WO2016137074A1 - 레이더 장치 및 그의 주파수 간섭 제거방법 - Google Patents

레이더 장치 및 그의 주파수 간섭 제거방법 Download PDF

Info

Publication number
WO2016137074A1
WO2016137074A1 PCT/KR2015/010187 KR2015010187W WO2016137074A1 WO 2016137074 A1 WO2016137074 A1 WO 2016137074A1 KR 2015010187 W KR2015010187 W KR 2015010187W WO 2016137074 A1 WO2016137074 A1 WO 2016137074A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
target
frequency
interference
frequency interference
Prior art date
Application number
PCT/KR2015/010187
Other languages
English (en)
French (fr)
Inventor
양희진
최수호
Original Assignee
양희진
최수호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 양희진, 최수호 filed Critical 양희진
Priority to US15/545,470 priority Critical patent/US10509105B2/en
Publication of WO2016137074A1 publication Critical patent/WO2016137074A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/36Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • G01S13/38Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal wherein more than one modulation frequency is used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0232Avoidance by frequency multiplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • H04B1/0028Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at baseband stage
    • H04B1/0032Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at baseband stage with analogue quadrature frequency conversion to and from the baseband
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/08Modifications for reducing interference; Modifications for reducing effects due to line faults ; Receiver end arrangements for detecting or overcoming line faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9325Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles for inter-vehicle distance regulation, e.g. navigating in platoons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/358Receivers using I/Q processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/715Interference-related aspects
    • H04B2001/7154Interference-related aspects with means for preventing interference

