WO2016136270A1 - Electrostatic precipitator - Google Patents

Electrostatic precipitator Download PDF

Info

Publication number
WO2016136270A1
WO2016136270A1 PCT/JP2016/001042 JP2016001042W WO2016136270A1 WO 2016136270 A1 WO2016136270 A1 WO 2016136270A1 JP 2016001042 W JP2016001042 W JP 2016001042W WO 2016136270 A1 WO2016136270 A1 WO 2016136270A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
dust
charging
charging unit
conductive fiber
Prior art date
Application number
PCT/JP2016/001042
Other languages
French (fr)
Japanese (ja)
Inventor
洋 細野
篤史 片谷
光 村田
水野 彰
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017501952A priority Critical patent/JP6837192B2/en
Priority to KR1020177017785A priority patent/KR102481567B1/en
Publication of WO2016136270A1 publication Critical patent/WO2016136270A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings

Definitions

  • the present invention relates to an electrostatic precipitator that charges airborne particles in the air and collects them by electrostatic force.
  • this type of electrostatic precipitator applies a DC high voltage to the discharge electrode of the charging unit, generates a positive corona or a negative corona, and imparts a positive or negative charge to the dust passing through the charging unit. Is charged.
  • Patent Document 1 Widely known in general (for example, see Patent Document 1).
  • FIG. 20 schematically shows the electrode arrangement of the dust collection unit of the electric dust collector.
  • the electrostatic precipitator includes a charging unit 104 and a dust collecting unit 105.
  • the ventilation direction is the direction from the charging unit 104 to the dust collection unit 105 (from left to right in FIG. 20).
  • a DC high voltage of +11 kV and +8.3 kV is supplied from the DC high voltage power source 109 to the charging unit 104 and the dust collecting unit 105, respectively.
  • the charging unit 104 includes a protruding discharge electrode 104A and a ground electrode plate 104B.
  • a DC high voltage of +11 kV is applied to the discharge electrode 104A, and a positive corona discharge is generated in the space between the discharge electrode 104A and the ground electrode plate 104B.
  • Positive ions generated by the positive corona give a positive charge to dust (not shown) in the space, and the dust is positively charged.
  • the charged dust is collected on the ground electrode plate 105B by electrostatic force due to a strong electric field formed between the load electrode plate 105A and the ground electrode plate 105B in the dust collection unit 105 in the subsequent stage (dust collection principle).
  • a general dust collector for a tunnel ventilation facility using corona discharge has a power consumption per air volume of about 110 W / (m 3 / s). As a result, the power consumption per 1 m 3 / min is about 2 W.
  • the power consumption is 3.5 W when the processing air volume is 0.3 m 3 / min, and the power consumption per 1 m 3 / min is about 12 W (for example, Patent Document 2).
  • the present invention does not generate corona discharge or generates minute corona discharge to charge dust, thereby reducing power generation at the charging unit and reducing the electricity cost associated with power consumption.
  • a plurality of load electrodes and a plurality of ground electrodes are alternately arranged in parallel between the inflow portion and the outflow portion of the gas containing dust.
  • a conductive fiber is provided on one side of the load electrode or one side of the ground electrode, the conductive fiber is provided between each electrode plate of the load electrode and the ground electrode, and a charging unit that applies a high voltage to the load electrode is provided.
  • Dust is deposited on the conductive fiber by a gradient force, and the accumulated dust is charged by induction charging to the same polarity as the conductive fiber deposited at the time of scattering, and the scattered charged dust is different in polarity. Dust can be collected by the opposing ground electrode or load electrode.
  • the electrostatic precipitator according to the present invention generates a discharge from the end of the conductive fiber by applying a high voltage to the load electrode, and discharges the charged portion to the area of the electrode by 3 per 1 mm 2. It may be in the range of ⁇ 10 ⁇ 5 to 60 ⁇ 10 ⁇ 5 ⁇ A.
  • the ratio of the length of the conductive fiber to the electrode plate interval between the load electrode and the ground electrode is set to 0.01 to 0.3, and the electric field strength between the electrode plate between the load electrode and the ground electrode is set to 0.3 to 0.3. It may be 1 kV / mm.
  • the conductive fiber may be carbon fiber.
  • a plurality of dust collector load electrode plates and a plurality of dust collector ground electrode plates are alternately arranged in parallel between the inflow and outflow portions of the gas containing dust, and a high voltage is applied to the dust collector load electrode plates.
  • a plurality of dust collecting portion load electrode plates and a plurality of dust collecting portion ground electrode plates may be used as the dust collecting portion, and the dust collecting portion may be provided on the downstream side of the charging portion.
  • FIG. 1 is a perspective view of the inside of a tunnel ventilation facility using an electrostatic precipitator according to the first embodiment of the present invention.
  • FIG. 2 is a view showing a section 2-2 in FIG.
  • FIG. 3 is a view showing a 3-3 cross section of FIG.
  • FIG. 4 is an internal perspective view of the upper surface of the tunnel ventilation facility using the electrostatic precipitator according to the first embodiment of the present invention.
  • FIG. 5 is a configuration diagram of the electrostatic precipitator according to the first embodiment of the present invention.
  • FIG. 6 is a conceptual diagram showing the electrode plate arrangement of the electrostatic precipitator according to the first embodiment of the present invention.
  • FIG. 7 is a graph showing the current with respect to the applied voltage of the charging unit of the electrostatic precipitator according to the first embodiment of the present invention.
  • FIG. 1 is a perspective view of the inside of a tunnel ventilation facility using an electrostatic precipitator according to the first embodiment of the present invention.
  • FIG. 2 is a view showing a section 2-2 in FIG.
  • FIG. 8 is a conceptual diagram showing the electric field region of the charging unit of the electrostatic precipitator according to the first embodiment of the present invention.
  • FIG. 9A is a conceptual diagram illustrating the movement of dust accumulation in the charging unit of the electrostatic precipitator according to the first embodiment of the present invention.
  • FIG. 9B is a conceptual diagram showing the movement of dust re-scattering in the charging unit of the electrostatic precipitator according to the first embodiment of the present invention.
  • FIG. 10 is a graph showing the dust collection rate of the electrostatic precipitator according to the first embodiment of the present invention.
  • FIG. 11 is a graph showing the dust collection rate when the applied voltage of the electrostatic precipitator according to the first embodiment of the present invention is zero.
  • FIG. 9A is a conceptual diagram illustrating the movement of dust accumulation in the charging unit of the electrostatic precipitator according to the first embodiment of the present invention.
  • FIG. 9B is a conceptual diagram showing the movement of dust re-scattering in the charging unit of the electrostatic precipitator according to the
  • FIG. 12 is a graph showing the dust collection rate when the voltage application of the electrostatic precipitator according to the first embodiment of the present invention is applied only to the charging unit.
  • FIG. 13 is a graph showing the dust collection rate when the voltage application of the electrostatic precipitator according to the first embodiment of the present invention is limited to the dust collection unit.
  • FIG. 14 is a graph showing a comparison of the dust collection rates of the electrostatic precipitator according to the first embodiment of the present invention.
  • FIG. 15 is a graph showing the dust collection rate with respect to the charging unit applied voltage of the electrostatic precipitator according to the first embodiment of the present invention.
  • FIG. 16 is a graph showing the dust collection rate with respect to the charged portion discharge current of the electrostatic precipitator according to the first embodiment of the present invention.
  • FIG. 17 is a graph showing the dust collection rate with respect to the power consumption of the electrostatic precipitator according to the first embodiment of the present invention.
  • FIG. 18 is a perspective view illustrating the configuration of the charging unit of the electrostatic precipitator according to the first embodiment of the present invention.
  • FIG. 19 is a perspective view illustrating the configuration of the electrostatic precipitator according to the first embodiment of the present invention.
  • FIG. 20 is a configuration diagram of a charging unit and a dust collection unit of a conventional electric dust collector.
  • the electrostatic precipitator 3 of the present embodiment is installed in a ventilation air passage 4 from the ventilation suction port 2 to the ventilation discharge port 6 above the tunnel main line 1,
  • a ventilation fan 5 is installed on the downstream side of the air passage 4.
  • the ventilation inlet 2, the electric dust collector 3, the ventilation air passage 4, and the ventilation fan 5 constitute one system.
  • a ventilation air passage having a similar configuration is provided on both sides of the ventilation air passage 4 shown in FIG. 4, and the common ventilation outlet 6 is an outlet in which three systems are combined. Yes.
  • an electrostatic precipitator 7 and a high pressure generating panel 8 and a control panel 9 for operating the precipitator 3 and the electrostatic precipitator 7 are installed. Has been.
  • the electric dust collector 3 includes a dust collection unit 11 including a charging unit 12 and a dust collection unit 13 in a casing 10, and a damper 31 on the windward side of the dust collection unit 11.
  • a cleaning pipe 32 is provided in the upper part on the leeward side, and a wiring terminal box 33 is provided in the lower part on the leeward side.
  • a plurality of dust collection units 11 are provided in the casing 10.
  • the damper 31 is closed when the electrode plates constituting the charging unit 12 and the dust collecting unit 13 are washed with water, and has a function of preventing water scattering to the outside of the casing 10.
  • In-machine piping for cleaning which is made of stainless steel or resin.
  • the wiring terminal box 33 is a box that temporarily receives the wiring from the high voltage generating board 8 and applies a high voltage from the terminal of the box to the charging unit 12 and the dust collecting unit 13.
  • the dust collecting unit 11 includes a charging unit 12 in which charging unit grounding electrode plates 14 as grounding electrodes and charging unit load electrode plates 15 as load electrodes are alternately arranged in parallel, and a dust collecting unit grounding.
  • a dust collector 13 in which electrode plates 16 and dust collector electrode plates 17 are alternately arranged in parallel, a charging unit high-voltage power supply 18 for charging the charger unit electrode plate 15, and a collector unit for charging the dust collector unit electrode plate 17. It consists of a dust part high-voltage power supply 19.
  • a charging unit 12 is disposed on the windward side, and a dust collecting unit 13 is disposed on the leeward side.
  • the charging unit 12 has a depth (length) L1 of 40 mm and a height (not shown) of 32 mm between the charging unit ground electrode plate 14 and the charging unit load electrode plate 15.
  • the electrode plate interval D1 of the partial electrode plate 15 is 10 mm.
  • the dust collection unit 13 has a dust collection unit ground electrode plate 16 and a dust collection unit load electrode plate 17 having a depth (length) L2 of 280 mm and a height (not shown) of 90 mm.
  • the electrode plate interval D2 between the plate 16 and the dust collecting portion load electrode plate 17 is 10 mm.
  • six dust collecting portion grounding electrode plates 16 and six dust collecting portion load electrode plates 17 are used.
  • the electrode plate material of the charging unit 12 and the dust collecting unit 13 is, for example, SUS304, and the plate thickness is about 0.4 to 0.6 mm. Any material can be used as the material.
  • the charging unit ground electrode plate 14 and the charging unit load electrode plate 15 are provided with a conductive fiber portion 20 in which a large number of conductive fibers are implanted on one side, and either the charging unit ground electrode plate 14 or the charging unit load electrode plate 15 facing each other. One of them is arranged so as to have the conductive fiber portion 20.
  • the conductive fiber portion 20 is composed of a number of activated carbon fibers having a wire diameter of about 5 to 10 ⁇ m and a length of about 0.1 to 3 mm, for example. Bonded to the electrode plate 15.
  • the ratio of the length of the conductive fiber portion 20 to the electrode plate interval D1 between the charging portion load electrode plate 15 and the charging portion grounding electrode plate 14 is preferably 0.01 to 0.3. If this ratio is 0.01 or more, that is, if the length of the conductive fiber portion 20 in this embodiment is 0.1 mm or more, the gradient force generated at the end of the conductive fiber portion 20 becomes strong, and the dust collection rate Can be high.
  • the ratio of the length of the conductive fiber portion 20 to the electrode plate interval D1 is 0.3 or less, that is, the length of the conductive fiber portion 20 in this embodiment is 3 mm or less, the charging portion grounding electrode plate 14 Since the frequency of occurrence of a spark (local short circuit) between the charging part load electrode plates 15 is reduced, the dust collection rate can be increased.
  • the conductive fiber portion 20 is preferably a carbon fiber. According to this configuration, since the specific gravity is lighter than that of metal or the like while having conductivity, the apparatus can be reduced in weight.
  • Rooting is performed using electrostatic force.
  • the charging unit ground electrode plate 14 and the charging unit load electrode plate 15 coated with the conductive adhesive are arranged to face each other at an interval of about 20 to 30 mm, and a high voltage of about DC-5 kV is applied to the charging unit load electrode plate 15.
  • the conductive fibers are planted, but a method other than planting may be used.
  • what processed the conductive fiber part 20 into the nonwoven fabric form may be adhered and fixed.
  • the conductive fiber portion 20 is composed of activated carbon fibers having fine pores on the surface.
  • the conductive fiber portion 20 may not be activated carbon fibers as long as it has a conductive fibrous shape.
  • a resin fiber mixed with a conductive material such as carbon, a fine metal wire, or a resin fiber plated with a conductive material such as metal for example, a resin fiber mixed with a conductive material such as carbon, a fine metal wire, or a resin fiber plated with a conductive material such as metal.
  • the conductive adhesive is composed mainly of, for example, silver as a conductive material and silicon as a binder, and is cured at about 180 ° C.
  • the volume resistivity after curing is 2.5 ⁇ 10 ⁇ 6 ⁇ ⁇ cm. It is.
  • the conductive material may be other than silver as long as it has conductivity. For example, gold or copper.
  • the binder may be other than silicon as long as it has thermosetting properties.
  • epoxy resin urethane resin, acrylic resin and the like.
