signal the MAC address of the reference AP or information of the reference AP to the terminal, or the terminal may set the MAC address of the reference AP and return it to the eNB. For example, when three APs are observed, the UE determines AP 1 as a reference AP and returns RSSI_2-RSSI_1 and RSSI_3-RSSI_1 values to the eNB.
- a distance conversion error may occur according to the RF characteristic of a transmitting AP.
- the AP produced by the manufacturer A may observe 4 dBm at a distance of 1 m when the 5 dBm signal is transmitted, and the AP produced by the manufacturer B may see 3 dBm at a distance of 1 m when the 5 dBm signal is transmitted. This is because the received power is observed differently according to the transmit RF characteristics.
- FIG. 9 is a diagram showing the configuration of a transmission point apparatus and a terminal apparatus according to an embodiment of the present invention.
- the transmission point apparatus 10 may include a receiver 11, a transmitter 12, a processor 13, a memory 14, and a plurality of antennas 15. .
- the plurality of antennas 15 refers to a transmission point apparatus that supports MIMO transmission and reception.
- the reception device 11 may receive various signals, data, and information on the uplink from the terminal.
- the transmitter 12 may transmit various signals, data, and information on downlink to the terminal.
- the processor 13 may control the overall operation of the transmission point apparatus 10.
- the processor 13 of the transmission point apparatus 10 may process matters necessary in the above-described embodiments.
- the processor 13 of the transmission point apparatus 10 performs a function of processing the information received by the transmission point apparatus 10, information to be transmitted to the outside, and the memory 14 stores the calculated information and the like. It may be stored for a predetermined time and may be replaced by a component such as a buffer (not shown).
- the terminal device 20 may include a receiver 21, a transmitter 22, a processor 23, a memory 24, and a plurality of antennas 25.
- the plurality of antennas 25 refers to a terminal device that supports MIMO transmission and reception.
- the receiving device 21 may receive various signals, data, and information on downlink from the base station.
- the transmitter 22 may transmit various signals, data, and information on the uplink to the base station.
- the processor 23 may control operations of the entire terminal device 20.
- the processor 23 of the terminal device 20 may process matters necessary in the above-described embodiments.
- the processor 23 of the terminal device 20 performs a function of processing the information received by the terminal device 20, information to be transmitted to the outside, etc., and the memory 24 stores the calculated information and the like for a predetermined time. And may be replaced by a component such as a buffer (not shown).
- the description of the transmission point apparatus 10 may be equally applicable to a relay apparatus as a downlink transmission entity or an uplink reception entity, and the description of the terminal device 20 is a downlink. The same may be applied to a relay apparatus as a receiving subject or an uplink transmitting subject.
- Embodiments of the present invention described above may be implemented through various means.
- embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
- a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
- ASICs Application Specific Integrated Circuits
- DSPs Digital Signal Processors
- DSPDs Digital Signal Processing Devices
- PLDs Programmable Logic Devices
- FPGAs field programmable gate arrays
- processors controllers, microcontrollers, microprocessors, and the like.
- the method according to the embodiments of the present invention may be implemented in the form of a module, a procedure, or a function that performs the functions or operations described above.
- the software code may be stored in a memory unit and driven by a processor.
- the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
- Embodiments of the present invention as described above may be applied to various mobile communication systems.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 발명의 일 실시예는, 무선통신시스템에서 단말이 OTDOA (Observed Time Difference Of Arrival) 에 관련된 동작을 수행하는 방법에 있어서, 서버로부터 ProvideAssistanceData 메시지를 수신하는 단계; 상기 서버로부터 RequestLocationInformation 메시지를 수신하는 단계; 상기 RequestLocationInformation 메시지를 수신한 후, 레퍼런스 셀을 기준으로 RSTD (Reference Signal Time Difference Measurement)를 측정하는 단계; 및 상기 RSTD 측정 결과를 상기 서버로 전송하는 단계를 포함하며, 상기 레퍼런스 셀은 상기 ProvideAssistanceData에 포함된 정보에서 지시되는 레퍼런스 셀 또는 상기 ProvideAssistanceData에 포함된 정보에서 지시되는 복수의 셀 중 상기 단말이 선택한 것인. OTDOA 관련 동작 수행 방법이다.
Description
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 상세하게는 단말의 OTDOA(Observed Time Difference Of Arrival)에 관련된 동작의 수행 방법 및 장치에 대한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
본 발명에서는 위치 추정의 정확도를 향상시킬 수 있는 OTDOA 관련 동작 수행 방법을 기술적 과제로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예는, 무선통신시스템에서 단말이 OTDOA (Observed Time Difference Of Arrival) 에 관련된 동작을 수행하는 방법에 있어서, 서버로부터 ProvideAssistanceData 메시지를 수신하는 단계; 상기 서버로부터 RequestLocationInformation 메시지를 수신하는 단계; 상기 RequestLocationInformation 메시지를 수신한 후, 레퍼런스 셀을 기준으로 RSTD (Reference Signal Time Difference Measurement)를 측정하는 단계; 및 상기 RSTD 측정 결과를 상기 서버로 전송하는 단계를 포함하며, 상기 레퍼런스 셀은 상기 ProvideAssistanceData에 포함된 정보에서 지시되는 레퍼런스 셀 또는 상기 ProvideAssistanceData에 포함된 정보에서 지시되는 복수의 셀 중 상기 단말이 선택한 것인. OTDOA 관련 동작 수행 방법이다.
본 발명의 일 실시예는, 무선통신시스템에서 OTDOA (Observed Time Difference Of Arrival) 에 관련된 동작을 수행하는 단말 장치에 있어서, 송신 장치와 수신 장치; 및 프로세서를 포함하고, 상기 프로세서는, 서버로부터 ProvideAssistanceData 메시지를 수신하고, 상기 서버로부터 RequestLocationInformation 메시지를 수신하고, 상기 RequestLocationInformation 메시지를 수신한 후, 레퍼런스 셀을 기준으로 RSTD(Reference Signal Time Difference Measurement)를 측정하며, 상기 RSTD 측정 결과를 상기 서버로 전송하고, 상기 레퍼런스 셀은 상기 ProvideAssistanceData에 포함된 정보에서 지시되는 레퍼런스 셀 또는 상기 ProvideAssistanceData에 포함된 정보에서 지시되는 복수의 셀 중 상기 단말이 선택한 것인, 단말 장치이다.
상기 단말은 상기 복수의 레퍼런스 셀 중, 상기 단말에게 가장 가까운 셀을 레퍼런스 셀로 선택할 수 있다.
상기 단말은 상기 복수의 레퍼런스 셀 중, 신호강도가 가장 좋은 셀을 레퍼런스 셀로 선택할 수 있다.
상기 RSTD 측정 결과는 ProvideLocationInformation 메시지에 포함된 것일 수 있다.
상기 ProvideLocationInformation 메시지는 상기 레퍼런스 셀의 품질 정보를 반드시 포함할 수 있다.
상기 레퍼런스 셀의 품질 정보는 OTDOA-MeasQuality 를 포함할 수 있다.
상기 OTDOA-MeasQuality는 OTDOA 측정의 불확실성에 대한 상기 단말의 가장 좋은 추정값을 포함할 수 있다.
본 발명에 따르면 OTDOA 측정의 정확성을 높일 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 무선 프레임의 구조를 나타내는 도면이다.
도 2는 하향링크 슬롯에서의 자원 그리드(resource grid)를 나타내는 도면이다.
도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다.
도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다.
도 5는 OTDOA를 설명하기 위한 도면이다.
도 6 내지 도 7은 PRS를 설명하기 위한 도면이다.
도 8은 본 발명의 실시예를 설명하기 위한 도면이다.