Definitions

  • the present invention relates to a radar device and a method for canceling frequency interference thereof, and more particularly, to a radar device and a method for canceling frequency interference between the radar devices using the same frequency band.
  • the radar sensor is a sensing means for measuring distance, velocity, and angle information by transmitting a radio wave using microwaves and receiving some reflection signals reflected from a target.
  • radar sensors include Pulsed Doppler Radar, Frequency Modulated Continuous Wave (FMCW), Stepped-Frequency Continous Wave (SFCW), Frequency Target information is measured using various radar waveforms such as a frequency shift keying (FSK) radar.
  • FMCW Frequency Modulated Continuous Wave
  • SFCW Stepped-Frequency Continous Wave
  • FSK frequency shift keying
  • pulsed Doppler radars are used for long-range detection radar, and FMCW / SFCW / FSK Radar is used for near-field detection.
  • radar sensors have been applied to vehicle radar devices to prevent collisions while driving and to support safe driving.
  • FIG. 1 is a block diagram of a radar apparatus using an FMCW radar waveform.
  • the radar apparatus 10 includes an antenna unit 11 which transmits a radar signal around a vehicle and receives a signal reflected from another vehicle, and generates the transmission signal and generates a transmission signal.
  • RF (radio frequency) unit 12 for converting the frequency of the received signal and amplifying the received signal and generating a control signal to generate a transmission signal and processing the received signal to include a distance to the target, the speed and angle of the target
  • a digital unit 13 for determining whether a collision with another vehicle occurs based on radar detection information.
  • the RF unit 12 amplifies a voltage control oscillator 21 for outputting a transmission signal of a desired oscillation frequency according to the control signal of the digital unit 13, and a low noise amplifier for amplifying a signal received from the antenna unit 11 and attenuating noise.
  • the power divider 23 for distributing the transmission signal generated by the voltage controlled oscillator 21, the in-phase component and the quadrature component of the received signal output from the low noise amplifier 22 and the signal distributed in the power divider 22 are a pair of mixers 24, each of which is divided into in-phase and quadrature components of the received signal, and a pair of gain amplifiers that amplify the gain of each component output from the pair of mixers 24 ( 25) and a pair of band pass filters 26 for removing noise by filtering each amplified component over a predetermined frequency band.
  • the digital unit 13 outputs a control signal to generate a transmission signal and a signal processing unit 31 for signal processing the received signal, a DAC 32 for converting a control signal in a digital signal form into an analog signal, and an analog signal form. It may include an ADC (33) for converting the received signal into a digital signal.
  • pseudo hopping code time hopping by assigning a pseudo noise code (hereinafter referred to as a 'PN code') and a barker code in advance for each user in advance.
  • a pseudo noise code hereinafter referred to as a 'PN code'
  • barker code A technique for avoiding frequency interference by applying a pattern has been developed.
  • Korean Patent Registration No. 10-1135982 (published April 17, 2012, hereinafter referred to as' Patent Document 1 ') and Korean Patent Registration No. 10-1348548 (published January 16, 2014, hereinafter referred to as' Patent Document 2 ') discloses a frequency interference cancellation technique of a radar sensor according to the prior art.
  • Figures 2 to 4 is an exemplary view of a method for canceling the frequency interference of the radar according to the prior art.
  • FIG. 2 illustrates a state in which time synchronization is perfect when frequency interference is eliminated by using a frequency hopping method in the FMCW radar according to the prior art
  • FIG. 3 and FIG. The state in which the ghost target is generated is shown.
  • Time / Frequency transmission signals used by FMCW-based radar sensors can be pre-allocated and operated for each user by a specific code.
  • FIGS. 3 and 4 are diagrams for explaining the case where the noise level shown in FIGS. 3 and 4 increases and the ghost target, respectively.
  • the noise level may increase or a ghost target may occur.
  • FIGS. 7 and 8 are diagrams illustrating frequency interference characteristics when continuous wave frequency interference occurs and when different FMCW waveforms exist, respectively, and FIGS. 9 and 10 illustrate a case where a noise level rises and a ghost target, respectively. This is an exemplary view when this occurs.
  • the frequency of the interference signal is generated at a fixed position.
  • the avoidance method using the frequency and time hopping according to the prior art is applicable when the time synchronization between the radar sensors is perfectly matched, otherwise it is continuous along the time axis when the other party's radar signal is received due to interference. Looks like it's flowing
  • a time synchronization problem is solved by adjusting time synchronization using a GPS or a communication modem.
  • additional modules such as GPS or communication modem
  • An object of the present invention is to solve the problems as described above, and to provide a radar device and a method of canceling the frequency interference thereof, which can avoid and eliminate the frequency interference of the radar sensors using the same frequency.
  • Another object of the present invention is to provide a radar device and a method for canceling frequency interference thereof, which can solve the noise level rise and ghost target generation problems caused by frequency interference in consideration of the time synchronization problem of the radar sensor.
  • the radar device includes an antenna unit for transmitting a radar transmission signal to the surroundings and receiving a signal reflected from the target, generating the transmission signal and the frequency of the transmission signal and the reception signal RF unit for converting and amplifying a received signal, a signal processor for generating a control signal to generate the transmission signal, and removing frequency interference from the received signal of the RF unit, and radar detection information and radar detection using an output signal of the signal processor. And a control unit for accumulating information and generating tracking information, wherein the signal processing unit discriminates frequency interference characteristics based on an envelope detection result of the received signal of the RF unit, removes a ghost target, and generates a frequency interference for raising a noise level. It characterized in that it comprises a frequency interference cancellation unit for removing.
  • the method of eliminating the frequency interference of the radar device comprises the steps of (a) detecting the envelope of the received signal sampled by the ADC using an envelope detector, (b) envelope detection Determining the interference signal characteristic using the result; and (c) removing the frequency interference signal included in the received signal based on the interference signal characteristic identified in step (b).
  • the radar device and the method of eliminating frequency interference thereof according to the present invention it is possible to adaptively remove the frequency interference signal by another radar device according to the discriminated frequency interference characteristics by using the envelope detection result. Is obtained.
  • the ghost target is removed by counting the minimum number of targets common to the frequency hopping repetition intervals based on the actual number of targets and removing the remainder from the target counting. The effect that the interference signal can be eliminated is obtained.
  • the transmission signal processing load for hopping can be reduced as compared with the case of performing frequency hopping only according to the preset hopping pattern. Is obtained. .
  • the envelope detection value exceeds the threshold level, an effect of removing the interference signal through zero padding during the frequency interference signal time interval and restoring it into a continuous signal by using an extrapolation technique is obtained.
  • the effect of reducing the noise level raised by the frequency interference and increasing the detection probability for the actual target signal can be obtained.
  • the hopping pattern is changed in real time according to the radar frequency interference environment, so that the hopping pattern adaptively optimized for the frequency interference environment can be obtained.
  • 1 is a configuration diagram of a radar apparatus using an FMCW radar waveform.
  • 2 to 4 is an exemplary diagram of a method for canceling the frequency interference of the radar according to the prior art
  • 5 and 6 are diagrams illustrating the case where the noise level shown in FIGS. 3 and 4 increases and the ghost target, respectively;
  • FIG. 7 and 8 are diagrams illustrating frequency interference characteristics when continuous wave frequency interference occurs and different FMCW waveforms exist.
  • 9 and 10 are each an example of the case where the noise level rises and the ghost target occurs
  • FIG. 11 is a block diagram of a digital unit applied to a radar device according to an embodiment of the present invention.
  • FIG. 12 is a flowchart illustrating a step-by-step method for canceling frequency interference of a radar device according to an embodiment of the present invention
  • FIG. 13 is an exemplary diagram of a digital envelope detection process using an envelope detector
  • FIG. 17 illustrates frequency interference for raising noise levels.
  • the present invention is not necessarily limited thereto, and the present invention may be applied to a radar device for near field detection and detection, which is used for various purposes such as an ITS (Intelligent Transportation System) traffic measurement radar, a radar level meter, a near displacement measurement radar, and a near field sensitive control radar. It should be noted that.
  • ITS Intelligent Transportation System
  • the present invention can be applied not only to an FMCW radar device having a single antenna structure, but also to an FMCW radar device having a multi-antenna structure or a plurality of antenna arrays, as well as to various radar devices such as SFCW and FSK. .
  • FIG. 11 is a block diagram of a digital unit applied to a radar apparatus according to an exemplary embodiment of the present invention.
  • the radar apparatus 10 As shown in FIGS. 1 and 11, the radar apparatus 10 according to an exemplary embodiment of the present invention generates a control signal to generate an antenna unit 11, an RF unit 12, a transmission signal, and an RF unit ( And a control unit 14 for accumulating radar detection information and radar detection information using the output signal of the signal processing unit 31 to remove frequency interference from the received signal of 12). .