  • the charging unit 12 is divided into two in the wind flow direction, and six charging unit grounding electrode plates 14 and six charging unit load electrode plates 15 are used in the front and rear stages, respectively.
  • the conductive fiber portions 20 of the charging portion grounding electrode plate 14 and the charging portion load electrode plate 15 are arranged in opposite directions in the former stage and the latter stage.
  • the distance B between the two parts is 40 mm, for example.
  • FIG. 7 shows the current value with respect to the applied voltage of the charging unit 12 when the conductive fiber part 20 is present (solid line in ⁇ ) and when it is not present (dotted line in ⁇ ).
  • the current value shown in FIG. 7 is a value after performing aging for 3 hours (time elapsed in a state where a high voltage is applied). Since the charging unit grounding electrode plate 14, the charging unit load electrode plate 15, and the conductive fiber unit 20 have burrs at the end of processing, the current value changes due to the influence of the burrs. Due to aging, the current value decreases with time, and after a certain time has elapsed, the current also settles to a substantially constant value.
  • the applied voltage of the dust collecting portion 13 without the conductive fiber portion 20 is set to ⁇ 9 kV.
  • the tunnel main line 1 operates the ventilation fan 5 and sucks contaminated air containing dust from the ventilation suction port 2 in order to prevent contamination caused by dust generated by traveling of the vehicle, and the ventilation air passage 4.
  • the air is collected by the electric dust collector 3 and the air from which the dust is removed from the ventilation discharge port 6 is discharged out of the tunnel main line 1 (see FIG. 1).
  • the electrostatic precipitator 3 charges the dust in the contaminated air sucked from the ventilation inlet 2 by the charging unit 12 of the dust collecting unit 11, and the dust collecting unit grounding electrode 16 and the dust collecting unit load electrode of the dust collecting unit 13. It adheres to the plate 17 and removes dust from the contaminated air (see FIG. 6).
  • the feature of the present embodiment is that the charging unit high-voltage power supply 18 is used, but the corona discharge is not generated or the fine corona discharge is used to attach and charge the dust by the gradient force and the induction charging. This will be described with reference to FIGS.
  • FIG. 8 is an enlarged view of a portion X in FIG. 6.
  • the charging unit high-voltage power supply 18 applies a negative high voltage to the charging unit load electrode plate 15 to charge the charging unit ground electrode plate 14.
  • Electric lines of force directed toward the part load electrode plate 15 act.
  • the electric lines of force are curved so that the conductive fiber portions 20 on the charging portion ground electrode plate 14 and the charging portion load electrode plate 15 are dense, thereby forming an unequal electric field.
  • the gradient force refers to a force that the dielectric receives so as to move in the direction of a stronger electric field in an unequal electric field, and the charged portion grounding electrode plate 14 in which the electric lines of force are dense in FIG. And acts toward the conductive fiber portion 20 on the charging portion load electrode plate 15.
  • FIG. 9A schematically shows the behavior of dust in the conductive fiber portion 20 of the charging portion ground electrode plate 14, but the dust also has the same behavior in the conductive fiber portion 20 of the charging portion load electrode plate 15.
  • the dust flying to the charging unit 12 is attracted to the conductive fiber 20a on the windward side of the conductive fiber unit 20 of the charging unit ground electrode plate 14 and the charging unit load electrode plate 15 by a gradient force. Is deposited.
  • the dust that has not been attracted to the conductive fibers 20a of the charging unit ground electrode plate 14 and the charging unit load electrode plate 15 passes through the region of the first unequal electric field, and the charging unit ground electrode plate 14 and the charging unit load electrode.
  • the conductive fibers 20a of the plate 15 are attracted to the conductive fibers 20b on the leeward side (right side in FIG. 9A) and are deposited.
  • the dust that has not been attracted to the conductive fiber 20b of the charging unit ground electrode plate 14 and the charging unit load electrode plate 15 passes through the region of the second unequal electric field, and the charging unit ground electrode plate 14 and the charging unit load.
  • the conductive fibers 20b of the electrode plate 15 are attracted and deposited on the conductive fibers 20c on the leeward side.
  • the dust that has not been attracted to the conductive fiber 20c of the charging unit ground electrode plate 14 and the charging unit load electrode plate 15 passes through the third unequal electric field region, and the charging unit ground electrode plate 14 and the charging unit load.
  • the conductive fibers 20c of the electrode plate 15 are attracted to the conductive fibers 20d on the leeward side and are deposited.
  • the charged portion grounding electrode plate 14 and the charged portion load electrode plate 15 shown in FIG. 6 have a dense electric field in the vicinity of the conductive fiber portion 20 to form an unequal electric field. Attract and deposit.
  • the dust deposited on the conductive fiber portion 20 of the charging portion ground electrode plate 14 is deposited on the conductive fiber portion 20 of the positive polarity, charging portion load electrode plate 15.
  • the dust that had been charged is negatively charged and re-scatters.
  • the re-scattered and charged particles are collected by electrostatic force on the surface of the dust collector ground electrode plate 16 or the dust collector electrode plate 17 of the dust collector 13 shown in FIG.
  • the charging unit grounding electrode plates 14 and the charging unit load electrode plates 15 having the conductive fiber portions 20 on at least one side are alternately arranged in parallel, whereby the dust can be charged by induction charging.
  • parallel includes substantially parallel inclined several degrees.
  • the dust is attracted and deposited on the conductive fiber portion 20 of the charging portion ground electrode plate 14 and the charging portion load electrode plate 15, and a large amount of dust is accumulated at the time of scattering.
  • the charged portion ground electrode plate 14 or the charged portion load electrode plate 15 can be charged by induction charging to the same polarity.
  • the scattered charged dust can be collected by the dust collector grounding electrode plate 16 or the dust collector electrode plate 17 having different polarities of the dust collector 13.
  • dust can be charged and collected without generating corona discharge only by applying a high voltage between the charging portion ground electrode plate 14 and the charging portion load electrode plate 15 or by minute corona discharge. Therefore, it is possible to reduce the generation of electric power in the charging unit 12 and to reduce the electricity cost associated with power consumption.
  • the dust collection unit 13 uses electrostatic force generated in parallel plates, which has a lower pressure loss than a filter type by physical contact and also has a dust collection rate. high.
  • FIG. 10 is a graph showing the dust collection rate with respect to the wind speed when the applied voltage of the charging unit 12 in the present embodiment is ⁇ 2.4 kV.
  • the dust collection rate was measured by measuring the number concentration of dust in the air using a particle counter, and the dust collection rate was calculated from the concentration ratio between the inlet side and the outlet side of the dust collection unit 11 by the following formula.
  • Dust collection rate (1-outlet side number concentration / inlet side number concentration) x 100 (%) As shown in FIG. 10, it has a dust collection rate of 10% or more without consuming electric power at a wind speed of 11 m / s or less, and particularly a dust collection rate of 40% or more at a wind speed of 2 m / s.
  • FIG. 11 is a graph showing the dust collection rate when the applied voltage of the charging unit 12 and the dust collection unit 13 is 0 kV for comparison.
  • the dust collection rate when no voltage is applied is less than 5%.
  • FIG. 12 is a graph showing the dust collection rate when a voltage is applied only to the charging unit 12.
  • FIG. 13 is a graph showing the dust collection rate when a voltage is applied only to the dust collection unit 13.
  • the combined dust collection rate c% in the case where the charging unit 12 with the dust collection rate a% and the dust collection unit 13 with the dust collection rate b% are arranged in series is as follows. It can be calculated by the formula.
  • FIG. 14 shows the combined dust collection rate (dotted line) and charging obtained from the dust collection rate when the voltage is applied only to the charging unit 12 and the dust collection rate when the voltage is applied only to the dust collection unit 13 using the above formula. It is the graph which compared the dust collection rate (solid line) at the time of applying a voltage to both the part 12 and the dust collection part 13.
  • the measured dust collection rate is higher than the synthetic dust collection rate obtained by calculation.
  • the dust collecting unit 13 applies a high voltage to the parallel plate, so that the dust once contacted or collected by the charging unit 12 is re-scattered in a state of being charged by induction charging, and this is the subsequent dust collecting unit. This is thought to be due to the effect of electrostatically collecting by the strong electric field in 13 parallel plates.
  • FIG. 15 is a graph showing the dust collection rate with respect to the applied voltage of the charging unit 12 in the present embodiment.
  • the wind speed is 2 m / s
  • the solid line in FIG. 15 represents the average value during five measurements.
  • the dust collection rate As shown in FIG. 15, there is an upward tendency of the dust collection rate when the applied voltage of the charging unit 12 is around ⁇ 3 kV. Further, the dust collection rate is significantly increased at ⁇ 4 kV or more (absolute value of 4 kV or more), and at ⁇ 7 kV, the dust collection rate is 80% or more.
  • the electric field strength of the charging unit 12 at ⁇ 3 kV is 0.3 kV / mm because the electrode plate interval D1 between the charging unit ground electrode plate 14 and the charging unit load electrode plate 15 is 10 mm. . Further, the electric field strength of the charging unit 12 at ⁇ 4 kV in the present embodiment is 0.4 kV / mm.
  • the electric field strength between the electrode plates of the charging portion load electrode plate 15 and the charging portion grounding electrode plate 14 is preferably 0.3 to 1 kV / mm. If the electric field strength is 0.3 kV / mm or more, an improvement in the dust collection rate due to the gradient force can be expected. Further, if the electric field strength is 1 kV / mm or less, the frequency of occurrence of a spark (local short circuit) between the charging unit grounding electrode plate 14 and the charging unit load electrode plate 15 is reduced, so that the dust collection rate can be increased. it can.
  • FIG. 16 is a graph showing the dust collection rate with respect to the discharge current of the charging unit 12 in the present embodiment.
  • the wind speed is 2 m / s, and the discharge current is changed by slightly varying the voltage applied to the charging unit 12 in the vicinity of ⁇ 7 kV.
  • the discharge current when the electrode plate interval D1 (see FIG. 6) of the charging unit 12 is 10 mm is about 20 ⁇ A
  • the discharging current of the charging unit 12 is 1 to 20 ⁇ A, that is, per 1 mm 2 of the electrode area.
  • the discharge current is preferably 3 ⁇ 10 ⁇ 5 to 60 ⁇ 10 ⁇ 5 ⁇ A.
  • the discharge current per 1 mm 2 of electrode area is 3 ⁇ 10 ⁇ 5 ⁇ A or more, that is, if the discharge current of the charging unit 12 is 1 ⁇ A or more in this embodiment, the gradient force generated at the end of the conductive fiber portion 20 is strong. Thus, the dust collection rate can be increased.
  • the discharge current per 1 mm 2 of electrode area is 60 ⁇ 10 ⁇ 5 ⁇ A or less, that is, if the discharge current of the charging unit 12 is 20 ⁇ A or less in this embodiment, the charging unit ground electrode plate 14 and the charging unit load electrode plate Since the frequency of occurrence of sparks (local short circuit) between 15 is reduced, the dust collection rate can be increased.
  • the discharge current per 1 mm 2 of the electrode area is 3 ⁇ 10 ⁇ 5 to 15 ⁇ 10 ⁇ 5 ⁇ A, that is, the discharge current of the charging unit 12 in the present embodiment is 1 to 5 ⁇ A. According to this configuration, power consumption is extremely small, and the dust collection rate can be set to 70% or more.
  • FIG. 17 is a graph showing the dust collection rate with respect to the power consumption in the present embodiment.
  • the wind speed is 2 m / s, and the power consumption is changed by slightly varying the voltage applied to the charging unit 12 in the vicinity of ⁇ 7 kV.
  • the power consumption is 15 mW or more and the dust collection rate is 80% or more.
  • the processing air volume in the present embodiment is 0.46 m 3 / min from the cross-sectional area (height 32 mm ⁇ electrode plate interval 10 mm ⁇ electrode plate number 12 sheets) ⁇ wind speed (2 m / s).
  • the power consumption per 1 m 3 / min is about 0.03 W, which is about 1 / 100th of the power consumption of the electrostatic precipitator of the prior art document 2, for example.
  • the charging unit 12 has a plurality of charging unit grounding electrode plates 14 and charging unit load electrode plates 15 arranged at regular intervals by an electrode plate interval holding tube 22. Each electrode plate is penetrated by a plurality of electrode plate holding rods 23 and supported and fixed in parallel between the charging unit frames 21 at both ends.
  • the charging unit frame 21 is provided with an insulator 24, which supports a voltage application component including the charging unit load electrode plate 15 and is electrically insulated from a grounding component including the charging unit grounding electrode plate 14.
  • the dust collecting unit 13 includes the dust collecting unit ground electrode plate 16 and the dust collecting unit electrode plate 17 having approximately the same number as the charging unit ground electrode plate 14 and the charging unit load electrode plate 15. Are arranged in parallel.
  • the dust collector 13 has a plurality of dust collector grounding electrode plates 16 and dust collector load electrode plates 17 between the dust collector frames 25 at both ends, similarly to the charging unit 12. It is arranged at a constant interval by a plate interval holding tube 22 and is supported and fixed in parallel by using four electrode plate holding bars 23 for each electrode plate.
  • the charging unit 12 and the dust collecting unit 13 are provided.
  • the dust collecting unit 13 may not be provided and only the charging unit 12 may be configured.
  • sharp projections are provided at opposite positions of the charging part load electrode plate 15 and the charging part grounding electrode plate 14, respectively, and dust that flows in by using corona discharge is supplementarily supplied. It may be configured to promote charging.
  • the grounding electrode and the load electrode of the charging unit 12 and the dust collecting unit 13 are flat electrode plates, but a fiber or rod electrode may be used.
  • the electrostatic precipitator according to the present invention does not generate corona discharge or generates minute corona discharge, thereby reducing power generation in the charging unit and enabling power saving. It is useful in a wide range.

