WO2016137027A1 - Pressure sensor package and manufacturing method thereof - Google Patents

Pressure sensor package and manufacturing method thereof Download PDF

Info

Publication number
WO2016137027A1
WO2016137027A1 PCT/KR2015/001804 KR2015001804W WO2016137027A1 WO 2016137027 A1 WO2016137027 A1 WO 2016137027A1 KR 2015001804 W KR2015001804 W KR 2015001804W WO 2016137027 A1 WO2016137027 A1 WO 2016137027A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sensor
sensor package
encapsulant
asic
base substrate
Prior art date
Application number
PCT/KR2015/001804
Other languages
French (fr)
Korean (ko)
Inventor
김태원
유동현
조광래
김규섭
Original Assignee
(주)파트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)파트론 filed Critical (주)파트론
Publication of WO2016137027A1 publication Critical patent/WO2016137027A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
    • G01L7/02Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked

Definitions

  • the present invention relates to a pressure sensor package and a method for manufacturing the same, and more particularly, to a pressure sensor package and a method for manufacturing the same having an improved effect on waterproof and dustproof.
  • the pressure sensor chip 13 is positioned in the inner space S formed by the housing 14, and an air hole 15 capable of transferring external pressure to the inner space.
  • This formed structure was generally used.
  • the pressure sensor chip 13 may be a MEMS pressure sensor formed by the MEMS pressure sensor method.
  • the normal pressure sensor chip 13 has a possibility of malfunction by foreign matter such as liquid or dust such as water.
  • foreign matter such as liquid or dust, such as water
  • foreign matter such as liquid or dust, such as water, may be introduced into the internal space through the air hole, and there is a possibility of malfunction of the pressure sensor.
  • the pressure sensor chip 13 that operates electronically such as a MEMS pressure sensor, may generate light noise in which an error occurs in the measured value due to light of a specific wavelength.
  • the light introduced through the air hole can be directly irradiated onto the pressure sensor chip, which may cause an error due to optical noise.
  • the problem to be solved by the present invention is to provide a pressure sensor package having a waterproof and dustproof function that can prevent the malfunction of the pressure sensor due to foreign substances such as liquid or dust such as water.
  • Another object of the present invention is to provide a pressure sensor package capable of suppressing optical noise in which an error occurs in a measured value due to light of a specific wavelength.
  • Pressure sensor package of the present invention for solving the above problems, the base substrate, the ASIC and MEMS pressure sensor located on one surface of the base substrate, the inner space coupled to the base substrate to accommodate the ASIC and the MEMS pressure sensor And an encapsulant which surrounds the ASIC and the MEMS pressure sensor in the inner space and is spaced apart from an inner side of the upper surface of the housing facing the substrate.
  • the housing may include a sidewall portion coupled to the base substrate and forming a side surface of the inner space, and a cover portion coupled to the sidewall portion and forming an upper surface of the inner space.
  • the cover portion may be provided with at least one air hole.
  • the cover portion may be combined with the upper surface of the side wall portion.
  • the housing may shield the internal space from external electromagnetic waves.
  • the encapsulant may be in the form of a gel (gel) that is deformed by an external force of a predetermined strength or less and restored to a circular shape when the external force is removed.
  • a gel gel
  • the encapsulant may be formed of a flexible material that can be changed in shape by the pressure applied from the outside through the air hole.
  • the encapsulation material may be formed of a silicone-based resin material.
  • the encapsulant may be formed of a light blocking resin material.
  • the encapsulant may be formed of a resin material having a light transmittance of 50% or less with respect to light in a wavelength band that may cause optical noise in the MEMS pressure sensor.
  • the MEMS pressure sensor is a pressure sensor package coupled to be laminated on the top surface of the ASIC.
  • the manufacturing method of the pressure sensor package of the present invention for solving the above problems, the step of preparing a base substrate, mounting the ASIC and MEMS pressure sensor on one surface of the base substrate, the side wall portion coupled with the base substrate And forming an encapsulation material surrounding the ASIC and the MEMS pressure sensor, and forming an inner space by combining with the side wall part and combining the cover part having at least one air hole, wherein the encapsulation material is formed.
  • the encapsulant is formed to be spaced apart from the cover part.
  • the encapsulant may be formed of a silicone-based resin material.
  • the forming of the encapsulant may include filling a liquid resin material to cover the ASIC and the MEMS pressure sensor, and curing the liquid resin material by thermal curing. have.
  • the thermal curing may be cured for 5 to 20 minutes at 100 °C to 150 °C.
  • Pressure sensor package may have a waterproof and dustproof function to prevent the malfunction of the pressure sensor due to foreign substances such as liquid or dust, such as water.
  • the pressure sensor package according to an embodiment of the present invention can suppress the optical noise that an error occurs in the measured value by the light of a specific wavelength.
  • FIG. 1 is a cross-sectional view of a conventional pressure sensor package.
  • FIG. 2 is a cross-sectional view of the pressure sensor package according to an embodiment of the present invention.
  • FIG 3 is an exploded perspective view of the pressure sensor package according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a pressure sensor package according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the pressure sensor package according to an embodiment of the present invention.
  • 3 is an exploded perspective view of the pressure sensor package according to an embodiment of the present invention.
  • the pressure sensor package 100 of the present invention includes a base substrate 110, an ASIC 120, a MEMS pressure sensor 130, a housing 140, and an encapsulant 150. .
  • the base substrate 110 is formed in a flat plate shape having a predetermined thickness.
  • the base substrate 110 may be formed in a square or a rectangle, but is not limited thereto.
  • the base substrate 110 is located at the bottom of the pressure sensor package to form a bottom surface.
  • the base substrate 110 may be formed of a circuit board.
  • the base substrate 110 may be formed of, for example, a rigid printed circuit board or a flexible printed circuit board.
  • the ASIC 120 and the MEMS pressure sensor 130 are positioned on one surface corresponding to the upper surface of the base substrate 110.
  • the ASIC 120 and the MEMS pressure sensor 130 are electrically connected to the contact terminal of the base substrate 110.
  • the contact terminal connected to the ASIC 120 and the MEMS pressure sensor 130 may be formed on the surface of one surface of the base substrate 110.
  • the ASIC 120 and the MEMS pressure sensor 130 may be electrically connected to the base substrate 110 in various ways.
  • the ASIC 120 and the MEMS pressure sensor 130 may be mounted in a stack type.
  • To be mounted in a stacking manner means that one device is mounted to be stacked below each other by being stacked under each other. 2 is mounted in such a manner that the ASIC 120 is contacted on one surface of the base substrate 110 and the MEMS pressure sensor 130 is mounted on the upper surface of the ASIC 120 again.
  • the MEMS pressure sensor 130 positioned above may be electrically connected to the base substrate 110 through the ASIC 120.
  • the ASIC 120 and the MEMS pressure sensor 130 may be mounted in a side-by-side type. According to the planar layout method, both the ASIC 120 and the MEMS pressure sensor 130 are contacted and mounted on one surface of the base substrate 110.
  • wire bonding in which the input / output terminals of the ASIC 120 and the MEMS pressure sensor 130 and the contact terminals of the base substrate 110 are electrically connected through conductive wires. Can be connected in a manner.
  • the ASIC 120 and the MEMS pressure sensor 130 may be connected to the contact terminal of the base substrate 110 by flip-chip bonding.
  • the input / output terminals of the ASIC 120 and the MEMS pressure sensor 130 and the contact terminals of the base substrate 110 face each other, and are electrically connected through a conductive material such as solder.
  • the method of connecting the ASIC 120 and the MEMS pressure sensor 130 on one surface of the base substrate 110 is not limited to the above-described one, and various methods may be applied and modified according to the intention of the designer.
  • an input / output terminal is formed to be connected to the substrate of the electronic device.
  • the input / output terminals on the bottom surface of the base substrate 110 may be electrically connected to the substrate of the electronic device by a surface mounting technology (SMT) method.
  • SMT surface mounting technology
  • the ASIC 120 and the MEMS pressure sensor 130 are located on one surface of the base substrate 110 as described above.
  • MEMS pressure sensor 130 is a MEMS (Micro Electro Mechanical Systems) device that can measure the pressure around.
  • the MEMS pressure sensor 130 includes a membrane element 131 that can change in shape depending on the pressure around it.
  • the MEMS pressure sensor 130 may be formed to change resistance, capacitance, current or voltage according to the shape change of the membrane 131. As a result, the ambient pressure can be converted into an electrical signal.
  • the membrane element 131 is formed on the upper surface of the MEMS pressure sensor 130.
  • the ASIC 120 may be electrically connected to the MEMS pressure sensor 130 to perform various functions such as controlling the pressure sensor package 100 to be driven.
  • the housing 140 is combined with the base substrate 110 to form an internal space.
  • the housing 140 may include a side and an upper surface, and the lower surface may be open.
  • the lower surface of the housing 140 may be combined with the base substrate 110 to be sealed.
  • the housing 140 may include a sidewall portion 141 forming a side surface and a cover portion 143 forming an upper surface.
  • the side wall portion 141 and the cover portion 143 may be integrally formed or separately formed as shown in FIG.
  • the lower surface of the sidewall portion 141 may be coupled to the upper surface of the base substrate 110.
  • the cover part 143 may be coupled to the top surface of the side wall part 141.
  • the housing 140 may shield an internal space formed by combining with the base substrate 110 from external electromagnetic waves.
  • the housing 140 may include a metal material capable of shielding electromagnetic waves.
  • the housing 140 may be formed of, for example, an FR-4 series epoxy resin.
  • the housing 140 includes at least one air hole 145. Air may move through the air hole 145. Through this, the pressure outside the pressure sensor package 100 may be transferred into the package.
  • the air hole 145 is preferably formed on the upper surface of the housing 140. Two or more air holes 145 may be formed. Specifically, characteristics such as sensitivity may be adjusted according to the number, shape, or position of the air holes 145.
  • the encapsulant 150 is positioned in an inner space formed by the housing 140 and the base substrate 110 combined with each other.
  • the encapsulant 150 is formed through filling the cavity space formed by the side surfaces of the base substrate 110 and the housing 140.
  • the encapsulant 150 does not exceed the cavity space formed by the side of the housing 140.
  • the encapsulant 150 may be formed to be spaced apart from the inner surface of the cover part 143 which is the upper surface of the inner space.
  • the encapsulant 150 is formed to surround the ASIC 120 and the MEMS pressure sensor 130. Specifically, the encapsulant 150 is formed to cover the side and top of the ASIC 120 and the MEMS pressure sensor 130. Through this, it is possible to protect the ASIC 120 and the MEMS pressure sensor 130 from infiltration of external shocks, magnetic poles and foreign objects. Specifically, the ASIC 120 and the MEMS pressure sensor 130 may be waterproof and dustproof. That is, even if water or dust penetrates into the internal space of the pressure sensor package, the encapsulant 150 may be shielded from being directly contacted with the ASIC 120 and the MEMS pressure sensor 130 to improve waterproof and dustproof functions. .
  • the encapsulant 150 should be able to transmit pressure to the MEMS pressure sensor 130.
  • the encapsulant 150 may be in the form of a gel that is deformed by an external force of a predetermined intensity or less and is restored to a circular shape when the external force is removed. Therefore, when a pressure of less than the strength to collapse the gel is applied, the shape of the gel-type encapsulant 150 may be modified by the pressure. Deformation of the encapsulant 150 may cause deformation of the membrane 131 of the MEMS pressure sensor 130. As a result, the pressure around the encapsulant 150 in the gel form can be measured by the MEMS pressure sensor 130.
  • Gel-type encapsulant 150 may be a flexible material that can be changed in shape by the pressure applied from the outside through the air hole (145).
  • the encapsulant 150 may be formed of, for example, a silicone-based resin material.
  • a silicone-based resin material for example, Dow Corning's 3-6635 Dielectric Gel product can be used. However, it is not limited thereto.
  • the encapsulant 150 is filled to cover the ASIC 120 and the MEMS pressure sensor 130 in a liquid state, and then cured through a heat curing process to be deformed into a gel form.
  • the thermal curing process may be, for example, 5 to 20 minutes of curing at 100 ° C to 150 ° C.
  • the encapsulant 150 may be used as a light blocking resin material. This may be aimed at suppressing optical noise of the MEMS pressure sensor 130.
  • the MEMS pressure sensor 130 may generate noise by irradiating light of a specific wavelength. This is called light noise.
  • the encapsulant 150 is light-shielding, light blocking the light may be prevented from reaching the MEMS pressure sensor 130.
  • the encapsulant 150 is preferably formed of a resin material having a light transmittance of 50% or less with respect to light in a wavelength band that may cause optical noise in the MEMS pressure sensor 130.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a pressure sensor package according to an embodiment of the present invention.
  • Method of manufacturing a pressure sensor package of the present invention comprises the steps of preparing a base substrate 110 (S100), mounting the ASIC 120 and MEMS pressure sensor 130 on one surface of the base substrate 110 (S200), Coupling the side wall portion 141 with the base substrate 110 (S300), forming an encapsulant 150 surrounding the ASIC 120 and the MEMS pressure sensor 130 (S400) and the side wall portion 141. ) To form an inner space, and to combine the cover part 143 having the at least one air hole 145 (S500).
  • step of forming the encapsulant 150 (S400), the step of filling the liquid resin material to cover the ASIC (120) and MEMS pressure sensor 130 (S410) and curing the liquid resin material by thermal curing It may include the step (S420).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Abstract