도 9은 송수신 장치의 구성을 도시한 도면이다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
본 명세서에서 본 발명의 실시예들을 기지국과 단말 간의 데이터 송신 및 수신의 관계를 중심으로 설명한다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNode B(eNB), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 중계기는 Relay Node(RN), Relay Station(RS) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 UE(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station), SS(Subscriber Station) 등의 용어로 대체될 수 있다. 또한, 이하의 설명에서 기지국이라 함은 스케줄링 수행 노드, 클러스터 헤더(cluster header) 등을 장치를 지칭하는 의미로써도 사용될 수 있다. 만약 기지국이나 릴레이도 단말이 전송하는 신호를 전송한다면, 일종의 단말로 간주할 수 있다.
이하에서 기술되는 셀의 명칭은 기지국(base station, eNB), 섹터(sector), 리모트라디오헤드(remote radio head, RRH), 릴레이(relay)등의 송수신 포인트에 적용되며, 또한 특정 송수신 포인트에서 구성 반송파(component carrier)를 구분하기 위한 포괄적인 용어로 사용되는 것일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A(LTE-Advanced)시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화이다. WiMAX는 IEEE 802.16e 규격(WirelessMAN-OFDMA Reference System) 및 발전된 IEEE 802.16m 규격(WirelessMAN-OFDMA Advanced system)에 의하여 설명될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
LTE/LTE-A 자원 구조/채널
도 1을 참조하여 무선 프레임의 구조에 대하여 설명한다.
셀룰라 OFDM 무선 패킷 통신 시스템에서, 상/하향링크 데이터 패킷 전송은 서브프레임 (subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 1(a)는 타입 1 무선 프레임의 구조를 나타내는 도면이다. 하향링크 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block; RB)을 포함한다. 3GPP LTE/LTE-A 시스템에서는 하향링크에서 OFDMA 를 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 블록(Resource Block; RB)은 자원 할당 단위이고, 하나의 블록에서 복수개의 연속적인 부반송파(subcarrier)를 포함할 수 있다.
하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 일반 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 일반 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 일반 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가 사용될 수 있다.
일반 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 2개 또는 3개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
도 1(b)는 타입 2 무선 프레임의 구조를 나타내는 도면이다. 타입 2 무선 프레임은 2개의 해프 프레임 (half frame)으로 구성되며, 각 해프 프레임은 5개의 서브프레임과 DwPTS (Downlink Pilot Time Slot), 보호구간(Guard Period; GP), UpPTS (Uplink Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다. 한편, 무선 프레임의 타입에 관계 없이 1개의 서브프레임은 2개의 슬롯으로 구성된다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.
도 2는 하향링크 슬롯에서의 자원 그리드(resource grid)를 나타내는 도면이다. 하나의 하향링크 슬롯은 시간 영역에서 7 개의 OFDM 심볼을 포함하고, 하나의 자원블록(RB)은 주파수 영역에서 12 개의 부반송파를 포함하는 것으로 도시되어 있지만, 본 발명이 이에 제한되는 것은 아니다. 예를 들어, 일반 CP(Cyclic Prefix)의 경우에는 하나의 슬롯이 7 OFDM 심볼을 포함하지만, 확장된 CP(extended-CP)의 경우에는 하나의 슬롯이 6 OFDM 심볼을 포함할 수 있다. 자원 그리드 상의 각각의 요소는 자원 요소(resource element)라 한다. 하나의 자원블록은 12×7 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원블록들의 개수(NDL)는 하향링크 전송 대역폭에 따른다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다. 하나의 서브프레임 내에서 첫 번째 슬롯의 앞 부분의 최대 3 개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 해당한다. 나머지 OFDM 심볼들은 물리하향링크공유채널(Physical Downlink Shared Channel; PDSCH)이 할당되는 데이터 영역에 해당한다. 3GPP LTE/LTE-A 시스템에서 사용되는 하향링크 제어 채널들에는, 예를 들어, 물리제어포맷지시자채널(Physical Control Format Indicator Channel; PCFICH), 물리하향링크제어채널(Physical Downlink Control Channel; PDCCH), 물리HARQ지시자채널(Physical Hybrid automatic repeat request Indicator Channel; PHICH) 등이 있다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내의 제어 채널 전송에 사용되는 OFDM 심볼의 개수에 대한 정보를 포함한다. PHICH는 상향링크 전송의 응답으로서 HARQ ACK/NACK 신호를 포함한다. PDCCH를 통하여 전송되는 제어 정보를 하향링크제어정보(Downlink Control Information; DCI)라 한다. DCI는 상향링크 또는 하향링크 스케듈링 정보를 포함하거나 임의의 단말 그룹에 대한 상향링크 전송 전력 제어 명령을 포함한다. PDCCH는 하향링크공유채널(DL-SCH)의 자원 할당 및 전송 포맷, 상향링크공유채널(UL-SCH)의 자원 할당 정보, 페이징채널(PCH)의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 임의접속응답(Random Access Response)과 같은 상위계층 제어 메시지의 자원 할당, 임의의 단말 그룹 내의 개별 단말에 대한 전송 전력 제어 명령의 세트, 전송 전력 제어 정보, VoIP(Voice over IP)의 활성화 등을 포함할 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링할 수 있다. PDCCH는 하나 이상의 연속하는 제어채널요소(Control Channel Element; CCE)의 조합(aggregation)으로 전송된다. CCE는 무선 채널의 상태에 기초한 코딩 레이트로 PDCCH를 제공하기 위해 사용되는 논리 할당 단위이다. CCE는 복수개의 자원 요소 그룹에 대응한다. PDCCH를 위해 필요한 CCE의 개수는 DCI의 크기와 코딩 레이트 등에 따라 달라질 수 있다. 예를 들어, PDCCH 전송에는 CCE 개수 1, 2, 4, 8(각각 PDCCH 포맷 0, 1, 2, 3에 대응)개 중 어느 하나가 사용될 수 있으며, DCI의 크기가 큰 경우 및/또는 채널 상태가 좋지 않아 낮은 코딩 레이트가 필요한 경우 상대적으로 많은 개수의 CCE가 하나의 PDCCH 전송을 위해 사용될 수 있다. 기지국은 단말에게 전송되는 DCI의 크기, 셀 대역폭, 하향링크 안테나 포트의 개수, PHICH 자원 양 등을 고려하여 PDCCH 포맷을 결정하고, 제어 정보에 순환잉여검사(Cyclic Redundancy Check; CRC)를 부가한다. CRC는 PDCCH의 소유자 또는 용도에 따라 무선 네트워크 임시 식별자(Radio Network Temporary Identifier; RNTI)라 하는 식별자로 마스킹된다. PDCCH가 특정 단말에 대한 것이면, 단말의 cell-RNTI(C-RNTI) 식별자가 CRC에 마스킹될 수 있다. 또는, PDCCH가 페이징 메시지에 대한 것이면, 페이징 지시자 식별자(Paging Indicator Identifier; P-RNTI)가 CRC에 마스킹될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(SIB))에 대한 것이면, 시스템 정보 식별자 및 시스템 정보 RNTI(SI-RNTI)가 CRC에 마스킹될 수 있다. 단말의 임의 접속 프리앰블의 전송에 대한 응답인 임의접속응답을 나타내기 위해, 임의접속-RNTI(RA-RNTI)가 CRC에 마스킹될 수 있다.
도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다. 상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 분할될 수 있다. 제어 영역에는 상향링크 제어 정보를 포함하는 물리상향링크제어채널(Physical Uplink Control Channel; PUCCH)이 할당된다. 데이터 영역에는 사용자 데이터를 포함하는 물리상향링크공유채널(Physical Uplink Shared Channel; PUSCH)이 할당된다. 단일 반송파 특성을 유지하기 위해서, 하나의 단말은 PUCCH와 PUSCH를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)에 할당된다. 자원블록 쌍에 속하는 자원블록들은 2 슬롯에 대하여 상이한 부반송파를 차지한다. 이를 PUCCH에 할당되는 자원블록 쌍이 슬롯 경계에서 주파수-호핑(frequency-hopped)된다고 한다.