Landscapes

  • Electrostatic Separation (AREA)

Abstract

A dust collecting unit (11) of this electrostatic precipitator includes: a plurality of charging part charging electrode plates (15) each having, on at least one surface thereof, a conductive fiber portion (20) formed from a conductive fiber; and a plurality of charging part grounding electrode plates (14) each having, on at least one surface thereof, a conductive fiber portion (20) formed from a conductive fiber. Further, a charging part (12) is included in which the charging part charging electrode plates (15) and the charging part grounding electrode plates (14) are alternately arranged in parallel, respectively, so as to have the conductive fiber portions (20), formed from a conductive fiber, between the respective electrodes. Also included are: a dust collecting part (13) in which dust collecting part grounding electrode plates and dust collecting part charging electrode plates (17) are arranged in parallel; charging part high voltage power supplies (18) that charge the charging part charging electrode plates (15); and a dust collecting part high voltage power supply (19) that charges the dust collecting part charging electrode plates (17). Further, the charging part (12) is disposed on the upwind side and the dust collecting part (13) is disposed on the downwind side.

Description

電気集塵装置Electric dust collector
 本発明は、空気中の浮遊粒子を帯電させて静電気力で捕集する電気集塵装置に関するものである。 The present invention relates to an electrostatic precipitator that charges airborne particles in the air and collects them by electrostatic force.
 従来、この種の電気集塵装置は、帯電部の放電極に直流高電圧を印加し、正コロナまたは負コロナを発生させ、帯電部を通過する粉塵に正または負の電荷をもたせて、粉塵を帯電させる。この帯電した粉塵を、直流高電圧が印加された荷電極と、接地に繋がれた接地極板を有する集塵部との高電界により、静電気力で接地極板面上に捕集する技術が広く一般的に知られている(例えば、特許文献1参照)。 Conventionally, this type of electrostatic precipitator applies a DC high voltage to the discharge electrode of the charging unit, generates a positive corona or a negative corona, and imparts a positive or negative charge to the dust passing through the charging unit. Is charged. There is a technology to collect this charged dust on the surface of the grounding electrode plate with electrostatic force by a high electric field between the load electrode to which a DC high voltage is applied and the dust collecting part having the grounding electrode plate connected to the ground. Widely known in general (for example, see Patent Document 1).
 以下、その電気集塵原理について図20を参照しながら説明する。 Hereinafter, the principle of electrostatic dust collection will be described with reference to FIG.
 図20は電気集塵装置の集塵ユニットの電極配置を模式的に表している。図20に示すように、電気集塵装置は帯電部104と集塵部105により構成される。通風方向は、帯電部104から、集塵部105への向き(図20における左から右の向き)である。帯電部104と集塵部105にはそれぞれ+11kVと+8.3kVの直流高電圧が直流高圧電源109から供給されている。帯電部104は、突起状の放電極104Aと接地極板104Bにより構成される。放電極104Aに+11kVの直流高圧が印加され、放電極104Aと接地極板104Bの間の空間に正コロナ放電が発生する。この正コロナにより発生した正イオンが、空間中の粉塵(図示されず)に正の電荷を与え、粉塵は正に帯電する。帯電した粉塵は後段の集塵部105における、荷電極板105Aと接地極板105B間で形成される強電界により、静電気力で接地極板105B上に捕集される(集塵原理)。 FIG. 20 schematically shows the electrode arrangement of the dust collection unit of the electric dust collector. As shown in FIG. 20, the electrostatic precipitator includes a charging unit 104 and a dust collecting unit 105. The ventilation direction is the direction from the charging unit 104 to the dust collection unit 105 (from left to right in FIG. 20). A DC high voltage of +11 kV and +8.3 kV is supplied from the DC high voltage power source 109 to the charging unit 104 and the dust collecting unit 105, respectively. The charging unit 104 includes a protruding discharge electrode 104A and a ground electrode plate 104B. A DC high voltage of +11 kV is applied to the discharge electrode 104A, and a positive corona discharge is generated in the space between the discharge electrode 104A and the ground electrode plate 104B. Positive ions generated by the positive corona give a positive charge to dust (not shown) in the space, and the dust is positively charged. The charged dust is collected on the ground electrode plate 105B by electrostatic force due to a strong electric field formed between the load electrode plate 105A and the ground electrode plate 105B in the dust collection unit 105 in the subsequent stage (dust collection principle).
 コロナ放電を用いた一般的なトンネル換気設備向け電気集塵装置は、風量あたりの消費電力が110W/(m/s)程度である。これより1m/minあたりの消費電力は約2Wとなる。 A general dust collector for a tunnel ventilation facility using corona discharge has a power consumption per air volume of about 110 W / (m 3 / s). As a result, the power consumption per 1 m 3 / min is about 2 W.
 また、他の従来の空気清浄機では、処理風量が0.3m/minの場合に消費電力は3.5Wであり、これより1m/minあたりの消費電力は約12Wとなる(例えば、特許文献2参照)。 Further, in other conventional air purifiers, the power consumption is 3.5 W when the processing air volume is 0.3 m 3 / min, and the power consumption per 1 m 3 / min is about 12 W (for example, Patent Document 2).
特開平9-225340号公報JP-A-9-225340 特開平9-239289号公報JP-A-9-239289
 このような電気集塵装置の帯電部104においては、コロナ放電による電力消費が発生するため、消費電力に伴う電気代が嵩むという課題があった。 In the charging unit 104 of such an electrostatic precipitator, power consumption due to corona discharge occurs, and thus there is a problem that the electricity cost associated with power consumption increases.
 そこで本発明は、コロナ放電を発生させず、もしくは微小なコロナ放電を発生させて、粉塵を帯電させることにより、帯電部での電力発生を低減し、消費電力に伴う電気代を少なくできる電気集塵装置を提供する。 In view of this, the present invention does not generate corona discharge or generates minute corona discharge to charge dust, thereby reducing power generation at the charging unit and reducing the electricity cost associated with power consumption. Provide a dust device.
 そして、本発明に係る電気集塵装置は、粉塵を含んだ気体の流入部と流出部の間において複数の荷電極と複数の接地極を交互に平行に配置する。また、荷電極の片面または接地極の片面に導電性繊維を備え、導電性繊維が荷電極と接地極との各極板間に設けられ、荷電極に高電圧を印加した帯電部を備える。 In the electrostatic precipitator according to the present invention, a plurality of load electrodes and a plurality of ground electrodes are alternately arranged in parallel between the inflow portion and the outflow portion of the gas containing dust. In addition, a conductive fiber is provided on one side of the load electrode or one side of the ground electrode, the conductive fiber is provided between each electrode plate of the load electrode and the ground electrode, and a charging unit that applies a high voltage to the load electrode is provided.
 このような構成によって、グラディエント力により導電性繊維に粉塵を堆積させ、堆積した粉塵が飛散時に堆積していた導電性繊維と同じ極性に誘導帯電により帯電し、この飛散した帯電粉塵を異なる極性の対向する接地極または荷電極で集塵することができるものである。 With such a configuration, dust is deposited on the conductive fiber by a gradient force, and the accumulated dust is charged by induction charging to the same polarity as the conductive fiber deposited at the time of scattering, and the scattered charged dust is different in polarity. Dust can be collected by the opposing ground electrode or load electrode.
 さらに、帯電部での電力発生を低減し、消費電力に伴う電気代を少なくできるという効果を得る。 Furthermore, it is possible to reduce the generation of electric power at the charging unit and to reduce the electricity cost associated with power consumption.
 また、本発明に係る電気集塵装置は、荷電極に高電圧を印加することにより導電性繊維の端部より放電を発生させ、この帯電部の放電を電極の面積に対して1mmあたり3×10-5~60×10-5μAの範囲としてもよい。 In addition, the electrostatic precipitator according to the present invention generates a discharge from the end of the conductive fiber by applying a high voltage to the load electrode, and discharges the charged portion to the area of the electrode by 3 per 1 mm 2. It may be in the range of × 10 −5 to 60 × 10 −5 μA.
 また、荷電極と接地極との極板間隔に対する、導電性繊維の長さの比率を0.01~0.3とし、荷電極と接地極との極板間における電界強度を0.3~1kV/mmとしてもよい。 Further, the ratio of the length of the conductive fiber to the electrode plate interval between the load electrode and the ground electrode is set to 0.01 to 0.3, and the electric field strength between the electrode plate between the load electrode and the ground electrode is set to 0.3 to 0.3. It may be 1 kV / mm.
 また、導電性繊維を炭素繊維としてもよい。 Also, the conductive fiber may be carbon fiber.
 また、粉塵を含んだ気体の流入部と流出部間において複数の集塵部荷電極板と複数の集塵部接地極板を交互に平行に配置し、集塵部荷電極板に高電圧を印加し、複数の集塵部荷電極板と複数の集塵部接地極板を集塵部とし、集塵部を帯電部の下流側に備えたものとしてもよい。 In addition, a plurality of dust collector load electrode plates and a plurality of dust collector ground electrode plates are alternately arranged in parallel between the inflow and outflow portions of the gas containing dust, and a high voltage is applied to the dust collector load electrode plates. A plurality of dust collecting portion load electrode plates and a plurality of dust collecting portion ground electrode plates may be used as the dust collecting portion, and the dust collecting portion may be provided on the downstream side of the charging portion.
 また、荷電極に高電圧を印加しても導電性繊維の端部より放電が発生しないものとしてもよい。 Further, even if a high voltage is applied to the load electrode, no discharge may be generated from the end of the conductive fiber.
図1は、本発明の第1の実施の形態における電気集塵装置を使用したトンネル換気設備の内部を透視した斜視図である。FIG. 1 is a perspective view of the inside of a tunnel ventilation facility using an electrostatic precipitator according to the first embodiment of the present invention. 図2は、図1の2-2断面を示す図である。FIG. 2 is a view showing a section 2-2 in FIG. 図3は、図1の3-3断面を示す図である。FIG. 3 is a view showing a 3-3 cross section of FIG. 図4は、本発明の第1の実施の形態の電気集塵装置を使用したトンネル換気設備の上面の内部透視図である。FIG. 4 is an internal perspective view of the upper surface of the tunnel ventilation facility using the electrostatic precipitator according to the first embodiment of the present invention. 図5は、本発明の第1の実施の形態における電気集塵装置の構成図である。FIG. 5 is a configuration diagram of the electrostatic precipitator according to the first embodiment of the present invention. 図6は、本発明の第1の実施の形態における電気集塵装置の極板配置を表す概念図である。FIG. 6 is a conceptual diagram showing the electrode plate arrangement of the electrostatic precipitator according to the first embodiment of the present invention. 図7は、本発明の第1の実施の形態における電気集塵装置の帯電部の印加電圧に対する電流を表すグラフである。FIG. 7 is a graph showing the current with respect to the applied voltage of the charging unit of the electrostatic precipitator according to the first embodiment of the present invention. 図8は、本発明の第1の実施の形態における電気集塵装置の帯電部の電界領域を表す概念図である。FIG. 8 is a conceptual diagram showing the electric field region of the charging unit of the electrostatic precipitator according to the first embodiment of the present invention. 図9Aは、本発明の第1の実施の形態における電気集塵装置の帯電部の粉塵の堆積する動きを表す概念図である。FIG. 9A is a conceptual diagram illustrating the movement of dust accumulation in the charging unit of the electrostatic precipitator according to the first embodiment of the present invention. 図9Bは、本発明の第1の実施の形態における電気集塵装置の帯電部の粉塵の再飛散する動きを表す概念図である。FIG. 9B is a conceptual diagram showing the movement of dust re-scattering in the charging unit of the electrostatic precipitator according to the first embodiment of the present invention. 図10は、本発明の第1の実施の形態における電気集塵装置の集塵率を表すグラフである。FIG. 10 is a graph showing the dust collection rate of the electrostatic precipitator according to the first embodiment of the present invention. 図11は、本発明の第1の実施の形態における電気集塵装置の印加電圧をゼロとした場合の集塵率を表すグラフである。FIG. 11 is a graph showing the dust collection rate when the applied voltage of the electrostatic precipitator according to the first embodiment of the present invention is zero. 図12は、本発明の第1の実施の形態における電気集塵装置の電圧印加を帯電部のみとした場合の集塵率を表すグラフである。FIG. 12 is a graph showing the dust collection rate when the voltage application of the electrostatic precipitator according to the first embodiment of the present invention is applied only to the charging unit. 図13は、本発明の第1の実施の形態における電気集塵装置の電圧印加を集塵部のみとした場合の集塵率を表すグラフである。FIG. 13 is a graph showing the dust collection rate when the voltage application of the electrostatic precipitator according to the first embodiment of the present invention is limited to the dust collection unit. 図14は、本発明の第1の実施の形態における電気集塵装置の集塵率の比較を表すグラフである。FIG. 14 is a graph showing a comparison of the dust collection rates of the electrostatic precipitator according to the first embodiment of the present invention. 図15は、本発明の第1の実施の形態における電気集塵装置の帯電部印加電圧に対する集塵率を表すグラフである。FIG. 15 is a graph showing the dust collection rate with respect to the charging unit applied voltage of the electrostatic precipitator according to the first embodiment of the present invention. 図16は、本発明の第1の実施の形態における電気集塵装置の帯電部放電電流に対する集塵率を表すグラフである。FIG. 16 is a graph showing the dust collection rate with respect to the charged portion discharge current of the electrostatic precipitator according to the first embodiment of the present invention. 図17は、本発明の第1の実施の形態における電気集塵装置の消費電力に対する集塵率を表すグラフである。FIG. 17 is a graph showing the dust collection rate with respect to the power consumption of the electrostatic precipitator according to the first embodiment of the present invention. 図18は、本発明の第1の実施の形態における電気集塵装置の帯電部の構成を表す斜視図である。FIG. 18 is a perspective view illustrating the configuration of the charging unit of the electrostatic precipitator according to the first embodiment of the present invention. 図19は、本発明の第1の実施の形態における電気集塵装置の構成を表す斜視図である。FIG. 19 is a perspective view illustrating the configuration of the electrostatic precipitator according to the first embodiment of the present invention. 図20は、従来の電気集塵装置の帯電部と集塵部の構成図である。FIG. 20 is a configuration diagram of a charging unit and a dust collection unit of a conventional electric dust collector.