  • the signal processing unit 31 includes a signal generation unit 34 for generating the control signal and a frequency interference cancellation unit 35 for removing the frequency interference signal from the received signal of the RF unit 12 by using a digital signal processing method. can do.
  • the radar device 10 clips the target signal input to the ADC 33 from the DAC 32, the ADC 33, and the RF unit 12 to the ADC 33. It may further include a signal clipping unit 15 to protect and a storage unit 16 for storing the signal sampled by the ADC (33).
  • the received power of the target signal is a signal that transmits radio waves to hit and return to the target, it is inversely proportional to the square of the distance between the target and the radar device 10.
  • the interference signal is inversely proportional to the square of the distance between the radar device 10 and the relative radar device as the signal received in one direction is radiated from the relative radar device (not shown).
  • the interference signal is generally received with a reception power much stronger than the signal power of the received target signal.
  • the low noise amplifier 22 or the ADC 33 is a large signal of the interference signal. Power levels can damage it.
  • the signal clipping unit 15 clips the interference signal of a signal power level larger than the signal power level of a general target signal before inputting the ADC 33, thereby preventing damage to the ADC 33. Can be protected by prevention.
  • the storage unit 16 stores a signal sampled by the ADC 33.
  • the storage unit 33 is provided as a main memory for storing the radar detection information and the accumulated information generated by the drive program and the control unit 14 for driving the vehicle radar device 10, or as a separate memory from the main memory May be
  • the frequency interference remover 35 includes an envelope detector 41 for detecting an envelope of a received signal output from the ADC, and a comparison unit for comparing the detected value with a preset threshold level. 42, a ghost target removing unit 43 for removing a ghost target from the signal below the threshold level, an interference signal removing unit 44 for removing an interference signal included in a signal exceeding the threshold level, and a ghost target; It may include a target detection unit 45 for detecting the final target from which the interference signal has been removed and a frequency hopping unit 46 for hopping the frequency of the transmission signal in a different frequency band only for the signal from which the interference has been detected among the detected final targets. have.
  • FIG. 12 is a flowchart illustrating a step-by-step method for canceling frequency interference of a radar apparatus according to an exemplary embodiment of the present invention.
  • step S10 of FIG. 12 the signal clipping unit 15 clips the received signal output from the RF unit 12 and causes an interference signal having a large signal power level compared to the signal power level of a general target signal before the ADC 33 is input. It protects the ADC 33 safely by preventing damage.
  • the ADC 33 receives and receives the received signal from the signal clipping unit 15 (S12), and the sampled received signal is stored in the storage unit 16 (S14).
  • the envelope detector 41 detects the envelope of the received signal (S16), and the comparison unit 42 compares the threshold level with the value k detected by the envelope detector 41 (S18).
  • FIG. 13 is an exemplary diagram of a digital envelope detection process using an envelope detector.
  • the envelope detector 41 is provided as a digital integrator having a smoothing factor ⁇ as shown in FIG. 13, and minimizes the influence of noise in the envelope detection process through the smoothing factor ⁇ . This makes it insensitive to noise.
  • 14 and 15 illustrate examples in which the data stored in the storage unit 16, that is, the up / down beat frequency of the received signal is greater than the threshold level and less than or equal to the threshold level, respectively.
  • a signal having a signal level greater than the threshold level is a case where frequency interference in a cross form occurs.
  • the frequency interference canceller 35 determines that there is a frequency interference that raises the noise level.
  • the frequency interference remover 35 may determine that a ghost target exists or a normal target signal is received without generating frequency interference. .
  • the frequency interference cancellation unit 35 applies a frequency hopping technique to the radar transmission signal, and even if the time synchronization is not corrected using the envelope detector 41, whether the current interference frequency interference characteristic is a noise level rise or not. You can tell if a target has occurred.
  • the ghost target when the ghost target exists in the state where the frequency hopping pattern is applied, the ghost target may be generated only for a specific hopping pattern and the ghost target may not occur in the remaining hopping patterns.
  • FIG. 16 illustrates frequency interference in which a ghost target occurs for a specific frequency hopping signal.
  • the frequency interference cancellation unit 35 When the detection result of the comparison in step S18 is less than or equal to the threshold level, the frequency interference cancellation unit 35 generates a ghost target A for a specific frequency hopping signal, as shown in FIG. Distinguish ghost targets from real targets by using features that do not occur.
  • the ghost target removal unit 43 performs target detection processing on all of the received signals existing during the frequency hopping repetition interval in FIG. 16.
  • the frequency hopping repetition interval is set as one section for analyzing frequency interference, and the frequency interference removing unit 35 may determine the type of frequency interference according to the received signal of the set frequency hopping repetition interval.
  • the signal does not exist ghost target There are more signals in which ghost targets exist.
  • FFT fast Fourier transform
  • CFAR radar detection
  • the ghost target removing unit 43 counts the common minimum number of targets based on the actual number of targets to detect the ghost target (S20).
  • the ghost target removing unit 43 considers all targets other than the common target information set as a reference as ghost targets and removes the ghost targets by judging it as a hopping signal in which frequency interference occurs (S22). ).
  • the frequency hopping unit 46 may only hop to a different frequency band in the next frequency hopping repetition period, which is considered as a ghost target.
  • the present invention can reduce the transmission signal processing load for hopping by changing the hopping pattern only for the hopping signal classified as the ghost target, compared to the case where the frequency hopping is performed only according to the preset hopping pattern.
  • the present invention can operate a hopping pattern adaptively optimized for the frequency interference environment by varying the hopping pattern in real time according to the radar frequency interference environment.
  • the frequency interference remover 35 may determine that a frequency interference that raises a noise level is generated for a hopping signal having a section in which the output value k of the envelope detector 41 is higher than a threshold level.
  • the interference signal removing unit 44 uses the output value k of the envelope detector to set the frequency. Time location and time length information at which interference occurs can be obtained.
  • 17 is a diagram illustrating frequency interference for raising the noise level.
  • the interference signal removal unit 44 removes the interference signal through zero padding that inserts '0' as a signal level during the frequency interference time interval. (S24).
  • the interference signal removing unit 44 restores a signal by applying an extrapolation technique to maintain continuity in a continuous signal form for continuity with the remaining neighboring signals in the removed frequency interference signal time interval (S26). .
  • the present invention can reduce the noise level raised by the frequency interference by performing zero padding during the frequency interference time interval.
  • the present invention by restoring the signal by applying an extrapolation technique to the frequency interference time interval, it is possible to further reduce the noise level raised by the frequency interference than when only the zero padding is performed to increase the detection probability for the actual target signal Can be.
  • the frequency hopping unit 46 may avoid the frequency interference occurring at the present time in real time by hopping only the frequency hopping pattern that raises the noise level to another frequency band in the next frequency hopping repetition period.
  • step S28 the target detection unit 45 finally detects the target from the target signal from which the ghost target has been removed in step S22 and the target signal from which frequency interference for raising the noise level is removed in steps S24 and S26.
  • step S30 the frequency hopping unit 46 hops the frequencies of the transmission signal to different frequency bands only for signals in which interference occurs among the detected final targets.
  • the controller 14 generates a radar detection signal including the speed, distance, and direction information of the target by using the target signal from which the frequency interference signal has been removed, and accumulates the distance information with the target, the speed information of the target, and the like.
  • a tracking signal including direction information may be generated to determine whether a collision of the vehicle occurs and to alert.
  • the present invention can adaptively remove the frequency interference signal by the other radar device according to the discriminated frequency interference characteristics using the envelope detection result.
  • a vehicle radar device having an anti-collision and accident recording function of the vehicle has been described, but the present invention is not limited thereto, and the ITS traffic measurement radar, radar level meter, and short-range displacement measuring radar It can be changed to be applied to the radar sensor for near field detection and detection used for various purposes such as near field sensitive control radar.
  • the FMCW radar sensor having a single antenna structure has been described.
  • the present invention is not limited thereto, as well as the FMCW radar device having a single antenna structure, as well as the FMCW radar device having a multi-antenna structure. And, it can be changed to be applied to the radar device of various methods such as SFCW, FSK.
  • the present invention is applied to a radar device and a frequency interference cancellation technique thereof, in which a hopping pattern is changed in real time according to a radar frequency interference environment to operate a hopping pattern that is adaptively optimized for a frequency interference environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