Disclosed is a pressure sensor package. A pressure sensor package of the present invention comprises: a base substrate; an ASIC and a MEMS pressure sensor located on one surface of the base substrate; a housing which is coupled to the base substrate, forms an inner space for receiving the ASIC and the MEMS pressure sensor, and includes at least one air hole; and a sealing material for surrounding the ASIC and the MEMS pressure sensor in the inner space.

Description

압력센서 패키지 및 그 제조 방법Pressure sensor package and its manufacturing method
본 발명은 압력센서 패키지 및 그 제조 방법에 관한 것으로, 더욱 상세하게는 방수 및 방진에 대해 향상된 효과를 가지는 압력센서 패키지 및 그 제조 방법에 관한 것이다.The present invention relates to a pressure sensor package and a method for manufacturing the same, and more particularly, to a pressure sensor package and a method for manufacturing the same having an improved effect on waterproof and dustproof.
최근 건강 및 환경에 대한 관심이 증대되고 있고, 스마트폰 및 태블릿 컴퓨터 등 복합적인 기능을 수행할 수 있는 전자 장치가 보급됨에 따라 다양한 외부 환경을 측정할 수 있는 각종 센서류에 대한 수요도 증가하고 있다. 그 중 하나는 주변의 압력을 측정할 수 있는 압력센서이다.Recently, the interest in health and the environment is increasing, and as the electronic devices capable of performing complex functions such as smart phones and tablet computers are spreading, demand for various sensors that can measure various external environments is increasing. One of them is a pressure sensor that can measure the ambient pressure.
종래에는 압력을 측정하기 위해서 수은 등이 수용된 U자관 압력계 등이 사용되었다. 그러나 최근에는 측정된 압력을 전기적인 신호로 출력할 수 있는 전자식 압력센서가 널리 사용된다.Conventionally, a U-tube pressure gauge in which mercury or the like is accommodated has been used to measure pressure. Recently, however, an electronic pressure sensor capable of outputting the measured pressure as an electrical signal is widely used.
기존의 압력센서는 도 1에 도시된 것과 같이, 하우징(14)에 의해 형성된 내부 공간(S)에 압력센서 칩(13)이 위치하고, 외부의 압력을 내부 공간에 전달할 수 있는 에어 홀(15)이 형성되는 구조가 일반적으로 사용되었다. 또한, 압력센서 칩(13)은 MEMS 압력센서 방식으로 형성된 MEMS 압력센서가 사용될 수 있었다.In the conventional pressure sensor, as shown in FIG. 1, the pressure sensor chip 13 is positioned in the inner space S formed by the housing 14, and an air hole 15 capable of transferring external pressure to the inner space. This formed structure was generally used. In addition, the pressure sensor chip 13 may be a MEMS pressure sensor formed by the MEMS pressure sensor method.
통상의 압력센서 칩(13)은 물 등의 액체나 먼지 등의 이물질에 의한 오작동 가능성이 존재한다. 그러나 기존의 압력센서는 에어 홀을 통해 물 등의 액체나 먼지 등의 이물질이 내부 공간으로 유입될 수 있어서, 압력센서의 오작동 가능성이 존재하였다.The normal pressure sensor chip 13 has a possibility of malfunction by foreign matter such as liquid or dust such as water. However, in the conventional pressure sensor, foreign matter such as liquid or dust, such as water, may be introduced into the internal space through the air hole, and there is a possibility of malfunction of the pressure sensor.
또한, MEMS 압력센서 등 전자식으로 동작하는 압력센서 칩(13)은 특정 파장의 광에 의해 측정치에 오차가 생기는 광 노이즈(light noise)가 발생할 수 있다. 그러나 기존의 압력센서는 에어 홀을 통해 유입된 광이 압력센서 칩에 바로 조사될 수 있어 광 노이즈에 따른 오차가 발생할 가능성이 존재하였다.In addition, the pressure sensor chip 13 that operates electronically, such as a MEMS pressure sensor, may generate light noise in which an error occurs in the measured value due to light of a specific wavelength. However, in the conventional pressure sensor, the light introduced through the air hole can be directly irradiated onto the pressure sensor chip, which may cause an error due to optical noise.
최근 각종 전자 장치 등과 관련하여 방수 및 방진 기능에 대한 요구와 더욱 정확한 측정이 가능한 압력센서에 대한 요구가 증대됨에 따라 상술한 문제점을 해결할 수 있는 압력센서 또는 그 패키지 등에 대한 개발 필요성이 있어 왔다.Recently, as the demand for waterproof and dustproof functions and demand for a pressure sensor capable of more accurate measurement have been increased with respect to various electronic devices, there has been a need for development of a pressure sensor or a package thereof that can solve the above-mentioned problems.
본 발명이 해결하려는 과제는, 물 등의 액체나 먼지 등의 이물질에 의한 압력센서의 오작동 방지할 수 있는 방수 및 방진 기능을 갖춘 압력센서 패키지를 제공하는 것이다. The problem to be solved by the present invention is to provide a pressure sensor package having a waterproof and dustproof function that can prevent the malfunction of the pressure sensor due to foreign substances such as liquid or dust such as water.
본 발명이 해결하려는 다른 과제는, 특정 파장의 광에 의해 측정치에 오차가 생기는 광 노이즈를 억제할 수 있는 압력센서 패키지를 제공하는 것이다.Another object of the present invention is to provide a pressure sensor package capable of suppressing optical noise in which an error occurs in a measured value due to light of a specific wavelength.
상기 과제를 해결하기 위한 본 발명의 압력센서 패키지는, 베이스 기판, 상기 베이스 기판의 일면 상에 위치하는 ASIC과 MEMS 압력센서, 상기 베이스 기판과 결합되어 상기 ASIC과 상기 MEMS 압력센서를 수용하는 내부 공간을 형성하고, 적어도 하나의 에어 홀을 구비하는 하우징 및 상기 내부 공간 내에서 상기 ASIC과 상기 MEMS 압력센서를 둘러싸고, 상기 기판과 대향하는 하우징의 상면의 내측과 이격되는 봉지재를 포함한다.Pressure sensor package of the present invention for solving the above problems, the base substrate, the ASIC and MEMS pressure sensor located on one surface of the base substrate, the inner space coupled to the base substrate to accommodate the ASIC and the MEMS pressure sensor And an encapsulant which surrounds the ASIC and the MEMS pressure sensor in the inner space and is spaced apart from an inner side of the upper surface of the housing facing the substrate.
본 발명의 일 실시예에 있어서, 상기 하우징은 상기 베이스 기판과 결합하고 상기 내부 공간의 측면을 이루는 측벽부 및 상기 측벽부와 결합하고 상기 내부 공간의 상면을 이루는 커버부를 포함할 수 있다.In one embodiment of the present invention, the housing may include a sidewall portion coupled to the base substrate and forming a side surface of the inner space, and a cover portion coupled to the sidewall portion and forming an upper surface of the inner space.
본 발명의 일 실시예에 있어서, 상기 커버부는 적어도 하나의 에어 홀을 구비할 수 있다.In one embodiment of the present invention, the cover portion may be provided with at least one air hole.