 以下、本発明の実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (第1の実施の形態)
 まず、本実施の形態における電気集塵装置の設置の一例として、トンネル換気設備に使用される構成を図1~図4を用いて説明する。
(First embodiment)
First, as an example of the installation of the electric dust collector in the present embodiment, a configuration used for a tunnel ventilation facility will be described with reference to FIGS.
 図1~図4に示すように、本実施の形態の電気集塵装置3は、トンネル本線1の上部で、換気吸込口2から換気吐出口6に至る換気風路4内に設置され、換気風路4の下流側に換気ファン5が設置されている。本実施の形態では、換気風路4は3系統あり、図4に示すように、換気吸込口2、電気集塵装置3、換気風路4、換気ファン5で1系統を構成する。全ては図示していないが、図4に図示する換気風路4の両側にも同様の構成の換気風路が設けてあり、共通の換気吐出口6は3系統をまとめた吐出口となっている。 As shown in FIGS. 1 to 4, the electrostatic precipitator 3 of the present embodiment is installed in a ventilation air passage 4 from the ventilation suction port 2 to the ventilation discharge port 6 above the tunnel main line 1, A ventilation fan 5 is installed on the downstream side of the air passage 4. In the present embodiment, there are three ventilation air passages 4, and as shown in FIG. 4, the ventilation inlet 2, the electric dust collector 3, the ventilation air passage 4, and the ventilation fan 5 constitute one system. Although not all are shown, a ventilation air passage having a similar configuration is provided on both sides of the ventilation air passage 4 shown in FIG. 4, and the common ventilation outlet 6 is an outlet in which three systems are combined. Yes.
 電気集塵装置3の側方には、図1に示すように電気集塵補機7と、電気集塵装置3と電気集塵補機7を作動させる高圧発生盤8と制御盤9が設置されている。 On the side of the electrostatic precipitator 3, as shown in FIG. 1, an electrostatic precipitator 7 and a high pressure generating panel 8 and a control panel 9 for operating the precipitator 3 and the electrostatic precipitator 7 are installed. Has been.
 電気集塵装置3は、図5に示すように、ケーシング10内に、帯電部12と集塵部13からなる集塵ユニット11を備え、集塵ユニット11の風上側にはダンパ31を備え、風下側の上部には洗浄配管32を備え、風下側の下部には配線端子箱33を備えている。図2に示したように、集塵ユニット11はケーシング10内に複数設けられている。 As shown in FIG. 5, the electric dust collector 3 includes a dust collection unit 11 including a charging unit 12 and a dust collection unit 13 in a casing 10, and a damper 31 on the windward side of the dust collection unit 11. A cleaning pipe 32 is provided in the upper part on the leeward side, and a wiring terminal box 33 is provided in the lower part on the leeward side. As shown in FIG. 2, a plurality of dust collection units 11 are provided in the casing 10.
 ダンパ31は、帯電部12および集塵部13を構成する極板を水洗浄する際に閉じ、ケーシング10の外への水飛散を防止する機能があり、洗浄配管32は、極板や碍子を洗浄するための機内配管で、その材質はステンレスまたは樹脂で構成している。 The damper 31 is closed when the electrode plates constituting the charging unit 12 and the dust collecting unit 13 are washed with water, and has a function of preventing water scattering to the outside of the casing 10. In-machine piping for cleaning, which is made of stainless steel or resin.
 配線端子箱33は高圧発生盤8からの配線を一旦端子受けする箱で、この箱の端子から帯電部12と集塵部13へ配線し高電圧を印加する。 The wiring terminal box 33 is a box that temporarily receives the wiring from the high voltage generating board 8 and applies a high voltage from the terminal of the box to the charging unit 12 and the dust collecting unit 13.
 次に、本実施の形態の特徴である、集塵ユニット11の帯電部12の構成について説明する。 Next, the configuration of the charging unit 12 of the dust collection unit 11 that is a feature of the present embodiment will be described.
 図6に示すように、集塵ユニット11は、接地極としての帯電部接地極板14と荷電極としての帯電部荷電極板15を交互に平行に配置した帯電部12と、集塵部接地極板16と集塵部荷電極板17を交互に平行に配置した集塵部13と、帯電部荷電極板15を荷電する帯電部高圧電源18、集塵部荷電極板17を荷電する集塵部高圧電源19で構成される。風上側に帯電部12、風下側に集塵部13が配置されている。 As shown in FIG. 6, the dust collecting unit 11 includes a charging unit 12 in which charging unit grounding electrode plates 14 as grounding electrodes and charging unit load electrode plates 15 as load electrodes are alternately arranged in parallel, and a dust collecting unit grounding. A dust collector 13 in which electrode plates 16 and dust collector electrode plates 17 are alternately arranged in parallel, a charging unit high-voltage power supply 18 for charging the charger unit electrode plate 15, and a collector unit for charging the dust collector unit electrode plate 17. It consists of a dust part high-voltage power supply 19. A charging unit 12 is disposed on the windward side, and a dust collecting unit 13 is disposed on the leeward side.
 帯電部12は、例えば、帯電部接地極板14と帯電部荷電極板15の奥行き(長さ)L1は40mm、高さ(図示せず)は32mmであり、帯電部接地極板14と帯電部荷電極板15の極板間隔D1は10mmである。 For example, the charging unit 12 has a depth (length) L1 of 40 mm and a height (not shown) of 32 mm between the charging unit ground electrode plate 14 and the charging unit load electrode plate 15. The electrode plate interval D1 of the partial electrode plate 15 is 10 mm.
 集塵部13は、例えば、集塵部接地極板16と集塵部荷電極板17の奥行き(長さ)L2は280mm、高さ(図示せず)は90mmであり、集塵部接地極板16と集塵部荷電極板17の極板間隔D2は10mmである。また、集塵部接地極板16は6枚、集塵部荷電極板17は6枚使用している。 For example, the dust collection unit 13 has a dust collection unit ground electrode plate 16 and a dust collection unit load electrode plate 17 having a depth (length) L2 of 280 mm and a height (not shown) of 90 mm. The electrode plate interval D2 between the plate 16 and the dust collecting portion load electrode plate 17 is 10 mm. Further, six dust collecting portion grounding electrode plates 16 and six dust collecting portion load electrode plates 17 are used.
 帯電部12、集塵部13の極板材質は、例えばSUS304で、板厚は0.4~0.6mm程度であり、材質としては導電体であれば使用可能である。 The electrode plate material of the charging unit 12 and the dust collecting unit 13 is, for example, SUS304, and the plate thickness is about 0.4 to 0.6 mm. Any material can be used as the material.
 帯電部接地極板14と帯電部荷電極板15は片側に多数の導電性繊維を植毛した導電性繊維部20が設けてあり、向かい合う帯電部接地極板14と帯電部荷電極板15のいずれか一方は導電性繊維部20を有するように配置されている。 The charging unit ground electrode plate 14 and the charging unit load electrode plate 15 are provided with a conductive fiber portion 20 in which a large number of conductive fibers are implanted on one side, and either the charging unit ground electrode plate 14 or the charging unit load electrode plate 15 facing each other. One of them is arranged so as to have the conductive fiber portion 20.
 導電性繊維部20は、例えば線径5~10μm程度、長さ0.1から3mm程度の多数の活性炭素繊維で構成され、導電性接着剤を用いて帯電部接地極板14および帯電部荷電極板15に接着している。 The conductive fiber portion 20 is composed of a number of activated carbon fibers having a wire diameter of about 5 to 10 μm and a length of about 0.1 to 3 mm, for example. Bonded to the electrode plate 15.
 なお、帯電部荷電極板15と帯電部接地極板14との極板間隔D1に対する、導電性繊維部20の長さの比率は0.01~0.3が好ましい。この比率が0.01以上、すなわち本実施の形態において導電性繊維部20の長さが0.1mm以上であれば、導電性繊維部20端部に発生するグラディエント力が強くなり、集塵率を高くすることができる。また、極板間隔D1に対する導電性繊維部20の長さの比率が0.3以下、すなわち本実施の形態において導電性繊維部20の長さが3mm以下であれば、帯電部接地極板14と帯電部荷電極板15間でスパーク(局部短絡)が発生する頻度が低くなるため、集塵率を高くすることができる。 Note that the ratio of the length of the conductive fiber portion 20 to the electrode plate interval D1 between the charging portion load electrode plate 15 and the charging portion grounding electrode plate 14 is preferably 0.01 to 0.3. If this ratio is 0.01 or more, that is, if the length of the conductive fiber portion 20 in this embodiment is 0.1 mm or more, the gradient force generated at the end of the conductive fiber portion 20 becomes strong, and the dust collection rate Can be high. Further, if the ratio of the length of the conductive fiber portion 20 to the electrode plate interval D1 is 0.3 or less, that is, the length of the conductive fiber portion 20 in this embodiment is 3 mm or less, the charging portion grounding electrode plate 14 Since the frequency of occurrence of a spark (local short circuit) between the charging part load electrode plates 15 is reduced, the dust collection rate can be increased.
 また、導電性繊維部20は炭素繊維が好ましい。この構成によれば、導電性を有しつつ金属等と比較して比重が軽いため、装置を軽量化できる。 Further, the conductive fiber portion 20 is preferably a carbon fiber. According to this configuration, since the specific gravity is lighter than that of metal or the like while having conductivity, the apparatus can be reduced in weight.
 植毛は静電気力を利用して行う。導電性接着剤を塗布した帯電部接地極板14および帯電部荷電極板15を20~30mm程度の間隔で対向配置し、帯電部荷電極板15にDC-5kV程度の高電圧を印加する。 Rooting is performed using electrostatic force. The charging unit ground electrode plate 14 and the charging unit load electrode plate 15 coated with the conductive adhesive are arranged to face each other at an interval of about 20 to 30 mm, and a high voltage of about DC-5 kV is applied to the charging unit load electrode plate 15.
 この状態で多数の導電性繊維を含む空気を導入すると、誘電分極により導電性繊維の片端が導電性接着剤を塗布した帯電部接地極板14および帯電部荷電極板15上に固定される。 When air containing a large number of conductive fibers is introduced in this state, one end of the conductive fibers is fixed on the charging portion ground electrode plate 14 and the charging portion load electrode plate 15 coated with the conductive adhesive by dielectric polarization.
 なお、本実施の形態では導電性繊維を植毛したが、植毛以外の方法でも良い。例えば導電性繊維部20を不織布状に加工したものを接着固定しても良い。 In this embodiment, the conductive fibers are planted, but a method other than planting may be used. For example, what processed the conductive fiber part 20 into the nonwoven fabric form may be adhered and fixed.
 また、本実施の形態では導電性繊維部20を表面に微細孔のある活性炭素繊維で構成したが、導電性を有する繊維状のものであれば活性炭素繊維でなくても良い。例えば炭素などの導電物を混合した樹脂繊維、金属細線、あるいは金属などの導電物をめっきした樹脂繊維などである。 Further, in the present embodiment, the conductive fiber portion 20 is composed of activated carbon fibers having fine pores on the surface. However, the conductive fiber portion 20 may not be activated carbon fibers as long as it has a conductive fibrous shape. For example, a resin fiber mixed with a conductive material such as carbon, a fine metal wire, or a resin fiber plated with a conductive material such as metal.
 導電性接着剤は、例えば導電物としての銀と、バインダとしてのシリコンを主成分とし、約180℃で硬化するものであり、硬化後の体積抵抗率は2.5×10-6Ω・cmである。 The conductive adhesive is composed mainly of, for example, silver as a conductive material and silicon as a binder, and is cured at about 180 ° C. The volume resistivity after curing is 2.5 × 10 −6 Ω · cm. It is.
 なお、導電物は導電性を有するものであれば銀以外でも良い。例えば金、銅などである。 The conductive material may be other than silver as long as it has conductivity. For example, gold or copper.
 また、バインダは熱硬化性を有するものあればシリコン以外でも良い。例えばエポキシ樹脂、ウレタン樹脂、アクリル樹脂などである。 The binder may be other than silicon as long as it has thermosetting properties. For example, epoxy resin, urethane resin, acrylic resin and the like.
 また、本実施の形態では帯電部12は風の流れ方向に2分割としており、前段と後段でそれぞれ帯電部接地極板14を6枚、帯電部荷電極板15を6枚使用している。また、前段と後段で帯電部接地極板14および帯電部荷電極板15の導電性繊維部20は配置方向が逆となっている。 Further, in the present embodiment, the charging unit 12 is divided into two in the wind flow direction, and six charging unit grounding electrode plates 14 and six charging unit load electrode plates 15 are used in the front and rear stages, respectively. In addition, the conductive fiber portions 20 of the charging portion grounding electrode plate 14 and the charging portion load electrode plate 15 are arranged in opposite directions in the former stage and the latter stage.
 なお、この2分割した間の距離Bは例えば40mmである。 Note that the distance B between the two parts is 40 mm, for example.
 図7に導電性繊維部20がある場合(●に実線)とない場合(▲に点線)の帯電部12の印加電圧に対する電流値を示す。 FIG. 7 shows the current value with respect to the applied voltage of the charging unit 12 when the conductive fiber part 20 is present (solid line in ●) and when it is not present (dotted line in ▲).
 図7に示すように、導電性繊維部20がない場合は、-10.5kV以上(絶対値10.5kV以上)で電流が上昇したのに対し、導電性繊維部20がある場合は、-6kV以上(絶対値6kV以上)で電流の上昇が見られる。 As shown in FIG. 7, when the conductive fiber portion 20 is not present, the current increased at −10.5 kV or more (absolute value of 10.5 kV or more), whereas when the conductive fiber portion 20 was present, − An increase in current is observed at 6 kV or more (absolute value of 6 kV or more).
 なお、図7に示す電流値は、3時間のエイジング(高圧を印加した状態で経過した時間)を行った後の値である。帯電部接地極板14、帯電部荷電極板15、および導電性繊維部20は端部に加工時のバリがあるため、このバリの影響で電流値が変化する。エイジングにより、時間と共に電流値は下がり、一定時間経過すると電流もほぼ一定の値に落ち着く。 The current value shown in FIG. 7 is a value after performing aging for 3 hours (time elapsed in a state where a high voltage is applied). Since the charging unit grounding electrode plate 14, the charging unit load electrode plate 15, and the conductive fiber unit 20 have burrs at the end of processing, the current value changes due to the influence of the burrs. Due to aging, the current value decreases with time, and after a certain time has elapsed, the current also settles to a substantially constant value.
 本実施の形態では集塵部での電力消費を抑制するため導電性繊維部20のない集塵部13の印加電圧は-9kVとした。 In this embodiment, in order to suppress power consumption in the dust collecting portion, the applied voltage of the dust collecting portion 13 without the conductive fiber portion 20 is set to −9 kV.