레이더 장치 및 그의 주파수 간섭 제거방법에 관한 것으로, 주변으로 레이더 송신신호를 송신하고 표적으로부터 반사되는 신호를 수신하는 안테나부, 상기 송신신호를 발생하고 송신신호와 수신신호의 주파수를 변환하며 수신신호를 증폭하는 RF부, 상기 송신신호를 발생하도록 제어신호를 발생하고 상기 RF부의 수신신호에서 주파수 간섭을 제거하는 신호처리부 및 상기 신호처리부의 출력신호를 이용해서 레이더 검지정보와 레이더 검지정보를 누적해서 추적정보를 생성하는 제어부를 포함하는 구성을 마련하여, 레이더 주파수 간섭환경에 따라 호핑 패턴을 실시간으로 가변시켜 주파수 간섭 환경에 적응적으로 최적화된 호핑패턴을 운용할 수 있다는 효과가 얻어진다.

Description

레이더 장치 및 그의 주파수 간섭 제거방법
본 발명은 레이더 장치 및 그의 주파수 간섭 제거방법에 관한 것으로, 더욱 상세하게는 동일 주파수 대역을 사용하는 레이더 장치 간의 주파수 간섭을 제거하는 레이더 장치 및 그의 주파수 간섭 제거방법에 관한 것이다.
레이더 센서는 마이크로파(microwave)를 이용하여 전파를 송신하고 표적에서 반사된 일부 반사(reflection) 신호를 수신하여 거리, 속도, 각도 정보를 측정하는 감지수단이다.
이러한 레이더 센서는 펄스 도플러 레이더(Pulsed Doppler Radar), 주파수 변조 연속파(Frequency Modulated Continuous Wave, 이하 'FMCW'라 함), 계단형 주파수 연속파(Stepped-Frequency Continous Wave, 이하 'SFCW'라 함), 주파수 편이 방식(Frequency Shift Keying, 이하 'FSK'라 함) 레이더 등의 다양한 레이더 파형(Radar Waveform)을 사용하여 표적정보를 측정한다.
일반적으로, 펄스 도플러 레이더는 장거리 탐지용 레이더로 사용되고, FMCW/SFCW/FSK Radar는 근거리 탐지용으로 사용된다.
최근에 레이더 센서는 주행 중 충돌을 방지하고, 안전운전을 지원하기 위해 차량용 레이더 장치에 적용되고 있다.
예를 들어, 도 1은 FMCW 레이더 파형을 사용하는 레이더 장치의 구성도이다.
종래기술에 따른 레이더 장치(10)는 도 1에 도시된 바와 같이, 차량 주변에 레이더 신호를 송신하고 타 차량으로부터 반사되는 신호를 수신하는 안테나부(11), 상기 송신신호를 발생하고 송신신호와 수신신호의 주파수를 변환하며 수신신호를 증폭하는 RF(radio frequency)부(12) 및 송신신호를 발생하도록 제어신호를 발생하고 수신신호를 신호처리하여 표적과의 거리, 표적의 속도 및 각도를 포함하는 레이더 검지정보에 기초해서 타 차량과의 충돌 발생 여부를 판단하는 디지털부(13)를 포함한다.
RF부(12)는 디지털부(13)의 제어신호에 따라 원하는 발진 주파수의 송신신호를 출력하는 전압 제어 발진기(21), 안테나부(11)에서 수신된 신호를 증폭하고 노이즈를 감쇠하는 저잡음 증폭기(22), 전압 제어 발진기(21)에서 발생한 송신신호를 분배하는 전력 분배기(23), 저잡음 증폭기(22)에서 출력되는 수신신호와 전력 분배기(22)에서 분배된 신호의 동위상 성분 및 직교 성분을 각각 혼합해서 수신신호의 동위상 성분과 직교 성분으로 구분하는 한 쌍의 믹서(24), 한 쌍의 믹서(24)에서 출력되는 각 성분의 게인(gain)을 증폭하는 한 쌍의 게인 증폭기(25) 및 증폭된 각 성분을 미리 설정된 주파수 대역에 대해 필터링해서 노이즈를 제거하는 한 쌍의 밴드패스필터(26)를 포함한다.
디지털부(13)는 송신신호를 발생하도록 제어신호를 출력하고 수신된 신호를 신호처리하는 신호처리부(31), 디지털 신호 형태의 제어신호를 아날로그 신호로 변환하는 DAC(32) 및 아날로그 신호 형태의 수신 신호를 디지털 신호로 변환하는 ADC(33)를 포함할 수 있다.
이와 같이 구성되는 레이더 장치(10)는 77㎓ 대나 24㎓ 대로 설정된 주파수 대역을 사용함에 따라 동일지역 내에 존재하는 경우, 동일 주파수 사용으로 인해 주파수 간섭 문제가 발생한다.
이에 따라, 의사 잡음 부호(pseudo noise code, 이하 'PN 코드'라 함), 바커 코드(Barker Code) 등을 사용자별로 사전에 미리 구분해서 할당하여 주파수 호핑(Frequency Hopping), 시간 호핑 (Time Hopping) 패턴으로 적용하여 주파수 간섭을 회피하는 기술이 개발되고 있다.
대한민국 특허 등록번호 제10-1135982호(2012년 4월 17일 공고, 이하 '특허문헌 1'이라 함) 및 대한민국 특허 등록번호 제10-1348548호(2014년 1월 16일 공고, 이하 '특허문헌 2'라 함) 등에는 종래기술에 따른 레이더 센서의 주파수 간섭제거 기술이 개시되어 있다.
예를 들어, 도 2 내지 도 4는 종래기술에 따른 레이더의 주파수 간섭제거 방법의 예시도이다.
도 2에는 종래기술에 따른 FMCW 레이더에 주파수 호핑 방법을 이용해서 주파수 간섭 제거시 시간 동기가 완벽한 상태가 도시되어 있고, 도 3 및 도 4에는 각각 시간 동기가 맞지 않는 경우에 노이즈 레벨이 상승한 상태 및 고스트 타겟이 발생한 상태가 도시되어 있다.
FMCW 계열의 레이더 센서가 사용하는 시간/주파수(Time/Frequency) 송신 신호는 특정 코드에 의해 사용자별로 사전에 미리 할당하여 운용할 수 있다.
그래서 도 2에 도시된 바와 같이, 레이더별로 서로 다른 주파수 호핑 패턴을 적용하는 경우, 레이더 센서 간 시간 동기(time synchronization)가 완벽히 맞아야 가능하다는 전제가 존재한다.
이로 인해, 시간 동기가 맞지 않은 경우, 도 2에 도시된 바와 같이, 간섭 신호가 시간축을 따라 흘러다니는 것처럼 보임에 따라, 노이즈 레벨이 상승하는 간섭 특징이 나타난다.
이와 함께, 간섭신호의 시간 지연이 연속적으로 발생하여 PN 코드, 바커 코드로 레이더 센서를 분리하더라도, 어느 시점에서는 도 3에 도시된 바와 같은 주파수 간섭이 다시 발생한다.
만약, 시간 지연이 더욱 길어지면, 도 4에 도시된 바와 같이 실제 표적이 있는 것처럼 보이는 고스트 표적(ghost target)이 발생하는 간섭 특징을 갖는 주파수 간섭이 발생한다.
도 5 및 도 6은 각각 도 3 및 도 4에 도시된 노이즈 레벨이 상승하는 경우와 고스트 표적이 발생하는 경우를 설명하는 도면이다.
도 5 및 도 6에 도시된 바와 같이, 시간 동기가 맞지 않아 간섭신호가 시간 축을 따라 흐르는 경우, 노이즈 레벨이 상승하거나, 고스트 표적이 발생하는 2가지 주파수 간섭 특성이 반복적으로 나타난다.
따라서 레이더 신호를 어느 시점에 수신하는가에 따라 노이즈 레벨이 상승할 수도 있고, 고스트 표적이 발생할 수도 있다.
한편, 도 7 및 도 8은 각각 연속파 주파수 간섭이 발생하는 경우와 서로 다른 FMCW 파형이 존재하는 경우의 주파수 간섭 특성의 예시도이고, 도 9 및 도 10은 각각 노이즈 레벨이 상승하는 경우와 고스트 표적이 발생하는 경우의 예시도이다.
도 7에 도시된 바와 같이, 연속파 주파수 간섭이 발생하는 경우, 송신신호와 간섭신호가 크로스(cross) 형태를 이룸에 따라, 노이즈 레벨이 상승하는 현상이 발생한다.
다만, 연속파 간섭의 경우, 시간 동기가 맞지 않아 시간 축을 따라 흘러다니더라도, 간섭신호의 주파수가 고정적인 위치에 발생하는 특징이 있다.
도 8에 도시된 바와 같이, 서로 다른 FMCW 파형을 사용하는 레이더 센서 사이에서는 고스트 표적은 발생하지 않고, 노이즈 레벨만 상승시키는 간섭 특성이 나타난다.
따라서 동종의 레이더 시스템 간의 주파수 간섭 특성은 레이더 센서 간 시간 동기가 맞지 않는 경우, 도 9 및 도 10에 도시된 바와 같이 노이즈 레벨 상승 및 고스트 표적 발생의 2가지 특성이 반복적으로 발생한다.
상기한 바와 같이, 종래기술에 따른 주파수, 시간 호핑을 이용한 회피 방법은 레이더 센서 간 시간 동기가 완벽히 맞는 경우에는 적용 가능하나, 그렇지 않은 경우에는 간섭으로 상대방 레이더 신호를 수신했을 때 시간 축을 따라 연속적으로 흘러 다니는 것처럼 보인다.
그리고 레이더 센서 간의 비동기 특성으로 인해, 미리 할당된 주파수 호핑 패턴을 가지고 운용하더라도 어느 시점에서는 또 다시 주파수 간섭이 발생하는 문제점이 있었다.
또, 대한민국 특허 등록번호 제10-1184622호(2012년 9월 21일 공고, 이하 '특허문헌 3'이라 함)와 같이, GPS나 통신모뎀 등을 이용해서 시간 동기를 맞춤으로써, 시간 동기 문제를 해결하기 위해 방안도 제안되었으나, GPS나 통신모뎀 등의 추가 모듈 적용으로 인해, 레이더 센서의 제조 비용이 상승하는 문제점이 있었다.
또한, 레이더 센서 제조사 별로 시간 동기를 위한 통신/프로토콜 규격을 표준화하는 방법도 있으나, 이는 현실적으로 실현하기 어려움이 있었다.