본 발명의 일 실시예에 있어서, 상기 커버부는 상기 측벽부의 상면과 결합할 수 있다.In one embodiment of the present invention, the cover portion may be combined with the upper surface of the side wall portion.
본 발명의 일 실시예에 있어서, 상기 하우징은 상기 내부 공간을 외부의 전자기파로부터 차폐할 수 있다.In one embodiment of the present invention, the housing may shield the internal space from external electromagnetic waves.
본 발명의 일 실시예에 있어서, 상기 봉지재는 소정의 세기의 이하의 외력에 의해 형태가 변형되었다가 상기 외력이 제거되면 원형으로 복원되는 젤(gel) 형태일 수 있다.In one embodiment of the present invention, the encapsulant may be in the form of a gel (gel) that is deformed by an external force of a predetermined strength or less and restored to a circular shape when the external force is removed.
본 발명의 일 실시예에 있어서, 상기 봉지재는 상기 에어 홀을 통해 외부로부터 가해지는 압력에 의해 형상이 변할 수 있는 가요성 재질로 형성될 수 있다.In one embodiment of the present invention, the encapsulant may be formed of a flexible material that can be changed in shape by the pressure applied from the outside through the air hole.
본 발명의 일 실시예에 있어서, 상기 봉지재는 실리콘(silicone) 계열의 수지재로 형성될 수 있다.In one embodiment of the present invention, the encapsulation material may be formed of a silicone-based resin material.
본 발명의 일 실시예에 있어서, 상기 봉지재는 차광성인 수지재로 형성될 수 있다.In one embodiment of the present invention, the encapsulant may be formed of a light blocking resin material.
본 발명의 일 실시예에 있어서, 상기 봉지재는 상기 MEMS 압력센서에 광 노이즈를 유발할 수 있는 파장 대역의 광에 대해서 투광성이 50% 이하인 재질의 수지재로 형성될 수 있다.In one embodiment of the present invention, the encapsulant may be formed of a resin material having a light transmittance of 50% or less with respect to light in a wavelength band that may cause optical noise in the MEMS pressure sensor.
본 발명의 일 실시예에 있어서, 상기 MEMS 압력센서는 상기 ASIC의 상면 상에 적층되어 결합되는 압력센서 패키지.In one embodiment of the present invention, the MEMS pressure sensor is a pressure sensor package coupled to be laminated on the top surface of the ASIC.
또한, 상기 과제를 해결하기 위한 본 발명의 압력센서 패키지의 제조 방법은, 베이스 기판을 준비하는 단계, 상기 베이스 기판의 일면 상에 ASIC과 MEMS 압력센서를 실장하는 단계, 측벽부를 상기 베이스 기판과 결합하는 단계, 상기 ASIC과 MEMS 압력센서를 둘러싸는 봉지재를 형성하는 단계 및 상기 측벽부와 결합하여 내부 공간을 형성하고, 적어도 하나의 에어 홀을 구비하는 커버부를 결합하는 단계를 포함하되, 상기 봉지재를 형성하는 단계는, 상기 봉지재를 상기 커버부와 이격되도록 형성한다.In addition, the manufacturing method of the pressure sensor package of the present invention for solving the above problems, the step of preparing a base substrate, mounting the ASIC and MEMS pressure sensor on one surface of the base substrate, the side wall portion coupled with the base substrate And forming an encapsulation material surrounding the ASIC and the MEMS pressure sensor, and forming an inner space by combining with the side wall part and combining the cover part having at least one air hole, wherein the encapsulation material is formed. In the forming of the ash, the encapsulant is formed to be spaced apart from the cover part.
본 발명의 일 실시예에 있어서, 상기 봉지재는 실리콘 계열의 수지재로 형성될 수 있다.In one embodiment of the present invention, the encapsulant may be formed of a silicone-based resin material.
본 발명의 일 실시예에 있어서, 상기 봉지재를 형성하는 단계는, 상기 ASIC과 MEMS 압력센서를 덮도록 액상 수지재를 충진하는 단계 및 상기 액상 수지재를 열 경화하여 경화시키는 단계를 포함할 수 있다.In one embodiment of the present invention, the forming of the encapsulant may include filling a liquid resin material to cover the ASIC and the MEMS pressure sensor, and curing the liquid resin material by thermal curing. have.
본 발명의 일 실시예에 있어서, 상기 열 경화는 100℃ 내지 150℃에서 5분 내지 20분 경화할 수 있다.In one embodiment of the present invention, the thermal curing may be cured for 5 to 20 minutes at 100 ℃ to 150 ℃.
본 발명의 일 실시예에 따른 압력센서 패키지는 물 등의 액체나 먼지 등의 이물질에 의한 압력센서의 오작동 방지할 수 있는 방수 및 방진 기능을 갖출 수 있다.Pressure sensor package according to an embodiment of the present invention may have a waterproof and dustproof function to prevent the malfunction of the pressure sensor due to foreign substances such as liquid or dust, such as water.
또한, 본 발명의 일 실시예에 따른 압력센서 패키지는 특정 파장의 광에 의해 측정치에 오차가 생기는 광 노이즈를 억제할 수 있다.In addition, the pressure sensor package according to an embodiment of the present invention can suppress the optical noise that an error occurs in the measured value by the light of a specific wavelength.
도 1은 종래의 압력센서 패키지의 단면도이다.1 is a cross-sectional view of a conventional pressure sensor package.
도 2는 본 발명의 일 실시예에 따른 압력센서 패키지의 단면도이다.2 is a cross-sectional view of the pressure sensor package according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 압력센서 패키지의 분해 사시도이다.3 is an exploded perspective view of the pressure sensor package according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 압력 센서 패키지의 제조 방법을 설명하기 위한 순서도이다.4 is a flowchart illustrating a method of manufacturing a pressure sensor package according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 본 발명을 설명하는데 있어서, 해당 분야에 이미 공지된 기술 또는 구성에 대한 구체적인 설명을 부가하는 것이 본 발명의 요지를 불분명하게 할 수 있다고 판단되는 경우에는 상세한 설명에서 이를 일부 생략하도록 한다. 또한, 본 명세서에서 사용되는 용어들은 본 발명의 실시예들을 적절히 표현하기 위해 사용된 용어들로서, 이는 해당 분야의 관련된 사람 또는 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, with reference to the accompanying drawings will be described embodiments of the present invention; In describing the present invention, if it is determined that adding specific descriptions of techniques or configurations already known in the art may make the gist of the present invention unclear, some of them will be omitted from the detailed description. In addition, terms used in the present specification are terms used to properly express the embodiments of the present invention, which may vary according to related persons or customs in the art. Therefore, the definitions of the terms should be made based on the contents throughout the specification.