 このような構成において、トンネル本線1内は車の走行により発生する粉塵による汚染を防止するため、換気ファン5を運転し、換気吸込口2から粉塵を含んだ汚染空気を吸込み、換気風路4内で電気集塵装置3により集塵し、換気吐出口6から粉塵を除去した空気をトンネル本線1外に排出する(図1参照)。 In such a configuration, the tunnel main line 1 operates the ventilation fan 5 and sucks contaminated air containing dust from the ventilation suction port 2 in order to prevent contamination caused by dust generated by traveling of the vehicle, and the ventilation air passage 4. The air is collected by the electric dust collector 3 and the air from which the dust is removed from the ventilation discharge port 6 is discharged out of the tunnel main line 1 (see FIG. 1).
 電気集塵装置3は、集塵ユニット11の帯電部12で換気吸込口2から吸込んだ汚染空気中の粉塵を帯電させ、集塵部13の集塵部接地極板16と集塵部荷電極板17に付着させ、汚染空気中から粉塵を除去する(図6参照)。 The electrostatic precipitator 3 charges the dust in the contaminated air sucked from the ventilation inlet 2 by the charging unit 12 of the dust collecting unit 11, and the dust collecting unit grounding electrode 16 and the dust collecting unit load electrode of the dust collecting unit 13. It adheres to the plate 17 and removes dust from the contaminated air (see FIG. 6).
 本実施形態の特徴は、帯電部高圧電源18を用いるが、コロナ放電を発生させず、もしくは微小なコロナ放電で、グラディエント力と誘導帯電により粉塵を付着、帯電させることにあり、この作用を図8~図10を用いて説明する。 The feature of the present embodiment is that the charging unit high-voltage power supply 18 is used, but the corona discharge is not generated or the fine corona discharge is used to attach and charge the dust by the gradient force and the induction charging. This will be described with reference to FIGS.
 図8は図6のX部拡大図であり、図8に示すように、帯電部高圧電源18により帯電部荷電極板15に負の高電圧をかけることにより、帯電部接地極板14から帯電部荷電極板15に向かう電気力線が作用する。この電気力線は、帯電部接地極板14および帯電部荷電極板15上の導電性繊維部20が密になるように湾曲し、不平等電界を形成している。 FIG. 8 is an enlarged view of a portion X in FIG. 6. As shown in FIG. 8, the charging unit high-voltage power supply 18 applies a negative high voltage to the charging unit load electrode plate 15 to charge the charging unit ground electrode plate 14. Electric lines of force directed toward the part load electrode plate 15 act. The electric lines of force are curved so that the conductive fiber portions 20 on the charging portion ground electrode plate 14 and the charging portion load electrode plate 15 are dense, thereby forming an unequal electric field.
 ここで、グラディエント力とは、誘電体が不平等電界中で、より強電界の方向に移動するように受ける力を指し、図8において電気力線が密になっている帯電部接地極板14および帯電部荷電極板15上の導電性繊維部20に向けて作用する。 Here, the gradient force refers to a force that the dielectric receives so as to move in the direction of a stronger electric field in an unequal electric field, and the charged portion grounding electrode plate 14 in which the electric lines of force are dense in FIG. And acts toward the conductive fiber portion 20 on the charging portion load electrode plate 15.
 この不平等電界中に飛来した粉塵の挙動について、図9A、図9Bを用いて説明する。 The behavior of the dust flying in the unequal electric field will be described with reference to FIGS. 9A and 9B.
 なお、図9Aに示す帯電部接地極板14のおよび帯電部荷電極板15の導電性繊維部20の各導電性繊維を風上側(図9Aの左側)から導電性繊維20a、導電性繊維20b、導電性繊維20c、導電性繊維20dとして説明する。 9A, the conductive fibers 20a and the conductive fibers 20b from the windward side (left side of FIG. 9A) of the conductive fiber portion 20 of the charging portion ground electrode plate 14 and the charging portion load electrode plate 15 shown in FIG. The conductive fibers 20c and the conductive fibers 20d will be described.
 また、図9Aでは帯電部接地極板14の導電性繊維部20での粉塵の挙動を模式的に示しているが、帯電部荷電極板15の導電性繊維部20においても粉塵は同様の挙動をする。 9A schematically shows the behavior of dust in the conductive fiber portion 20 of the charging portion ground electrode plate 14, but the dust also has the same behavior in the conductive fiber portion 20 of the charging portion load electrode plate 15. FIG. do.
 図9Aに示すように、帯電部12に飛来した粉塵は、グラディエント力により、帯電部接地極板14および帯電部荷電極板15の導電性繊維部20の風上側にある導電性繊維20aに引き寄せられ、堆積する。 As shown in FIG. 9A, the dust flying to the charging unit 12 is attracted to the conductive fiber 20a on the windward side of the conductive fiber unit 20 of the charging unit ground electrode plate 14 and the charging unit load electrode plate 15 by a gradient force. Is deposited.
 また、帯電部接地極板14および帯電部荷電極板15の導電性繊維20aに引き寄せられなかった粉塵は、最初の不平等電界の領域を通過し、帯電部接地極板14および帯電部荷電極板15の導電性繊維20aより風下側(図9Aの右側)の導電性繊維20bに引き寄せられ、堆積する。 Further, the dust that has not been attracted to the conductive fibers 20a of the charging unit ground electrode plate 14 and the charging unit load electrode plate 15 passes through the region of the first unequal electric field, and the charging unit ground electrode plate 14 and the charging unit load electrode. The conductive fibers 20a of the plate 15 are attracted to the conductive fibers 20b on the leeward side (right side in FIG. 9A) and are deposited.
 また、帯電部接地極板14および帯電部荷電極板15の導電性繊維20bに引き寄せられなかった粉塵は、2番目の不平等電界の領域を通過し、帯電部接地極板14および帯電部荷電極板15の導電性繊維20bより風下側の導電性繊維20cに引き寄せられ、堆積する。 Further, the dust that has not been attracted to the conductive fiber 20b of the charging unit ground electrode plate 14 and the charging unit load electrode plate 15 passes through the region of the second unequal electric field, and the charging unit ground electrode plate 14 and the charging unit load. The conductive fibers 20b of the electrode plate 15 are attracted and deposited on the conductive fibers 20c on the leeward side.
 また、帯電部接地極板14および帯電部荷電極板15の導電性繊維20cに引き寄せられなかった粉塵は、3番目の不平等電界の領域を通過し、帯電部接地極板14および帯電部荷電極板15の導電性繊維20cより風下側の導電性繊維20dに引き寄せられ、堆積する。 Further, the dust that has not been attracted to the conductive fiber 20c of the charging unit ground electrode plate 14 and the charging unit load electrode plate 15 passes through the third unequal electric field region, and the charging unit ground electrode plate 14 and the charging unit load. The conductive fibers 20c of the electrode plate 15 are attracted to the conductive fibers 20d on the leeward side and are deposited.
 すなわち、図6に示した帯電部接地極板14と帯電部荷電極板15は、その導電性繊維部20付近で電気力線が密の強電界となり、不平等電界を形成し、飛来した粉塵を引き寄せ、堆積させる。 That is, the charged portion grounding electrode plate 14 and the charged portion load electrode plate 15 shown in FIG. 6 have a dense electric field in the vicinity of the conductive fiber portion 20 to form an unequal electric field. Attract and deposit.
 そして、帯電部接地極板14と帯電部荷電極板15の導電性繊維部20に堆積した粉塵は、多量に堆積すると剥離し、このとき、付着していた極板と同じ電気極性で帯電(この帯電を誘導帯電という)して再飛散する。 The dust deposited on the conductive fiber portion 20 of the charging portion grounding electrode plate 14 and the charging portion load electrode plate 15 peels off when a large amount of dust is deposited, and at this time, it is charged with the same electric polarity as the attached electrode plate ( This charging is called induction charging) and re-scatters.
 具体的には、図9Bに示すように、帯電部接地極板14の導電性繊維部20に堆積していた粉塵は正の極性、帯電部荷電極板15の導電性繊維部20に堆積していた粉塵は負の極性に帯電して再飛散する。 Specifically, as shown in FIG. 9B, the dust deposited on the conductive fiber portion 20 of the charging portion ground electrode plate 14 is deposited on the conductive fiber portion 20 of the positive polarity, charging portion load electrode plate 15. The dust that had been charged is negatively charged and re-scatters.
 この再飛散し、帯電した粒子は、図6に示す集塵部13の集塵部接地極板16または集塵部荷電極板17の表面に静電気力で捕集される。 The re-scattered and charged particles are collected by electrostatic force on the surface of the dust collector ground electrode plate 16 or the dust collector electrode plate 17 of the dust collector 13 shown in FIG.
 このように、少なくとも片面に導電性繊維部20を有する帯電部接地極板14および帯電部荷電極板15を交互に平行に配置したことにより、粉塵を誘導帯電により帯電させることができる。ここで、平行とは数度傾いた略平行も含むものとする。 As described above, the charging unit grounding electrode plates 14 and the charging unit load electrode plates 15 having the conductive fiber portions 20 on at least one side are alternately arranged in parallel, whereby the dust can be charged by induction charging. Here, “parallel” includes substantially parallel inclined several degrees.
 すなわち、図8で説明したように、帯電部接地極板14、帯電部荷電極板15の少なくとも片面に導電性繊維部20を設けることにより、各極板の導電性繊維部20で電気力線が湾曲し密になり、不平等電界の領域を多数形成することができる。 That is, as described with reference to FIG. 8, by providing the conductive fiber portion 20 on at least one surface of the charging portion ground electrode plate 14 and the charging portion load electrode plate 15, electric lines of force are generated in the conductive fiber portion 20 of each electrode plate. Can be bent and dense, and a large number of unequal electric field regions can be formed.
 そして、より強電界の方向に働くグラディエント力により帯電部接地極板14、帯電部荷電極板15の導電性繊維部20に粉塵を引き寄せ、堆積させ、多量に堆積した粉塵が飛散時に堆積していた帯電部接地極板14または帯電部荷電極板15と同じ極性に誘導帯電により帯電させることができる。 And, by the gradient force acting in the direction of a stronger electric field, the dust is attracted and deposited on the conductive fiber portion 20 of the charging portion ground electrode plate 14 and the charging portion load electrode plate 15, and a large amount of dust is accumulated at the time of scattering. The charged portion ground electrode plate 14 or the charged portion load electrode plate 15 can be charged by induction charging to the same polarity.
 この飛散した帯電粉塵を集塵部13の異なる極性の集塵部接地極板16または集塵部荷電極板17で集塵することができる。結果として、帯電部接地極板14、帯電部荷電極板15間に高電圧をかけるだけでコロナ放電を発生させずに、もしくは微小なコロナ放電で粉塵を帯電させ、集塵することができる。そのため、帯電部12での電力発生を低減し、消費電力に伴う電気代を少なくできるという効果を得る。 The scattered charged dust can be collected by the dust collector grounding electrode plate 16 or the dust collector electrode plate 17 having different polarities of the dust collector 13. As a result, dust can be charged and collected without generating corona discharge only by applying a high voltage between the charging portion ground electrode plate 14 and the charging portion load electrode plate 15 or by minute corona discharge. Therefore, it is possible to reduce the generation of electric power in the charging unit 12 and to reduce the electricity cost associated with power consumption.
 本実施の形態では、集塵部13は図7に示すように平行平板内に発生する静電気力を利用しており、これは物理接触によるフィルタ式よりも圧力損失が少なく粉塵の捕集率も高い。 In the present embodiment, as shown in FIG. 7, the dust collection unit 13 uses electrostatic force generated in parallel plates, which has a lower pressure loss than a filter type by physical contact and also has a dust collection rate. high.
 また、フィルタに高電圧を印加する静電フィルタ式よりも強電界を得られるため、圧力損失が小さく、かつ粉塵の捕集率が高いという効果がある。 Also, since a stronger electric field can be obtained than in the electrostatic filter type in which a high voltage is applied to the filter, there is an effect that the pressure loss is small and the dust collection rate is high.
 本実施の形態におけるコロナ放電を発生させない場合の集塵効果について、図10~図14を用いて説明する。なお、図10~図14に示す結果は、帯電部12のエイジングを実施していないものである。 The dust collection effect when no corona discharge is generated in the present embodiment will be described with reference to FIGS. Note that the results shown in FIGS. 10 to 14 are those in which the aging of the charging unit 12 is not performed.
 図10は本実施の形態における帯電部12の印加電圧を-2.4kVとした場合の、風速に対する集塵率を表すグラフである。 FIG. 10 is a graph showing the dust collection rate with respect to the wind speed when the applied voltage of the charging unit 12 in the present embodiment is −2.4 kV.
 なお、集塵率はパーティクルカウンタにより、空気中の粉塵の個数濃度を計測し、集塵率は集塵ユニット11の入口側と出口側の濃度比から以下の式により算出した。 The dust collection rate was measured by measuring the number concentration of dust in the air using a particle counter, and the dust collection rate was calculated from the concentration ratio between the inlet side and the outlet side of the dust collection unit 11 by the following formula.
 集塵率=(1-出口側個数濃度/入口側個数濃度)×100(%)
 図10に示すように風速11m/s以下において電力を消費することなく10%以上の集塵率を有し、特に風速2m/sでは40%以上の集塵率を有している。
Dust collection rate = (1-outlet side number concentration / inlet side number concentration) x 100 (%)
As shown in FIG. 10, it has a dust collection rate of 10% or more without consuming electric power at a wind speed of 11 m / s or less, and particularly a dust collection rate of 40% or more at a wind speed of 2 m / s.
 図11は比較のため帯電部12および集塵部13の印加電圧を0kVとした場合の集塵率を表すグラフである。 FIG. 11 is a graph showing the dust collection rate when the applied voltage of the charging unit 12 and the dust collection unit 13 is 0 kV for comparison.
 図11に示すように電圧を印加しない場合の集塵率は5%未満である。 As shown in FIG. 11, the dust collection rate when no voltage is applied is less than 5%.
 電圧を印加しない場合、導電性繊維部20付近にグラディエント力が発生しないため、誘導帯電により粉塵を帯電させることができず、集塵率が低いと考えられる。 When no voltage is applied, no gradient force is generated in the vicinity of the conductive fiber portion 20, so that the dust cannot be charged by induction charging, and the dust collection rate is considered to be low.
 図12は、帯電部12のみ電圧を印加した場合の集塵率を表すグラフである。また図13は、集塵部13のみ電圧を印加した場合の集塵率を表すグラフである。 FIG. 12 is a graph showing the dust collection rate when a voltage is applied only to the charging unit 12. FIG. 13 is a graph showing the dust collection rate when a voltage is applied only to the dust collection unit 13.