따라서, 레이더 센서 간 시간 동기가 맞지 않는다고 가정하고, 상기한 2가지 문제가 어떤 시점에 반복적으로 발생하더라도 주파수 간섭을 제거 및 회피할 수 있는 기술의 개발이 요구되고 있다.
본 발명의 목적은 상기한 바와 같은 문제점을 해결하기 위한 것으로, 동일 주파수를 사용하는 레이더 센서들의 주파수 간섭을 회피하고 제거할 수 있는 레이더 장치 및 그의 주파수 간섭 제거방법을 제공하는 것이다.
본 발명의 다른 목적은 레이더 센서의 시간 동기 문제를 고려해서 주파수 간섭에 의한 노이즈 레벨 상승 및 고스트 표적 발생 문제를 해소할 수 있는 레이더 장치 및 그의 주파수 간섭 제거방법을 제공하는 것이다.
상기한 바와 같은 목적을 달성하기 위하여, 본 발명에 따른 레이더 장치는 주변으로 레이더 송신신호를 송신하고 표적으로부터 반사되는 신호를 수신하는 안테나부, 상기 송신신호를 발생하고 송신신호와 수신신호의 주파수를 변환하며 수신신호를 증폭하는 RF부, 상기 송신신호를 발생하도록 제어신호를 발생하고 상기 RF부의 수신신호에서 주파수 간섭을 제거하는 신호처리부 및 상기 신호처리부의 출력신호를 이용해서 레이더 검지정보와 레이더 검지정보를 누적해서 추적정보를 생성하는 제어부를 포함하고, 상기 신호처리부는 상기 RF부의 수신신호의 포락선 검출 결과에 기초해서 주파수 간섭 특성을 구별하여 고스트 표적을 제거하고, 노이즈 레벨을 상승시키는 주파수 간섭을 제거하는 주파수 간섭 제거부를 포함하는 것을 특징으로 한다.
또한, 상기한 바와 같은 목적을 달성하기 위하여, 본 발명에 따른 레이더 장치의 주파수 간섭 제거방법은 (a) 포락선 검출기를 이용해서 ADC에서 샘플링된 수신신호의 포락선을 검출하는 단계, (b) 포락선 검출 결과를 이용해서 간섭 신호 특성을 파악하는 단계 및 (c) 상기 (b)단계에서 파악된 간섭 신호 특성에 기초해서 상기 수신신호에 포함된 주파수 간섭신호를 제거하는 단계를 포함하는 것을 특징으로 한다.
상술한 바와 같이, 본 발명에 따른 레이더 장치 및 그의 주파수 간섭 제거방법에 의하면, 포락선 검출 결과를 이용해서 구별된 주파수 간섭 특성에 따라 적응적으로 타 레이더 장치에 의한 주파수 간섭신호를 제거할 수 있다는 효과가 얻어진다.
즉, 본 발명에 의하면, 포락선 검출 값이 미리 설정된 한계 레벨 이하인 경우, 주파수 호핑 반복 구간에 공통되는 최소 표적 개수를 실제 표적 개수의 기준으로 카운팅하고 나머지를 표적 카운팅에서 제거함으로써, 고스트 표적을 제거하여 간섭신호를 제거할 수 있다는 효과가 얻어진다.
이에 따라, 본 발명에 의하면, 고스트 표적으로 분류된 호핑 신호에 대해서만 호핑 패턴을 변경함으로써, 미리 설정된 호핑 패턴대로만 주파수 호핑을 수행하는 경우에 비해, 호핑을 위한 송신신호 처리 부하를 감소시킬 수 있다는 효과가 얻어진다. .
그리고 본 발명에 의하면, 포락선 검출 값이 한계 레벨을 초과하는 경우, 주파수 간섭 신호 시간 구간동안 제로 패딩을 통해 간섭신호를 제거하고, 외삽 기법을 이용해서 연속적인 신호로 복원할 수 있다는 효과가 얻어진다.
이에 따라, 본 발명에 의하면, 주파수 간섭에 의해 상승한 노이즈 레벨을 감소시키고, 실제 표적 신호에 대한 검출 확률을 높일 수 있다는 효과가 얻어진다.
결과적으로, 본 발명에 의하면, 레이더 주파수 간섭환경에 따라 호핑 패턴을 실시간으로 가변시켜 주파수 간섭 환경에 적응적으로 최적화된 호핑패턴을 운용할 수 있다는 효과가 얻어진다.
도 1은 FMCW 레이더 파형을 사용하는 레이더 장치의 구성도이다.
도 2 내지 도 4는 종래기술에 따른 레이더의 주파수 간섭제거 방법의 예시도,
도 5 및 도 6은 각각 도 3 및 도 4에 도시된 노이즈 레벨이 상승하는 경우와 고스트 표적이 발생하는 경우를 설명하는 도면,
도 7 및 도 8은 각각 연속파 주파수 간섭이 발생하는 경우와 서로 다른 FMCW 파형이 존재하는 경우의 주파수 간섭 특성의 예시도,
도 9 및 도 10은 각각 노이즈 레벨이 상승하는 경우와 고스트 표적이 발생하는 경우의 예시도,
도 11은 본 발명의 바람직한 실시 예에 따른 레이더 장치에 적용되는 디지털부의 블록 구성도,
도 12는 본 발명의 바람직한 실시 예에 따른 레이더 장치의 주파수 간섭 제거방법을 단계별로 설명하는 흐름도,
도 13은 포락선 검출기를 이용한 디지털 포락선 검출 과정의 예시도,
도 14 및 도 15는 FMCW 레이더 장치의 수신신호 그래프,
도 16은 특정 주파수 호핑 신호에 대해 고스트 표적이 발생한 주파수 간섭을 예시한 도면,
도 17은 노이즈 레벨을 상승시키는 주파수 간섭을 예시한 도면.
이하 본 발명의 바람직한 실시 예에 따른 레이더 장치 및 그의 주파수 간섭 제거방법을 첨부된 도면을 참조하여 상세하게 설명한다.
본 실시 예에서는 설명의 편의를 위하여, 차량의 충돌방지 및 사고기록 기능을 갖도록 도 1에 도시된 단일 안테나 구조를 갖는 FMCW 레이더 장치의 구성을 원용하여 설명하기로 한다.
그러나 본 발명은 반드시 이에 한정되는 것은 아니고, ITS(Intelligent Transportation System) 교통량 측정용 레이더, 레이더 레벨미터, 근거리 변위측정 레이더, 근거리 감응제어 레이더 등 다양한 용도로 사용되는 근거리 탐지 및 검출용 레이더 장치에 적용될 수 있음에 유의하여야 한다.
또한, 본 발명은 단일 안테나 구조를 갖는 FMCW 레이더 장치뿐만 아니라, 다중 안테나 구조나 다수의 안테나 배열을 갖는 FMCW 레이더 장치는 물론이고, SFCW, FSK 등 다양한 방식의 레이더 장치에 적용될 수 있음에 유의하여 한다.
도 11은 본 발명의 바람직한 실시 예에 따른 레이더 장치에 적용되는 디지털부의 블록 구성도이다.
본 발명의 바람직한 실시 예에 따른 레이더 장치(10)는 도 1 및 도 11에 도시된 바와 같이, 안테나부(11), RF부(12), 송신신호를 발생하도록 제어신호를 발생하고 RF부(12)의 수신신호에서 주파수 간섭을 제거하는 신호처리부(31) 및 신호처리부(31)의 출력신호를 이용해서 레이더 검지정보와 레이더 검지정보를 누적해서 추적정보를 생성하는 제어부(14)를 포함한다.
신호처리부(31)는 상기 제어신호를 발생하는 신호발생유닛(34)과 RF부(12)의 수신신호에서 디지털 신호처리 방식을 이용해서 주파수 간섭신호를 제거하는 주파수 간섭 제거부(35)를 포함할 수 있다.
이와 함께, 본 발명의 바람직한 실시 예에 따른 레이더 장치(10)는 DAC(32), ADC(33), RF부(12)로부터 ADC(33)에 입력되는 표적신호를 클리핑해서 ADC(33)를 보호하는 신호 클리핑부(15) 및 ADC(33)에서 샘플링된 신호를 저장하는 저장부(16)를 더 포함할 수 있다.
표적신호의 수신 전력은 전파를 송신하여 표적에 맞고 되돌아오는 신호이므로, 표적과 레이더 장치(10) 사이 거리의 4제곱에 반비례한다.
반면, 간섭신호는 상대 레이더 장치(도면 미도시)에서 단 방향으로 방사되는 신호를 수신함에 따라, 레이더 장치(10)와 상대 레이더 장치 사이 거리의 제곱에 반비례한다.
따라서 간섭신호는 일반적으로 수신되는 표적신호의 신호전력 보다 매우 강한 수신전력으로 수신된다.
이러한 간섭신호는 안테나부(11)를 통해 수신되어 RF부(12)의 저잡음 증폭기(22)와 ADC(33)에 입력됨에 따라, 저잡음 증폭기(22)나 ADC(33)는 간섭신호의 큰 신호전력 레벨로 인해 손상될 수 있다.
이러한 문제점을 해소하기 위해, 신호 클리핑부(15)는 ADC(33) 입력 전에 일반적인 표적신호의 신호전력 레벨에 비해 큰 신호전력 레벨의 간섭신호를 클리핑(clipping)함으로써, ADC(33)의 손상을 방지하여 보호할 수 있다.
저장부(16)는 ADC(33)에서 샘플링된 신호를 저장하는 기능을 한다.
이러한 저장부(33)는 차량용 레이더 장치(10)를 구동하는 구동 프로그램과 제어부(14)에서 생성되는 레이더 검지정보 및 누적정보를 저장하는 메인 메모리로 마련되거나, 상기 메인 메모리와 별도의 메모리로 마련될 수도 있다.
주파수 간섭 제거부(35)는 ADC에서 출력되는 수신신호의 포락선을 검출(Envelope Detection)하는 포락선 검출기(Envelope Detector)(41), 검출된 값과 미리 설정된 한계 레벨(Threshold Level)을 비교하는 비교유닛(42), 상기 한계 레벨 이하의 신호에서 고스트 표적을 제거하는 고스트 표적 제거유닛(43), 상기 한계레벨을 초과하는 신호에 포함된 간섭신호를 제거하는 간섭신호 제거유닛(44), 고스트 표적과 간섭신호가 제거된 최종 표적을 검출하는 표적 검출유닛(45) 및 검출된 최종 표적 중에서 간섭이 발생한 신호에 대해서만 서로 다른 주파수 대역으로 송신신호의 주파수를 호핑하는 주파수 호핑유닛(46)을 포함할 수 있다.
다음, 도 12를 참조하여 본 발명의 바람직한 실시 예에 따른 레이더 장치의 주파수 간섭 제거방법을 상세하게 설명한다.