이하, 첨부한 도 2 내지 도 3을 참조하여, 본 발명의 일 실시예에 따른 압력센서 패키지에 대해 설명한다.Hereinafter, a pressure sensor package according to an embodiment of the present invention will be described with reference to FIGS. 2 to 3.
도 2는 본 발명의 일 실시예에 따른 압력센서 패키지의 단면도이다. 도 3은 본 발명의 일 실시예에 따른 압력센서 패키지의 분해 사시도이다.2 is a cross-sectional view of the pressure sensor package according to an embodiment of the present invention. 3 is an exploded perspective view of the pressure sensor package according to an embodiment of the present invention.
도 2 내지 도 3을 참조하면, 본 발명의 압력센서 패키지(100)는 베이스 기판(110), ASIC(120), MEMS 압력센서(130), 하우징(140) 및 봉지재(150)를 포함한다.2 to 3, the pressure sensor package 100 of the present invention includes a base substrate 110, an ASIC 120, a MEMS pressure sensor 130, a housing 140, and an encapsulant 150. .
베이스 기판(110)은 소정의 두께를 가지는 평판 형태로 형성된다. 베이스 기판(110)은 정사각형 또는 장방형으로 형성될 수 있으나, 이에 한정되는 것은 아니다. 베이스 기판(110)은 압력센서 패키지의 최하단에 위치하여 하면을 이룬다.The base substrate 110 is formed in a flat plate shape having a predetermined thickness. The base substrate 110 may be formed in a square or a rectangle, but is not limited thereto. The base substrate 110 is located at the bottom of the pressure sensor package to form a bottom surface.
베이스 기판(110)은 회로 기판으로 형성될 수 있다. 베이스 기판(110)은 예를 들어, 경성의 인쇄 회로 기판(rigid printed circuit board) 또는 연성의 인쇄 회로 기판(flexible printed circuit board)로 형성될 수 있다.The base substrate 110 may be formed of a circuit board. The base substrate 110 may be formed of, for example, a rigid printed circuit board or a flexible printed circuit board.
베이스 기판(110)의 상면에 해당하는 일면에는 ASIC(120)과 MEMS 압력센서(130)가 위치한다. ASIC(120)과 MEMS 압력센서(130)는 베이스 기판(110)의 컨택트 단자와 전기적으로 연결된다. ASIC(120)과 MEMS 압력센서(130)와 연결되는 컨택트 단자는 베이스 기판(110)의 일면의 표면 상에 형성될 수 있다.The ASIC 120 and the MEMS pressure sensor 130 are positioned on one surface corresponding to the upper surface of the base substrate 110. The ASIC 120 and the MEMS pressure sensor 130 are electrically connected to the contact terminal of the base substrate 110. The contact terminal connected to the ASIC 120 and the MEMS pressure sensor 130 may be formed on the surface of one surface of the base substrate 110.
ASIC(120)과 MEMS 압력센서(130)는 다양한 방식으로 베이스 기판(110)과 전기적으로 연결될 수 있다. 예를 들면, 도 2에 도시된 것과 같이 ASIC(120)과 MEMS 압력센서(130)는 적층 방식(stack type)으로 실장될 수 있다. 적층 방식으로 실장되는 것은 하나의 소자가 다른 하나의 소자 아래에 위치하여 서로 층을 이루며 쌓아지도록 실장되는 것을 의미한다. 도 2는 ASIC(120)이 베이스 기판(110)의 일면 상에 접촉되면서 실장되고, MEMS 압력센서(130)가 ASIC(120)의 상면에 다시 실장되는 방식으로 실장된다. 이때 상측에 위치하는 MEMS 압력센서(130)는 ASIC(120)를 매개로 하여 베이스 기판(110)과 전기적을 연결될 수도 있다.The ASIC 120 and the MEMS pressure sensor 130 may be electrically connected to the base substrate 110 in various ways. For example, as shown in FIG. 2, the ASIC 120 and the MEMS pressure sensor 130 may be mounted in a stack type. To be mounted in a stacking manner means that one device is mounted to be stacked below each other by being stacked under each other. 2 is mounted in such a manner that the ASIC 120 is contacted on one surface of the base substrate 110 and the MEMS pressure sensor 130 is mounted on the upper surface of the ASIC 120 again. In this case, the MEMS pressure sensor 130 positioned above may be electrically connected to the base substrate 110 through the ASIC 120.
또한, ASIC(120)과 MEMS 압력센서(130)는 평면 배치 방식(side-by-side type)으로 실장될 수도 있다. 평면 배치 방식에 따르면 ASIC(120)과 MEMS 압력센서(130) 모두 베이스 기판(110)의 일면 상에 접촉되며 실장된다.In addition, the ASIC 120 and the MEMS pressure sensor 130 may be mounted in a side-by-side type. According to the planar layout method, both the ASIC 120 and the MEMS pressure sensor 130 are contacted and mounted on one surface of the base substrate 110.
ASIC(120)과 MEMS 압력센서(130)의 전기적인 연결 방법에 있어서도 다양한 방법이 사용될 수 있다. 예를 들면, 도 2에 도시된 것과 같이, ASIC(120)과 MEMS 압력센서(130)의 입출력 단자와 베이스 기판(110)의 컨택트 단자가 도전성 와이어를 통해 전기적으로 연결되는 와이어 본딩(wire bonding) 방식으로 연결될 수 있다.Various methods may also be used for the electrical connection between the ASIC 120 and the MEMS pressure sensor 130. For example, as shown in FIG. 2, wire bonding in which the input / output terminals of the ASIC 120 and the MEMS pressure sensor 130 and the contact terminals of the base substrate 110 are electrically connected through conductive wires. Can be connected in a manner.
또한, ASIC(120)과 MEMS 압력센서(130)는 베이스 기판(110)의 컨택트 단자와 플립칩 본딩(flip-chip bonding) 방식으로 연결될 수 있다. 플립칩 본딩 방식은 ASIC(120)과 MEMS 압력센서(130)의 입출력 단자와 베이스 기판(110)의 컨택트 단자가 서로 대향하며, 솔더 등의 도전성 물질을 매개로 하여 전기적으로 연결된다.In addition, the ASIC 120 and the MEMS pressure sensor 130 may be connected to the contact terminal of the base substrate 110 by flip-chip bonding. In the flip chip bonding method, the input / output terminals of the ASIC 120 and the MEMS pressure sensor 130 and the contact terminals of the base substrate 110 face each other, and are electrically connected through a conductive material such as solder.
그러나 베이스 기판(110)의 일면 상에서 ASIC(120)과 MEMS 압력센서(130)의 연결 방법은 상술한 것에 한정되는 것은 아니며, 설계자의 의도에 따라 다양한 방법이 적용 가능하며 변형도 가능하다.However, the method of connecting the ASIC 120 and the MEMS pressure sensor 130 on one surface of the base substrate 110 is not limited to the above-described one, and various methods may be applied and modified according to the intention of the designer.
베이스 기판(110)의 일면의 반대면에 해당하는 하면에는 압력센서 패키지(100)가 전자 장치에 실장되는 경우, 전자 장치의 기판과 연결될 수 있도록 입출력 단자가 형성되어 있다. 베이스 기판(110) 하면의 입출력 단자는 SMT(surface mounting technology) 방식에 의해 전자 장치의 기판과 전기적으로 연결될 수 있다.On the lower surface corresponding to one surface of the base substrate 110, when the pressure sensor package 100 is mounted on the electronic device, an input / output terminal is formed to be connected to the substrate of the electronic device. The input / output terminals on the bottom surface of the base substrate 110 may be electrically connected to the substrate of the electronic device by a surface mounting technology (SMT) method.