참조 신호 (Reference Signal; RS)
무선 통신 시스템에서 패킷을 전송할 때, 전송되는 패킷은 무선 채널을 통해서 전송되기 때문에 전송과정에서 신호의 왜곡이 발생할 수 있다. 왜곡된 신호를 수신측에서 올바로 수신하기 위해서는 채널 정보를 이용하여 수신 신호에서 왜곡을 보정하여야 한다. 채널 정보를 알아내기 위해서, 송신측과 수신측에서 모두 알고 있는 신호를 전송하여, 상기 신호가 채널을 통해 수신될 때의 왜곡 정도를 가지고 채널 정보를 알아내는 방법을 주로 사용한다. 상기 신호를 파일럿 신호(Pilot Signal) 또는 참조신호(Reference Signal)라고 한다.
다중안테나를 사용하여 데이터를 송수신하는 경우에는 각 송신 안테나와 수신 안테나 사이의 채널 상황을 알아야 올바른 신호를 수신할 수 있다. 따라서, 각 송신 안테나 별로, 좀더 자세하게는 안테나 포트(port)별로 별도의 참조신호가 존재하여야 한다.
참조신호는 상향링크 참조신호와 하향링크 참조신호로 구분될 수 있다. 현재 LTE 시스템에는 상향링크 참조신호로써,
i) PUSCH 및 PUCCH를 통해 전송된 정보의 코히런트(coherent)한 복조를 위한 채널 추정을 위한 복조 참조신호(DeModulation-Reference Signal, DM-RS)
ii) 기지국이, 네트워크가 다른 주파수에서의 상향링크 채널 품질을 측정하기 위한 사운딩 참조신호(Sounding Reference Signal, SRS)가 있다.
한편, 하향링크 참조신호에는,
i) 셀 내의 모든 단말이 공유하는 셀-특정 참조신호(Cell-specific Reference Signal, CRS)
ii) 특정 단말만을 위한 단말-특정 참조신호(UE-specific Reference Signal)
iii) PDSCH가 전송되는 경우 코히런트한 복조를 위해 전송되는 (DeModulation-Reference Signal, DM-RS)
iv) 하향링크 DMRS가 전송되는 경우 채널 상태 정보(Channel State Information; CSI)를 전달하기 위한 채널상태정보 참조신호(Channel State Information- Reference Signal, CSI-RS)
v) MBSFN(Multimedia Broadcast Single Frequency Network) 모드로 전송되는 신호에 대한 코히런트한 복조를 위해 전송되는 MBSFN 참조신호(MBSFN Reference Signal)
vi) 단말의 지리적 위치 정보를 추정하는데 사용되는 위치 참조신호(Positioning Reference Signal)가 있다.
참조신호는 그 목적에 따라 크게 두 가지로 구분될 수 있다. 채널 정보 획득을 위한 목적의 참조신호와 데이터 복조를 위해 사용되는 참조신호가 있다. 전자는 UE가 하향 링크로의 채널 정보를 획득하는데 그 목적이 있으므로 광대역으로 전송되어야 하고, 특정 서브 프레임에서 하향 링크 데이터를 수신하지 않는 단말이라도 그 참조신호를 수신하여야 한다. 또한 이는 핸드오버 등의 상황에서도 사용된다. 후자는 기지국이 하향링크를 보낼 때 해당 리소스에 함께 보내는 참조신호로서, 단말은 해당 참조신호를 수신함으로써 채널 측정을 하여 데이터를 복조할 수 있게 된다. 이 참조신호는 데이터가 전송되는 영역에 전송되어야 한다.
단말 위치 정보
일반적으로 셀룰라 통신 시스템에서, 단말의 위치 정보를 네트워크가 획득하기 위한 여러가지 방법이 사용되고 있다. 대표적으로 LTE시스템에서 기지국의 PRS (positioning Reference Signal) 전송 관련한 설정 정보를 단말이 상위 계층 신호 등으로부터 설정 받고, 단말 주변의 셀들이 전송하는 PRS를 측정하여 OTDOA(Observed Time Difference Of Arrival) 등의 포지셔닝 기법에 의해 단말의 위치 관련 정보를 계산하여 네트워크로 전달해주는 방식 등이 존재한다. 그 밖의 Assisted Global Navigation Satellite System (A-GNSS) 포지셔닝 기법, Enhanced Cell-ID (E-CID) techniques, Uplink Time Difference of Arrival (UTDOA) 등 다른 방식들이 존재하며, 이와 같은 포지셔닝 방식에 의해 각종 location-based services (예를 들어, 광고, 위치 추적, 비상용 통신 수단 등)에 활용이 가능하다.
OTDOA (Observed Time Difference Of Arrival)
OTDOA는 단말에게 레퍼런스 셀 및 이웃 셀에 대한 정보를 주고, 단말이 특정 신호(예를 들어, PRS)를 통해 레퍼런스 셀과 이웃 셀들의 상대적인 시간 차를 측정하여 보고하도록 한 후, 이에 기초해 단말의 위치를 결정하도록 하는 방법이다.
FDD의 경우 인트라-프리퀀시(Intra-Frequency, PRS가 serving cell과 같은 frequency에서 전송되는 경우) OTDOA 측정에 대해 살펴보면 다음과 같다.
OTDOA 지원(assistance) 데이터와 이웃 셀의 물리 셀 ID가 제공된 경우, 단말은 검출 및 측정을 위한 총 시간동안 인트라-프리퀀시 PRS를 검출하고, RSTD를 검출하고 측정할 수 있다. 검출 및 측정을 위한 총 시간은 다음 수학식 1과 같다.
는 적어도 n 개의 셀에서 검출 및 측정을 위한 총 시간이다. 는 셀 특정 포지셔닝 서브프레임 설정 구간이다. 은 PRS 포지셔닝 occasions의 수이며 각 PRS 포지셔닝 occasions은 (1≤≤6) 의 연속된 하향링크 포지셔닝 서브프레임이다. 이는 다음 표 1과 같이 정의된다.
단말 물리 계층은, 내에서 레퍼런스 셀 및 적어도 (n-1) 이웃 셀들의 바깥의 모든 이웃 셀 i 를 위한 RSTD 보고를 할 능력을 가져야 하며, 레퍼런스 셀을 위한 모든 주파수 대역을 위해 >=6 dB , 이웃 셀 i를 위해 모든 주파수 대역을 위해 >=13 dB 여야 한다. 는 PRS RE당 평균 수신 에너지 비율이다. 이 비율은 PRS를 나르는 모든 RE 상에서 측정된다.
는 도 6에 도시된 바와 같이, OTDOA-RequestLocationInformation 및 OTDOA-ProvideAssistanceData 내 OTDOA assistance data가 단말의 물리계층에 수신된 후로부터 가장 가까운 PRS 포지셔닝 occasion 의 첫 번째 서브프레임부터 시작된다.
만약 인트라 프리퀀시 핸드오버가 인트라 프리퀀시 RSTD 측정 중에 발생하면, 단말은 진행중인 OTDOA 측정 세션을 완료해야 한다. 단말은 인트라 프리퀀시 OTDOA 측정 및 정확도 요청도 만족시켜야 한다. 이 경우, 는 다음 수학식 2와 같으며,
여기서, 는 동안 발생하는 인트라 프리퀀시 핸드오버의 횟수, 는 인트라 프리퀀시 핸드오버 때문에 인트라 프리퀀시 RSTD 측정이 가능하지 않은 시간 구간으로 45ms까지일 수 있다.
이외, TDD 인트라 프리퀀시, FDD-FDD 인터 프리퀀시 OTDOA, TDD-FDD 인터 프리퀀시 OTDOA에 관한 상세한 설명은 3GPP TS 36.133에서 참조된다.
OTDOA를 위해 기지국은 단말에게 다음 표 2와 같은 OTDOA-ProvideAssistanceData 를 통해 레퍼런스 셀에 대한 정보 및 주변 셀들의 정보를 전송할 수 있다.
상기 표 2에서 레퍼런스 셀에 대한 정보(otdoa-ReferenceCellInfo)는 위치 서버(location server)가 OTDOA 보조 데이터에 대한 레퍼런스 셀 정보를 제공하기 위해 사용되는 정보 요소(information element: IE)로써, 다음 표 3과 같다.