도 12는 본 발명의 바람직한 실시 예에 따른 레이더 장치의 주파수 간섭 제거방법을 단계별로 설명하는 흐름도이다.
도 12의 S10단계에서 신호 클리핑부(15)는 RF부(12)에서 출력되는 수신신호를 클리핑해서 ADC(33) 입력 전에 일반적인 표적신호의 신호전력 레벨에 비해 큰 신호전력 레벨의 간섭신호로 인한 ADC(33)의 손상을 방지하여 안전하게 보호한다.
그러면, ADC(33)는 신호 클리핑부(15)로부터 수신신호를 전달받아 샘플링하고(S12), 샘플링된 수신신호는 저장부(16)에 저장된다(S14).
포락서 검출기(41)는 수신신호의 포락선을 검출하고(S16), 비교유닛(42)은 포락선 검출기(41)에서 검출된 값(k)과 한계 레벨을 비교한다(S18).
도 13은 포락선 검출기를 이용한 디지털 포락선 검출 과정의 예시도이다.
포락선 검출기(41)는 도 13에 도시된 바와 같이, 스무딩 팩터(Smoothing Factor)(α)를 갖는 디지털 방식의 적분기로 마련되고, 상기 스무딩 팩터(α)를 통해 포락선 검출 과정에서 노이즈의 영향을 최소화함으로써, 노이즈에 둔감하게 한다.
도 14 및 도 15는 FMCW 레이더 장치의 수신신호 그래프이다.
도 14 및 도 15에는 각각 저장부(16)에 저장되는 데이터, 즉 수신신호의 업/다운 비트 주파수(Up/Down Beat Frequency)가 한계 레벨보다 큰 경우와 한계 레벨 이하인 경우가 예시되어 있다.
도 14에 도시된 바와 같이, 한계 레벨보다 신호레벨이 큰 신호는 크로스 형태의 주파수 간섭이 발생하는 경우이다.
따라서, 주파수 간섭 제거부(35)는 포락선 검출기(41)를 통해 검출된 값(k)이 특정 한계 레벨보다 큰 경우, 노이즈 레벨을 상승시키는 주파수 간섭이 존재한다고 판단한다.
반면, 도 15에 도시된 바와 같이, 검출된 값(k)이 한계 레벨 이하인 경우, 주파수 간섭 제거부(35)는 고스트 표적이 존재하거나 주파수 간섭 발생 없이 정상적인 표적신호가 수신된 것으로 판단할 수 있다.
그래서 주파수 간섭 제거부(35)는 레이더 송신신호에 주파수 호핑 기법을 적용하고, 포락선 검출기(41)를 이용해서 시간 동기가 맞지 않는 경우에도 현재 영향을 주는 주파수 간섭 특성이 노이즈 레벨 상승이 발생한 것인지 고스트 표적이 발생한 것인지를 구분할 수 있다.
이와 같이 주파수 호핑 패턴을 적용한 상태에서 고스트 표적이 존재하는 경우, 특정 호핑 패턴에 대해서만 발생하고 나머지 호핑 패턴에서는 고스트 표적이 발생하지 않을 수 있다.
도 16은 특정 주파수 호핑 신호에 대해 고스트 표적이 발생한 주파수 간섭을 예시한 도면이다.
주파수 간섭 제거부(35)는 S18단계의 비교결과 검출값이 한계 레벨 이하인 경우, 도 16에 도시된 바와 같이 특정 주파수 호핑 신호에 대해 고스트 표적(A)이 발생하고, 일부 호핑 패턴은 고스트 표적이 발생하지 않는 특징을 이용해서 고스트 표적과 실제 표적을 구별한다.
그래서 고스트 표적 제거유닛(43)은 도 16에서 주파수 호핑 반복 구간(Frequency Hopping Repetition Interval) 동안에 존재하는 수신신호에 대해 모두 표적 검출 프로세싱을 수행한다.
상기 주파수 호핑 반복 구간은 주파수 간섭을 분석하는 하나의 구간으로 설정되고, 주파수 간섭 제거부(35)는 설정된 주파수 호핑 반복 구간의 수신신호에 따라 주파수 간섭 종류를 파악할 수 있다.
한편, 주파수 호핑 반복 구간에 존재하는 신호들에 대해 각각 고속 푸리에 변환(fast Fourier transform, FFT)과 레이더 검출(CFAR, Constant False Alarm)을 통한 표적검출 프로세싱을 수행하면, 고스트 표적이 존재하지 않는 신호보다 고스트 표적이 존재하는 신호의 개수가 더 많다.
따라서, 고스트 표적 제거유닛(43)은 주파수 호핑 반복 구간의 표적 신호를 검출했을 때, 공통되는 최소 표적 개수를 실제 표적 개수의 기준으로 카운팅하여 고스트 표적을 검출한다(S20).
그리고 고스트 표적 제거유닛(43)은 기준으로 설정된 공통되는 표적정보 이외에 존재하는 표적을 모두 고스트 표적으로 간주하여 표적 카운팅에서 제외하고, 주파수 간섭이 발생하는 호핑 신호로 판단해서 고스트 표적을 제거한다(S22).
*이에 따라, 주파수 호핑유닛(46)은 이후 고스트 표적으로 간주된 호핑패턴만 다음 주파수 호핑 반복 구간에서 다른 주파수 대역으로 호핑할 수 있다.
이와 같이, 본 발명은 고스트 표적으로 분류된 호핑 신호에 대해서만 호핑 패턴을 변경함으로써, 미리 설정된 호핑 패턴대로만 주파수 호핑을 수행하는 경우에 비해, 호핑을 위한 송신신호 처리 부하를 감소시킬 수 있다.
또한, 본 발명은 레이더 주파수 간섭환경에 따라 호핑 패턴을 실시간으로 가변시켜 주파수 간섭 환경에 적응적으로 최적화된 호핑패턴을 운용할 수 있다.
한편, 주파수 간섭 제거부(35)는 포락선 검출기(41)의 출력 값(k)이 한계 레벨보다 높은 구간이 존재하는 호핑 신호에 대해 노이즈 레벨을 상승시키는 주파수 간섭이 발생한 상태로 판단할 수 있다.
즉, S18단계의 비교결과 검출 값(k)이 한계 레벨을 초과하여 노이즈 레벨을 상승시키는 주파수 간섭이 존재하는 경우, 간섭신호 제거유닛(44)은 포락선 검출기의 출력 값(k)을 이용해서 주파수 간섭이 발생하는 시간위치와 시간길이 정보를 획득할 수 있다.
도 17은 노이즈 레벨을 상승시키는 주파수 간섭을 예시한 도면이다.
도 17에 도시된 바와 같이 주파수 간섭 시간 구간이 검출되면, 간섭신호 제거유닛(44)은 주파수 간섭 시간 구간동안 '0'을 신호레벨로 삽입하는 제로 패딩(Zero Padding)을 통해 간섭신호를 제거한다(S24).
그리고 간섭신호 제거유닛(44)은 제거된 주파수 간섭 신호 시간 구간에 나머지 주변 신호와의 연속성을 위해, 외삽(Extrapolation) 기법을 적용하여 신호를 복원해서 끊김없는 연속적인 신호 형태로 유지한다(S26).
이와 같이, 본 발명은 주파수 간섭 시간 구간이 검출되면, 해당 주파수 간섭 시간 구간동안 제로 패딩을 수행함으로써, 주파수 간섭에 의해 상승한 노이즈 레벨을 감소시킬 수 있다.
이와 함께, 본 발명은 주파수 간섭 시간 구간에 외삽 기법을 적용해서 신호를 복원함으로써, 제로 패딩만 수행했을 때 보다 주파수 간섭에 의해 상승한 노이즈 레벨을 더욱 감소시킬 수 있어 실제 표적 신호에 대한 검출 확률을 높일 수 있다.
여기서, 주파수 호핑유닛(46)은 노이즈 레벨을 상승시키는 주파수 호핑패턴만 다음 주파수 호핑 반복 구간에서 다른 주파수 대역으로 호핑하여 현재 시점에서 발생하는 주파수 간섭을 실시간으로 회피할 수 있다.
즉, S28단계에서 표적 검출유닛(45)은 S22단계에서 고스트 표적이 제거된 표적신호와 S24 및 S26단계에서 노이즈 레벨을 상승시키는 주파수 간섭이 제거된 표적신호에서 최종적으로 표적을 검출한다.
그러면, S30단계에서 주파수 호핑유닛(46)은 검출된 검출된 최종 표적 중에서 간섭이 발생한 신호에 대해서만 송신신호의 주파수를 서로 다른 주파수 대역으로 호핑한다.
이후, 제어부(14)는 주파수 간섭신호가 제거된 표적신호를 이용해서 표적의 속도, 거리, 방향 정보를 포함하는 레이더 검지신호를 생성하고, 이를 누적해서 표적과의 거리정보, 표적의 속도정보 및 방향 정보를 포함하는 추적신호를 생성해서 차량의 충돌 발생 여부를 판단하여 경고할 수 있다.
상기한 바와 같은 과정을 통하여, 본 발명은 포락선 검출 결과를 이용해서 구별된 주파수 간섭 특성에 따라 적응적으로 타 레이더 장치에 의한 주파수 간섭신호를 제거할 수 있다.
이상 본 발명자에 의해서 이루어진 발명을 상기 실시 예에 따라 구체적으로 설명하였지만, 본 발명은 상기 실시 예에 한정되는 것은 아니고, 그 요지를 이탈하지 않는 범위에서 여러 가지로 변경 가능한 것은 물론이다.
즉, 상기의 실시 예에서는 차량의 충돌방지 및 사고기록 기능을 갖는 차량용 레이더 장치를 이용해서 설명하였으나, 본 발명은 반드시 이에 한정되는 것은 아니고, ITS 교통량 측정용 레이더, 레이더 레벨미터, 근거리 변위측정 레이더, 근거리 감응제어 레이더 등 다양한 용도로 사용되는 근거리 탐지 및 검출용 레이더 센서에 적용할 수 있도록 변경될 수 있다.
그리고 상기의 실시 예에서는 단일 안테나 구조를 갖는 FMCW 레이더 센서를 이용해서 설명하였으나, 본 발명은 반드시 이에 한정되는 것은 아니며, 단일 안테나 구조의 FMCW 레이더 장치뿐만 아니라, 다중 안테나 구조를 갖는 FMCW 레이더 장치는 물론이고, SFCW, FSK 등 다양한 방식의 레이더 장치에 적용되도록 변경될 수 있다.
본 발명은 레이더 주파수 간섭 환경에 따라 호핑 패턴을 실시간으로 가변시켜 주파수 간섭 환경에 적응적으로 최적화된 호핑패턴을 운용하는 레이더 장치 및 그의 주파수 간섭 제거 기술에 적용된다.