ASIC(120)과 MEMS 압력센서(130)는 상술한 것과 같이 베이스 기판(110)의 일면 상에 위치한다.The ASIC 120 and the MEMS pressure sensor 130 are located on one surface of the base substrate 110 as described above.
MEMS 압력센서(130)는 주변의 압력을 측정할 수 있는 MEMS(Micro Electro Mechanical Systems) 소자이다. MEMS 압력센서(130)는 주변의 압력에 따라 형태가 변화할 수 있는 멤브레인 소자(131)를 포함한다. MEMS 압력센서(130)는 멤브레인(131)의 형태 변화에 따라 저항, 커패시턴스, 전류 또는 전압 등이 변하도록 형성될 수 있다. 결과적으로 주변의 압력을 전기적인 신호로 변환할 수 있다. 통상적으로 멤브레인 소자(131)는 MEMS 압력센서(130)의 상면에 형성된다. MEMS pressure sensor 130 is a MEMS (Micro Electro Mechanical Systems) device that can measure the pressure around. The MEMS pressure sensor 130 includes a membrane element 131 that can change in shape depending on the pressure around it. The MEMS pressure sensor 130 may be formed to change resistance, capacitance, current or voltage according to the shape change of the membrane 131. As a result, the ambient pressure can be converted into an electrical signal. Typically, the membrane element 131 is formed on the upper surface of the MEMS pressure sensor 130.
ASIC(120)은 MEMS 압력센서(130)와 전기적으로 연결되어 압력센서 패키지(100)가 구동될 수 있도록 제어하는 등 다양한 기능을 수행할 수 있다.The ASIC 120 may be electrically connected to the MEMS pressure sensor 130 to perform various functions such as controlling the pressure sensor package 100 to be driven.
하우징(140)은 베이스 기판(110)과 결합하여 내부 공간을 형성한다. 하우징(140)은 측면과 상면을 포함하며, 하면은 개방된 형태일 수 있다. 하우징(140)의 하면은 베이스 기판(110)과 결합하여 밀폐될 수 있다.The housing 140 is combined with the base substrate 110 to form an internal space. The housing 140 may include a side and an upper surface, and the lower surface may be open. The lower surface of the housing 140 may be combined with the base substrate 110 to be sealed.
하우징(140)은 구체적으로, 측면을 이루는 측벽부(141)와 상면을 이루는 커버부(143)를 포함할 수 있다. 측벽부(141)와 커버부(143)는 일체로서 형성될 수도 있고, 도 3에 도시된 것과 같이 별개로 형성되었다가 이후에 결합될 수도 있다.Specifically, the housing 140 may include a sidewall portion 141 forming a side surface and a cover portion 143 forming an upper surface. The side wall portion 141 and the cover portion 143 may be integrally formed or separately formed as shown in FIG.
구체적으로, 측벽부(141)는 하면이 베이스 기판(110)의 상면과 결합할 수 있다. 커버부(143)는 측벽부(141)의 상면과 결합할 수 있다.In detail, the lower surface of the sidewall portion 141 may be coupled to the upper surface of the base substrate 110. The cover part 143 may be coupled to the top surface of the side wall part 141.
하우징(140)은 베이스 기판(110)과 결합하여 형성하는 내부 공간을 외부의 전자기파로부터 차폐할 수 있다. 이를 위해, 하우징(140)은 전자기파를 차폐할 수 있는 금속 재질을 포함할 수 있다. 하우징(140)은 예를 들어, FR-4 계열의 에폭시 수지 등으로 형성될 수 있다.The housing 140 may shield an internal space formed by combining with the base substrate 110 from external electromagnetic waves. To this end, the housing 140 may include a metal material capable of shielding electromagnetic waves. The housing 140 may be formed of, for example, an FR-4 series epoxy resin.
하우징(140)은 적어도 하나의 에어 홀(air hole)(145)을 포함한다. 에어 홀(145)을 통해서 공기가 이동할 수 있다. 이를 통해 압력센서 패키지(100) 외부의 압력이 패키지 내부로 전달될 수 있다. 에어 홀(145)은 하우징(140)의 상면에 형성되는 것이 바람직하다. 에어 홀(145)은 둘 이상 형성될 수 있다. 구체적으로, 에어 홀(145)의 개수, 형태 또는 위치에 따라서 감도 등의 특성을 조절할 수 있다.The housing 140 includes at least one air hole 145. Air may move through the air hole 145. Through this, the pressure outside the pressure sensor package 100 may be transferred into the package. The air hole 145 is preferably formed on the upper surface of the housing 140. Two or more air holes 145 may be formed. Specifically, characteristics such as sensitivity may be adjusted according to the number, shape, or position of the air holes 145.
봉지재(150)는 하우징(140)과 베이스 기판(110)이 결합하여 형성하는 내부 공간에 위치한다. 구체적으로, 봉지재(150)는 베이스 기판(110)과 하우징(140)의 측면이 형성하는 캐비티 공간에 채워지는 것을 통해 형성된다. 그러나 봉지재(150)는 하우징(140)의 측면이 형성하는 캐비티 공간을 넘치게 형성되지는 않는다. 결과적으로 봉지재(150)는 내부 공간의 상면인 커버부(143)의 내측면과 이격되도록 형성될 수 있다.The encapsulant 150 is positioned in an inner space formed by the housing 140 and the base substrate 110 combined with each other. In detail, the encapsulant 150 is formed through filling the cavity space formed by the side surfaces of the base substrate 110 and the housing 140. However, the encapsulant 150 does not exceed the cavity space formed by the side of the housing 140. As a result, the encapsulant 150 may be formed to be spaced apart from the inner surface of the cover part 143 which is the upper surface of the inner space.
또한, 봉지재(150)는 ASIC(120)과 MEMS 압력센서(130)를 둘러싸도록 형성된다. 구체적으로, 봉지재(150)는 ASIC(120)과 MEMS 압력센서(130)의 측면 및 상면을 덮도록 형성된다. 이를 통해 ASIC(120)과 MEMS 압력센서(130)를 외부의 충격, 자극 및 이물 등의 침투로부터 보호할 수 있다. 구체적으로, ASIC(120)과 MEMS 압력센서(130)가 방수 및 방진 기능을 가지도록 할 수 있다. 즉, 압력센서 패키지의 내부 공간으로 물이나 먼지 등이 침투하여도 봉지재(150)가 ASIC(120)과 MEMS 압력센서(130)에 직접 접촉되지 못하도록 차폐하여 방수 및 방진 기능을 향상시킬 수 있다.In addition, the encapsulant 150 is formed to surround the ASIC 120 and the MEMS pressure sensor 130. Specifically, the encapsulant 150 is formed to cover the side and top of the ASIC 120 and the MEMS pressure sensor 130. Through this, it is possible to protect the ASIC 120 and the MEMS pressure sensor 130 from infiltration of external shocks, magnetic poles and foreign objects. Specifically, the ASIC 120 and the MEMS pressure sensor 130 may be waterproof and dustproof. That is, even if water or dust penetrates into the internal space of the pressure sensor package, the encapsulant 150 may be shielded from being directly contacted with the ASIC 120 and the MEMS pressure sensor 130 to improve waterproof and dustproof functions. .