 一般に、集塵率a%の帯電部12と、集塵率b%の集塵部13を直列に配置した場合の合成した集塵率c%は、互いに干渉が無いと考えた場合、以下の式で計算できる。 In general, the combined dust collection rate c% in the case where the charging unit 12 with the dust collection rate a% and the dust collection unit 13 with the dust collection rate b% are arranged in series is as follows. It can be calculated by the formula.
 集塵率c=(1-(1-a/100)×(1-b/100))×100(%)
 図14は、上記計算式を用いて帯電部12のみ電圧を印加した場合の集塵率と集塵部13のみ電圧を印加した場合の集塵率から求めた合成集塵率(点線)と帯電部12と集塵部13双方に電圧を印加した場合の集塵率(実線)を比較したグラフである。
Dust collection rate c = (1- (1-a / 100) × (1-b / 100)) × 100 (%)
FIG. 14 shows the combined dust collection rate (dotted line) and charging obtained from the dust collection rate when the voltage is applied only to the charging unit 12 and the dust collection rate when the voltage is applied only to the dust collection unit 13 using the above formula. It is the graph which compared the dust collection rate (solid line) at the time of applying a voltage to both the part 12 and the dust collection part 13. FIG.
 図14に示すように、計算で求めた合成集塵率より実測の集塵率の方が高い値となる。 As shown in FIG. 14, the measured dust collection rate is higher than the synthetic dust collection rate obtained by calculation.
 これは、集塵部13が平行平板に高電圧を印加する方式のため、帯電部12で一旦接触もしくは捕集された粉塵が誘導帯電により帯電した状態で再飛散し、これが後段の集塵部13の平行平板中の強電界によって静電気的に捕集される効果が加わったためと考えられる。 This is because the dust collecting unit 13 applies a high voltage to the parallel plate, so that the dust once contacted or collected by the charging unit 12 is re-scattered in a state of being charged by induction charging, and this is the subsequent dust collecting unit. This is thought to be due to the effect of electrostatically collecting by the strong electric field in 13 parallel plates.
 このように図7で示すような集塵部13を平行平板で構成し高電圧を印加することにより、上述した構成の帯電部12との相乗効果を創出することができる。 Thus, by synthesizing the dust collecting portion 13 as shown in FIG. 7 with a parallel plate and applying a high voltage, a synergistic effect with the charging portion 12 having the above-described configuration can be created.
 次に本実施の形態における微小なコロナ放電を用いた場合の集塵効果について、図15~図17を用いて説明する。なお、図15~図17に示す結果は、帯電部12のエイジングを実施しているものである。 Next, the dust collection effect when the minute corona discharge in this embodiment is used will be described with reference to FIGS. Note that the results shown in FIGS. 15 to 17 are those in which the charging unit 12 is aged.
 図15は本実施の形態における帯電部12の印加電圧に対する集塵率を表すグラフである。なお、風速は2m/sで、図15の実線は5回測定時の平均値を表している。 FIG. 15 is a graph showing the dust collection rate with respect to the applied voltage of the charging unit 12 in the present embodiment. The wind speed is 2 m / s, and the solid line in FIG. 15 represents the average value during five measurements.
 図15に示すように、帯電部12の印加電圧が-3kV付近から集塵率の上昇傾向が見られる。更に-4kV以上(絶対値4kV以上)で集塵率の上昇が顕著に見られ、-7kVでは80%以上の集塵率を有している。なお、本実施の形態における-3kVでの帯電部12の電界強度は、帯電部接地極板14と帯電部荷電極板15の極板間隔D1が10mmであることから0.3kV/mmである。また、本実施の形態における-4kVでの帯電部12の電界強度は、0.4kV/mmである。 As shown in FIG. 15, there is an upward tendency of the dust collection rate when the applied voltage of the charging unit 12 is around −3 kV. Further, the dust collection rate is significantly increased at −4 kV or more (absolute value of 4 kV or more), and at −7 kV, the dust collection rate is 80% or more. In this embodiment, the electric field strength of the charging unit 12 at −3 kV is 0.3 kV / mm because the electrode plate interval D1 between the charging unit ground electrode plate 14 and the charging unit load electrode plate 15 is 10 mm. . Further, the electric field strength of the charging unit 12 at −4 kV in the present embodiment is 0.4 kV / mm.
 帯電部荷電極板15と帯電部接地極板14との極板間における電界強度は0.3~1kV/mmが好ましい。電界強度が0.3kV/mm以上であれば、グラディエント力による集塵率の向上が見込める。また、電界強度が1kV/mm以下であれば、帯電部接地極板14と帯電部荷電極板15間でスパーク(局部短絡)が発生する頻度が低くなるため、集塵率を高くすることができる。 The electric field strength between the electrode plates of the charging portion load electrode plate 15 and the charging portion grounding electrode plate 14 is preferably 0.3 to 1 kV / mm. If the electric field strength is 0.3 kV / mm or more, an improvement in the dust collection rate due to the gradient force can be expected. Further, if the electric field strength is 1 kV / mm or less, the frequency of occurrence of a spark (local short circuit) between the charging unit grounding electrode plate 14 and the charging unit load electrode plate 15 is reduced, so that the dust collection rate can be increased. it can.
 図16は本実施の形態における帯電部12の放電電流に対する集塵率を表すグラフである。なお、風速は2m/sであり、帯電部12に印加する電圧を-7kV付近で若干変動させることにより、放電電流を変化させている。 FIG. 16 is a graph showing the dust collection rate with respect to the discharge current of the charging unit 12 in the present embodiment. The wind speed is 2 m / s, and the discharge current is changed by slightly varying the voltage applied to the charging unit 12 in the vicinity of −7 kV.
 図16に示すように、帯電部12の放電電流が1μAで集塵率は70%以上となり、放電電流が2μA以上では、80%以上の集塵率を有している。なお、本実施の形態における帯電部12の放電1μAは、電極面積1mmあたりに換算すると3×10-5μAとなる(電極面積=電極1枚あたりの面積(40mm×32mm)×電極枚数(接地極板6枚+荷電極板6枚)×2層=30,720mm)。 As shown in FIG. 16, when the discharge current of the charging unit 12 is 1 μA, the dust collection rate is 70% or more, and when the discharge current is 2 μA or more, the dust collection rate is 80% or more. The discharge 1 μA of the charging unit 12 in this embodiment is 3 × 10 −5 μA when converted per electrode area of 1 mm 2 (electrode area = area per electrode (40 mm × 32 mm) × number of electrodes ( 6 ground electrode plates + 6 load electrode plates) × 2 layers = 30,720 mm 2 ).
 本実施の形態で、帯電部12の極板間隔D1(図6参照)が10mmの場合の放電電流が20μA程度のため、帯電部12の放電電流は1~20μA、すなわち電極面積1mmあたりの放電電流は3×10-5~60×10-5μAが好ましい。 In this embodiment, since the discharge current when the electrode plate interval D1 (see FIG. 6) of the charging unit 12 is 10 mm is about 20 μA, the discharging current of the charging unit 12 is 1 to 20 μA, that is, per 1 mm 2 of the electrode area. The discharge current is preferably 3 × 10 −5 to 60 × 10 −5 μA.
 電極面積1mmあたりの放電電流が3×10-5μA以上、すなわち本実施の形態において帯電部12の放電電流が1μA以上であれば、導電性繊維部20端部に発生するグラディエント力が強くなり、集塵率を高くすることができる。 If the discharge current per 1 mm 2 of electrode area is 3 × 10 −5 μA or more, that is, if the discharge current of the charging unit 12 is 1 μA or more in this embodiment, the gradient force generated at the end of the conductive fiber portion 20 is strong. Thus, the dust collection rate can be increased.
 また、電極面積1mmあたりの放電電流が60×10-5μA以下、すなわち本実施の形態において帯電部12の放電電流が20μA以下であれば、帯電部接地極板14と帯電部荷電極板15間でスパーク(局部短絡)が発生する頻度が低くなるため、集塵率を高くすることができる。 If the discharge current per 1 mm 2 of electrode area is 60 × 10 −5 μA or less, that is, if the discharge current of the charging unit 12 is 20 μA or less in this embodiment, the charging unit ground electrode plate 14 and the charging unit load electrode plate Since the frequency of occurrence of sparks (local short circuit) between 15 is reduced, the dust collection rate can be increased.
 また、電極面積1mmあたりの放電電流が3×10-5~15×10-5μA、すなわち本実施の形態において帯電部12の放電電流が1~5μAであるのが更に好ましい。この構成によれば、消費電力が極めて小さく、かつ集塵率も70%以上とすることができる。 Further, it is more preferable that the discharge current per 1 mm 2 of the electrode area is 3 × 10 −5 to 15 × 10 −5 μA, that is, the discharge current of the charging unit 12 in the present embodiment is 1 to 5 μA. According to this configuration, power consumption is extremely small, and the dust collection rate can be set to 70% or more.
 図17は本実施の形態における消費電力に対する集塵率を表すグラフである。なお、風速は2m/sであり、帯電部12に印加する電圧を-7kV付近で若干変動させることにより、消費電力を変化させている。 FIG. 17 is a graph showing the dust collection rate with respect to the power consumption in the present embodiment. The wind speed is 2 m / s, and the power consumption is changed by slightly varying the voltage applied to the charging unit 12 in the vicinity of −7 kV.
 図17に示すように、本実施の形態では消費電力が15mW以上で集塵率は80%以上を有している。 As shown in FIG. 17, in this embodiment, the power consumption is 15 mW or more and the dust collection rate is 80% or more.
 本実施の形態における処理風量は、断面積(高さ32mm×極板間隔10mm×極板枚数12枚)×風速(2m/s)より、0.46m/minである。これより、1m/minあたりの消費電力は約0.03Wとなり、これは例えば先行特許文献2の電気集塵装置と比較して約4百分の1の消費電力である。 The processing air volume in the present embodiment is 0.46 m 3 / min from the cross-sectional area (height 32 mm × electrode plate interval 10 mm × electrode plate number 12 sheets) × wind speed (2 m / s). As a result, the power consumption per 1 m 3 / min is about 0.03 W, which is about 1 / 100th of the power consumption of the electrostatic precipitator of the prior art document 2, for example.
 次に、帯電部12および集塵部13の組立て方について、図18、図19を用いて説明する。 Next, how to assemble the charging unit 12 and the dust collecting unit 13 will be described with reference to FIGS.
 帯電部12の構造は図18に示すように、複数の帯電部接地極板14と帯電部荷電極板15が極板間隔保持管22により一定間隔で配置されている。また各極板は複数の極板保持棒23が貫通し、両端の帯電部フレーム21の間に平行に支持固定されている。 As shown in FIG. 18, the charging unit 12 has a plurality of charging unit grounding electrode plates 14 and charging unit load electrode plates 15 arranged at regular intervals by an electrode plate interval holding tube 22. Each electrode plate is penetrated by a plurality of electrode plate holding rods 23 and supported and fixed in parallel between the charging unit frames 21 at both ends.
 また、帯電部フレーム21には碍子24が設けられており、帯電部荷電極板15を含む電圧印加部品を支持し、かつ帯電部接地極板14を含む接地部品から電気絶縁している。 Further, the charging unit frame 21 is provided with an insulator 24, which supports a voltage application component including the charging unit load electrode plate 15 and is electrically insulated from a grounding component including the charging unit grounding electrode plate 14.
 集塵部13は、図6でも示したように、帯電部接地極板14、帯電部荷電極板15の枚数とそれぞれおおよそ同じ枚数の集塵部接地極板16と集塵部荷電極板17を平行に配置している。 As shown in FIG. 6, the dust collecting unit 13 includes the dust collecting unit ground electrode plate 16 and the dust collecting unit electrode plate 17 having approximately the same number as the charging unit ground electrode plate 14 and the charging unit load electrode plate 15. Are arranged in parallel.
 また、集塵部13は図19に示すように、帯電部12と同様に両端の集塵部フレーム25の間に、複数の集塵部接地極板16と集塵部荷電極板17が極板間隔保持管22により一定間隔で配置され、各極板に4本ずつの極板保持棒23を用いて平行に支持固定している。 In addition, as shown in FIG. 19, the dust collector 13 has a plurality of dust collector grounding electrode plates 16 and dust collector load electrode plates 17 between the dust collector frames 25 at both ends, similarly to the charging unit 12. It is arranged at a constant interval by a plate interval holding tube 22 and is supported and fixed in parallel by using four electrode plate holding bars 23 for each electrode plate.
 なお、本実施の形態では、帯電部12と集塵部13を設けたが、集塵部13を設けず、帯電部12だけの構成でもよい。 In this embodiment, the charging unit 12 and the dust collecting unit 13 are provided. However, the dust collecting unit 13 may not be provided and only the charging unit 12 may be configured.
 また、高い集塵効率が必要な場合には、帯電部荷電極板15、及び帯電部接地極板14のそれぞれ対向位置に鋭利な突起を設け、補助的にコロナ放電を用いて流入する粉塵の帯電を促進させる構成でもよい。 In addition, when high dust collection efficiency is required, sharp projections are provided at opposite positions of the charging part load electrode plate 15 and the charging part grounding electrode plate 14, respectively, and dust that flows in by using corona discharge is supplementarily supplied. It may be configured to promote charging.
 なお、本実施の形態では、帯電部12と集塵部13の接地極および荷電極は平板状の極板を用いたが、繊維状または棒状の極を用いてもよい。 In the present embodiment, the grounding electrode and the load electrode of the charging unit 12 and the dust collecting unit 13 are flat electrode plates, but a fiber or rod electrode may be used.
 このように本発明に係る電気集塵装置は、コロナ放電を発生させず、もしくは微小なコロナ放電を発生させることで、帯電部での電力発生を低減し、省電力化が可能となるので、広い範囲で有用である。 As described above, the electrostatic precipitator according to the present invention does not generate corona discharge or generates minute corona discharge, thereby reducing power generation in the charging unit and enabling power saving. It is useful in a wide range.
 1 トンネル本線
 2 換気吸込口
 3 電気集塵装置
 4 換気風路
 5 換気ファン
 6 換気吐出口
 7 電気集塵補機
 8 高圧発生盤
 9 制御盤
 10 ケーシング
 11 集塵ユニット
 12,104 帯電部
 13,105 集塵部
 14 帯電部接地極板
 15 帯電部荷電極板
 16 集塵部接地極板
 17 集塵部荷電極板
 18 帯電部高圧電源
 19 集塵部高圧電源
 20 導電性繊維部
 21 帯電部フレーム
 22 極板間隔保持管
 23 極板保持棒
 24 碍子
 25 集塵部フレーム
 31 ダンパ
 32 洗浄配管
 33 配線端子箱
DESCRIPTION OF SYMBOLS 1 Tunnel main line 2 Ventilation suction inlet 3 Electric dust collector 4 Ventilation air path 5 Ventilation fan 6 Ventilation discharge port 7 Electric dust collection auxiliary machine 8 High pressure generation panel 9 Control panel 10 Casing 11 Dust collection unit 12,104 Charging part 13,105 Dust collection unit 14 Charging unit ground electrode plate 15 Charging unit load electrode plate 16 Dust collection unit ground electrode plate 17 Dust collection unit load electrode plate 18 Charging unit high voltage power source 19 Dust collection unit high voltage power source 20 Conductive fiber unit 21 Charging unit frame 22 Electrode plate holding tube 23 Electrode plate holding rod 24 Insulator 25 Dust collector frame 31 Damper 32 Cleaning pipe 33 Wiring terminal box