상기 표 3에서, physCellId는 레퍼런스 셀의 물리적 셀 ID이고, cellGlobalId는 시스템 전체에서 레퍼런스 셀의 고유한 ID이다. earfcnRef는 레퍼런스 셀의 EARFCN이다. antennaPortConfig는 셀 특정 참조 신호를 위해 1, 2, 4 안테나 포트 중 어느 것이 사용되는지를 나타낸다. cpLength는 레퍼런스 셀 PRS의 CP 길이이다. prsInfo는 레퍼런스 셀의 PRS 설정이다.
다음 표 4는 prsInfo 정보 요소이다.
표 4에서, prs-Bandwidth는 PRS를 설정하는데 사용되는 대역이고, prs-ConfigurationIndex는 PRS 설정 인덱스인 IPRS이다. numDL-Frames는 PRS를 가지는 연속적인 하향링크 서브프레임들의 개수인 이다. prs-MutingInfo는 셀의 PRS 뮤팅(muting) 설정이다.
레퍼런스 셀에 대한 정보는 위치 서버가 단말에게 레퍼런스 셀을 알려주는데 사용되며, 레퍼런스 셀에 대한 정보에 의해 정의된 셀에 관련된 주변 셀들은 주변 셀들의 정보에 의해 제공된다. 주변 셀들의 정보는 단말에 의해 수행되어야 하는 측정의 우선 순위를 내림차순으로 정리한 리스트를 제공한다. 상기 리스트의 첫 번째 셀이 가장 높은 측정 우선 순위를 가진다. 단말은 위치 서버가 제공한 순서대로 가능한 측정을 수행하여 제공하여야 한다.
계속해서, 다음 표 5는 주변 셀 정보 요소(OTDOA-NeighbourCellInfoList)를 나타낸다.
physCellId는 주변 셀(neighbor cell)의 물리적 셀 ID이고, cellGlobalId는 시스템 전체에서 주변 셀의 고유한 ID이다. earfcnRef는 주변 셀의 EARFCN이다. cpLength는 주변 셀 PRS의 CP 길이이다. prsInfo는 주변 셀의 PRS 설정이다. antennaPortConfig는 셀 특정 참조 신호를 위해 1, 2, 4 안테나 포트 중 어느 것이 사용되는지를 나타낸다. slotNumberOffset은 주변 셀과 레퍼런스 셀 간의 슬롯 번호 오프셋이다. prs-SubframeOffset은 레퍼런스 셀의 기준 반송파 주파수 계층에서의 첫 번째 PRS 서브프레임과 다른 셀의 다른 반송파 주파수 계층에서의 첫 번째 PRS 서브프레임 간의 오프셋이다. expectedRSTD는 목표로 하는 장치에서 주변 셀과 레퍼런스 셀 간에 측정될 것으로 예상되는 RSTD 값을 지시한다. expectedRSTD-Uncertainty는 expectedRSTD 값의 불확실성을 지시한다.
단말은 상술한 레퍼런스 셀에 대한 정보 및 주변 셀들의 정보를 제공받아 RSTD(reference signal time difference), RSTD 품질, 기준 품질 등을 기지국으로 보고한다. RSTD는 주변 셀 j와 레퍼런스 셀 i 간의 상대적인 시간 차이로써, 단말이 주변 셀j로부터 하나의 서브프레임의 시작을 수신한 시간(TsubfrmaeRxj)과 단말이 레퍼런스 셀 i로부터 상기 하나의 서브프레임에 가장 근접한 서브프레임의 시작을 수신한 시간(TsubframeRxi) 차이로 정의된다.
다음 표 6은 단말이 기지국으로 보고하는 OTDOA 신호 측정 정보 요소(OTDOA-SignalMeasurementInformation)이다.
상기 표에서 systemFrameNumber는 마지막 측정이 수행된 시스템 프레임 번호이다. physCellIdRef는 RSTD들이 제공되는 관련된 레퍼런스 셀의 물리적 셀 ID이다. cellGlobalIdRef는 RSTD들이 제공되는 관련된 레퍼런스 셀의 고유한 ID(ECGI)를 나타낸다. earfcnRef는 RSTD 측정을 위해 사용되는 레퍼런스 셀의 E-UTRA 반송파 주파수이다. referenceQuality는 RSTD 값을 계산하기 위해 사용되는 레퍼런스 셀로부터의 신호 도착 시간 측정의 가장 좋은 추정 품질을 나타낸다. neighborMeasurementList는 측정된 RSTD 값들과 함께 측정의 품질이 함께 포함된 리스트이다. physCellIdNeighbor는 RSTD들이 제공되는 주변 셀들의 물리적 셀 ID이다. cellGlobalIdNeighbor는 RSTD들이 제공되는 주변 셀들의 고유한 ID이다. earfcnNeighbor는 RSTD 측정에 사용된 주변 셀들의 E-UTRA 반송파 주파수이다. rstd는 레퍼런스 셀과 주변 셀 간의 상대적인 시간 차이이다. rstd-Quality는 측정된 rstd 품질에 대한 장치의 가장 좋은 추정이다.
상술한 바와 같은 OTDOA에서 측정은 PRS가 사용될 수 있는데, 이하 PRS에 대해 상세히 살펴본다.
PRS (positioning Reference Signal)
PRS는 단말의 위치 측정을 위해 사용되는 참조신호로써, 하향링크 서브프레임에서 PRS 전송을 위해 설정된 자원블록들에서만 전송된다. PRS가 전송되는 하향링크 서브프레임이 위치 서브프레임(positioning subframe)이다. 셀 내에서 일반적인 서브프레임과 MBSFN(multicast-broadcast single frequency network) 서브프레임이 둘 다 위치 서브프레임으로 설정되면, 상기 MBSFN 서브프레임 내의 OFDM 심볼들은 서브프레임 #0에서 사용되는 CP(cyclic prefix)와 동일한 CP가 사용된다. 셀 내에서 MBSFN 서브프레임만 위치 서브프레임으로 설정되면, 상기 MBSFN 서브프레임에서 PRS 전송을 위해 설정된 OFDM 심볼들에서는 확장 CP가 사용된다. PRS 전송이 설정된 서브프레임에서 PRS 전송을 위해 설정된 OFDM 심볼들의 시작 위치는, 모든 OFDM 심볼들이 PRS 전송이 설정된 OFDM 심볼들과 동일한 CP 길이를 가지는 서브프레임에서의 시작 위치와 동일하다. PRS는 안테나 포트 6으로 전송된다. 또한, PRS는 PBCH, PSS(primary synchronization signal), SSS(secondary synchronization signal) 등이 할당되는 자원요소에는 맵핑되지 않는다.
PRS를 위한 시퀀스는 다음 수학식 3에 의해 생성된다.
수학식 3에 의해 생성된 는 슬롯 에서 안테나 포트 6을 위한 참조 신호로 사용되는 복소 값 변조 심볼 에 다음 수학식 5에 의해, 도 6에 도시된 바와 같이, 리소스에 맵핑된다.
PRS는 설정된 하향링크 서브프레임들에서만 전송되고, 스페셜 서브프레임(special subframe)에서는 전송되지 않는다. PRS는 개의 연속하는 하향링크 서브프레임들(PRS positioning occasion)에서 전송될 수 있으며, 는 상위 계층 신호에 의해 설정된다. 개의 연속하는 하향링크 서브프레임들 중 첫 번째 서브프레임은 다음 수학식 6을 만족한다.
상술한 바와 같은 기존의 OTDOA 방식은 단일 레퍼런스 셀에 대해 단말이 측정을 수행하는데, 만약 레퍼런스 셀로부터 도달 시간 추정이 부정확하다면 모든 RSTD 측정 결과에 오류가 증가해서 OTDOA 방식의 성능이 매우 떨어질 수 있다. 구체적으로 예를 들어, Inter frequency measurement의 경우, heterogeneous cell deployment scenario 등의 경우, 서빙 셀과 레퍼런스 셀이 상이하거나 레퍼런스 셀과 단말 사이의 채널 상태가 매우 좋지 않아, 측정 결과에 오류가 커질 수 있다., 이하에서는, 이러한 문제점을 해결 가능하고 상술한 설명에 기초하는, 본 발명의 실시예에 의한 OTDOA 방식에 대해 설명한다.