봉지재(150)는 압력을 MEMS 압력센서(130)에 전달할 수 있어야 한다. 이를 위해서 봉지재(150)는 소정의 세기의 이하의 외력에 의해 형태가 변형되었다가 상기 외력이 제거되면 원형으로 복원되는 젤(gel) 형태일 수 있다. 따라서 젤이 붕괴될 정도의 세기 이하의 압력이 작용될 경우, 상기 압력에 의해 젤 형태의 봉지재(150)의 형태가 변형될 수 있다. 봉지재(150)의 변형은 MEMS 압력센서(130)의 멤브레인(131)의 변형을 야기할 수 있다. 결과적으로 젤 형태의 봉지재(150) 주변의 압력이 MEMS 압력센서(130)에 의해 측정될 수 있는 것이다.The encapsulant 150 should be able to transmit pressure to the MEMS pressure sensor 130. To this end, the encapsulant 150 may be in the form of a gel that is deformed by an external force of a predetermined intensity or less and is restored to a circular shape when the external force is removed. Therefore, when a pressure of less than the strength to collapse the gel is applied, the shape of the gel-type encapsulant 150 may be modified by the pressure. Deformation of the encapsulant 150 may cause deformation of the membrane 131 of the MEMS pressure sensor 130. As a result, the pressure around the encapsulant 150 in the gel form can be measured by the MEMS pressure sensor 130.
젤 형태의 봉지재(150)는 에어 홀(145)을 통해 외부로부터 가해지는 압력에 의해 형상이 변할 수 있는 가요성 재질인 것일 수 있다.Gel-type encapsulant 150 may be a flexible material that can be changed in shape by the pressure applied from the outside through the air hole (145).
봉지재(150)는 예를 들어, 실리콘(silicone) 계열의 수지재로 형성될 수 있다. 예를 들어, 다우 코닝(Dow Corning)社의 3-6635 Dielectric Gel 제품이 사용될 수 있다. 그러나 이에 한정되는 것은 아니다.The encapsulant 150 may be formed of, for example, a silicone-based resin material. For example, Dow Corning's 3-6635 Dielectric Gel product can be used. However, it is not limited thereto.
봉지재(150)는 액상인 상태로 ASIC(120)과 MEMS 압력센서(130)를 덮도록 충진된 후, 열 경화 과정을 통해 경화되어 젤 형태로 변형될 수 있다. 열 경화 과정은 예를 들어, 100℃ 내지 150℃에서 5분 내지 20분 경화하는 것일 수 있다.The encapsulant 150 is filled to cover the ASIC 120 and the MEMS pressure sensor 130 in a liquid state, and then cured through a heat curing process to be deformed into a gel form. The thermal curing process may be, for example, 5 to 20 minutes of curing at 100 ° C to 150 ° C.
봉지재(150)는 차광성인 수지재로 사용될 수 있다. 이는 MEMS 압력센서(130)의 광 노이즈를 억제하는 것을 목적으로 할 수있다. MEMS 압력센서(130)는 특정 파장의 광이 조사되는 것에 의해서 노이즈가 발생할 수 있다. 이를 광 노이즈(light noise)라 한다. 봉지재(150)가 차광성인 경우 광 노이즈를 유발하는 광이 MEMS 압력센서(130)에 도달하지 못하도록 차광할 수 있다. 구체적으로, 봉지재(150)는 MEMS 압력센서(130)에 광 노이즈를 유발할 수 있는 파장 대역의 광에 대해서 투광성이 50% 이하인 재질의 수지재로 형성되는 것이 바람직하다.The encapsulant 150 may be used as a light blocking resin material. This may be aimed at suppressing optical noise of the MEMS pressure sensor 130. The MEMS pressure sensor 130 may generate noise by irradiating light of a specific wavelength. This is called light noise. When the encapsulant 150 is light-shielding, light blocking the light may be prevented from reaching the MEMS pressure sensor 130. Specifically, the encapsulant 150 is preferably formed of a resin material having a light transmittance of 50% or less with respect to light in a wavelength band that may cause optical noise in the MEMS pressure sensor 130.
이하, 첨부한 도 4를 참조하여, 본 발명의 일 실시예에 따른 압력센서 패키지의 제조 방법에 대해 설명한다.Hereinafter, a method of manufacturing a pressure sensor package according to an embodiment of the present invention will be described with reference to the accompanying FIG. 4.
도 4는 본 발명의 일 실시예에 따른 압력 센서 패키지의 제조 방법을 설명하기 위한 순서도이다.4 is a flowchart illustrating a method of manufacturing a pressure sensor package according to an embodiment of the present invention.
설명의 편의를 위해서, 압력센서 패키지의 제조 방법을 설명하는데 있어서 도 2 내지 도 3을 참조하여 상술한 압력센서 패키지의 설명과 중복되는 것 중 일부는 생략하도록 한다.For convenience of description, some of the overlapping descriptions of the pressure sensor package described above with reference to FIGS. 2 to 3 will be omitted in describing the manufacturing method of the pressure sensor package.
본 발명의 압력센서 패키지의 제조 방법는 베이스 기판(110)을 준비하는 단계(S100), 베이스 기판(110)의 일면 상에 ASIC(120)과 MEMS 압력센서(130)를 실장하는 단계(S200), 측벽부(141)를 베이스 기판(110)과 결합하는 단계(S300), ASIC(120)과 MEMS 압력센서(130)를 둘러싸는 봉지재(150)를 형성하는 단계(S400) 및 측벽부(141)와 결합하여 내부 공간을 형성하고, 적어도 하나의 에어 홀(145)을 구비하는 커버부(143)를 결합하는 단계(S500)를 포함한다.Method of manufacturing a pressure sensor package of the present invention comprises the steps of preparing a base substrate 110 (S100), mounting the ASIC 120 and MEMS pressure sensor 130 on one surface of the base substrate 110 (S200), Coupling the side wall portion 141 with the base substrate 110 (S300), forming an encapsulant 150 surrounding the ASIC 120 and the MEMS pressure sensor 130 (S400) and the side wall portion 141. ) To form an inner space, and to combine the cover part 143 having the at least one air hole 145 (S500).
여기서 봉지재(150)를 형성하는 단계(S400)는, 상기 ASIC(120)과 MEMS 압력센서(130)를 덮도록 액상 수지재를 충진하는 단계(S410) 및 상기 액상 수지재를 열 경화하여 경화시키는 단계(S420)를 포함할 수 있다.Wherein the step of forming the encapsulant 150 (S400), the step of filling the liquid resin material to cover the ASIC (120) and MEMS pressure sensor 130 (S410) and curing the liquid resin material by thermal curing It may include the step (S420).
여기서, 열 경화는 100℃ 내지 150℃에서 5분 내지 20분 경화하는 것이 바람직하다.Here, it is preferable to heat-cure 5 minutes-20 minutes at 100 degreeC-150 degreeC.
이상, 본 발명의 압력센서 패키지 및 그 제조 방법의 실시예들에 대해 설명하였다. 본 발명은 상술한 실시예 및 첨부한 도면에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자의 관점에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명의 범위는 본 명세서의 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.In the above, embodiments of the pressure sensor package and a method of manufacturing the same have been described. The present invention is not limited to the above-described embodiment and the accompanying drawings, and various modifications and variations will be possible in view of those skilled in the art to which the present invention pertains. Therefore, the scope of the present invention should be defined not only by the claims of the present specification but also by the equivalents of the claims.