Claims (10)

  1. 粉塵を含んだ気体の流入部と流出部の間において複数の荷電極と複数の接地極を交互に平行に配置し、
    前記荷電極の片面または前記接地極の片面に導電性繊維を備え、
    前記導電性繊維は前記荷電極と前記接地極との各極板間に設けられ、
    前記荷電極に高電圧を印加した帯電部を備えたことを特徴とする電気集塵装置。
    Between the inflow part and the outflow part of the gas containing dust, a plurality of load electrodes and a plurality of grounding electrodes are alternately arranged in parallel,
    Conductive fibers are provided on one side of the load electrode or one side of the ground electrode,
    The conductive fiber is provided between each electrode plate of the load electrode and the ground electrode,
    An electrostatic precipitator comprising a charging unit that applies a high voltage to the load electrode.
  2. 前記荷電極に高電圧を印加することにより前記導電性繊維の端部より放電を発生させ、
    前記帯電部の前記放電は電極の面積に対して1mmあたり3×10-5~60×10-5μAの範囲であることを特徴とする請求項1記載の電気集塵装置。
    By applying a high voltage to the load electrode to generate a discharge from the end of the conductive fiber,
    2. The electrostatic precipitator according to claim 1, wherein the discharge of the charging unit is in the range of 3 × 10 −5 to 60 × 10 −5 μA per 1 mm 2 with respect to the area of the electrode.
  3. 前記荷電極と前記接地極との極板間隔に対する、前記導電性繊維の長さの比率を0.01~0.3とし、
    前記荷電極と前記接地極との極板間における電界強度を0.3~1kV/mmとしたことを特徴とする請求項1に記載の電気集塵装置。
    The ratio of the length of the conductive fiber to the electrode plate interval between the load electrode and the ground electrode is 0.01 to 0.3,
    2. The electrostatic precipitator according to claim 1, wherein an electric field strength between electrode plates of the load electrode and the ground electrode is 0.3 to 1 kV / mm.
  4. 前記荷電極と前記接地極との極板間隔に対する、前記導電性繊維の長さの比率を0.01~0.3とし、
    前記荷電極と前記接地極との極板間における電界強度を0.3~1kV/mmとしたことを特徴とする請求項2に記載の電気集塵装置。
    The ratio of the length of the conductive fiber to the electrode plate interval between the load electrode and the ground electrode is 0.01 to 0.3,
    3. The electrostatic precipitator according to claim 2, wherein an electric field strength between electrode plates of the load electrode and the ground electrode is 0.3 to 1 kV / mm.
  5. 前記導電性繊維は炭素繊維であることを特徴とする請求項1に記載の電気集塵装置。 The electrostatic precipitator according to claim 1, wherein the conductive fiber is a carbon fiber.
  6. 前記導電性繊維は炭素繊維であることを特徴とする請求項2に記載の電気集塵装置。 The electrostatic precipitator according to claim 2, wherein the conductive fiber is a carbon fiber.
  7. 前記導電性繊維は炭素繊維であることを特徴とする請求項3に記載の電気集塵装置。 The electric dust collector according to claim 3, wherein the conductive fiber is a carbon fiber.
  8. 前記導電性繊維は炭素繊維であることを特徴とする請求項4に記載の電気集塵装置。 The electrostatic precipitator according to claim 4, wherein the conductive fiber is a carbon fiber.
  9. 粉塵を含んだ気体の流入部と流出部間において複数の集塵部荷電極板と複数の集塵部接地極板を交互に平行に配置し、
    前記集塵部荷電極板に高電圧を印加し、
    前記複数の集塵部荷電極板と前記複数の集塵部接地極板を集塵部とし、
    前記集塵部を前記帯電部の下流側に備えたこと特徴とする請求項1~8の何れか1項に記載の電気集塵装置。
    A plurality of dust collecting portion load electrode plates and a plurality of dust collecting portion grounding electrode plates are alternately arranged in parallel between the inflow portion and the outflow portion of the gas containing dust,
    Applying a high voltage to the dust collector load electrode plate,
    The plurality of dust collecting portion load electrode plates and the plurality of dust collecting portion grounding electrode plates as dust collecting portions,
    The electrostatic precipitator according to any one of claims 1 to 8, wherein the dust collector is provided downstream of the charging unit.
  10. 前記荷電極に高電圧を印加しても前記導電性繊維の端部より放電が発生しないことを特徴とする請求項1記載の電気集塵装置。 2. The electrostatic precipitator according to claim 1, wherein a discharge is not generated from an end of the conductive fiber even when a high voltage is applied to the load electrode.
PCT/JP2016/001042 2015-02-27 2016-02-26 Electrostatic precipitator WO2016136270A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017501952A JP6837192B2 (en) 2015-02-27 2016-02-26 Electrostatic precipitator
KR1020177017785A KR102481567B1 (en) 2015-02-27 2016-02-26 Electrostatic precipitator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015038459 2015-02-27
JP2015-038459 2015-02-27
JP2015-183961 2015-09-17
JP2015183961 2015-09-17