실시예
1
도 8을 참조하면, 본 발명의 실시예에 의한 단말(도 8에서 Target)은 서버로부터 ProvideAssistanceData 메시지를 수신(S804a, b)할 수 있다. ProvideAssistanceData는 레퍼런스 셀에 대한 정보 및 주변 셀들의 정보를 포함할 수 있다. ProvideAssistanceData 메시지는 단말이 서버에게 전송한 RequestAssistanceData 메시지에 대한 응답으로써 수신된 것일 수도 있고, 또는 도 8과 달리, 서버가 필요에 의해 전송한 것일 수도 있다. 단말은 서버로부터 RequestLocationInformation 메시지를 수신(S805)할 수 있다. RequestLocationInformation 메시지를 수신한 후, 레퍼런스 셀을 기준으로 RSTD (Reference Signal Time Difference Measurement)를 측정(S806)할 수 있다.
측정 결과는 다음 표 8과 같은 매핑 테이블을 통해 보고될 값에 매핑된 후 서버로 전송될 수 있다.
표 8
Reported Value | Measured Quantity Value | Unit |
RSTD_0000 | -15391 > RSTD | Ts |
RSTD_0001 | -15391 <= RSTD < -15386 | Ts |
... | ... | ... |
RSTD_2258 | -4106 <= RSTD < -4101 | Ts |
RSTD_2259 | -4101 <= RSTD < -4096 | Ts |
RSTD_2260 | -4096 <= RSTD < -4095 | Ts |
RSTD_2261 | -4095 <= RSTD < -4094 | Ts |
... | ... | ... |
RSTD_6353 | -3 <= RSTD < -2 | Ts |
RSTD_6354 | -2 <= RSTD < -1 | Ts |
RSTD_6355 | -1 <= RSTD <= 0 | Ts |
RSTD_6356 | 0 < RSTD <= 1 | Ts |
RSTD_6357 | 1 < RSTD <= 2 | Ts |
RSTD_6358 | 2 < RSTD <= 3 | Ts |
... | ... | ... |
RSTD_10450 | 4094 < RSTD <= 4095 | Ts |
RSTD_10451 | 4095 < RSTD <= 4096 | Ts |
RSTD_10452 | 4096 < RSTD <= 4101 | Ts |
RSTD_10453 | 4101 < RSTD <= 4106 | Ts |
... | ... | ... |
RSTD_12709 | 15381 < RSTD <= 15386 | Ts |
RSTD_12710 | 15386 < RSTD <= 15391 | Ts |
RSTD_12711 | 15391 < RSTD | Ts |
단말은 RSTD 측정 결과를 서버로 전송할 수 있다. 여기서, RSTD 측정 결과는 ProvideLocationInformation 메시지에 포함되어 전송(S807)될 수 있다.
상기 설명에서, 레퍼런스 셀은 ProvideAssistanceData에 포함된 정보에서 지시되는 레퍼런스 셀 또는 ProvideAssistanceData에 포함된 정보에서 지시되는 복수의 셀 중 단말이 선택한 것일 수 있다. 이러한 경우, 단말은 복수의 레퍼런스 셀 중, 단말에게 가장 가까운 셀을 레퍼런스 셀로 선택할 수 있다. 또는, 단말은 복수의 레퍼런스 셀 중, 신호강도가 가장 좋은 셀을 레퍼런스 셀로 선택할 수 있다.
ProvideLocationInformation 메시지는 레퍼런스 셀의 품질 정보를 반드시 포함할 수 있다. 즉, 다음 표 9와 같은 OTDOA-SignalMeasurementInformation이 사용될 수 있다.
즉 ProvideLocationInformation 메시지를 도 8의 실선 화살표에서 전송되도록 설정할 수 있다. 기존의 방식은 모든 단말들이 두 번의 궤환 과정을 통하여 레퍼런스 셀의 품질을 서버로 보고하였으나, 만약 채널 상황이 좋지 않거나 단말의 mobility가 높을 경우 보고지연으로 인하여 레퍼런스 셀의 품질 정보가 제대로 서버로 보고 되지 않거나, 지연이 발생할 수 있는 단점이 있는 반면, 제안하는 방법은 첫번째 보고에서 한꺼번에 레퍼런스 셀의 품질을 보고하기에 지연이 없고, 네트워크(예를 들어, LPP server)가 언제나 최적의 reference셀을 선택할 수 있는 장점이 있다.
계속해서, 레퍼런스 셀의 품질 정보는 OTDOA-MeasQuality 를 포함할 수 있고, OTDOA-MeasQuality는 OTDOA 측정의 불확실성에 대한 단말의 가장 좋은 추정값을 포함할 수 있다.
실시예
2
네트워크가 판단하에 레퍼런스 셀이 변경될 가능성이 있는 단말에게만 물리계층 또는 상위계층 시그널을 통하여 레퍼런스 셀의 측정 품질을 보고하도록 할 수 있다. 네트워크는 특정 단말에게 물리계층 또는 상위계층 신호로 레퍼런스 셀의 측정 품질을 보고하도록 지시할 수 있고, 지시된 단말은 최초 보고(도 8에서 실선인 부분) 레퍼런스 셀의 측정 품질을 보고하거나, 추가 보고에서 레퍼런스 셀의 측정 품질을 보고하는 것이다.
이와 같이 구성함으로써, 측정 품질 보고에 있어서 비효율성을 개선할 수 있다. 네트워크가 optional하게 레퍼런스 셀의 품질을 궤환할 경우 OTDOA에 참여하는 모든 단말들이 추가적인 궤환 과정을 통하여 레퍼런스 셀의 품질을 서버로 보고하여야 하고, 레퍼런스 셀의 품질을 궤환을 무적인 것으로 설정할 경우 모든 단말이 최초 보고에서 레퍼런스 셀의 측정 품질을 보고 해야 하므로 시그널링의 비효율을 초래한다. 상기 구성은 이와 같은 시그널링의 비효율성을 개선한다.
실시예 2가 실시예 1과 다른 점은 UE중에서 특정 UE만 레퍼런스 셀의 측정 품질을 보고하도록 네트워크가 지시할 수 있다는 점이고, 네트워크는 시그널링을 하였기 때문에 단말이 제대로 레퍼런스 셀의 측정 품질을 보고하는지를 파악하여 error case를 판별할 수 있다.
실시예
3
Multiple reference cell information을 구성(configure)하고 multiple references 또는 선택된 레퍼런스 셀 (예를 들면 SNR이 가장 좋은 cell을 레퍼런스 셀로 선택)에 대해서 RSTD 측정값을 UE가 보고하도록 구성할 수 있다.
단말은 네트워크가 configure한 모든 레퍼런스 셀에 대한 RSTD 및 관련 정보를 보고할 수 있다. 이를 위해 UE는 레퍼런스 셀 다수에 대한 RSTD를 계산/보고 처리를 할 수 있는지 capability에 대한 정보를 서버로 시그널링 할 수 있다.
네트워크는 UE의 capability에 따라 몇 개의 레퍼런스 셀을 configure할 지 결정할 수 있다.
또는, 단말이 다수의 레퍼런스 셀중에 가장 좋은 것을 선택하고 선택된 레퍼런스 셀에 대한 RSTD및 관련 정보를 보고할 수 있다.