Claims (15)

  1. 베이스 기판;A base substrate;
    상기 베이스 기판의 일면 상에 위치하는 ASIC과 MEMS 압력센서;An ASIC and a MEMS pressure sensor positioned on one surface of the base substrate;
    상기 베이스 기판과 결합되어 상기 ASIC과 상기 MEMS 압력센서를 수용하는 내부 공간을 형성하고, 적어도 하나의 에어 홀을 구비하는 하우징; 및A housing coupled to the base substrate to form an inner space for accommodating the ASIC and the MEMS pressure sensor and having at least one air hole; And
    상기 내부 공간 내에서 상기 ASIC과 상기 MEMS 압력센서를 둘러싸고, 상기 기판과 대향하는 하우징의 상면의 내측과 이격되는 봉지재An encapsulant surrounding the ASIC and the MEMS pressure sensor in the inner space and spaced apart from an inner side of an upper surface of the housing facing the substrate.
    를 포함하는 압력센서 패키지.Pressure sensor package comprising a.
  2. 제1 항에 있어서,According to claim 1,
    상기 하우징은 상기 베이스 기판과 결합하고 상기 내부 공간의 측면을 이루는 측벽부 및 상기 측벽부와 결합하고 상기 내부 공간의 상면을 이루는 커버부를 포함하는 압력센서 패키지.The housing includes a side wall portion coupled to the base substrate and forming a side surface of the inner space and a cover portion coupled to the side wall portion and forming an upper surface of the inner space.
  3. 제2 항에 있어서,The method of claim 2,
    상기 커버부는 적어도 하나의 에어 홀을 구비하는 압력센서 패키지.The cover part pressure sensor package having at least one air hole.
  4. 제2 항에 있어서,The method of claim 2,
    상기 커버부는 상기 측벽부의 상면과 결합하는 압력센서 패키지.The cover part is coupled to the upper surface of the pressure sensor package.
  5. 제1 항에 있어서,According to claim 1,
    상기 하우징은 상기 내부 공간을 외부의 전자기파로부터 차폐할 수 있는 압력센서 패키지.The housing is a pressure sensor package that can shield the internal space from external electromagnetic waves.
  6. 제1 항에 있어서,According to claim 1,
    상기 봉지재는 소정의 세기의 이하의 외력에 의해 형태가 변형되었다가 상기 외력이 제거되면 원형으로 복원되는 젤(gel) 형태인 압력센서 패키지.The encapsulant is a pressure sensor package having a form of a gel that is deformed by an external force of a predetermined strength or less and is restored to a circular shape when the external force is removed.
  7. 제1 항에 있어서,According to claim 1,
    상기 봉지재는 상기 에어 홀을 통해 외부로부터 가해지는 압력에 의해 형상이 변할 수 있는 가요성 재질로 형성되는 압력센서 패키지.The encapsulant is a pressure sensor package formed of a flexible material that can be changed in shape by pressure applied from the outside through the air hole.
  8. 제1 항에 있어서,According to claim 1,
    상기 봉지재는 실리콘(silicone) 계열의 수지재로 형성되는 압력센서 패키지.The encapsulant is a pressure sensor package formed of a resin (silicone) series.
  9. 제1 항에 있어서,According to claim 1,
    상기 봉지재는 차광성인 수지재로 형성되는 압력센서 패키지.The encapsulant is a pressure sensor package formed of a light-shielding resin material.
  10. 제1 항에 있어서,According to claim 1,
    상기 봉지재는 상기 MEMS 압력센서에 광 노이즈를 유발할 수 있는 파장 대역의 광에 대해서 투광성이 50% 이하인 재질의 수지재로 형성되는 압력센서 패키지.The encapsulant is a pressure sensor package formed of a resin material having a light transmittance of 50% or less with respect to light in a wavelength band that may cause optical noise in the MEMS pressure sensor.
  11. 제1 항에 있어서,According to claim 1,
    상기 MEMS 압력센서는 상기 ASIC의 상면 상에 적층되어 결합되는 압력센서 패키지.The MEMS pressure sensor is stacked on the top surface of the ASIC and coupled to the pressure sensor package.
  12. 베이스 기판을 준비하는 단계;Preparing a base substrate;
    상기 베이스 기판의 일면 상에 ASIC과 MEMS 압력센서를 실장하는 단계;Mounting an ASIC and a MEMS pressure sensor on one surface of the base substrate;
    측벽부를 상기 베이스 기판과 결합하는 단계;Coupling a sidewall portion with the base substrate;
    상기 ASIC과 MEMS 압력센서를 둘러싸는 봉지재를 형성하는 단계; 및Forming an encapsulant surrounding the ASIC and the MEMS pressure sensor; And
    상기 측벽부와 결합하여 내부 공간을 형성하고, 적어도 하나의 에어 홀을 구비하는 커버부를 결합하는 단계를 포함하되,Combining the cover part with the side wall part to form an inner space and having at least one air hole,
    상기 봉지재를 형성하는 단계는, 상기 봉지재를 상기 커버부와 이격되도록 형성하는The forming of the encapsulant may include forming the encapsulant to be spaced apart from the cover part.
    압력센서 패키지의 제조 방법.Method of manufacturing pressure sensor package.
  13. 제12 항에 있어서,The method of claim 12,
    상기 봉지재는 실리콘 계열의 수지재로 형성되는 압력센서 패키지의 제조 방법.The encapsulation material is a method of manufacturing a pressure sensor package formed of a resin-based resin.
  14. 제12 항에 있어서,The method of claim 12,
    상기 봉지재를 형성하는 단계는,Forming the encapsulant,
    상기 ASIC과 MEMS 압력센서를 덮도록 액상 수지재를 충진하는 단계; 및Filling a liquid resin material to cover the ASIC and the MEMS pressure sensor; And
    상기 액상 수지재를 열 경화하여 경화시키는 단계를 포함하는 압력센서 패키지의 제조 방법.Method of producing a pressure sensor package comprising the step of curing the liquid resin material by heat curing.
  15. 제14 항에 있어서,The method of claim 14,
    상기 열 경화는 100℃ 내지 150℃에서 5분 내지 20분 경화하는 압력센서 패키지의 제조 방법.The thermal curing is a method for producing a pressure sensor package to cure 5 minutes to 20 minutes at 100 ℃ to 150 ℃.
PCT/KR2015/001804 2015-02-25 2015-02-25 Pressure sensor package and manufacturing method thereof WO2016137027A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0026241 2015-02-25
KR20150026241 2015-02-25