Claims (8)

  1. 주변으로 레이더 송신신호를 송신하고 표적으로부터 반사되는 신호를 수신하는 안테나부,
    상기 송신신호를 발생하고 송신신호와 수신신호의 주파수를 변환하며 수신신호를 증폭하는 RF부,
    상기 송신신호를 발생하도록 제어신호를 발생하고 상기 RF부의 수신신호에서 주파수 간섭을 제거하는 신호처리부 및
    상기 신호처리부의 출력신호를 이용해서 레이더 검지정보와 레이더 검지정보를 누적해서 추적정보를 생성하는 제어부를 포함하고,
    상기 신호처리부는 상기 RF부의 수신신호의 포락선 검출 값과 미리 설정된 한계 레벨을 비교해서 주파수 간섭 특성을 구별하고, 구별된 주파수 간섭 특성에 따라 고스트 표적과 노이즈 레벨을 상승시키는 주파수 간섭을 제거하는 주파수 간섭 제거부를 포함하며,
    상기 주파수 간섭 제거부는 고스트 표적 발생으로 인해 검출된 값이 상기 한계 레벨 이하인 경우 주파수 호핑 반복 구간에 공통되는 최소 표적 개수를 실제 표적 개수의 기준으로 카운팅하고 나머지 표적 카운팅을 제거해서 고스트 표적을 제거하고,
    주파수 간섭에 인한 노이즈 레벨 상승으로 인해 상기 검출된 값이 상기 한계 레벨을 초과하는 경우, 주파수 간섭 신호 시간 구간동안 제로 패딩을 통해 간섭신호를 제거하며, 외삽 기법을 이용해서 연속적인 신호로 복원하여 주파수 간섭에 의해 상승한 노이즈 레벨을 감소시키는 것을 특징으로 하는 레이더 장치.
  2. 제1항에 있어서, 상기 주파수 간섭 제거부는
    상기 수신신호의 포락선을 검출하는 포락선 검출기,
    상기 포락선 검출기에서 검출된 값과 미리 설정된 한계 레벨을 비교하는 비교유닛,
    상기 비교유닛의 비교결과, 상기 한계 레벨 이하의 신호에서 고스트 표적을 제거하는 고스트 표적 제거유닛,
    상기 한계 레벨을 초과하는 신호에 포함된 노이즈 레벨을 상승시키는 간섭신호를 제거하는 간섭신호 제거유닛,
    상기 고스트 표적과 간섭신호가 제거된 최종 표적을 검출하는 표적 검출유닛 및
    검출된 최종 표적 중에서 간섭이 발생한 신호에 대해서만 서로 다른 주파수 대역으로 송신신호의 주파수를 호핑하는 주파수 호핑유닛을 포함하는 것을 특징으로 하는 레이더 장치.
  3. 제2항에 있어서,
    상기 수신신호를 샘플링해서 상기 포락선 검출기로 전달하는 ADC 및
    상기 ADC의 손상을 방지하도록 표적신호에 비해 큰 신호전력을 갖는 간섭신호를 클리핑하는 신호 클리핑부를 더 포함하는 것을 특징으로 하는 레이더 장치.
  4. (a) 포락선 검출기를 이용해서 ADC에서 샘플링된 수신신호의 포락선을 검출하는 단계,
    (b) 검출된 포락선 검출 값과 미리 설정된 한계 레벨을 비교해서 간섭 신호 특성을 파악하는 단계,
    (c) 상기 (b)단계에서 간섭 신호 특성을 파악한 결과, 고스트 표적 발생으로 인해 검출된 값이 상기 한계 레빌 이하인 경우 주파수 호핑 반복 구간에 공통되는 최소 표적 개수를 실제 표적 개수의 기준으로 카운팅하고 나머지 표적 카운팅을 제거해서 고스트 표적을 제거하는 단계 및
    (d) 상기 간섭 신호 특성을 파악한 결과, 주파수 간섭에 의한 노이즈 레벨 상승으로 인해 상기 검출된 값이 상기 한계 레벨을 초과하는 경우, 주파수 간섭 신호 시간 구간동안 제로 패딩을 통해 간섭신호를 제거하고, 외삽 기법을 이용해서 연속적인 신호로 복원하여 주파수 간섭에 의해 상승한 노이즈 레벨을 감소시켜는 단계를 포함하여
    상기 수신신호에 포함된 주파수 간섭신호를 제거하는 것을 특징으로 하는 레이더 장치의 주파수 간섭 제거방법.
  5. 제4항에 있어서, 상기 (c)단계는
    (c1) 상기 한계 레벨 이하의 수신신호에서 고스트 표적을 검출하는 단계 및
    (c2) 상기 검출된 고스트 표적을 제거하는 단계를 포함하고,
    상기 (c1)단계는 미리 설정된 주파수 호핑 반복 구간에 존재하는 신호들에 대해 각각 고속 푸리에 변환과 레이더 검출을 통한 표적검출 프로세싱을 수행해서 공통되는 최소 표적 개수를 실제 표적 개수의 기준으로 카운팅하여 고스트 표적을 검출하며,
    상기 (c2)단계는 상기 (c1)단계에서 기준으로 설정된 공통되는 표적정보 이외에 존재하는 표적을 모두 고스트 표적으로 간주하여 표적 카운팅에서 제외하고, 주파수 간섭이 발생하는 호핑 신호로 판단해서 고스트 표적을 제거하는 것을 특징으로 하는 레이더 장치의 주파수 간섭 제거방법.
  6. 제5항에 있어서, 상기 (d)단계는
    (d1) 상기 한계 레벨을 초과하는 수신신호에서 주파수 간섭이 발생하는 시간위치와 시간길이 정보를 획득하는 단계,
    (d2) 획득된 주파수 간섭 시간 구간동안 제로 패딩을 통해 간섭신호를 제거하는 단계 및
    (d3) 제거된 주파수 간섭 신호 시간 구간에 외삽 기법을 적용하여 신호를 복원해서 연속적인 신호 형태를 유지하는 단계를 포함하는 것을 특징으로 하는 레이더 장치의 주파수 간섭 제거방법.
  7. 제4항 내지 제6항 중 어느 한 항에 있어서,
    (e) 주파수 간섭 신호가 제거된 표적신호에서 최종적으로 표적을 검출하고, 간섭신호가 발생한 주파수 호핑 패턴만 다음 주파수 호핑 반복 구간에서 다른 주파수 대역으로 호핑하여 주파수 간섭을 실시간으로 회피하는 단계를 더 포함하는 것을 특징으로 하는 레이더 장치의 주파수 간섭 제거방법.
  8. 제7항에 있어서,
    (f) 상기 (a)단계 이전에 ADC에 입력되는 수신신호를 클리핑해서 표적신호에 비해 큰 신호전력 레벨을 갖는 간섭신호로 인한 상기 ADC의 손상을 방지하여 보호하는 단계를 더 포함하는 것을 특징으로 하는 레이더 장치의 주파수 간섭 제거방법.
PCT/KR2015/010187 2015-02-24 2015-09-25 레이더 장치 및 그의 주파수 간섭 제거방법 WO2016137074A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/545,470 US10509105B2 (en) 2015-02-24 2015-09-25 Radar device and frequency interference cancellation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0025933 2015-02-24
KR1020150025933A KR101551811B1 (ko) 2014-05-19 2015-02-24 레이더 장치 및 그의 주파수 간섭 제거방법