현재 OTDOA의 RSTD측정 방식을 고려해보면 최소 160ms주기로 전송되는 PRS occasion에서 최대 6개의 subframe에서 전송되는 PRS를 측정하여 서빙셀과 주변셀들사이의 RSTD를 측정한다. 즉 하나의 PRS occasion에서는 일부 셀의 RSTD만을 측정할 수 있다. 이때 특정 셀의 RSTD는 서로 다른 PRS occasion에서 측정한 TOA를 사용하여 측정하는 경우가 발생할 수 있다. 따라서 이러한 경우에는 시간 차이로 인하여 부정확한 RSTD를 측정할 가능성이 존재한다. 특히 단말의 이동성이 큰 경우에는 특정 레퍼런스 셀에 대한 RSTD만 궤환하는 방식은 많은 누적된 TOA오차를 포함할 수 있게 된다. 제안하는 방식에 따르면 여러 레퍼런스 셀에 대한 RSTD값을 연산하여 궤환하기 때문에 특정 PRS occasion마다 레퍼런스 셀을 변경하여 RSTD를 측정하여 궤환할 수도 있고, PRS occasion시간 차이가 적은 레퍼런스 셀을 적절이 선택하여 RSTD를 측정할 수도 있다. 또한 네트웍이 여러 레퍼런스셀에 대한 RSTD값을 활용하여 위치 추정 연산을 수행할 수 있기 때문에 RSTD측정의 다이버시티 (다양성)를 얻을 수 있다.
실시예
4
UE중에서 GPS나 셀룰러기반 혹은 블루투스 (비콘 등등) 기반 positioning을 통하여 자신의 위치를 알고 있는 단말은 앵커 UE가 될 수 있다. 이러한 앵커 UE가 사전에 정해진 reference signal (DMRS, synchronization signal, SRS, PRACH preamble등등)을 전송할 수 있다.
타겟 UE (위치를 찾고자 하는 UE)는 다수 UE, eNB등의 신호를 수신하여 수신된 신호의 timing difference를 측정하여 이를 네트워크로 보고할 수 있다. 여러 개의 앵커 UE들 중에서 레퍼런스 앵커 UE를 선택할 때 특정 앵커 UE를 eNB나 특정 UE (타겟 UE혹은 앵커 UE혹은 다른 특정 UE)가 지시할 수 있다. 기지국이 여러 개의 레퍼런스 앵커 UE list를 시그널링 하고, UE는 다수개의 레퍼런스 앵커 UE의 RSTD를 측정하여 보고할 수 있다. 또는, 기지국이 여러 개의 레퍼런스 앵커 UE list를 시그널링 하고, UE는 채널 상태가 가장 좋은 레퍼런스 앵커 UE를 선택하고 이에 대한 RSTD를 측정하여 보고할 수도 있다.
또는 단말은 RSTD 결과와 레퍼런스 셀혹은 단말에 대한 수신 신호 quality, RSTD measurement quality, RSRP, RSRQ 중 전체 또는 일부를 네트워크로 물리계층/상위계층 신호로 보고하여 네트워크가 레퍼런스 셀을 변경하게 할 수도 있다.
이하에서는 Wifi나 블루투스 비콘의 RSSI 측정을 활용하여 단말의 위치를 측위하는 방법에서 단말의 RF고유 특성에 의한 위치 측위 오차를 최소화하기 위한 방법에 대해 설명한다. 특히, Wifi AP의 (beacon) RSSI와 해당 AP에 대한 MAC 어드레스(AP의 위치, AP를 지시할 수 있는 어드레스, ID 또는 bit sequence)를 eNB나 특정 AP로 궤환하는 방식을 고려할 수 있다. 이때 Wifi의 RSSI를 Wifi AP로 궤환하는 것이 아니라, eNB로 궤환하는 이유는 특정 Wifi AP는 신호 측정은 가능하지만 데이터 송수신을 위한 접속은 불가능할 수 있기 때문이다. 이러한 경우 eNB로 주변 Wifi신호의 측정 (예를 들어, RSSI, MAC 어드레스)를 궤환 하는 방식이 효과적일 수 있다. 이하에서는 Wifi신호의 RSSI 측정결과를 보고할 때, 단말의 RF특성에 따른 오차를 경감할 수 있는 방법에 대해 설명한다.
RSSI와 더불어 일정 time window 내의 평균 RSSI를 보고하도록 할 수 있다. 여기서 window size는 사전에 정해질 수도 있고, 네트워크에 의해 물리계층 또는 상위계층 신호로 Wifi RSSI를 측정하는 단말에게 시그널링 될 수도 있다. Wifi AP의 RSSI를 측정할 때에는, 단말의 RF특성에 따라 RSSI가 다르게 측정될 수 있는데, 이때 각 위치별 RSSI의 평균대비 상대적인 차이는 단말의 RF특성과 무관하게 측정될 수 있다. 단말 RF특성에 따른 RSSI 측정의 불확실성을 없애기 위하여, RSSI평균을 함께 보고 하게 할 수 있다.
또는, normalized RSSI를 보고하게 할 수 있다. RSSI와 그 평균을 함께 궤환하는 방식과 비교하여, 궤환양을 줄이기 위하여 애초에 normalized RSSI를 궤환하는 방법이다. 즉 사전에 설정되거나 네트워크에 의해 시그널링 된 window내에서 RSSI의 평균을 측정하고, 특정 위치에서 normalized된 즉, 측정된 RSSI/RSSI평균 값을 궤환하는 것이다.
또는, AP (access point간) RSSI 차이를 보고 하게 할 수 있다. 이를 위해 네트워크는 레퍼런스 AP의 MAC 어드레스나 레퍼런스 AP의 정보를 단말에게 시그널링할 수도 있고, 또는 단말이 레퍼런스 AP의 MAC 어드레스를 설정하여 eNB로 궤환할 수도 있다. 예를 들어 3개의 AP가 관측이 될 경우 단말은 AP 1을 레퍼런스 AP로 정하고, RSSI_2-RSSI_1, RSSI_3-RSSI_1값을 eNB로 궤환하는 것이다.
Single AP에 대해서 보고할 때에는 RSSI 또는 normalized RSSI 또는 RSSI + (특정 time window내의) 평균 RSSI 를 보고하고, Multiple AP에 대해서 보고할 때에는 다수개 AP의 RSSI 차이를 하게 할 수 있다 이는 단일 AP인 경우에는 normalized RSSI를 보고하여 수신 RF특성에 따른 거리 환산 오차를 줄이고, 여러 AP가 관측되는 경우에는 AP간 RSSI 차이를 궤환하여, 단말 RF특성에 따른 거리 환산 오차를 줄이는 방식이다.
상기 설명에서는 수신 RF특성에 따른 오차를 줄이기 위한 방법을 설명하였는데, 송신 AP의 RF특성에 따른 거리 환산 오차가 발생할 수도 있다. 일례로 제조사 A에서 생산한 AP는 5dBm신호 송신시 1m거리에서 4dBm이 관측되는데, 제조사 B에서 생산한 AP는 5dBm신호 송신시 1m거리에서 3dBm이 관측될 수도 있다. 이는 송신 RF특성에 따라 수신 전력이 상이하게 관측되기 때문인데, 이러한 문제를 해결하기 위하여 송신 AP는 자신의 안테나 포트에서 관측되는 실효 송신 전력 또는 송신 AP와 X (여기서 X는 사전에 정해진 거리, 일례로 X=1일 수 있음)m떨어진 거리에서 관측한 실효 전력 값을 물리계층 또는 상위계층 신호로 수신 단말에게 알려주도록 할 수 있다
본 발명의
실시예에
의한 장치 구성
도 9은 본 발명의 실시 형태에 따른 전송포인트 장치 및 단말 장치의 구성을 도시한 도면이다.
도 9을 참조하여 본 발명에 따른 전송포인트 장치(10)는, 수신장치(11), 전송장치(12), 프로세서(13), 메모리(14) 및 복수개의 안테나(15)를 포함할 수 있다. 복수개의 안테나(15)는 MIMO 송수신을 지원하는 전송포인트 장치를 의미한다. 수신장치(11)은 단말로부터의 상향링크 상의 각종 신호, 데이터 및 정보를 수신할 수 있다. 전송장치(12)은 단말로의 하향링크 상의 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서(13)는 전송포인트 장치(10) 전반의 동작을 제어할 수 있다.
본 발명의 일 실시예에 따른 전송포인트 장치(10)의 프로세서(13)는, 앞서 설명된 각 실시예들에서 필요한 사항들을 처리할 수 있다.