Publications (1)

Publication Number Publication Date
WO2016136270A1 true WO2016136270A1 (en) 2016-09-01

Family

ID=56789457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001042 WO2016136270A1 (en) 2015-02-27 2016-02-26 Electrostatic precipitator

Country Status (3)

Country Link
JP (1) JP6837192B2 (en)
KR (1) KR102481567B1 (en)
WO (1) WO2016136270A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6301033B1 (en) * 2017-06-29 2018-03-28 三菱電機株式会社 Dust collector and air conditioner
JP2018162689A (en) * 2017-03-24 2018-10-18 三菱重工業株式会社 Aggregating device and exhaust gas treatment equipment having the same
CN111655378A (en) * 2018-01-15 2020-09-11 三菱日立电力系统环保株式会社 Electric dust collector
US20220258087A1 (en) * 2018-10-10 2022-08-18 Alink Co.,Ltd Conductive filter unit, conductive filter module including conductive filter unit, and fine dust removal system including conductive filter module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53130585A (en) * 1977-04-19 1978-11-14 Matsushita Electric Ind Co Ltd Electric dust collector
JPH09262500A (en) * 1996-03-28 1997-10-07 Toto Ltd Electrical precipitator
JP2004355885A (en) * 2003-05-28 2004-12-16 Serumi Medical Instruments Co Ltd Negative ion generator
JP2010131515A (en) * 2008-12-04 2010-06-17 Panasonic Corp Electrostatic precipitator
US20110171094A1 (en) * 2010-01-13 2011-07-14 Karim Zahedi Apparatus and Method for Removal of Particles and VOC from an Airstream
JP2012154621A (en) * 2000-03-03 2012-08-16 Panasonic Ecology Systems Co Ltd Dust collecting apparatus and air-conditioning apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3066833B2 (en) * 1989-09-08 2000-07-17 高砂熱学工業株式会社 Air cleaning device, air cleaning method and clean room
JPH04135661A (en) * 1990-09-25 1992-05-11 Matsushita Electric Works Ltd Electrostatic precipitator
DE4400420A1 (en) * 1994-01-10 1995-07-13 Maxs Ag Method and device for electrostatically separating contaminants, such as suspended matter or the like, from a gas stream
JP3393270B2 (en) * 1994-10-17 2003-04-07 増田 佳子 Corona discharge unit
JPH08260942A (en) * 1995-03-28 1996-10-08 Hideo Yoshikawa Emission control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53130585A (en) * 1977-04-19 1978-11-14 Matsushita Electric Ind Co Ltd Electric dust collector
JPH09262500A (en) * 1996-03-28 1997-10-07 Toto Ltd Electrical precipitator
JP2012154621A (en) * 2000-03-03 2012-08-16 Panasonic Ecology Systems Co Ltd Dust collecting apparatus and air-conditioning apparatus
JP2004355885A (en) * 2003-05-28 2004-12-16 Serumi Medical Instruments Co Ltd Negative ion generator
JP2010131515A (en) * 2008-12-04 2010-06-17 Panasonic Corp Electrostatic precipitator
US20110171094A1 (en) * 2010-01-13 2011-07-14 Karim Zahedi Apparatus and Method for Removal of Particles and VOC from an Airstream

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018162689A (en) * 2017-03-24 2018-10-18 三菱重工業株式会社 Aggregating device and exhaust gas treatment equipment having the same
JP6301033B1 (en) * 2017-06-29 2018-03-28 三菱電機株式会社 Dust collector and air conditioner
WO2019003379A1 (en) * 2017-06-29 2019-01-03 三菱電機株式会社 Dust collection device and air conditioner
CN111655378A (en) * 2018-01-15 2020-09-11 三菱日立电力系统环保株式会社 Electric dust collector
US11484890B2 (en) 2018-01-15 2022-11-01 Mitsubishi Heavy Industries Power Environmental Solutions, Ltd. Electrostatic precipitator
US20220258087A1 (en) * 2018-10-10 2022-08-18 Alink Co.,Ltd Conductive filter unit, conductive filter module including conductive filter unit, and fine dust removal system including conductive filter module
US11833464B2 (en) * 2018-10-10 2023-12-05 Alink Co., Ltd Conductive filter unit, conductive filter module including conductive filter unit, and fine dust removal system including conductive filter module

Also Published As

Publication number Publication date
JPWO2016136270A1 (en) 2017-12-07
KR102481567B1 (en) 2022-12-26
KR20170120563A (en) 2017-10-31
JP6837192B2 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
KR101860489B1 (en) Electric precipitator and air cleaner comprising the same
KR920004208B1 (en) Dust collector for a air cleaner
US4689056A (en) Air cleaner using ionic wind
Wen et al. Novel electrodes of an electrostatic precipitator for air filtration
WO2016136270A1 (en) Electrostatic precipitator
JP2002500562A (en) Air cleaner
US20170354979A1 (en) Electrostatic air cleaner
WO2017212688A1 (en) Charging device, electric dust collector, ventilation device, and air cleaner
JP2018051507A (en) Electric dust collector
KR20170101141A (en) Micro particle separator using direct voltage
KR20040007007A (en) Electronic dust collecting apparatus using urethane filter
RU2431785C2 (en) Ion fan filter
WO2019087997A1 (en) Electrostatic precipitator
US20200188929A1 (en) Electrostatic air cleaner
JP6684986B2 (en) Electric dust collector
CN208261000U (en) Electrostatic precipitator
KR101549600B1 (en) Harmful nano-aerosol removal apparatus
JP2872554B2 (en) Electric dust collector
KR102027975B1 (en) Electrostatic Carbon Filter, Dust Collecting Device and Dust Collecting Method thereof
JP2009061444A (en) Electrostatic dust collector and charger
RU2181466C1 (en) Ionic air-cleaning fan
KR102533511B1 (en) Comb tooth type ionizer for electric dust collector
JP6600555B2 (en) Electric dust collector
JPS6287262A (en) Air cleaner
JPS60114362A (en) Ion wind type air cleaner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017501952

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177017785

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755020

Country of ref document: EP

Kind code of ref document: A1