Publications (1)

Publication Number Publication Date
WO2016137074A1 true WO2016137074A1 (ko) 2016-09-01

Family

ID=56789976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010187 WO2016137074A1 (ko) 2015-02-24 2015-09-25 레이더 장치 및 그의 주파수 간섭 제거방법

Country Status (3)

Country Link
US (1) US10509105B2 (ko)
KR (1) KR101551811B1 (ko)
WO (1) WO2016137074A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109462422A (zh) * 2018-11-15 2019-03-12 同方电子科技有限公司 一种实现超短波跳频信号跟踪干扰的系统和方法
SE2000154A1 (sv) * 2020-09-08 2022-03-09 Anders Widman Dopplerkompenserad radarstörning med störteknik chirp stealer

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10261179B2 (en) 2016-04-07 2019-04-16 Uhnder, Inc. Software defined automotive radar
US9846228B2 (en) 2016-04-07 2017-12-19 Uhnder, Inc. Software defined automotive radar systems
US11002829B2 (en) * 2016-04-15 2021-05-11 Mediatek Inc. Radar interference mitigation method and apparatus
WO2017187278A1 (en) * 2016-04-25 2017-11-02 Uhnder, Inc. Pmcw – pmcw interference mitigation
KR101784607B1 (ko) * 2016-05-02 2017-10-12 연세대학교 산학협력단 다중 레이더 시스템에서의 간섭 신호 제거 장치 및 방법
US9753121B1 (en) 2016-06-20 2017-09-05 Uhnder, Inc. Power control for improved near-far performance of radar systems
CA2953984A1 (en) * 2017-01-09 2018-07-09 Oz Optics Ltd. Flexible low-cost mm-wave sfcw radar based imaging inspection system
US9971020B1 (en) 2017-02-10 2018-05-15 Uhnder, Inc. Radar data buffering
US10908272B2 (en) 2017-02-10 2021-02-02 Uhnder, Inc. Reduced complexity FFT-based correlation for automotive radar
US11454697B2 (en) 2017-02-10 2022-09-27 Uhnder, Inc. Increasing performance of a receive pipeline of a radar with memory optimization
KR102144498B1 (ko) * 2017-06-13 2020-08-13 서울대학교 산학협력단 차량용 fmcw 레이더 간섭 제거를 위한 차량 주행 제어 시스템 및 간섭 제거 방법
KR102144504B1 (ko) * 2017-06-23 2020-08-13 서울대학교 산학렵력단 비트 신호 특성을 이용한 차량용 fmcw 레이더 간섭 제거를 위한 차량 주행 제어 시스템 및 간섭 제거 방법
CN107517069B (zh) * 2017-08-22 2020-06-02 深圳市华信天线技术有限公司 跳频同步的方法、装置、接收机以及发射机
US11105890B2 (en) * 2017-12-14 2021-08-31 Uhnder, Inc. Frequency modulated signal cancellation in variable power mode for radar applications
DE102018200753A1 (de) * 2018-01-18 2019-07-18 Robert Bosch Gmbh Verfahren und Vorrichtung zum Korrigieren eines Radarsignals und Radarvorrichtung
US11187783B2 (en) * 2018-08-14 2021-11-30 Nxp B.V. Radar systems and methods for operating radar systems
US11204410B2 (en) * 2019-02-11 2021-12-21 Nxp B.V. Radar-based communication
US20200293860A1 (en) * 2019-03-11 2020-09-17 Infineon Technologies Ag Classifying information using spiking neural network
CN109828245B (zh) * 2019-03-21 2022-11-11 西安电子科技大学 雷达干扰策略的确定方法、装置、计算机设备及存储介质
CN110334591B (zh) * 2019-05-24 2022-07-15 西华大学 一种基于聚类分析的无人机跳频信号检测及识别方法
DE102019114551A1 (de) 2019-05-29 2020-12-03 Infineon Technologies Ag Detektion interferenzbedingter störungen bei fmcw-radarsystemen
CN110971335B (zh) * 2019-11-25 2023-12-22 维沃移动通信有限公司 一种信号处理方法、装置和电子设备
US11454715B2 (en) 2019-12-06 2022-09-27 Infineon Technologies Ag Radar signal modulator with bandwidth compensation and frequency offset sequence
WO2021144711A2 (en) 2020-01-13 2021-07-22 Uhnder, Inc. Method and system for intefrence management for digital radars
WO2021212410A1 (zh) * 2020-04-23 2021-10-28 华为技术有限公司 用于控制雷达跳频的方法和装置以及雷达测速方法和雷达
US11550027B2 (en) 2020-05-04 2023-01-10 Nxp B.V. Predistortion technique for joint radar/communication systems
CN112068081B (zh) * 2020-09-10 2022-07-12 西安电子科技大学 基于循环前缀的ofdm频率捷变发射信号设计方法
DE112021006960T5 (de) * 2021-01-28 2023-12-14 Keysight Technologies Inc. System und verfahren zum emulieren von echosignalen von emulierten zielen mit reduzierter störung durch reflexion
CN112986947B (zh) * 2021-04-13 2021-07-23 南京雷电信息技术有限公司 一种基于机器学习的点迹过滤处理方法
US20240280664A1 (en) * 2021-08-24 2024-08-22 Qualcomm Incorporated Hopping pattern utilization for multi-radar coexistence
US12007465B2 (en) 2021-10-19 2024-06-11 Nxp B.V. Radar apparatus and method with content embedded in the radar signal
KR20230123811A (ko) 2022-02-17 2023-08-24 주식회사 라스윈 인접 교통 레이더간 간섭 방지시스템 및 이를 이용한 인접 교통 레이더간 간섭 방지 방법
CN114781191B (zh) * 2022-06-16 2022-09-09 航天宏图信息技术股份有限公司 一种复杂电磁环境的雷达探测能力仿真方法及装置
CN115047417B (zh) * 2022-08-15 2022-10-25 成都锐新科技有限公司 一种模拟雷达回波及干扰的方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09274079A (ja) * 1996-04-04 1997-10-21 Hitachi Ltd 電波レーダ装置
JP2002156444A (ja) * 2000-11-16 2002-05-31 Mitsubishi Electric Corp レーダ装置の干渉波除去装置
JP2008180703A (ja) * 2006-12-27 2008-08-07 Denso It Laboratory Inc 電子走査式レーダ装置
KR20110056747A (ko) * 2009-11-23 2011-05-31 국방과학연구소 재밍 신호의 간섭 제거 장치 및 방법, 그리고 이를 행하는 프로그램을 기록한 컴퓨터로 읽을 수 있는 매체, 그리고 재밍 신호의 간섭 제거 장치를 이용한 재밍 신호 발생 시스템
KR101184622B1 (ko) * 2012-02-29 2012-09-21 국방과학연구소 차량용 레이더의 간섭 배제 장치 및 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7215278B2 (en) * 2003-11-16 2007-05-08 Preco Electronics, Inc Radar frequency hopping
DE602006017505D1 (de) * 2006-02-21 2010-11-25 Siemens Milltronics Proc Instr Verfahren zur Verarbeitung eines Echoprofils und Impulsechomesssystem
JP5478010B2 (ja) * 2007-11-12 2014-04-23 株式会社デンソーアイティーラボラトリ 電子走査式レーダ装置
EP2226650B1 (de) * 2009-03-04 2011-08-17 Sick Ag Optoelektronischer Sensor
KR101135982B1 (ko) 2010-04-14 2012-04-17 국방과학연구소 주파수 변조 연속파 레이다에서 간섭 제거를 위한 시스템 간 동기화 방법
KR101199202B1 (ko) * 2011-01-04 2012-11-07 주식회사 만도 타깃 물체 감지 방법 및 레이더 장치
KR101199169B1 (ko) * 2011-01-12 2012-11-07 주식회사 만도 타깃물체 감지 방법 및 레이더 장치
US8786338B2 (en) * 2011-11-14 2014-07-22 Texas Instruments Incorporated Delay locked loop
US8958764B1 (en) * 2012-10-29 2015-02-17 Hrl Laboratories, Llc Method and apparatus for detecting amplitudes and/or phases of recognizable signals in a frequency band or spectrum of interest
KR101348548B1 (ko) 2012-11-09 2014-01-16 재단법인대구경북과학기술원 레이더 간섭 제거 장치 및 그 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09274079A (ja) * 1996-04-04 1997-10-21 Hitachi Ltd 電波レーダ装置
JP2002156444A (ja) * 2000-11-16 2002-05-31 Mitsubishi Electric Corp レーダ装置の干渉波除去装置
JP2008180703A (ja) * 2006-12-27 2008-08-07 Denso It Laboratory Inc 電子走査式レーダ装置
KR20110056747A (ko) * 2009-11-23 2011-05-31 국방과학연구소 재밍 신호의 간섭 제거 장치 및 방법, 그리고 이를 행하는 프로그램을 기록한 컴퓨터로 읽을 수 있는 매체, 그리고 재밍 신호의 간섭 제거 장치를 이용한 재밍 신호 발생 시스템
KR101184622B1 (ko) * 2012-02-29 2012-09-21 국방과학연구소 차량용 레이더의 간섭 배제 장치 및 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109462422A (zh) * 2018-11-15 2019-03-12 同方电子科技有限公司 一种实现超短波跳频信号跟踪干扰的系统和方法
CN109462422B (zh) * 2018-11-15 2021-06-18 同方电子科技有限公司 一种实现超短波跳频信号跟踪干扰的系统和方法
SE2000154A1 (sv) * 2020-09-08 2022-03-09 Anders Widman Dopplerkompenserad radarstörning med störteknik chirp stealer

Also Published As

Publication number Publication date
KR101551811B1 (ko) 2015-09-10
US10509105B2 (en) 2019-12-17
US20180003799A1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
WO2016137074A1 (ko) 레이더 장치 및 그의 주파수 간섭 제거방법
KR101199169B1 (ko) 타깃물체 감지 방법 및 레이더 장치
EP0058205B1 (en) Ultrasonic warning system
JPH07234275A (ja) 周波数変調連続波および階段周波数レーダシステム用の近距離マイクロ波検出
KR101505044B1 (ko) 레이더 장치 및 그의 근거리 음영지역 제거방법
US20090091492A1 (en) Detection and mitigation radio frequency memory (DRFM)-based interference in synthetic aperture radar (SAR) images
CN112462337A (zh) 干扰信号的检测方法、抑制相互干扰的方法、抑制相互干扰的装置、传感器及设备
US7053819B2 (en) Pulse wave radar device
US5465405A (en) Apparatus and method for detecting signals
JP5524803B2 (ja) 車載用レーダ装置、および車載用レーダ装置用の電波干渉検知方法
KR101786039B1 (ko) 레이더 장치 및 그의 이물질 탐지방법
KR101184622B1 (ko) 차량용 레이더의 간섭 배제 장치 및 방법
JP2793487B2 (ja) Fm−cwレーダ装置
AU7391698A (en) An antenna malfunction detecting system
JP3461779B2 (ja) ディジタル無線通信システムにおけるパケット信号送信装置
JP2006514465A (ja) 無線通信システムにおける干渉検出
JP4573866B2 (ja) 侵入検知システム
US5602876A (en) Advanced parameter encoder with pulse-on-pulse detection and pulse fragment reconstruction
KR102683340B1 (ko) 레이다 펄스 신호 검출 장치 및 이를 이용한 디지털 수신기
KR102076704B1 (ko) 주파수 오프셋 기능을 갖는 갭 필러 기반의 fmcw 레이더 감지기 및 이를 이용한 갭 필러 기반의 fmcw 레이더 감지방법
US5990676A (en) Method and apparatus for detection of a moving speed of a mobile terminal in mobile communication
JP3619811B2 (ja) パルスレーダ装置
WO2018164375A1 (ko) 레이더 시스템의 안테나 빔 중심 보정방법
KR101963892B1 (ko) 디지털 수신기의 미분 신호 검출 방법
US9110148B1 (en) Method and apparatus for detection of multiple pulses in a radio frequency spectrum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883462

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15545470

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883462

Country of ref document: EP

Kind code of ref document: A1