전송포인트 장치(10)의 프로세서(13)는 그 외에도 전송포인트 장치(10)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리(14)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
계속해서 도 9을 참조하면 본 발명에 따른 단말 장치(20)는, 수신장치(21), 전송장치(22), 프로세서(23), 메모리(24) 및 복수개의 안테나(25)를 포함할 수 있다. 복수개의 안테나(25)는 MIMO 송수신을 지원하는 단말 장치를 의미한다. 수신장치(21)은 기지국으로부터의 하향링크 상의 각종 신호, 데이터 및 정보를 수신할 수 있다. 전송장치(22)은 기지국으로의 상향링크 상의 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서(23)는 단말 장치(20) 전반의 동작을 제어할 수 있다.
본 발명의 일 실시예에 따른 단말 장치(20)의 프로세서(23)는 앞서 설명된 각 실시예들에서 필요한 사항들을 처리할 수 있다.
단말 장치(20)의 프로세서(23)는 그 외에도 단말 장치(20)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리(24)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
위와 같은 전송포인트 장치 및 단말 장치의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
또한, 도 9에 대한 설명에 있어서 전송포인트 장치(10)에 대한 설명은 하향링크 전송 주체 또는 상향링크 수신 주체로서의 중계기 장치에 대해서도 동일하게 적용될 수 있고, 단말 장치(20)에 대한 설명은 하향링크 수신 주체 또는 상향링크 전송 주체로서의 중계기 장치에 대해서도 동일하게 적용될 수 있다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
상술한 바와 같은 본 발명의 실시형태들은 다양한 이동통신 시스템에 적용될 수 있다.
Claims (14)
- 무선통신시스템에서 단말이 OTDOA (Observed Time Difference Of Arrival) 에 관련된 동작을 수행하는 방법에 있어서,서버로부터 ProvideAssistanceData 메시지를 수신하는 단계;상기 서버로부터 RequestLocationInformation 메시지를 수신하는 단계;상기 RequestLocationInformation 메시지를 수신한 후, 레퍼런스 셀을 기준으로 RSTD (Reference Signal Time Difference Measurement)를 측정하는 단계; 및상기 RSTD 측정 결과를 상기 서버로 전송하는 단계;를 포함하며,상기 레퍼런스 셀은 상기 ProvideAssistanceData에 포함된 정보에서 지시되는 레퍼런스 셀 또는 상기 ProvideAssistanceData에 포함된 정보에서 지시되는 복수의 셀 중 상기 단말이 선택한 것인. OTDOA 관련 동작 수행 방법.
- 제1항에 있어서,상기 단말은 상기 복수의 레퍼런스 셀 중, 상기 단말에게 가장 가까운 셀을 레퍼런스 셀로 선택하는, OTDOA 관련 동작 수행 방법.
- 제1항에 있어서,상기 단말은 상기 복수의 레퍼런스 셀 중, 신호강도가 가장 좋은 셀을 레퍼런스 셀로 선택하는, OTDOA 관련 동작 수행 방법.
- 제1항에 있어서,상기 RSTD 측정 결과는 ProvideLocationInformation 메시지에 포함된 것인, OTDOA 관련 동작 수행 방법.
- 제1항에 있어서,상기 ProvideLocationInformation 메시지는 상기 레퍼런스 셀의 품질 정보를 반드시 포함하는, OTDOA 관련 동작 수행 방법.
- 제5항에 있어서,상기 레퍼런스 셀의 품질 정보는 OTDOA-MeasQuality 를 포함하는, OTDOA 관련 동작 수행 방법.
- 제6항에 있어서,상기 OTDOA-MeasQuality는 OTDOA 측정의 불확실성에 대한 상기 단말의 가장 좋은 추정값을 포함하는, OTDOA 관련 동작 수행 방법.
- 무선통신시스템에서 OTDOA (Observed Time Difference Of Arrival) 에 관련된 동작을 수행하는 단말 장치에 있어서,송신 장치와 수신 장치; 및프로세서를 포함하고,상기 프로세서는, 서버로부터 ProvideAssistanceData 메시지를 수신하고, 상기 서버로부터 RequestLocationInformation 메시지를 수신하고, 상기 RequestLocationInformation 메시지를 수신한 후, 레퍼런스 셀을 기준으로 RSTD(Reference Signal Time Difference Measurement)를 측정하며, 상기 RSTD 측정 결과를 상기 서버로 전송하고,상기 레퍼런스 셀은 상기 ProvideAssistanceData에 포함된 정보에서 지시되는 레퍼런스 셀 또는 상기 ProvideAssistanceData에 포함된 정보에서 지시되는 복수의 셀 중 상기 단말이 선택한 것인, 단말 장치.
- 제8항에 있어서,상기 단말은 상기 복수의 레퍼런스 셀 중, 상기 단말에게 가장 가까운 셀을 레퍼런스 셀로 선택하는, 단말 장치.
- 제8항에 있어서,상기 단말은 상기 복수의 레퍼런스 셀 중, 신호강도가 가장 좋은 셀을 레퍼런스 셀로 선택하는, 단말 장치.
- 제8항에 있어서,상기 RSTD 측정 결과는 ProvideLocationInformation 메시지에 포함된 것인, 단말 장치.
- 제11항에 있어서,상기 ProvideLocationInformation 메시지는 상기 레퍼런스 셀의 품질 정보를 반드시 포함하는, 단말 장치.
- 제12항에 있어서,상기 레퍼런스 셀의 품질 정보는 OTDOA-MeasQuality 를 포함하는, 단말 장치.
- 제13항에 있어서,상기 OTDOA-MeasQuality는 OTDOA 측정의 불확실성에 대한 상기 단말의 가장 좋은 추정값을 포함하는, 단말 장치.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16755958.2A EP3264838A4 (en) | 2015-02-27 | 2016-02-29 | Method for performing otdoa-related operations in wireless communication system |
US15/553,828 US10935629B2 (en) | 2015-02-27 | 2016-02-29 | Method for performing OTDOA-related operations in wireless communication system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562121502P | 2015-02-27 | 2015-02-27 | |
US62/121,502 | 2015-02-27 | ||
US201562144918P | 2015-04-08 | 2015-04-08 | |
US62/144,918 | 2015-04-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016137308A1 true WO2016137308A1 (ko) | 2016-09-01 |
Family
ID=56788702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/002026 WO2016137308A1 (ko) | 2015-02-27 | 2016-02-29 | 무선 통신 시스템에서 otdoa 관련 동작 수행 방법 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10935629B2 (ko) |
EP (1) | EP3264838A4 (ko) |
WO (1) | WO2016137308A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108811007A (zh) * | 2017-05-05 | 2018-11-13 | 中兴通讯股份有限公司 | Otdoa定位的辅助数据配置方法、装置及系统 |
WO2023287190A1 (ko) * | 2021-07-13 | 2023-01-19 | 엘지전자 주식회사 | 무선통신시스템에서 사이드링크 리모트 ue의 측위에 관련된 동작 방법 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AR109331A1 (es) * | 2016-08-12 | 2018-11-21 | Ericsson Telefon Ab L M | Control de puntos de transmisión de referencia para mediciones rstd |
CN110635876B (zh) * | 2018-06-22 | 2020-11-06 | 维沃移动通信有限公司 | Nr系统的定位参考信号配置、接收方法和设备 |
US11412400B2 (en) * | 2018-10-01 | 2022-08-09 | Nokia Technologies Oy | Method for positioning reference design |
CN111562546B (zh) * | 2019-02-14 | 2022-10-28 | 大唐移动通信设备有限公司 | 一种定位方法、装置、系统、终端、lmf实体及介质 |
CN115278765A (zh) * | 2019-07-04 | 2022-11-01 | 大唐移动通信设备有限公司 | 信号传输方法及装置 |
CN112532360B (zh) | 2019-08-30 | 2022-08-09 | 华为技术有限公司 | 发送定位参考信号的方法和相关装置 |
US10863400B1 (en) * | 2019-09-27 | 2020-12-08 | Juniper Networks, Inc. | Wireless terminal roaming |
CN114762402A (zh) * | 2019-12-17 | 2022-07-15 | 华为技术有限公司 | 一种定位方法及装置 |