Publications (1)

Publication Number Publication Date
WO2016137027A1 true WO2016137027A1 (en) 2016-09-01

Family

ID=56789471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/001804 WO2016137027A1 (en) 2015-02-25 2015-02-25 Pressure sensor package and manufacturing method thereof

Country Status (1)

Country Link
WO (1) WO2016137027A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291590A (en) * 1992-04-16 1993-11-05 Fuji Electric Co Ltd Semiconductor pressure sensor
JPH07218364A (en) * 1994-02-03 1995-08-18 Yokogawa Electric Corp Semiconductor pressure gage
JPH09126920A (en) * 1995-10-26 1997-05-16 Matsushita Electric Works Ltd Semiconductor pressure sensor
US20100300207A1 (en) * 2009-05-27 2010-12-02 Temic Automotive Of North America, Inc. Pressure sensor for harsh media sensing and flexible packaging
US20120291559A1 (en) * 2011-05-19 2012-11-22 James William Sterling Integrated Pressure Sensor Seal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291590A (en) * 1992-04-16 1993-11-05 Fuji Electric Co Ltd Semiconductor pressure sensor
JPH07218364A (en) * 1994-02-03 1995-08-18 Yokogawa Electric Corp Semiconductor pressure gage
JPH09126920A (en) * 1995-10-26 1997-05-16 Matsushita Electric Works Ltd Semiconductor pressure sensor
US20100300207A1 (en) * 2009-05-27 2010-12-02 Temic Automotive Of North America, Inc. Pressure sensor for harsh media sensing and flexible packaging
US20120291559A1 (en) * 2011-05-19 2012-11-22 James William Sterling Integrated Pressure Sensor Seal

Similar Documents

Publication Publication Date Title
US7682159B2 (en) Electrical connector and camera device having the same
US10147834B2 (en) Overmold proximity sensor and associated methods
CN107337173A (en) Multicell transducer module, the device of the transducer module containing multicell and its manufacture method
CN101252109B (en) Optoelectronic module provided with at least one photoreceptor cell
CN213579899U (en) Semiconductor device and electronic apparatus
WO2012050279A1 (en) Microphone device
WO2013165052A1 (en) Sensor package and manufacturing method therefor
WO2013172609A1 (en) Fingerprint sensor package and method for manufacturing same
WO2016035903A1 (en) Differential pressure sensor
TWI671891B (en) Small size, weight, and packaging of image sensors
WO2016137027A1 (en) Pressure sensor package and manufacturing method thereof
WO2020085719A1 (en) Substrate connection member comprising substrate having opening part, which encompasses region in which through wire is formed, and conductive member formed on side surface of opening part, and electronic device comprising same
KR20160005317A (en) Electronic device having contactless temperature sensor
WO2022164129A1 (en) Electronic apparatus comprising waterproof structure
WO2015130092A1 (en) Waterproof case
CN206865584U (en) Camera module
WO2018190460A1 (en) Optical sensor package
WO2017146451A1 (en) Fingerprint recognition sensor package and method for manufacturing same
US11105692B2 (en) Force sensor having first and second circuit board arrangements
KR101559154B1 (en) Pressure sensor package and manufacturing method thereof
CN100423560C (en) Stacking-type image induction module
CN211604129U (en) Sensor module and electronic equipment
WO2017052089A1 (en) Sensor package
CN213180487U (en) Semiconductor device and electronic apparatus
WO2017052088A1 (en) Sensor package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883416

Country of ref document: EP

Kind code of ref document: A1