US12120544B2 (en) * | 2020-05-15 | 2024-10-15 | Qualcomm Incorporated | Reducing the overhead of reporting measurements and transmission-reception point (TRP) identifiers in positioning state information (PSI) |
KR20230107670A (ko) * | 2020-11-24 | 2023-07-17 | 후아웨이 테크놀러지 컴퍼니 리미티드 | 포지셔닝 방법 및 통신 장치 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120008431A (ko) * | 2010-07-16 | 2012-01-30 | 엘지전자 주식회사 | 무선 통신 시스템에서 위치 결정 방법 및 장치 |
KR20120053941A (ko) * | 2010-11-17 | 2012-05-29 | 엘지전자 주식회사 | 무선 통신 시스템에서 위치 결정 방법 및 장치 |
KR20140089249A (ko) * | 2013-01-04 | 2014-07-14 | 주식회사 케이티 | 무선 신호 처리 장치와 위치 측정 장치, 및 그의 위치 측정 방법 |
KR20150016930A (ko) * | 2012-05-14 | 2015-02-13 | 엘지전자 주식회사 | 무선 통신 시스템에서 위치 측정 방법 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9084216B2 (en) * | 2009-11-20 | 2015-07-14 | Qualcomm Incorporated | Method and apparatus for enhancement of cell ID-based position determination in TD-SCDMA multimode terminals |
RU2567377C2 (ru) * | 2010-08-16 | 2015-11-10 | Телефонактиеболагет Л М Эрикссон (Пабл) | Узлы и способы для улучшения позиционирования |
US8903415B2 (en) * | 2011-01-19 | 2014-12-02 | Telefonaktiebolaget Lm Ericsson | User equipment, a positioning node and methods therein |
US8862067B2 (en) | 2012-03-27 | 2014-10-14 | Microsoft Corporation | Proximate beacon identification |
US20130285856A1 (en) * | 2012-04-30 | 2013-10-31 | Qualcomm Incorporated | Position and Uncertainty Determination Using Staggered Reception of Position Reference Signals |
US9651653B2 (en) * | 2012-12-24 | 2017-05-16 | Qualcomm Incorporated | Positioning reference signal (PRS) generation for multiple transmit antenna systems |
-
2016
- 2016-02-29 WO PCT/KR2016/002026 patent/WO2016137308A1/ko active Application Filing
- 2016-02-29 US US15/553,828 patent/US10935629B2/en active Active
- 2016-02-29 EP EP16755958.2A patent/EP3264838A4/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120008431A (ko) * | 2010-07-16 | 2012-01-30 | 엘지전자 주식회사 | 무선 통신 시스템에서 위치 결정 방법 및 장치 |
KR20120053941A (ko) * | 2010-11-17 | 2012-05-29 | 엘지전자 주식회사 | 무선 통신 시스템에서 위치 결정 방법 및 장치 |
KR20150016930A (ko) * | 2012-05-14 | 2015-02-13 | 엘지전자 주식회사 | 무선 통신 시스템에서 위치 측정 방법 |
KR20140089249A (ko) * | 2013-01-04 | 2014-07-14 | 주식회사 케이티 | 무선 신호 처리 장치와 위치 측정 장치, 및 그의 위치 측정 방법 |
Non-Patent Citations (2)
Title |
---|
"3GPP; TSGRAN; Evolved Universal Terrestrial Radio Access (E-UTRA); LTE Positioning Protocol (LPP) (Release 9", 3GPP TS 36.355 V9.2.1, 22 June 2010 (2010-06-22), XP050441988 * |
See also references of EP3264838A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108811007A (zh) * | 2017-05-05 | 2018-11-13 | 中兴通讯股份有限公司 | Otdoa定位的辅助数据配置方法、装置及系统 |
EP3621351A4 (en) * | 2017-05-05 | 2020-12-16 | ZTE Corporation | SYSTEM, DEVICE, APPARATUS, PROCESS FOR CONFIGURING POSITIONING AID DATA, AND INFORMATION MEDIA |
WO2023287190A1 (ko) * | 2021-07-13 | 2023-01-19 | 엘지전자 주식회사 | 무선통신시스템에서 사이드링크 리모트 ue의 측위에 관련된 동작 방법 |
Also Published As
Publication number | Publication date |
---|---|
US10935629B2 (en) | 2021-03-02 |
US20180024225A1 (en) | 2018-01-25 |
EP3264838A1 (en) | 2018-01-03 |
EP3264838A4 (en) | 2018-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016032308A1 (ko) | 무선 통신 시스템에서 otdoa 관련 동작 수행 방법 | |
WO2016137308A1 (ko) | 무선 통신 시스템에서 otdoa 관련 동작 수행 방법 | |
WO2016159716A1 (ko) | 무선 통신 시스템에서 레인징 관련 동작 수행 방법 | |
WO2016032201A2 (ko) | 무선 통신 시스템에서 통신을 중계하는 방법 및 이를 수행하는 장치 | |
WO2016171495A1 (ko) | 무선 통신 시스템에서 장치 대 장치 통신 단말의 릴레이 선택 및 신호 송수신 방법 및 장치 | |
WO2017171447A2 (ko) | 무선 통신 시스템에서 gnss 타이밍을 사용하는 ue의 사이드링크 신호 송수신 방법 | |
WO2013172588A1 (ko) | 무선 통신 시스템에서 위치 측정 방법 | |
WO2015088276A1 (ko) | 무선 통신 시스템에서 측정 수행 방법 및 장치 | |
WO2016167635A1 (ko) | 무선 통신 시스템에서 d2d 신호의 측정/릴레이 선택 방법 및 장치 | |
WO2014116039A1 (ko) | 무선 통신 시스템에서 기지국 간 채널 측정 방법 및 장치 | |
WO2016032202A2 (ko) | 무선 통신 시스템에서 동기 신호를 송수신하는 방법 및 이를 수행하는 장치 | |
WO2018131934A1 (ko) | 무선 통신 시스템에서 위치 에러 정보에 기초한 빔 탐색 또는 빔 전송을 수행하는 방법 및 장치 | |
WO2014171742A1 (ko) | 무선 통신 시스템에서 채널상태정보 보고 방법 및 장치 | |
WO2016182294A1 (ko) | 무선 통신 시스템에서 장치 대 장치 통신 단말의 디스커버리 신호 송수신 방법 및 장치 | |
WO2013109036A1 (ko) | 무선 통신 시스템에서 복조참조신호 전송 방법 및 장치 | |
WO2016036219A1 (ko) | 무선 통신 시스템에서 비 면허 대역 상의 신호 송수신 방법 및 장치 | |
WO2014107091A1 (ko) | 무선 통신 시스템에서 장치 대 장치 통신 수행 방법 및 장치 | |
WO2014209035A1 (ko) | 무선 통신 시스템에서 제어정보 획득 방법 및 장치 | |
WO2016032305A1 (en) | Method and apparatus for handling zero power channel state information reference signal configurations for discovery signals in wireless communication system | |
WO2016010399A1 (ko) | 무선 통신 시스템에서 하향링크 신호 전송 방법 및 장치 | |
WO2016159713A1 (ko) | 무선 통신 시스템에서 rstd 측정 관련 동작 수행 방법 | |
WO2016163816A1 (ko) | 무선 통신 시스템에서 디스커버리 신호를 송수신 하는 방법 및 장치 | |
WO2017095095A1 (ko) | 무선 통신 시스템에서 장치 대 장치 통신 단말의 qcl과 관련된 신호 송수신 방법 및 장치 | |
WO2013105821A1 (ko) | 무선 통신 시스템에서 신호 수신 방법 및 장치 | |
WO2016093547A1 (ko) | 무선 통신 시스템에서 디바이스들 간의 통신을 수행하는 방법 및 이를 수행하는 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16755958 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15553828 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2016755958 Country of ref document: EP |